19.01.2014 Views

2nd talk. The Mott transition

2nd talk. The Mott transition

2nd talk. The Mott transition

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mott</strong> physics<br />

<strong>2nd</strong> Talk<br />

E. Bascones<br />

Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)


Summary I<br />

Independent electrons: Odd number of electrons/unit cell = metal<br />

Interactions in many metals can be described following Fermi liquid<br />

theory:<br />

Description in k-space. Fermi surface and energy bands are<br />

meaningful quantities. Rigid band shift<br />

<strong>The</strong>re are elementary excitations called quasiparticles with<br />

charge e and spin ½<br />

Quasiparticle have finite lifetime & renormalized energy<br />

dispersion (heavier mass). Better defined close to Fermi level & low T<br />

Quasiparticle weight Z , it also gives mass renormalization m*<br />

Increasing correlations: smaller Z. m* (and Z) can be estimated<br />

from ARPES bandwidth, resistivity, specific heat and susceptibility<br />

~ 0 + A T 2<br />

A ~ m* 2<br />

C ~ T ~<br />

~ m* ~ m*


Summary I-b<br />

Interactions are more important in f and d electrons and decrease<br />

with increasing principal number (U 3d > U 4d …) .<br />

With interactions energy states depend on occupancy: non-rigid<br />

band shift<br />

In one orbital systems with one electron per atom (half-filling) onsite<br />

interactions can induce a metal insulator <strong>transition</strong> : <strong>Mott</strong><br />

<strong>transition</strong>.<br />

In <strong>Mott</strong> insulators : description in real space (opposed to k-space)<br />

<strong>Mott</strong> insulators are associated with avoiding double occupancy not<br />

with magnetism (Slater insulators)<br />

Magnetism:<br />

Weakly correlated metals: Fermi surface instability<br />

<strong>Mott</strong> insulators: Magnetic exchange (t 2 /U). Spin models


Outline II: <strong>The</strong> <strong>Mott</strong> <strong>transition</strong> in single band systems<br />

<strong>The</strong> <strong>Mott</strong>-Hubbard transtion. Hubbard bands. <strong>Mott</strong> and<br />

charge transfer insulators<br />

<strong>The</strong> correlated metallic state. Brinkman-Rice <strong>transition</strong><br />

<strong>The</strong> DMFT description of the <strong>Mott</strong> <strong>transition</strong><br />

Finite temperatures


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Paramagnetic state<br />

Paramagnetic<br />

<strong>Mott</strong><br />

Insulator<br />

Metal-Insulator<br />

<strong>transition</strong> with<br />

decreasing pressure<br />

Antiferromagnetism<br />

Increasing Pressure: decreasing U/W<br />

McWhan et al, PRB 7, 1920 (1973)


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Paramagnetic state<br />

Atomic lattice single orbital per site and average occupancy 1: half filling<br />

Hopping<br />

saves energy t<br />

Double occupancy<br />

costs energy U<br />

Small U/t<br />

Metal<br />

Increasing U/t<br />

<strong>Mott</strong> <strong>transition</strong><br />

Large U/t<br />

Insulator<br />

W<br />

Double<br />

occupancy<br />

Single<br />

occupancy<br />

U


Hubbard model. Kinetic and On-site interaction Energy<br />

Hopping<br />

saves energy t<br />

Kinetic energy<br />

Intra-orbital<br />

repulsion<br />

Double occupancy<br />

costs energy U<br />

Atomic lattice with a single orbital per site and average occupancy 1 (half filling)<br />

