12.02.2014 Views

Hot Rocks Downunder - PIRSA - SA.Gov.au

Hot Rocks Downunder - PIRSA - SA.Gov.au

Hot Rocks Downunder - PIRSA - SA.Gov.au

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Stage 1:<br />

This design<br />

makes walking<br />

impossible<br />

<strong>Hot</strong> <strong>Rocks</strong> <strong>Downunder</strong> –<br />

Evolution of a New Energy Industry<br />

Visit: www.pir.sa.gov.<strong>au</strong>/geothermal/ageg<br />

Stage 2:<br />

Yeah, possible<br />

but impractical<br />

Stage 3:<br />

Told you this<br />

would work!<br />

Barry Goldstein 1 , Tony Hill 1 , Alexandra Long 1 , Mike Malavazos 1<br />

Dr Anthony Budd 2 and Dr Bridget Ayling 2<br />

1. South Australian <strong>Gov</strong>ernment (<strong>PIR<strong>SA</strong></strong>) & AGEG Secretariat<br />

2. Geoscience Australia (Federal <strong>Gov</strong>ernment)


• Magmatic geothermal has a<br />

restricted distribution<br />

• <strong>Hot</strong> <strong>Rocks</strong> are everywhere<br />

at depth<br />

• Oil wells now reach > 10km<br />

• Geothermal power plants<br />

have the highest Capacity<br />

Factor of all renewable<br />

sources (can exceed 90%)<br />

Installed Production Capacity<br />

Fuel capacity per Year Factor<br />

GWe TWh/yr (%)<br />

Hydro 778 2,837 42<br />

Biomass 40* 183 52*<br />

Wind 59 106 21<br />

Geothermal 8.9 57 73<br />

Solar 4 5 14<br />

Total 890 3,188 41**<br />

<br />

>40 GW Biomass in WEC ‘07 Survey<br />

Weighted average.<br />

Worldwide active volcanoes and tectonic plates, USGS, 1997 – see<br />

http://vulcan.wr.usgs.gov/Glossary/PlateTectonics/Maps/map_quakes_volcanoes_plates.html<br />

Geothermal Capacity<br />

in 2008 = 10.3 GW<br />

U<strong>SA</strong><br />

3040MW<br />

Mexico<br />

958 MW<br />

Guatemala<br />

48 MW<br />

Costa Rica<br />

163 MW<br />

El Salvador<br />

204 MW<br />

Iceland<br />

421 MW<br />

Portugal<br />

23 MW<br />

Nicaragua<br />

87 MW<br />

France<br />

16 MW<br />

Germany<br />

7 MW<br />

Italy<br />

791 MW<br />

Kenya<br />

162 MW<br />

Austria<br />

1 MW<br />

Ethiopia<br />

7 MW<br />

From: Bertani, 2009 (in press). The possible role and contribution of geothermal energy<br />

TOTAL INSTALLED CAPACITY IN 2007 = 9.7 GW<br />

to the mitigation of climate change. IPCC Scoping Meeting on Renewable Energy<br />

Sources, Proceedings, Jan 2008.<br />

Turkey<br />

84 MW<br />

Indonesia<br />

1058 MW<br />

Taiwan<br />

3 MW<br />

Australia<br />

0,2 MW<br />

China<br />

24 MW<br />

Thailand<br />

0,3 MW<br />

Russia<br />

110 MW<br />

Japan<br />

535 MW<br />

Philippines<br />

1980 MW<br />

Papua<br />

New Guinea<br />

6 MW<br />

New<br />

Zealand<br />

550 MW


HOT ROCKS - Do you believe?<br />

• On average, world-wide, rocks at<br />

5,500m are >180°C e.g. <strong>Hot</strong> <strong>Rocks</strong><br />

T°C @ 5 km<br />

• Existing technologies enable drilling &<br />

completions to >200°C in most of the<br />

world<br />

• Emissions cap and trading will add to<br />

the cost of emissive power generation<br />

and make low emission technologies<br />

attractive<br />

If so – imagine the vast opportunities to<br />

tap amagmatic HOT ROCKS as a<br />

secure source of 24/7 emissions-free<br />

electricity for centuries to come<br />

> 200°C<br />

125 – 200<br />

50 - 125 6 km<br />

5 km<br />

Current oil & gas well drilling records:<br />

• BP: 10,683m well depth in 1,786m water<br />

• Maersk Oil: 12,290m well length in Qatar


Why <strong>Hot</strong> <strong>Rocks</strong> in Australia?<br />

Temperature at 5 km, Somerville et al. (1994)<br />

>200°C @ < 3,500m in some locations in Australia<br />

Below Ground Factors<br />

• Extensive radiogenic basement at<br />

modest depths (heat source)<br />

• Australia converging with New Guinea –<br />

giving rise to horizontal compression<br />

and common naturally occurring<br />

horizontal fractures (reservoir)<br />

• Sedimentary cover (insulators) for hot<br />

sedimentary aquifer & hot rock EGS<br />

targets<br />

Above Ground Factors<br />

• Land access and title to resources<br />

• <strong>Gov</strong>ernment stimulus for low emissions<br />

and renewable energy R, D, D & D<br />

• Market recognition of comparative<br />

advantages – extensive, exploitable hot<br />

rocks<br />

• Political will to attain energy security &<br />

mitigate risks of climate change<br />

• Investors perceptions of risk: reward<br />

• Growth in energy demand


Evidence<br />

Thermally Anomalous Granites<br />

Courtesy of Richard Hillis –<br />

University of Adelaide<br />

‘Typical’ granite heat production: 2.65 μWm<br />

-3<br />

UK HHP (High Heat Production) Granites:<br />

• Cornubian granites: 3.7-5.3<br />

μWm<br />

-3<br />

• Grampians granites: 4.7-7.8<br />

7.8 μWm<br />

-3<br />

• Lake District granites: 3.5-4.9<br />

μWm<br />

-3<br />

Big Lake Suite<br />

(Australia -<br />

Cooper Basin)<br />

11 μWm -3 Box Bore Granite<br />

(Australia –<br />

Mt Painter Area)<br />

22 μWm -3 Yerila Granite<br />

(Australia –<br />

Mt Painter Area)<br />

62 μWm -3


Engineered Geothermal Systems - Plan View, Same Scale<br />

Australian<br />

Cooper Basin<br />

EGS > 4x’s than<br />

attained<br />

elsewhere<br />

Epicenters of stimulated fracture growth<br />

~ 1 km<br />

~ 1.2 km<br />

~ 1 km<br />

Rosemanowes<br />

Cornwall, UK<br />

1984-91<br />

~ 1.5 km<br />

~ 3 km<br />

Habanero 1, 2 & 3<br />

South Australia<br />

2005- ongoing<br />

Fenton Hill,<br />

Los Alamos<br />

U<strong>SA</strong> 1970-95<br />

500 metres<br />

EGS Trials (Displayed)<br />

• Fenton Hill, U<strong>SA</strong>: 70 –95<br />

• Fjalbacka, Sweden: 84 - 88<br />

• Rosemanowes, UK : 84 - 91<br />

• Hijiori, Japan: 85 - 00<br />

• Soultz, France: 87 – Current<br />

Soultz,<br />

France<br />

Since 1987<br />

Courtesy of<br />

Doone Wyborn – Geodynamics<br />

• Ogachi, Japan: 89 - 00<br />

• Habanero, Australia: Current<br />

• Bad Urach, Germany: Current<br />

• Basel, Switzerland: Abeyance<br />

• Land<strong>au</strong>, Germany: Current


<strong>Hot</strong> Rock Geothermal Energy Development Will Be<br />

A Partial Solution For Energy Security and Reducing Emissions<br />

Desire for<br />

Energy<br />

Security &<br />

Reduced<br />

Emissions<br />

+<br />

Vast natural<br />

endowment in<br />

high heat<br />

producing<br />

Continent-scale<br />

compressive<br />

tectonics good for<br />

efficiently<br />

Supportive<br />

government<br />

programs &<br />

investment /<br />

+ + engineering<br />

regulatory +<br />

crustal rocks<br />

geothermal systems<br />

frameworks<br />

Risk-wise<br />

investors<br />

and<br />

experienced<br />

explorers<br />

=<br />

Australian <strong>Hot</strong> Rock & <strong>Hot</strong> Sedimentary Aquifer Projects<br />

Expenditure<br />

Aus$ Million<br />

$1,600<br />

- US$ 1250 Mln<br />

$1,400<br />

$1,200<br />

- US$ 1000 Mln<br />

$1,000<br />

- US$ 750 Mln<br />

$800<br />

$600 - US$ 500 Mln<br />

$400<br />

- US$ 250 Mln<br />

$200<br />

$0<br />

Geothermal<br />

Leases & Applications<br />

450<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013<br />

Data to 1 Oct 2009<br />

Forecast<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Drivers: Needs, Endowment, Frameworks & People<br />

• US$98 Mln in government grants through Sept 2009<br />

• 48 companies exploring for hot rocks and hot aquifers<br />

• 17 ASX-listed Geothermal Licences holders.<br />

• 386 licences covering.360,000 km 2 on a variety of plays<br />

• US$1,300 Mln 2002-13 for exploration (excl. deployment)<br />

• Australian Geothermal Energy Group – Sharing information<br />

• Australia Geothermal Energy Association – industry’s voice<br />

• Member - IEA Geothermal Implementing Agreement<br />

• Member - International Partnership for Geothermal Tech.<br />

• Geothermal Industry Development Framework l<strong>au</strong>nched<br />

• National 20% by 2020 renewable energy target<br />

• National emissions cap and trade scheme proposed


<strong>Hot</strong> Rock & <strong>Hot</strong> Sedimentary Aquifer Plays in South Australia (30 Sep 09)<br />

