23.01.2014 Views

SYMMETRIES in PHYSICS

SYMMETRIES in PHYSICS

SYMMETRIES in PHYSICS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong><br />

Jerzy DUDEK<br />

Institute for Subatomic Research<br />

University of Strasbourg I<br />

2nd October 2007<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Part I<br />

Symmetry and Groups: Historical Aspects<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g: ’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g: ’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g:<br />

’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g:<br />

’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Orig<strong>in</strong> and the Mean<strong>in</strong>g of Word: Symmetry<br />

The word symmetry (συµµɛτρια) orig<strong>in</strong>ates from the Greek<br />

language: συµ (’together’) and µɛτρων (’measure’)<br />

The implied mean<strong>in</strong>g:<br />

’measured together’, well proportioned<br />

The mean<strong>in</strong>g has evolved <strong>in</strong> time <strong>in</strong>to: beauty, unity, harmony<br />

In sciences the first mean<strong>in</strong>g of the word symmetry was that<br />

related to proportions<br />

Todays mean<strong>in</strong>g as the equality of elements under geometrical<br />

transformations (translations, rotations, reflexions) arrived only<br />

towards the end of the Renaissance<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: Plato (428 - 347 BC) and even earlier ...<br />

The symbol of ’beauty <strong>in</strong> symmetry’ are five Platonic Figures<br />

Platonic Figures: Three-dimensional polyhedra whose faces are<br />

identical planar regular convex polygons<br />

The allowed polygons are either equilateral triangles, or squares<br />

or regular pentagons<br />

There exist only five regular convex (=platonic) polyhedra:<br />

tetrahedron, cube, octahedron, icosahedron & dodecahedron<br />

As it seems, neolithic people from Scotland have developed the<br />

five Platonic solids about 1000-3000 years before Plato (stone<br />

models <strong>in</strong> Ashmolean Museum, Oxford)<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Models of Platonic Figures<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Recall: Platonic Figures = Polyhedra whose<br />

faces are identical regular convex polygons<br />

Allowed polygons are equilateral triangles, or<br />

squares or regular pentagons<br />

Plato<br />

Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Fasc<strong>in</strong>ation by Symmetry of Platonic Figures: Kepler<br />

A. Many natural scientists and philosophers were<br />

fasc<strong>in</strong>ated by symmetry of Platonic figures<br />

B. One of the first ones <strong>in</strong> the modern times was<br />

Johannes Kepler<br />

Kepler’s Planetary System<br />

Johannes Kepler<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Fasc<strong>in</strong>ation by Symmetry of Platonic Figures: Kepler<br />

A. Many natural scientists and philosophers were<br />

fasc<strong>in</strong>ated by symmetry of Platonic figures<br />

B. One of the first ones <strong>in</strong> the modern times was<br />

Johannes Kepler<br />

Kepler’s Planetary System<br />

Johannes Kepler<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Fasc<strong>in</strong>ation by Symmetry of Platonic Figures: Kepler<br />

A. Many natural scientists and philosophers were<br />

fasc<strong>in</strong>ated by symmetry of Platonic figures<br />

B. One of the first ones <strong>in</strong> the modern times was<br />

Johannes Kepler<br />

Kepler’s Planetary System<br />

Johannes Kepler<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Kepler ”Theory” of Planetary Constellation [Failure]<br />

The Earth orbit is the measure of all orbits<br />

Around it we circumscribe the dodecahedron<br />

The Mars orbit is circumscribed around the dodecahedron<br />

Around the Mars orbit we circumscribe the tetrahedron<br />

The Jupiter orbit is circumscribed around the tetrahedron<br />

Around of the Jupiter orbit we circumscribe the cube<br />

The Saturn orbit lies <strong>in</strong> the sphere surround<strong>in</strong>g the cube<br />

In the Earth orbit the regular icosahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Venus orbit<br />

In the Venus orbit the octahedron is <strong>in</strong>serted<br />

The orbit entered <strong>in</strong> it is the Mercury orbit<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Paper on Snow-Crystal Symmetry (N o 1 <strong>in</strong> History)<br />

In the w<strong>in</strong>ter of 1609 Kepler got caught by the snow-storm on<br />

one of the bridges <strong>in</strong> Prague<br />

In 1611 he published an article ’Strena seu de nive sexangula’<br />

exam<strong>in</strong><strong>in</strong>g the planar hexagonal symmetry 1<br />

Examples of Hexagonal Symmetry 2<br />

1 ’Strena seu de nive sexangula’ - ’On the Six-Cornered Snowflakes’;<br />

2 From Kenneth K. Librecht, Caltech<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Paper on Snow-Crystal Symmetry (N o 1 <strong>in</strong> History)<br />

In the w<strong>in</strong>ter of 1609 Kepler got caught by the snow-storm on<br />

one of the bridges <strong>in</strong> Prague<br />

In 1611 he published an article ’Strena seu de nive sexangula’<br />

exam<strong>in</strong><strong>in</strong>g the planar hexagonal symmetry 1<br />

Examples of Hexagonal Symmetry 2<br />

1 ’Strena seu de nive sexangula’ - ’On the Six-Cornered Snowflakes’;<br />

2 From Kenneth K. Librecht, Caltech<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Paper on Snow-Crystal Symmetry (N o 1 <strong>in</strong> History)<br />

In the w<strong>in</strong>ter of 1609 Kepler got caught by the snow-storm on<br />

one of the bridges <strong>in</strong> Prague<br />

In 1611 he published an article ’Strena seu de nive sexangula’<br />

exam<strong>in</strong><strong>in</strong>g the planar hexagonal symmetry 1<br />

Examples of Hexagonal Symmetry 2<br />

1 ’Strena seu de nive sexangula’ - ’On the Six-Cornered Snowflakes’;<br />

2 From Kenneth K. Librecht, Caltech<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Multiple Examples of the Hexagonal Symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [1]<br />

The Secret of Hexagonal Symmetry of Snow Crystals?<br />

Figure: The water molecules <strong>in</strong> an ice crystal form a hexagonal lattice.<br />

Each red ball represents an oxygen atom, the grey sticks represent two<br />

hydrogen atoms.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [2]<br />

Other Forms of Symmetry: 12-Fold and Cyl<strong>in</strong>drical<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [3]<br />

Empirical Systematics of Nakaya<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

What Kepler Could Not Know ... [4]<br />

Crystal Grow<strong>in</strong>g, Humidity and Temperature<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Observations from a Certa<strong>in</strong> Time-Perspective:<br />

Despite all (human) efforts the understand<strong>in</strong>g of nature is a<br />

long process<br />

There were many hypotheses and scientific quarrels about this<br />

particular and many other puzzles of nature <strong>in</strong> the past ...<br />

It is a good advice to remeber the question:<br />

Are we sure?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Observations from a Certa<strong>in</strong> Time-Perspective:<br />

Despite all (human) efforts the understand<strong>in</strong>g of nature is a<br />

long process<br />

There were many hypotheses and scientific quarrels about this<br />

particular and many other puzzles of nature <strong>in</strong> the past ...<br />

It is a good advice to remeber the question:<br />

Are we sure?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Observations from a Certa<strong>in</strong> Time-Perspective:<br />

Despite all (human) efforts the understand<strong>in</strong>g of nature is a<br />

long process<br />

There were many hypotheses and scientific quarrels about this<br />

particular and many other puzzles of nature <strong>in</strong> the past ...<br />

It is a good advice to remeber the question:<br />

Are we sure?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Symmetry: How Did It All Beg<strong>in</strong>?<br />

Kepler (1611) - observes hexagonal symmetry of snow crystals<br />

Steno (1669) - observes that <strong>in</strong>cl<strong>in</strong>ation angles of faces of the<br />

quartz crystals are the same → <strong>in</strong>dependent of the crystal size<br />

De Lisle (1783) - angles between crystal faces identify crystals<br />

Haüy (1784) - studies the symmetries: rotations & reflections<br />

Wollaston (1809) - first goniometer to measure crystal angles<br />

Hausmann (1821) - <strong>in</strong>troduces the spherical trigonometry<br />

Hessel (1830) - shows existence of 32 polyhedral symmetries<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