E<br />

Hopping restricted to first nearest neighbors: Electron-hole symmetry<br />

Tight-binding (hopping)<br />

Intra-orbital<br />

repulsion


<strong>Mott</strong> insulator. Paramagnetic state: Hubbard bands<br />

Double<br />

electron<br />

occupancy<br />

Single<br />

electron<br />

occupancy<br />

U


<strong>Mott</strong> insulator. Paramagnetic state: Hubbard bands<br />

Double<br />

electron<br />

occupancy<br />

U<br />

Single<br />

electron<br />

occupancy<br />

Remove an electron<br />

(as in photoemission)<br />

Empty<br />

state


<strong>Mott</strong> insulator. Paramagnetic state: Hubbard bands<br />

Double<br />

electron<br />

occupancy<br />

U<br />

Single<br />

electron<br />

occupancy<br />

Remove an electron<br />

(as in photoemission)<br />

Empty<br />

state<br />

Empty state is free to move


<strong>Mott</strong> insulator. Paramagnetic state: Hubbard bands<br />

t<br />

t


<strong>Mott</strong> insulator. Paramagnetic state: Hubbard bands<br />

t<br />

t<br />

Double<br />

occupancy<br />

U<br />

U<br />

Single<br />

occupancy<br />

W<br />

Lower Hubbard band


<strong>Mott</strong> insulator. Paramagnetic state: Hubbard bands<br />

t<br />

t<br />

Upper Hubbard Band<br />

W<br />

U<br />

Lower Hubbard Band<br />

W


<strong>Mott</strong> insulator. Paramagnetic state: Hubbard bands<br />

Doubly occupied states<br />

Upper Hubbard Band<br />

W<br />

U<br />

Lower Hubbard Band<br />

W<br />

Non-degenerate bands<br />

Singly occupied states


<strong>The</strong> <strong>Mott</strong>-Hubbard <strong>transition</strong>. Paramagnetic state<br />

Increasing U<br />

U=0<br />

W<br />

W<br />

Double<br />

degenerate<br />

band (spin)<br />

Gap<br />

U- W<br />

W<br />

U<br />

Non-degenerate<br />

bands


<strong>The</strong> <strong>Mott</strong>-Hubbard <strong>transition</strong>. Paramagnetic state<br />

Increasing U<br />

U=0<br />

W<br />

Double<br />

degenerate<br />

band (spin)<br />

W<br />

W<br />

<strong>Mott</strong> <strong>transition</strong><br />

Uc= W<br />

Gap<br />

U- W<br />

W<br />

W<br />

U<br />

Non-degenerate<br />

bands<br />

Gap opens at the Fermi level at Uc


<strong>Mott</strong> vs charge transfer insulators<br />

3d oxides<br />

U=0<br />

4s band<br />

3d narrow band<br />

2p oxygen band


<strong>Mott</strong> vs charge transfer insulators<br />

3d oxides<br />

U=0<br />

4s band<br />

W<br />

U<br />

3d narrow band<br />

W<br />

2p oxygen band


<strong>Mott</strong> vs charge transfer insulators<br />

3d oxides<br />

U=0<br />

<strong>Mott</strong> insulator<br />

4s band<br />

Lowest excitation<br />

energy d-type (<strong>Mott</strong>)<br />

3d narrow band<br />

Charge transfer<br />

insulator<br />

2p oxygen band<br />

Lowest excitation<br />

energy p-type


<strong>Mott</strong> vs charge transfer insulators<br />

Cuprates are<br />

charge transfer insulators


<strong>The</strong> Brinkman-Rice <strong>transition</strong> from the metallic state.<br />

<strong>The</strong> uncorrelated metallic state: <strong>The</strong> Fermi sea |FS><br />

W<br />

Spin degenerate<br />

Energy states are filled<br />

according to their kinetic energy.<br />

States are well defined in k-space


<strong>The</strong> Brinkman-Rice <strong>transition</strong> from the metallic state.<br />

<strong>The</strong> uncorrelated metallic state: <strong>The</strong> Fermi sea |FS><br />

W<br />

Spin degenerate<br />

Energy states are filled<br />

according to their kinetic energy.<br />

States are well defined in k-space<br />

Probability in real space: ¼ per the 4 possible states (half filling)<br />

Cost in interaction energy per particle<br />

=U/4<br />

Kinetic energy gain per particle<br />

(constant DOS)<br />

=W/4=D/2


<strong>The</strong> Brinkman-Rice <strong>transition</strong> from the metallic state.<br />

<strong>The</strong> uncorrelated metallic state: <strong>The</strong> Fermi sea 1FS><br />

E=K+U<br />

<br />

=U/4<br />

<br />

<br />

=D/2


<strong>The</strong> Brinkman-Rice <strong>transition</strong> from the metallic state.<br />

