29.10.2012 Views

Exceptional curves on Del Pezzo surfaces

Exceptional curves on Del Pezzo surfaces

Exceptional curves on Del Pezzo surfaces

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Math. Nachr. 256, 58 – 81 (2003) / DOI 10.1002/mana.200310070<br />

<str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

Andreas Leopold Knutsen ∗1<br />

1 UniversitätEssen,Fachbereich6–Mathematik,45117 Essen, Germany<br />

1 Introducti<strong>on</strong><br />

Received 3 September 2001, revised 27 June 2002, accepted 2 August 2002<br />

Published <strong>on</strong>line 25 June 2003<br />

Key words Line bundles, <str<strong>on</strong>g>curves</str<strong>on</strong>g>, <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g>, g<strong>on</strong>ality, Clifford index<br />

MSC (2000) Primary: 14J26; Sec<strong>on</strong>dary: 14H51.<br />

We classify all cases of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, which turn out to be the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />

and some other cases with Clifford dimensi<strong>on</strong> 3. Moreover, the property of being excepti<strong>on</strong>al holds for all<br />

<str<strong>on</strong>g>curves</str<strong>on</strong>g> in the complete linear system. We use this study to extend the results of Pareschi [17] <strong>on</strong> the c<strong>on</strong>stancy<br />

of the g<strong>on</strong>ality and Clifford index of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in a complete linear system <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of<br />

degrees ≥ 2 to the case of <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of degree 1, where we explicitly classify the cases where the<br />

g<strong>on</strong>ality and Clifford index are not c<strong>on</strong>stant.<br />

The two main purposes of this paper are (1) to classify all cases of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> and<br />

(2) to study the g<strong>on</strong>ality and Clifford index of linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface of<br />

degree 1.<br />

In the past decades, several authors have studied the questi<strong>on</strong> whether excepti<strong>on</strong>al linear series <strong>on</strong> a curve C<br />

<strong>on</strong> a certain surface propagate to the other members of |C|. For instance, for a K3 surface, Saint–D<strong>on</strong>at proved in<br />

if and <strong>on</strong>ly if every smooth curve in |C| does, and Reid [19] extended this result<br />

[20] that C possesses a g1 2 or a g1 3<br />

to other g1 d<br />

s. Harris and Mumford c<strong>on</strong>jectured that linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface have the<br />

same g<strong>on</strong>ality, but a counterexample of D<strong>on</strong>agi and Morris<strong>on</strong> [6] proved this to be false. This led Green [10] to<br />

modify the c<strong>on</strong>jecture to the effect that linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface have the same Clifford<br />

index. This was proved by Green and Lazarsfeld in the famous paper [9]. Moreover, the D<strong>on</strong>agi–Morris<strong>on</strong><br />

counterexample is still the <strong>on</strong>ly example known where the g<strong>on</strong>ality is not c<strong>on</strong>stant, and Ciliberto and Pareschi [2]<br />

proved that this is indeed the <strong>on</strong>ly counterexample if OS(C) is ample.<br />

The results of Green and Lazarsfeld were extended to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of degree ≥ 2 by Pareschi in [17].<br />

In fact, he showed that for deg S ≥ 2 the Clifford index of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in a linear system |L| c<strong>on</strong>taining a<br />

smooth curve of genus g ≥ 4 (which is equivalent to L being nef ) is c<strong>on</strong>stant, and that the g<strong>on</strong>ality also is when<br />

g ≥ 2, except for the following case [17, Example (2.1)]:<br />

Case (I): deg S =2and L ∼−2KS (in particular g(L) =3). In this case there is a codimensi<strong>on</strong> 1 family of<br />

smooth hyperelliptic <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L|, whereas the general smooth curve is trig<strong>on</strong>al.<br />

More precisely, denote by φ : S → P2 the morphism defined by −KS, which is a double cover ramified al<strong>on</strong>g<br />

a smooth quartic. Then<br />

H 0 (L) = φ ∗ H 0� O P 2(2) � ⊕ W,<br />

where W is the 1–dimensi<strong>on</strong>al subspace of secti<strong>on</strong>s vanishing <strong>on</strong> the ramificati<strong>on</strong> locus. The smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />

in the first summand are double covers of c<strong>on</strong>ics, whence hyperelliptic, whereas the general curve in the linear<br />

system maps isomorphically to a smooth plane quartic and is therefore trig<strong>on</strong>al.<br />

∗ e–mail: andreas.knutsen@uni-essen.de<br />

c○ 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0025-584X/03/25607-0058 $ 17.50+.50/0


Math. Nachr. 256 (2003) 59<br />

By work of Serrano [21] there is an example when deg S =1(namely L ∼−nKS,forn ≥ 3) where neither<br />

the g<strong>on</strong>ality nor the Clifford index is c<strong>on</strong>stant (see Example 3.8 below). This shows that the situati<strong>on</strong> is more<br />

subtle for deg S =1.<br />

In this paper we first study excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of any degree. These are the <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />

whose Clifford index is not computed by a pencil, and are c<strong>on</strong>jectured to be extremely rare. In fact Eisenbud,<br />

Martens, Lange and Schreyer [8] c<strong>on</strong>jecture that the <strong>on</strong>ly types of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> are smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g>,<br />

and certain <str<strong>on</strong>g>curves</str<strong>on</strong>g> of degree 4r − 3 and genus 4r − 2 in P r for r ≥ 3. We show (Theorem 1.1 (c) below) that<br />

excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface are exactly the strict transforms of smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g> (whence of<br />

Clifford dimensi<strong>on</strong> 2), and of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |−3KS| for deg S =3(of Clifford dimensi<strong>on</strong> 3). This is in full<br />

accordance with the c<strong>on</strong>jecture just menti<strong>on</strong>ed. Furthermore, we show that if C is an excepti<strong>on</strong>al curve and A a<br />

line bundle <strong>on</strong> C computing its Clifford dimensi<strong>on</strong>, then A = OC(D) for a line bundle D <strong>on</strong> the surface and any<br />

smooth curve C ′ ∈|C| is excepti<strong>on</strong>al with its Clifford dimensi<strong>on</strong> computed by OC ′(D).<br />

As an applicati<strong>on</strong> of this study, we classify all the cases for deg S =1where the g<strong>on</strong>ality and the Clifford<br />

index are not c<strong>on</strong>stant, which will include the example of Serrano.<br />

More precisely, we will show that the Clifford index is c<strong>on</strong>stant when deg S =1, except precisely for the case<br />

(III) below, and that the g<strong>on</strong>ality is c<strong>on</strong>stant except precisely for the cases (II) and (III) below:<br />

Case (II): deg S =1and L ∼−2KS +2Γ,fora(−1)–curve Γ(in particular g(L) =3). In this case there is<br />

also a codimensi<strong>on</strong> 1 family of smooth hyperelliptic <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L|, whereas the general smooth curve is trig<strong>on</strong>al.<br />

Case (III): deg S =1, L is ample, L.Γ ≥ 2 for all (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g> Γ if L 2 ≥ 8, and there is an integer d ≥ 3<br />

such that L 2 ≥ 5d − 8 ≥ 7, L.KS = −d and L.C ≥ d for all smooth rati<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> C with C 2 =0.<br />

In this case there is a codimensi<strong>on</strong> 1 family of |L| of smooth (d − 1)–g<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> (which are exactly the<br />

smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> passing through the base point of KS), whereas the general smooth curve is d–g<strong>on</strong>al.<br />

If g(L) ≥ 4, then the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in the codimensi<strong>on</strong> 1 family have Clifford index d − 3, whereas the<br />

general smooth curve has Clifford index d − 2.<br />

The three easiest examples of Case (III) for high genus are L ∼−dKS for d ≥ 3 (precisely the case described<br />

by Serrano [21], see Example 3.8 below), L ∼−(d − 1)KS +Γ,ford ≥ 3 and a (−1)–curve Γ, andL ∼<br />

−(d − 2)KS + R,ford ≥ 4 and a smooth rati<strong>on</strong>al curve R with R 2 =0. In the case of lowest genus, g(L) =3<br />

(and L 2 =7)and L ∼−2KS +Γfor a (−1)–curve Γ.<br />

Since the Picard group of a <strong>Del</strong> <strong>Pezzo</strong> surface is well–known, the c<strong>on</strong>diti<strong>on</strong>s in Case (III) pose restricti<strong>on</strong>s <strong>on</strong><br />

the coefficients of the generators of Pic S in the representati<strong>on</strong> of L. We thus obtain a precise descripti<strong>on</strong> of the<br />

line bundles in Case (III). This is given at the end of Secti<strong>on</strong> 4.<br />

The main results obtained in this paper are summarized in Theorem 1.1 below. For the notati<strong>on</strong>, if L is a nef<br />

line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface, we define the (finite) set of <str<strong>on</strong>g>curves</str<strong>on</strong>g> R(L) by:<br />

R(L) := {Γ | Γ=(−1)–curve and Γ.L=0} ,<br />

and denote its cardinality by m(L). (Note that by the Hodge index theorem, the <str<strong>on</strong>g>curves</str<strong>on</strong>g> in R(L) are necessarily<br />

disjoint.) Moreover, see Secti<strong>on</strong> 2.3 for the definiti<strong>on</strong> of Sn.<br />

Theorem 1.1 Let L be a nef line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface S with g(L) ≥ 2.<br />

(a) All the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have the same g<strong>on</strong>ality if and <strong>on</strong>ly if L is not as in the cases (I), (II) or (III)<br />

above.<br />

(b) If g(L) ≥ 4, then all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have the same Clifford index if and <strong>on</strong>ly if L is not as in case<br />

(III) above.<br />

(c) If g(L) ≥ 4, then either all or n<strong>on</strong>e of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, and if they are, they all have<br />

the same Clifford index and Clifford dimensi<strong>on</strong>. Furthermore, the <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al of Clifford dimensi<strong>on</strong><br />

r ≥ 2 and Clifford index c if and <strong>on</strong>ly if L is as in <strong>on</strong>e of the two following cases:<br />

(i) There exists a base point free line bundle D <strong>on</strong> S satisfying<br />

D 2 = 1, D.KS = −3 , D.L = c +4 and Γ.L ≤ 1 for any Γ ∈R(D)<br />

(the latter c<strong>on</strong>diti<strong>on</strong> is equivalent to DC being very ample for all C ∈|L|).<br />

In this case r =2, the Clifford dimensi<strong>on</strong> is computed <strong>on</strong>ly by OC(D) for all smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> C ∈|L| and<br />

φD : S → P 2 gives the identificati<strong>on</strong> S � S m(D) and maps every smooth curve in |L| to a smooth plane curve<br />

of degree D.L= c +4, whence all these <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al of Clifford dimensi<strong>on</strong> 2 and Clifford index c.


60 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

(ii) S � Sn for n ∈{6, 7, 8} and<br />

n−6 �<br />

L ∼ −3KSn + aiΓi , Γi = (−1)–curve , ai∈{2, 3} .<br />

i=1<br />

In this case r =3, g(L) =10, c =3and for all smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> C ∈|L|, the Clifford dimensi<strong>on</strong> is computed<br />

<strong>on</strong>ly by OC(D), forD := −KSn + �n−6 i=1 Γi.<br />

We actually prove a more precise result. In fact, any line bundle A computing the g<strong>on</strong>ality of a smooth curve<br />

<strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface, is of a particular form (it is, so to speak, induced from a line bundle <strong>on</strong> the surface), and<br />

we are able to find all possible such in Propositi<strong>on</strong> 5.1 below.<br />

We note that the overall pattern here is that the lower the degree of S is � equivalently, the more points of P2 we blow up � , then the more “special” examples we get. In fact, up to deg S =4, all linearly equivalent smooth<br />

<str<strong>on</strong>g>curves</str<strong>on</strong>g> have the same g<strong>on</strong>ality and Clifford index and the <strong>on</strong>ly excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> are the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g>. For<br />

deg S =3, new examples of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> turn up, for deg S =2, the first example of linearly equivalent<br />

smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> of different g<strong>on</strong>alities appears, and for deg S =1, more such examples turn up, together with<br />

examples of linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> of different Clifford indices.<br />

It would be an interesting problem, to study the picture when <strong>on</strong>e blows up ≥ 9 points of P2 (in general<br />

positi<strong>on</strong>), to see which new examples might turn up. Unfortunately, the methods in this paper rely up<strong>on</strong> −KS<br />

being ample (or at least effective) and at the moment we do not see how to treat higher blow ups of P2 .<br />

The paper is organised as follows.<br />

First, in Secti<strong>on</strong> 2 we gather basic definiti<strong>on</strong>s and results that will be needed throughout the paper.<br />

We classify all excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> in Secti<strong>on</strong> 3, thus finishing the proof of Theorem<br />

1.1 (c). The methods are similar to the <strong>on</strong>es used by Pareschi [17], but due to the extensi<strong>on</strong> to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

of degree 1, we need a more careful analysis. We also use results about excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> in [8].<br />

