12.02.2014 Views

Lecture 2: The Milky Way Galaxy 1 Star Counts and Structure of the ...

Lecture 2: The Milky Way Galaxy 1 Star Counts and Structure of the ...

Lecture 2: The Milky Way Galaxy 1 Star Counts and Structure of the ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Lecture</strong> 2: <strong>The</strong> <strong>Milky</strong> <strong>Way</strong> <strong>Galaxy</strong> 1<br />

<strong>Star</strong> <strong>Counts</strong> <strong>and</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong><br />

●<br />

current astronomical events<br />

●<br />

stellar distances<br />

●<br />

star counts<br />

●<br />

structure <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>


Current Astronomical Events<br />

2005 January 11 th<br />

conditions on Mauna Kea for <strong>the</strong> past two nights


NASA's Deep Impact (P.I.<br />

Michael A'Hearn; Univ. <strong>of</strong> MD)<br />

launched at ~11 AM today,<br />

from Cape Canaveral, Florida.<br />

Scheduled to blast a 317 pound<br />

copper probe into Comet<br />

Tempel 1 at 23,000 m.p.h. for<br />

collision on 2005 July 4 th .


'mysterious blobs' = ULIRGs


common proper motion<br />

detected by Hubble<br />

Space Telescope


Spitzer shows Vega to be dustier than expected;<br />

dust perhaps from Pluto-sized objects colliding


Huygens probe scheduled to reach Titan (Saturn's largest moon)<br />

on Friday; was released on Christmas Day.


(0) radar<br />

Stellar Distances


Stellar Distances<br />

(1) (trigonometric or direct) “parallax”<br />

E 1<br />

π<br />

*<br />

r<br />

sun<br />

90°<br />

E 2<br />

d<br />

r/d = tan ?π<br />

~ π (rad), for d » r<br />

π (arcsec) = 206,265 π (rad)<br />

d = 206,265 a.u. / π (“)<br />

= pc / π (“)<br />

(pc ≡ 3.26 lyr)


(2) “spectroscopic parallax method”<br />

m 1 – m 2 = -2.5 log (f 1 / f 2 )<br />

m = “apparent magnitude”<br />

M = “absolute magnitude” (m at 10 pc)<br />

since f ~ 1/(distance)²,<br />

m – M = 5 log (d / 10 pc)<br />

= 5 log d – 5<br />

m – M = “distance modulus”<br />

5 log d = (m – M) + 5


Hertzsprung-Russell Diagram<br />

color


(3) main sequence fitting<br />

Stellar Distances


Stellar Distances<br />

(4) variable stars, esp. Cepheids & RR Lyrae


Stellar Distances<br />

(5) supernovae<br />

●<br />

●<br />

st<strong>and</strong>ard c<strong>and</strong>les (esp. SN Ia's)<br />

exp<strong>and</strong>ing photospheres method (“EPM”)<br />

SN 1987A in <strong>the</strong><br />

Magellanic Clouds


<strong>Star</strong> <strong>Counts</strong><br />

Sir William Herschel (1738-1822)<br />

●<br />

discovered Uranus (1781)<br />

●<br />

with son, John, created “<strong>The</strong> General<br />

Catalog <strong>of</strong> Nebulae”; which becomes<br />

<strong>the</strong> New General Catalog (“NGC”)<br />

●<br />

believed nebulae = isl<strong>and</strong> universes<br />

●<br />

fa<strong>the</strong>r <strong>of</strong> infrared astronomy<br />

●<br />

measured disk-light nature <strong>of</strong><br />

distribution <strong>of</strong> stars in <strong>the</strong> <strong>Milky</strong> <strong>Way</strong>


Thomas Wright (1711-1786): “A New <strong>The</strong>ory <strong>of</strong> <strong>the</strong> Universe”


assumptions:<br />

(1) all stars have same absolute magnitude<br />

(2) number density <strong>of</strong> stars is ~constant<br />

(3) no dust/obscuring material<br />

(4) can see to edge <strong>of</strong> <strong>the</strong> stellar distribution


Jacobus Kapetyn (1851-1922)<br />

●<br />

makes Herschel's model<br />

more quantitative<br />

●<br />

“Kapetyn Universe”<br />

●<br />

basically heliocentric, with<br />

flattened, oblong<br />

distribution <strong>of</strong> stars


Harlow Shapley (1885-1972)<br />

●<br />

using RR Lyrae variable stars<br />

measured distances to 93<br />

globular clusters<br />

●<br />

globular clusters predominantly<br />

in <strong>the</strong> direction <strong>of</strong> Sagittarius,<br />

with centroid <strong>of</strong> distribution<br />

estimated to be ~15 kpc distant<br />

(assuming no dust)


Number <strong>Counts</strong><br />

●<br />

not very happy with treatment in <strong>the</strong> text, especially <strong>the</strong><br />

games <strong>of</strong> changing between log <strong>and</strong> ln<br />

●<br />

dust will make things look fainter; if you ignore <strong>the</strong><br />

possibility <strong>of</strong> dust, you will assume things are far<strong>the</strong>r than<br />

