Lecture 2: The Milky Way Galaxy 1 Star Counts and Structure of the ...
Lecture 2: The Milky Way Galaxy 1 Star Counts and Structure of the ...
Lecture 2: The Milky Way Galaxy 1 Star Counts and Structure of the ...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Lecture</strong> 2: <strong>The</strong> <strong>Milky</strong> <strong>Way</strong> <strong>Galaxy</strong> 1<br />
<strong>Star</strong> <strong>Counts</strong> <strong>and</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong><br />
●<br />
current astronomical events<br />
●<br />
stellar distances<br />
●<br />
star counts<br />
●<br />
structure <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>
Current Astronomical Events<br />
2005 January 11 th<br />
conditions on Mauna Kea for <strong>the</strong> past two nights
NASA's Deep Impact (P.I.<br />
Michael A'Hearn; Univ. <strong>of</strong> MD)<br />
launched at ~11 AM today,<br />
from Cape Canaveral, Florida.<br />
Scheduled to blast a 317 pound<br />
copper probe into Comet<br />
Tempel 1 at 23,000 m.p.h. for<br />
collision on 2005 July 4 th .
'mysterious blobs' = ULIRGs
common proper motion<br />
detected by Hubble<br />
Space Telescope
Spitzer shows Vega to be dustier than expected;<br />
dust perhaps from Pluto-sized objects colliding
Huygens probe scheduled to reach Titan (Saturn's largest moon)<br />
on Friday; was released on Christmas Day.
(0) radar<br />
Stellar Distances
Stellar Distances<br />
(1) (trigonometric or direct) “parallax”<br />
E 1<br />
π<br />
*<br />
r<br />
sun<br />
90°<br />
E 2<br />
d<br />
r/d = tan ?π<br />
~ π (rad), for d » r<br />
π (arcsec) = 206,265 π (rad)<br />
d = 206,265 a.u. / π (“)<br />
= pc / π (“)<br />
(pc ≡ 3.26 lyr)
(2) “spectroscopic parallax method”<br />
m 1 – m 2 = -2.5 log (f 1 / f 2 )<br />
m = “apparent magnitude”<br />
M = “absolute magnitude” (m at 10 pc)<br />
since f ~ 1/(distance)²,<br />
m – M = 5 log (d / 10 pc)<br />
= 5 log d – 5<br />
m – M = “distance modulus”<br />
5 log d = (m – M) + 5
Hertzsprung-Russell Diagram<br />
color
(3) main sequence fitting<br />
Stellar Distances
Stellar Distances<br />
(4) variable stars, esp. Cepheids & RR Lyrae
Stellar Distances<br />
(5) supernovae<br />
●<br />
●<br />
st<strong>and</strong>ard c<strong>and</strong>les (esp. SN Ia's)<br />
exp<strong>and</strong>ing photospheres method (“EPM”)<br />
SN 1987A in <strong>the</strong><br />
Magellanic Clouds
<strong>Star</strong> <strong>Counts</strong><br />
Sir William Herschel (1738-1822)<br />
●<br />
discovered Uranus (1781)<br />
●<br />
with son, John, created “<strong>The</strong> General<br />
Catalog <strong>of</strong> Nebulae”; which becomes<br />
<strong>the</strong> New General Catalog (“NGC”)<br />
●<br />
believed nebulae = isl<strong>and</strong> universes<br />
●<br />
fa<strong>the</strong>r <strong>of</strong> infrared astronomy<br />
●<br />
measured disk-light nature <strong>of</strong><br />
distribution <strong>of</strong> stars in <strong>the</strong> <strong>Milky</strong> <strong>Way</strong>
Thomas Wright (1711-1786): “A New <strong>The</strong>ory <strong>of</strong> <strong>the</strong> Universe”
assumptions:<br />
(1) all stars have same absolute magnitude<br />
(2) number density <strong>of</strong> stars is ~constant<br />
(3) no dust/obscuring material<br />
(4) can see to edge <strong>of</strong> <strong>the</strong> stellar distribution
Jacobus Kapetyn (1851-1922)<br />
●<br />
makes Herschel's model<br />
more quantitative<br />
●<br />
“Kapetyn Universe”<br />
●<br />
basically heliocentric, with<br />
flattened, oblong<br />
distribution <strong>of</strong> stars
Harlow Shapley (1885-1972)<br />
●<br />
using RR Lyrae variable stars<br />
measured distances to 93<br />
globular clusters<br />
●<br />
globular clusters predominantly<br />
in <strong>the</strong> direction <strong>of</strong> Sagittarius,<br />
with centroid <strong>of</strong> distribution<br />
estimated to be ~15 kpc distant<br />
(assuming no dust)
Number <strong>Counts</strong><br />
●<br />
not very happy with treatment in <strong>the</strong> text, especially <strong>the</strong><br />
games <strong>of</strong> changing between log <strong>and</strong> ln<br />
●<br />
dust will make things look fainter; if you ignore <strong>the</strong><br />
possibility <strong>of</strong> dust, you will assume things are far<strong>the</strong>r than<br />
<strong>the</strong>y actually are<br />
●<br />
note difference between “differential star counts” (# stars<br />
with apparent mag m to m+dm) vs. “integrated star<br />
counts” (# stars brighter than m)<br />