As an applicati<strong>on</strong> we prove parts (a) and (b) of Theorem 1.1 in Secti<strong>on</strong> 4. The result relies up<strong>on</strong> the partial<br />

result obtained in [11, Secti<strong>on</strong> 4].<br />

Finally, in Secti<strong>on</strong> 5 we give the complete list of all the possible pencils computing the g<strong>on</strong>ality of a smooth<br />

curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface.<br />

Note that parts (a) and (b) of Theorem 1.1 for deg S ≥ 2 are equal to the results of Pareschi [17]. In our<br />

proofs, we however never assume that deg S =1, both to give a more complete expositi<strong>on</strong>, and also because<br />

restricting to the case deg S =1would not make the proofs easier, since the case deg S =1is exactly the case<br />

where most problems show up.<br />

Remark 1.2 The smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in case (II) above are simply the strict transforms of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |−2KS|<br />

for deg S =2which do not pass through the blown up point.<br />

The strict transforms of such <str<strong>on</strong>g>curves</str<strong>on</strong>g> passing through the blown up point are the <str<strong>on</strong>g>curves</str<strong>on</strong>g> in case (III) with<br />

L ∼−2KS +Γ.<br />

2 Background material<br />

2.1 Basic notati<strong>on</strong> and definiti<strong>on</strong>s<br />

The ground field is the field of complex numbers. All <strong>surfaces</strong> are smooth irreducible algebraic <strong>surfaces</strong>.<br />

By BP1,...,Pn(S) we will mean the blowing up of S at the points P1,...,Pn.<br />

By a curve <strong>on</strong> a surface S is always meant a reduced and irreducible curve (possibly singular), i.e. a prime<br />

divisor. Line bundles and divisors are used with little or no distincti<strong>on</strong>, as well as the multiplicative and additive<br />

notati<strong>on</strong>. Linear equivalence of divisors is denoted by ∼.<br />

If L is any line bundle <strong>on</strong> a surface, L is said to be numerically effective, orsimplynef, ifL.C ≥ 0 for all<br />

<str<strong>on</strong>g>curves</str<strong>on</strong>g> C <strong>on</strong> S. In this case L is said to be big if L2 > 0. Moreover we write L ≥ 0 for L effective and L>0 for<br />

L effective and n<strong>on</strong>zero.<br />

If F is any coherent sheaf <strong>on</strong> a variety V , we shall denote by hi (F) the complex dimensi<strong>on</strong> of Hi (V,F), and<br />

by χ(F) the Euler characteristic � (−1) ihi (F).<br />

The secti<strong>on</strong>al genus of a line bundle L is the integer g(L) = 1<br />

2 L.(L + KS)+1.IfD∈|L|,theng(L) is the<br />

arithmetic genus of D.


Math. Nachr. 256 (2003) 61<br />

If C is a curve <strong>on</strong> a surface and L is a line bundle <strong>on</strong> the surface, we often use the notati<strong>on</strong> LC := L ⊗OC.<br />

2.2 k–very ampleness<br />

A line bundle L <strong>on</strong> a smooth variety X is said to be k–very ample (resp. k–spanned), for an integer k ≥ 0, if<br />

for each (resp. each curvilinear) 0–dimensi<strong>on</strong>al subscheme Z of X of length h0� �<br />

OZ = k +1, the restricti<strong>on</strong><br />

map H0 (L) → H0� �<br />

L⊗OZ is surjective. (Recall that a 0–dimensi<strong>on</strong>al scheme Z is called curvilinear if<br />

dim TxZ ≤1 for every x ∈Zred.)<br />

In [12] we made the following definiti<strong>on</strong>: A line bundle L <strong>on</strong> a smooth surface S is birati<strong>on</strong>ally k–very ample<br />

(resp. birati<strong>on</strong>ally k–spanned), for an integer k ≥ 1, if there exists a n<strong>on</strong>–empty Zariski–open subset U of S<br />

such that the restricti<strong>on</strong> map H0 (L) → H0� �<br />

L ⊗OZ is surjective for any (resp. any curvilinear) 0–dimensi<strong>on</strong>al<br />

subscheme Z of S of length h0� �<br />

OZ = k +1with support in U.<br />

2.3 <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

A surface S is called a <strong>Del</strong> <strong>Pezzo</strong> surface if its antican<strong>on</strong>ical bundle −KS is ample. The degree of S is defined<br />

as deg S = K2 S . We have the following classificati<strong>on</strong> of such <strong>surfaces</strong>:<br />

Propositi<strong>on</strong> 2.1 [4] Let S be a <strong>Del</strong> <strong>Pezzo</strong> surface. Then<br />

(a) 1 ≤ deg S ≤ 9,<br />

(b) deg S =9if and <strong>on</strong>ly if S � P2 ,<br />

(c) if deg S =8, then either S � P1 × P1 �<br />

2 or S � BP P � ,<br />

�<br />

2 (d) if 1 ≤ deg S ≤ 7,thenS�BP1,...,P9−deg P S<br />

� .<br />

We will often denote a <strong>Del</strong> <strong>Pezzo</strong> surface of degree deg S by Sn, wheren =9− deg S. Letπ : S → P2 be<br />

the blowing up as in (d). Denote by l the class of π∗�OP2(1) � and by ei the class of π−1 (Pi). Wethenhave<br />

and<br />

l 2 = 1, ei .ej = −δij , ei .l = 0,<br />

Pic Sn � Zl ⊕ Ze1 ⊕ ...⊕ Zen � Z n+1 .<br />

Therefore any line bundle <strong>on</strong> Sn is of the form al − � n<br />

1 biei and −KS =3l − � n<br />

1 ei.<br />

A (−1)–curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface is a curve Γ satisfying Γ 2 = −1. Such a curve is necessarily smooth<br />

and rati<strong>on</strong>al and satisfies Γ .KS = −1 (by the adjuncti<strong>on</strong> formula), and those are the <strong>on</strong>ly <str<strong>on</strong>g>curves</str<strong>on</strong>g> with negative<br />

self–intersecti<strong>on</strong> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. It follows that a line bundle D ≥ 0 is not nef if and <strong>on</strong>ly if there exists<br />

a (−1)–curve Γ such that Γ .D 0, L �∼ −KS8 and L is not a (−1)–curve <strong>on</strong> S, then−L.KS ≥ 2 (Hodge index theorem and<br />

adjuncti<strong>on</strong> formula).


62 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

(P7) If L is nef with L 2 > 0 we have h i (L) =h i (L + KS) =0,fori =1, 2, h 0 (L + KS) =g(L) ≥ 1 and the<br />

general member of |L| is smooth and irreducible.<br />

To show the last c<strong>on</strong>diti<strong>on</strong>, note that h 1 (L) =h 2 (L) =0by (P5) and h 2 (L + KS) =h 0 (−L) =0by Serre<br />

duality since L>0. Moreover, L is numerically 1–c<strong>on</strong>nected by the Hodge index theorem � since L 2 > 0 � and<br />

so h 1 (L + KS) =0by Ramanujam vanishing. By (P1) and (P4) L is either base point free or has <strong>on</strong>ly <strong>on</strong>e base<br />

point, so smoothness and irreducibility follow from Bertini’s theorem.<br />

2.4 Clifford index, g<strong>on</strong>ality and the vector bundles E(C, A)<br />

Let C be a smooth irreducible curve of genus g ≥ 2. We denote by g r d<br />

d. The g<strong>on</strong>ality g<strong>on</strong> C of C is defined as<br />

g<strong>on</strong> C := min � k | C has a g 1� k .<br />

a linear system of dimensi<strong>on</strong> r and degree<br />

In particular, C is called hyperelliptic if g<strong>on</strong> C =2and trig<strong>on</strong>al if g<strong>on</strong> C =3. Note that if g<strong>on</strong> C = k, allg 1 k s<br />

must necessarily be base point free and complete.<br />

If g ≥ 4 and A is a line bundle <strong>on</strong> C, then the Clifford index of A is the integer<br />

Cliff A := deg A − 2 � h 0 (A) − 1 �<br />

and the Clifford index of C itself is defined as<br />

Cliff C := min � Cliff A | h 0 (A) ≥ 2, h 1 (A) ≥ 2 � .<br />

Clifford’s theorem then states that Cliff C ≥ 0 with equality if and <strong>on</strong>ly if C is hyperelliptic and Cliff C =1if<br />

and <strong>on</strong>ly if C is trig<strong>on</strong>al or a smooth plane quintic.<br />

⌊ g+3<br />

2<br />

At the other extreme, we get from Brill–Noether theory (cf. [1, V]) that the g<strong>on</strong>ality of C satisfies g<strong>on</strong> C ≤<br />

⌋, whence Cliff C ≤⌊g−1<br />

2<br />

⌋. For the general curve of genus g,wehaveCliff C = ⌊ g−1<br />

2 ⌋.<br />

We say that a line bundle A <strong>on</strong> C c<strong>on</strong>tributes to the Clifford index of C if both h 0 (A) ≥ 2 and h 1 (A) ≥ 2,<br />

and that it computes the Clifford index of C if in additi<strong>on</strong> Cliff C = Cliff A.<br />

Note that Cliff A = Cliff � ωC ⊗ A −1� and also observe that by Riemann–Roch<br />

h 0 (A)+h 1 (A) = g +1− Cliff A. (2.1)<br />

The Clifford dimensi<strong>on</strong> of C is defined as<br />

min � h 0 (A) − 1 | A computes the Clifford index of C � .<br />

A line bundle A which achieves the minimum and computes the Clifford index, is said to compute the Clifford<br />

dimensi<strong>on</strong>. A curve of Clifford index c is (c +2)–g<strong>on</strong>al if and <strong>on</strong>ly if it has Clifford dimensi<strong>on</strong> 1. For a general<br />

curve C, we have g<strong>on</strong> C = c +2.<br />

Lemma 2.2 [3, Theorem 2.3] The g<strong>on</strong>ality k of a smooth (irreducible) projective curve C satisfies<br />

Cliff C +2 ≤ k ≤ Cliff C +3.<br />

The <str<strong>on</strong>g>curves</str<strong>on</strong>g> satisfying g<strong>on</strong> C = Cliff C +3are c<strong>on</strong>jectured to be very rare and called excepti<strong>on</strong>al (cf. [8]<br />

or Propositi<strong>on</strong> 3.11 and Remark 3.12 below). The <str<strong>on</strong>g>curves</str<strong>on</strong>g> of Clifford dimensi<strong>on</strong> 2 are exactly the smooth plane<br />

<str<strong>on</strong>g>curves</str<strong>on</strong>g> of degree ≥ 5.<br />

Let C be a smooth curve <strong>on</strong> a regular surface S � i.e. h 1 (OS) =0 � . Recall that if A is a line bundle <strong>on</strong> C<br />

which is generated by its global secti<strong>on</strong>s, then <strong>on</strong>e can associate to the pair (C, A) a vector bundle E(C, A) of<br />

rank h 0 (A) as follows (this vector bundle was introduced by Lazarsfeld in [13], for more details we refer to [2]<br />

and [17]). Thinking of A as a coherent sheaf <strong>on</strong> S, we get a short exact sequence<br />

0 −→ F (C, A) −→ H 0 (A) ⊗C OS −→ A −→ 0 (2.2)


Math. Nachr. 256 (2003) 63<br />

of OS–modules, where F (C, A) is locally free (since A is locally isomorphic to OC and hence has homological<br />

dimensi<strong>on</strong> <strong>on</strong>e over OS).<br />

Dualizing this sequence, <strong>on</strong>e gets<br />

0 −→ H 0 (A) ∨ ⊗OS −→ E(C, A) −→ N C/S ⊗ A ∨ −→ 0 , (2.3)<br />

where E(C, A) :=F (C, A) ∨ . This vector bundle has the following properties:<br />

det E(C, A) = OS(C) , (2.4)<br />

c2(E(C, A)) = deg A, (2.5)<br />

rk E(C, A) = h 0 (A) ,<br />

h<br />

(2.6)<br />

i (E(C, A) ∨ ) = h 2−i� �<br />

E(C, A) ⊗ ωS = 0,<br />

h<br />

i = 0, 1 , (2.7)<br />

0 (E(C, A)) = h 0 (A)+h 0� NC/S ⊗ A ∨� , (2.8)<br />

If A ≤NC/S, thenE(C, A) is generated by its global secti<strong>on</strong>s off a finite<br />

set coinciding with the (possibly zero) base divisor of NC/S ⊗ A<br />

(2.9)<br />

∨ .<br />

Note that if A is any line bundle <strong>on</strong> C computing the g<strong>on</strong>ality or the Clifford index of C, thenAisgenerated by its global secti<strong>on</strong>s, and we can carry out the c<strong>on</strong>structi<strong>on</strong> of the vector bundle E(C, A) above.<br />

Specializing to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, we get from (2.3) tensored by ωS that<br />

h 1 (A) = h 0� �<br />

E(C, A) ⊗ ωS . (2.10)<br />

Moreover, we have NC/S ⊗ A∨ � ωC ⊗ A∨ ⊗OC(−KS), and by (P1) we get:<br />

Lemma 2.3 Assume A and ωC ⊗ A∨ are both base point free (as will be the case if A computes the Clifford<br />

index of C).<br />

Then E(C, A) is generated by its global secti<strong>on</strong>s except possibly at the base point x of |−KS|,whenK2 S =1<br />

and C passes through x.<br />

3 <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />

We will in this secti<strong>on</strong> study the excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. Clearly, <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface<br />

of type Sn, all the strict transforms of the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al. The following is a n<strong>on</strong>–trivial<br />

example of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> of Clifford dimensi<strong>on</strong> 3.<br />