<strong>the</strong>y actually are<br />

●<br />

note difference between “differential star counts” (# stars<br />

with apparent mag m to m+dm) vs. “integrated star<br />

counts” (# stars brighter than m)<br />

●<br />

Olbers' paradox – duh! If density is constant, <strong>the</strong>n<br />

integrate star counts goes as volume ~ d³, which is<br />

divergent


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong><br />

NGC 891


1. disk<br />

2. bulge<br />

3. halo


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

<strong>the</strong> Galactic Center<br />

R 0 = “solar Galactocentric distance”<br />

= 8.5 kpc<br />

(will discuss next week both where this number<br />

comes from <strong>and</strong> <strong>the</strong> interesting phenomena<br />

associated with <strong>the</strong> Galactic center)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

Baade's window<br />

●<br />

region <strong>of</strong> low extinction<br />

near <strong>the</strong> Galactic center


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />

●<br />

young <strong>and</strong> old stars (“young thin disk” <strong>and</strong> “old thin<br />

disk” in <strong>the</strong> text)<br />

●<br />

exponential pr<strong>of</strong>ile in height (z) <strong>and</strong> Galactocentric<br />

radius (R):<br />

n(z,R) = n 0 (e -z/z(thin) + 0.2e -z/z(thick) ) e -R/h(R)<br />

n 0<br />

~ 0.02 stars / pc³ (for 4.5 < M V<br />

< 9.5)<br />

z(thin) ~ 0.325 kpc (“vertical scale height”)<br />

z(thick)~ 1.4 kpc<br />

h(R) ~ 3.5 kpc (“disk scale length”)<br />

●<br />

Sun in (young) thin disk, with z=+30 pc<br />

●<br />

disks differ in stellar composition <strong>and</strong> kinematics<br />

(kinematics to be covered next week)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />

●<br />

Population I stars: metal-rich, Z~0.02<br />

●<br />

Population II stars: metal-poor, Z~0.001<br />

where Z = mass fraction in “metals”<br />

●<br />

Population III stars =<br />

<strong>the</strong> first stars<br />

simulation<br />

by T. Abel


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />

●<br />

metallicity:<br />

[Fe/H] ≡ log (N Fe /N H ) – log (N Fe /N H ) sun<br />

● metals take time to form in Universe, created by SNe<br />

●<br />

younger/newer stars have larger value <strong>of</strong> [Fe/H] & Z<br />

●<br />

range is - 4 ≤ [Fe/H] ≤ +1<br />

thin disk: - 0.5 < [Fe/H] < +0.3<br />

thick disk: - 0.6 < [Fe/H] < - 0.4<br />

●<br />

Fe predominantly from Type Ia SNe, which take 109 yr<br />

●<br />

similar [O/H], more sensitive to Type II SNe (107 yr)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />

●<br />

thin disk: M ~ 6 x 10 10 M(sun)<br />

L B ~ 1.8 x 10 10 L(sun)<br />

mass-to-light ratio:<br />

M/L B ~ 3 (M/L) sun<br />

●<br />

recall from last semester:<br />

L/L sun = (M/M sun ) α<br />

where α ~ 4 for M > 0.5 M(sun)<br />

α ~ 2.3 for M < 0.5 M(sun)<br />

●<br />

can solve for ~ 0.7 M(sun)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />

●<br />

thick disk: M ~ 3 x 10 9 M(sun)<br />

L B ~ 2 x 10 8 L(sun)<br />

mass-to-light ratio:<br />

M/L B ~ 15 (M/L) sun<br />

●<br />

lower mass stars, on average, than thin disk<br />

●<br />

neutral hydrogen (HI), seen at 21 cm, confined to a<br />

very thin disk, with z(HI) ~ 90 pc near <strong>the</strong> Sun, but<br />

puffing up at large Galactocentric radius: warp<br />

●<br />

M(HI)~4 x 109 M(sun)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />

●<br />

neutral hydrogen, OB stars, HII<br />

regions, open clusters – all form<br />

spiral structure<br />

●<br />

older stars more evenly distributed<br />

in <strong>the</strong> disk(s)<br />

●<br />

Sun close to “Orion-Cygnus arm”<br />

NGC 2997


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

high-velocity clouds (HVCs)<br />

seen at 21cm; velocities <strong>of</strong> 400 km/s or more<br />

some high metallicity, some low metallicity


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

Magellanic Stream<br />

●<br />

HI emission<br />

●<br />

180° across<br />

●<br />

tidal debris tail


observed in<br />

absorption <strong>of</strong> highlyionized<br />

species, such<br />

as far-UV OVI<br />

transition (by FUSE<br />

<strong>and</strong> Hubble's STIS)<br />

<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

coronal gas


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

Galactic bulge<br />

<strong>the</strong> <strong>Milky</strong> <strong>Way</strong> <strong>Galaxy</strong>, as viewed by COBE<br />