• Generalised play ingredients: Amagmatic<br />

conductive heat source, reservoir and<br />

insulating cover combine to provide adequate<br />

flow rates with sufficient heat energy to<br />

economically meet markets<br />

• South Australia attracted 97% of geothermal<br />

work program investment and 70% of all<br />

Geothermal Licences in Australia to YE 2008<br />

• 28 companies in the hunt for HR and H<strong>SA</strong><br />

plays in 273 licences covering >126,886 km 2<br />

Sedimentary cover<br />

(insulators) over<br />

basement<br />

South Australian<br />

Heat Flow Anomaly<br />

Geodynamics<br />

Petratherm <br />

Geothermal Resources<br />

Green Rock<br />

Torrens Energy<br />

Eden Energy/Terratherma<br />

Panax / Osiris Energy <br />

Pacific Hydro<br />

Teck Cominco<br />

Granite Power<br />

Gradient Energy (Planet Gas )<br />

AGL (w/Torrens Energy)<br />

TRUenergy (w/ Petratherm)<br />

Tata Power (w/ Geodynamics)<br />

ASX Listed International SX Listed<br />

Tri-Star Energy<br />

Clean Energy Australasia<br />

Origin Energy <br />

Callabonna<br />

Deep Energy<br />

Inferus (Southern Gold)<br />

A-B-L-R Joint Venture<br />

AAA Energy<br />

Earth Heat<br />

New World Energy<br />

Near Surface Geothermal<br />

Stuart Petroleum <br />

Beach Petroleum <br />

High Voltage Grid<br />

Potential mining developments may be<br />

new markets for geothermal


Geodynamics/Origin/Tata Power/Sentient-SunSuper (HR)<br />

‣ 2003-5: Proved flow of geothermal energy with Habanero 1 & 2<br />

‣ 2007-9: Habanero 1 - 3 closed loop flow, Jolokia 1 & Savina 1 drilled.<br />

‣ Next: Two more deep wells, 1 MW deployment. Decision to upscale 2010/11<br />

Petratherm/Beach Petroleum/TRUenergy (HR)<br />

‣ 2005-7: Drilled Yerila and Paralana, deepened Paralana & recorded MT + seismic<br />

‣ Next: Now drilling Paralana 2 to 4000m. Then Paralana 3<br />

Geothermal Resources (HR)<br />

2007-9: drilled 8 Frome area wells up to 1809m depth<br />

‣ Next: Drill deep wells in the Frome area<br />

Green Rock Energy (HR)<br />

‣ Drilled and Mini-Frac’d – Blanche 1 to 1935m<br />

‣ Next: Optimise plans for a deep well<br />

Torrens Energy/AGL (HR)<br />

‣ 2007-9: 20 wells north of Adelaide and Port Augusta.<br />

Parachilna holes to 1807m. Pt Augusta seismic survey<br />

‣ Next: Drill deep Parachilna wells & Pt Augusta expl. holes<br />

Inferus Resources (Southern Gold) (HR)<br />

2008: Measured temperatures to 1 Km<br />

‣ Next: Drill two deep wells in the Roxby project area<br />

Eden Energy (HR)<br />

‣ Drilled Chowilla 1 in Renmark region<br />

‣ Now assessing options<br />

Geothermal Drilling &<br />

Geophysical Surveys to YE 09<br />

1000 km<br />

Geothermal wells<br />

Geothermal Licences<br />

GEL Application Area<br />

Acreage Open for Bids<br />

Several others plan<br />

geothermal drilling<br />

in the term 2010-13<br />

HR =<br />

<strong>Hot</strong> Rock play<br />

H<strong>SA</strong> =<br />

<strong>Hot</strong> Sedimentary<br />

Aquifer Play<br />

Panax Geothermal (H<strong>SA</strong>)<br />

2006 – 3 wells to 500m depth and an MT survey in SE <strong>SA</strong><br />

‣ Next – Drill deep, 4000m well (Salamander 1) in 2009<br />

<strong>Hot</strong> Rock Ltd (H<strong>SA</strong>)<br />

‣ Target defined<br />

‣ Next: Drill 2 deep Koroit wells in 2010<br />

Greenearth Energy Ltd (H<strong>SA</strong>)<br />

‣ Target defined<br />

‣ Next –Drill 2 deep wells in Geelong area in 2010<br />

KUTh Energy Ltd (HR)<br />

‣ 36 shallow holes + MT + aeromag.<br />

‣ Next: Deep drilling in 2010


Path to Commercialising <strong>Hot</strong> <strong>Rocks</strong>: Expl. – Proof of Concept – Demo – Develop<br />

Min A$M Max A$M<br />

Pre-drill studies: 0.05 0.50+<br />

Shallow drilling: 0.20 3.00+ (multi-well)<br />

Deep Drilling: 6.00 15.00+<br />

Frac 1 st Well: 1.00 2.00+<br />

2 nd Deep Well: 6.00 15.00+<br />

Frac 2 nd Well : 1.00 2.00+<br />

Extended Flow Test: 1.00 2.00+<br />

AUD$15M+ AUD$40M+<br />

US$13M+ US$34M+<br />

<strong>SA</strong> PACE 1 Grants<br />

Rough costs through<br />

to proof-of-concept<br />

REDI 2 / GDP 3 Grants<br />

REDP 3 Grants<br />

Binary, Closed-Loop System<br />

After Geodynamics, ‘03<br />

REDP 3 Grants<br />

AGEG Technical Interest Groups (Uni’s, G’ment, Industry) = Team Australia for International Partnerships<br />

Research Grants to<br />

Address Sector’s<br />

Shared Uncertainties<br />

Pre-competitive Demonstration<br />

of <strong>Hot</strong> Rock Power Production<br />

from circa 40 MWe Electricity<br />

Generation Plant<br />

Aus$200 M+ per 40MWe<br />

Studies / Modelling<br />

A$50k - A$250k+<br />

Qld: Aus$15 Mln for U Qld<br />

WA: Aus$2.3 Mln for UWA<br />

<strong>SA</strong>: ~ Aus$0.3 Mln pa to<br />

support geothermal<br />

research. More to<br />

come<br />

Shallow Drilling<br />

to Optimise<br />

Deep Drilling<br />

AUS$100 - 300k+<br />

Per shallow well<br />

Deep Drilling<br />

to Prove<br />

<strong>Hot</strong> Rock<br />

Reservoirs Exist<br />

AUS$6 - $15+ M<br />

per deep well<br />

Fed. GDP: $50 Ml<br />

(US$35 M)<br />

Proof-of-Concept<br />

Flow Tests to Prove<br />

MWs of <strong>Hot</strong> Rock<br />

Power Production<br />

AUS$ Costs:<br />

$6-$15+ M / well x 2<br />

$1- $2+ M / frac x 2<br />

$1 - $2+ M flow test<br />

Aus$15 - Aus$40+ M<br />

Australian Fed. G’ment Underpinnings:<br />

- Onshore Energy Security Initiative<br />

- Geothermal Industry Development Framework<br />

- Roadmap for Geothermal Technologies<br />

- Research & Demo $ for CleanTech<br />

- Emissions reduction targets (Cap & Trade)<br />

- Renewable Energy Credits<br />

- Reform of regulated grid rules (sought)<br />

- Flow thru share scheme (sought)<br />

- National feed-in schemes (sought)<br />

- R&D $s to reduce critical impediments (sought)<br />

1. Plan to ACelerate Exploration 2. Renewable Energy Development Initiative 3 Renewable Energy Demo. Program (Aus$50Mln for deep drilling + Aus$435Mln for pre-competitive demo.)


Geothermal field-sizes appear to approximate a log normal distribution<br />

Goldstein, et al, 2009 - Analysis undertaken for IPCC Special Report<br />

on Renewable Energy. Published in the Proceedings of the Geothermal<br />

Resource Council Conference, October 2009


<strong>Hot</strong> Rock Materiality<br />

World land area (135,385,500 sq km) as ratio<br />

to U<strong>SA</strong> land area (9,629,091 sq km) = 14.1<br />

X<br />

Swanson's Mean (31,561 MWe)<br />

=<br />

Unrisked 443,750 MWe potential deployment<br />

of EGS-fueled electricity world-wide by 2050.<br />

Broad assumptions:<br />

• Ln distribution for usable EGS endowment<br />

• 10 MWe is a conservative P99 (certainty) for<br />

deployed EGS in the world by 2050<br />

• MIT (2006) 100,000 MWe from EGS in the U<strong>SA</strong><br />

for base-load markets is a conservative P10<br />

(certainty) for deployed EGS in the world by<br />

2050<br />

• 90% CF for base-load power from EGS<br />

• Average geology in the US are roughly as<br />

variable as average world land areas<br />

• Given sufficient investment, expected EGS by<br />

2050:<br />

‣ 45,000 MWe with 10% chance of success;<br />

‣ 90,000 MWe with 20% chance of success;<br />

‣ 130,000 MWe with a 30% chance of success<br />

Conclude: 90,000 to 130,000 MWe is a realistic<br />

expectation for deployment of EGS by 2050.