●<br />
Olbers' paradox – duh! If density is constant, <strong>the</strong>n<br />
integrate star counts goes as volume ~ d³, which is<br />
divergent
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong><br />
NGC 891
1. disk<br />
2. bulge<br />
3. halo
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
<strong>the</strong> Galactic Center<br />
R 0 = “solar Galactocentric distance”<br />
= 8.5 kpc<br />
(will discuss next week both where this number<br />
comes from <strong>and</strong> <strong>the</strong> interesting phenomena<br />
associated with <strong>the</strong> Galactic center)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
Baade's window<br />
●<br />
region <strong>of</strong> low extinction<br />
near <strong>the</strong> Galactic center
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />
●<br />
young <strong>and</strong> old stars (“young thin disk” <strong>and</strong> “old thin<br />
disk” in <strong>the</strong> text)<br />
●<br />
exponential pr<strong>of</strong>ile in height (z) <strong>and</strong> Galactocentric<br />
radius (R):<br />
n(z,R) = n 0 (e -z/z(thin) + 0.2e -z/z(thick) ) e -R/h(R)<br />
n 0<br />
~ 0.02 stars / pc³ (for 4.5 < M V<br />
< 9.5)<br />
z(thin) ~ 0.325 kpc (“vertical scale height”)<br />
z(thick)~ 1.4 kpc<br />
h(R) ~ 3.5 kpc (“disk scale length”)<br />
●<br />
Sun in (young) thin disk, with z=+30 pc<br />
●<br />
disks differ in stellar composition <strong>and</strong> kinematics<br />
(kinematics to be covered next week)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />
●<br />
Population I stars: metal-rich, Z~0.02<br />
●<br />
Population II stars: metal-poor, Z~0.001<br />
where Z = mass fraction in “metals”<br />
●<br />
Population III stars =<br />
<strong>the</strong> first stars<br />
simulation<br />
by T. Abel
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />
●<br />
metallicity:<br />
[Fe/H] ≡ log (N Fe /N H ) – log (N Fe /N H ) sun<br />
● metals take time to form in Universe, created by SNe<br />
●<br />
younger/newer stars have larger value <strong>of</strong> [Fe/H] & Z<br />
●<br />
range is - 4 ≤ [Fe/H] ≤ +1<br />
thin disk: - 0.5 < [Fe/H] < +0.3<br />
thick disk: - 0.6 < [Fe/H] < - 0.4<br />
●<br />
Fe predominantly from Type Ia SNe, which take 109 yr<br />
●<br />
similar [O/H], more sensitive to Type II SNe (107 yr)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />
●<br />
thin disk: M ~ 6 x 10 10 M(sun)<br />
L B ~ 1.8 x 10 10 L(sun)<br />
mass-to-light ratio:<br />
M/L B ~ 3 (M/L) sun<br />
●<br />
recall from last semester:<br />
L/L sun = (M/M sun ) α<br />
where α ~ 4 for M > 0.5 M(sun)<br />
α ~ 2.3 for M < 0.5 M(sun)<br />
●<br />
can solve for ~ 0.7 M(sun)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />
●<br />
thick disk: M ~ 3 x 10 9 M(sun)<br />
L B ~ 2 x 10 8 L(sun)<br />
mass-to-light ratio:<br />
M/L B ~ 15 (M/L) sun<br />
●<br />
lower mass stars, on average, than thin disk<br />
●<br />
neutral hydrogen (HI), seen at 21 cm, confined to a<br />
very thin disk, with z(HI) ~ 90 pc near <strong>the</strong> Sun, but<br />
puffing up at large Galactocentric radius: warp<br />
●<br />
M(HI)~4 x 109 M(sun)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
<strong>the</strong> thin disk(s) + <strong>the</strong> thick disk<br />
●<br />
neutral hydrogen, OB stars, HII<br />
regions, open clusters – all form<br />
spiral structure<br />
●<br />
older stars more evenly distributed<br />
in <strong>the</strong> disk(s)<br />
●<br />
Sun close to “Orion-Cygnus arm”<br />
NGC 2997
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
high-velocity clouds (HVCs)<br />
seen at 21cm; velocities <strong>of</strong> 400 km/s or more<br />
some high metallicity, some low metallicity
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
Magellanic Stream<br />
●<br />
HI emission<br />
●<br />
180° across<br />
●<br />
tidal debris tail
observed in<br />
absorption <strong>of</strong> highlyionized<br />
species, such<br />
as far-UV OVI<br />
transition (by FUSE<br />
<strong>and</strong> Hubble's STIS)<br />
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
coronal gas
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
Galactic bulge<br />
<strong>the</strong> <strong>Milky</strong> <strong>Way</strong> <strong>Galaxy</strong>, as viewed by COBE<br />
(1.2 to 3.4 µ m)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
Galactic bulge<br />
●<br />
ratio <strong>of</strong> minor to major axis ~0.6<br />
●<br />
(text says vertical scale height ~0.4 kpc)<br />
●<br />
de Vaucouleurs pr<strong>of</strong>ile (1948):<br />
