# V12/13 - Institut für Allgemeine Elektrotechnik, Uni Rostock

V12/13 - Institut für Allgemeine Elektrotechnik, Uni Rostock

Boundary Element Method

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

1

Free Space Green‘s Functions

Dirac‘s function:

⎧δi

⎩δ

i,

, j

j

=

0

= ∞

for

for

i

i

=

j

j

2 G = −δ i,j

source point

r i,j

G

1

=

4⋅

π⋅ r

i,j

1 ⎛

G = ln⎜

2⋅

π

1

r

i,j

in

3D

in

2D

x

z j r i r field point

y

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

2

Electrostatics

Gauss‘ law:

Scalar potential:

r r

D = ε ⋅ E

divD = ρ

E r

φ

i

=

N

j=

1

q 1

q

j

4⋅

π⋅ r

r i,j

i, j

⋅ε

Identity:

2

φ

z

i r

φ i

ρ

∇ 2 φ = −

ε

φ(i)

r

=

V

ρ

4⋅

π⋅ r ⋅ε

dV

x

y

r i,j

q2

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

3

Ampre‘s law:

Magnetostatics (1)

curl H

r

= r

J

Magnetic vector potential:

r r

B = µ ⋅ H

Identity:

r

curlcurlA =

r r

B = curlA

2

− ∇

r

Coulomb‘s gauge condition: div A = 0

A

2

r

A

r

= −µ ⋅ J

r r

A(i)

=

µ

4⋅

V

r r

J( j)

r

π∫

i,j

dV

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

4

Magnetostatics (2)

r r

A(i)

=

µ

4⋅

V

r r

J( j)

r

π∫

i,j

dV

J ≠

0

A z

field point

J z

A x

A y

⎪A

⎨A

⎪A

⎪⎩

x

y

z

r

(i)

r

(i)

r

(i)

=

=

=

µ

4⋅

π

µ

4⋅

π

µ

4⋅

π

V

V

V

r

Jx

( j)

⋅ dV

ri,j

r

J y(

j)

⋅ dV

ri,j

r

Jz(

j)

⋅ dV

r

i,j

x

z

r

j

J x

y

J y

r

i

r i,j

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

5

Calculating of volume integrals

⎪A

⎨A

⎪A

⎪⎩

x

y

z

r

(i)

r

(i)

r

(i)

=

=

=

µ

4⋅

π

µ

4⋅

π

µ

4⋅

π

V

V

V

r

Jx

( j)

⋅ dV

ri,j

r

J y(

j)

⋅ dV

ri,j

r

Jz(

j)

⋅ dV

r

i,j

J ≠ 0

J x

J z

r i,j

J y

A x

A z

A y

I

=

x

+ ∆ y + ∆z

+ ∆

0

∫ ∫ ∫

0

0

f (x, y,z)dxdydz

V ⋅f (x0 + ∆,

y0

+ ∆,z0

+ ∆)

x

0

y

0

z

0

Gaussian

I

=

1

1

1

∫∫∫

f (x, y,z)dxdydz ≅

∑∑∑

−1

−1

− 1

k= 1 j= 1 i=

1

n

n

n

f (x

i

, y

i

,z

i

) ⋅ w

i

⋅ w

j

⋅ w

k

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

6

Biot-Savart‘s law

Magnetic vector potential:

r r

B = ∇× A

r

B(i)

=

µ 0

4⋅

π

V

r r

J( j) × 1r

2

r

i,j

dV

r

J ⋅dV

=

r

J ⋅dS⋅dl

=

I⋅dl

r

B(i)

=

µ 0

4⋅

π

L

I⋅

( dl(j) × 1r

)

⋅ dL

r

2

i,j

r

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

7

Laplace‘s equation

2

∇ φ =

0

in

Ω

n r

Γ 2

2

∇ φ =

0

Γ 1

⎧ φ = φ

∂φ

⎪ = q

⎩∂n

on

on

Γ

Γ

1

2

x

z

y

Ω

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

8

Differential methods versus integral ones

Differential model

Integral model

(homogeneous domain)