Example 3.1 Let S � S6 and c<strong>on</strong>sider the line bundle L ∼−3KS6. All the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are of genus<br />

10,andforanysuchC∈|L|,wehaveh0� � ��<br />

1<br />

OC − KS6 = h � � �� � �<br />

OC − KS6 =4,soOC − KS6 c<strong>on</strong>tributes<br />

to the Clifford index of C. We compute<br />

� � � � � 0<br />

Cliff OC − KS6 = degOC−KS6<br />

− 2 h � � �� �<br />

OC − KS6 − 1 = 3.<br />

Now assume C is not excepti<strong>on</strong>al of Clifford index 3. Thend := g<strong>on</strong> C ≤ 5, and by [11, Prop. 3.7] there has<br />

to exist an effective divisor D satisfying D.L− D 2 = d andsuchthatD is of <strong>on</strong>e of the following types:<br />

(a) D 2 =0, −D.KS6 =2,<br />

(b) D 2 =1, −D.KS6 =3,<br />

(c) D ∼−KS6.<br />

In these three cases we get respectively D.L− D 2 = −3D.KS6 − D 2 =6, 8, 6, whence a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Hence all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality 6 and Clifford index 3, which shows that they are excepti<strong>on</strong>al.<br />

If the Clifford dimensi<strong>on</strong> of any such C is 2, thenC is isomorphic to a smooth plane septic, and we easily get a<br />

c<strong>on</strong>tradicti<strong>on</strong> from the genus formula of a smooth plane curve. So all the <str<strong>on</strong>g>curves</str<strong>on</strong>g> have Clifford dimensi<strong>on</strong> 3.<br />

We show in this secti<strong>on</strong> that the <strong>on</strong>ly excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface are precisely the strict transforms<br />

of the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g> and of the <str<strong>on</strong>g>curves</str<strong>on</strong>g> in the above example.<br />

First we need the following result, which we formulate in a general setting:


64 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

Propositi<strong>on</strong> 3.2 Let R be a vector bundle of rank ≥ 2 <strong>on</strong> a surface S generated by its global secti<strong>on</strong>s off a<br />

finite set and such that H 0 (R ∨ )=0and c1(R) 2 ≥ 0.<br />

(a) If c1(R) 2 > 0, thenc2(R) − 2rk R ≥ min{−2,c1(R) .ωS}. Iffurthermoreh 0 (ωS) =h 1 (ωS) =0and<br />

h 0 (R ⊗ ωS) > 0,thenc2(R) − 2rk R ≥−2.<br />

(b) If c1(R) 2 =0and h 1 (OS) =0,thendet R ∼OS(kΣ) for a base point free pencil |Σ| <strong>on</strong> S and an integer<br />

k ≥ 1, and c2(R) − 2rk R ≥ k min{−2, Σ .ωS}.<br />

Proof. Let r := rk R. For a general r–dimensi<strong>on</strong>al subspace V ⊆ H 0 (R), the evaluati<strong>on</strong> map eV :<br />

V ⊗OS → R is generically an isomorphism and has rank exactly r − 1 al<strong>on</strong>g a divisor D ∈|det R| defined<br />

by the vanishing of det eV . By Bertini’s theorem, D is smooth except possibly at the points where R fails to be<br />

generated. Moreover, B := coker eV is a torsi<strong>on</strong> free sheaf <strong>on</strong> D (which is a line bundle outside of the singular<br />

points of D), and we have the exact sequence:<br />

0 −→ V ⊗OS −→ R −→ B −→ 0 (3.1)<br />

of OS–modules. Dualizing this sequence, <strong>on</strong>e obtains<br />

0 −→ R ∨ −→ V ∨ ⊗OS −→ A −→ 0 , (3.2)<br />

�<br />

where A := Hom OD B,OD(D) � is also torsi<strong>on</strong> free. Moreover we find from (3.1) and (3.2) that<br />

c2(R) = degA, (3.3)<br />

rk R ≤ h 0 (A) , (3.4)<br />

deg B =2pa(D) − 2 − deg A − D.KS , (3.5)<br />

where the degree of A is defined by the Riemann–Roch type formula deg A := χ(A) − χ(OD) =χ(A) +<br />

pa(D) − 1, and similarly for B.<br />

To prove (a), let now D 2 > 0. Then by Bertini’s theorem, D is reduced and irreducible (i.e. what we call a<br />

curve).<br />

If h 1 (A) > 0, then by Clifford’s theorem for torsi<strong>on</strong> free rank 1 sheaves <strong>on</strong> singular <str<strong>on</strong>g>curves</str<strong>on</strong>g> (see the appendix<br />

of [7]), Cliff A ≥ 0, whence by (3.3) and (3.4)<br />

c2(R) − 2rk R ≥ deg A − 2h 0 (A) ≥ Cliff A − 2 ≥ −2 ,<br />

which is what we want to prove. Also note that h 1 (A) =h 0 (R ⊗ ωS) when h 0 (ωS) =h 1 (ωS) =0.<br />

If h 1 (A) =0,thendeg A = h 0 (A)+pa(D) − 1. By (3.1) B is generated by its global secti<strong>on</strong>s off a finite<br />

set, whence h 0 (B) > 0 and deg B ≥ 0. Combining (3.3), (3.4) and (3.5) we get<br />

c2(R) − 2rk R ≥ deg A − 2h 0 (A) = − deg A − 2+2pa(D) = degB + D.KS ≥ D.KS ,<br />

which finishes the proof of (a).<br />

Finally we prove (b), so let D 2 =0. Since the evident map Λ r H 0 (R) → Λ r R = OS(D) is surjective off<br />

a finite set, |D| is a linear system without fixed comp<strong>on</strong>ents, and is therefore base point free, since D 2 =0.<br />

Since we assume S to be regular, it follows that |D| is composed with a rati<strong>on</strong>al pencil, i.e. there is a smooth<br />

curve Σ ⊆ S and an integer k ≥ 1 such that D ∼ kΣ and D is the disjoint uni<strong>on</strong> of k <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |Σ|, write<br />

D = D1 + ...+ Dk.<br />

The sheaves A and B are therefore the direct sums A = ⊕Ai and B = ⊕Bi of sheaves <strong>on</strong> each Di. By<br />

arguing as in the proof of (a) we find that deg Ai − 2h 0 (Ai) ≥ min{−2,Di .KS}, whence<br />

c2(R) − 2rk R ≥ deg A − 2h 0 (A) = � � deg Ai − 2h 0 (Ai) � ≥ k min{−2, Σ .KS} .<br />

This c<strong>on</strong>cludes the proof of (b).<br />

In particular, by specializing to a <strong>Del</strong> <strong>Pezzo</strong> surface, using (P6) and the fact that h 0 (kΣ) = k +1by (P5),<br />

we get


Math. Nachr. 256 (2003) 65<br />

Corollary 3.3 With the same assumpti<strong>on</strong>s as in Propositi<strong>on</strong> 3.2, assume that S is a <strong>Del</strong> <strong>Pezzo</strong> surface. Set<br />

D := det R. Then<br />

(a) c2(R) − 2rk R ≥−2,whenD∼−KS8, (b) c2(R) − 2rk R ≥−2r, forr := h0 (D) − 1,whenD2 =0,<br />

(c) c2(R) − 2rk R ≥ D.KS =2g(D) − D2 − 2 otherwise.<br />

Furthermore, in case (c),ifh0 (R ⊗ ωS) > 0, then we have the str<strong>on</strong>ger inequality c2(R) − 2rk R ≥−2.<br />

We now make the following assumpti<strong>on</strong>s:<br />

(∗) Let C0 be a smooth curve of genus g ≥ 4 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. Set L := OS(C0). LetA be a base point<br />

free line bundle <strong>on</strong> C0 such that 3 ≤ h 0 (A) ≤ h 1 (A) (this implies deg A ≤ g − 1) and ωC0 ⊗ A ∨ is base<br />

point free.<br />

As in Subsecti<strong>on</strong> 2.4 we get the vector bundle E := E(C0,A), which is of rank h 0 (A) ≥ 3. Since by (2.10)<br />

h 0 (E ⊗ ωS) > 0, we can find an invertible subsheaf 0 → M → E, and after saturating, we can assume we have<br />

an exact sequence<br />

0 −→ M −→ E −→ R −→ τ −→ 0 , (3.6)<br />

where R is locally free of rank ≥ 2 and τ is supported <strong>on</strong> a finite set.<br />

Define D := det R. Wehave<br />

Lemma 3.4 (a) h0 (R∨ )=h1 (R∨ )=0,<br />

(b) D is n<strong>on</strong> trivial and either D ∼−KS8or D is base point free. In particular h1 (D) =h2 (D) =0.<br />

Moreover L ∼ M + D.<br />

P r o o f. Similar to the proof of [17, (1.12)].<br />

For any C ∈|L| we write DC := OC(D).<br />

Propositi<strong>on</strong> 3.5 (a) h0 (DC) is the same for any C ∈|L|,<br />

(b) DC0 ≥ A,<br />

(c) h1 (DC) =h0 (M ⊗ ωS) > 0 for any C ∈|L|,<br />

(d) Cliff DC is the same for any C ∈|L| and Cliff DC ≤ Cliff A.<br />

P r o o f. The statements (a) – (c) follow as in the proof of [17, (1.13)]. To prove (d), note that R is globally<br />

generated off a finite set, so Corollary 3.3 applies.<br />

We have<br />

Indeed,<br />

Cliff A ≥ D.M + c2(R) − 2rk R. (3.7)<br />

Cliff A = c2(E) − 2(rk E − 1) (by (2.5) and (2.6))<br />

= D.M + c2(R)+length τ − 2rk R<br />

≥ D.M + c2(R) − 2rk R.<br />

(by (3.6))<br />

If D 2 =0, then by (3.7) and (b) of Corollary 3.3:<br />

Cliff A ≥ D.L− 2r. (3.8)<br />

At the same time, by the exact sequence<br />

and Lemma 3.4,<br />

0 −→ −M −→ D −→ DC −→ 0 (3.9)<br />

h 0 (DC) = h 0 (D)+h 1 (−M) ≥ r +1. (3.10)


66 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

Combining (3.8) and (3.10) we get the desired result Cliff A ≥ Cliff DC.<br />

Assume now D2 > 0. Wehave<br />

h 0� � 0 1 0 1<br />

DC = h (D)+h (−M) ≥ h (D) =<br />

2 D.(D − KS)+1,<br />

whence<br />

(3.11)<br />

Cliff DC = D.L− 2 � h 0� � �<br />

DC − 1 ≤ D.M + D.KS . (3.12)<br />

If D ∼−KS8, thenh0 (D) =2, and since DC0 ≥ A and h0 (A) ≥ 3, wehaveh0� �<br />

0<br />

DC = h � we have strict inequalities in (3.11) and (3.12).<br />

�<br />

DC0 ≥ 3, so<br />

Now the result follows by combining (3.7), (3.12) and parts (a) and (c) of Corollary 3.3.<br />

We need the following easy<br />

Lemma 3.6 Let L be a nef line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface with g(L) ≥ 4. Assume L + KS ∼ D1 + D2<br />

for two divisors D1 and D2 satisfying h0 (Di) ≥ 2. ThenOC(D1) and OC(D2) c<strong>on</strong>tribute to the Clifford index<br />

of any smooth C ∈|L| and<br />

Cliff OC(D1) = Cliff OC(D2) ≤ D1 .D2 ,<br />

with equality if and <strong>on</strong>ly if h 0 (OC(Di)) = h 0 (Di) and h 1 (Di) =0for i =1, 2.<br />

Furthermore, if equality holds and there exists a smooth curve C0 ∈|L| such that Cliff C0 = D1 .D2, then<br />

any (−1)–curve Γ with Γ .L=0will satisfy (Γ .D1, Γ .D2) =(0, −1) or (−1, 0).<br />

P r o o f. From the exact sequence<br />

0 −→ KS − D2 −→ D1 −→ OC(D1) −→ 0 ,<br />

h0 (OC(D1)) ≥ h0 (D1) ≥ 2 and h1 (OC(D1)) ≥ h2 (KS − D2) =h0 (D2) ≥ 2, sothatOC(D1) c<strong>on</strong>tributes to<br />

the Clifford index of any smooth C ∈|L|.BysymmetrywegetthesameresultforD2.<br />

Now OC(D2) �OC(L + KS − D1) � ωC ⊗OC(D1) ∨ ,soCliff OC(D1) = Cliff OC(D2).<br />

One computes by Riemann–Roch <strong>on</strong> S:<br />

Cliff OC(D1) = D1 .L− 2 � h0 (OC(D1)) − 1 � ≤ D1 .L− 2 � h0 (D1) − 1 �<br />

≤ D1 .L− D1 . (D1 − KS) = D1 . (L − D1 + KS)<br />

= D1 .D2 .<br />

It is clear that equality holds if and <strong>on</strong>ly if h 0 (OC(Di)) = h 0 (Di) and h 1 (Di) =0for i =1, 2.<br />