The Idea and Some Properties of Permutations<br />

Joseph-Louis Lagrange (1736-1813)<br />

J. L. Lagrange<br />

A. Lagrange studied (among many other th<strong>in</strong>gs)<br />

algebraic equations<br />

B. He <strong>in</strong>troduced the notion of permutations <strong>in</strong><br />

relation to solutions of these equations ...<br />

C. ... however, he did not develop it further - this<br />

will come only later ...<br />

Dur<strong>in</strong>g the years 1772-1785 Lagrange created a series of memoirs about<br />

’Differential Equations’, he developed calculus of variations; <strong>in</strong> 1788 he<br />

published his ’Mécanique analytique’ <strong>in</strong>clud<strong>in</strong>g the ’Multiplier method’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

The Concept of Permutation Group<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Evariste Galois (1811-1832)<br />

E. Galois<br />

A. One of the most adventurous figures <strong>in</strong> the<br />

world of mathematics of XIX century<br />

B. His works were judged <strong>in</strong>comprehensible by the<br />

contemporary - among others by Poisson ...<br />

C. ... they were correctly <strong>in</strong>terpreted by Liouville,<br />

published <strong>in</strong> 1846, 24 years after his death ...<br />

Figure: A fragment of the orig<strong>in</strong>al text written the night before the duel<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Another Young Genius<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Niels Abel (1802-1829)<br />

A. Another tragic figure; he left beh<strong>in</strong>d important<br />

mathematical ideas despite his very short life<br />

B. Today we f<strong>in</strong>d <strong>in</strong> literature Abel’s <strong>in</strong>tegral<br />

equations, Abelian functions, Abel theorem<br />

about convergence; commutative groups are<br />

called Abelian<br />

N. Abel<br />

Abel died <strong>in</strong> the age of 26 of tuberculosis and malnutrition; only two<br />

days after his death the letter offer<strong>in</strong>g him a teach<strong>in</strong>g position <strong>in</strong> Berl<strong>in</strong><br />

arrived <strong>in</strong> Norway ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Further Development <strong>in</strong> Studies of Permutations<br />

August<strong>in</strong> Louis CAUCHY (1789-1857)<br />

A. L. Cauchy<br />

A. One of the most successful mathematicians of<br />

his times, pioneered studies of <strong>in</strong>f<strong>in</strong>ite series,<br />

differential equations, probability ...<br />

B. He undertook the studies of the properties of<br />

permutations essential for the development of<br />

group theory<br />

It was Arthur CAYLEY who, after CAUCHY, follows the study of groups<br />

of permutations - the only groups known at that time ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Arrival of the Def<strong>in</strong>ition of Abstract Groups<br />

Arthur CAYLEY (1821-1895)<br />

A. Def<strong>in</strong>es for the first time the concept of an<br />

abstract group<br />

B. Introduces the idea of Group Multiplication<br />

Table<br />

C. Observes that matrices (and quaternions)<br />

form groupes<br />

A. Cayley<br />

A. CAYLEY, graduated from Cambridge, spent several year as lawyer,<br />

later became professor of pure mathematics at Cambridge. With over<br />

900 publications one of the most active mathematicians of his times.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Abstract Groups - Today’s Formulation<br />

One of the most powerful tools to study transformation properties<br />

and symmetries <strong>in</strong> physics is the theory of groups.<br />

Def<strong>in</strong>ition (Group, CAYLEY)<br />

Abstract elements g ∈ G form a group under the operation ”◦” if:<br />

1 o For any g 1 , g 2 ∈ G the ’product’ g 1 ◦ g 2 ≡ g ∈ G<br />

2 o For any g 1 , g 2 , g 3 ∈ G we have (g 1 ◦ g 2 ) ◦ g 3 = g 1 ◦ (g 2 ◦ g 3 )<br />

3 o There exists a neutral element e ∈ G: ∀ g ∈ G : e ◦ g = g<br />

4 o For any g ∈ G we f<strong>in</strong>d <strong>in</strong>verse g −1 ∈ G such that g ◦ g −1 = e<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Groups: Historical Aspects<br />

Symmetry <strong>in</strong> Physics: A Short History<br />

Group Theory: First Concepts<br />

Very Special Role of the Group of Permutations<br />

One of the most powerful tools to study f<strong>in</strong>ite group properties is<br />

the Theorem of Cayley.<br />

Theorem (CAYLEY)<br />

Every group G composed of n elements is necessarily isomorphic<br />

with an n-element sub-group of the group S n<br />

Conclusion:<br />

It is sufficient to exam<strong>in</strong>e the group structure of the permutation<br />

group - the structure of all other ones is the same !!!<br />

Example: Group S 3<br />

j„<br />

df . 1, 2, 3<br />

S 3 =<br />

1, 2, 3<br />

« „<br />

1, 2, 3<br />

,<br />

2, 1, 3<br />

« „<br />

1, 2, 3<br />

,<br />

1, 3, 2<br />

« „<br />

1, 2, 3<br />

,<br />

3, 2, 1<br />

« „<br />

1, 2, 3<br />

,<br />

2, 3, 1<br />

« „<br />

1, 2, 3<br />

,<br />

3, 1, 2<br />

«ff<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Part II<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles <strong>in</strong> 3D-Spaces and Permutations<br />

Given system with n identical particles ↔ H = H (x 1 , x 2 , . . . x n )<br />

Particles be<strong>in</strong>g identical - Hamiltonian must be totally symmetric<br />

P ij H(x 1 , . . . x i , . . . x j , . . . x n ) P −1<br />

ij<br />

= H(x 1 , . . . x j , . . . x i , . . . x n )<br />

and H(x 1 , . . . x i , . . . x j , . . . x n ) = H(x 1 , . . . x j , . . . x i , . . . x n )<br />

so that<br />

P ij H P −1<br />

ij<br />

= H → [P ij , H] = 0, ∀ i ≠ j ≤ n<br />

Implications:<br />

1 o Operators H and P can be diagonalised simultaneously<br />

2 o H |Ψ〉 = E |Ψ〉 → P ij Ĥ P −1<br />

ij<br />

(|P ij Ψ〉) = E (|P ij Ψ〉)<br />

... consequently, if |Ψ〉 is an eigenstate of H so is |P ij Ψ〉<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Identical Particles Must Be either Fermions or Bosons!<br />

From def<strong>in</strong>ition of the permutation operator it follows that P 2<br />

ij<br />

= 1<br />

while P ij Ψ = p ij Ψ → P 2<br />

ij Ψ = p 2<br />

ij Ψ ↔ p 2<br />

ij = 1 → p ij = ±1<br />

In the particle-number representation we may write for short<br />

df .<br />

Ψ 1,2, ... n = Ψ(x 1 , x 2 , . . . x n )<br />

Conclusion: We thus Discover the Pauli Pr<strong>in</strong>ciple !<br />

1 o P ij Φ n1 , ... n i , ...n j , ... n n<br />

= +Φ n1 , ... n j , ...n i , ... n n<br />

→ Bosons<br />

2 o P ij Ψ n1 , ... n i , ...n j , ... n n<br />

= −Ψ n1 , ... n j , ...n i , ... n n<br />

→ Fermions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

S. LIE<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

S. LIE<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

S. LIE<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Arrival of the Theory of Cont<strong>in</strong>uous (Lie) Groups<br />

Sophus LIE (1842-1899)<br />

S. LIE<br />

A. Introduces new type of groups whose elements<br />

are cont<strong>in</strong>uous functions of some parameter(s)<br />

B. Most important for physics applications are<br />

groups of matrices<br />

C. Examples: GL n , SL n , U n , SU n , O n , Sp 2n ...<br />

Dist<strong>in</strong>guished role <strong>in</strong> physics play the space-time Lie groups: Rotation,<br />

Lorentz and Po<strong>in</strong>caré, dimensions 3, 6 and 10, respectively, as well as<br />

the unitary and special unitary groups together with all their sub-groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

About Special Unitary Groups: SU n<br />

Groups SU n ↔ n × n unitary matrices U ↔ [det(U) = 1]<br />

It turns out that these matrices can be expressed as<br />

U = exp [ ∑ ]<br />

p αβ ĝ αβ , pαβ ↔ real parameters<br />

αβ<br />

Constant operators (generators) ĝ αβ satisfy<br />

[ ĝ αβ , ĝ γδ ] = δ βγ ĝ αδ − δ αδ ĝ γβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