<strong>The</strong> correlated metallic state: Gutzwiller wave function<br />

| >= j [ 1-(1- )n j n j ]1FS><br />

Variational Parameter<br />

=1 U=0<br />

Uncorrelated<br />

=0 U=<br />

uniformly diminishes<br />

the concentration of<br />

doubly occupied sites<br />

Correlated<br />

Gutzwiller Approximation. Constant DOS


<strong>The</strong> Brinkman-Rice <strong>transition</strong> from the metallic state.<br />

<strong>The</strong> correlated metallic state: Gutzwiller wave function<br />

Uncorrelated<br />

Correlated


<strong>The</strong> Brinkman-Rice <strong>transition</strong> from the metallic state.<br />

<strong>The</strong> correlated metallic state: Gutzwiller wave function<br />

uncorrelated<br />

correlated<br />

Average potential energy<br />

reduced due to reduced<br />

double occupancy<br />

correlated<br />

uncorrelated<br />

Kinetic Energy<br />

is reduced


<strong>The</strong> Brinkman-Rice <strong>transition</strong><br />

Correlated metallic state<br />

W<br />

Heavy quasiparticle<br />

(reduced Kinetic Energy)<br />

Quasiparticle disappears<br />

U


<strong>The</strong> Brinkman-Rice <strong>transition</strong><br />

Correlated metallic state. Fermi liquid like aproach<br />

W<br />

Heavy quasiparticle<br />

(reduced Kinetic Energy)<br />

Quasiparticle disappears<br />

Reduced<br />

quasiparticle residue<br />

Quasiparticle disappears<br />

at the <strong>Mott</strong> <strong>transition</strong>


<strong>Mott</strong>-Hubbard vs Brinkman-Rice <strong>transition</strong><br />

<strong>The</strong> <strong>Mott</strong>-Hubbard <strong>transition</strong> (insulator) Uc=W<br />

W<br />

W<br />

W<br />

Gap<br />

U- W<br />

U<br />

<strong>The</strong> Brinkman-Rice <strong>transition</strong> (metallic) Uc=2W<br />

W<br />

Heavy quasiparticle<br />

(reduced K.E.)<br />

Reduced quasiparticle residue<br />

F* ~Z F<br />

Quasiparticle disappears


<strong>The</strong> Brinkman-Rice <strong>transition</strong> from the metallic state.<br />

<strong>The</strong> correlated metallic state: Gutzwiller wave function<br />

uncorrelated<br />

correlated<br />

Transition happens when<br />

double occupancy<br />

dissapears<br />

correlated<br />

uncorrelated<br />

Energy of<br />

independent<br />

localized electrons


Large U limit. <strong>The</strong> Insulator. Magnetic exchange<br />

Antiferromagnetic interactions<br />

between the localized spins<br />

(not always ordering)<br />

Effective exchange interactions<br />

J ~t 2 /U<br />

Antiferromagnetic correlations/ordering can reduce the energy<br />

of the localized spins<br />

Double occupancy is not zero


Transition between correlated metal and insulator<br />

<strong>The</strong> correlated metallic state: Gutzwiller wave function<br />

Uncorrelated<br />

insulator<br />

Uncorrelated<br />

Metal<br />

Correlated<br />

Insulator<br />

t 2 /U<br />

Correlated<br />

Metal<br />

Transition happens<br />

with non vanishing<br />

double occupancy


<strong>Mott</strong>-Hubbard vs Brinkman-Rice <strong>transition</strong><br />

<strong>The</strong> <strong>Mott</strong>-Hubbard <strong>transition</strong> (insulator)<br />

W<br />

W<br />

W<br />

Gap<br />

U- W<br />

U<br />

<strong>The</strong> Brinkman-Rice <strong>transition</strong> (metallic)<br />

W<br />

Heavy quasiparticle<br />

(reduced K.E.)<br />

Reduced quasiparticle residue<br />

F* ~Z F<br />

Quasiparticle disappears


<strong>Mott</strong>-Hubbard + Brinkman-Rice <strong>transition</strong><br />

Heavy quasiparticle which disappears when<br />

F* vanishes at U c2 > U c1<br />

U<br />

F* ~Z F<br />

Gap U- W<br />

between the<br />

Hubbard bands<br />

opens at<br />

U c1 =W=2D<br />

- Density of States: Quasiparticle and Hubbard<br />

Bands three peak structure.<br />

- Two energy scales: F* and the gap between<br />

the Hubbard bands


<strong>Mott</strong> <strong>transition</strong>. Paramagnetic state. DMFT picture<br />