<strong>Hot</strong> Rock & <strong>Hot</strong> Sedimentary Aquifer Materiality<br />

U<strong>SA</strong><br />

MIT for the DoE<br />

Australia<br />

Geoscience Australia<br />

Australia<br />

Australia Geothermal<br />

Energy Association<br />

Australia<br />

Electricity Supply<br />

Assoc. of Australia<br />

280 Mln PJ if just 2% of stored heat<br />

from 3 to 10 km is usable (2,800 yrs<br />

of U<strong>SA</strong>’s power use in 2005).<br />

100,000 MWe hot rock power in U<strong>SA</strong><br />

by 2050<br />

380 Mln PJ if 2% of stored heat from<br />

150°C to 5 km is usable (52,000 yrs<br />

of Australia’s power use)<br />

Australian rocks are hot!<br />

Up to 2,200 MW of Australia’s baseload<br />

capacity by 2020<br />

6.8% (5,500 MW) of Australia's<br />

base-load by 2030<br />

Expect 90 to 130 GWe from EGS by 2050<br />

Geodynamics<br />

(GDY)<br />

Petratherm<br />

(PTR)<br />

Panax<br />

(PAX)<br />

270,000 PJ (defined) plus 100,000 PJ (inferred) to fuel > 10,000 MW of emissions-free power<br />

from <strong>Hot</strong> Fractured Rock in <strong>SA</strong> Cooper Basin licenses<br />

20 sq km x 1 km thick <strong>Hot</strong> Rock @ average 200°C in Paralana (Flinders Range) Heat Exchange<br />

Within Insulator Play will suffice to fuel 520 MW over 25 years<br />

2,674 km sq in the <strong>Hot</strong> Sedimentary Aquifer (H<strong>SA</strong>) play in the Otway Basin has potential to<br />

generate > 1,500 MWe.


<strong>Hot</strong> Rock & <strong>Hot</strong> Sedimentary Aquifer Materiality<br />

The <strong>Hot</strong> Rock industry needs long-life well tubulars<br />

(longevity 25 – 30 years). Expect 90 to 130 GWe from EGS by 2050<br />

5.5 GW by 2030 per E<strong>SA</strong>A<br />

(5500/50) x 4,500 to 5,000<br />

average depth x<br />

(9 to 15 wells) =<br />

4. 5 to 8.3 million metres pipe<br />

10 GW from Cooper per<br />

Geodynamics<br />

(10,000/50) x 4,500 to 5,000<br />

average depth x<br />

(9 to 15 wells) =<br />

8.1 to 15 million metres pipe


Aligned International Research Priorities for EGS<br />

• Share knowledge & drive complementary<br />

research<br />

• Standard geothermal resource & reserve<br />

definitions<br />

• Predictive production modelling<br />

• Predictive reservoir and stress field<br />

characterisation<br />

• Mitigate induced seismicity / other HAZOPS<br />

• Cooling condensers for hot, dry climates<br />

• Use of CO 2 as a working fluid for heat exchange<br />

• Improve power system efficiency<br />

• Education / training<br />

• Technologies & methods to minimise water use<br />

• Exploration technologies to predict heat flow and<br />

reservoirs ahead of the drill bit<br />

• Improved / revolutionary High-T hard<br />

rock drilling equipment<br />

• Improved High-T zonal isolation<br />

• Reliable High-T / High Rate pumps for<br />

modest hole diameter<br />

• Enable well longevity (20-30 year life<br />

for casing, cement, etc)<br />

• Optimum High-T fracture stimulation<br />

methods<br />

• High-T logging tools and sensors<br />

• High-T flow survey tools<br />

• High-T fluid flow tracers<br />

• Mitigation of formation damage, scale<br />

and corrosion<br />

High-T: high temperature & high pressure<br />

Also R&D priorities for petroleum industry


Australian Geothermal Energy Group Vision<br />

Geothermal resources to provide<br />

the lowest cost emissions-free<br />

renewable base load and direct<br />

use energy for centuries to come.<br />

• Currently 101 members and growing<br />

• Membership includes all companies with Australian<br />

geothermal licences, service companies, eleven<br />

Australian universities, and all key Federal, State<br />

and Northern territory government agencies with a<br />

role in upstream energy policy, geothermal licence<br />

regulation and geothermal investment attraction<br />

http://www.pir.sa.gov.<strong>au</strong>/geothermal/ageg


Australian Geothermal Energy Group (AGEG) Members<br />

http://www.pir.sa.gov.<strong>au</strong>/geothermal/ageg<br />

AGEG’S VISION: Geothermal resources to provide the lowest cost emissions- free,<br />

renewable base load and direct-use energy for centuries to come.<br />

11 Sept 09<br />

ASX-Listed (Code)<br />

Company Members<br />

1. AGEA (Industry Group)<br />

2. 3-D Geo<br />

3. A1 Thermal Systems<br />

4. AAA Energy<br />

5. ACILTasman<br />

6. Activated Logic<br />

7. AGL (AGL)<br />

8. Air International - Thermal Systems<br />

9. Balance Energy<br />

10. Beach Petroleum (BPT)<br />

11. BurnVoir Corporate Finance<br />

12. Callabonna Energy<br />

13. Clean Energy Australasia<br />

14. Deep Energy<br />

15. Earth Heat<br />

16. Earth Solar Power<br />

17. Earthinsite<br />

18. E-Connect<br />

19. Eden Energy (EDE) (Terratherma is a subsid.)<br />

20. Electranet<br />

21. Encom Technology<br />

22. Energycore<br />

23. Ergon Energy - owned by the Qld G’ment<br />

24. Ernst & Young<br />

25. Finlaysons<br />

26. FrogTech<br />

27. Geodynamics (GDY)<br />

28. Geogen<br />

29. Geopower<br />

30. Geothermal Advisory Pty Ltd<br />

31. Geothermal Resources (GHT)<br />

32. GHD<br />

33. Google (NASDAQ) -RE


AGEG organizational structure & linkages to national and international geothermal fora<br />

To be modified as the focus of AGEG Technical Interest Groups may change<br />

Australian Geothermal Energy Group (AGEG) Technical Interest Groups (TIGs)<br />

TIG Participants are people representing themselves or AGEG Member organisations or non-AGEG member organisations with aligned interests<br />

Communication, Consultation and<br />

Community Issues<br />

Land access<br />

Include seismic<br />

risk,<br />

sustainability,<br />

consultation<br />

Reserves &<br />

Resources<br />

AGEG-AGEA<br />

Reporting Code<br />

Committee<br />

Policy<br />

AGEA<br />

provides<br />

industry<br />

positions<br />

Outreach<br />

Includes<br />

conferences<br />

& webpostings<br />

Getting to Markets<br />

Includes economic<br />

models and cost<br />

benchmarks. AGEA<br />

provides positions on<br />

National Electricity<br />

Market<br />

AUSTRALIAN PARTNERSHIP FOR GEOTHERMAL TECHNOLOGIES (APGT)<br />

a Joint Venture of the<br />

Australian Geothermal Energy Group (AGEG - Industry, <strong>Gov</strong>ernment & Research Organisations)<br />

and the Australian Geothermal Energy Association (AGEA - the peak industry representative body)<br />

Power Plants Direct Use Information<br />

Drilling and Well<br />

& Data<br />

Construction<br />

Includes<br />

- CO 2 cycles<br />

- Efficiency<br />

- Condensers for<br />

hot, dry climates<br />

Foci include<br />

ground-source<br />

pumps, other<br />

heating, cooling<br />

& novel nonelectric<br />

uses<br />

- Databases<br />

- Standards<br />

- Accessibility<br />

- Lexicon<br />

- etc<br />

Reservoir<br />

development &<br />

engineering<br />

Foci include reservoir<br />

characterisation,<br />

reservoir modelling,<br />

geochemistry and<br />

reservoir stimulation<br />

Exploration &<br />

Well Log<br />

Technologies<br />

Foci include<br />

geophysical<br />

methods, pre-drill<br />

play prediction &<br />

high T logging<br />

Foci include temp.<br />

fracture sealing, zonal<br />

isolation, packers,<br />

pumps and excl well<br />

logs & stimulation<br />

Education<br />

Includes courses,<br />

lectures, content for<br />

curriculum, student<br />

work experience and<br />

international postgrad<br />

exchange<br />

TIG # 1 TIG # 2 TIG # 3 TIG # 4 TIG # 5 TIG # 6 TIG # 7 TIG # 8 TIG # 9 TIG # 10 TIG # 11 TIG # 12<br />

Technology and Methodology Research with:<br />

• Companies (Australian and International)<br />

• Australian Geothermal Energy Association<br />

• International Energy Agency Geothermal Implementing<br />

Agreement<br />

• International Partnership for Geothermal Technologies (IPGT)<br />

• International Geothermal Association; and<br />

• Geothermal research centres / key universities<br />

• Other National and International fora<br />

Linkages designed to foster the sharing of<br />

information – including but not limited to:<br />

Lower cost drilling<br />

Zonal isolation<br />

High temp. logging<br />

Seismic risk<br />

Pumps<br />

Temporary sealing<br />

Air cooling<br />

Education<br />

Novel geo-fluids and cycles<br />

Exploration technologies<br />

Stimulation methods<br />

Reservoir modelling / characterisation<br />

Reduce plant costs<br />

Rock – water interaction<br />

Reduce exploration costs<br />

Database and data access<br />

Direct use


Progress is Measurable<br />

Metrics December 2007 September 2009<br />

Geothermal Licences 232 in Australia (198,000 km 2 )<br />

Companies<br />

Geothermal Licence<br />

holders listed on ASX<br />

190 in <strong>SA</strong> (110,000 km 2 )<br />

31 Australia-wide<br />

21 in South Australia<br />

9 Australia-wide<br />

6 with equity in <strong>SA</strong> Licences<br />

$ Invested Aus$209 million in Australia (YE 07)<br />

Forecast $ 2002-12<br />

Aus$207 million (99%) in <strong>SA</strong> (YE 07)<br />

Aus$811 million Australia-wide<br />

Aus$651 million in South Australia<br />

<strong>Gov</strong>ernment Grants Aus$48.2 million Australia-wide Note 1<br />

Aus$29.4 million i(61% n <strong>SA</strong><br />

Note 1 Qld’s $15 million grant for a<br />

geothermal research centre was part of<br />

the Australia-wide tally<br />

391 in Australia (362,000 km 2 )<br />

279 in South Australia (130,000 km 2 )<br />

48 Australia-wise<br />

28 in South Australia<br />

17 Australia-wide<br />

12 have equity in <strong>SA</strong> Projects<br />

Aus$325 million in Australia (YE 08)<br />

Aus$316 million (97%) in <strong>SA</strong> (YE 08)<br />

Aus$1,528 million Australia-wide<br />

Aus$883 million in South Australia<br />

Aus$114 million Australia-wide Note 2<br />

Aus$56.1 million in <strong>SA</strong> (73% of grants<br />

offered to 5 Aug 2009)<br />

Note 2 Aus$35 million of GDP yet to be<br />

awarded abd this tally excludes $435<br />

REDP open for all forms of renewables<br />

bar solar<br />

Download AGEG-AGEA Geothermal Reserve & Resource Code:<br />

www.pir.sa.gov.<strong>au</strong>/geothermal/ageg/geothermal_reporting_code<br />