For the last statement, since −1 =Γ. (L+KS) =Γ.D1 +Γ.D2, assume by symmetry to get a c<strong>on</strong>tradicti<strong>on</strong><br />

that Γ .D1 > 0. WethengetΓ .D2 = −1−Γ .D1 ≤−2. Clearly h 0 (D1 +Γ) ≥ h 0 (D1) ≥ 2 and h 0 (D2 −Γ) =<br />

h 0 (D2) ≥ 2, so by what we have just shown OC(D1+Γ) c<strong>on</strong>tributes to the Clifford index of any smooth C ∈|L|,<br />

and<br />

a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Cliff OC0(D1 +Γ) ≤ (D1 +Γ). (D2 − Γ) = D1 .D2 − 2Γ .D1 < Cliff C0 ,<br />

As in [11] we say that a line bundle D satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for an integer k ≥ 1 if:<br />

h 0 (D) ≥ 2; h 0 (L − D) ≥ 2; D.(L − D) ≤ k +1; L + KS ≥ D ;<br />

and L ≥ 2D if L 2 ≥ 4k +3.<br />

One of the main results in [11], which we will use in the proof of the next propositi<strong>on</strong>, is the following:<br />

(†)


Math. Nachr. 256 (2003) 67<br />

Lemma 3.7 Let L be a nef line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface with g(L) ≥ 2 and k ≥ 1 an integer. If there is<br />

a line bundle D satisfying (†), then there is a smooth curve in |L| of g<strong>on</strong>ality ≤ k +1.Iffurthermorek≥2and D �∼ −KS8, then all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality ≤ k +1.<br />

C<strong>on</strong>versely, if there is a smooth curve C ∈|L| of g<strong>on</strong>ality k +1with A a g1 k+1 <strong>on</strong> it, then there exists a line<br />

bundle D satisfying (†) and such that OC(D) ≥ A.<br />

P r o o f. The two first asserti<strong>on</strong>s follow from [11, Prop. 3.9 and Prop. 4.1]. (The latter propositi<strong>on</strong> is reproduced<br />

in Propositi<strong>on</strong> 4.1 below.) The last asserti<strong>on</strong> follows from [11, Prop. 3.5].<br />

Also recall the following example of Serrano, which will be useful in the proof of the next propositi<strong>on</strong>:<br />

Example 3.8 (Serrano [21]) Let S be a <strong>Del</strong> <strong>Pezzo</strong> surface of degree 1. C<strong>on</strong>sider L := −nKS for an integer<br />

n ≥ 3 and let C be a smooth curve in |L|. IfC passes through the base point x of |−KS|, thenOC(−KS − x)<br />

is a base point free g 1 n−1 <strong>on</strong> C, otherwiseOC(−KS) is a base point free g 1 n <strong>on</strong> C. Serrano shows that in both<br />

cases, these pencils compute the g<strong>on</strong>ality and also the Clifford index (for more details see [17, Ex. (2.2)] and [21,<br />

Ex. (3.15)]).<br />

We can now prove the following important result, whose proof is unfortunately a bit l<strong>on</strong>g and tedious and<br />

involves the treatment of several special cases.<br />

Propositi<strong>on</strong> 3.9 Given the assumpti<strong>on</strong>s (∗) and the exact sequence (3.6). Assume C0 is excepti<strong>on</strong>al and that<br />

A computes the Clifford dimensi<strong>on</strong> of C0.<br />

Then h0 (R ⊗ ωS) =0.<br />

Proof. Assumethath 0 (R ⊗ ωS) > 0. Then we can put R in a suitable exact sequence as in (3.6), namely<br />

0 −→ P −→ R −→ R1 −→ τ ′ −→ 0 , (3.13)<br />

where P is a line bundle such that P + KS ≥ 0, R1 is locally free of rank rk R − 1 ≥ 1 and τ ′ is of finite length.<br />

Clearly R1 is globally generated off a finite set. Set Q := det R1. Lemma 3.4 applies for Q, which means that<br />

h 1 (Q) =h 2 (Q) =0, Q>0 and either Q ∼−KS8 or Q is base point free.<br />

Let C ∈|L|. We get from<br />

that<br />

where we define<br />

0 −→ −M − P −→ Q −→ QC −→ 0 (3.14)<br />

h 0 (QC) = h 0 (Q)+δ, (3.15)<br />

δ := h 1 (−M − P ) = h 1 (L − Q + KS) . (3.16)<br />

Since h 0 (Q) ≥ 2 and h 0 (L − Q + KS) =h 0 (M + P + KS) ≥ 2(the latter follows from M + P ≥−2KS),<br />

we have by Lemma 3.6 that QC c<strong>on</strong>tributes to the Clifford index of any C ∈|L|.<br />

From (3.6) and (3.13) we get<br />

c2(E) = D.M + c2(R)+length τ, (3.17)<br />

c2(R) = P.Q+ c2(R1)+length τ ′ . (3.18)<br />

Case I: rk R1 =1.<br />

We have Q = R1 and rk E = h 0 (A) =3.Furthermore,<br />

where<br />

Cliff QC = Cliff A +4+κ, (3.19)<br />

κ := −P .M+ Q.KS − length τ − length τ ′ − 2δ. (3.20)


68 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

Indeed,<br />

Cliff QC = Q.L− 2 � h0 (QC) − 1 �<br />

= Q.L− 2 � h0 (Q) − 1 � − 2δ (by (3.15))<br />

= Q.L− Q.(Q − KS) − 2δ (since h1 = Q.(M + P + KS) − 2δ<br />

(Q) =0)<br />

= Q.(M + KS)+c2(E) − D.M − length τ − length τ ′ − 2δ (by (3.17) and (3.18))<br />

= −P .M+ Q.KS +degA−length τ − length τ ′ − 2δ<br />

= Cliff A +4− P.M+ Q.KS − length τ − length τ<br />

(by (2.5))<br />

′ − 2δ.<br />

Since A computes the Clifford dimensi<strong>on</strong> of C0,wemusthave<br />

κ ≥ −4 . (3.21)<br />

We now divide the proof in several subcases.<br />

Case I–a: P.M=3.<br />

By (3.19) – (3.21) and (P6) we have Q ∼−KS8, δ =0and Cliff QC0 = Cliff A. Sinceh0� �<br />

0<br />

QC0 = h (Q) =<br />

2, thecurveC0 is not excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Case I–b: P.M=2, Q.KS = −1.<br />

By (3.19) – (3.21) and (P6) we have Q ∼−KS8, δ =0and Cliff QC0 ≤ Cliff A +1. As above, since C0 is<br />

excepti<strong>on</strong>al, we must have equality in the last inequality, whence by (3.20) we have length τ = length τ ′ =0.<br />

Since Q has <strong>on</strong>e base point x, it follows that R is not globally generated by (3.13), whence by (3.6) and Lemma<br />

2.3, we have that C0 passes through x.<br />

Define the line bundle A ′ := QC0 − x <strong>on</strong> C0. Then clearly A ′ c<strong>on</strong>tributes to the Clifford index of C0,<br />

h 0 (A ′ )=2and Cliff A ′ = Cliff A, again c<strong>on</strong>tradicting that C0 is excepti<strong>on</strong>al.<br />

Case I–c: P.M =2, Q.KS = −2. By (3.19) – (3.21) we have δ = length τ = length τ ′ =0, h 0 (QC) =<br />

h 0 (Q) and Cliff A = Cliff QC0 = Q.(M + P + KS) (the last equality follows by (∗) and Lemma 3.6).<br />

It is clear that OC0(P ) c<strong>on</strong>tributes to the Clifford index of C0, and by Lemma 3.6:<br />

Cliff OC0(P ) ≤ P.(M + Q + KS)<br />

=2+P.Q+ P.KS<br />

= Cliff A − Q.M − Q.KS + P.KS +2<br />

= Cliff A − Q.M + P.KS +4.<br />

The same reas<strong>on</strong>ing works for M,soweget<br />

(3.22)<br />

Q.M ≤ P.KS +4 and Q.P ≤ M.KS +4. (3.23)<br />

From (3.17) and (3.18), combined with deg A ≤ g(C0) − 1,weget<br />

M.(M + KS)+P. � � 2<br />

P + KS + Q ≥ 2 . (3.24)<br />

Furthermore, since QC0 computes the Clifford index of C0 and C0 is excepti<strong>on</strong>al we must have 3 ≤ h0� �<br />

QC0 =<br />

h 0 (Q) = 1<br />

2<br />

Q.(Q − KS)+1= 1<br />

2 Q2 +2, whence by the Hodge index theorem <strong>on</strong> Q and −KS :<br />

Q 2 =<br />

� 2 if S = S8 or Q ∼−KS7 ,<br />

4 if Q ∼ −2KS8 .<br />

(3.25)<br />

If P 2 ≤ 0, thenP.KS ≤−2(by (P6), since P ≥−KS), and by (3.23) we have Q.M ≤ 2. IfQ.M =2,<br />

then Cliff OC0(P ) ≤ Cliff A by (3.22) and h 0� OC0(P ) � = h 0 (P ) = 2 by Lemma 3.6, c<strong>on</strong>tradicting the<br />

excepti<strong>on</strong>ality of C0 again. So Q.M ≤ 1 and by the Hodge index theorem and (3.25) M 2 ≤ 0. But then<br />

M.KS ≤−2 and M.(L − M + KS) =M.(P + Q + KS) ≤ 2+1− 2=1, whence by Lemma 3.6 and


Math. Nachr. 256 (2003) 69<br />

the fact that C0 is excepti<strong>on</strong>al, we must have Q.M =1, M.KS = −2, M 2 =0, h 0� OC0(M) � = h 0 (M) and<br />

h 1 (M) =0.Butthenh 0� OC0(M) � =2and OC0(M) computes the Clifford index 1 of C0, c<strong>on</strong>tradicting the<br />

excepti<strong>on</strong>ality of C0 again.<br />

The same reas<strong>on</strong>ing works if M 2 ≤ 0.<br />

This means that P 2 ,M 2 ≥ 1.<br />

If P ∼ −KS8, thenCliff A = Q.(M + P + KS) = Q.M, whence Q.M ≥ 1. At the same time,<br />

M.(P + Q) =2+M.Q, and <strong>on</strong>e can show that M satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k =1+M.Q≥ 2. Since<br />

P.M= −KS8 .M =2,wehaveM �∼ −KS8, whence by Lemma 3.7 all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality<br />

≤ 2+M.Q= Cliff A +2, whence C0 is not excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

The same reas<strong>on</strong>ing works if M ∼−KS8.<br />

So P 2 ,M 2 ≥ 1 and P.KS,M.KS ≤−2. By (3.23) we also have Q.M,Q.P ≤ 2.<br />

We then easily see by the Hodge index theorem that the <strong>on</strong>ly soluti<strong>on</strong> to (3.24) and (3.25) is M ∼ P ∼ Q and<br />

M 2 = −M .KS =2. By (3.22) and Lemma 3.6 we get Cliff A = Cliff OC0(M) =M.(2M + KS) =2.At<br />

the same time M.(L − M) =2M 2 =4,soM satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k =3. Again by Lemma 3.7, all<br />

the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality ≤ 4, whence C0 is not excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Case I–d: P.M≤ 1.<br />

By combining Lemma 3.6 with (3.19) – (3.21) and (P6), and the fact that h 1 (Q) =0, we get as above<br />

whence as above<br />

Cliff OC0(P ) ≤ Cliff A +4− Q.M + P.KS , (3.26)<br />

Q.M ≤ P.KS +4 and Q.P ≤ M.KS +4. (3.27)<br />

As in case I–c we can show that Q.M ≤ 1 if P 2 ≤ 0. Hence M.(P + Q + KS) ≤ 2+M.KS, and<br />

by Lemma 3.6 and the fact that C0 is excepti<strong>on</strong>al, we have M.KS = −1 and P.M = Q.M =1, whence<br />

M ∼ P ∼ Q ∼−KS8 by (P6) and L ∼−3KS8, which bel<strong>on</strong>gs to the special case studied by Serrano and<br />

described in Example 3.8, where n<strong>on</strong>e of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

The same reas<strong>on</strong>ing works if M 2 ≤ 0, whence P 2 ,M2 ≥ 1, as in case I–c. By the Hodge index theorem<br />

M ∼ P and M 2 =1. By (3.27) we have Q.M ≤ 3. If equality occurs, then M ∼−KS8 and Cliff OC0(M) =<br />

Cliff A by (3.26). By Lemma 3.6 h0�OC0(M) � = h0 (M) =2, c<strong>on</strong>tradicting the excepti<strong>on</strong>ality of C0.<br />

If Q.M =2, then by (3.27) we have −M .KS≤ 2, whence M ∼ P ∼−KS8 and by (3.26) again<br />

� �<br />

Cliff OC0 − KS8 ≤ Cliff A +1. (3.28)<br />

Since −KS8 .L = −KS8 . � − 2KS8 + Q � =2+2=4, � �<br />

� − � 1<br />

KS8 will induce a g4 <strong>on</strong> every member of |L|,<br />

whence Cliff A =1and C0 is a smooth plane quintic, so deg A =5and g(L) =6. Moreover, from (3.19) and<br />

