Phase diagram of pnictide superconductors
Phase diagram of pnictide superconductors
Phase diagram of pnictide superconductors
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
Phase Diagram of Pnictide Superconductors
Interplay between magnetism, structure, and
superconductivity
B. Büchner
Institut für Festkörperforschung
IFW Dresden
High Temperature Superconductivity
in FeAs Compounds
OUTLINE
• Introduction
• Phase Diagram of LaFeAsO 1-x F x (and other pnictides)
Structural, magnetic, and superconducting transitions
• Superconducting State
Gap, penetration depth, relaxation rate
• Normal State Properties
Electronic Structure (XAS, PES, ARPES)
„Pseudogap“ (NMR, χ)
Electronic transport and spin fluctuations
Charge inhomogeneity (NQR)
Tuesday
Superconductivity in La(O 1-x F x )FeAs: The initiation
Y. Kamihara et al.,
J. Am. Chem. Soc. 130, 3296 (2008)
Februrary 2008
Picture: H. Takahashi et al.,
Nature 453, 376 (2008)
Dec. 2008: More than 600 papers on pnictide superconductors
Superconductivity above 50 K
Transition temperature (K)
Year of discovery
C. Hess et al., EPL (2009)
similar data: e.g. Ren et al. Chin Phys. Lett. 2008
Superconductivity above 50 K
La …. Sm … Gd
4πχ
4πχ
0 20 40
0.25
0.20
0.15
0.10
0.05
0.1
0.0
-0.1
-0.2
-0.3
0.1
1 (0h)
FC
ZFC
T (K)
FC
ZFC
2 (0.5h)
T (K)
0 20 40 60
0.1
FC
ZFC 5 (6h)
FC
ZFC
6 (12h)
0.0
-0.1
-0.2
-0.3
0.1
0.0
-0.1
-0.2
-0.3
0.1
4πχ
4πχ
0.0
FC
FC
0.0
4πχ
-0.1
-0.2
-0.3
0.1
ZFC
3 (1.5h)
ZFC
7 (24h)
-0.1
-0.2
-0.3
4πχ
4πχ
0.0
-0.1
-0.2
-0.3
FC
ZFC
4 (3h)
GdFeAsO 0.83
F 0.17
SE 1778/1-7
Milling Experiment
B = 20G
S. Wurmehl et al, work in progress
0 20 40 60
T (K)
Fe pnictides: A class of high T c superconductors
1111 systems
La, Ce … Gd-based
F, O doped
F doped REOFeAs
O defici. REOFeAs
Sm doped SrFFeAs
122 systems
Ba, Sr, Eu, Ca- based
K, Na, Co doped
T c up to 39 K
Intermetallic comp.
Single crystals
M. Rotter, M. Tegel,
and D. Johrendt
PRL 2008
Fe pnictides: A class of high T c superconductors
0
FC
χ (% (4π) −1 )
-10
-20
-30
1111 systems
BaAs 2
Fe 1.9
Co 0.1
SE 1737 A
La, Ce … Gd-based
F, O doped
B = 20G
ZFC
F doped REOFeAs
O defici. REOFeAs
Sm doped SrFFeAs
0 5 10 15 20
T (K)
122 systems
Ba, Sr, Eu, Ca- based
K, Na, Co doped
T c up to 39 K
Intermetallic comp.
Single crystals
M. Rotter, M. Tegel,
and D. Johrendt
PRL 2008
Fe pnictides: A class of high T c superconductors
1111 systems
La, Ce … Gd-based
F, O doped
F doped REOFeAs
O defici. REOFeAs
Sm doped SrFFeAs
122 systems
Ba, Sr, Eu, Ca- based
K, Na, Co doped
T c up to 39 K
Intermetallic comp.
Single crystals
M. Rotter, M. Tegel,
and D. Johrendt
PRL 2008
Fe pnictides: A class of high T c superconductors
1111 systems
La, Ce … Gd-based
F, O doped
F doped REOFeAs
O defici. REOFeAs
Sm doped SrFFeAs
122 systems
Ba, Sr, Eu, Ca- based
K, Na, Co doped
T c up to 39 K
Intermetallic comp.
Single crystals
M. Rotter, M. Tegel,
and D. Johrendt
PRL 2008
Medvedev, Felser et al.,
Nature Materials 2009
Interplanar distance may differ very much!
LaO 1-x
F x
FeAs „1111“
FeSe 1-x Te x
(Fe 2
P 2
)(Sr 4
Sc 2
O 6
)
T C, max = 17 K
H. Ogino et al., arXiv:0903.3314
Fe pnictides: A class of high T c superconductors
1111 systems
La, Ce … Gd-based
F, O doped
F doped REOFeAs
O defici. REOFeAs
Sm doped SrFFeAs
122 systems
Ba, Sr, Eu, Ca- based
K, Na, Co doped
T c up to 39 K
Intermetallic comp.