69% ⇑<br />

47% ⇑<br />

55% ⇑<br />

33% ⇑<br />

89% ⇑<br />

100% ⇑<br />

55% ⇑<br />

53% ⇑<br />

88% ⇑<br />

36% ⇑<br />

136% ⇑<br />

91% ⇑


Progress is Measurable<br />

Metrics December 2007 August 2009<br />

Proof-of-Concept Projects None in Australia<br />

Geodynamics has proved EGS in the<br />

South Australian Cooper Basin in 2008<br />

(5 wells in 3 areas)<br />

Forecast Proof-of-Concept by<br />

2012<br />

Projects with Drilling<br />

=>3<br />

(shallow and deep)<br />

Forecast demo by 2012 At least 3 geologic<br />

settings<br />

Australian Geothermal Energy<br />

Group Members<br />

Petratherm drilling Paralana (South<br />

Australia) and Panax will use same rig to<br />

drill Salamander (South Australia) in 2009<br />

Could have proof at 3 locations in 2010<br />

5 (all in South Australia) 10 (8 in South Australia)<br />

55 (including 39<br />

companies<br />

Geothermal Research Centres 1 (U Queensland) 4<br />

Geodynamics, Petratherm & Greenearth<br />

have applied-for REDP grants to be<br />

determined in 2009<br />

100 (including 81 companies)<br />

AGEA evolved from AGEG TIG<br />

(U Queensland, U Adelaide, U Melbourne<br />

and U West Australia)<br />

Download AGEG-AGEA Geothermal Reserve & Resource Code:<br />

www.pir.sa.gov.<strong>au</strong>/geothermal/ageg/geothermal_reporting_code<br />

1 of 3 ⇑<br />

50% ⇑<br />

Grants<br />

appliedfor<br />

83% ⇑<br />

300% ⇑


Milestones Ahead on the Road to the Vision –<br />

Commercialised Geothermal Energy<br />

1. Several successful research (exploration) and proof-of-concept (heat<br />

energy is flowed) geothermal projects. At least 10 by 2012/13<br />

2. Several Geothermal power generation demonstration projects in<br />

distinctively different geologic settings. At least 3 by 2012/13<br />

3. Compelling success with geothermal power generation demonstration<br />

so the investment community is convinced geothermal energy is real.<br />

By 2012/13<br />

4. Safe, secure, reliable, competitively priced, renewable and emissionsfree<br />

base load power and direct use from geothermal energy for<br />

centuries to come. At least 7% of base-load demand from hot rock<br />

power by 2030. More than 10% by 2050. Direct use widely<br />

deployed


<strong>Hot</strong> <strong>Rocks</strong> <strong>Downunder</strong> –<br />

Evolution of a New Energy Industry<br />

GO TO<br />

AUSTRALIA<br />

EXPLORE<br />

BINGO<br />

SORTED<br />

Barry Goldstein 1 , Tony Hill 1 , Alexandra Long 1 , Mike Malavazos 1<br />

Dr Anthony Budd 2 and Dr Bridget Ayling 2<br />

1. South Australian <strong>Gov</strong>ernment (<strong>PIR<strong>SA</strong></strong>) & AGEG Secretariat<br />

2. Geoscience Australia (Federal <strong>Gov</strong>ernment)


Background Slides


In 2009 - AGEG:<br />

- join the IGA as Australia’s affiliate<br />

- align TIGs with the IPGT<br />

(already aligned with the GIA)<br />

2009 AGEG-AGEA Geothermal Energy Conference<br />

Brisbane, 10-13 November 2009<br />

www.impactenviro.com.<strong>au</strong>/<strong>au</strong>sgeothermal<br />

AGEG-AGEA Geothermal Reserve & Resource Code:<br />

www.pir.sa.gov.<strong>au</strong>/geothermal/ageg/geothermal_reporting_code<br />

Barry A. Goldstein<br />

Director - Petroleum & Geothermal, <strong>PIR<strong>SA</strong></strong><br />

Chair – Australian Geothermal Energy Group<br />

Visit: http://www.pir.sa.gov.<strong>au</strong>/geothermal<br />

For details of the AGEG Visit:<br />

www.pir.sa.gov.<strong>au</strong>/geothermal/ageg


State & Territories <strong>Gov</strong>ernment Stewardship (21 Sept 09)<br />

1000 km<br />

JURISDICTION RESPONSIBILITIES:<br />

Onshore: States & the Northern Territory<br />

Offshore: Federal legislation applies with mirror<br />

legislation for near-shore State/NT waters<br />

Relevant State Legislation<br />

South Australia<br />

Petroleum & Geothermal Act 2000<br />

Victoria<br />

Geothermal Energy Resources Act 2005<br />

Queensland<br />

Geothermal Exploration Act 2004<br />

New South Wales<br />

Mining Act, 1992<br />

Tasmania<br />

Mineral Resources Development Act, 1995<br />

Western Australia<br />

Petroleum & Geothermal Resources Act 1967<br />

Northern Territory<br />

Draft Geothermal Energy Act<br />

Expected to be legislated in 2009


<strong>Gov</strong>ernment Support for Australian Geothermal Projects<br />

Ratio Grant Date Recipient Project A$ Amount<br />

$:$ Fed. RECP 2000 Pacific Power/ANU Hunter Valley Geothermal $790,000<br />

$:$ Fed. REEF 2002 Geodynamics Habanero Project $1,800,000<br />

$:$ Fed. START 2002 Geodynamics Habanero Project $5,000,000<br />

$:$ Fed. GGAP Mar-05 Geodynamics Kalina Cycle (13 MW) from waste heat, WA $2,080,000<br />

$:$ PACE 2 Apr-05 Petratherm Paralana, <strong>SA</strong> $140,000<br />

$:$ PACE 2 Apr-05 Scopenergy Limestone Coast, <strong>SA</strong> $130,000<br />

$:$ PACE 2 Apr-05 Eden Energy Witchellina Project, <strong>SA</strong> $21,000<br />

100% of cost <strong>SA</strong> Grant Jun-05 U of Adelaide Induced seismicity, Cooper Basin $50,000<br />

$:$ Fed. REDI Dec-05 Geodynamics Cooper Basin, <strong>SA</strong> $5,000,000<br />

$:$ Fed. REDI Dec-05 Scopenergy Limestone Coast, <strong>SA</strong> $3,982,855<br />

100% of cost <strong>SA</strong> Grant Dec-05 Geodynamics Cost: benefit of EGS to reduce emissions $40,000<br />

$:$ <strong>SA</strong> PACE 3 Dec-05 Geothermal Resources Curnamona Project, <strong>SA</strong> $100,000<br />

$:$ <strong>SA</strong> PACE 3 Dec-05 Green Rock Olympic Dam Project, <strong>SA</strong> $68,000<br />

$:$ Fed. REDI Jul-06 Geothermal Resources Frome Geothermal Project $2,400,000<br />

$:$ Fed. REDI Dec-06 Proactive Energy Supercritical power cycles $1,224,250<br />

$:$ <strong>SA</strong> PACE 4 Dec-06 Torrens Energy Heatflow expl., Adelaide Geosyncline $100,000<br />

$:$ <strong>SA</strong> PACE 4 Dec-06 Eden Energy Renmark Project, <strong>SA</strong> $100,000<br />

$:$ <strong>SA</strong> PACE 4 Dec-06 Geodynamics High Temp. borehole imaging, Cooper Basin $100,000<br />

$:$ Fed. REDI Feb-07 Petratherm Ltd Paralana Project, <strong>SA</strong> $5,000,000<br />

$:$ <strong>SA</strong> Grant May-07 U of Adelaide Induced seismicity protocols – <strong>SA</strong> $50,000<br />

$:$ <strong>SA</strong> Grant Jun-07 U of Adelaide AGEG Research $250,000<br />

$:$ Fed. REDI Aug-07 Torrens Energy 3D modelling, hot rocks,, <strong>SA</strong> $3,000,000<br />

$:$ Qld Grant Oct-07 U of Queensland Qld Geothermal Research Centre $15,000,000<br />

$:$ Fed. REDI 2008 KUTh Tamar Conductivity Zone $1,800,000<br />

$:$ <strong>SA</strong> PACE Feb-08 Petratherm Shear wave splitting for <strong>Hot</strong> Rock exploration $100,000<br />