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

9

Direct Boundary Element Method (1)

2

∇ φ =

0

in

Ω

⎧ φ = φ

∂φ

⎪ = q

⎩∂n

on

on

Γ

Γ

1

2

weighted residual

equation:

Ω

w

⋅∇

2

φ

dΩ =

Γ

2

∂φ

∂n

q

⎟⋅

w dΓ −

Γ

1

∂w

∂n

( φ − φ) ⋅ dΓ

Green‘s second

theorem:

Ω

w

⋅∇

2

φ dΩ =

Ω

φ ⋅∇

2

w dΩ +

Γ

∂φ

∂w⎞

w⋅

−φ

⋅ ⎟

∂n

∂n

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

10

Direct Boundary Element Method (2)

Ω

φ⋅∇

2

w dΩ +

Γ

∂φ

w ⋅

∂n

∂w

− φ⋅

∂n

=

Γ

2

∂φ

∂n

− q

⎟⋅

w dΓ −

Γ

1

∂w

∂n

( φ − φ) ⋅ dΓ

Ω

φ⋅∇

2

w dΩ = −

Γ

2

w ⋅ q

dΓ +

Γ

2

∂w

φ⋅

∂n

dΓ −

Γ

1

∂φ

w ⋅

∂n

dΓ +

Γ

1

∂w

φ ⋅

∂n

Ω

φ⋅∇

2

w dΩ =

Γ

∂w

φ⋅

∂n

dΓ −

Γ

∂φ

w ⋅

∂n

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

11

Direct Boundary Element Method (3)

Ω

φ⋅∇

2

w dΩ =

Γ

∂w

φ⋅

∂n

dΓ −

Γ

∂φ

w ⋅

∂n

2

w = −δ i,

j

φ*

=

φ*

=

1

4⋅

π⋅ r

i,j

1 ⎛

ln⎜

2⋅

π

1

r

i,j

in

3D

in

2D

q* =

∂φ*

δn

φ =

∫φ

j

Ω

⋅δ

i i,

j

φ

i

=

Γ

∂φ j

φ* ⋅ Γ −∫

i,j d q * i,j ⋅φ j

∂n

Γ

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

12

Direct Boundary Element Method (4)

φ

i

=

Γ

∂φ j

φ* ⋅ Γ −∫

i,j d q * i,j ⋅φ j

∂n

Γ

φ*

=

1

4⋅

π⋅ r

i,j

in

3D

φ

j1

∂φ

,

∂n

φ

j1

j2

∂φ

,

∂n

j2

φ

φ i

j3

∂φ

,

∂n

j3

φ*

=

1 ⎛

ln⎜

2⋅

π

∂φ*

q* =

δn

1

r

i,j

in

2D

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

13

Base equation of Boundary Element Method (5)

c

i

⋅φ

i

=

Γ

φ*

i,j

∂φ j

∂n

dΓ −

Γ

q *

i,j

⋅φ

j

c i

=

⎧1

⎪1

⎪2

⎩0

for i inside Ω

for i on Γ

for i outside Ω

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

14

Discretisation of boundary (1)

2D BEM models:

constat (zero order)

elements:

linear (first order)

elements:

elements:

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

15

Discretisation of boundary (2)

1

⋅φi

2

=

Γ

φ*

i,j

∂φ j

∂n

dΓ −

Γ

q *

i,j

⋅φ

j

r

i

1

⋅φi

2

1

2

G

⋅φ

i

=

=

n

j=

1

n

j=

1

=

∫φ

∂φ

j

∂n

∂φ

j

∂n

i , j * i,

j

Γ

j

Γ

j

⋅G

φ*

i,j

i,j

dΓ −

n

j=

1

φ

j

n

j=

1

⋅Ĥ

=

q

Γ

j

φ

i,j

i , j * i,

j

j

Γ

j

q *

i,j

r

j

φ*

=

r i,j

1 ⎛

ln⎜

2⋅

π

∂φ*

q* =

δn

1

r

i,j

in

2D

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

16

17

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

Matrix equation

∂ ∂ ∂

=

n

n

n

n

n

2

2

1

1

2

1

.