Single crystals
M. Rotter, M. Tegel,
and D. Johrendt
PRL 2008
Cuprates
Magnetism and Superconductivity
Cuprates
Magnetism and Superconductivity
Magnetism and Superconductivity
Cuprates
Heavy fermions
CePd 2 Si 2
Mathur, Julian, Lonzarich et al. 1998
Magnetism and Superconductivity
Cuprates
Heavy fermions
CePd 2 Si 2
Mathur, Julian, Lonzarich et al. 1998
High Temperature Superconductivity
in FeAs Compounds
OUTLINE
• Introduction
• Phase Diagram of LaFeAsO 1-x F x (and other pnictides)
Structural, magnetic, and superconducting transitions
• Superconducting State
Gap, penetration depth, relaxation rate
• Normal State Properties
Electronic Structure (XAS, PES, ARPES)
„Pseudogap“ (NMR, χ)
Electronic transport and spin fluctuations
Charge inhomogeneity (NQR)
Some of the people @ IFW involved in the research on FeAs …
Synthesis:
G. Behr, J. Werner, S. Singh, C. Nacke, S.Wurmehl et al.
M, Thermodynamics: N. Leps, L. Wang, R. Klingeler et al.
NMR, ESR:
H. Grafe, G. Lang. F. Hammerath, V. Kataev et al.
Transport :
X-ray diffraction:
Spectroscopy:
A. Kondrat, G. Friemel, C. Hess et al.
J. Hamann-Borrero
S. Borysenko, D.V. Evtushinsky, A. Koitzsch, J. Geck
A. Kordyuk, V.B. Zabolotnyy, T. Kroll, M. Knupfer et al.
Cooperations
μSR, Mößbauer H.H.Klauss, H. Maeter et al. TU Dresden
μSR H. Luetkens, R. Khasanov et al. PSI Villingen
Crystals
C.T. Lin, D. Inosov, V. Hinkov,
B. Keimer et al. MPI FKF Stuttgart
NMR N. Curro UC Davis
X-ray/neutron diffraction M. Braden et al.
U Köln
X-ray/neutron diffraction R. Feyerherm, D. Argyriou et al. HZ Berlin
DFG-Research Unit FOR538
Doping Dependence of Phase Transitions and Ordering Phenomena in Copper-Oxygen Superconductors
Resistivity and Susceptibility of La(O 1-x F x )FeAs
Preparation & Characterization
LaO 1-x F x FeAs, x=0 ... 0.2
Phase purity...
Lattice constants...
Preparation & Characterization
LaO 1-x F x FeAs, x=0 ... 0.2
Fluorine content...
Lattice constants...
Resistivity of La(O 1-x F x )FeAs
Two phase transitions in LaOFeAs
H.-H. Klauss et al., PRL 101, 077005 (2008)
LaOFeAs: Competing OP above T S ?
Lattice constant (Å)
8.74
8.72
5.70
5.68
XRD
c
b
a
Cmma
P4/nmm
dT
dp
N
=
TV
negative!
Δα
Δc
p
α (10 -6 K -1 )
12
9
6
3
Thermal
Expansion
0
0 50 100 150 200 250
T (K)
specific
heat anomaly
6
4
2
0
Δc p
(J/molK)
at T S :
upturn truncated
⎛ ∂V
⎞ ⎛ ∂S
⎞
⎜ ⎟ ∝ −⎜
⎟
⎝ ∂T
⎠ p ⎝ ∂p
⎠T
positive pressure
dependence!