$:$ <strong>SA</strong> PACE Feb-08 Torrens Energy 2D seismic, Adelaide Plains $100,000<br />

$:$ WA Grant Mar-08 U of WA WA Geothermal Research Centre $2,300,000<br />

$:$ <strong>SA</strong> Grant Jun-08 U of Adelaide AGEG Research $250,000<br />

$:$ NSW Dec-08 Geodynamics Drilling in Hunter Valley $10,000,000<br />

100% of cost <strong>SA</strong> Grant 2Q-09 U of Adelaide Remote EGS Use to Produce Syn-fuel & $10,000<br />

$:$ Fed GDP Apr-09 Petratherm Ltd Fed Geothermal Drilling Fund - Paralana, <strong>SA</strong> $7,000,000<br />

$:$ Fed GDP Apr-09 PANAX Geothermal Fed Geothermal Drilling Fund - Penola, <strong>SA</strong> $7,000,000<br />

$:$ <strong>SA</strong> Grant Apr-09 Geodynamics Transmission from Habanero to Innamincka (<strong>SA</strong> $630,000<br />

80% of $1m <strong>SA</strong> REF Jul-09 U of Adelaide <strong>SA</strong> Geothermal Research Centre $2,000,000<br />

$:$ Fed GDP In 3-4Q/09 TBD Fed Geothermal Drilling Fund $36,000,000<br />

Excludes $435million REDP<br />

Total Grants - All G'ments $113,616,105<br />

- Excluded from above is Aus$587 Mln to co-funded industry projects under the Federal REDP and CEP programs and Victoria’s ETIS program.<br />

- Pre-competitive commercial scale sustainable ocean, geothermal & biomass energy projects can compete on merit for REDP grants. Solar now has its own<br />

grants program.<br />

Current Federal Programs:<br />

• Renewable Energy Certificates (RECs) and a<br />

mandatory emissions cap and trade scheme under<br />

the Carbon Pollution Reduction Scheme (CPRS) will<br />

support the competitiveness of geothermal energy<br />

• Geothermal Drilling Program ($ 50Mln- GDP).<br />

G’ment $ per Industry $ to max $7mln for proof-ofconcept.<br />

Criteria: Deep wells to demo. flows at<br />

temperatures sufficient to generate power or support<br />

industrial processes. Petratherm & Panax 1 st<br />

recipients<br />

• Renewable Energy Demonstration Program<br />

(Aus$465 Mln - REDP). G’ment $ per $2 from<br />

industry. Pre-competitive, commercial scale<br />

renewable energy demo. projects compete on merit.<br />

GDY seeking $90miliion. PTR seeking $62.8<br />

million. Greenearth also lodged application.<br />

• The Clean Energy Program for Innovation Program<br />

($50 Mln - CEP) to speed / sustain growth in<br />

renewable energy and enabling technologies<br />

• Aus$58.9 Mln Onshore Energy Security Program<br />

(OESP) focused on geothermal, uranium/thorium<br />

and petroleum resources.<br />

Current State Programs:<br />

• <strong>SA</strong>’s Plan to ACcelerate Exploration (PACE)<br />

and tied-research grants. G’ment $ per Industry $.<br />

Compete on merit.<br />

• <strong>SA</strong> Regional Development Infrastructure Fund<br />

• <strong>SA</strong> Renewable Energy Fund (REF) $20 Mln. First<br />

grant is $1.6 Mln for Geothermal Research Centre at<br />

the U of Adelaide<br />

• Centres of Excellence (CoE) for Geothermal<br />

Research are funded in Qld ($15 Mln) , WA ($2.3<br />

Mln) and <strong>SA</strong> ($1.6 Mln).<br />

• Victoria’s Energy Technology Innovation Strategy<br />

(Aus$72 Mln - ETIS). Compete on merit in parallel to<br />

applications for Federal grants.<br />

• Victoria’s Direct Use Geothermal Support Pilot<br />

(GSP). Compete for 2 grants of Aus$$50,000 each.


Geothermal License Holder / Applicant Website Last Name First Name Email Mobile phone Desk top phone<br />

Eden Energy (EDE) www.edenenergy.com.<strong>au</strong> Solomon Greg gsolomon@edenenergy.com.<strong>au</strong>n 61 402 060 000 61 7 9282 5888<br />

Geodynamics (GDY) www.geodynamics.com.<strong>au</strong> Grove-White Gerry ggrovewhite@geodynamics.com.<strong>au</strong> 61 407 233 953 61 7 3721 7505<br />

Geothermal Resources (GTH) www.geothermal-resources.com.<strong>au</strong>/ Johnson Bob geo@havilah-resources.com.<strong>au</strong> 61 428 400 160 61 8 8338 9292<br />

Greenearth Energy (GER) www.greenearthenergy.com.<strong>au</strong> Annells Rob robannells@lakesoil.com.<strong>au</strong> 61 416 130 740 61 3 9629 1566<br />

Greenrock Energy (GRK) www.greenrock.com.<strong>au</strong> Larking Adrian alarking@greenrock.com.<strong>au</strong> 61 417 927 767 61 8 9482 0499<br />

<strong>Hot</strong> Rock Ltd (HRL) www.hotrockltd.com Elliott Mark admin@hotrockltd.com 61 409 998 840 61 7 3303 0653<br />

KUTh Energy (KEN) www.kuthenergy.com Wheller Graeme gwheller@kuthenergy.com 61 429 18 6 041 61 4 2918 6041<br />

Panax/Scopenergy (PAX) www.panaxgeothermal.com.<strong>au</strong> de Graaf Bertus bdegraaf@panaxgeothermal.com.<strong>au</strong> 61 7 3512 7000<br />

Petratherm (PTR) www.petratherm.com.<strong>au</strong> Kallis Terry tkallis@petratherm.com.<strong>au</strong> 61 419 810 153 61 8 8274 5000<br />

Torrens Energy (TEY) www.torrensenergy.com Canaris John john.canaris@torrensenergy.com 61 407 275 906 61 8 9321 4566<br />

AGL (AGL) www.agl.com.<strong>au</strong> Moraza Mike moraza@agl.com.<strong>au</strong> 61 402 060 500 61 2 9921 2429<br />

AWE Ltd (AWE) www.awexp.com.<strong>au</strong> Jeffery Gary gary.jeffery@awexplore.com 61 8 9480 1300<br />

Beach Petroleum (BPT) www.beachpetroleum.com.<strong>au</strong> Gibbins Neil Neil.Gibbins@beachpetroleum.com.<strong>au</strong> 61 8 8338 2833<br />

BHP Billiton Worsley Alumina Pty Ltd www.bhpbilliton.com/bb/ourBusinesses/aluminium/worsleyAlumina.jsp Pudney Ben ben.m.pudney@bhpbilliton.com 61 8 9734 8311<br />

Gradient Energy Subsid of Planet Gas<br />

(PGS)<br />

www.planetgas.com/download.php?id=404 Oussa Sharif info@planetgas.com 61 2 9300 3322<br />

Icon Energy (ICN) www.iconenergy.com James Ray rayjames@iconenergy.com 61 7 5562 0077<br />

Inferus Resources (Southern Gold Ltd,<br />

<strong>SA</strong>U)<br />

www.southerngold.com.<strong>au</strong>/project.php?id=39 Biggins Stephen SBiggins@southerngold.com.<strong>au</strong> 61 419 859 600 61 8 8132 0044<br />

Origin (ORI) www.originenergy.com.<strong>au</strong> Mackey Phillip phillip.mackey@originenergy.com.<strong>au</strong> 61 8 8217 5877<br />

Stuart Petroleum (STU) www.stuartpetroleum.com.<strong>au</strong> Guglielmo Tino stuart@stuartpetroleum.com.<strong>au</strong> 61 407 336 668 61 8 8410 0611<br />

Tata Power www.tata.com/ Prasad Menon shalinis@tpc.co.in 91 (22) 6665 8282<br />

Teck Cominco www.teckcominco.com Sandl Ian Ian.Sandl@teckcominco.com 61 408 801 910 61 8 9321 4936<br />

TruEnergy www.truenergy.com.<strong>au</strong>/ Edwards Ross ross.edwards@truenergy.com.<strong>au</strong> 61 3 8628 1000<br />

AAA Energy www.cgi.net.<strong>au</strong> Palermo John jpalermo@palermo.com.<strong>au</strong> 61 417 950 286 61 8 9242 1622<br />

Allender et al (A.B.L.R JV) Allender Jim jim.allender@gmail.com 61 438 891 069 61 8 8272 1171<br />

Austral Iron Pty Ltd Milton David davidmilton@asiairon.com<br />

BurnVoir Corporate Finance www.burnvoir.com.<strong>au</strong> Tsiblis Theo ttt@burnvoir.com.<strong>au</strong> 61 411 753 253 61 2 9220 0353<br />

Callabonna Energy www.callabonna.com.<strong>au</strong>/projects_CalEnergy.html Raetz Mike pgn@skilledgeoscience.com 61 2 9300 3366<br />

Clean Energy Australasia www.cleanenergy<strong>au</strong>s.com.<strong>au</strong> Reichman Joe joe.reichman@bigpond.com 61 427 809 970 61 7 3379 7540<br />

Deep Energy www.adavaleresources.com.<strong>au</strong> Risinger John JRisinger@adavaleresources.com.<strong>au</strong> 61 411 602 575 61 7 3239 9700<br />

Earth Heat Shaw Ray vanibe@bigpond.com 61 2 9969 3223<br />

Earth Solar Power Pty Ltd<br />

Bassingthwaig<br />

hte<br />

Howard howard.bass@earthsolarpower.com.<strong>au</strong> 61 423 450 324<br />

Geogen (Geogen Victoria Pty Ltd) www.geogen.com.<strong>au</strong> Kitch Bob bob.kitch@geogen.com.<strong>au</strong> 61 400 083 465<br />