About Special Unitary Groups: SU n<br />

Groups SU n ↔ n × n unitary matrices U ↔ [det(U) = 1]<br />

It turns out that these matrices can be expressed as<br />

U = exp [ ∑ ]<br />

p αβ ĝ αβ , pαβ ↔ real parameters<br />

αβ<br />

Constant operators (generators) ĝ αβ satisfy<br />

[ ĝ αβ , ĝ γδ ] = δ βγ ĝ αδ − δ αδ ĝ γβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

About Special Unitary Groups: SU n<br />

Groups SU n ↔ n × n unitary matrices U ↔ [det(U) = 1]<br />

It turns out that these matrices can be expressed as<br />

U = exp [ ∑ ]<br />

p αβ ĝ αβ , pαβ ↔ real parameters<br />

αβ<br />

Constant operators (generators) ĝ αβ satisfy<br />

[ ĝ αβ , ĝ γδ ] = δ βγ ĝ αδ − δ αδ ĝ γβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Systems with Two-Body Interactions<br />

Consider an N-particle system with a two-body Hamiltonian<br />

Ĥ = ∑ αβ<br />

h αβ c α + c β + 1 ∑ ∑<br />

v αβ;γδ c α + c +<br />

2<br />

β c δ c γ<br />

αβ<br />

γδ<br />

Introduce operators<br />

ˆN αβ<br />

df .<br />

= c + α c β<br />

It is easy to verify that<br />

[ ˆN αβ , ˆN γδ ] = δ βγ ˆN αδ − δ αδ ˆN γβ thus ˆN αβ ↔ ĝ αβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Systems with Two-Body Interactions<br />

Consider an N-particle system with a two-body Hamiltonian<br />

Ĥ = ∑ αβ<br />

h αβ c α + c β + 1 ∑ ∑<br />

v αβ;γδ c α + c +<br />

2<br />

β c δ c γ<br />

αβ<br />

γδ<br />

Introduce operators<br />

ˆN αβ<br />

df .<br />

= c + α c β<br />

It is easy to verify that<br />

[ ˆN αβ , ˆN γδ ] = δ βγ ˆN αδ − δ αδ ˆN γβ thus ˆN αβ ↔ ĝ αβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Systems with Two-Body Interactions<br />

Consider an N-particle system with a two-body Hamiltonian<br />

Ĥ = ∑ αβ<br />

h αβ c α + c β + 1 ∑ ∑<br />

v αβ;γδ c α + c +<br />

2<br />

β c δ c γ<br />

αβ<br />

γδ<br />

Introduce operators<br />

ˆN αβ<br />

df .<br />

= c + α c β<br />

It is easy to verify that<br />

[ ˆN αβ , ˆN γδ ] = δ βγ ˆN αδ − δ αδ ˆN γβ thus ˆN αβ ↔ ĝ αβ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and the SU n -Generators<br />

N-Body Hamiltonians are functions of SU n -group generators<br />

Two-body <strong>in</strong>teractions lead to quadratic forms of ˆN αβ = c + α c β<br />

,<br />

three-body <strong>in</strong>teractions to the cubic forms of ˆN αβ , etc.<br />

Hamiltonians of the N-body systems can be diagonalised with<strong>in</strong><br />

bases of the irreducible representations<br />

Solutions can be constructed that transform as the SU n -group<br />

representations thus establish<strong>in</strong>g a l<strong>in</strong>k H ↔ SU n<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and More General Observations<br />

Consequences <strong>in</strong> Terms of Cha<strong>in</strong>s of Sub-Groups<br />

Group SU n has numerous sub-groups: U m and SU m with m < n,<br />

similarly O m , SO m and <strong>in</strong> particular R(3) and all the po<strong>in</strong>t groups<br />

More Generall Intellectual Challenges<br />

If a group is a symmetry group of a physical system - so are its<br />

sub-groups! Do we know their physical mean<strong>in</strong>g? ...<br />

Consequences?... Interpretation?<br />

... but even if not ...<br />

The group theory offers a guaranteed guidance through the jungle<br />

of possibilities!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and More General Observations<br />

Consequences <strong>in</strong> Terms of Cha<strong>in</strong>s of Sub-Groups<br />

Group SU n has numerous sub-groups: U m and SU m with m < n,<br />

similarly O m , SO m and <strong>in</strong> particular R(3) and all the po<strong>in</strong>t groups<br />

More Generall Intellectual Challenges<br />

If a group is a symmetry group of a physical system - so are its<br />

sub-groups! Do we know their physical mean<strong>in</strong>g? ...<br />

Consequences?... Interpretation?<br />

... but even if not ...<br />

The group theory offers a guaranteed guidance through the jungle<br />

of possibilities!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

N-Body Hamiltonians and More General Observations<br />

Consequences <strong>in</strong> Terms of Cha<strong>in</strong>s of Sub-Groups<br />

Group SU n has numerous sub-groups: U m and SU m with m < n,<br />

similarly O m , SO m and <strong>in</strong> particular R(3) and all the po<strong>in</strong>t groups<br />

More Generall Intellectual Challenges<br />

If a group is a symmetry group of a physical system - so are its<br />

sub-groups! Do we know their physical mean<strong>in</strong>g? ...<br />

Consequences?... Interpretation?<br />

... but even if not ...<br />

The group theory offers a guaranteed guidance through the jungle<br />

of possibilities!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Subgroup Structure Can Be Very, Very Rich ...<br />

32 Po<strong>in</strong>t Groups: Subgroups<br />

.<br />

D 4h<br />

T h<br />

O T d<br />

D 6h<br />

C 4h<br />

D 4<br />

D 2d<br />

C 4v<br />

D 2h<br />

T D 6<br />

C 6h<br />

C 6v<br />

D 3d<br />

D<br />

3h<br />

S 4<br />

C 4<br />

D 2<br />

C 2h<br />

C 2v<br />

C 6<br />

C 3i<br />

D 3<br />

C 3v<br />

C 3h<br />

O h<br />

C C C C<br />

i 2 s 3<br />

Figure: Richness of the sub-group<br />

structures at the end of cha<strong>in</strong>...<br />

C<br />

1<br />

.<br />

Dashed l<strong>in</strong>es <strong>in</strong>dicate that the<br />

subgroup marked is not <strong>in</strong>variant<br />

Trivial groups are denoted here<br />

C 1 ≡ {1I}, C s ≡ {1I, ˆσ},<br />

C i ≡ {1I, ˆπ}<br />

Here we show the structure only<br />

at the very end of the SU n cha<strong>in</strong><br />

- it helps imag<strong>in</strong><strong>in</strong>g how rich the<br />

full group structure is ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups - Examples from Molecular Physics<br />

Group C 3v - Molecule: [NH 3 ] Group C 3h - Molecule: [B(OH) 3 ]<br />

Group D 3d - Molecule: [C 2 H 6 ] Group D 3h - Molecule: [C 2 H 6 ]<br />

From J. Goss, University of Newcastle<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

The Highest Symmetries <strong>in</strong> Molecular Physics<br />

Group T d - Molecule: [CH 4 ] Group O h - Molecule: [SF 6 ]<br />

Group D 6d - Mol.: [Cr(C 6 H 6 ) 2 ] Group I h - Molecule: [C 60 ]<br />

From J. Goss, University of Newcastle<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Strong Interactions and Sub-Atomic Physics<br />

Except for the stellar objects (for which N → ∞) the subatomic<br />

objects are mesoscopic: N max ∼ 10 2 ≪ Avogadro Number ∼ 10 23<br />

Standard Models of Nuclear Interactions Symmetries<br />

1 o Mean-Field Methods SU n , SO n , po<strong>in</strong>t groups<br />

2 o Nuclear Shell-Model SU n , SO n , po<strong>in</strong>t groups<br />

3 o Nuclear Cluster Models po<strong>in</strong>t groups<br />

4 o Compound (Interact<strong>in</strong>g) Bosons group algebras<br />

5 o Collective Nuclear Models po<strong>in</strong>t groups<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [1]<br />

Pr<strong>in</strong>ciple of Sufficient Reason (LEIBNIZ)<br />

If there is no sufficient reason for th<strong>in</strong>gs to happen - then the<br />

orig<strong>in</strong>al situation does not change<br />

The underly<strong>in</strong>g idea: the presence of symmetry guarantees that<br />

one choice is as good as any other - thus noth<strong>in</strong>g happens<br />

Pierre CURIE (’Sur la symétrie dans les phénomènes physiques’)<br />

For a phenomenon to take place - an absence of symmetry is<br />

needed - the asymmetry gives the orig<strong>in</strong> to phenomena<br />

If one phenomenon is a ’cause’ and another ’result’ - the symmetry<br />

of cause must be higher than the symmetry of the result<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [2]<br />