(3.20) we see that δ =0.<br />

We compute<br />

10 = L. � � �<br />

L + KS8 = − 2KS8 + Q � . � − KS8 + Q � = 8+Q 2 ,<br />

whence Q 2 =2. In particular, by Lemma 3.4, Q is base point free, and so is QC0.<br />

Now g(Q0) =1, whence Q ≥−KS8 and we have<br />

Q ∼ −KS8 +Γ,<br />

for a (−1)–curve Γ. So<br />

L ∼ −3KS8 +Γ.<br />

Since C0 is a smooth plane quintic, it is well–known (see e.g. [14, Beispiel 4]) that we must have<br />

2A ∼ ωC0 ∼ � �<br />

L + KS8 ∼ � − 2KS8 +Γ �<br />

. (3.29)<br />

C0<br />

C0


70 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

Furthermore, it is classically known (see e.g. [8]) that any pencil computing the g<strong>on</strong>ality of C0 is obtained by<br />

projecting from <strong>on</strong>e point of the curve embedded by A. Inotherwords<br />

� �<br />

OC0 − KS8 ∼ A − y, (3.30)<br />

for a point y ∈ C0. Combining (3.29) and (3.30) we get OC0(Γ) ∼ 2y, and we have<br />

� �<br />

A ∼ OC0 − KS8 + y ∼ QC0 − y.<br />

Since h 1 (Q) =0, h 1� − 2KS8 +Γ � =0and δ =0, we get from (3.15) and (3.16) that<br />

h 0� � 1<br />

QC0 =<br />

2 Q.� � 0<br />

Q − KS8 +1 = 3 = h (A) ,<br />

c<strong>on</strong>tradicting the base point freeness of QC0.<br />

If Q.M ≤ 1, then either P ∼ M ∼ Q ∼−KS8 or M.KS ≤−3. In the first case we get L ∼−3KS8,<br />

which bel<strong>on</strong>gs to the special case studied by Serrano and described in Example 3.8, where n<strong>on</strong>e of the smooth<br />

<str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>. In the sec<strong>on</strong>d case, we get by Lemma 3.6<br />

Cliff OC0(M) ≤ M.(M + Q + KS) ≤ 1+1− 3 = −1 ,<br />

a c<strong>on</strong>tradicti<strong>on</strong> by Clifford’s theorem.<br />

Case II: rk R1 ≥ 2.<br />

We have h 0 (A) ≥ 4.<br />

By (2.5), (2.6), (3.17) and (3.18)<br />

Cliff A = c2(E) − 2(rk E − 1)<br />

= D.M + c2(R)+length τ − 2rk R<br />

= M.P+ M.Q+ P.Q+ c2(R1) − 2rk R1 − 2+length τ + length τ ′ .<br />

We can prove by (3.14) – (3.16) that<br />

(3.31)<br />

Cliff QC = Q.(M + P )+Q.KS − 2δ. (3.32)<br />

By using Corollary 3.3 and arguing as in the proof of Propositi<strong>on</strong> 3.5, we get the two possibilities:<br />

Q �∼ −KS8 , Cliff A ≥ P.M+ Cliff QC − 2+2δ + length τ + length τ ′ , (3.33)<br />

Q ∼ −KS8 , Cliff A ≥ P.M+ Cliff QC − 3+2δ + length τ + length τ ′ . (3.34)<br />

Note that if Q2 > 0, then equality in (3.33) occurs <strong>on</strong>ly if c2(R1) − 2rk R1 = −Q.KS.<br />

We see that we already get the desired c<strong>on</strong>tradicti<strong>on</strong>s if P.M>2 in (3.33) and if P.M>3 in (3.34). Also,<br />

if P.M =3in (3.34), we get Cliff A = Cliff QC0 and h0� �<br />

0 0<br />

QC0 = h (Q) =h � �<br />

− KS8 =2, c<strong>on</strong>tradicting<br />

the excepti<strong>on</strong>ality of C0.<br />

So we will from now <strong>on</strong> assume that P.M≤ 2.<br />

Before we divide the rest of the proof in four special cases, we deduce the following important informati<strong>on</strong>:<br />

h 0 (M + P + KS) = 1<br />

1<br />

M.(M + KS)+<br />

2 2 P.(P + KS)+M.P+1+δ, (3.35)<br />

M.(M + KS) ≤ 0 and P.(P + KS) ≤ 0 . (3.36)<br />

Indeed, (3.35) follows by Riemann–Roch. For (3.36), assume now, to get a c<strong>on</strong>tradicti<strong>on</strong>, that M.<br />

(M + KS) ≥ 2. Then h 0 (M + KS) ≥ 2 and by Lemma 3.6, (P + Q)C0 c<strong>on</strong>tributes to the Clifford index<br />

of C0,and<br />

Cliff (P + Q)C ≤ (P + Q) . (M + KS)<br />

= Q.(M + P + KS) − Q.P + P.(M + KS)<br />

= Cliff QC +2δ + M.P− Q.P + P.KS .


Math. Nachr. 256 (2003) 71<br />

By (3.33) and (3.34), we get<br />

�<br />

Cliff (P + Q)C − 2+Q.P − P.KS , if Q �∼ −KS8 ,<br />

Cliff A ≥<br />

Cliff (P + Q)C − 3 − 2P .KS8 , if Q ∼ −KS8 .<br />

(3.37)<br />

If Q �∼ −KS8, (3.37) gives that Q.P − P.KS ≤ 2, which means that either −P .KS =2and Q.P =0,<br />

or −P .KS =1and Q.P ≤ 1. In the first case we get P.(M + Q + KS) ≤ 2+0− 2=0, whence all the<br />

smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| would be hyperelliptic by Lemma 3.6, a c<strong>on</strong>tradicti<strong>on</strong> <strong>on</strong> the excepti<strong>on</strong>ality of C0. Inthe<br />

sec<strong>on</strong>d case, the Hodge index theorem would give the c<strong>on</strong>tradicti<strong>on</strong> Q ∼ P ∼−KS8.<br />

If Q ∼−KS8, (3.37) gives that −P .KS8 =1, whence P ∼−KS8 (by (P6) and the fact that P ≥−KS).<br />

Since M.P = −M .KS8 ≤ 2, the Hodge index theorem together with the assumpti<strong>on</strong>s M.(M + KS) ≥ 2,<br />

gives M ∼−2KS8. Hence L ∼−4KS8. But this case bel<strong>on</strong>gs to the special cases of Serrano described in<br />

Example 3.8 above, where we saw that n<strong>on</strong>e of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| were excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

This proves that M.(M + KS) ≤ 0, and by symmetry we obtain the same result for P .<br />

This shows (3.36).<br />

Case II–a: Q �∼ −KS8 and P.M≤ 1.<br />

We first show that both P 2 > 0 and M 2 > 0. Assume to get a c<strong>on</strong>tradicti<strong>on</strong> that P 2 ≤ 0. ThenP.(P +KS) ≤<br />

−2 and by (3.35) and (3.36), combined with h 0 (M + P + KS) ≥ 2,wegetM.P+ δ ≥ 2, and by (3.33) we get<br />

the c<strong>on</strong>tradicti<strong>on</strong><br />

Cliff A ≥ Cliff QC0 − P.M+2 ≥ Cliff QC0 +1.<br />

The same argument works for M,sowehaveP 2 > 0 and M 2 > 0.<br />

We then see by (3.33), (3.35) and (3.36), combined with h 0 (M + P + KS) ≥ 2, the Hodge index theorem<br />

and (P6) that δ =0and M ∼ P ∼−KS8. Now (3.32) and (3.33) again give<br />

Cliff A ≥ Cliff QC − 1 = −KS8 .Q− 1 . (3.38)<br />

ButbyLemma3.6wehave<br />

Cliff � �<br />

− KS8<br />

C0<br />

≤ −KS8 .Q,<br />

and since C0 is excepti<strong>on</strong>al we must have equality in (3.38), whence also in (3.33), with<br />

τ = τ ′ = ∅ , (3.39)<br />

and moreover, by the remark right after (3.34), we have<br />

c2(R1) − 2rk R1 = −Q.KS , if Q 2 > 0 . (3.40)<br />

By (2.10), (3.6), (3.13) and (3.39), we get<br />

h 0� � 0<br />

R1 ⊗ KS8 = h � � 1<br />

E ⊗ KS8 − 2 = h (A) − 2 ≥ 2 . (3.41)<br />

By Corollary 3.3 we therefore have c2(R1) − 2rk R1 ≥−2, which by (3.40) means that Q.KS = −2 if Q 2 > 0.<br />

This last equality also holds if Q 2 =0, whence by (3.38) we get Cliff A =1,soC0 is a smooth plane quintic<br />

with h 0 (A) =3, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Case II–b: Q �∼ −KS8 and P.M=2.<br />

By (3.33), we have δ =0and Cliff A = Cliff QC0, and by our assumpti<strong>on</strong>s that A computes the Clifford<br />

dimensi<strong>on</strong> of C0 we have, by using (3.35) and (3.14)<br />

whence<br />

4 ≤ h 0 (A) ≤ h 1� QC0<br />

� 0<br />

= h (M + P + KS) = 1<br />

1<br />

M.(M + KS)+ P.(P + KS)+3,<br />

2 2<br />

M.(M + KS)+P.(P + KS) ≥ 2 , (3.42)


72 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

which is incompatible with (3.36).<br />

Case II–c: Q ∼−KS8 and P.M≤ 1.<br />

We first show that both P 2 > 0 and M 2 > 0. Assume to get a c<strong>on</strong>tradicti<strong>on</strong> that P 2 ≤ 0. ThenP.(P +KS) ≤<br />

−2 and by (3.35) and (3.36), combined with h 0 (M + P + KS) ≥ 2,wegetM.P+ δ ≥ 2, and by (3.34) we get<br />

Cliff A ≥ Cliff QC0 − P.M+1,<br />

and this gives us the <strong>on</strong>ly possibility P.M = δ =1. But then Cliff A = Cliff QC0 and by (3.15) we get<br />

h0� �<br />

0<br />

QC0 =3 0 and M 2 > 0.<br />

By the Hodge index theorem we therefore must have P ∼ M and M 2 = 1. If M �∼ −KS8, wehave<br />

M.(M + KS) ≤−2 and by (3.35), again combined with h 0 (M + P + KS) ≥ 2,wegetδ ≥ 2. But then (3.34)<br />

yields the c<strong>on</strong>tradicti<strong>on</strong><br />

Cliff A ≥ Cliff QC0 +2.<br />

Therefore we have P ∼ M ∼ Q ∼−KS8 and L ∼−3KS8, again a case bel<strong>on</strong>ging to Example 3.8 above, a<br />

c<strong>on</strong>tradicti<strong>on</strong>.<br />

Case II–d: Q ∼−KS8 and P.M=2.<br />

By (3.34) and the fact that C0 is assumed to be excepti<strong>on</strong>al, we have δ =0and<br />

Cliff A = Cliff QC0 − 1 = −KS8. � �<br />

L +2KS8 − 1 = −L.KS8 − 3 , (3.43)<br />

where the middle equality follows from Lemma 3.6 and the fact that δ =0.<br />

By assumpti<strong>on</strong> h 1 (A) ≥ h 0 (A) ≥ 4, so by (2.1) and (3.43), we get<br />

whence<br />

8 ≤ g(L)+1− Cliff A = 1<br />

2 L.� �<br />

L + KS8 +2+L.KS8 +3 = 1<br />

2 L.� �<br />

L +3KS8 +5,<br />

L. � �<br />

L +3KS8 ≥ 6 . (3.44)<br />

But then <strong>on</strong>e easily computes<br />

L. � � � � � �<br />

L +3KS8 = M. M + KS8 + P. P + KS8 +2,<br />

and therefore (3.44) is incompatible with (3.36).<br />

This finally c<strong>on</strong>cludes the proof of Propositi<strong>on</strong> 3.9.<br />

As an immediate c<strong>on</strong>sequence we get<br />

Corollary 3.10 Given the assumpti<strong>on</strong>s in Propositi<strong>on</strong> 3.9. We have<br />

DC0 ∼ A, h 0� � 0<br />

DC0 = h (D) and Cliff C0 = D.(L + KS − D) .<br />

Proof. Since h 0 (R ⊗ ωS) = 0 by the last propositi<strong>on</strong>, we get by Propositi<strong>on</strong> 3.5 (c) and tensoring the<br />

sequence (3.6) with ωS that<br />

h 1� DC0<br />

� = h 0 (M + KS) = h 0 (E ⊗ ωS) (2.10)<br />

= h 1 (A) ≥ 3 ,<br />

whence DC0 c<strong>on</strong>tributes to the Clifford index of C0 and we must then have Cliff A = Cliff DC0 by Propositi<strong>on</strong><br />

3.5 (d). Since we just saw that h1� �<br />

1 0<br />

DC0 = h (A) it follows from (2.1) that h � �<br />

0<br />

DC0 = h (A) also. Since<br />

DC0 ≥ A and DC0 is base point free (because it computes the Clifford index of C0), we must have DC0 ∼ A.<br />

Finally, since Cliff A = Cliff DC0, <strong>on</strong>e easily sees that we must have equality in (3.10) and (3.11), whence<br />

h1 (−M) =0, h0� �<br />

0<br />

DC0 = h (D) andbyLemma3.6Cliff DC0 = D.(L + KS − D).


