Exceptional curves on Del Pezzo surfaces
Exceptional curves on Del Pezzo surfaces
Exceptional curves on Del Pezzo surfaces
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Math. Nachr. 256, 58 – 81 (2003) / DOI 10.1002/mana.200310070<br />
<str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
Andreas Leopold Knutsen ∗1<br />
1 UniversitätEssen,Fachbereich6–Mathematik,45117 Essen, Germany<br />
1 Introducti<strong>on</strong><br />
Received 3 September 2001, revised 27 June 2002, accepted 2 August 2002<br />
Published <strong>on</strong>line 25 June 2003<br />
Key words Line bundles, <str<strong>on</strong>g>curves</str<strong>on</strong>g>, <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g>, g<strong>on</strong>ality, Clifford index<br />
MSC (2000) Primary: 14J26; Sec<strong>on</strong>dary: 14H51.<br />
We classify all cases of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, which turn out to be the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />
and some other cases with Clifford dimensi<strong>on</strong> 3. Moreover, the property of being excepti<strong>on</strong>al holds for all<br />
<str<strong>on</strong>g>curves</str<strong>on</strong>g> in the complete linear system. We use this study to extend the results of Pareschi [17] <strong>on</strong> the c<strong>on</strong>stancy<br />
of the g<strong>on</strong>ality and Clifford index of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in a complete linear system <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of<br />
degrees ≥ 2 to the case of <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of degree 1, where we explicitly classify the cases where the<br />
g<strong>on</strong>ality and Clifford index are not c<strong>on</strong>stant.<br />
The two main purposes of this paper are (1) to classify all cases of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> and<br />
(2) to study the g<strong>on</strong>ality and Clifford index of linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface of<br />
degree 1.<br />
In the past decades, several authors have studied the questi<strong>on</strong> whether excepti<strong>on</strong>al linear series <strong>on</strong> a curve C<br />
<strong>on</strong> a certain surface propagate to the other members of |C|. For instance, for a K3 surface, Saint–D<strong>on</strong>at proved in<br />
if and <strong>on</strong>ly if every smooth curve in |C| does, and Reid [19] extended this result<br />
[20] that C possesses a g1 2 or a g1 3<br />
to other g1 d<br />
s. Harris and Mumford c<strong>on</strong>jectured that linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface have the<br />
same g<strong>on</strong>ality, but a counterexample of D<strong>on</strong>agi and Morris<strong>on</strong> [6] proved this to be false. This led Green [10] to<br />
modify the c<strong>on</strong>jecture to the effect that linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface have the same Clifford<br />
index. This was proved by Green and Lazarsfeld in the famous paper [9]. Moreover, the D<strong>on</strong>agi–Morris<strong>on</strong><br />
counterexample is still the <strong>on</strong>ly example known where the g<strong>on</strong>ality is not c<strong>on</strong>stant, and Ciliberto and Pareschi [2]<br />
proved that this is indeed the <strong>on</strong>ly counterexample if OS(C) is ample.<br />
The results of Green and Lazarsfeld were extended to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of degree ≥ 2 by Pareschi in [17].<br />
In fact, he showed that for deg S ≥ 2 the Clifford index of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in a linear system |L| c<strong>on</strong>taining a<br />
smooth curve of genus g ≥ 4 (which is equivalent to L being nef ) is c<strong>on</strong>stant, and that the g<strong>on</strong>ality also is when<br />
g ≥ 2, except for the following case [17, Example (2.1)]:<br />
Case (I): deg S =2and L ∼−2KS (in particular g(L) =3). In this case there is a codimensi<strong>on</strong> 1 family of<br />
smooth hyperelliptic <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L|, whereas the general smooth curve is trig<strong>on</strong>al.<br />
More precisely, denote by φ : S → P2 the morphism defined by −KS, which is a double cover ramified al<strong>on</strong>g<br />
a smooth quartic. Then<br />
H 0 (L) = φ ∗ H 0� O P 2(2) � ⊕ W,<br />