Caricature - A Classical (Macro) Example: Buridan’s Ass<br />

Figure: Buridan’s ass, hav<strong>in</strong>g two strictly identical bundles of carrots on<br />

both sides has no reason to select one of the two - and dies of starvation<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [3]<br />

... already Aristotle (384-322 BC)<br />

In his ’De Caelo’ Aristotle asks how a dog faced with the choice<br />

of two equally tempt<strong>in</strong>g meals could rationally choose one ...<br />

French philosopher Jean BURIDAN, XIV century: an ass faces<br />

starvation when it is unable to choose between two equally<br />

appetis<strong>in</strong>g piles of hay ...<br />

Remarks:<br />

The ideas of Leibniz and Curie do not necessarily correspond to the<br />

present day view - today the spontaneous symmetry break<strong>in</strong>g effects<br />

are given much more attention<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry vs. Asymmetry - Historical Perspective [3]<br />

... already Aristotle (384-322 BC)<br />

In his ’De Caelo’ Aristotle asks how a dog faced with the choice<br />

of two equally tempt<strong>in</strong>g meals could rationally choose one ...<br />

French philosopher Jean BURIDAN, XIV century: an ass faces<br />

starvation when it is unable to choose between two equally<br />

appetis<strong>in</strong>g piles of hay ...<br />

Remarks:<br />

The ideas of Leibniz and Curie do not necessarily correspond to the<br />

present day view - today the spontaneous symmetry break<strong>in</strong>g effects<br />

are given much more attention<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

An Alternative: Spontaneous Symmetry Break<strong>in</strong>g<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 There exist phenomena not <strong>in</strong>volv<strong>in</strong>g any obvious symmetry<br />

2 There exist transitions from less symmetric to more symmetric<br />

situations<br />

3 Let us turn to a somewhat mislead<strong>in</strong>g picture of s. symmetry<br />

break<strong>in</strong>g<br />

We<strong>in</strong>berg’s Caricature of the Spontaneous Symmetry Break<strong>in</strong>g<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry: Exact, Approximate, Spontaneously Broken<br />

Consider an exact symmetry def<strong>in</strong>ed by transformations ĝ ∈ {G}:<br />

ĝ H ĝ −1 = H ↔ Hψ = Eψ → ĝHĝ −1 (ĝψ) = E(ĝψ)<br />

Conclusion: ψ and ĝψ are solutions. There are two possibilities:<br />

1 o An n-fold degenerate spectrum: ĝψ p α = ∑ k≤n ψk α D α kp (ĝ)<br />

Matrices Dkp α (ĝ) form an n-dimensional representation of {G}<br />

2 o Non-degenerate spectrum: ĝψ p α = D α (ĝ) ψ k q<br />

Numbers D α (ĝ) form one-dimensional representations of {G}<br />

In both cases the <strong>in</strong>dex α enumerat<strong>in</strong>g irreducible representations<br />

plays a role of the label (quantum number) characteris<strong>in</strong>g symmetry<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Example: An Exactly Spherically-Symmetric Nucleus<br />

Consider 132 Sn nucleus with 50 protons and 82 neutrons<br />

Are the wave-functions obey<strong>in</strong>g the spherical symmetry?<br />

How the Pauli pr<strong>in</strong>ciple can be seen from the 3D perspective?<br />

H<strong>in</strong>t:<br />

To answer these questions we solve the correspond<strong>in</strong>g realistsic problem<br />

of motion and obta<strong>in</strong> the energies and wave functions<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit ??% Limit ??% Limit ??% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit ??% Limit ??% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit ??% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit ??%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Density distribution |ψ π (⃗r )| 2 ≥ Limit, for π = [2, 0, 2]1/2 orbital<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit ??% Limit ??% Limit ??% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit ??% Limit ??% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit 12% Limit ??% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit 12% Limit 10% Limit ??%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of Orbitals (Sperical 132 Sn) (|ψ(⃗r )| 2 )<br />

Limit 80% Limit 50% Limit 10% Limit 3% Limit 1%<br />

Limit 20% Limit 15% Limit 12% Limit 10% Limit 9%<br />

Bottom: N=3 shell b-[303]7/2, w-[312]5/2, y-[321]3/2, p-[310]1/2<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: Distributions |ψ ν (⃗r )| 2 for s<strong>in</strong>gle proton orbitals. Top O xz ,<br />

bottom O yz . Proton e ν ↔ [ν=30, 32, ... 38] for spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: Distributions |ψ ν (⃗r )| 2 for s<strong>in</strong>gle proton orbitals. Top O xz ,<br />

bottom O yz . Proton e ν ↔ [ν=40, 42, ... 48] for spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: distributions |ψ ν (⃗r )| 2 for consecutive pairs of orbitals. Top<br />

O xz , bottom O yz . Proton e ν ↔ [n=30:32, ... 38:40], spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spatial Structure of N=3 Spherical Shell (|ψ ν (⃗r )| 2 )<br />

132 Sn: distributions |ψ ν (⃗r )| 2 for consecutive pairs of orbitals. Top<br />

O xz , bottom O yz . Proton e ν ↔ [n=40:42, ... 48:50], spherical shell<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

What Did We Learn?<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

In the 132 Sn nucleus with 50 protons and 82 neutrons:<br />

... the wave functions do not obey the spherical symmetry ...<br />

They transform under irreducible representations of the SO 3<br />

Calculation shows that the energy eigen-values are degenerate:<br />

(degeneracy equal to 2j+1)<br />

Question: What happens if we cont<strong>in</strong>ue add<strong>in</strong>g nucleons to 132 Sn?<br />

Experiments will show that the result<strong>in</strong>g systems are NOT spherically<br />

symmetric! Strange! - s<strong>in</strong>ce the Hamiltonian of the system obeys<br />

the rotational symmetry exactly!! Let us have closer look...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [1]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Central Interaction (r 12 ≡ |⃗r 1 −⃗r 2 |)<br />

̂V C (ˆx 1 , ˆx 2 ) = V 0 (r 12 ) + V s (r 12 ) [⃗s (1) · ⃗s (2) ]<br />

+ V t (r 12 ) [⃗t (1) ·⃗t (2) ]<br />

+ V s−t (r 12 ) [⃗s (1) · ⃗s (2) ] [⃗t (1) ·⃗t (2) ]<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [1]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Central Interaction (r 12 ≡ |⃗r 1 −⃗r 2 |)<br />

̂V C (ˆx 1 , ˆx 2 ) = V 0 (r 12 ) + V s (r 12 ) [⃗s (1) · ⃗s (2) ]<br />

+ V t (r 12 ) [⃗t (1) ·⃗t (2) ]<br />

+ V s−t (r 12 ) [⃗s (1) · ⃗s (2) ] [⃗t (1) ·⃗t (2) ]<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [2]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Tensor Interaction [Non-Central]<br />

⃗ S<br />

(12) df .<br />

= 3 (⃗s 1 ·⃗r 12 )(⃗s 2 ·⃗r 12 ) − (⃗s 1 · ⃗s 2 ) r12<br />

2<br />

r12<br />

2<br />

and r 12<br />

df .<br />

= |⃗r 1 −⃗r 2 |<br />

̂V T (ˆx 1 , ˆx 2 ) = [V t0 (r 12 ) + V t1 (r 12 )⃗t 1 ·⃗t 2 ] ⃗ S (12)<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [3]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Sp<strong>in</strong>-Orbit Interaction [Non-Local]<br />

⃗ L<br />

df .<br />

= 1 2 (⃗r 1 −⃗r 2 ) ∧ (⃗p 1 − ⃗p 2 ), r 12<br />

df .<br />

= |⃗r 1 −⃗r 2 | and ⃗ S df . = ⃗s 1 + ⃗s 2<br />

̂V LS (ˆx 1 , ˆx 2 ) = V LS (r 12 ) ⃗ L · ⃗S<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Fundamental Symmetries of Nuclear Forces [4]<br />

Denote ˆx df . = {⃗r,⃗p,⃗s,⃗t}. Nuclear <strong>in</strong>teractions have the form<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

where: C-central, T -tensor, LS-sp<strong>in</strong>-orbit and LL 2 -quadratic LS<br />