Infinite dimensions<br />

Georges et al , RMP 68, 13 (1996)<br />

U/D=1<br />

Three peak structure<br />

U/D=2<br />

U/D=2.5<br />

F*<br />

Heavy quasiparticles<br />

(coherent)<br />

U/D=3<br />

U/D=4<br />

Hubbard bands<br />

(incoherent)<br />

Two energy scales: F* and the gap between the Hubbard bands<br />

F* Fermi liquid,<br />

F* Non-Fermi liquid


<strong>Mott</strong> <strong>transition</strong>. Paramagnetic state. DMFT picture<br />

Infinite dimensions<br />

U/D=1<br />

U/D=2<br />

Transfer of spectral weight<br />

from the quasiparticle peak<br />

to the Hubbard bands<br />

U/D=2.5<br />

U/D=3<br />

U/D=4<br />

<strong>The</strong> gap between the<br />

Hubbard bands<br />

opens in the metallic state<br />

Quasiparticles disappear at the <strong>Mott</strong> <strong>transition</strong><br />

Georges et al , RMP 68, 13 (1996)


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>.<br />

Quasiparticle weight vanishes<br />

at the <strong>Mott</strong> <strong>transition</strong><br />

Best order parameter for the<br />

<strong>transition</strong><br />

Georges et al , RMP 68, 13 (1996)<br />

Quasiparticle weight : Step at Fermi surface<br />

Luttinger theorem<br />

(original version):<br />

At the <strong>Mott</strong> <strong>transition</strong><br />

the Fermi surface disappears<br />

Fermi surface volume<br />

proportional<br />

to carrier density<br />

Localization<br />

In real space<br />

Delocalization<br />

in momentum space


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Paramagnetic state. DMFT picture<br />

Quasiparticle weight vanishes at the <strong>Mott</strong> <strong>transition</strong><br />

but double occupancy does not<br />

Georges et al , RMP 68, 13 (1996)<br />

DMFT numerical results can depend on the a<br />

approximation used to solve the impurity problem


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Paramagnetic state.<br />

Analogy between <strong>Mott</strong> <strong>transition</strong> & liquid-gas <strong>transition</strong><br />

Metal: liquid<br />

First order phase <strong>transition</strong><br />

(some exception could exist)<br />

Insulator: gas<br />

(larger entropy)<br />

<strong>The</strong> particles in the gas<br />

are the doubly occupied<br />

sites. Density is smaller<br />

in the insulator (gas)


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures. DMFT<br />

Georges et al , RMP 68, 13 (1996)<br />

In the region between the dotted lines both<br />

a metallic and an insulator solution exist<br />

A gap between<br />

Hubbard bands<br />

opens at U c1<br />

<strong>Mott</strong> <strong>transition</strong><br />

<strong>The</strong> quasiparticle peak<br />

disappears at U c2<br />

At zero temperature the <strong>Mott</strong> <strong>transition</strong> happens at U c2<br />

when the quasiparticle peak disappears


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

<strong>The</strong> system becomes<br />

insulating with<br />

increasing temperature<br />

First order <strong>transition</strong><br />

Georges et al , RMP 68, 13 (1996)


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

<strong>The</strong> system becomes<br />

insulating with<br />

increasing temperature<br />

First order <strong>transition</strong><br />

Georges et al , RMP 68, 13 (1996) McWhan et al, PRB 7, 1920 (1973)


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

Also in liquid gas <strong>transition</strong><br />

Critical point:<br />

No distinction of<br />

what it is a metal<br />

and what an insulator<br />

at higher temperatures


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

Critical point<br />

Histeresis<br />

First order<br />

Limelette et al, Science 302, 89 (2003)


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

U/D=2.5<br />

T=0.05 D<br />

T=0.03 D<br />

T=0.08 D<br />

T=0.10 D<br />

<strong>The</strong> quasiparticle weight Z decreases with increasing temperature


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

U/D=2.4<br />

Resistivity decreases<br />

with temperature<br />

(insulator)<br />

Resistivity increases<br />

with temperature<br />

(metal)<br />

Change from metallic to insulating<br />

like behavior at a given temperature<br />

Georges et al, J. de Physique IV 114, 165 (2004), arXiv:0311520


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

Not so clear distinction between a metal and an insulator at finite temperatures<br />