L. Wang et al., arXiv:0903.1235
α (10 -6 /K)
14
12
10
8
6
T s
LaOFeAs
Thermal Expansion
• large fluctuation region at T>T S
M/B (10 -4 emu / mol)
ρ (mΩ cm)
4
3
2
7
6
5
T N
100 150 200 250 300
T (K)
Magnetisation:
• linear T-dependence at high T,
only weak changes due to fluctuations
Resistivity
• Peak at T S
enhanced scattering in the fluctuation
regime
Strong link between
electronic and structural
degrees of freedom
Wang et al., subm. to PRB
Two phase transitions in (Pr,Sm)OFeAs
T N
T S
(220)
SmOFeAs
Kimber et al., PRB (2008)
• Structural Transition similar for all RE
• No transition in doped systems (x ~0.1)
REOFeAs: Structural changes
Thermal expansion α(10 -5 /K)
1.2
LaFeAsO
0.8
0.4
0.0
1.2
0.8
0.4
0.0
1.2
PrFeAsO
T Pr
N
GdFeAsO
T N
T μ N
T S
T S
CeFeAsO
SmFeAsO
T N
T N
T S
T S
1.2
0.8
0.4
0.0
0.0
0 50 100 150 200 250
T(K)
1.2
0.8
0.4
Thermal expansion α(10 -5 /K)
0.8
0.4
T N
T S
B = 0
0.0
0 50 100 150 200 250
T(K)
R. Klingeler et al., 2009, in print
REOFeAs: Structural changes
Thermal expansion α(10 -5 /K)
1.2
LaFeAsO
0.8
0.4
0.0
1.2
0.8
0.4
0.0
1.2
PrFeAsO
T Pr
N
GdFeAsO
T N
T μ N
T S
T S
CeFeAsO
SmFeAsO
T N
T N
T S
T S
1.2
0.8
0.4
0.0
0.0
0 50 100 150 200 250
T(K)
1.2
0.8
0.4
Thermal expansion α(10 -5 /K)
0.8
0.4
T N
T S
0.0
0 50 100 150 200 250
T(K)
B = 0
B = 9T
Phase transitions in undoped 122 compounds
BaFe 2 As 2
SrFe 2 As 2
D. Johrendt and R. Pöttgen, Physica C 2009
A. Jesche et al., PRB 2008
SDW magnetism in SrFe 2 As 2
Krellner et al., PRL `08, arXiv:0806.1043
Resistivity of Ba 1-x K x Fe 2 As 2
2,0x10 -2
3,0x10 -1
2,5x10 -1
Ba(FeAs)2, thin piece
up- curve
136.44 K
1,8x10 -2
1,6x10 -2
1,4x10 -2
ρ [mΩcm]
0 50 100 150 200 250 300 3,5x10 -1
2,0x10 -1
1,5x10 -1
1,0x10 -1
5,0x10 -2
0,0
1,2x10 -2
1,0x10 -2
8,0x10 -3
6,0x10 -3
4,0x10 -3
2,0x10 -3
dρ/dT [mΩcm/K]
0,0
0 50 100 150 200 250 300
T[K]
M. Rotter et al., Ang. Chem. 2008
Magnetic order of LaOFeAs
T= 13 K
57
Fe Mössbauer spectroscopy
counts (arb. units)
T= 78 K
_
T= 126 K
well defined magnetic
hyperfine field
commensurate magnetic
order below 138 K
B hyp (T 0) ~ 4.86 T
ordered moment ~ 0.3 µ B
itinerant magnet
T= 137 K
LaOFeAs
-4 -2 0 2 4
velocity (mm/s)
H.-H. Klauss et al., PRL 101, 077005 (2008)
Magnetic order of LaOFeAs
C. de la Cruz, et al., Nature 453, 899 (2008)
M. Korshunov, I. Eremin, PRB 78, 140509(R) (2008)
I. Mazin et al., PRL 101, 057003 (2008)
J. Dong et al., EPL 83, 27006 (2008)
K. Kuroki et al., PRL 101, 087004 (2008)
S. Raghu et al., PRB 77 220503 (2008)
Magnetic order parameter in undoped LaOFeAs
Four band SDW theory
U=0.26eV
J=U/5
Q AFM
= (π,π)
Δ SDW
(0) = 31 meV
µ= 0.33 μ B
See:
M. Korshunov and I. Eremin
arXiv:0804.1793
H.-H. Klauss et al., PRL 101, 077005 (2008)
T N
LaOFeAs
T S
S
x=0: Stuctural and SDW Transistions
=
∂ ln
∂ε
Resistivity
• Peak at T S
ρ ∝
1
,
λ
enhanced scattering at higher T
• Inflection point at T N
reduced scattering + localization at T
T N
LaOFeAs
T S
S
x=0: Stuctural and SDW Transistions
=
∂ ln
∂ε
Resistivity
• Peak at T S
ρ ∝
1
,
λ
enhanced scattering at higher T
• Inflection point at T N
reduced scattering + localization at T
T N
LaOFeAs
T S
S
x=0: Stuctural and SDW Transistions
=
∂ ln
∂ε
Resistivity
• Peak at T S
ρ ∝
1
,
λ
enhanced scattering at higher T
• Inflection point at T N
reduced scattering + localization at T
T N
LaOFeAs
T S
S
x=0: Stuctural and SDW Transistions
=
∂ ln
∂ε
Resistivity
• Peak at T S
ρ ∝
1
,
λ
enhanced scattering at higher T
• Inflection point at T N
reduced scattering + localization at T
T N
LaOFeAs
T S
S
x=0: Stuctural and SDW Transistions
=
∂ ln
∂ε
Resistivity
• Peak at T S
ρ ∝
1
,
λ
enhanced scattering at higher T
• Inflection point at T N
reduced scattering + localization at T
Resistivity of ReOFeAs
Resistivity
• Peak at T S
enhanced critical scattering
• Inflection point at T N
reduced scattering + gap opening at T
ROFeAs (R = La, Pr, Ce, Sm)
ZF-μSR:
• Zero Field Muon Spin Rotation
Static magnetic order below T N
100% magnetic volume fraction
Commensurate magnetic structure
H. Maeter, et al., arXiv:0904.1563 (2009).
• T-dependence of μSR frequency
Second order transition at T N (Fe)
T N (R)
Why is CeOFeAs different ?