I(r) = I(r e ) exp{-7.67[(r/r e ) 1/4 – 1]}<br />
I(r) = surface brightness [L sun /pc²]<br />
r e = “effective radius”
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
Galactic bulge<br />
●<br />
large range in metallicity: -1 < [Fe/H] < +1<br />
●<br />
mean is near +0.3 (e.g., twice solar)<br />
●<br />
implies youth<br />
●<br />
mass-to-light ratio similar to thin disk<br />
●<br />
some old stars too
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
stellar bar<br />
●<br />
initially thought<br />
<strong>of</strong> as “3 kpc<br />
exp<strong>and</strong>ing arm”<br />
●<br />
preferred model<br />
today is that<br />
MWG is a<br />
barred spiral<br />
galaxy<br />
NGC 1365
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
Galactic halo<br />
●<br />
high-velocity stars, with large spatial extent (~50 kpc)<br />
●<br />
metal-poor, [Fe/H] < -0.8<br />
●<br />
old<br />
●<br />
low-metallicity globular clusters, as seen by Shapley,<br />
represent ~1% <strong>of</strong> <strong>the</strong> halo<br />
●<br />
(metal-rich globulars in thick disk)<br />
●<br />
M~1x109 M(sun)<br />
●<br />
n(r) ~ r -3.5
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
magnetic fields<br />
●<br />
Zeeman splitting <strong>of</strong> atomic lines<br />
●<br />
polarization <strong>of</strong> light<br />
●<br />
0.4 to 10,000 µG, weakest in halo, strongest at<br />
Galactic center<br />
●<br />
weak compared to terrestrial magnetic fields, but an<br />
important part <strong>of</strong> Galactic energetics
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
cosmic rays<br />
●<br />
bombarding us constantly<br />
●<br />
atmosphere does an OK job at stopping, especially at<br />
lower altititudes<br />
●<br />
thought to be due to SNe in <strong>the</strong> <strong>Milky</strong> <strong>Way</strong> galaxy<br />
●<br />
large, separate branch <strong>of</strong> (astro)physics
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
●<br />
kinematics (next week) show us that mass density<br />
ρ(r) ~ 1/(a² + r²)<br />
where a = 2.8 kpc<br />
<strong>and</strong> only 30% <strong>of</strong> <strong>Galaxy</strong> luminous (HI, stars), with<br />
dark matter dominating at larger radii
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
●<br />
kinematics (next week) show us that mass density<br />
ρ(r) ~ 1/(a² + r²)<br />
where a = 2.8 kpc<br />
<strong>and</strong> only 30% <strong>of</strong> <strong>Galaxy</strong> luminous (HI, stars), with<br />
dark matter dominating at larger radii
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
C<strong>and</strong>idates for dark matter:<br />
● MACHOs (massive compact halo<br />
objects)<br />
● brown dwarfs (e.g., low-mass stars)<br />
● white dwarfs (e.g., burnt-out stars)<br />
● neutron stars (e.g., more dead stars)<br />
● Stellar black holes (e.g., yet more<br />
dead stars)<br />
● mini (primordial) black holes<br />
● massive (primordial) black holes<br />
● WIMPs (weakly-interacting massive<br />
particles; e.g., neutrinos, axions, etc...)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
“MACHO<br />
Project”<br />
(<strong>and</strong> her<br />
cousins)
12 million stars surveyed<br />
several years – 17 events
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
identify quasars
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
quasars behind <strong>the</strong><br />
Magellanic Clouds<br />
Geha et al. (2003)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
huge numbers<br />
<strong>of</strong> variable<br />
stars (e.g.,<br />
eclipsing<br />
binaries, RR<br />
Lyrae, etc...)
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
●<br />
17 gravitational<br />
lensing events<br />
identified<br />
●<br />
lensing sources<br />
are ~0.6 M(sun)<br />
●<br />
contribute 20%<br />
<strong>of</strong> <strong>the</strong> halo mass
<strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong>:<br />
dark matter<br />
Nguyen, Kallivayalil, Werner,<br />
Alcock, Patten, & DS 2004,<br />
ApJS, 154, 266<br />
●<br />
need distances to fully<br />
underst<strong>and</strong> <strong>the</strong> astrophysics<br />
●<br />
Spitzer image shows faint, red<br />
lensing source<br />
●<br />
colors give spectral type<br />
●<br />
distance <strong>of</strong> lensing source<br />
using “spectroscopic parallax”<br />
●<br />
M5 dwarf at 600 pc<br />
●<br />
only solved MACHO event
THE END<br />
scenes for next class:<br />
●<br />
kinematics <strong>of</strong> <strong>the</strong> <strong>Galaxy</strong><br />
●<br />
<strong>the</strong> Galactic center