where W is the 1–dimensi<strong>on</strong>al subspace of secti<strong>on</strong>s vanishing <strong>on</strong> the ramificati<strong>on</strong> locus. The smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />
in the first summand are double covers of c<strong>on</strong>ics, whence hyperelliptic, whereas the general curve in the linear<br />
system maps isomorphically to a smooth plane quartic and is therefore trig<strong>on</strong>al.<br />
∗ e–mail: andreas.knutsen@uni-essen.de<br />
c○ 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 0025-584X/03/25607-0058 $ 17.50+.50/0
Math. Nachr. 256 (2003) 59<br />
By work of Serrano [21] there is an example when deg S =1(namely L ∼−nKS,forn ≥ 3) where neither<br />
the g<strong>on</strong>ality nor the Clifford index is c<strong>on</strong>stant (see Example 3.8 below). This shows that the situati<strong>on</strong> is more<br />
subtle for deg S =1.<br />
In this paper we first study excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of any degree. These are the <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />
whose Clifford index is not computed by a pencil, and are c<strong>on</strong>jectured to be extremely rare. In fact Eisenbud,<br />
Martens, Lange and Schreyer [8] c<strong>on</strong>jecture that the <strong>on</strong>ly types of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> are smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g>,<br />
and certain <str<strong>on</strong>g>curves</str<strong>on</strong>g> of degree 4r − 3 and genus 4r − 2 in P r for r ≥ 3. We show (Theorem 1.1 (c) below) that<br />
excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface are exactly the strict transforms of smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g> (whence of<br />
Clifford dimensi<strong>on</strong> 2), and of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |−3KS| for deg S =3(of Clifford dimensi<strong>on</strong> 3). This is in full<br />
accordance with the c<strong>on</strong>jecture just menti<strong>on</strong>ed. Furthermore, we show that if C is an excepti<strong>on</strong>al curve and A a<br />
line bundle <strong>on</strong> C computing its Clifford dimensi<strong>on</strong>, then A = OC(D) for a line bundle D <strong>on</strong> the surface and any<br />
smooth curve C ′ ∈|C| is excepti<strong>on</strong>al with its Clifford dimensi<strong>on</strong> computed by OC ′(D).<br />
As an applicati<strong>on</strong> of this study, we classify all the cases for deg S =1where the g<strong>on</strong>ality and the Clifford<br />
index are not c<strong>on</strong>stant, which will include the example of Serrano.<br />
More precisely, we will show that the Clifford index is c<strong>on</strong>stant when deg S =1, except precisely for the case<br />
(III) below, and that the g<strong>on</strong>ality is c<strong>on</strong>stant except precisely for the cases (II) and (III) below:<br />
Case (II): deg S =1and L ∼−2KS +2Γ,fora(−1)–curve Γ(in particular g(L) =3). In this case there is<br />
also a codimensi<strong>on</strong> 1 family of smooth hyperelliptic <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L|, whereas the general smooth curve is trig<strong>on</strong>al.<br />
Case (III): deg S =1, L is ample, L.Γ ≥ 2 for all (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g> Γ if L 2 ≥ 8, and there is an integer d ≥ 3<br />
such that L 2 ≥ 5d − 8 ≥ 7, L.KS = −d and L.C ≥ d for all smooth rati<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> C with C 2 =0.<br />
In this case there is a codimensi<strong>on</strong> 1 family of |L| of smooth (d − 1)–g<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> (which are exactly the<br />
smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> passing through the base point of KS), whereas the general smooth curve is d–g<strong>on</strong>al.<br />
If g(L) ≥ 4, then the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in the codimensi<strong>on</strong> 1 family have Clifford index d − 3, whereas the<br />
general smooth curve has Clifford index d − 2.<br />
The three easiest examples of Case (III) for high genus are L ∼−dKS for d ≥ 3 (precisely the case described<br />
by Serrano [21], see Example 3.8 below), L ∼−(d − 1)KS +Γ,ford ≥ 3 and a (−1)–curve Γ, andL ∼<br />
−(d − 2)KS + R,ford ≥ 4 and a smooth rati<strong>on</strong>al curve R with R 2 =0. In the case of lowest genus, g(L) =3<br />
(and L 2 =7)and L ∼−2KS +Γfor a (−1)–curve Γ.<br />