Math. Nachr. 256 (2003) 73<br />

Set r := h0 (A) − 1, which is by assumpti<strong>on</strong> the Clifford dimensi<strong>on</strong> of C0. We have then, by the last corollary,<br />

Riemann–Roch and the adjuncti<strong>on</strong> formula:<br />

r = 1<br />

2 D.(D − KS) = D 2 +1− g(D) = g(D) − 1 − D.KS . (3.45)<br />

By [8, Prop. 3.2] any pencil of divisors <strong>on</strong> C0 has degree ≥ 2r. In particular, since h0�OC0(−KS) � ≥<br />

h0 (−KS) ≥ 2,wemusthave−KS .L≥ 2r =2g(D) − 2 − 2D.KS, which yields<br />

−M .KS ≥ −D.KS +2g(D) − 2 . (3.46)<br />

Now if g(D) ≥ 2,wehaveh 0 (D + KS) ≥ 2,sobyLemma3.6,OC0(D + KS) c<strong>on</strong>tributes to the Clifford index<br />

of C0. Combining with (3.46), we get the c<strong>on</strong>tradicti<strong>on</strong><br />

Hence<br />

Cliff OC0(D + KS) ≤ (D + KS) .M = D.M + M.KS < D.M + D.KS = Cliff C0 .<br />

g(D) ≤ 1 . (3.47)<br />

By (3.45), this yields<br />

�<br />

D<br />

r =<br />

2 +1 if g(D) = 0,<br />

D2 if g(D) = 1.<br />

(3.48)<br />

Now define d := D.L and c := Cliff C0 = D.(L + KS − D). By [8, Lemma 1.1], the line bundle<br />

A = DC0 is very ample, whence it embeds C0 as a smooth curve C ′ 0 of degree d and genus g in Pr . Moreover,<br />

since H0� �<br />

0<br />

DC0 � H (D), we have the following commutative diagram, where we denote by φD and φDC the 0<br />

morphisms defined by D and DC0 respectively and set S ′ := φD(S):<br />

S��<br />

C0<br />

φD ��S ′ �� r<br />

�� P<br />

φDC0 �� C ′ 0<br />

�� P r<br />

(3.49)<br />

We therefore have deg S ′ ≤ D 2 . By [8, Cor. 3.5 and Prop. 5.1], a curve of Clifford dimensi<strong>on</strong> r ≥ 4 in P r of<br />

degree d and genus g with (d, g) �= (4r − 3, 4r − 2) cannot be c<strong>on</strong>tained in a (possibly singular) surface of degree<br />

≤ 2r − 3. By (3.48) we get<br />

deg S ′ ≤ D 2 ≤ r ≤ 2r − 3<br />

(when r ≥ 4). So we therefore must have<br />

(d, g) = (4r − 3, 4r − 2) if r ≥ 4 . (3.50)<br />

Now we make use of the following result:<br />

Propositi<strong>on</strong> 3.11 [8] Let C be a smooth curve of genus g, Clifford index c, Clifford dimensi<strong>on</strong> r ≥ 3 and<br />

degree d in Pr . C<strong>on</strong>sider the following properties:<br />

(a) (d, g) =(4r−3, 4r − 2) (whence c =2r− 3),<br />

(b) C has a unique line bundle A computing c,<br />

(c) A2 � ωC and A embeds C as an arithmetically Cohen–Macaulay curve in Pr ,<br />

(d) C is 2r–g<strong>on</strong>al, and there is a <strong>on</strong>e–dimensi<strong>on</strong>al family of pencils of degree 2r, all of the form |A − B|,<br />

where B is the divisor of 2r − 3 points of C.<br />

If r ≤ 9,thenCsatisfies (a) – (d).<br />

In general, if C satisfies (a), it also satisfies (b) – (d).


74 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

Remark 3.12 In [8] it is furthermore c<strong>on</strong>jectured that any curve of Clifford dimensi<strong>on</strong> r ≥ 3 satisfies (a) – (d).<br />

By this result and (3.50) we have<br />

Lemma 3.13 C0 satisfies the c<strong>on</strong>diti<strong>on</strong>s (a) – (d) in Propositi<strong>on</strong> 3.11 if r ≥ 3.<br />

By c<strong>on</strong>diti<strong>on</strong> (c) we have OC0(2D) � ωC0 �OC0(L + KS), so we have an exact sequence<br />

0 −→ KS − 2D −→ L + KS − 2D −→ OC0 −→ 0 ,<br />

from which we get h 0 (L + KS − 2D) =1. � Note that h 1 (KS − 2D) =h 1 (2D) =0by (P5). � This means that<br />

L + KS − 2D =: ∆ ≥ 0 , (3.51)<br />

where ∆ .L=0and ∆ is <strong>on</strong>ly supported <strong>on</strong> (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g>.<br />

Furthermore, from Lemma 3.6 and the fact that D is nef (Lemma 3.4 (b)), we must have ∆ .D =0, whence<br />

by (3.51) ∆ 2 =∆.KS. Riemann–Roch therefore yields<br />

From the exact sequence<br />

we therefore get<br />

h 1 (∆) = h 0 (∆) − 1<br />

2 ∆ . (∆ − KS) − 1 = 0.<br />

0 −→ KS − ∆ −→ 2D −→ OC0(2D) −→ 0 ,<br />

h 0 (2A) = h 0� OC0(2D) � = h 0 (2D) = D.(2D − KS)+1 = 2r + D 2 +1. (3.52)<br />

By Lemma 3.13 and c<strong>on</strong>diti<strong>on</strong> (c) in Propositi<strong>on</strong> 3.11, we have h 0 (2A) =4r − 2 if r ≥ 3. Combining (3.48)<br />

and (3.52) yields<br />

4r − 2 = h 0� OC0(2D) � = 2r + D 2 +1 = 3r + g(D) ,<br />

whence r = D 2 =3and g(D) =1.<br />

We have therefore proved that an excepti<strong>on</strong>al curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface has Clifford dimensi<strong>on</strong> 2 or 3.<br />

3.1 Curves of Clifford dimensi<strong>on</strong> 2<br />

From (3.48), we see that D2 =2if g(D) =1. Hence c = D.L− D2 + D.KS = d − 4. In particular d ≥ 5.<br />

On the other hand, since D satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k = d − 3 ≥ 2, we get from Lemma 3.7 above that<br />

all � the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality ≤ d − 2, which c<strong>on</strong>tradicts the excepti<strong>on</strong>ality of C0. Sowemusthave<br />

2 r, g(D),D � =(2, 0, 1).<br />

In particular D.KS = −3, so by [11, Prop. 3.10] we have that φD is an isomorphism outside of finitely many<br />

c<strong>on</strong>tracted (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g>. In particular it is birati<strong>on</strong>al.<br />

By the commutative diagram (3.49) with r =2,wehavethatφD : S → P2 is a blow up at finitely many<br />

points, which is equal to the number m(D). Clearly 0 ≤ m(D) ≤ 8 and S � Sm(D). Let<br />

R(D) = {Γ1,...,Γ m(D)} . (3.53)<br />

Since DC0 is very ample, we must have<br />

m(D) �<br />

C0 ∼ dD − aiΓi , (3.54)<br />

i=1<br />

with all ai =0or 1. InotherwordsΓi .L =0or 1 for all i. ThismeansthatDC is very ample for any smooth<br />

C ∈|L|, so any such is isomorphic to a smooth plane curve of degree d and is excepti<strong>on</strong>al.


Math. Nachr. 256 (2003) 75<br />

3.2 Curves of Clifford dimensi<strong>on</strong> 3<br />

From (3.48), we have D2 =3and g(D) =1, whence −D.KS =3. By the Hodge index theorem K2 S ≤ 3<br />

with equality if and <strong>on</strong>ly if D ∼−KS6. It is known from the results of G. Martens in [15] (and also c<strong>on</strong>tained in<br />

Propositi<strong>on</strong> 3.11 (a)) that a curve C0 of Clifford dimensi<strong>on</strong> 3 satisfies<br />

g(C0) = 10, c := Cliff C0 = 3, d := D.L = 9 and (2D)C0 ∼ ωC0 . (3.55)<br />

The Hodge index theorem gives 3L 2 = D 2 L 2 ≤ (D.L) 2 =81, whence L 2 ≤ 27 with equality if and <strong>on</strong>ly<br />

if L ∼ 3D. Since g(L) =10,wehaveL.(L + KS) =18, and combined with the Hodge index theorem<br />

K 2 S L2 ≤ (L.KS) 2 = � L 2 − 18 � 2 , we end up with the following possibilities:<br />

(i) L 2 =23, −L.KS =5, K 2 S =1.<br />

(ii) L 2 =24, −L.KS =6, K 2 S =1.<br />

(iii) L2 =25, −L.KS =7, K2 S =1.<br />

(iv) L2 =26, −L.KS =8, K2 S<br />

=1, 2.<br />

(v) L2 =27, −L.KS =9, K2 S =1, 2, 3 � K2 �<br />

S =3implying L ∼ 3D ∼−3KS6 .<br />

We now show that we can rule out the two first cases.<br />

Indeed, in case (i), the pencil � �<br />

� − KS8<br />

� will cut out a g1 5 <strong>on</strong> each member of |L|, in particular <strong>on</strong> C0, c<strong>on</strong>tradicting<br />

its excepti<strong>on</strong>ality.<br />

In case (ii) we calculate<br />

χ(L − 2D) = 1 � � 2 2<br />

L − 4L.D+4D − KS8 .L+2D.KS8 +1 = 1,<br />

2<br />

whence either L − 2D ≥ 0 or KS8 − L +2D ≥ 0. But � KS8 − L +2D � .L= −12, and since L is nef, we must<br />

have L − 2D ≥ 0. Since(L−2D) .KS8 =0,wemusthaveL∼2D, but this c<strong>on</strong>tradicts (L − 2D) .L=6.<br />

We now c<strong>on</strong>sider the cases (iii) – (v).<br />

First note that D satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k =5. We claim that there is no line bundle satisfying (†) for<br />

k


76 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

In the same way we can treat the case (v) and we leave it to the reader to verify that we end up with the<br />

following cases:<br />

L ∼ −3KS8 +3Γ1 +3Γ2 , R(L) = {Γ1, Γ2} , Γ1 . Γ2 = 0, (3.60)<br />

L ∼ −3KS7 +3Γ, R(L) = {Γ} , (3.61)<br />

L ∼ −3KS6 . (3.62)<br />

We now claim that any smooth C ∈|L| for an L as in (3.57) – (3.62) is excepti<strong>on</strong>al. Indeed, note that any<br />

smooth curve in |L| for L as in (3.57) – (3.61) is a strict transform of some smooth curve in |−3KS6|, fora<br />

blowingupofS6 in <strong>on</strong>e or two points (in general positi<strong>on</strong>), so what we claim now follows from Example 3.1<br />

above.<br />

We have therefore proved:<br />

Theorem 3.14 Let C0 be a smooth curve of Clifford index c and Clifford dimensi<strong>on</strong> r ≥ 1 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong><br />

surface S. LetAbe a line bundle computing its Clifford dimensi<strong>on</strong>. Set L := OS(C0).<br />

Then C0 is excepti<strong>on</strong>al if and <strong>on</strong>ly if it is as in <strong>on</strong>e of the following two cases:<br />

(a) There exists a base point free line bundle D <strong>on</strong> S satisfying<br />

D 2 = 1, D.KS = −3 , D.L = c +4 and<br />

Γi .L ≤ 1 for all Γi ∈R(D)<br />

(3.63)<br />

(the latter c<strong>on</strong>diti<strong>on</strong> is equivalent to DC being very ample for all C ∈|L|).<br />

In this case r =2, A ∼OC0(D) and φD : S → P 2 gives the identificati<strong>on</strong> S � S m(D) and maps every<br />

smooth curve in |L| to a smooth plane curve of degree D.L= c +4, whence all these <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al of<br />

Clifford dimensi<strong>on</strong> 2 and Clifford index c.<br />

(b) S � Sn for n ∈{6, 7, 8} and<br />

n−6 �<br />

L ∼ −3KSn +<br />

i=1<br />

aiΓi , Γi = (−1)–curve , ai ∈{2, 3} .<br />

In this case r =3, g(L) =10, c =3and A ∼OC0(D), for<br />

n−6 �<br />

D := −KSn +<br />

i=1<br />

Γi<br />

and all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al of Clifford dimensi<strong>on</strong> 3 and Clifford index 3.<br />

This c<strong>on</strong>cludes the proof of part (c) of Theorem 1.1.<br />

It is clear that after a change of basis of Pic S we can assume that we have<br />

L ∼ dl −<br />

n�<br />

aiei , ai∈{0, 1} , and D ∼ l,<br />

i=1<br />

in case (a), and that we have<br />

in case (b).<br />

L ∼ 9l −<br />

6�<br />

ei −<br />

i=1<br />

n�<br />

biei , bi∈{0, 1} , and D ∼ 3l −<br />

i=7<br />

4 C<strong>on</strong>clusi<strong>on</strong> of the proof of Theorem 1.1<br />

From [11] we have the following result:<br />

6�<br />

i=1<br />

ei<br />

(3.64)