Geopower www.mhml.com.<strong>au</strong> Rogers Frank farogers@macquariemining.com 61 3 6229 9955<br />

Granite Power www.granitepwr.com De Belle Stephen sdb@mantlemining.com 61 2 8252 6100<br />

Greenpower Energy Ltd http://www.greenpowerenergylimited.com.<strong>au</strong>/ Flavelle Alan southdown@bigpond.com 61 438 599 252<br />

Geothermal Power Ltd Archibald Jenny jenny.archibald@bigpond.com 61 8 9296 6869<br />

GRD Mines Development Pty Ltd O'Connor Adam adam@hemts.com.<strong>au</strong> 61 2 9967 4844<br />

<strong>Hot</strong> <strong>Rocks</strong> Tasmania www.allegiance-mining.com.<strong>au</strong> Newnham Lindsay lnewnham@vision.net.<strong>au</strong> 61 418 386 229 61 3 6394 3434<br />

Monaro www.monaromining.com Martin Gill acthitec@ozemail.com.<strong>au</strong> 61 2 6292 0989<br />

Near Surface Geothermal Energy Randall Colin colin@colinrandall.com.<strong>au</strong> 61 2 4925 2644 61 408 969 424<br />

Nejat Mackali Mackali Nejat nejat1@bigpond.com.<strong>au</strong> 61 3 5831 4858<br />

New World Energy Solutions www.newworldenergy.com.<strong>au</strong> Libby John john@newworldenergy.com.<strong>au</strong> 61 419 130 366 61 8 9477 3747<br />

Osiris Energy (merged with Panax<br />

Geothermal)<br />

www.osirisenergy.com.<strong>au</strong> Palmer Ron rpalmer@panaxgeothermal.com.<strong>au</strong> 61 413 579 099 61 7 3512 7000<br />

Pacific Hydro www.pacifichydro.com.<strong>au</strong> Teoh Terry tteoh@pacifichydro.com.<strong>au</strong> 61 3 9615 6410<br />

Red <strong>Hot</strong> <strong>Rocks</strong> Shirley John jjshirley@bigpond.com 61 3 9822 4998 61 412 600 515<br />

www.sv.sustainability.vic.gov.<strong>au</strong>/ftp/renewable_energy/resf/presentations/Phil_Gallow<br />

Syncline Energy<br />

ay.pdf<br />

Galloway Phillip 61 413 640 120<br />

Terra Estus Resources Pty Ltd Fischer Wolfgang wolfgang@petroventures.com.<strong>au</strong> 61 2 9247 9888<br />

Thermal Resources Pty Ltd Spry Trent spryt@rpsgroup.com.<strong>au</strong> 61 408 934 600<br />

Tri-Star Energy www.tri-starpetroleum.com.<strong>au</strong> Suchocki Victor brisbane@tri-starpetroleum.com 61 7 3236 9800<br />

Waterflea Pty Ltd 61 2 4925 2644<br />

ASX Listed Geothermal<br />

ASX Listed Diversified<br />

Listed on other Exchange<br />

Privately Held<br />

Key Contacts for<br />

Australian<br />

Geothermal<br />

Licence Holders &<br />

JV Participants


Climate Change Excites Geothermal Exploration (US$)<br />

CO2 Emissions (kgCO2/MWh)<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Efficiency<br />

Frontier<br />

(current)<br />

Electricity Supply Industry Planning Council<br />

2008 http://www.esipc.sa.gov.<strong>au</strong><br />

EGS at A$45 per MWh<br />

post-deployment of 200<br />

MW over 10 years per<br />

MIT, 2006<br />

Efficiency<br />

Frontier<br />

(with cost<br />

of carbon)<br />

EGS Cost Curve $45 to $100<br />

Eligible for Renewable Energy Credits<br />

Range US$35 - US$50 per MWh<br />

Sub-critical Black Coal (600 MW (CF 90%))<br />

Sub-critical Black Coal + CCS (400 MW (CF 90%))<br />

Super-critical Black Coal (550 MW (CF 90%))<br />

Super-critical Black Coal + CCS (550 MW (CF 90%))<br />

UltraSuper-critical Black Coal (550 MW (CF 90%))<br />

UltraSuper-critical Black Coal + CCS (380 MW (CF 90%))<br />

Sub-critical Brown Coal (750 MW (CF 90%))<br />

Sub-critical Brown Coal + CCS (50 MW (CF 90%))<br />

Super-critical Brown Coal (230 MW (CF 90%))<br />

Super-critical Brown Coal + CCS (600 MW (CF 90%))<br />

Combined Cycle Gas Turbine (600 MW (CF 80%))<br />

Combined Cycle Gas Turbine_CCS (600 MW (CF 80%))<br />

Integrated Gasification Combined Cycle (600 MW (CF 90%))<br />

Integrated Gasification Combined Cycle_CCS (600 MW (CF 90%))<br />

Nuclear (600 MW (CF 90%))<br />

Wind (600 MW (CF 37%))<br />

Geothermal (50 MW (CF 85%))<br />

CCS = Carbon Capture & Storage<br />

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300<br />

Levelised Long-Run Generation Cost (US$/MWh at 0.7US$ per Aus$)<br />

The Australian <strong>Gov</strong>ernment’s renewable energy target corresponds to 20%<br />

(60,000 GWh pa) power consumption from renewable sources by 2020


Backup Slide: Environmental Research - Running Ahead of the Bulldozers<br />

Hunt & Morelli, 2006 Induced Seismicity at Innamincka Geothermal Site<br />

Using the attenuation<br />

formula from Toro<br />

(1997), the<br />

acceleration (0.041g)<br />

at the epicentre of<br />

the largest induced<br />

event is below the<br />

design standard for<br />

peak ground<br />

accelerations.<br />

Download from www.pir.sa.gov.<strong>au</strong>/geothermal/ageg/current_research<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

Habanero 1<br />

-15<br />

-20<br />

-2 0 - 1 5 -10 -5 0 5 10 15 20<br />

20 km<br />

Map of basement in the Cooper Basin petroleum showing well locations<br />

Attenuation radius from the Habanero 1 wellsite


AGEG Technical Interest Group Outputs –<br />

Managing Potential Risks of Induced Seismicity<br />

Protocol Recommendations – Optimum Data Requirements<br />

(from AGEG TIG #1 – Land Access Research by Morelli & Malavazos, 2008)<br />

• High-quality record of seismicity waveforms, M & location<br />

• Regolith information, particularly thickness & shear velocity to 30<br />

metres (V s<br />

30<br />

)<br />

• Reservoir data:<br />

– Orientation & magnitude of stress field<br />

– Location & extent of existing f<strong>au</strong>lts & fractures<br />

– Rock properties (mechanical, thermal & chemical)<br />

– Hydrologic features<br />

• Characterise environment, infrastructure & population for<br />

vulnerability & loss modelling<br />

Recommendations are consistent with the IEA’s protocols for managing seismic risk from fluid injection into EGS


AGEG Technical Interest Group Outputs –<br />

Managing Potential Risks of Induced Seismicity<br />

Protocol Recommendations<br />

(from AGEG TIG #1 – Land Access Research by Morelli & Malavazos, 2008)<br />

• Apply national / international standards for<br />

risk management<br />

• To assess the potential consequence of<br />

induced seismicity – quantitative seismic risk<br />

management is a required for sites selected<br />

for hydr<strong>au</strong>lic stimulation or large scale<br />

injection.<br />

• Proponent must demonstrate adequate<br />

assessment of site – specific induced<br />

seismicity risk management before hydr<strong>au</strong>lic<br />

stimulation or large scale injection.<br />

• Stakeholder engagement to start as soon as<br />

is practical.<br />

• Sustain an evergreen watching brief so new<br />

information is assessed / considered for<br />

induced seismicity risk management.<br />

• If required, <strong>au</strong>gment the existing seismic<br />

monitoring network to detect / gather seismic<br />

events less than M = 3. Maintain the network<br />

for the life of the project.<br />

• As practical, deploy at least one deep<br />

seismic monitoring station (below regolith if<br />

possible) prior to hydr<strong>au</strong>lic stimulation or<br />

large scale injection.<br />

• Deploy downhole & near surface monitoring<br />

stations to determine attenuation & regolith<br />

amplification.<br />

Recommendations are consistent with the IEA’s protocols for managing seismic risk from fluid injection into EGS


Oil & Gas Methods for the<br />

Assessment Risk & Uncertainty of <strong>Hot</strong> Rock Plays<br />

Generalisations:<br />

• If 3 geologic factors are at least adequate – a hot rock play is prospective.<br />

‣ Source of heat Ex. Radiogenic, high heat-flow granites;<br />

‣ Insulating strata to provide thermal traps;<br />

‣ <strong>Hot</strong> Rock reservoirs Ex. Permeable fabrics within insulating and heat source rocks that are susceptible to<br />

fracture stimulation.<br />

• The serial product of key geologic factor adequacy is the chance for geologic success (Rose ’92).<br />

Where P = the probability of a geologic factor being at least adequate (for a viable hot rock resource<br />

to exist)<br />

• The chance for a geothermal well to flow hot fluids at an<br />

initial rate (litres per second at o Celsius) is at least<br />

Insulating<br />

adequate to underpin break-even outcomes - is<br />

strata<br />

proposed as a 4 th key factor to define practical<br />

prospectivity. This <strong>Hot</strong> Rock heat flow rate factor (P heat<br />

