28.01.2014 Views

Workshop #1 Part 2 - Grand River Conservation Authority

Workshop #1 Part 2 - Grand River Conservation Authority

Workshop #1 Part 2 - Grand River Conservation Authority

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PROCESS LOADING EVALUATION &<br />

SLUDGE ACCOUNTABILITY<br />

• Step through the Performance Evaluation<br />

protocol;<br />

• Provide training in two components of<br />

evaluation:<br />

– Process loading evaluation<br />

– Sludge accountability analysis.


Two-Step Protocol<br />

COMPOSITE CORRECTION PROGRAM<br />

STEP 1<br />

COMPREHENSIVE PERFORMANCE<br />

EVALUATION (CPE)<br />

STEP 2<br />

COMPREHENSIVE TECHNICAL<br />

ASSISTANCE (CTA)


CPE OUTCOME<br />

• Identify, Classify, & Prioritize Major Performance<br />

Limiting Factors (5-8)<br />

• Classifies Design of Plant:<br />

• Type I (Adequate)<br />

• Type II (Marginal)<br />

• Type III (Inadequate)<br />

• Determine Suitability for Follow-up Technical<br />

Assistance<br />

• Findings presented at end of on-site activities;<br />

•Recommendations NOT Provided


CPE EVALUATORS<br />

• Design assessment experience<br />

• Operations experience<br />

• “Interview” skills i.e. tact;<br />

• Freedom/authority to address<br />

admin/management issues


Scheduling<br />

• Initial Set-up Activities<br />

• On-Site Evaluation<br />

‣ minimum 2 evaluators<br />

‣ typically 5 continuous working days<br />

• Follow-up CPE Report


CPE As Skills Development<br />

• Initial half day workshop<br />

• <strong>Part</strong>icipants support trainers:<br />

‣ “arms-length” from day-to-day operation<br />

‣ Maximum of 5-6 participants<br />

‣ Commitment for entire week;<br />

‣ Initially, trainers responsible for outcome;<br />

‣ Allow time for debriefing<br />

‣ CPE Exit Briefing is joint responsibility.<br />

• <strong>Part</strong>icipants debrief training experience.


CPE:<br />

REFERENCES<br />

• US EPA Handbook<br />

• Ontario CCP Handbook


Other:<br />

RESOURCES (con’t)<br />

Plant Name:<br />

Date Prepared:<br />

Prepared By:<br />

9-Nov-09<br />

Phil Wilson<br />

Step <strong>#1</strong>: Determine SOTR & alpha (based on system type)<br />

• ISCO Flow Measurement Handbook<br />

INPUT <strong>#1</strong>: OUTPUT <strong>#1</strong>:<br />

Fine bubble, total floor<br />

• Metcalf & Eddy<br />

ά<br />

• US EPA Design Manual<br />

INPUT #2:<br />

On Phosphorus<br />

OUTPUT<br />

Removal<br />

#2:<br />

Temp 20 o C K 0.847<br />

Diffuser Depth 14.4 feet AOTR/SOTR 0.42<br />

• Excel spreadsheet templates<br />

System SOTR 6.25 lb O 2 /wire.HP.h<br />

0.5 [no units]<br />

Mixed Liquor D.O. 2.0 mg/L AOTR 2.65 lb O 2 /wire.HP.h<br />

Elev<br />

572 feet<br />

Dunville WPCP<br />

Step #2: Determine AOTR (based on temperature, diffuser depth, D.O. and elevation)<br />

Figure 1: Dunville WPCP PPG Step#3: Determine OTC (based on HP available)<br />

Total HP 180 Criteria HP OTC 3,900 kg O 2 /d<br />

Unit Process (rating criteria) Size Units Stnd Max Units Base Increment Max<br />

Aeration HRT (6 h) m 3 h 11,600<br />

BOD Loading (0.5 kg BOD5/m 3 /d) m 3 kgBOD5/m 3 /d 7,792 2,640 10,432<br />

Step#4: Determine Oxygen Demand At Peak Monthly Flows<br />

INPUT #3: OUTPUT #3: Max Month<br />

O2 Avail. (1.0 kgO2/kg TBOD5 + 4.6 TKN) HP kgO2/kg BOD5 rev/d 8,714 1,125 9,839<br />