Moessbauer:
• Moessbauer spectroscopy
All compounds possess the same
ordered Fe moment (~0.35 μ B ) !
• Neutron scattering: 0.25 – 0.8 μ B
?
M. A .McGuire et al.,
New J. Phys. 11, 025011 (2009).
Ce magnetization above T N
Ce
CeOFeAs
• Magnetization in molecular field of
the Fe sublattice
Contributes to the same magnetic
Bragg peak as the Fe order
Creates a field at the muon site which
is proportional to the Ce magnetization
• This can be modeled by:
a Curie-like term to the μSR frequency
a calculation of thermal population of
crystal electric field (CEF) levels
f
T ) =
f
(
0
⎡ ⎛
⎢1
−
⎜
⎢⎣
⎝
T
T
N
⎞
⎟
⎠
α
⎤
⎥
⎥⎦
Fe sublattice
magnetization
γ
~
⎡ C ⎤
⋅ ⎢1
+ ⎥
⎣ T − Θ⎦
Curie-like Ce
magnetization
H. Maeter, et al., arXiv:0904.1563 (2009).
S. Chi et al., arXiv:0807.4986 (2008).
Interplay of Rare Earth and FeAs electronic systems
• LDA band structure CeOFeAs PrOCeAs
• Strong hybridization between Fe and Ce states
• CeOFeP is a moderate heavy fermion system
L. Pourovskii et al., EPL 84 37006 (2008)
• Pr states shifted 2 eV downwards
E. M. Brüning et al., Phys. Rev. Lett. 101, 117206 (2008)
Resistivity of La(O 1-x F x )FeAs
Magnetism of lightly doped La(O 1-x F x )FeAs
H. Luetkens et al., Nature Materials 2009
Magnetism of lightly doped La(O 1-x F x )FeAs
H. Luetkens et al., Nature Materials 2009
Doping effect: LaFeAsO 1-x F x
Thermal expansion α(10 -5 /K)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
LaO 1-x
F x
FeAs
x=0.00
0.0
0 50 100 150 200 250
T(K)
Doping effect: LaFeAsO 1-x F x
Thermal expansion α(10 -5 /K)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
LaO 1-x
F x
FeAs
x=0.00
x=0.02
0.0
0 50 100 150 200 250
T(K)
Doping effect: LaFeAsO 1-x F x
Thermal expansion α(10 -5 /K)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
LaO 1-x
F x
FeAs
x=0.00
x=0.02
x=0.04
0.0
0 50 100 150 200 250
T(K)
Doping effect: LaFeAsO 1-x F x
Thermal expansion α(10 -5 /K)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
LaO 1-x
F x
FeAs
x=0.00
x=0.02
x=0.04
x=0.05
0.0
0 50 100 150 200 250
T(K)
Doping effect: LaFeAsO 1-x F x
Thermal expansion α(10 -5 /K)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
LaO 1-x
F x
FeAs
x=0.00
x=0.02
x=0.04
x=0.05
x=0.10
0.0
0 50 100 150 200 250
T(K)
Phase diagram of LaFeAsO 1-x
F x
200
LaFeAsO 1-x
F x
dV/dT>0
T (K)
150
orthorh.
tetragonal
T C
from χ(T), μSR
100
50
SDW
magnetic
order
T N
from χ(T), μSR
T S
from χ(T), α(T)
T* from α(T)
dT N
/dp
Superconductivity of La(O 1-x F x )FeAs
Phase Diagram of La(O 1-x F x )FeAs
H. Luetkens et al., Nature Materials 2009
Phase Diagram of La(O 1-x F x )FeAs
H. Luetkens et al., Nature Materials 2009
Phase Diagrams of CeFeAsO 1-x
F x
and SmFeAsO 1-x
F x
CeO 1-x F x FeAs
Zhao et al., Nature Materials (2008), neutrons
• 100 % rare earth doping (5% lattice constant change!)
does not change the structural distortion, but a few percent Flourine
(electron doping) completely suppresses T s !
• gradual decrease of FeAs Neel temperature to zero ?
