21.01.2014 Views

Logic and AI Planning: Default Logic - Department of Computer and ...

Logic and AI Planning: Default Logic - Department of Computer and ...

Logic and AI Planning: Default Logic - Department of Computer and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Logic</strong> <strong>and</strong> <strong>AI</strong> <strong>Planning</strong>: <strong>Default</strong> <strong>Logic</strong><br />

Peep Küngas<br />

peep@idi.ntnu.no<br />

<strong>Department</strong> <strong>of</strong> <strong>Computer</strong> <strong>and</strong> Information Science<br />

Norwegian University <strong>of</strong> Science <strong>and</strong> Technology<br />

http://www.idi.ntnu.no/emner/tdt14<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.1/10


<strong>Default</strong> <strong>Logic</strong> (DL)<br />

One <strong>of</strong> the oldest <strong>and</strong> most studied nonmonotonic<br />

logic<br />

An extension <strong>of</strong> classical logic with default rules,<br />

which are nonmonotonic<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.2/10


¥<br />

¢¤£<br />

¡<br />

¢<br />

¨© £ <br />

¨<br />

¦§<br />

<br />

<br />

<br />

<br />

¨ £<br />

<br />

<br />

¦<br />

¦<br />

¨ <br />

<br />

<br />

<br />

<br />

£<br />

<br />

<br />

Definition <strong>of</strong> DL (1)<br />

A default theory is a pair<br />

, where<br />

is a set <strong>of</strong> first-order formulae representing facts<br />

is a set <strong>of</strong> defaults in form<br />

whereas<br />

formulae<br />

,<br />

<strong>and</strong><br />

are classical<br />

The default has the following intuitive meaning—if<br />

derivable <strong>and</strong>, for all<br />

then derive<br />

.<br />

,<br />

is<br />

is not derivable,<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.3/10


¦<br />

<br />

<br />

<br />

¨ £<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Definition <strong>of</strong> DL (2)<br />

The formula is called the prerequisite<br />

is a consistency condition or<br />

justification<br />

is called the consequent <strong>of</strong> the default<br />

For a default<br />

pre(<br />

), just(<br />

) <strong>and</strong> cons(<br />

) are used to<br />

denote respectively the prerequisite, the set <strong>of</strong> justifications<br />

<strong>and</strong> the consequent <strong>of</strong><br />

.<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.4/10


¥<br />

)<br />

(<br />

) <br />

(<br />

¥<br />

¥<br />

A <strong>Default</strong> Theory (1)<br />

Here we describe another variant <strong>of</strong> the Yale Shooting<br />

domain. New states are managed through situation<br />

calculus.<br />

# £ $&%<br />

¡<br />

<br />

"!<br />

<br />

<br />

<br />

'(<br />

<br />

$.%<br />

¥¥<br />

,!1<br />

¥ £<br />

¡+<br />

<br />

<br />

<br />

) ¥0/<br />

$.%<br />

¡+<br />

¡*<br />

<br />

<br />

¡ <br />

¡*<br />

,!-<br />

¥ £<br />

'(<br />

<br />

)<br />

A causal law:<br />

¡2<br />

"3<br />

<br />

<br />

<br />

)£<br />

¡<br />

<br />

!<br />

<br />

<br />

<br />

#£<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.5/10


)<br />

(<br />

¥¥<br />

,<br />

) £ 6 ) <br />

A <strong>Default</strong> Theory (2)<br />

¥ £ <br />

¥<br />

¥ £ <br />

4 ¡ <br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.6/10<br />

¡<br />

$7 <br />

¡54<br />

<br />

¡*<br />

<br />

<br />

¡2<br />

3<br />

<br />

<br />

<br />

An action


¥<br />

¡8 £<br />

$.%<br />

<br />

§<br />

¥<br />

¡8 £<br />

$.%<br />

¥<br />

¡8 £<br />

$.%<br />

¥¥<br />

,<br />

¡8 £<br />

6 ) <br />

¥¥<br />

,<br />

¡8 £<br />

6 ) <br />

¥¥<br />

,<br />

¡8 £<br />

6 ) <br />

¥¥<br />

,<br />

¡8 £<br />

6 ) <br />

A <strong>Default</strong> Theory (3)<br />

St<strong>and</strong>ard part <strong>of</strong> all domains are presented here.<br />

A fuent is either true or false in the initial situation<br />

<br />

<br />

<br />

§<br />

$.%<br />

¥<br />

<br />

¡8 £<br />

<br />

<br />

<br />

<br />

<br />

“Commonsense law <strong>of</strong> inertia”—things do not change<br />

unless they are made to<br />

¡ ( £ <br />

<br />

<br />

¡8 £ <br />

¥ §<br />

<br />

<br />

¡ ( £ <br />

<br />

<br />

¡ ( £ <br />

<br />

<br />

<br />

¡8 £ <br />

¥ §<br />

<br />

<br />

<br />

¡ ( £ <br />

<br />

<br />

<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.7/10


¥<br />

)<br />

(<br />

)<br />

(<br />

,<br />

Applying the Theory<br />

The initial state<br />

<br />

!<br />

¡+<br />

<br />

# *<br />

¥0/<br />

*<br />

¡+<br />

<br />

,!1<br />

A consequence <strong>of</strong> the default theory:<br />

,!-<br />

,!-<br />

¥ £<br />

¡+ <br />

¡<br />

$7 <br />

,!1<br />

¥ £<br />

¡+ <br />

¡<br />

$7 <br />

# £ 6 ) <br />

¡<br />

6 ) <br />

,<br />

<br />

!<br />

<br />

<br />

<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.8/10


Complexity<br />

the first order default logic is even not<br />

semi-decidable<br />

for the propositional default logic PSPACE<br />

procedures exist<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.9/10


Homework<br />

Present a comparison <strong>of</strong> all approached covered<br />

during this course<br />

Consider syntax, semantics, expressivity, usability<br />

<strong>and</strong> computational complexity<br />

Summarise the comparison in a table<br />

TDT14 - <strong>Logic</strong> <strong>and</strong> <strong>Planning</strong> – p.10/10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!