22.01.2014 Views

A Cooperative Spectrum Detection Technique in Non-Gaussian ...

A Cooperative Spectrum Detection Technique in Non-Gaussian ...

A Cooperative Spectrum Detection Technique in Non-Gaussian ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

⎧<br />

θ = A<br />

⎨<br />

⎩H<br />

= [cos( ϕ),cos(2π<br />

f + ϕ),<br />

,cos(2π<br />

( N −1)<br />

f0<br />

+<br />

T<br />

0<br />

ϕ)]<br />

(7)<br />

For = θ 0<br />

= 0<br />

θ , the Rao test statistic is determ<strong>in</strong>ed by [6]<br />

∂ ln p(<br />

x;<br />

θ ) T<br />

−1<br />

∂ ln p(<br />

x;<br />

θ ) T<br />

( x)<br />

=<br />

I ( θ<br />

0<br />

)<br />

∂θ<br />

θ = θ<br />

0<br />

∂θ<br />

θ = θ<br />

0<br />

T R<br />

1<br />

T T − T<br />

H( H H)<br />

H<br />

= y y iA ( )<br />

∑<br />

[<br />

N −1<br />

∑<br />

n=<br />

0<br />

=<br />

N −1<br />

i(<br />

A)<br />

y(<br />

n)cos(2πf<br />

n=<br />

0<br />

[cos(2πf<br />

0<br />

0<br />

+ ϕ)]<br />

+ ϕ)]<br />

2<br />

2<br />

(8)<br />

where y = [ g[0] g[1] g[ N −1]] T , and g (⋅)<br />

is a <strong>Gaussian</strong>-based filter,<br />

and i (A)<br />

is the essentially mathematical expectation of sample<br />

Hence, us<strong>in</strong>g (1) <strong>in</strong>to (9), we can get y (n)<br />

. If the test statistic<br />

of the Rao detector, then Rao test decision is H<br />

1.<br />

dp(<br />

x(<br />

n);<br />

ε ) / dx<br />

g(<br />

x(<br />

n))<br />

= −<br />

(9)<br />

p(<br />

x(<br />

n);<br />

ε )<br />

2<br />

2<br />

[ g ( x(<br />

n))]<br />

, as<br />

⎛ dp(<br />

w)<br />

⎞<br />

⎜ ⎟<br />

−<br />

∞ ⎝ d(<br />

w)<br />

1<br />

=<br />

⎠<br />

2 1 N<br />

2<br />

i ( A)<br />

∫ dw = E{ [ g(<br />

x(<br />

n))]<br />

} ≈<br />

−∞<br />

∑[<br />

y(<br />

n)]<br />

(10)<br />

p(<br />

w)<br />

N n=<br />

0<br />

T R<br />

'<br />

( x)<br />

> γ , where γ '<br />

is the threshold<br />

In large sample conditions, the theoretic performance of Rao detector is consistent with the<br />

asymptotic performance of the generalized likelihood ratio test [7] , so T R<br />

(x)<br />

is distributed as follows<br />

T R<br />

2<br />

⎧χ<br />

(1,0)<br />

( x)<br />

~ ⎨ 2<br />

⎩ χ (1, λ )<br />

H<br />

0<br />

H<br />

1<br />

(11)<br />

Here χ 2 (1,0 ) represents a chi-square distribution with 1 degree of freedom and χ<br />

2 (1, λ ) represents a<br />

noncentral chi-square distribution with 1 degree of freedom and non-centrality parameter<br />

T T<br />

2<br />

λ=<br />

i( A)<br />

θ1<br />

H Hθ<br />

1<br />

≤SNR⋅<br />

σ I<br />

[8] , where I<br />

f<br />

f<br />

is the Fisher <strong>in</strong>formation array element, θ 1<br />

is the true value of<br />

θ under the hypotheses H . The PDF of<br />

1<br />

T R<br />

(x)<br />

is given by<br />

1/ 2<br />

⎧(1/<br />

2)<br />

⎪ x<br />

f =<br />

Γ(1/<br />

2)<br />

T R<br />

( x)<br />

⎨ 1−2<br />

( )<br />

⎪ 1 x<br />

4<br />

( ) e<br />

⎪⎩<br />

2 λ<br />

e<br />

(1/ 2−1)<br />

−x/ 2<br />

λ+<br />

x<br />

−<br />

2<br />

I<br />

(<br />

1/ 2−1<br />

λx)<br />

H<br />

H<br />

0<br />

1<br />

(12)<br />

285

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!