Quadratic Sp<strong>in</strong>-Orbit Interaction [Non-Local]<br />

⃗ L<br />

df .<br />

= 1 2 (⃗r 1 −⃗r 2 ) ∧ (⃗p 1 − ⃗p 2 ) and r 12<br />

df .<br />

= |⃗r 1 −⃗r 2 |<br />

̂V LL (ˆx 1 , ˆx 2 ) = V LL (r 12 ){(⃗s 1 · ⃗s 2 ) ⃗ L 2 − 1 2 [(⃗s 1 · ⃗L)(⃗s 2 · ⃗L) + (⃗s 2 · ⃗L)(⃗s 1 · ⃗L)]}<br />

Invariant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Forces and the Mean Field Theory<br />

1 o From the above discussion it follows that the N-N <strong>in</strong>teraction<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

is <strong>in</strong>variant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Forces and the Mean Field Theory<br />

1 o From the above discussion it follows that the N-N <strong>in</strong>teraction<br />

̂V (ˆx 1 , ˆx 2 ) ≡ ̂V C (ˆx 1 , ˆx 2 ) + ̂V T (ˆx 1 , ˆx 2 ) + ̂V LS (ˆx 1 , ˆx 2 ) + ̂V LL 2(ˆx 1 , ˆx 2 )<br />

is <strong>in</strong>variant under rotations, translations, <strong>in</strong>version and time-reversal<br />

Spont. Sym. Break<strong>in</strong>g<br />

Z=fixed<br />

E<br />

N N ’ N"<br />

The Nuclear Mean Field Theory ...<br />

... is usually very successful. It is based on<br />

∫<br />

̂V mf (ˆx) = ψ ∗ (x ′ ) ̂V (ˆx, ˆx ′ )ψ(x ′ ) dx ′<br />

spherical<br />

deformed<br />

Def.<br />

Some or all of the above symmetries will be<br />

broken by the mean-field Hamiltonian<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - An Example<br />

Given a system with symmetry {G} i.e. [H(β), G] = 0. Here β is a<br />

parameter. Often a critical value, β crit. , exists such that:<br />

1 For β < β crit. symmetry of solution is compatible with {G}<br />

2 For β > β crit. symmetry of solution is not compatible with {G}<br />

A Classical (Macro) Example<br />

Orig<strong>in</strong>al system ↔ axial symmetry<br />

For F > F crit. we f<strong>in</strong>d <strong>in</strong>f<strong>in</strong>itely<br />

many solutions at the same energy<br />

Yet: The orig<strong>in</strong>al axial symmetry<br />

will be spontaneously broken and<br />

only one among many directions -<br />

privileged !!!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Classical Physics<br />

A small bead of mass m threaded on a rotat<strong>in</strong>g circle of radius r;<br />

constant frequency ω. We use the Lagrangian formalism:<br />

1 L = 1 2 m˙⃗r 2 −V (⃗r ) = 1 2 mr 2 ˙ϑ 2 + 1 2 mω2 r 2 s<strong>in</strong> 2 ϑ−mgr(1−cos ϑ)<br />

df .<br />

2 L = T ϑ − U ϑ ↔ U ϑ = mgr[ (1 − cos ϑ) − 1<br />

} {{ }<br />

2 (mω2 /g) s<strong>in</strong> 2 ϑ ]<br />

} {{ }<br />

Potential Centrifugal<br />

Bead on a Circle<br />

z<br />

ω<br />

π _ υ<br />

y<br />

r<br />

m<br />

x<br />

f = −mg<br />

U=mgr(1−cos υ)<br />

The lowest energy solutions ↔ ˙ϑ = 0 ↔ dU<br />

dϑ = 0<br />

Result: s<strong>in</strong> ϑ s = 0 and cos ϑ o = 1/β; β df . = rω 2 /g<br />

Conclusion. Two types of lowest-energy solutions:<br />

1. ϑ s = 0 - with the axial symmetry of the problem<br />

2. ϑ o ≠ 0 - break<strong>in</strong>g the orig<strong>in</strong>al axial symmetry !!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Discussion<br />

1 o Under which conditions are the so obta<strong>in</strong>ed solutions stable?<br />

2 o Are the derivatives d2 U<br />

dϑ 2 ≡ U ′′ = mgr(cos ϑ − β cos 2ϑ) > 0?<br />

1 Solution ϑ s = 0 → U ′′ (ϑ s ) = 1 − β → ϑ s stable for β < 1<br />

2 Solution ϑ o ≠ 0 → U ′′ (ϑ o ) = β − 1/β → ϑ o stable for β > 1<br />

U is Symmetric when ϑ → −ϑ<br />

U ( υ)<br />

Def<strong>in</strong>e frequency: ω crit. ≡ √ g/r<br />

ω < ω crit. : bead rests at ϑ s = 0<br />

β1<br />

ω > ω crit. : climbs up ϑ o : 0 → π 2<br />

_ π /2<br />

β crit. = 1<br />

π /2<br />

υ<br />

ϑ s - sub-critical ϑ o - over-critical<br />

... but why should there be any<br />

spontaneous symmetry break<strong>in</strong>g?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

Essential Facts about our Physical System:<br />

1 Considered system has 1 degree of freedom and axial symmetry<br />

2 ... but <strong>in</strong> the generalised coord<strong>in</strong>ates only 1 discrete symmetry:<br />

U(ϑ) = 2mgr s<strong>in</strong> 2 (ϑ/2)[1 − β cos 2 (ϑ/2)] ↔ U(+ϑ) = U(−ϑ)<br />

Essential Conclusions from Our Analysis:<br />

1 This symmetry holds for β < β crit. and β > β crit. potentials<br />

2 This symmetry holds only for one i.e. the β < β crit. solution<br />

3 For the β > β crit. solutions we have either ϑ o > 0 or ϑ o < 0<br />

4 For the β > β crit. solutions the orig<strong>in</strong>al symmetry is violated<br />

5 We have considered only the lowest energy (’ground’) states<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

This transition is called spontaneous s<strong>in</strong>ce the ϑ o -sign chosen by the<br />

system depends on ’irrelevant details’: fluctuations, non-uniformities<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 We used no <strong>in</strong>formation about those ’irrelevant details’ yet ...<br />

2 We were able to predict the absolute value of ϑ o <strong>in</strong> experiment<br />

3 Is spontaneous symmetry break<strong>in</strong>g someth<strong>in</strong>g so very unusual?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

This transition is called spontaneous s<strong>in</strong>ce the ϑ o -sign chosen by the<br />

system depends on ’irrelevant details’: fluctuations, non-uniformities<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 We used no <strong>in</strong>formation about those ’irrelevant details’ yet ...<br />

2 We were able to predict the absolute value of ϑ o <strong>in</strong> experiment<br />

3 Is spontaneous symmetry break<strong>in</strong>g someth<strong>in</strong>g so very unusual?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Spontaneous Symmetry Break<strong>in</strong>g - Interpretation [1]<br />

This transition is called spontaneous s<strong>in</strong>ce the ϑ o -sign chosen by the<br />

system depends on ’irrelevant details’: fluctuations, non-uniformities<br />

Aren’t there ”Some Miracles” Hidden Somewhere?<br />

1 We used no <strong>in</strong>formation about those ’irrelevant details’ yet ...<br />

2 We were able to predict the absolute value of ϑ o <strong>in</strong> experiment<br />

3 Is spontaneous symmetry break<strong>in</strong>g someth<strong>in</strong>g so very unusual?<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Symmetry Groups and Degeneracies of Levels<br />

Hamiltonian and a Group of Transformations<br />

Given Hamiltonian H and a po<strong>in</strong>t-group G = {O 1 , O 2 , . . . O f }<br />

Assume that G is a symmetry group of H i.e.<br />

[H, O k ] = 0 with k = 1, 2, . . . f<br />

Spectra and Group’s Irreducible Representations<br />

Let irreducible representations of G be {R 1 , R 2 , . . . R r }<br />

Let their dimensions be {d 1 , d 2 , . . . d r }, respectively<br />

Then the eigenvalues {ε ν } of the problem<br />

Hψ ν = ε ν ψ ν<br />

appear <strong>in</strong> multiplets d 1 -fold, d 2 -fold ... degenerate<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups - ... and What We Need to Remember<br />