Source<br />

<strong>Hot</strong> Rock<br />

flow rate ) integrates physical & economic criteria. This is<br />

of<br />

reservoir<br />

analogous to best practice pre-drill estimates of minimum<br />

Heat<br />

economic petroleum pool-size.<br />

Access to this figure was kindly provided by Jeff Tester – MIT<br />

Chance for a <strong>Hot</strong> Rock Prospect Adequacy = P heat source<br />

x P heat trap<br />

x P heat reservoir<br />

x P heat flow rate


Backup Slide: O&G Methods to Assess Risk & Uncertainty of <strong>Hot</strong> Rock Plays<br />

Example Calculation<br />

Very certain granites at > 210 o C below insulating strata in stress field known to be<br />

conducive to naturally occurring horizontal fractures:<br />

P heat source = 90% P heat source x P heat trap x P heat reservoir x P heat flow rate<br />

P heat trap = 90% = 90% x 90% x 50% x 50%<br />

P heat reservoir<br />

= 50% = 20.25% estimated chance of economic success<br />

P heat flow rate = 50%<br />

The estimated chance for a geothermal well to flow hot fluids at an initial rate (defined as<br />

litres per second at an initial o Celsius) deemed at least adequate (prospective) to underpin<br />

break-even outcomes is proposed as the key additional ingredient to define practical<br />

prospectivity.<br />

This <strong>Hot</strong> Rock heat flow rate factor (P heat flow rate)<br />

integrates physical and economic criteria<br />

and is analogous to global best practice for pre-drill estimates of ‘expected’ (risked)<br />

petroleum targets – which entail estimates of minimum economic pool-size (Pmeps) for<br />

local conditions<br />

This enables risk-ranking of plays, expected value estimates, value of<br />

information estimates and a portfolio approach to managing risk and<br />

uncertainty, analogous to best practice in the petroleum E&P business.


BACK-UP Slides: Oil & Gas Methods to Assess Risk & Uncertainty of <strong>Hot</strong> Rock Plays<br />

Expected Value Estimate for a <strong>Hot</strong> Rock Test Well (An Example)<br />

Four outcomes are possible from the drilling and flow testing of a <strong>Hot</strong> Rock target.<br />

• Geologic success (rock properties are at least adequate to justify flow tests)<br />

• Geologic failure (rock properties are insufficient to justify flow tests)<br />

• Technical success (flow tests undertaken but outcome is not competitive in foreseeable markets)<br />

• Economic success (flow tests demonstrate a resource is at least 50% certain to be competitive in foreseeable markets)<br />

Example calculations for the chance for these four outcomes follows:<br />

• the chance for geologic success in a hot rock play (Pg)<br />

= (P heat source x P heat trap x P heat reservoir)<br />

= 90% x 90% x 50%<br />

= 40.5%<br />

• the chance of geologic inadequacy is the complement of Pg<br />

= 100% - Pg<br />

= 100% - 40.5%<br />

= 59.5%<br />

• the chance of a technical success (i.e. a geologic success with inadequate flow rate)<br />

= (1- P heat flow rate) x Pg<br />

= (100% – 50%) x 40.5%<br />

= 20.25%<br />

• the chance for an economic success (i.e. the probability of economic success Ps)<br />

= (P heat source x P heat trap x P heat reservoir x P heat flow rate)<br />

= = 90% x 90% x 50% x 50%)<br />

= 20.25% = Ps<br />

NPV = Net Present Value<br />

Decision-tree for a hypothetical <strong>Hot</strong> Rock target<br />

Economic Adequacy = 20.25%<br />

Say NPV of mean success case is<br />

$50 million for a single play trend.<br />

The NPV for the success case for<br />

the entire play trend is $500 million<br />

Geologic adequacy but<br />

< economic flow rate = 20.25%<br />

Say cost of unsuccessful fracture<br />

stimulation is $2 million.<br />

Geologic Inadequacy = 59.5%.<br />

Say cost of failure is $10 million<br />

Chance of economic failure = 20.25% + 59.5% = 79.75%<br />

Sum of probabilities = 100%<br />

The chance for economic success (Ps) for this <strong>Hot</strong> Rock Play<br />

= (Ps x NPV of <strong>Hot</strong> Rock Play) –<br />

((1- Ps) x full-cycle NPV to prove post-frac flow > economic threshold rate)<br />

= {20.25% x $50,000,000} - {$12,000,000 79.75%)<br />

= $560,000 Expected Net Present Value<br />

This is


How Much Is Enough Research & Demonstration? An example<br />

Assume 3 distinct <strong>Hot</strong> Rock play-trends to explore with geologic factor adequacies as follow.<br />

Portfolio: Play A Play B Play C<br />

Factors<br />

Chance of<br />

Adequacy<br />

Chance of<br />

Inadequacy<br />

Chance of<br />

Adequacy<br />

Chance of<br />

Inadequacy<br />

Chance of<br />

Adequacy<br />

Chance of<br />

Inadequacy<br />

P heat source 90% 10% 90% 10% 50% 50%<br />

P heat trap 90% 10% 90% 10% 90% 25%<br />

P heat reservoir 50% 50% 75% 25% 50% 50%<br />

P heat flow rate 50% 50% 25% 75% 25% 75%<br />

Play A Play B Play C<br />

P geologic success (P g) = (90% x 90% x 50%) = 40.50% = (90% x 90% x 75%) = 60.75% = (50% x 90% x 50%) = 22.50%<br />

P geologic failure (1-P g) = (1 - 40.50%)= 59.50% = (1 - 60.75%) = 39.25% = (1 - 22.50%) = 77.50%<br />

P technical success = 40.50% x (1 - 50%) = 20.25% = 60.75% x (1 – 25%) = 45.56% = 22.50% x (1 – 25%) = 16.88%<br />

P technical failure = (1- 20.25%) = 79.75% = (1- 45.56%) = 54.44% = (1- 16..88%) = 84.22%<br />

P economic success (P s ) = (40.50% x 50%) = 20.25% = (60.75% x 25%) = 15.19% = (22.50% x 25%) = 5.63%<br />

P economic failure (P f ) = (1 – 20.25%) = 79.75% = (1 – 15.19%) = 84.81% = (1 – 5.63%) = 94.38%<br />

Estimates of the chance that testing all 3 play trends will result in the discovery of at least one:<br />

Technically adequate <strong>Hot</strong> Rock play: 1 – {P geologic inadequacy for A<br />

x P geologic inadequacy for B<br />

x P geologic inadequacy for C<br />

}<br />

Economically attractive <strong>Hot</strong> Rock play: 100% – (79.75% x 84.81% x 94.38) = 36%<br />

Funding exploration through demonstration of an independent fourth <strong>Hot</strong> Rock play would inevitably<br />

increase the chance of demonstrating at least one economically attractive resource


Australian Geothermal Energy Association<br />

The national industry association for the Australian Geothermal Energy Industry<br />

AGEA’s Vision. Geothermal energy providing the lowest cost emissions-free renewable base load energy to<br />

Australian homes and businesses for centuries to come.<br />

AGEA’s Mission. foster and accelerate the development and commercialisation of Australia's geothermal energy<br />

resources by:<br />

• Clearly and accurately articulating the advantages of geothermal energy and the progress of the industry;<br />

• Cooperating across the industry to develop, collect, improve and disseminate information about geothermal energy; and<br />

• Developing good and constructive relationships with government, the investment community and the broader Australian<br />

community.<br />

AGEA’s Work. Increasingly provide both:<br />

• a low cost, emissions free, baseload, reliable and secure supply of energy into the national market over the next<br />

decade; and<br />

• a reliable, low cost source of heat to drive energy efficiency and industrial applications.<br />

AGEA works with all Australian <strong>Gov</strong>ernments, the academic community, relevant scientific organisations and the<br />

media to promote information about the progress of the industry and its capabilities.<br />

AGEA seeks to assist government develop prudent policy mechanisms that enable all forms of emissions free<br />

energy to increasingly penetrate the national energy market in line with climate change and energy security policy<br />

goals that are in the national interest.<br />

AGEA's membership comprises the major geothermal energy project developers, direct heat equipment suppliers<br />

and service providers to the industry.<br />

Visit: http://www.agea.org.<strong>au</strong>/


Geothermal Industry Development Framework: The Australian Federal<br />

<strong>Gov</strong>ernment’s Geothermal Industry Development Framework (GIDF) and Technology Roadmap:<br />

• Starts with the premise, “Geothermal energy has the potential to provide baseload electricity to Australian<br />

homes and industry, without producing emissions of greenhouse gases; and.<br />

• Aims to support the growth of Australia's geothermal industry through strategies agreed by stakeholders from<br />

government, industry and the research community.<br />

An exposure draft was developed with advice from a Project Reference Group including AGEA and AGEG<br />

representatives. The draft Framework incorporates recommendations to accelerate the commercialisation of<br />

geothermal energy in Australia.<br />

The ten key objectives of the exposure draft GIDF are summarised below:<br />

1. Increase investment in the geothermal industry<br />

2. Acquire and manage data specifically for the geothermal industry<br />

3. Develop and enhance robust networks for the geothermal industry<br />

4. Develop international linkages and partnerships for the geothermal industry<br />

5. Foster R&D to support the Australian geothermal industry<br />

6. Foster human capital development to enable fast development of the geothermal industry.<br />

7. Communicate to satisfy community stakeholders, investors and energy market participants that geothermal<br />

energy is a safe, clean, cost competitive and reliable option in Australia's energy mix, with the potential to<br />

provide a significant share of Australia's generation needs.<br />

8. Foster understanding of considerations that contribute government policy development to so<br />

industry/stakeholders can effectively put its views to government for consideration<br />