Sec. Clar. SOR (24 m 3 /m 2 /d) m 2 m 3 /m 2 /d 11,400<br />

Chlorine Contact (30 min) m 3 NA 7,800<br />

Aerobic Digester (35 d & 17.6 m3/d) m 3 d 7,700<br />

Sludge Lagoons (180 d at 18 m3/d) m 10,700<br />

Sludge Disposal (assumed) NA 5,698<br />

Annual Avg Flow 6,101 m 3 /d Carbon OD 1,147 kg O 2 /d<br />

Max Month Avg Flow 8,251 m 3 /d Nitrogen OD 1,271 kg O 2 /d<br />

Annual Avg Raw BOD 5 139.0 mg/L Total OD 2,418 kg O 2 /d<br />

Annual Avg Dunnville Raw TKNWPCP PPG for CAS 33.5 (Updated mg/L - Nov. 2009)<br />

Base Max Design 7728 5-Yr Flow 5698 Aug. 08-Jul. 09 6101<br />

Step#5: Determine Rated Capacity (based on Evaluation Criteria for O 2 Availability)<br />

INPUT #4: OUTPUT #4:<br />

Aeration Selection HRT (6 h) Nitrify use BOD5 &<br />

11,600<br />

TKN O2 Avail Criteria 1.0<br />

Rated Capacity 9,839 m 3 /d<br />

BOD Loading (0.5 kg BOD5/m3/d)<br />

O2 Avail. (1.0 kgO2/kg TBOD5 + 4.6 TKN)<br />

Sec. Clar. SOR (24 m3/m2/d)<br />

0 2,000 4,000 6,000 8,000 10,000 12,000<br />

7,792<br />

8,714<br />

11,400<br />

2,640<br />

1,125<br />

Design 7,728 m 3 /d<br />

Design 7728<br />

7,728 0<br />

7,728 100<br />

5-Yr Flow 5,698 m 3 /d<br />

5-Yr Flow 5698<br />

5,698 0<br />

5,698 100<br />

Aug. 08-Jul. 09 6,101 m 3 /d<br />

Aug. 08-Jul. 09 6101<br />

6,101 0<br />

6,101 100<br />

Chlorine Contact (30 min)<br />

7,800<br />

Aerobic Digester (35 d & 17.6 m3/d)<br />

7,700<br />

Sludge Lagoons (180 d at 18 m3/d)<br />

10,700<br />

Sludge Disposal (assumed)<br />

5,698<br />

Annual Average Flows (m 3 /d)


• Kick-off Meeting<br />

• Plant Tour<br />

OVERVIEW OF STEPS<br />

• Data Summaries & Performance Checks<br />

• Major Unit Process Capabilities<br />

• Personnel Interviews<br />

• Determine Limiting Factors<br />

• Exit Meeting<br />

GRCA<strong>Workshop</strong><br />

Tools


KICK-OFF MEETING<br />

• Explain objectives, approach & timing<br />

• Gain support for evaluation<br />

• Schedule interviews with plant & admin<br />

personnel<br />

• Identify information needs:<br />

‣ C. of A.<br />

‣ Historical monitoring data (12 months)<br />

‣ O&M manual<br />

‣ Budget information<br />

‣ Other engineering studies


PLANT TOUR<br />

• Become familiar with plant and layout<br />

• Preliminary assessment of operational<br />

flexibility<br />

• Initial information on performance, process<br />

control, and maintenance<br />

• Evaluator debriefing after plant tour


Plant Tour<br />

• Conventional activated sludge with UV disinfection;<br />

• Filter press dewatering & lime stabilization;<br />

What questions will you be asking on your plant tour of<br />

the facility below?