• coexistence of magnetism and superconductivity? Yes
Drew et al., Nature Materials 2009
Resistivity
CeO 1-x Fe x As
Tetragonal Orthorombic structural transition
via synchrotron XRD
0 % 5 %
(220)
(006)
10 %
15 %
superconducting
25 %
J. E. Hamann-Borrero, A. Kondrat
et al., in preparation
Zero field μSR: : CeO 1-x Fe x As
magnetic volume fraction
CeO 1-x
F x
FeAs
100%
80%
60%
40%
20%
0%
zero field μSR
0 20 40 60 80 100 120 140 160 180
temperature (K)
undoped
5% F-content
10% F-content
15% F-content
50%
Determine T N
(Fe) from magnetic volume:
• e.g.50% of signal shows static relaxation
• Strong reduction of T N
for x>0!
Appearance of µSR frequency
Long range coherent
sublattice magnetization
• Strong reduction of sublattice
magnetization for x>0
µSR frequency (MHz)
35
30
25
20
15
10
5
0
0 20 40 60 80 100 120 140 160 180
temperature (K)
H. Maeter, et al., in preparation.
• No long range order for
x=0.15
• but short range magnetic order
present with f µ
(T)=0!
Mean sublattice magnetization = 0
not visible in neutron scattering
Transverse field μSR: : CeO 1-x Fe x As
Static magnetic order
local field (G)
740
CeO 1-x
F x
FeAs
Frequency shift
• Additional diamagnetic frequency shift
• Bulk superconductivity T C
• Bulk static magnetism for 15%!
2,0
1,8
CeO 1-x
F x
FeAs
T C
730
25% F-content
1,6
25% F-Content
20% F-content
20% F-content
720
1,4
15% F-content
15% F-content
1,2
710
700 G TF-μSR
700 G TF-μSR
700
1,0
0,8
690
0,6
680
0,4
670
0,2
0 10 20 30 40 50
0,0
temperature (K)
10 20 30 40 50
relaxation rate σ S
(1/µs)
temperature (K)
Static line width
• Bulk superconductivity T C
• Bulk static magnetism for 15%!
H. Maeter, et al., in preparation.
CeO 1-x F x FeAs: coexistence of magnetism and SC?
Zhao et al., Nature Materials (2008), neutrons
Evidence for coexistence!
XRD, ρ, µSR,...
H. Maeter, et al., in preparation.
Phase Diagrams of doped BaFe 2 As 2
BaFe 2-x Co x As 2
Ba 1-x K x Fe 2 As 2
Chu et al., PRB 2009
Rotter et al., Ang. Chem. 2008
Pressure induced Superconductivity in (Ba,Sr)Fe 2
As 2
Colombier et al., arxiv.org/abs/0904.4488v1
Resistivity of La(O 1-x F x )FeAs
Phase Diagram of Ba 1-x K x Fe 2 As 2
Ang. Chem. 2008
Resistivity of doped pnictides
SmO 1-x
F x
FeAs – highest T c
Rotter et al.,
Ang. Chem. 2008
C. Hess et al., EPL (2009)
Resistivity of Co doped pnictides
2,0x10 -6
5,0x10 -6 Ba(Fe 0.95
Co 0.05
) 2
As 2
4,0x10 -6
1,5x10 -6
Ca(Fe 0.94
Co 0.06
)2As 2
, SE1754
cooling
ρ (Ωm)
3,0x10 -6
2,0x10 -6
ρ [Ωm]
1,0x10 -6
5,0x10 -7
1,0x10 -6
0,0
0 50 100 150 200 250 300
T in K
1,0x10 -7
Single crystals
0,0
0 50 100 150 200 250 300
T[K]
0 50 100 150 200 250 300
CaFe 1.85
Co 0.15
As 2
, SE1795D
1,5x10 -6 heating
4,0x10 -8
2,0x10 -8
2,0x10 -6
1,0x10 -6
1,0x10 -6
3,0x10 -6 0 50 100 150 200 250 300 -1,0x10 -7
Ca(Fe 0.95
Co 0.05
) 2
As 2
, SE1781B
cooling, 2mA
5,0x10 -8
ρ [Ωm]
0,0
-5,0x10 -8
dρ/dT [Ωm/K]
ρ [Ωm]
5,0x10 -7
0,0
T c
=21.2 K
0,0
0 50 100 150 200 250 300
T[K]
0,0
0 50 100 150 200 250 300
T[K]
-2,0x10 -8
Resistivity at the stuctural and SDW transistions
LaOFeAs
T S
ρ ∝
1
n
1
,
λ
Resistivity
• Peak at T S
enhanced scattering at higher T
• Inflection point at T N
reduced scattering
5,0x10 -6 Ba(Fe 0.95
Co 0.05
) 2
As 2
4,0x10 -6
Resistivity in Co doped systems
ρ (Ωm)
3,0x10 -6
2,0x10 -6
1,0x10 -6
Single crystal!!
• Reduction of scattering at T N
smaller
• Mean free path limited by disorder
due to Co atoms!!