Since the Picard group of a <strong>Del</strong> <strong>Pezzo</strong> surface is well–known, the c<strong>on</strong>diti<strong>on</strong>s in Case (III) pose restricti<strong>on</strong>s <strong>on</strong><br />
the coefficients of the generators of Pic S in the representati<strong>on</strong> of L. We thus obtain a precise descripti<strong>on</strong> of the<br />
line bundles in Case (III). This is given at the end of Secti<strong>on</strong> 4.<br />
The main results obtained in this paper are summarized in Theorem 1.1 below. For the notati<strong>on</strong>, if L is a nef<br />
line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface, we define the (finite) set of <str<strong>on</strong>g>curves</str<strong>on</strong>g> R(L) by:<br />
R(L) := {Γ | Γ=(−1)–curve and Γ.L=0} ,<br />
and denote its cardinality by m(L). (Note that by the Hodge index theorem, the <str<strong>on</strong>g>curves</str<strong>on</strong>g> in R(L) are necessarily<br />
disjoint.) Moreover, see Secti<strong>on</strong> 2.3 for the definiti<strong>on</strong> of Sn.<br />
Theorem 1.1 Let L be a nef line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface S with g(L) ≥ 2.<br />
(a) All the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have the same g<strong>on</strong>ality if and <strong>on</strong>ly if L is not as in the cases (I), (II) or (III)<br />
above.<br />
(b) If g(L) ≥ 4, then all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have the same Clifford index if and <strong>on</strong>ly if L is not as in case<br />
(III) above.<br />
(c) If g(L) ≥ 4, then either all or n<strong>on</strong>e of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, and if they are, they all have<br />
the same Clifford index and Clifford dimensi<strong>on</strong>. Furthermore, the <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al of Clifford dimensi<strong>on</strong><br />
r ≥ 2 and Clifford index c if and <strong>on</strong>ly if L is as in <strong>on</strong>e of the two following cases:<br />
(i) There exists a base point free line bundle D <strong>on</strong> S satisfying<br />
D 2 = 1, D.KS = −3 , D.L = c +4 and Γ.L ≤ 1 for any Γ ∈R(D)<br />
(the latter c<strong>on</strong>diti<strong>on</strong> is equivalent to DC being very ample for all C ∈|L|).<br />
In this case r =2, the Clifford dimensi<strong>on</strong> is computed <strong>on</strong>ly by OC(D) for all smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> C ∈|L| and<br />
φD : S → P 2 gives the identificati<strong>on</strong> S � S m(D) and maps every smooth curve in |L| to a smooth plane curve<br />
of degree D.L= c +4, whence all these <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al of Clifford dimensi<strong>on</strong> 2 and Clifford index c.
60 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
(ii) S � Sn for n ∈{6, 7, 8} and<br />
n−6 �<br />
L ∼ −3KSn + aiΓi , Γi = (−1)–curve , ai∈{2, 3} .<br />
i=1<br />
In this case r =3, g(L) =10, c =3and for all smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> C ∈|L|, the Clifford dimensi<strong>on</strong> is computed<br />
<strong>on</strong>ly by OC(D), forD := −KSn + �n−6 i=1 Γi.<br />
We actually prove a more precise result. In fact, any line bundle A computing the g<strong>on</strong>ality of a smooth curve<br />
<strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface, is of a particular form (it is, so to speak, induced from a line bundle <strong>on</strong> the surface), and<br />
we are able to find all possible such in Propositi<strong>on</strong> 5.1 below.<br />
We note that the overall pattern here is that the lower the degree of S is � equivalently, the more points of P2 we blow up � , then the more “special” examples we get. In fact, up to deg S =4, all linearly equivalent smooth<br />
<str<strong>on</strong>g>curves</str<strong>on</strong>g> have the same g<strong>on</strong>ality and Clifford index and the <strong>on</strong>ly excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> are the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g>. For<br />
deg S =3, new examples of excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> turn up, for deg S =2, the first example of linearly equivalent<br />
smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> of different g<strong>on</strong>alities appears, and for deg S =1, more such examples turn up, together with<br />