DATA GATHERING<br />

• Data Collection Forms from Handbooks:<br />

‣ Preliminary Plant Information<br />

‣ Administrative Data<br />

‣ Design Data<br />

‣ Operational Data<br />

‣ Maintenance Data<br />

‣ Performance Data<br />

• Main Focus:<br />

‣ “How does this affect plant<br />

performance?”


Flows ( m3/d)<br />

14,000<br />

12,000<br />

10,000<br />

Caledonia WPCP Flows<br />

Raw Flows<br />

Nominal Design<br />

Max Day = 12,168 m 3 /d<br />

Max Day<br />

PE Flow<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

0<br />

Annual Average = 3,376 m 3 /d<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08


CBOD (mg/L)<br />

NH3 (mg/L)<br />

TSS (mg/L)<br />

TP (mg/L)<br />

Caledonia WPCP Effluent TSS<br />

Caledonia WPCP Effluent TP<br />

C of A TSS Eff TSS Eff Obj TSS<br />

C of A TP Eff TP Eff Obj TP<br />

30<br />

0.35<br />

25<br />

0.30<br />

20<br />

0.25<br />

15<br />

0.20<br />

0.15<br />

10<br />

0.10<br />

5<br />

0.05<br />

0<br />

0.00<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08<br />

Caledonia WPCP Effluent CBOD<br />

Caledonia WPCP Effluent NH3<br />

C of A CBOD Eff CBOD Eff Obj CBOD<br />

Eff NH3<br />

CofA<br />

30<br />

25<br />

20<br />

2.50<br />

2.00<br />

1.50<br />

15<br />

10<br />

1.00<br />

5<br />

0.50<br />

0<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08<br />

0.00<br />

Jul-07<br />

Aug-07<br />

Sep-07<br />

Oct-07<br />

Nov-07<br />

Dec-07<br />

Jan-08<br />

Feb-08<br />

Mar-08<br />

Apr-08<br />

May-08<br />

Jun-08


Process Loading<br />

Rate at which contaminants are added is<br />

determined by “process loading”<br />

– Loading = Flow x Concentration<br />

– Loading Plant Capacity & Sludge production<br />

Example: Organic loading<br />

PE BOD 5 = 200 mg/L<br />

= 200/1000 kg/m 3 = 0.200 kg/m 3<br />

Flow = 5,000 m 3 /d<br />

BOD 5 Loading = ?<br />

BOD 5 Loading = 0.200 kg BOD 5 /m 3 x 5,000 m 3 /d<br />

= 1000 kg BOD 5 /d


Questions<br />

• If a dairy moves to town, what likely<br />

happens to BOD 5 loading to the plant?<br />

• If one train of a plant is shut down for<br />

maintenance, what happens to the BOD 5<br />

loading to the other trains?<br />

• When flows increase during a storm,<br />

what happens to BOD 5 loading?<br />

• Should CBOD 5 or TBOD 5 be used to<br />

calculate organic loading to a plant?


PROCESS LOADING EVALUATION<br />

(12-months of Data)<br />

Calculate per Capita flows and Loads:<br />

‣ 350-500 L/d per person<br />

‣ 80 g/d BOD 5 per person;<br />

‣ 90 g/d TSS per person<br />

Calculate ratios:<br />

‣ Wastewater/Water: 0.7-0.9<br />

‣ Peak Day/Annual Avg Flow: 2.5-3 - ?<br />

‣ TSS/BOD 5 : 0.8 – 1.2<br />

‣ TKN/BOD 5 : 0.1-0.2<br />

‣Etc.<br />

• Spot check of flow metering (if required)