0,0
0 50 100 150 200 250 300
T in K
Intrinsic sources of scattering masked by disorder
in Co doped single crystals!!!
High Temperature Superconductivity
in FeAs Compounds
OUTLINE
• Introduction
• Phase Diagram of LaFeAsO 1-x F x (and other pnictides)
Structural, magnetic, and superconducting transitions
• Superconducting State
Gap, penetration depth, relaxation rate
• Normal State Properties
Electronic Structure (XAS, PES, ARPES)
„Pseudogap“ (NMR, χ)
Electronic transport and spin fluctuations
Charge inhomogeneity (NQR)
Superconducting Order Parameter (Gap)
How can we measure the superfluid density?
via the magnetic penetration depth λ
n s
/ m* is proportional to 1/ λ 2
Superconductivity in La(O 1-x
F x
)FeAs
• measure λ in vortex state of type II superconductor via field profile p(B)
transverse field µSR
•
B ext
In anisotropic powder superconductors P(B) shows Gaussian
shape
2 −4
ΔB
∝ λ
ab
How can we measure the superfluid density?
via the magnetic penetration depth λ
n s
/ m* is proportional to 1/ λ 2
• measure λ in vortex state of type II superconductor via field profile p(B)
transverse field µSR
•
Superconductivity in La(O 1-x F x )FeAs
1,0
CeO
B
0.75
F 0.25
FeAs
ext
50 K
1.6 K
muon spin polarization
0,5
0,0
-0,5
-1,0
0,0 0,2 0,4 0,6 0,8 1,0 1,2
In anisotropic powder superconductors P(B) shows Gaussian
shape
2 −4
ΔB
∝ λ
ab
time (µs)
Penetration Depth of La(O 1-x F x )FeAs
Proximity of
Magnetism?
H. Luetkens et al., PRL 101, 097009 (2008)
Penetration Depth of La(O 1-x F x )FeAs
T dependence of λ: consistent with BCS s-wave
B dependence of λ: not simple s-wave: d, ext. s, multiband
H. Luetkens et al., PRL 101, 097009 (2008)
Superconducting Properties of Co doped Ba122
0.2
0.0
-0.2
-0.4
-0.6
FC
T c
= 23.0(2)K
4πχ
-0.8
-1.0
BaFe 1.8
Co 0.2
As 2
BKZ 8
B = 20G
μSR: no trace of magnetism
-1.2
Bridgeman
-1.4
-1.6
ZFC
-1.8
0 10 20 30
H. Luetkens, C. Nacke et al., in preparation
Superconductivity of Co doped Ba122– TF-μSR
• Superfluid density (full line
shape analysis) for field
applied in different direction.
• Pronounced anisotropy of the
penetration depth λ.
• Assuming λ a = λ b one can
calculate the low temperature
values:
• λ a (T=0) = 220 nm
• λ c (T=0) = 1100 nm
H. Luetkens, C. Nacke et al., in preparation
Superconductivity of Co doped Ba122– TF-μSR
Superconductivity in Ba 1-x K x Fe 2 As 2
µSR: Phase separation into
commensurate SDW and
superconducting volumes
~ 2
• stronger temperature
dependence of λ -2
large and small gap ?
μSR: 50 % non-magnetic
R. Khasanov, PRL 09
Gap on the inner Г-barrel, ГM
cut1
4
Intensity (arb. u.)
2
0
-2
-4
10 K
15 K
20 K
25 K
30 K
35 K
40 K
45 K
fit
Δ (meV)
10
8
6
4
2
0
Resistance (arb. u.)
0
10
20
30
T (K)
T c
=32 K
40
50
-30 -20 -10 0 10
ω (meV)
D.V. Evtushinsky et al., PRB 2009
Anisotropy of Gap according to ARPES
D.V. Evtushinsky et al., PRB 2009
Similar results see eg. Ding et al EPL 2008
Penetration Depth of Ba 1-x K x Fe 2 As 2 , T c = 32 K
Δ large: 9 meV
(ARPES)
Δ small 1.1 mev
(ARPES: < 4 meV)
D.V. Evtushinsky et al., New J. Phys. 2009
Penetration Depth and Uemura Plot
Uemura plot:
T C
scales linearly with the superfluid
density, i.e. T C
∝ 1/ λ 2 ∝ n s
/m*
120
100
Bi2223
h-doped
cuprates
T C
(K)
80
60
40
LN 2
La214
Y123
e-doped
cuprates
SLCO
La-Fx This work
Nd-O0.85 This work
Sm-O0.85 This work
La-F0.08 Carlo et al.
Ce-F0.16 Carlo et al.
Nd-F0.12 Carlo et al.
Sm-F0.18 Drew et al.