(1.2 to 3.4 µ m)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

Galactic bulge<br />

●<br />

ratio <strong>of</strong> minor to major axis ~0.6<br />

●<br />

(text says vertical scale height ~0.4 kpc)<br />

●<br />

de Vaucouleurs pr<strong>of</strong>ile (1948):<br />

I(r) = I(r e ) exp{-7.67[(r/r e ) 1/4 – 1]}<br />

I(r) = surface brightness [L sun /pc²]<br />

r e = “effective radius”


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

Galactic bulge<br />

●<br />

large range in metallicity: -1 < [Fe/H] < +1<br />

●<br />

mean is near +0.3 (e.g., twice solar)<br />

●<br />

implies youth<br />

●<br />

mass-to-light ratio similar to thin disk<br />

●<br />

some old stars too


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

stellar bar<br />

●<br />

initially thought<br />

<strong>of</strong> as “3 kpc<br />

exp<strong>and</strong>ing arm”<br />

●<br />

preferred model<br />

today is that<br />

MWG is a<br />

barred spiral<br />

galaxy<br />

NGC 1365


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

Galactic halo<br />

●<br />

high-velocity stars, with large spatial extent (~50 kpc)<br />

●<br />

metal-poor, [Fe/H] < -0.8<br />

●<br />

old<br />

●<br />

low-metallicity globular clusters, as seen by Shapley,<br />

represent ~1% <strong>of</strong> <strong>the</strong> halo<br />

●<br />

(metal-rich globulars in thick disk)<br />

●<br />

M~1x109 M(sun)<br />

●<br />

n(r) ~ r -3.5


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

magnetic fields<br />

●<br />

Zeeman splitting <strong>of</strong> atomic lines<br />

●<br />

polarization <strong>of</strong> light<br />

●<br />

0.4 to 10,000 µG, weakest in halo, strongest at<br />

Galactic center<br />

●<br />

weak compared to terrestrial magnetic fields, but an<br />

important part <strong>of</strong> Galactic energetics


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

cosmic rays<br />

●<br />

bombarding us constantly<br />

●<br />

atmosphere does an OK job at stopping, especially at<br />

lower altititudes<br />

●<br />

thought to be due to SNe in <strong>the</strong> <strong>Milky</strong> <strong>Way</strong> galaxy<br />

●<br />

large, separate branch <strong>of</strong> (astro)physics


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

●<br />

kinematics (next week) show us that mass density<br />

ρ(r) ~ 1/(a² + r²)<br />

where a = 2.8 kpc<br />

<strong>and</strong> only 30% <strong>of</strong> <strong>Galaxy</strong> luminous (HI, stars), with<br />

dark matter dominating at larger radii


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

●<br />

kinematics (next week) show us that mass density<br />

ρ(r) ~ 1/(a² + r²)<br />

where a = 2.8 kpc<br />

<strong>and</strong> only 30% <strong>of</strong> <strong>Galaxy</strong> luminous (HI, stars), with<br />

dark matter dominating at larger radii


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

C<strong>and</strong>idates for dark matter:<br />

● MACHOs (massive compact halo<br />

objects)<br />

● brown dwarfs (e.g., low-mass stars)<br />

● white dwarfs (e.g., burnt-out stars)<br />

● neutron stars (e.g., more dead stars)<br />

● Stellar black holes (e.g., yet more<br />

dead stars)<br />

● mini (primordial) black holes<br />

● massive (primordial) black holes<br />

● WIMPs (weakly-interacting massive<br />

particles; e.g., neutrinos, axions, etc...)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

“MACHO<br />

Project”<br />

(<strong>and</strong> her<br />

cousins)


12 million stars surveyed<br />

several years – 17 events


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

identify quasars


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

quasars behind <strong>the</strong><br />

Magellanic Clouds<br />

Geha et al. (2003)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

huge numbers<br />

<strong>of</strong> variable<br />

stars (e.g.,<br />

eclipsing<br />

binaries, RR<br />

Lyrae, etc...)


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

●<br />

17 gravitational<br />

lensing events<br />

identified<br />

●<br />

lensing sources<br />

are ~0.6 M(sun)<br />

●<br />

contribute 20%<br />

<strong>of</strong> <strong>the</strong> halo mass


<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />

dark matter<br />

Nguyen, Kallivayalil, Werner,<br />

Alcock, Patten, & DS 2004,<br />

ApJS, 154, 266<br />

●<br />

need distances to fully<br />

underst<strong>and</strong> <strong>the</strong> astrophysics<br />

●<br />

Spitzer image shows faint, red<br />

lensing source<br />

●<br />

colors give spectral type<br />

●<br />

distance <strong>of</strong> lensing source<br />

using “spectroscopic parallax”<br />

●<br />

M5 dwarf at 600 pc<br />

●<br />

only solved MACHO event


THE END<br />

scenes for next class:<br />

●<br />

kinematics <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong><br />

●<br />

<strong>the</strong> Galactic center

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!