Consider a group of symmetry of an equilateral triangle (group C 3v )<br />

Two Types of Transformations - Observe Existence of a Fixed Po<strong>in</strong>t<br />

a<br />

120 o<br />

b<br />

c<br />

C^ 3<br />

240 o<br />

(C<br />

^ 2<br />

3)<br />

b<br />

a<br />

c<br />

Figure: This group conta<strong>in</strong>s rotations Ĉ3 and Ĉ 2 3 (120o and 240 o ), left,<br />

and three vertical reflections ˆσ va , ˆσ vb and ˆσ vc , right, <strong>in</strong> addition to 1I.<br />

Six Element Po<strong>in</strong>t Group: C 3v = {1I, Ĉ 3 , Ĉ 2 3 , ˆσ va , ˆσ vb , ˆσ vc }<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups - ... and What We Need to Remember<br />

Consider a group of symmetry of an equilateral triangle (group C 3v )<br />

Two Types of Transformations - Observe Existence of a Fixed Po<strong>in</strong>t<br />

a<br />

120 o<br />

b<br />

c<br />

C^ 3<br />

240 o<br />

(C<br />

^ 2<br />

3)<br />

b<br />

a<br />

c<br />

Figure: This group conta<strong>in</strong>s rotations Ĉ3 and Ĉ 2 3 (120o and 240 o ), left,<br />

and three vertical reflections ˆσ va , ˆσ vb and ˆσ vc , right, <strong>in</strong> addition to 1I.<br />

Six Element Po<strong>in</strong>t Group: C 3v = {1I, Ĉ 3 , Ĉ 2 3 , ˆσ va , ˆσ vb , ˆσ vc }<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Discrete Symmetries <strong>in</strong> Nuclei<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Let us recall one of the magic forms <strong>in</strong>troduced long time by Plato.<br />

The implied symmetry leads to the tetrahedral group denoted T d<br />

A tetrahedron has four equal walls.<br />

Its shape is <strong>in</strong>variant with respect to<br />

24 symmetry elements. Tetrahedron<br />

is not <strong>in</strong>variant with respect to the<br />

<strong>in</strong>version. Of course nuclei cannot be<br />

represented by a sharp-edge pyramid<br />

... but rather <strong>in</strong> a form of a regular spherical harmonic expansion:<br />

λ∑<br />

max λ∑<br />

R(ϑ, ϕ) = R 0 c({α})[1 + α λ,µ Y λ,µ (ϑ, ϕ)]<br />

λ<br />

µ=−λ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Discrete Symmetries <strong>in</strong> Nuclei<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Let us recall one of the magic forms <strong>in</strong>troduced long time by Plato.<br />

The implied symmetry leads to the tetrahedral group denoted T d<br />

A tetrahedron has four equal walls.<br />

Its shape is <strong>in</strong>variant with respect to<br />

24 symmetry elements. Tetrahedron<br />

is not <strong>in</strong>variant with respect to the<br />

<strong>in</strong>version. Of course nuclei cannot be<br />

represented by a sharp-edge pyramid<br />

... but rather <strong>in</strong> a form of a regular spherical harmonic expansion:<br />

λ∑<br />

max λ∑<br />

R(ϑ, ϕ) = R 0 c({α})[1 + α λ,µ Y λ,µ (ϑ, ϕ)]<br />

λ<br />

µ=−λ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Tetrahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with tetrahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 3 : α 3,±2 ≡ t 3<br />

λ = 7 : α 7,±2 ≡ t 7 ; α 7,±6 ≡ − q 11<br />

13 · t 7<br />

λ = 9 : α 9,±2 ≡ t 9 ; α 9,±6 ≡ + q 28<br />

198 · t 9<br />

1 Collaboration with Andrzej GÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral Shapes - 3D Examples (Part 1)<br />

Illustrations below show the tetrahedral-symmetric surfaces at three<br />

<strong>in</strong>creas<strong>in</strong>g values of rank λ = 3 deformations t 1 : 0.1, 0.2 and 0.3:<br />

Figure: t 3 = 0.1 Figure: t 3 = 0.2 Figure: t 3 = 0.3<br />

Observations:<br />

There are <strong>in</strong>f<strong>in</strong>itely many tetrahedral-symmetric surfaces<br />

Nuclear ’pyramids’ do not resemble pyramids!<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral Shapes - Proton Spectra<br />

Double group Td<br />

D has two 2-dimensional - and one 4-dimensional<br />

irreducible representations → three dist<strong>in</strong>ct families of levels<br />

Proton Energies [MeV]<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

-11<br />

-12<br />

226<br />

90 Th 136<br />

{07}[5,4,1] 3/2<br />

{19}[5,1,4] 7/2<br />

{07}[5,0,5] 9/2<br />

{20}[5,0,5] 9/2<br />

{08}[5,2,3] 5/2<br />

{06}[6,1,5] 11/2<br />

{10}[6,2,4] 9/2<br />

{08}[5,0,3] 7/2<br />

{06}[6,3,3] 7/2<br />

{04}[4,4,0] 1/2<br />

{12}[5,1,4] 9/2<br />

{09}[5,2,3] 7/2<br />

{16}[5,0,5] 11/2<br />

{08}[5,2,1] 1/2<br />

{11}[5,0,5] 11/2<br />

{09}[4,0,0] 1/2<br />

{08}[4,4,0] 1/2<br />

{16}[4,0,2] 3/2<br />

{13}[4,1,3] 5/2<br />

{10}[4,0,4] 7/2<br />

{15}[4,0,4] 7/2<br />

{09}[4,2,2] 3/2<br />

{07}[4,3,1] 1/2<br />

{09}[5,1,4] 9/2<br />

100<br />

64<br />

82<br />

58<br />

100<br />

64<br />

90<br />

70<br />

94<br />

-.2 -.1 .0 .1 .2 .3 .4<br />

Tetrahedral Deformation<br />

{04}[4,1,1] 3/2<br />

{06}[4,2,0] 1/2<br />

{06}[5,0,5] 9/2<br />

{05}[6,1,5] 9/2<br />

{07}[4,1,3] 7/2<br />

{07}[4,2,2] 5/2<br />

{11}[5,0,5] 11/2<br />

{06}[5,4,1] 1/2<br />

{05}[4,0,0] 1/2<br />

{04}[3,0,1] 1/2<br />

{04}[4,1,3] 7/2<br />

{03}[4,1,3] 7/2<br />

{04}[5,0,3] 7/2<br />

{10}[3,1,2] 3/2<br />

{05}[6,1,5] 11/2<br />

{05}[4,3,1] 1/2<br />

{04}[5,0,5] 11/2<br />

{06}[4,0,4] 7/2<br />

{06}[4,0,4] 7/2<br />

{06}[3,0,1] 1/2<br />

{04}[3,1,0] 1/2<br />

{03}[3,1,0] 1/2<br />

{10}[3,1,2] 5/2<br />

{06}[3,1,2] 3/2<br />

Strasbourg, August 2002 Woods-Saxon Universal Params.<br />

α 32(m<strong>in</strong>)=-.200, α32(max)=.400<br />

Figure: Full l<strong>in</strong>es ↔ 4-dimensional irreducible representations - marked<br />

with double Nilsson labels. Observe huge gaps at N=64, 70, 90-94, 100.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral Shapes - Neutron Spectra<br />

Double group Td<br />

D has two 2-dimensional - and one 4-dimensional<br />

irreducible representations → three dist<strong>in</strong>ct families of levels<br />