20
PCCO
NCCO
0
0 20 40 60 80
λ -2
ab (μm-2 )
The Fe-based superconductors are close to the Uemura line
for hole doped cuprates hope for higher T c in the future
Gap and Spin Lattice Relaxation Rate (NMR)
75
As NMR on La(O 1-x F x )FeAs: T 1
•No Hebel Slichter coherence peak, no expon. decay
•T 3 dependence below T c is indicative for line nodes
10
H 0
c
⇒ suggestive of d-wave
superconductivity
coherence peak
and exp decay
T 1
-1
(s
-1
)
1
0.1
T 3
T c
0.01
LaO 0.9 F 0.1 FeAs
10 100
Temperature (K)
H.-J. Grafe et al., PRL 101, 047003 (2008)
75
As NMR on La(O 1-x F x )FeAs: T 1
1
published data H||ab peak
new data H||ab peak
theory Parker & Mazin
At low temperatures
deviation from T 3
extended s +/-
wave - scenario
(s -1 )
0.1
LaO 0.9 F 0.1 FeAs
Mazin et al.,
PRL 101, 057003 (2008).
T 1
-1
*
Parker et al. PRB 2008
0.01
Chubukov et al. PRB 2008
T 3
1E-3
1 2 3 4 5 10 20
Temperature (K)
or dirty d-wave…
75
As NMR on La(O 1-x F x )FeAs: T 1
100
10
T c
~T 3
~T
1
(s -1 )
T 1
-1
0,1
0,01
1E-3
~T 4.8 ~T
10 100
T (K)
LaO 0.9
F 0.1
FeAs
LaO 0.9
F 0.1
FeAs 1-γ
75
As NMR on La(O 1-x F x )FeAs: T 1
100
~T 3
(s -1 )
10
1
T c
Intensity (a.u.)
~T
T 1
-1
0,1
0,01
1E-3
~T 4.8 ~T
10 100
T (K)
LaO 0.9
F 0.1
FeAs
LaO 0.9
F 0.1
FeAs 1-γ
75
As NMR on La(O 1-x F x )FeAs: T 1
100
~T 3
As-deficiency
10
T c
~T
⇒
1
disorder
(s -1 )
T 1
-1
0,1
0,01
1E-3
~T 4.8 ~T
10 100
T (K)
LaO 0.9
F 0.1
FeAs
LaO 0.9
F 0.1
FeAs 1-γ
but:
higher T c
higher B c2 (0)
T < T c : T 1
-1
~ T 4.8
T
75
As NMR on La(O 1-x F x )FeAs: T 1
100
10
T c
~T 3
~T
1
T 1
-1
(s -1 )
0,1
0,01
1E-3
Scenarios:
~T
LaO 0.9
F 0.1
FeAs
LaO 0.9
F 0.1
FeAs 1-γ
~T 4.8 10 100
T (K)
Transition from s +/-
to conventional s +/+
state due to impurities
As deficiencies cause mainly intraband scattering and further protect
the unconventional s +/-
state (higher T c
, higher H c2
)
(„smart impurities“)
F. Hammerath, H.-J. Grafe, … S.L. Drechsler, I. Eremin et al.
75
As NMR on La(O 1-x F x )FeAs: T 1
100
10
T c
~T 3
~T
1
T 1
-1
(s -1 )
0,1
0,01
1E-3
Scenarios:
~T
LaO 0.9
F 0.1
FeAs
LaO 0.9
F 0.1
FeAs 1-γ
~T 4.8 10 100
T (K)
Fuchs et al, PRL 2008
Transition from s +/-
to conventional s +/+
state due to impurities
As deficiencies cause mainly intraband scattering and further protect
the unconventional s +/-
state (higher T c
, higher H c2
)
(„smart impurities“)