Exercise #2<br />

Background:<br />

• Plant is a 546 m 3 /d extended aeration package plant<br />

• Typically staffed less than 4 hours per day<br />

Data:<br />

• Population served = 1065<br />

• Annual average plant flow = 429 m 3 /d<br />

• Average influent BOD 5 = 98 mg/L = 0.098 kg/m 3<br />

Reference Information:<br />

• Per Capita Flows = 350 -500 L/person.d<br />

• Per Capita Organic Loading = 80 g BOD 5 /capita.d<br />

• 1 m 3 = 1000 L<br />

• 1 kg = 1000 g


Questions?<br />

1.) Calculate average per capita flow to plant<br />

(in L/person.d) and compare to typical:<br />

Per capita flow (L/person.d)<br />

= flow (m 3 /d)x 1000 L/m 3 / population<br />

= 429 m 3 /d x 1000 L/m 3 / 1065 persons<br />

= 403 L/person.d<br />

Typical = 350-500 L/person.d<br />

Therefore, reported plant flows are within<br />

typical


Questions?<br />

2.) Calculate average per capita BOD 5 loading (in<br />

g/person.d) to the plant and compare to typical<br />

Per capita BOD 5 loading (kg/person.d)<br />

= flow (m 3 /d) x concentration (kg/m 3 )/population<br />

= 429 m 3 /d x 0.098 kg/m 3 / 1065 persons<br />

= 0.039 kg BOD 5 /person.d<br />

Per capita BOD 5 loading (g/person.d)<br />

= 0.039 kg BOD 5 /person.d x 1000 g/kg<br />

= 39 g BOD 5 /person.d<br />

Typical = 70 – 90 g BOD 5 /d<br />

Therefore, plant’s per capita BOD 5 loading is less<br />

than typical


Questions?<br />

3.) Based on the population and the typical per capita<br />

BOD 5 loading, estimate the raw BOD 5 ( in mg/L).<br />

Estimated BOD 5 loading (kg/d) =<br />

= Population x Per Capita BOD 5 loading (g/person.d) /1000 (g/kg)<br />

= 1065 persons x 80 g/person day /1000 g/kg<br />

= 85.2 kg/d BOD 5<br />

Flow = 429 m 3 /d<br />

Estimated Concentration (kg/m 3 )<br />

= Estimated load (kg/d) / flow (m 3 /d)<br />

= 85.2 kg/d / 429 m 3 /d = 0.200 kg/m 3<br />

Estimated Concentration (mg/L)<br />

= Estimated concentration (kg/m 3 ) x 1000 (mg/L/kg/m 3 )<br />

= 0.200 (kg/m 3 ) x 1000 (mg/L/kg/m 3)<br />

= 200 mg/L BOD 5


Questions?<br />

4.) Something doesn’t “add up”. What follow-up<br />

information would you ask for?<br />

• What are the raw TSS concentrations and hence the<br />

TSS/BOD 5 and per capita TSS loadings?<br />

• What are the raw TKN concentrations and hence the<br />

TKN/BOD 5 ratio?<br />

• How are the raw samples collected (grab vs<br />

composite vs. flow proportioned composite), how<br />

often, and when?


SLUDGE ACCOUNTABILITY ANALYSIS<br />

Purpose:<br />

‣ Verify plant data<br />

‣ Assess monitoring & reporting practices<br />

‣ Help with rating sludge storage, treatment &<br />

disposal capacities.<br />

Steps:<br />

‣ Obtain 12-months sludge production from<br />

plant records (“reported sludge production”)<br />

‣ Estimate “projected” sludge production based<br />

on removal mechanisms;<br />

‣ Compare “projected” vs. “reported”;<br />

‣ Within +15% ok


“Reported” Sludge Production<br />

Plant Flow = 3,000 m 3 /d<br />

Concentration = 20 mg/L = 0.020 kg/m 3<br />

Unintentional Wastage = 3,000 m 3 /d x 0.020 kg/m 3 = 60 kg/d<br />

Primary Aeration Basin Secondary<br />

WAS<br />

Sludge Flow = 10 m 3 /d<br />

Concentration = 3% = 30,000 mg/L = 30 kg/m 3<br />

RAS<br />

Unintentional Wastage = 10 m 3 /d x 30 kg/m 3 = 300 kg/d<br />

Effluent<br />

Solids<br />

Co-Thickened<br />

Primary & WAS<br />

Sludge<br />

“Reported” Sludge Production =<br />

Unintentional Wastage + Intentional Wastage<br />

“Reported Sludge= Unintentional + Intentional<br />

= 60 kg/d + 300 kg/d = 360 kg/d


“Projected” Sludge Production<br />

Primary Sludge:<br />

based on TSS removal rates across the primary<br />

Biological Sludge:<br />

based on BOD 5 removal rates across the basin<br />

Primary Aeration Basin Secondary<br />

Chemical Sludge:<br />

based on coagulant addition rates to basin<br />

“Projected Sludge” = “Primary” + “Biological” + “Chemical”