9. Establish and implement best practice legislation and regulation relevant to geothermal energy across all<br />

jurisdictions.<br />

10.Implement the GIDF recommendations<br />

The final form of the GIDF was l<strong>au</strong>nched 1 December 2009.<br />

To see the GIDF – visit: Geothermal Industry Development Framework


Geothermal Drilling Program: The Australian Federal <strong>Gov</strong>ernment’s $50 million<br />

Geothermal Drilling Program (GDP) supports “proof-of-concept” drilling projects for the geothermal<br />

industry. The GDP aims to:<br />

• accelerate the development of the geothermal industry;<br />

• encourage growth and successful innovation by Australian geothermal companies by<br />

increasing the numbers and variety of proofs of concept;<br />

• accelerate the capacity to produce electricity from a variety of sources of geothermal heat<br />

energy;<br />

• increase investor or private sector confidence in the geothermal industry;<br />

• firmly establish Australia as the world leader in enhanced geothermal systems; and<br />

• generate national benefit for the Australian economy.<br />

The GDP provides $-for-$ matching grants up to $7 million for eligible, meritorious geothermal<br />

proof-of-concept deep drilling projects in Australia. Petratherm (Paralana, <strong>SA</strong>) and Panax (Penola,<br />

<strong>SA</strong>) were successful 1 st round applicants in April ‘09. GDP Round Two applications are due on 4 th<br />

Aug ’09. Costs of drilling, reservoir development and flow testing of proof-of-concept projects are in<br />

scope. Projects that co-ordinate/ maximise employment of drilling equipment are encouraged. A<br />

desired outcome of the GDP will be successful proof-of-concept projects spread across a diversity<br />

of geography, geology and technology, to demonstrate the robustness of deep geothermal<br />

resources and technologies in Australia.<br />

For details see:<br />

www.ret.gov.<strong>au</strong>/energy/Documents/GDP_R2_FactSheet.pdf<br />

NOTE: For one independent commentary on the Australian <strong>Gov</strong>ernment’s Geothermal Drilling Program and the<br />

AGEG-AGEA Geothermal Resource and Reserve Code – visit: www.aar.com.<strong>au</strong>/pubs/res/foressep08.htm


International Energy Agency (IEA) implementing agreement for a<br />

cooperative program of geothermal energy research and technology under<br />

the Geothermal Implementing Agreement (GIA):<br />

The IEA’s GIA provides a framework for wide-ranging international cooperation in geothermal R&D. Its<br />

activities presently cover four different research areas:<br />

• Environmental Impacts of Geothermal Development,<br />

• Enhanced Geothermal Systems,<br />

• Advanced Geothermal Drilling Technology and<br />

• Direct Use of Geothermal Energy.<br />

The mission for the IEA GIA through its current 5-year term (through 31 March 2012) is to promote the<br />

sustainable utilisation of geothermal energy throughout the world by:<br />

• improving existing technologies,<br />

• developing new technologies to render exploitable the vast and widespread global geothermal<br />

resources;<br />

• facilitating the transfer of know-how,<br />

• providing high quality information, and<br />

• widely communicating geothermal energy's strategic, economic and environmental benefits.<br />

As of December 2008, the GIA has:<br />

• 12 Country Members: Australia, France, Germany, Iceland, Italy, Japan, Mexico, New Zealand,<br />

Republic of Korea, Spain, Switzerland, the United States and the European Commission, and<br />

• 6 Sponsors: Canadian Geothermal Energy Association, Geodynamics Limited, Geothermal Group of<br />

Spanish Renewable Energy Association, Green Rock Energy Limited, ORMAT Technologies Inc. and<br />

ORME Jeotermal.<br />

For additional information – see http://www.iea-gia.org/


International Partnership for Geothermal Technology (IPGT):<br />

Australia, Iceland and the U.S. l<strong>au</strong>nched their International Partnership to Promote<br />

Advanced Geothermal Technologies in late August 2008, signalling the commitment of the<br />

three countries to aggressively foster and promote cutting edge geothermal technologies<br />

to promote energy security and address global climate change. Iceland, Australia and the<br />

U.S. bring high levels of expertise, leading the world in harnessing geothermal energy and<br />

producing electricity. This framework brings international collaboration on policy and the<br />

technical aspects of enhanced geothermal systems (EGS) such as deep drilling and<br />

geothermal energy conversion.<br />

This international collaborative will bind the U.S., Australia and Iceland to work together to<br />

accelerate the development of geothermal energy, bringing this clean, domestic and<br />

natural energy to the market in the near-term to confront the serious challenges of climate<br />

change and energy security.”<br />

Australia, the U<strong>SA</strong> and Iceland’s will work together to identify and encourage research,<br />

development and deployment projects critical to widespread deployment of EGS and deep<br />

drilling technologies, exchange best practices and support education and training<br />

programs.<br />

The IPGT will foster close working relationships among the international partners to<br />

support an accelerated evolution of geothermal technology through knowledge gained<br />

from projects in different countries and geologic settings.<br />

For additional information – see http://internationalgeothermal.org/


CONCEPTS FOR HOT ROCK ENERGY<br />

ENHANCED (ENGINEERED) GEOTHERMAL SYSTEMS<br />

<strong>Hot</strong> <strong>Rocks</strong> Enhanced with<br />

Hydr<strong>au</strong>lic Fracture Stimulation<br />

Closed-loop Binary Heat Exchange<br />

For details, see: "The Future of Geothermal Energy – Impact of Enhanced Geothermal Systems (EGS) on the United<br />

States in the 21st Century," by an MIT-led interdisciplinary panel, released in January 2007. The report suggests that<br />

100,000 MWe of power can be supplied by EGS within 50 years with a modest investment in R&D. Download (14.1MB PDF)<br />

from: http://geothermal.inel.gov/publications/future_of_geothermal_energy.pdf


Geothermal Power Expected to be Lowest Cost<br />

Get MIT Rpt (Tester, et al 2006) from<br />

htpp://geothermal.inel.gov<br />

Forecast U<strong>SA</strong> Electricity Supply from<br />

<strong>Hot</strong> Rock Engineered Geothermal Systems (EGS)<br />

The fuel is<br />

free<br />

Break-even Price (¢/kWh)<br />

Breakeven Price US¢ / kWh<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Competitive after<br />

100 MW in 7 years<br />

Lowest price after<br />

200 MW in 10 yrs<br />

10 100 1,000 10,000 100,000<br />

EGS Capacity Scenario (MW e )<br />

Engineered Geothermal Systems Capacity (MWe)<br />

Price increases from 2,000 MW reflect move to deeper hot rocks<br />

MIT (Tester, et al 2006):<br />

‣ 100,000 MWe hot rock power in U<strong>SA</strong> by 2050<br />

‣ Approx. 13.7 billion PJ resource to 10 km.<br />

‣ 130,000 x annual U<strong>SA</strong> primary energy use<br />

‣ Cost competitive after 100 MWe (over 7 yrs)<br />

‣ Lowest cost after 200 MWe (over 10 yrs)


Geothermal Power Expected to be Lowest Cost – But Challenges Remain<br />

Estimated specific output & capital costs<br />

The fuel is<br />

free<br />

• MIT (2006) analysis cites 80<br />

kg/sec at 200°C from each<br />

production well as equivalent<br />

to a commercial flow rate.<br />

• Yet to demonstrate EGS rates<br />

of 80 kg/sec per well<br />

• Geodynamics’ Habanero 3<br />

flowed 210°C up to 40 kg/sec<br />

from 240°C+ fractured in 2008,<br />

and higher temperatures were<br />

indicated at equivalent depths<br />

in Jolokia 1 within 10 km of<br />

Habanero in the Cooper Basin<br />

• Simple Calculations<br />

120 kg/sec flow @ 200°C per well<br />

X 80 kW per kg/sec flow =<br />

9,600 kW per well<br />

5 producers for gross 48 mW<br />

Download PowerPoint including above MIT (2006) analysis from<br />

http://www.nrel.gov/analysis/seminar/docs/2007/ea_seminar_mar_1.ppt<br />

Download US DoE Analysis of Technology Challenges for EGS from:<br />

80 kg/sec flow @ 220°C per well<br />

X approx. 90 kW per kg/sec flow =<br />

approx. 7,200 kW / well<br />

7 producers for gross 50 mW


CO 2 capture (incl. separation)<br />

• Current: US$50/Tonne or more<br />

• Target: US$20/Tonne or less<br />

CO 2 storage (incl. < 250km transport)<br />

• Current: US$10/Tonne approx<br />

• Target US$5/Tonne or less<br />

Total CCS Cost:<br />

• Current: US$60/Tonne approx<br />

• Target: US$25/Tonne or less<br />

US $ Cost to Avoid Venting CO 2 and Equivalents`<br />

Australian Renewable Energy Credits ~US$45/tonne CO 2<br />

avoided<br />

CCS ~ 250 km from Combustion<br />

Future Forecast Cost: US$ 0.025 per kg CO2<br />

Emissions from 600MW Super<br />

Critical Black Coal Plant (90% CF)<br />

Vent 870 kg CO2 per MWh<br />

CCS 640 & vent 230 kg CO2 per MWh<br />

If having to pay to attain zero venting<br />

Levelised Cost<br />

US$32 / MWhr<br />

US$48 /MWhr<br />

(49% incr)<br />

US$54 /MWhr<br />

(67% incr)<br />

Image and CCS cost estimates are<br />

courtesy of<br />

Professor John G. Kaldi,<br />

Chief Scientist, CO2CRC,<br />

Chair of Geosequestration,<br />

Australian School of Petroleum,<br />

University of Adelaide

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!