.

φ

φ

φ

φ

φ

φ

X

=

+

=

j

i

H

j

i

H

H

j

i

j

i

j

i

for

ˆ

2

1

for

ˆ

,

,

,

i,j

n

1

j

j

i,j

n

1

j

j

G

n

H

=

=

∂φ

=

φ

Q

G

Φ

H

=

F

X

A =

Calculation of integrals (i,i)

G

G

i,i

i,i

=

∫ φ *

Γ

i

i,i

=

∫φ*

dΓ = 2⋅∫

i,i

Γ

because:

i

⎛ 1

ln⎜

⎝ a ⋅ r

φ*

=

1

0

1 ⎛

ln⎜

2 ⋅π

1 ⎛ 1

⋅ln⎜

⎝ l⋅ξ

1

r i , j

⎟⋅

l dξ

in

⎡ ⎛ 1 ⎞⎤

dr = r ⋅

1+

ln⎜

⎟ ⎣ ⎝ a ⋅ r ⎠

2D

ξ = −1

local coordinate

system:

r

ξ = 0

= l⋅ξ

r

l

ξ =1

1

l ⎡ ⎛ ⎛ 1 ⎞⎞⎤

1

G i , i = ⋅ ⎢ξ

⋅⎜1+

ln⎜

⎟⎟

π

⎣ ⎝ ⎝ l ⋅ξ

⎠⎠⎦

0

l ⎡ ⎛ ⎞⎤

= ⋅

1+

ln⎜

π ⎣ ⎝ l ⎠

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

18

Calculation of integrals (i,i)

Ĥ

i,i

q *

i,i

=

∫q *

Γ

i

i,i

∂φ*

=

∂n

i,i

ξ = −1

n r

ξ = 0

ξ =1

Ĥ i , i =

0

H

i,

j

=

⎧Hˆ

i,

j

⎨1

⎪ + Hˆ

⎩2

i,

j

for

for

i

i

=

j

j

H i , i =

1

2

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

19

Calculation of integrals (i,j)

i,

j

=

q

i , j * i,

j

Γ

=

q * dΓ =

i,

j

Γ

j

j

Γ

j

∂φ

*

∂n

i,

j

i

d

r i,j

ξ = −1

ξ = 0

j

ξ =1

i,

j

=

l

Γ

j

∂r

⎡ ⎛

⎢ ⎜

1

ln

⎢⎣

⎝ ri

,

j

⎞⎤

∂ri

,

⎟⎥

⎠⎥⎦

∂n

j

l

= −

1

−1

d

r

i,

j

2

i , j

i,

j

l

= −

n

k=

1

w

k

r

d

i,

j

2

( ξk

)

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

20

Calculation of integrals (i,j)

G

=

∫φ

i , j * i,

j

Γ

j

d

ξ = −1

ξ = 0

G

i,

j

=

∫φ

* dΓ =

i,

j

Γ

j

Γ

j

1 ⎛

1

⋅ ln

⎝ ri

,

j

i

r i,j

j

ξ = 1

G

i,

j

=

1

n

⎛ ⎞

1

l

ln dξ

= ⋅

⎝ ri

, j

1

⎠ 2π

k=

1

l

⎛ 1

wk

⋅ ln⎜

⎝ξk

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

21

First order boundary elements (1)

c

i

⋅φ

i

=

Γ

φ*

i,j

∂φ j

∂n

dΓ −

Γ

q *

i,j

⋅φ

j

shape functions of element:

N

⎪N

1

2

1

( ξ ) = ⋅

2

1

( ξ ) = ⋅

2

⎪⎧

x(

ξ ) = N

⎪⎩ y(

ξ ) = N

1

1

( 1−ξ

)

( 1+

ξ )

( ξ ) ⋅ x

( ξ ) ⋅ y

1

1

+

+

N

N

2

2

( ξ ) ⋅ x

( ξ ) ⋅ y

2

2

ξ = −1

( x1,

y1)

ξ = 0

( x2,

y2

ξ =1

)