Math. Nachr. 256 (2003) 77<br />

Propositi<strong>on</strong> 4.1 [11, Prop. 4.1] Let L be a nef line bundle of secti<strong>on</strong>al genus g(L) ≥ 2 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface<br />

such that L �∼ −2KS8. Assume that the minimal g<strong>on</strong>ality of a smooth curve in |L| is k +1, for an integer k ≥ 1<br />

and that am<strong>on</strong>g all the divisors satisfying (†), there is <strong>on</strong>e not being of <strong>on</strong>e of the following types:<br />

(a) k =1, D ∼−KS7 and L ∼−2KS7,<br />

(b) k =1, D ∼−KS8 +Γ, with Γ a (−1)–curve and L ∼ 2D,<br />

(c) D ∼−KS8.<br />

Then all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality k +1.<br />

In [11, Secti<strong>on</strong> 4] we furthermore showed that the cases (a) and (b) are exactly the cases (I) and (II) in<br />

the introducti<strong>on</strong>. We also showed that if the <strong>on</strong>ly divisor satisfying (†) for k = k0 is −KS8, then there is a<br />

codimensi<strong>on</strong> 1 family of smooth (k0 +1)–g<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L|, c<strong>on</strong>sisting precisely of the <str<strong>on</strong>g>curves</str<strong>on</strong>g> passing through<br />

the base point x of � �<br />

� − KS8<br />

�, whereas all the other <str<strong>on</strong>g>curves</str<strong>on</strong>g> are (k0 +2)–g<strong>on</strong>al.<br />

We have therefore left to prove that the case (c) above is Case (III) in the introducti<strong>on</strong>. We have to prove the<br />

numerical c<strong>on</strong>diti<strong>on</strong>s, which follow by:<br />

Lemma 4.2 Let L be a base point free line bundle of secti<strong>on</strong>al genus g(L) ≥ 2 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface of<br />

degree 1 and k0 ≥ 1 an integer. Assume that the minimal g<strong>on</strong>ality of a smooth curve in |L| is k0 +1. The<br />

following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />

(i) the <strong>on</strong>ly divisor satisfying (†) for k = k0 is −KS,<br />

(ii) L2 ≥ 5k0 +2, −L.KS = k0 +2, L is ample, L.C ≥ k0 +2for all smooth rati<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> C with<br />

C2 =0, and L.Γ ≥ 2 for all (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g> Γ if L2 ≥ 8.<br />

P r o o f. Assume (i) holds. As remarked right after Propositi<strong>on</strong> 4.1 above, we have that the general smooth<br />

curve in |L| has g<strong>on</strong>ality k0 +2.Sincek0 +2 ≤⌊ g(L)+3<br />

2 ⌋ (see Secti<strong>on</strong> 2.4), we get g(L) ≥ 2k0 +1.Furthermore<br />

−KS .L= k0 +2and L2 =2g(L) − 2 − L.KS ≥ 5k0 +2.<br />

By [11, Prop. 3.7] we have that L + KS is nef, whence R(L) =∅. If there exists a (−1)–curve Γ such<br />

that Γ .L =1,defineD := −KS +Γand M := L − D = L + KS − Γ. If L2 ≥ 8, <strong>on</strong>e easily computes<br />

h0 (L − 2D) ≥ 1<br />

� �<br />

2 2<br />

2 L − 3k − 6 +1> 0 and L.D− D = k0 +1,soD will satisfy the c<strong>on</strong>diti<strong>on</strong>s (†) for<br />

k = k0, a c<strong>on</strong>tradicti<strong>on</strong>.<br />

If there is a smooth rati<strong>on</strong>al curve C with C2 =0and L.C ≤ k0 +1,thenCsatisfies (†) for k = k0,againa<br />

c<strong>on</strong>tradicti<strong>on</strong>.<br />

Assume now (ii) holds and that D is a divisor satisfying (†) for k = k0. By [11, Prop. 3.7 and Rem. 3.8] either<br />

g(D) =0and � D2 �<br />

, −D.KS =(0, 2) or (1, 3),org(D) =1and D is of the form (3.56).<br />

If L 2 =7(so that k0 =1),wefind(−2KS +Γ) 2 =(−2KS +Γ).L =7, whence by the Hodge index<br />

theorem L ∼−2KS +Γ, and the <strong>on</strong>ly divisor satisfying (†) for k = k0 is −KS.<br />

So we can assume L2 ≥ 8, whence by our assumpti<strong>on</strong>s R(L) =R1(L) =∅,soifg(D) =1,thenD∼−KS by (3.56). So we have left to treat the cases where � D2 �<br />

, −D.KS =(0, 2) or (1, 3).<br />

By the assumpti<strong>on</strong>s in (ii) <strong>on</strong>e immediately sees that D cannot be as in the first case.<br />

So assume now D2 =1and D.KS = −3. Sinceg(L) ≥ 2k0 +1,wehave(k0,g(L)) �= (2, 3), whence<br />

by [11, Prop. 3.7] all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, and by Theorem 3.14 (a) Γi .L ≤ 1 for any<br />

Γi ∈R(D). (Note that R(D) �= ∅, in fact m(D) =8, by Theorem 3.14 (a).) This c<strong>on</strong>tradicts the c<strong>on</strong>diti<strong>on</strong>s<br />

(ii).<br />

This c<strong>on</strong>cludes the proof of parts (a) and (b) of Theorem 1.1.<br />

We have shown above that if L is as in Case (III) with L 2 =7,thenL ∼−2KS +Γfor a (−1)–curve Γ.<br />

C<strong>on</strong>versely any such L is easily seen to satisfy the c<strong>on</strong>diti<strong>on</strong>s of Case (III).<br />

For L 2 ≥ 8, a line bundle in Case (III) is determined by its intersecti<strong>on</strong> numbers with <str<strong>on</strong>g>curves</str<strong>on</strong>g> D <strong>on</strong> S with<br />

D 2 = −1 and D 2 =0. Now Pic S8 � Zl ⊕ Ze1 ⊕ ... ⊕ Ze8 and −KS8 =3l − � 8<br />

1 ei as described in<br />

Secti<strong>on</strong> 2.3. Writing D ∼ bl − � 8<br />

1 biei with b1 ≥ ... ≥ b8 we get finitely many tuples (b; b1,...,b8) yielding<br />

D 2 = −1 and D 2 =0(see e.g. [5, pp. 4 – 5]). More precisely, writing � a0; a n1<br />

1 ,an2<br />

2 ,...� for the class of the<br />

curve a0l − �n1 1 eit − �n2 1 ejt − ...we get the following seven types of <str<strong>on</strong>g>curves</str<strong>on</strong>g> D with D2 = −1:<br />

� �<br />

0; −1 ,<br />

� 2<br />

1; 1 � ,<br />

� 5<br />

2; 1 � ,<br />

� 6<br />

3; 2, 1 � ,<br />

� 3 5<br />

4; 2 , 1 � ,<br />

� 6 2<br />

5; 2 , 1 � ,<br />

� 7<br />

6; 3, 2 � ,


78 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

and the following fifteen types of <str<strong>on</strong>g>curves</str<strong>on</strong>g> D with D2 =0:<br />

� � � 4<br />

1; 1 , 2; 1 � , � 3; 2, 1 5� , � 4; 3, 1 7� , � 4; 2 3 , 1 4� , � 5; 2 6 , 1 � , � 5; 3, 2 3 , 1 4� , � 6; 3 2 , 2 4 , 1 2�<br />

� � � 4 3 6<br />

7; 3 , 2 , 1 , 7; 4, 3, 2 � , � 8; 3 7 , 1 � , � 8; 4, 3 4 , 2 3� , � 9; 4 2 , 3 5 , 2 � , � 10; 4 4 , 3 4� , � 11; 4 7 , 3 � .<br />

Now we set L ∼ al − � 8<br />

1 aiei, and we can assume a1 ≥ ...≥ a8 by symmetry. The c<strong>on</strong>diti<strong>on</strong> −L.KS = d<br />

now reads d =3a − a1 − ...− a8 and L 2 ≥ 5d − 8 gives<br />

a 2 ≥ a 2 1 + ...+ a 2 8 +5d − 8 = a 2 1 + ...+ a 2 8 +15a − 5a1 − ...− 5a8 − 8 .<br />

Posing the remaining c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> L we leave it to the reader to verify that we get the following alternative<br />

descripti<strong>on</strong> of the line bundles in Case (III):<br />

Alternative descripti<strong>on</strong> of Case (III): deg S =1, and either L2 =7,g(L) =3,d=3,L∼−2KS +Γ<br />

for a (−1)–curve Γ, orL ∼ al − �8 1 aiei, d := 3a − a1 − ...− a8, with the following c<strong>on</strong>diti<strong>on</strong>s, assuming<br />

a1 ≥ ...≥ a8:<br />

a8 ≥ 2 , a7 + a8 ≥ a1 , a5 + ...+ a8 ≥ a, a2 + ...+ a8 ≥ 2a,<br />

a ≥ a1 + a2 +2, a ≥ 2a1 , a+ a8 ≥ a1 + a2 + a3 ,<br />

2a ≥ a1 + ...+ a5 +2, 2a ≥ 2a1 + a2 + a3 + a4 , 2a + a8 ≥ a1 + ...+ a6 ,<br />

3a ≥ 2a1 + a2 + ...+ a7 +2, 3a ≥ 2a1 +2a2 + a3 + ...+ a6 ,<br />

4a ≥ 2a1 +2a2 +2a3 + a4 + ...+ a8 +2,<br />

4a ≥ 3a1 +2a2 + a3 + ...+ a8 ,<br />

4a ≥ 2a1 + ...+2a4 + a5 + a6 + a7 ,<br />

5a ≥ 2a1 + ...+2a6 + a7 + a8 +2, 5a ≥ 2a1 + ...+2a7 ,<br />

5a ≥ 3a1 +2a2 + ...+2a5 + a6 + ...+ a8 ,<br />

6a ≥ 3a1 +2a2 + ...+2a8 +2, 6a ≥ 3a1 +3a2 +2a3 + ...+2a7 + a8 ,<br />

7a ≥ 3a1 + ...+3a4 +2a5 + ...+2a8 ,<br />

8a ≥ 3a1 + ...+3a7 +2a8 ,<br />

a(a − 15) ≥ a1(a1 − 5) + ...+ a8(a8 − 5) − 8 .<br />

5 Pencils computing the g<strong>on</strong>ality<br />

In Theorem 3.14 we described the line bundles A computing the Clifford dimensi<strong>on</strong> of smooth excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />

<strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. In particular, we saw that such a line bundle is the restricti<strong>on</strong> of a line bundle <strong>on</strong> the<br />

surface.<br />

We c<strong>on</strong>clude this paper by describing the pencils computing the g<strong>on</strong>ality of a smooth curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong><br />

surface. This will make some of the results of Pareschi more precise (see [17, Lemma (2.8)]), and extend them<br />

to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of degree 1.<br />

By Lemma 3.7, if A computes the g<strong>on</strong>ality of a smooth curve C <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface S, then there exists<br />

a line bundle D <strong>on</strong> S such that OC(D) ≥ A. Furthermore, if the g<strong>on</strong>ality is the minimal am<strong>on</strong>g the smooth<br />

<str<strong>on</strong>g>curves</str<strong>on</strong>g> in |C| (which is always the case, except possibly for the cases (I), (II) and (III) described above), the line<br />

bundle D has to be as in (a) – (f ) of [11, Prop. 3.7], i.e. either D ∼−KS8 or � D2 �<br />

, −D.KS =(0, 2), (1, 3),<br />

(2, 2), (3, 3) or (4, 4), the latter implying that the g<strong>on</strong>ality is 4. Furthermore, by [11, Prop. 3.7] and Theorem<br />

3.14 combined, if � D2 �<br />

, −D.KS =(3, 3),then(g<strong>on</strong> C, g(C)) = (3, 4), (4, 5) or (6, 10).<br />

In the special cases (I), (II) and (III), if C has minimal g<strong>on</strong>ality d − 1, then we have seen that D ∼−KS7,<br />

D ∼−KS8 +Γ(where Γ is a (−1)–curve) and D ∼−KS8 respectively, and there are no other line bundles<br />

satisfying (†) for k = d − 2 by Propositi<strong>on</strong> 4.1. If C has g<strong>on</strong>ality d, a careful analysis is needed. Denoting by<br />

A again a line bundle computing the g<strong>on</strong>ality, by Lemma 3.7 there exists an effective divisor D ′ <strong>on</strong> S satisfying<br />

(†) for k = d − 1 � in particular D ′ .L− D ′2 �<br />

≤ d such that OC(D ′ ) ≥ A. If D ′ �∼ D, then we must have<br />

D ′ .L− D ′2 ′ ′ ′ ′ = d. IfD is not nef, then there is a (−1)–curve Γ satisfying Γ .D < 0. By arguing as in [11,<br />

(3.9)], we find that Γ ′ .D ′ =1, Γ ′ .L =0and D ′ − Γ ∼ D. Since L is ample in the cases (I) and (III), we