F. Hammerath, H.-J. Grafe, … S.L. Drechsler, I. Eremin et al.
SC transition in GdFeAsO 0.85 F 0.15 :
Strange and Puzzling behavior
10
α (10 -6 / K) C p
(J / mol K)
5
-2
-3
0T
0T
-4
-5
0 5 10 15 20 25 30
T (K)
SC transition in GdFeAsO 0.85 F 0.15
α (10 -6 / K) C p
(J / mol K)
10
5
-2
-3
0T
0T
specific heat c p
(J / mol K)
24
22
20
18
16
PrFeAsO 0.85 F 0.15
T C ~41K
B=0
B=9T
c p
/T (J / mol K 2 )
0.54
0.52
0.50
0.48
0.46
T (K)
34 36 38 40 42 44 46 48
36 38 40 42 44 46
T (K)
Δc p
=0.53 J/mol K
T c
= 41.2K
-4
-5
0 5 10 15 20 25 30
T (K)
SC transition in GdFeAsO 0.85 F 0.15
α (10 -6 / K) C p
(J / mol K)
10
5
-2
-3
-4
•T C ≈ 20K
•T N
Gd
= 2.9K
0T
-5
0 5 10 15 20 25 30
T (K)
0T
SC transition visible
Δc p, SC = 2.0 J / (mol K)
BCS theory:
γ = Δc/(1.43 T c )
≈ 70 mJ/(molK)
dT
dp
C
= −TV
≈1.4
Δα
Δc
K
GPa
p
SC transition in GdFeAsO 0.85 F 0.15
α (10 -6 / K) C p
(J / mol K)
10
5
-2
-3
•T C ≈ 20K
•T N
Gd
= 2.9K
0T
0T
Relaxation rate (μs -1 )
12
10
GdO 0.85
FeAsF 0.15
8
6
4
2
T C
0
0 50 100 150 200
T (K)
-4
-5
0 5 10 15 20 25 30
T (K)
GdFeAsO 0.85 F 0.15 : Specific heat
50
GdFeAsO 0.85
F 0.15
C p
(J / mol K)
40
30
20
10
B=9T
B=0
B dependence of c p
⇔
magnetic fluctuations?
0
0 20 40 60 80 100
T (K)
GdO 1-x F x FeAs – Gd HF-ESR: Width of the signal
Gd 3+ : 4f 7 , L = 0; J = S =7/2
no coupling to lattice, probes spin degrees of freedom
2
1
x=0.15
240K
160K
inhomogeneous broadening
absorption (a.u.)
0
-1
-2
-3
140K
120K
100K
80K
60K
40K
20K
Gd sees enhanced magnetism
-4
12 13
B (T)
Electron Spin Resonance of GdO 1-x F x FeAs
12.45
g=2
12.40
2
1
- undoped x=0.00
- doped x=0.15
240K
160K
B res
(T)
12.35
12.30
12.25
High frequency/field ESR, F = 328GHz
12.20
undoped x=0
doped x=0.15
12.15
0 50 100 150 200 250
absorption (arb. u.)
0
-1
-2
-3
140K
120K
100K
80K
60K
40K
20K
Temperature (K)
-4
11 12 13 14
Magnetic field (T)
Superconductor (T c
= 21 K): strong broadening and shift of the Gd-ESR response
⇒ onset of inhomogeneous quasi-static spin correlations at T < 80 K
SC transition in GdFeAsO 0.85 F 0.15
8
Thermal Expansion
B = 0
Specific heat
Thermal expansion α (10 -6 /K)
9
8
7
16T
B=0
5T
9T
13T
14T
16T
5 10 15 20 25
T (K)
B = 14T
B = 0
9T
7T
5T
3T
0T
10 12 14 16 18 20 22
T (K)
14T
13T
12T
11T
10T
7
6
5
4
3
2
specific heat c p
(J / mol K)
GdFeAsO 0.85 F 0.15 : Magnetostriction
Magnetostriction β (10 -6 )
3
2
1
5K
20K
18K
15K
12K
10K
40K
8K
0
0 2 4 6 8 10 12 14 16
B (T)
GdFeAsO 0.85 F 0.15
20
B C2 ~20T
B C2 >60T
15
B (T)
10
5
T c
(B) thermal expansion
T c
(B) specific heat
B c
(T) magnetostriction
LaFeAsO 0.9 F 0.1
0
0 5 10 15 20
T(K)
Fuchs et al, PRL 2008
SC transition in GdFeAsO 0.85 F 0.15 :
Strange and Puzzling behavior
20
B C2 ~20T
Unusually small H C2 !
What causes pair breaking?
15
B (T)
10
5
Superconductivity
from thermal expansion
from specific heat
from magnetostriction
0
0 5 10 15 20 25 30
T (K)
Why large anomalies in c p , α?
Enhanced
magnetism ≤ 80K!
Intrinsic
inhomogeneities?
Spin lattice relaxation rate, T 1
-1
, normal state
0.25
0.20
(T 1
T) -1 (s -1 K -1 )
0.15
0.10
pseudogap ?
75
As NMR
H 0 || ab
0.05
LaO 0.9 F 0.1 FeAs
0.00
0 50 100 150 200 250 300 350 400 450 500
Temperature (K)
H.-J. Grafe et al., PRL 101, 047003 (2008)
H.-J. Grafe et al., New J. Phys. 2009
High Temperature Superconductivity
in FeAs Compounds
OUTLINE
• Introduction
• Phase Diagram of LaFeAsO 1-x F x (and other pnictides)
Structural, magnetic, and superconducting transitions
• Superconducting State
Gap, penetration depth, relaxation rate
• Normal State Properties
Electronic Structure (XAS, PES, ARPES)
„Pseudogap“ (NMR, χ)
Electronic transport and spin fluctuations
Charge inhomogeneity (NQR)
Tuesday