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

22

First order boundary elements (2)

⎧φ

( ξ ) = N1(

ξ ) ⋅φ1

+ N2(

ξ ) ⋅φ2

⎨∂φ

∂φ1

∂φ2

( ξ ) = N1(

ξ ) ⋅ + N2(

ξ ) ⋅

⎪⎩ ∂n

∂n

∂n

φ(

ξ)

=

⎪∂φ

⎪ ( ξ)

=

⎪∂n

⎪⎩

[ N N ]

1

[ N N ]

1

2

2

⎡φ1

⎢ ⎥

⎢ ⎥

⎢⎣

φ2⎥⎦

⎡∂φ

⎢ ∂n

⎢∂φ

⎢⎣

∂n

1

2

⎥⎦

φ

∂φ

n

1 1

, ∂

ξ = −1

ξ = 0

ξ = 1

∂φ2

φ2, ∂n

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

23

First order boundary elements (3)

c

i

⋅φ

i

=

Γ

φ*

i,j

∂φ j

∂n

dΓ −

Γ

q *

i,j

⋅φ

j

∫ φ ⋅ Γ =

j q * i,j d

Γ

j

Γ

j

⎡φ

[ ]

⎢ ⎥

⋅ Γ = [

(1) (2)

N N q * d h h ]

1

2

⎣⎢

φ

1

2

⎥⎦

i,j

i,j

i,j

⎡φ

⎢⎣

φ

1

2

⎥⎦

( 1) =

( 2)

hi , j N1

⋅ q * i,

j dΓ

h =

i , j N2

⋅ q * i,

j dΓ

Γ

j

Γ

j

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

24

First order boundary elements (4)

c

i

⋅φ

i

=

Γ

φ*

i,j

∂φ j

∂n

dΓ −

Γ

q *

i,j

⋅φ

j

Γ

j

∂φ

j

∂n

⋅φ*

i,j

dΓ =

Γ

j

⎡∂φ

⎢ ∂n

1

[ ] [

(1) (2)

N N ⎢ ⎥ ⋅φ*

dΓ = g g ]

1

2

⎢∂φ

⎢⎣

∂n

2

⎥⎦

i,j

i,j

i,j

⎡∂φ

⎢ ∂n

⎢∂φ

⎢⎣

∂n

1

2

⎥⎦

( 1)

g , =

j N1

⋅φ

*

i i,

j

( 2)

g , =

j N2

⋅φ

*

i i,

j

Γ

j

Γ

j

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

25

26

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

First order boundary elements (5)

[ ] [ ]

φ

φ

φ

∂φ

∂φ

∂φ

=

⋅φ

n

2

1

i,n

i,2

i,1

n

2

1

i,n

i,2

i,1

i

i

..

Ĥ

..

Ĥ

Ĥ

n

..

n

n

G

..

G

G

c

=

+

=

j

i

for

Ĥ

c

j

i

for

Ĥ

H

i,j

i

i,j

i,j

=

=

∂φ

=

⋅φ

n

1

j

j

i,j

n

1

j

j

i,j

n

G

H

27

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

Postprocessing

Γ

⋅φ

Γ −

∂φ

φ

=

φ

Γ

Γ

d

q *

d

n

*

c

j

i,j

j

i,j

i

i

=

Ω

i

Γ

i

Ω

i

c i

outside

for

0

on

for

2

1

inside

for

1

i,j

n

1

j

j

i,j

n

1

j

j

i

Ĥ

G

n

=

=

φ

∂φ

=

φ

n

,

j1

j1

∂φ

φ

n

,

j3

j3

∂φ

φ

i

φ

n

,

j2

j2

∂φ

φ

3D boundary elements

boundary triangle elemens:

constat (zero order)

elements:

linear (first order)

elements:

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

28

First order triagle element (1)

r r r r r r r r r

= ⋅η⋅1

r x ⋅1x

+ y ⋅1y

+ z ⋅1z

= x3

⋅1x

+ y3

⋅1y

+ z3

⋅1z

+ l1

⋅ξ⋅1ξ

+ l2

η

r

1

r

1

ξ

η

=

=

x

x

− x

r

y

− y

r

1

− z

1 3 1 3 1 3

⋅1x

+ ⋅ y + ⋅1z

l1

l1

l1

− x

r

y

− y

2 3 2 3 2 3

⋅1x

+ ⋅1y

+ ⋅1z

l1

l1

l1

r

z

z

− z

z

r

r

(0,0)

r

3

l 2

l 1

2

1

(0,1)

(1,0)

ξ

η

x

y

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

29

30

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

First order triagle element (2)

( ) [ ]

[ ]

[ ] z

y

x

z

z

z

z

z

y

y

y

y

y

x

x

x

x

x

r

1

)

(

)

(

1

)

(

)

(

1

)

(

)

(

,

3

2

3

1

3

3

2

3

1

3

3

2

3

1

3

r

r

r

+

+

+

+

+

+

+

+

=

η

ξ

η

ξ

η

ξ

η

ξ

r

+

+

=

+

+

=

+

+

=

3

2

1

3

2

1

3

2

1

)

(1

)

,

(

)

(1

)

,

(

)

(1

)

,

(

z

z

z

z

y

y

y

y

x

x

x

x

η

ξ

η

ξ

η

ξ

η

ξ

η

ξ

η

ξ

η

ξ

η

ξ

η

ξ

First order triagle element (3)

⎧ x(

ξ,

η)

= N

⎨y(

ξ,

η)

= N

⎩ z(

ξ,

η)

= N

⎧N

⎨N

⎩N

1

2

3

( ξ,

η)

( ξ,

η)

( ξ,

η)

1

1

1

= ξ

= η

( ξ,

η) ⋅ x + N ( ξ,

η) ⋅ x + N ( ξ,

η)

1

( ξ,

η) ⋅ y + N ( ξ,

η) ⋅ y + N ( ξ,

η)

1

( ξ,

η) ⋅ z + N ( ξ,

η) ⋅ z + N ( ξ,

η)

= 1−ξ

−η

1

2

2

2

2

2

2

3

3

3

⋅ x

y

⋅ z

3

3

3

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

31

First order triagle element (4)

φ(

ξ,

η)

=

[ N ( ξ,

η)

N ( ξ,

η)

N ( ξ,

η ]

1 2

3 )

⎡φ1

⎢ ⎥

⎢φ2

⎢ ⎥

⎣⎢

φ3

⎥⎦

∂φ3

φ3,

∂n

2

φ

∂φ

∂n

2 , 2

∂φ

( ξ,

η)

∂n

=

[ N ( ξ,

η)

N ( ξ,

η)

N ( ξ,

η ]

1 2

3 )

⎡∂φ1

⎢ ⎥

⎢∂ ∂ n

φ ⎥

2

⎢ ⎥

⎢ ⎥

⎢∂ ∂ n

φ3

⎢⎣

∂n

⎥⎦

3

1

φ

∂φ

n

1 1

, ∂

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

32

3D Model with first order triangle elements (1)

c

i

⋅φ

i

=

n

n

∂φ

∑∫

j

⋅φ*

∑∫

i,j dΓ − φ j ⋅q * i,j dΓ

∂n

j= 1 Γ j= 1 Γ

j

j

∫ φ ⋅ Γ =

j q * i,j d

Γ

j

Γ

j

⎡φ

[ ] [

(1) (2) (3)

N N N ⎢φ

⎥ ⋅q * dΓ = h h h ]

1

2

3

⎣⎢

φ

1

2

3

( 1) =

( 2)

hi , j N1

⋅ q * i,

j dΓ

=

( 3)

hi , j N2

⋅ q * i,

j dΓ

h =

i , j N3

⋅ q * i,

j dΓ

Γ

j

Γ

j

⎥⎦

i,j

i,j

i,j

Γ

j

i,j

⎡φ

⎢φ

⎣⎢

φ

1

2

3

⎥⎦

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

33

3D Model with first order triangle elements (2)

c

i

⋅φ

i

=

n

n

∂φ

∑∫

j

⋅φ*

∑∫

i,j dΓ − φ j ⋅q * i,j dΓ

∂n

j= 1 Γ j= 1 Γ

j

j

Γ

j

∂φ

j

∂n

⎡∂φ1

⎢ ⎥

⎢∂ ∂ n

φ ⎥

⋅φ

* Γ =

i , j d 1 2 3 ⎢ ⎥

⎢ ⎥

⎢∂ ∂ *

n

Γj

φ3

⎢⎣

∂n

⎥⎦

[ ] [

( 3)