Math. Nachr. 256 (2003) 79<br />

must be in case (II), and we also see that Γ ′ =Γ, whence D ′ ∼−KS8 +2Γ. But since Γ .L =0,wehave<br />

OC(D ′ ) �OC(D), whence we can work with D ∼−KS8 +Γin this case. So we can assume that D ′ is nef. By<br />

the same argument, we also get that M ′ := L − D ′ is nef, except when we are in case (II) and M ′ ∼−KS8 +2Γ.<br />

In this case D ′ ∼−KS8, and again since Γ .L =0,wehaveOC(D ′ ) �OC(D), whence we can assume that<br />

M ′ is nef as well.<br />

We now treat the three different special cases and will find out that such a divisor D ′ does not exist in the cases<br />

(I) and (II), and that there are a few possibilities in case (III).<br />

Case (I): We have d =3and L ∼−2KS7. In particular −2KS7 .D ′ = D ′ .L = D ′2 +3.SinceL − D ′ ≥<br />

−KS,wehaveD ′ .L≤ (L + KS) .L=4, whence L.D ′ =4, D ′2 =1and −KS7 .D ′ =2, a c<strong>on</strong>tradicti<strong>on</strong> <strong>on</strong><br />

the parity.<br />

Case (II): This case is similar to case (I) and left to the reader.<br />

Case (III): We have deg S =1and −L.KS8 = d ≥ 3.<br />

We first treat the case g(D ′ ) ≥ 2. Thenh 0 (D ′ + KS) ≥ 2.<br />

Assume first −D ′ .KS ≤−M ′ .KS. Wehave<br />

(D ′ + KS) . (M ′ − KS) = D ′ .M ′ + KS . (M ′ − D ′ ) − K 2 S < D′ .M ′ , (5.1)<br />

whence D ′ + KS8 ∼−KS8, i.e.D ′ ∼−2KS8. One has d = D ′ .L− D ′2 = −2KS8 .L− 4K2 =2d− 4,<br />

S8<br />

whence d =4.Wehaveh0�D ′ �<br />

′<br />

C =4and deg D C =8, so there exists an effective divisor Z of degree 4 <strong>on</strong><br />

C such that A ∼ D ′ C − Z. This implies that h0�D ′ �<br />

0 ⊗IZ = h (A) =2, so there are two distinct elements<br />

D1 and D2 in |D ′ | passing through Z. Since the <strong>on</strong>ly reducible elements of |D ′ | are of the form H1 + H2 for<br />

Hi ∈ � �<br />

� �<br />

� − � KS8 and C does not pass through the base point of � − � KS8 , <strong>on</strong>e easily sees that D1 and D2 must be<br />

reduced and irreducible, in particular they intersect properly. Since D1 .D2 =degZ =4,wehaveZ = D1∩D2.<br />

C<strong>on</strong>versely, picking any two irreducible elements D1 and D2 in � �<br />

� − � 2KS8 intersecting in 4 distinct points and<br />

setting Z := D1 ∩ D2, <strong>on</strong>e sees from the exact sequence<br />

0 −→ M ′ −→ L ⊗IZ −→ M ′ D2<br />

−→ 0<br />

that |L ⊗IZ| is n<strong>on</strong>empty and has no base points off Z, whence from Bertini’s theorem the generic member is<br />

smooth. For any such smooth C, the line bundle � �<br />

− 2KS8 C − Z is then a g1 d .<br />

Assume now −D ′ .KS > −M ′ .KS. If −M ′ .KS =1then M ′ ∼−KS8by (P6), whence the absurdity<br />

d = D ′ .M ′ = −D ′ .KS8 = − � �<br />

L + KS8 .KS8 = d − 1. So −M ′ .KS8 ≥ 2, which in particular yields<br />

d = −L.KS8 ≥ 5.<br />

Furthermore, by (5.1) with D ′ and M ′ interchanged, we have g(M ′ )=1, unless possibly if M ′ ∼−2KS8.<br />

But in this case, we get d =4as above, a c<strong>on</strong>tradicti<strong>on</strong>. So g(M ′ )=1.<br />

By the c<strong>on</strong>diti<strong>on</strong>s (†) and [11, Lemma 3.1 and Rem. 3.4 (ii)], we must have g(L) =2d − 3 or 2d − 2 and<br />

L 2 ≤ 4d−2. Since−L.KS = d,wegetL 2 =2g(L)−2−L.KS =5d−6 (resp. 5d−8)ifg(L) =2d−2(resp.<br />

g(L) =2d − 3). Sinced ≥ 5 we end up with the <strong>on</strong>ly possibilities (d, g(L)) = (5, 7) and (6, 9). In the first case,<br />

we get g(D ′ )=2, whence −D ′ .KS =3and D ′2 =5. In particular D.L =10, whence A ∼ D ′ C − Z5, for<br />

Z5 a scheme of length 5. Similarly, we get g(D ′ )=3and −D ′ .KS =4in the sec<strong>on</strong>d case, whence D ′2 =8,<br />

D ′ .L=14,andA∼ D ′ C − Z8,forZ8a scheme of length 8.<br />

The cases that are left are now g(D ′ )=0or 1. By computing Cliff D ′ C as in the proof of [11, Prop. 3.7], we<br />

leave it to the reader to check that we end up with <strong>on</strong>ly three possibilities:<br />

(1) g(D ′ )=0, D ′2 =0,<br />

(2) g(D ′ )=0, D ′2 =1, d =3,<br />

(3) g(D ′ )=1, D ′2 =2.<br />

Summarizing, we obtain the following complete classificati<strong>on</strong>:<br />

Propositi<strong>on</strong> 5.1 Let C be a smooth curve of genus g ≥ 2 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface and A a line bundle<br />

computing its g<strong>on</strong>ality.<br />

(a) If C is of g<strong>on</strong>ality d and not as in the cases (I), (II) and (III),thenAisof <strong>on</strong>e of the following types:<br />

(i) A = DC,forD2 =0, −D.KS =2,<br />

(ii) A = DC − P , P any point of C, D2 =1, −D.KS =3,<br />

(iii) A =(−KS8)C − x, x base point of |−KS8|,


80 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />

(iv) A = DC − Z2, D2 = −D.KS =2, Z2 a length 2 scheme where D fails to be very ample, K2 S ≤ 2,<br />

(v) A = DC − Z3, D2 = −D.KS =3, Z3 a length 3 scheme where D fails to be 2–very ample, (d, g) =<br />

(3, 4), (4, 5) or (6, 10), K2 S ≤ 3,<br />

(vi) A = DC − Z4, D2 = −D.KS =4, Z4 a length 4 scheme where D fails to be 3–very ample, (d, g) =<br />

(4, 5), K2 S ≤ 4.<br />

(b) If C is as in case (I) (resp. (II)), thenA = � � � �<br />

− KS7 − Z2 resp. A = − KS8 +Γ C �<br />

C − Z2, with<br />

Γ a (−1)–curve � �<br />

, with Z2 a length 2 scheme where −KS7 resp. −KS8 +Γ � fails to be very ample if C is<br />

hyperelliptic; and A = � �<br />

− KS7 C − P � resp. A = � − KS8 +Γ �<br />

C − P � for any point P ∈ C if C is trig<strong>on</strong>al.<br />

(c) If C is as in case (III) and of minimal g<strong>on</strong>ality d − 1,thenA = � �<br />

− KS8 − x, wherexisthe base point<br />

C<br />

of |−KS8|. IfChas g<strong>on</strong>ality d (equivalently C does not pass through x),thenAisof <strong>on</strong>e of the following types:<br />

(i) A = � �<br />

− KS8 C ,<br />

(ii) A = � �<br />

− 2KS8 C − Z4, whereZ4has length 4 and Z4 = D1 ∩ D2 for two distinct <str<strong>on</strong>g>curves</str<strong>on</strong>g> D1 and D2<br />

in |−2KS8|,<br />

(iii) A = DC, forD2 =0, −D.KS =2,<br />

(iv) A = DC − P , P any point of C, D2 =1, −D.KS =3, d =3,<br />

(v) A = DC − Z2, D2 = −D.KS =2, Z2 a length 2 scheme where D fails to be very ample,<br />

(vi) A = DC − Z5, D2 =5, −D.KS =3, Z5 a length 5 scheme, (d, g) =(5, 7),<br />

(vii) A = DC − Z8, D2 =8, −D.KS =4, Z8 a length 8 scheme, (d, g) =(6, 9).<br />

We also make the following observati<strong>on</strong>:<br />

Corollary 5.2 Let S be a <strong>Del</strong> <strong>Pezzo</strong> surface of degree n ≥ 3 embedded in Pn by −KS, and let C ⊆ S be a<br />

smooth curve of genus g ≥ 6 which is not excepti<strong>on</strong>al. Then any pencil computing the g<strong>on</strong>ality of C is cut out<br />

<strong>on</strong> C by a pencil of c<strong>on</strong>ics <strong>on</strong> S, whence the number of such pencils <strong>on</strong> C is finite. (In particular, S c<strong>on</strong>tains no<br />

bi–elliptic curve of genus ≥ 6.)<br />

Acknowledgements The author would like to thank S. A. Strømme for help in correcting a mistake in an earlier versi<strong>on</strong> of<br />

the paper and a referee for useful comments, in particular for suggesting to include Cor. 5.2.<br />

The author was supported by a grant from the Research Council of Norway. Most of the paper was written at the University<br />

of Bergen, Norway.<br />

References<br />

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of Algebraic Curves, Volume I, Grundlehren der<br />

Mathematischen Wissenschaften 267 (Springer–Verlag, Berlin – Heidelberg – New York – Tokyo, 1985).<br />

[2] C. Ciliberto and G. Pareschi, Pencils of minimal degree <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface, J. Reine Angew. Math. 460,15–36<br />

(1995).<br />

[3] M. Coppens and G. Martens, Secant spaces and Clifford’s theorem, Comp. Math. 68, 337 – 341 (1991).<br />

[4] M. Demazure, Surfaces de <strong>Del</strong> <strong>Pezzo</strong> I, II, III, IV, V, in: Séminaire sur les singularités des <strong>surfaces</strong>, edited by M. Demazure,<br />

H. Pinkham and B. Teissier, Lecture Notes in Mathematics 777 (Springer–Verlag, 1980).<br />

[5] S. Di Rocco, k–very ample line bundles <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, Math. Nachr. 179 (1996).<br />

[6] R. D<strong>on</strong>agi and D. R. Morris<strong>on</strong>, Linear systems <strong>on</strong> K3 secti<strong>on</strong>s, J. Diff. Geom. 29, 49 – 64 (1989).<br />

[7] D. Eisenbud, J. Koh, and M. Stillman, Determinantal equati<strong>on</strong>s for <str<strong>on</strong>g>curves</str<strong>on</strong>g> of high degree, with an appendix with J. Harris,Amer.J.Math.110,<br />

513 – 539 (1988).<br />

[8] D. Eisenbud, H. Lange, G. Martens, and F.–O. Schreyer, The Clifford dimensi<strong>on</strong> of a projective curve, Comp. Math. 72,<br />

173 – 204 (1989).<br />

[9] M. Green and R. Lazarsfeld, Special divisors <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface, Invent. Math. 89, 357 – 370 (1987).<br />

[10] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differ. Geom. 19, 125 – 171 (1984).<br />

[11] A. L. Knutsen, Higher order birati<strong>on</strong>al embeddings of <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, Math. Nachr. 254–255, 183 – 196 (2003).<br />

[12] A. L. Knutsen, On kth order embeddings of K3 <strong>surfaces</strong> and Enriques <strong>surfaces</strong>, Manuscr. Math. 104, 211 – 237 (2001).<br />

[13] R. Lazarsfeld, Brill–Noether–Petri without degenerati<strong>on</strong>s, J. Diff. Geom. 23, 299 – 307 (1986).<br />

[14] G. Martens, Funkti<strong>on</strong>en v<strong>on</strong> vorgegebener Ordnung auf komplexen Kurven, J. Reine und Angew. Math. 320, 68–85<br />

(1980).<br />

[15] G. Martens, Über den Clifford–Index algebraischer Kurven, J. Reine und Angew. Math. 336, 83 – 90 (1982).<br />

[16] M. Mella and M. Palleschi, The k–very ampleness <strong>on</strong> an elliptic quasi bundle, Abh. Math. Sem. Univ. Hamburg 63,<br />

215 – 226 (1993).


Math. Nachr. 256 (2003) 81<br />

[17] G. Pareschi, <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> linear systems <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, Math. Ann. 291, 17 – 38 (1991).<br />

[18] I. Reider, Vector bundles of rank 2 and linear systems <strong>on</strong> algebraic <strong>surfaces</strong>, Annals of Math. 127, 309 – 316 (1988).<br />

[19] M. Reid, Special linear systems <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> lying <strong>on</strong> a K3 surface, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. 13(2), no. 3, 454 – 458 (1976).<br />

[20] B. Saint–D<strong>on</strong>at, Projective Models of K3 Surfaces, Amer. J. Math. 96, 602 – 639 (1974).<br />

[21] F. Serrano, Extensi<strong>on</strong> of morphisms defined <strong>on</strong> a divisor, Math. Ann. 277, 395 – 413 (1987).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!