Primary Sludge Production<br />

• Raw TSS = 200 mg/L<br />

• PE TSS = 100 mg/L<br />

• Flow = 1,000 m 3 /d<br />

• Primary Sludge =<br />

Flow (m 3 /d) x (Raw TSS – PE TSS) mg/L / 1000 mg/L/kg/m 3<br />

= 1,000 m 3 /d x (200 – 100)/1000 kg/m 3<br />

= 1,000 m 3 /d x 0.10 kg/m 3<br />

= 100 kg/d


Biological Sludge Production<br />

• PE BOD 5 = 110 mg/L<br />

• SE BOD 5 = 10 mg/L<br />

• Flow = 1,000 m 3 /d<br />

• Biological Sludge Production Ratio (SPR) (for CAS w/primary)<br />

= 0.70 kg TSS /kg BOD 5-removed<br />

• Biological Sludge =<br />

Flow (m 3 /d) x (PE BOD 5 – SE BOD 5 ) mg/L / 1000 mg/L/kg/m 3 x SPR<br />

= 1,000 m 3 /d x (110 – 10)/1000 kg/m 3 x 0.70<br />

= 1,000 m 3 /d x 0.10 kg/m 3 x 0.70<br />

= 70 kg/d


Chemical Sludge Production<br />

• Alum Dosage Rate = 1000 mL/min<br />

= 1000 mL/min x 1440 min/d / 1000 mL/L<br />

= 1440 L/d / 1000 L/ m 3<br />

= 1.44 m 3 /d<br />

• Weight of Alum Added per day<br />

= Volume Added per day x Specific Gravity<br />

= 1.44 m 3 /d x 1,330 kg/m 3<br />

= 1,915 kg/d<br />

• Weight of Al+3 Added per day<br />

= Weight of Alum per Day x %Al +3 (w/w)<br />

= 1915 kg/d x 4.3%<br />

= 82.3 kg/d


Chemical Sludge Production<br />

• Chemical Sludge Production Ratio<br />

= 4.79 kg TSS /kg Al +3 (for alum)<br />

• Chemical Sludge Production<br />

= Weight of Al +3 addition (kg/d) x SPR<br />

= 82.3 kg/d x 4.79<br />

= 394.5 kg/d


EXAMPLE RESULTS<br />

REPORTED:<br />

Source<br />

Secondary By-pass<br />

Effluent<br />

Co-thickened WAS + Primary<br />

PROJECTED:<br />

Source<br />

Primary Sludge<br />

Biological Sludge<br />

Chemical Sludge<br />

SUDGE ACCOUNTABILITY:<br />

Amount (kg)<br />

24, 000<br />

180, 000<br />

3, 247, 000<br />

3, 451, 000<br />

Amount (kg)<br />

2, 677, 000<br />

2, 589, 000<br />

284, 000<br />

5, 550, 000<br />

(PROJECTED – REPORTED)<br />

PROJECTED<br />

X 100% = +38%


Exercise #3<br />

Background:<br />

• Plant is an extended aeration package plant (no primary)<br />

• No coagulant addition for TP removal;<br />

Data:<br />

• Annual average flow rate = 3,200 m 3 /d<br />

• BOD 5 : Raw = 110 mg/L; Effluent = 6 mg/L<br />

• TSS: Effluent = 9 mg/L<br />

• Waste sludge: Volume = 35 m 3 /d Conc. = 3,400 mg/L<br />

Reference Information:<br />

Remember!: 1000 mg/L = 1 kg/m 3<br />

Process Type: SPR (kg TSS/kg BOD 5 r)<br />

Activated sludge w/o Primary:<br />

Conventional 0.85<br />

Extended Aeration 0.65


Questions<br />

1.) Calculate the average daily unintentional sludge wasted<br />

(in effluent TSS) as kg/d:<br />

Wastage (kg/d) = flow (m 3 /d) x ESS (mg/L) / 1000 mg/L/kg.m 3<br />

= 3,200 m 3 /d x 9/1000 kg/m 3<br />