Georges et al, J. de Physique IV 114, 165 (2004), arXiv:0311520


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

2.85<br />

3<br />

2.65 2.45<br />

2.25<br />

2<br />

<strong>The</strong> slope of the linear T<br />

dependence increases<br />

with interactions<br />

3.1<br />

Fermi liquid: Specific heat<br />

linear with temperature<br />

C ~ T ~ m*<br />

Mass enhanced<br />

with interactions<br />

DMFT Georges et al , RMP 68, 13 (1996)


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

2.85<br />

3<br />

2.65<br />

2.45<br />

2.25<br />

2<br />

U/D=1<br />

<strong>The</strong> slope of the linear T<br />

dependence increases<br />

with interactions<br />

3.1<br />

Fermi liquid: Specific heat<br />

linear with temperature<br />

C ~ T ~ m*<br />

Linearity is lost at a temperature which<br />

decreases with increasing interactions<br />

DMFT<br />

Mass enhanced<br />

with interactions


<strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

T-linear dependence<br />

at low temperatures<br />

(Metallic)<br />

U/D=4<br />

Change to insulating<br />

Like behavior at high<br />

temperatures<br />

U/D=2<br />

Activated behavior at low temperatures<br />

(Insulating)<br />

DMFT Georges et al , RMP 68, 13 (1996)


Summary II: <strong>The</strong> <strong>Mott</strong> <strong>transition</strong>.<br />

Half-filling. Zero T . Paramagnetic state<br />

At half filling and zero temperature. Hubbard model (only on-site<br />

interactions) <strong>Mott</strong> transtion: Metal-insulator <strong>transition</strong> at a given U/W<br />

<strong>Mott</strong>-Hubbard approach: Insulator as starting point. A hole or a<br />

doubly occupied state is able to move. Non-degenerate lower and<br />

upper Hubbard bands (width W). Gap U-W. Transition Uc=W<br />

U=0 Degenerate<br />

W<br />

W<br />

W<br />

Gap<br />

U- W<br />

U<br />

Non-degenerate<br />

Charge transfer insulators: Lowest excitation with different orbital<br />

character than the one which opens the gap


Summary II-b: <strong>The</strong> <strong>Mott</strong> <strong>transition</strong>.<br />

Half-filling. Zero T . Paramagnetic state<br />

Brinkmann-Rice approach: Metal as starting point. <strong>The</strong> correlated<br />

metal avoids double occupancy (Gutzwiller). Quasiparticles with<br />

larger mass, renormalized Fermi energy, reduced quasiparticle weight<br />

Z. Transition U ~2 W when Z=0<br />

W<br />

Heavy quasiparticle<br />

(reduced K.E.)<br />

Reduced quasiparticle residue<br />

F* ~Z F<br />

Quasiparticle disappears<br />

Z as an order parameter for the <strong>transition</strong>


Summary II-c: <strong>The</strong> <strong>Mott</strong> <strong>transition</strong>.<br />

Half-filling. Zero T . Paramagnetic state<br />

U/D=1<br />

U/D=2<br />

DMFT:<br />

3-peak spectral function Hubbard<br />

bands+ quasiparticle peak<br />

U/D=2.5<br />

U/D=3<br />

U/D=4<br />

2 energy scales: * F<br />

Gap: U-W<br />

Z dies at the <strong>transition</strong>, Gap<br />

opens at smaller U<br />

Similarity with liquid-gas<br />

<strong>transition</strong>: number of particles in<br />

the gas is the number of doubly<br />

occupied states


Summary II-d: <strong>The</strong> <strong>Mott</strong> <strong>transition</strong>. Finite temperatures<br />

First order <strong>transition</strong> & critical point<br />

U/D=4<br />

U/D=2<br />

For intermediate U/t<br />

<strong>The</strong> metallic character decreases with temperature and eventually can become<br />

insulator. Change from Fermi liquid behavior at low temperature to insulating<br />

behavior at higher temperatures<br />

T=0.03 D<br />

Incoherence increases with increasing<br />

temperature & quasiparticles can<br />

disappear<br />

T=0.08 D<br />

T=0.05 D<br />

T=0.10 D

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!