N N N ⋅ dΓ = g g g ]

2

1) 2)

φ

,

i , j

(

i , j

i

j

(

i , j

⎡∂φ1

⎢ ⎥

⎢∂ ∂ n

φ ⎥

2

⎢ ⎥

⎢ ⎥

⎢∂ ∂ n

φ3

⎢⎣

∂n

⎥⎦

( 1)

g , =

j N1

⋅φ

*

i i,

j

( 2)

g , =

j N2

⋅φ

*

i i,

j

( 3)

g , =

j N3

⋅φ

*

i i,

j

Γ

j

Γ

j

Γ

j

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

34

Calculation of integrals in triangle element

Zienkiewicz formula:

∫∫

i j k i!

j!

k!

N1

⋅N

2

⋅ N3

dS =

⋅ 2∆

2 !

( i + j + k + )

1 1−

N1

n

I = f 1 2 3 1 2 i 1i

2i,

3i

∫∫ ∑

=

0

0

( N , N , N ) dN dN = w ⋅f

( N , N N )

i

1

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

35

Poisson‘s equation

2

∇ φ = − f

in

Ω

n r

f ≠ 0

Γ 1

⎧ φ = φ

⎨∂φ

⎪ = q

⎩∂n

on

on

Γ

Γ

1

2

z

Γ 2

Ω

x

y

Ω

2

w⋅∇

φ dΩ +

Ω

w⋅

f

dΩ =

Γ

2

∂φ

∂n

q

⎟⋅

w dΓ −

Γ

1

∂w

∂n

( φ −φ

) ⋅ dΓ

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

36

Direct BEM for Poisson‘s equation (1)

Ω

φ ⋅∇

2

w dΩ +

Γ

∂φ

∂w⎞

w⋅

−φ

⋅ ⎟ +

∂n

∂n

Ω

w⋅

f

dΩ =

=

Γ

2

∂φ

∂n

q

⎟⋅

w dΓ −

Γ

1

∂w

∂n

( φ −φ

) ⋅ dΓ

φ ⋅∇

2

w dΩ +

w⋅

f

dΩ =

Ω

Ω

= −

Γ

2

w⋅

q

dΓ +

Γ

2

∂w

φ ⋅

∂n

dΓ −

Γ

1

∂φ

w⋅

dΓ +

∂n

Γ

1

∂w

φ ⋅

∂n

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

37

Direct BEM for Poisson‘s equation (2)

Ω

φ ⋅∇

2

w dΩ +

Ω

w⋅

f

dΩ =

Γ

∂w

φ ⋅

∂n

dΓ −

Γ

∂φ

w⋅

∂n

⎧δi

⎩δ

i,

, j

j

=

0

= ∞

φ =

∫φ

j

Ω

⋅δ

i i,

j

for

for

i

i

=

j

j

1

φ*

=

4 ⋅π

r i, j

1 ⎛

φ*

= ln⎜

2 ⋅π

1

r i , j

in

3D

in

2D

2

w = −δ i,

j

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

38

Direct BEM for Poisson‘s equation (3)

∂φ

−∫

⋅ Ω =

j

φ f d ⋅ dΓ −∫

i φ * i, j φ * i,

j

q * i,

∂n

Ω

Γ

Γ

j

⋅φ

j

c

i

∂φ

⋅ −∫

⋅ Ω =

j

φ f d ⋅ dΓ −∫

i φ * i, j φ * i,

j

q * i,

∂n

Ω

Γ

Γ

j

⋅φ

j

c i

=

⎧1

⎪1

⎪2

⎩0

for i inside Ω

for i on Γ

for i outside Ω

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

39

Direct BEM for Poisson‘s equation (4)