= 28.8 kg/d<br />

2.) Calculate the average intentional sludge wasted as kg/d:<br />

Wastage (kg/d) = waste flow (m 3 /d) x waste concentration (kg/m 3 )<br />

= 35 m 3 /d x 3,400/1000 kg/m 3<br />

= 119.0 kg/d<br />

3.) Calculate total reported sludge production (1+2):<br />

Total reported (kg/d) = unintentional (kg/d) + intentional (kg/d)<br />

= 28.8 kg/d + 119.0 kg/d<br />

= 147.8 kg/d


4.) Calculate the projected sludge production:<br />

Rate of BOD 5 removed (kg/d) = Flow (m 3 /d) x (Raw – Effluent) kg/m 3<br />

= 3,200 m 3 /d x (110 – 6)/1000 kg/m 3<br />

= 3,200 m 3 /d x 0.104 kg BOD 5 /m 3 = 332.8 kg/d<br />

Choose SPR for applicable process<br />

SPR = 0.65 (extended aeration)<br />

Biological Sludge Production<br />

= SPR x BOD 5 Removal Rate<br />

Biological Sludge Production<br />

= 0.65 x 332.8 kg/d = 216.3 kg TSS/d<br />

5.) Calculate sludge accountability (%) & compare to +<br />

15%<br />

Sludge Accountability<br />

= (projected – reported)/projected x 100%<br />

= (216.3 – 147.8)/216.3x100% = + 32%<br />

Sludge Accountability falls outside + 15%


Questions<br />

6.) The sludge accountability doesn’t close (i.e. outside<br />

+ 15%). What follow-up information would you ask<br />

for?<br />

Information related to monitoring of the waste sludge:<br />

flows and frequency & analysis of waste solids<br />

Information related to monitoring of effluent TSS.<br />

Any observations that effluent TSS may be higher than<br />

reported i.e. sludge in chlorine contact chamber, etc.


Operating Parameter Evaluation<br />

Parameter<br />

Typical Range<br />

(M & E 1991)<br />

CAS* EA** OD***<br />

Plant X<br />

SRT Total<br />

(d)<br />

F/M<br />

(kg BOD 5<br />

/d<br />

per kg<br />

MLVSS)<br />

MLSS<br />

(mg/L)<br />

3-15 20-30 10-30 67<br />

0.2-0.5 0.05-0.15 0.05-0.3 0.05<br />

1,000 –3,000 3,000-5,000 1,500-5,000 4,800<br />

HRT<br />

(h)<br />

4-8 18-36 8-36 24.6<br />

* CAS = Conventional Activated Sludge; ** EA = Extended Aeration; *** OD<br />

= Oxidation Ditch


MAJOR UNIT PROCESS EVALUATION<br />

• Potential of major units to treat flows and<br />

loads<br />

• Identifies the “weakest link” i.e. most limiting<br />

unit<br />

• Assigns a “rated capacity” the annual<br />

average flow which can be treated by that unit<br />

• Establish plant type:<br />

• I – Capable<br />

• II – Marginal<br />

• III – Not Capable


Performance Potential Graph<br />

Flow <br />

Unit Process<br />

100 200 300 400 500 600<br />

Aeration Basin<br />

620<br />

Capable: > 100% Current<br />

Secondary Clarifier<br />

400<br />

Marginal: 80-100% Current<br />

Sludge Handling<br />

200<br />

Not Capable:


CPE PPG CALCULATIONS


FAPCC<br />

Annual Average Flows (m 3 /d)<br />

0 5,000 10,000 15,000 20,000 25,000 30,000<br />

Prim.Clar. SOR (24 m3/m2/d)<br />

25,272<br />

Aeration HRT (4-6 h)<br />

12,964<br />

BOD Loading (0.5-0.6 kg BOD5/m3/d)<br />

13,283<br />

O2 Avail. (1.4 kgO2/kg BOD5 rem.)<br />

39,300<br />

Sec. Clar. SOR (24 m3/m2/d)<br />

25,224<br />

UV Disinfection (45,400 @ peak)<br />

22,700<br />

Filter Press (1 unit @ 96 h/wk)<br />

35,300<br />

Sludge Haulage (on demand)<br />

17,665<br />

Base Max Current 17665 m3/d Nominal Design 22700 m3/d


Dunnville WPCP PPG for CAS<br />

Base Max Design 7728 m3/d Current Flow 5137 m3/d<br />

0 2,000 4,000 6,000 8,000 10,000 12,000<br />

Aeration HRT (6 h)<br />

11,600<br />

BOD Loading (0.5 kg BOD5/m3/d)<br />

7,600<br />

O2 Avail. (1.0 kgO2/kg TBOD5 + 4.6 TKN)<br />

6,600<br />

Sec. Clar. SOR (24 m3/m2/d)<br />

11,400<br />

Chlorine Contact (30 min)<br />

7,800<br />

Aerobic Digester (35 d & 2.0%)<br />

3,200<br />

Sludge Lagoons (180 d at 4% solids)<br />

9,000<br />

Sludge Disposal (assumed)<br />

5,100<br />

Annual Average Flows (m 3 /d)


INTERVIEWS<br />

• Previous steps complete prior to interviews<br />

• Staff interviewed<br />

• All plant staff<br />

• Key administrators<br />

• Interviews in private and information is kept<br />

confidential<br />

• Maintain performance focus<br />

• Debrief interviews


PERFORMANCE LIMITING FACTORS<br />

• Checklists with definitions provided in<br />

Handbook<br />

• Four Categories<br />

• Operations<br />

• Design<br />

• Maintenance<br />

• Administration<br />

• Rating System<br />

• A: Major Long Term Effect<br />

• B: Minimum Routine Effect or Major Periodic<br />

Effect<br />

• C: Minor Effect


PRIORITIZE FACTORS<br />

• A & B Factors only<br />

• Purpose:<br />

• Summarize Plant Status<br />

• Basis for Follow-up Activities


FACTORS MEETING


COMMON FACTORS<br />

• Lack of Application of Concepts and Testing to Achieve<br />

Process Control<br />

• Inadequate process monitoring and testing<br />

• No routine for sludge wasting to support process control<br />

• Inadequate Sludge Wasting and Disposal<br />

• Limited on-site storage<br />

• Inadequate land approved to spread sludge<br />

• Inability to measure waste sludge<br />

• Inappropriate Management Policies<br />

• Inadequate plant staffing<br />

• Focus on maintenance and housekeeping


EXIT MEETING<br />

• Plant/Administrative Personnel<br />

• Present Preliminary Findings<br />

• Summarize Factors: A & B<br />

• “Tell it like it is” with respect<br />

• Potential for follow-up


Outline:<br />

• Introduction<br />

REPORT<br />

• Facility Background<br />

• Performance Assessment<br />

• Major Unit Process Evaluation<br />

• Performance Factors


• Kick-off Meeting<br />

• Plant Tour<br />

SUMMARY<br />

• Data Summaries & Performance Checks<br />

• Major Unit Process Capabilities<br />

• Plant Personnel Interviews<br />

• Determine Limiting Factors<br />

• Exit Meeting<br />

Focus of Today’s <strong>Workshop</strong>:<br />

Process Loading Evaluation<br />

Sludge Accountability<br />

Focus of Nov. <strong>Workshop</strong>:<br />

Major Unit Process Capabilities =<br />

PPG

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!