Neutron Energies [MeV]<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

-11<br />

226<br />

90 Th 136<br />

{13}[6,2,4] 7/2<br />

{05}[6,5,1] 3/2<br />

{03}[6,6,0] 1/2<br />

{07}[6,0,2] 5/2<br />

{04}[6,4,0] 1/2<br />

{11}[6,0,6] 11/2<br />

{07}[6,0,6] 11/2<br />

{06}[6,0,4] 9/2<br />

{05}[7,2,5] 11/2<br />

{06}[7,2,5] 11/2<br />

{08}[6,0,4] 9/2<br />

{04}[7,3,4] 9/2<br />

{08}[6,1,5] 11/2<br />

{09}[6,2,4] 9/2<br />

{05}[6,1,5] 11/2<br />

{04}[6,1,5] 11/2<br />

{08}[6,3,1] 1/2<br />

{19}[6,0,6] 13/2<br />

{09}[6,0,6] 13/2<br />

{08}[5,0,1] 1/2<br />

{07}[5,5,0] 1/2<br />

{13}[5,0,3] 5/2<br />

{06}[5,1,2] 3/2<br />

{07}[4,1,1] 1/2<br />

{04}[5,5,0] 1/2<br />

148<br />

136 136<br />

126<br />

124<br />

142<br />

112<br />

-.2 -.1 .0 .1 .2 .3 .4<br />

Tetrahedral Deformation<br />

{04}[6,0,6] 11/2<br />

{02}[5,2,1] 3/2<br />

{03}[5,2,1] 3/2<br />

{04}[5,3,2] 5/2<br />

{06}[6,5,1] 1/2<br />

{10}[6,0,6] 13/2<br />

{06}[5,2,3] 7/2<br />

{04}[5,0,5] 9/2<br />

{05}[5,3,2] 5/2<br />

{08}[5,1,4] 9/2<br />

{03}[5,0,1] 3/2<br />

{03}[5,0,1] 3/2<br />

{06}[6,2,4] 9/2<br />

{04}[7,1,6] 13/2<br />

{04}[4,1,3] 5/2<br />

{04}[5,3,0] 1/2<br />

{05}[7,2,5] 11/2<br />

{04}[5,1,2] 5/2<br />

{03}[5,4,1] 1/2<br />

{02}[4,1,3] 5/2<br />

{02}[3,0,1] 3/2<br />

{06}[6,0,6] 13/2<br />

{03}[5,0,3] 5/2<br />

{03}[5,0,3] 5/2<br />

{05}[4,1,1] 3/2<br />

Strasbourg, August 2002 Woods-Saxon Universal Params.<br />

α 32(m<strong>in</strong>)=-.200, α32(max)=.400<br />

Figure: Full l<strong>in</strong>es ↔ 4-dimensional irreducible representations - marked<br />

with double Nilsson labels. Observe huge gaps at N=112, 136.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Introduc<strong>in</strong>g Nuclear Octahedral Symmetry<br />

Let us recall one of the magic forms <strong>in</strong>troduced long time by Plato.<br />

The implied symmetry leads to the octahedral group denoted O h<br />

An octahedron has 8 equal walls. Its<br />

shape is <strong>in</strong>variant with respect to 48<br />

symmetry elements that <strong>in</strong>clude <strong>in</strong>version.<br />

However, the nuclear surface<br />

cannot be represented <strong>in</strong> the form of<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

<br />

¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦<br />

§ § § § § § § § § § § § § § § § § § § § § § § § § § §<br />

£ £ £ £ £ ¢ ¢ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

¢ £ £ £ £ £ £<br />

¤ ¤ ¤ ¤ ¤ ¢ ¢ ¢ £ £ £ ¢ ¤ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¤ ¢ ¢ ¢ ¢ £ £ £ ¤ ¤ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ <br />

<br />

<br />

¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡<br />

<br />

<br />

<br />

¡ ¡<br />

¡ ¡ ¡ £ ¡ £ ¡ £ ¡ £ £ £ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ ¢ ¡ ¤ ¡ ¤ ¡ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¥ ¥ <br />

¡ ¡ ¥ <br />

¡ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥<br />

¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¢ ¡ ¢ ¢ ¢ ¢ ¢ ¢<br />

¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ ¡ ¡ <br />

¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

<br />

¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ £ £ £ £ £ £ £ £ £ ¥<br />

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ £ £ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¤<br />

¤ ¡ ¡ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¡<br />

¤ ¤ ¤ ¤ ¢ ¡ ¡ ¡ ¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

¨ ¨ ¨ ¨ ¡ ¨ ¨ © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ ¢ £ ¢ £ ¢ £ ¢ £ ¢ £ ¢ £ ¢ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

¡<br />

a diamond → → → ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡<br />

→ → → → → ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡<br />

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

¡<br />

£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £<br />

... but rather <strong>in</strong> a form of a regular spherical harmonic expansion:<br />

λ∑<br />

max λ∑<br />

R(ϑ, ϕ) = R 0 c({α})[1 + α λ,µ Y λ,µ (ϑ, ϕ)]<br />

λ<br />

µ=−λ<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A Basis for Octahedral Symmetry<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Only special comb<strong>in</strong>ations 1 of spherical harmonics may form a<br />

basis for surfaces with octahedral symmetry:<br />

Three Lowest Orders:<br />

Rank ↔ Multipolarity λ<br />

λ = 4 : α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

λ = 6 : α 60 ≡ o 6 ; α 6,±4 ≡ − q 7<br />

2 · o 6<br />

λ = 8 : α 80 ≡ o 8 ; α 8,±4 ≡ q 28<br />

198 · o 8; α 8,±8 ≡ q 65<br />

198 · o 8<br />

1 Collaboration with Andrzej G ÓŹDŹ and Daniel ROS̷LY, UMCS Lubl<strong>in</strong>, Poland<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Octahedral Shapes - 3D Examples<br />

Illustrations below show the octahedral-symmetric surfaces at three<br />

<strong>in</strong>creas<strong>in</strong>g values of rank λ = 4 deformations o 4 : 0.1, 0.2 and 0.3:<br />

Figure: o 4 = 0.1 Figure: o 4 = 0.2 Figure: o 4 = 0.2<br />

Recall: α 40 ≡ o 4 ; α 4,±4 ≡ ± q 5<br />

14 · o 4<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Octahedral Shapes - Neutron Spectra<br />

Double group Oh<br />

D has four 2-dimensional and two 4-dimensional<br />

irreducible representations → six dist<strong>in</strong>ct families of levels<br />

Neutron Energies [MeV]<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

160<br />

70 Yb 90<br />

{17}[6,1,3] 7/2<br />

{09}[6,4,2] 5/2<br />

{08}[5,0,5] 9/2<br />

{18}[6,1,5] 11/2<br />

{21}[5,0,5] 9/2<br />

{10}[5,4,1] 3/2<br />

{19}[6,3,3] 7/2<br />

{20}[6,1,5] 11/2<br />

{07}[5,4,1] 3/2<br />

{16}[6,2,4] 9/2<br />

{11}[5,0,1] 3/2<br />

{16}[5,4,1] 1/2<br />

{09}[5,0,3] 7/2<br />

{10}[5,3,0] 1/2<br />

{07}[5,0,5] 11/2<br />

{13}[5,2,1] 1/2<br />

{12}[5,0,5] 11/2<br />

{13}[5,0,5] 11/2<br />

{21}[5,1,4] 7/2<br />

{10}[5,2,3] 5/2<br />

{12}[4,0,0] 1/2<br />

{22}[4,4,0] 1/2<br />

{21}[4,0,2] 3/2<br />

118<br />

114 116<br />

94 94<br />

88<br />

100<br />

-.35 -.25 -.15 -.05 .05 .15 .25 .35<br />

Octahedral Deformation<br />

82<br />

126<br />

110<br />

86<br />

88<br />

{08}[6,0,6] 11/2<br />

{07}[6,4,0] 1/2<br />

{06}[8,0,2] 5/2<br />

{10}[6,1,3] 7/2<br />

{11}[6,5,1] 3/2<br />

{17}[6,0,6] 13/2<br />

{07}[5,1,4] 7/2<br />

{12}[5,3,2] 3/2<br />

{11}[5,2,1] 3/2<br />

{11}[5,3,0] 1/2<br />

{07}[8,8,0] 1/2<br />

{08}[4,0,2] 5/2<br />

{09}[6,0,4] 9/2<br />

{08}[5,3,2] 5/2<br />

{21}[5,2,3] 7/2<br />

{14}[5,3,2] 5/2<br />

{16}[5,1,4] 9/2<br />

{08}[5,0,5] 9/2<br />

{21}[4,1,3] 5/2<br />

{13}[4,1,1] 1/2<br />

{23}[4,2,2] 3/2<br />

{08}[5,0,5] 11/2<br />

{08}[5,4,1] 1/2<br />

Strasbourg, August 2002 Dirac-Woods-Saxon<br />

α 40(m<strong>in</strong>)=-.350, α40(max)=.350<br />

α 44(m<strong>in</strong>)=-.209, α44(max)=.209<br />

Figure: Full l<strong>in</strong>es correspond to 4-dimensional irreducible representations -<br />

they are marked with double Nilsson labels. Observe huge gap at N=114.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Octahedral Shapes - Proton Spectra<br />