1

2

1

2

∂φ

⋅ −∫

⋅ Ω =

j

φ f d ⋅ dΓ −∫

i φ * i, j φ * i,

j

q * i,

∂n

Ω

⋅φ

− B

j=

1

∂n

Γ

j

Γ

n

n

∂φ

j

i i = ⋅ φ * i,

j dΓ − φ j ⋅ q * i,

j

j=

1

Γ

Γ

j

j

⋅φ

j

1

2

⋅φ

i

n

n

∂φ

j

B i = ⋅Gi,

j − φ j ⋅Hˆ

i,

j

j=

1

∂n

j=

1

G

=

∫φ

i , j * i,

j

=

q

i , j * i,

j

Γ

j

Γ

j

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

40

Direct BEM for Poisson‘s equation (5)

B

i

=

∫ φ *

Ω

i, j

1

φ*

=

4 ⋅π

⋅f

r i, j

in

3D

φ

j1

∂φ

,

∂n

j1

2

∇ φ = − f

f ≠ 0

in

Ω

φ i

φ*

=

1 ⎛

ln⎜

2 ⋅π

1

r i , j

Electrostatics:

in

2D

φ

j2

∂φ

,

∂n

j2

φ

j3

∂φ

,

∂n

j3

ρ

∇ 2 φ = −

ε

φ(i)

r

=

V

ρ

4⋅

π⋅ r ⋅ε

dV

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

41

Direct BEM for Poisson‘s equation (6)

H

i,

j

⎧Hˆ

i,

j

= ⎨1

⎪ + Hˆ

⎩2

i,

j

for

for

n

n

∂φ

j

B i = ⋅Gi,

j − φ j ⋅Hi,

j

j=

1

∂n

− B = G ⋅Q

− H ⋅Φ

A ⋅ X =

F

i

i

=

j

j

j=

1

X

⎡ φ1

⎢ φ2

⎢ .

⎢ φn1

=

∂φ

1

⎢ ∂ ∂ n

φ2

⎢ ∂n

.

⎢∂φn

⎢⎣

∂n

2

⎥⎦

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

42

Calculating integrals of internal elements

B

i

=

∫ φ *

i, j

⋅f

φ*

=

1

4 ⋅π

r i, j

in

3D

Ω

φ*

=

1 ⎛

ln⎜

2 ⋅π

1

r i , j

in

2D

Magnetostatics:

2

r

A

r

= −µ ⋅ J

r r

A(i)

=

µ

4⋅

V

r r

J( j)

r

π∫

i,j

dV

Gaussian

I

=

1

1

1

∫∫∫

f (x, y,z)dxdydz ≅

∑∑∑

−1

−1

− 1

k= 1 j= 1 i=

1

n

n

n

f (x

i

, y

i

,z

i

) ⋅ w

i

⋅ w

j

⋅ w

k

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

43

Postprocessing

φ

i

=

B

i

+

n

j=

1

∂φ

j

∂n

⋅G

i,j

n

j=

1

φ

j

⋅Ĥ

i,j

φ

j1

∂φ

,

∂n

j1

B

i

=

∫ φ *

i, j

⋅f

f ≠ 0

φ i

Ω

φ

j2

∂φ

,

∂n

j2

φ

j3

∂φ

,

∂n

j3

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

44

First order elements (Poisson‘s equation)

c

i

∂φ

⋅ −∫

⋅ Ω =

j

φ f d ⋅ dΓ −∫

i φ * i, j φ * i,

j

q * i,

∂n

Ω

Γ

Γ

j

⋅φ

j

N

⎪N

1

2

1

( ξ ) = ⋅

2

1

( ξ ) = ⋅

2

( 1−ξ

)

( 1+

ξ )

⎪⎧

x(

ξ ) =

⎪⎩ y(

ξ ) =

N

N

1

1

( ξ ) ⋅

( ξ ) ⋅

x

y

1

1

+

+

N

N

2

2

( ξ ) ⋅ x

( ξ ) ⋅ y

2

2

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

45

Subregions (1)