Double group Oh<br />

D has four 2-dimensional and two 4-dimensional<br />

irreducible representations → six dist<strong>in</strong>ct families of levels<br />

Proton Energies [MeV]<br />

0<br />

2<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

160<br />

70 Yb 90<br />

{10}[5,0,5] 11/2<br />

{08}[5,0,3] 7/2<br />

{10}[5,0,3] 7/2<br />

{10}[5,4,1] 3/2<br />

{13}[5,0,5] 11/2<br />

{19}[4,4,0] 1/2<br />

{18}[4,0,2] 3/2<br />

{11}[4,0,0] 1/2<br />

{15}[5,1,4] 7/2<br />

{07}[5,2,3] 5/2<br />

{11}[5,1,2] 5/2<br />

{10}[5,3,2] 5/2<br />

{23}[5,1,4] 9/2<br />

{13}[4,0,4] 7/2<br />

{08}[4,2,2] 3/2<br />

{08}[4,3,1] 1/2<br />

{17}[5,2,3] 7/2<br />

{15}[4,3,1] 1/2<br />

{12}[4,0,2] 5/2<br />

{11}[4,1,3] 5/2<br />

{09}[4,2,0] 1/2<br />

{13}[4,0,4] 9/2<br />

{09}[4,3,1] 3/2<br />

72<br />

58<br />

70<br />

88<br />

52<br />

64<br />

-.35 -.25 -.15 -.05 .05 .15 .25 .35<br />

Octahedral Deformation<br />

82<br />

94<br />

56<br />

88<br />

52<br />

{09}[4,0,2] 5/2<br />

{16}[5,3,2] 5/2<br />

{18}[5,1,4] 9/2<br />

{08}[5,0,5] 9/2<br />

{21}[4,1,3] 5/2<br />

{17}[4,1,3] 7/2<br />

{24}[4,2,2] 3/2<br />

{09}[5,1,2] 5/2<br />

{10}[5,0,5] 9/2<br />

{07}[5,1,0] 1/2<br />

{11}[5,4,1] 3/2<br />

{21}[4,2,0] 1/2<br />

{10}[5,0,5] 11/2<br />

{10}[4,3,1] 1/2<br />

{09}[4,2,2] 3/2<br />

{08}[3,3,0] 1/2<br />

{13}[3,0,1] 3/2<br />

{08}[5,0,3] 7/2<br />

{25}[4,2,2] 5/2<br />

{16}[4,1,3] 7/2<br />

{09}[4,3,1] 3/2<br />

{24}[3,1,2] 3/2<br />

{10}[4,3,1] 1/2<br />

Strasbourg, August 2002 Dirac-Woods-Saxon<br />

α 40(m<strong>in</strong>)=-.350, α40(max)=.350<br />

α 44(m<strong>in</strong>)=-.209, α44(max)=.209<br />

Figure: Full l<strong>in</strong>es correspond to 4-dimensional irreducible representations<br />

- they are marked with double Nilsson labels. Observe huge gap at Z=70.<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear High-Rank Symmetries and Challenges<br />

There are several new-physics aspects related to the nuclear highrank<br />

symmetries - tetrahedral and octahedral ones!<br />

Properties High Symmetries ’Usual’ symmetries<br />

or features Tetrahedral Octahedral Ellipsoid<br />

No. Sym. Elemts. 48 96 4 + . . .<br />

Parity NO YES YES<br />

New Degeneracies 4, 2, 2 4, 2, 2<br />

} {{ }<br />

π = +<br />

4, 2, 2<br />

} {{ }<br />

π = −<br />

}{{}<br />

2<br />

π = +<br />

2<br />

}{{}<br />

π = −<br />

New Q. Numbers 3 3 + 3 2: π = ±1<br />

We call these new quantum numbers τρ ι − τιµυκoσ (tri-timeric)<br />

’possess<strong>in</strong>g three values’<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Po<strong>in</strong>t Groups: Simple and Double<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Vector Fields Ψ vs Sp<strong>in</strong>or Fields Φ<br />

If the objects Ψ do not change under the rotation ˆR(2π)<br />

ˆR(2π) Ψ = +Ψ → bosons ↔ simple groups: Example T d<br />

If the objects Φ change the sign under the rotation ˆR(2π)<br />

ˆR(2π) Φ = −Φ → fermions ↔ double groups: Example T D d<br />

Remarks - Comments<br />

Objects <strong>in</strong> classical mechanics, <strong>in</strong>teger rank tensors like boson<br />

wave-functions transform under simple po<strong>in</strong>t-groups: D 2h , T d<br />

Sp<strong>in</strong>ors - the non-collective wave functions of fermions - transform<br />

under double po<strong>in</strong>t-groups: D D 2h , T D d , OD h ...<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

1<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

158 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 88<br />

1<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.34, Eo=-1.62<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Deformation<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

3<br />

3<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

160 Tetrahedral Deformation<br />

70<br />

Yb 90<br />

3<br />

3<br />

2<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.18, Eo= 0.40<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

3<br />

3<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

162 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 92<br />

3<br />

3<br />

2<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-0.52, Eo= 2.37<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

164 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 94<br />

3<br />

2<br />

3<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 0.98, Eo= 4.20<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

2<br />

3<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

166 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 96<br />

2<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 2.26, Eo= 5.81<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


3<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

2<br />

2<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

168 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 98<br />

2<br />

3<br />

2<br />

3<br />

2<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 3.39, Eo= 7.18<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

2<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

170 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 100<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 4.31, Eo= 8.25<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

172 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 102<br />

3<br />

2<br />

2<br />

3<br />

2<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 4.97, Eo= 9.00<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Coexistence of T d - and O h -Symmetries <strong>in</strong> Nuclei<br />

Octahedral Def. (Rank 1)<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

2<br />

1<br />

2<br />

3<br />

2<br />

-0.30<br />

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3<br />

174 Tetrahedral Deformation (Rank 1)<br />

70<br />

Yb 104<br />

1<br />

3<br />

1<br />

2<br />

2<br />

3<br />

2<br />

1<br />

1<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>= 5.40, Eo= 9.45<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

1<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

156<br />

A20<br />

70<br />

Yb 86<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-4.57, Eo=-3.94<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

1<br />

Tetrahedral Symmetry / Instability<br />

1<br />

1<br />

1<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

158<br />

A20<br />

70<br />

Yb 88<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-3.31, Eo=-1.71<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


2<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

Tetrahedral Deformation<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

1<br />

2<br />

2<br />

1<br />

Tetrahedral Symmetry / Instability<br />

2<br />

2<br />

1<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

160 Quadrupole Deformation<br />

70<br />

Yb 90<br />

1<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.60, Eo= 0.34<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


2<br />

Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

2<br />

3<br />

4<br />

2<br />

Tetrahedral Symmetry / Instability<br />

4<br />

3<br />

3<br />

3<br />

3<br />

2<br />

1<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

162<br />

A20<br />

70<br />

Yb 92<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2<br />

3<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.55, Eo= 2.32<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>


Selected Groups and Symmetries<br />

Spontaneous Symmetry Break<strong>in</strong>g<br />

Nuclear Tetrahedral-Symmetry Effects<br />

Symmetry and Spontaneous Symmetry Break<strong>in</strong>g<br />

A32<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

-0.10<br />

-0.20<br />

4<br />

5<br />

6<br />

4<br />

Tetrahedral Symmetry / Instability<br />

6<br />

5<br />

5<br />

5<br />

5<br />

4<br />

4<br />

3<br />

-0.30<br />

0.0 0.1 0.2 0.3 0.4<br />

164<br />

A20<br />

70<br />

Yb 94<br />

3<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

2<br />

3<br />

E [MeV]<br />

6.00<br />

5.75<br />

5.50<br />

5.25<br />

5.00<br />

4.75<br />

4.50<br />

4.25<br />

4.00<br />

3.75<br />

3.50<br />

3.25<br />

3.00<br />

2.75<br />

2.50<br />

2.25<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

UNIVERS_COMPACT (D=3, 23)<br />

UNIVERS_COMPACT (D=3, 23)<br />

Em<strong>in</strong>=-2.94, Eo= 4.19<br />

Jerzy DUDEK<br />

<strong>SYMMETRIES</strong> <strong>in</strong> <strong>PHYSICS</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!