H ⋅Φ

=

G ⋅Q

⎡Φ

[

1 1

] ⋅ ⎢ ⎥ = [

1 1

H H G G ]

a

⎣Φ

⎡Φ

1

1

a

[

2 2

] ⋅ ⎢ ⎥ = [

2 2

H H G G ]

a

⎣Φ

2

2

a

a

a

⎡Q

⋅ ⎢

⎢Q

1

1

a

⎡Q

⋅ ⎢

⎢Q

2

2

a

Ω

Γ

Γ

2

1 Ω 2

1

Ω

Γ

Γ

2

1 Ω 2

1 Γa

Γa

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

46

Subregions (2)

Φ =

a

= Φa

2

Φ

a

1 a

1

a

2

a

Q = −Q

=

Q

⎡H

⎣ 0

1

H

H

1

a

2

a

0

H

2

⎡Φ

⎤ ⎢

⎥ ⋅ ⎢Φ

⎥ ⎢

Φ

1

a

2

=

⎡G

⎣ 0

1

G

1

a

− G

2

a

0

G

2

⎡G

⎤ ⎢

⎥ ⋅ ⎢G

⎥ ⎢

G

1

a

2

H ⋅Φ

=

G ⋅Q

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

47

Indirect Boundary Element Method (1)

Fredholm equation:

φ*

=

1

4 ⋅π

r i, j

in

3D

φ

i

=

Γ

σ φ

j

* i, j

φ*

=

1 ⎛

ln⎜

2 ⋅π

1

r i , j

in

2D

where σ is density of single-layer potential

σ j2

φ i

σ j1

σ j3

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

48

Indirect Boundary Element Method (2)

φ

i

=

Γ

σ φ

j

* i, j

φ*

=

1

4 ⋅π

r i, j

in

3D

q

i

∂φi

1

= = − ⋅σ +

i σ jq *

∂n

2

Γ

i, j

φ*

=

1 ⎛

ln⎜

2 ⋅π

1

r i , j

in

2D

φ

q

i

i

=

= −

N

j=

1

1

2

σ

j

⋅σ

⋅G

i

+

i,j

N

j=

1

σ

j

⋅Ĥ

i,j

φ

q

i

i

=

=

N

j=

1

N

j=

1

σ

σ

j

j

⋅G

⋅H

i,j

i,j

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

49

Indirect Boundary Element Method (3)

φ

i

=

N

j=

1

σ

j

⋅G

i,j

φ i

σ j2

q

i

=

N

j=

1

σ

j

⋅H

i,j

σ j1

f ≠ 0

σ j3

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

50

Coupling FEM with BEM

r =1

Γ

µ Γ

µ r ≠ 1

r ≠ 1

µ r =1

Γ

Γ

µ FEM model

BEM model

⎧ φ = φ

∂φ

⎪ = q

⎩∂n

on

on

Γ

Γ

1

2

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

51

Comparing BEM to FEM

Finite Element Method

widely applicable

discretisation of whole domain

solution in whole domain

sparse matrix

not easy to solve open

boundary problems

Boundary Element Method

not all problems can be solved

discretisation of boundary

of homogeneous domain

soution at boundary and next

inside domain

full matrix

open boundary problems can be

solved easly

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

52

References

• C.A. Brebbia, J.C.F. Telles L.C. Wrobel „Boundary Element

Techniques – Theory and Applications in Engineering“, Springer-

Verlang

• M. Ameen „Boundary Element Analysis – Theory and Programming“,

Alpha Science International

• G. Beer „Programming the Boundary Element Method – An

Itroduction for Engineers“, John Wiley & Sons

• www.integratesoft.com

• http://www.boundary-element-method.com

• http://tabula.rutgers.edu/EJBE/

• http://www.olemiss.edu/sciencenet/benet/

FB Elektrotechnik und Informationstechnik, AG Computational Electrodynamics

53

More magazines by this user
Similar magazines