examples of linearly equivalent smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> of different Clifford indices.<br />
It would be an interesting problem, to study the picture when <strong>on</strong>e blows up ≥ 9 points of P2 (in general<br />
positi<strong>on</strong>), to see which new examples might turn up. Unfortunately, the methods in this paper rely up<strong>on</strong> −KS<br />
being ample (or at least effective) and at the moment we do not see how to treat higher blow ups of P2 .<br />
The paper is organised as follows.<br />
First, in Secti<strong>on</strong> 2 we gather basic definiti<strong>on</strong>s and results that will be needed throughout the paper.<br />
We classify all excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> in Secti<strong>on</strong> 3, thus finishing the proof of Theorem<br />
1.1 (c). The methods are similar to the <strong>on</strong>es used by Pareschi [17], but due to the extensi<strong>on</strong> to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
of degree 1, we need a more careful analysis. We also use results about excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> in [8].<br />
As an applicati<strong>on</strong> we prove parts (a) and (b) of Theorem 1.1 in Secti<strong>on</strong> 4. The result relies up<strong>on</strong> the partial<br />
result obtained in [11, Secti<strong>on</strong> 4].<br />
Finally, in Secti<strong>on</strong> 5 we give the complete list of all the possible pencils computing the g<strong>on</strong>ality of a smooth<br />
curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface.<br />
Note that parts (a) and (b) of Theorem 1.1 for deg S ≥ 2 are equal to the results of Pareschi [17]. In our<br />
proofs, we however never assume that deg S =1, both to give a more complete expositi<strong>on</strong>, and also because<br />
restricting to the case deg S =1would not make the proofs easier, since the case deg S =1is exactly the case<br />
where most problems show up.<br />
Remark 1.2 The smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in case (II) above are simply the strict transforms of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |−2KS|<br />
for deg S =2which do not pass through the blown up point.<br />
The strict transforms of such <str<strong>on</strong>g>curves</str<strong>on</strong>g> passing through the blown up point are the <str<strong>on</strong>g>curves</str<strong>on</strong>g> in case (III) with<br />
L ∼−2KS +Γ.<br />
2 Background material<br />
2.1 Basic notati<strong>on</strong> and definiti<strong>on</strong>s<br />
The ground field is the field of complex numbers. All <strong>surfaces</strong> are smooth irreducible algebraic <strong>surfaces</strong>.<br />
By BP1,...,Pn(S) we will mean the blowing up of S at the points P1,...,Pn.<br />
By a curve <strong>on</strong> a surface S is always meant a reduced and irreducible curve (possibly singular), i.e. a prime<br />
divisor. Line bundles and divisors are used with little or no distincti<strong>on</strong>, as well as the multiplicative and additive<br />
notati<strong>on</strong>. Linear equivalence of divisors is denoted by ∼.<br />
If L is any line bundle <strong>on</strong> a surface, L is said to be numerically effective, orsimplynef, ifL.C ≥ 0 for all<br />
<str<strong>on</strong>g>curves</str<strong>on</strong>g> C <strong>on</strong> S. In this case L is said to be big if L2 > 0. Moreover we write L ≥ 0 for L effective and L>0 for<br />
L effective and n<strong>on</strong>zero.<br />
If F is any coherent sheaf <strong>on</strong> a variety V , we shall denote by hi (F) the complex dimensi<strong>on</strong> of Hi (V,F), and<br />
by χ(F) the Euler characteristic � (−1) ihi (F).<br />
The secti<strong>on</strong>al genus of a line bundle L is the integer g(L) = 1<br />
2 L.(L + KS)+1.IfD∈|L|,theng(L) is the<br />
arithmetic genus of D.
Math. Nachr. 256 (2003) 61<br />
If C is a curve <strong>on</strong> a surface and L is a line bundle <strong>on</strong> the surface, we often use the notati<strong>on</strong> LC := L ⊗OC.<br />
2.2 k–very ampleness<br />
A line bundle L <strong>on</strong> a smooth variety X is said to be k–very ample (resp. k–spanned), for an integer k ≥ 0, if<br />
for each (resp. each curvilinear) 0–dimensi<strong>on</strong>al subscheme Z of X of length h0� �<br />
OZ = k +1, the restricti<strong>on</strong><br />
map H0 (L) → H0� �<br />
L⊗OZ is surjective. (Recall that a 0–dimensi<strong>on</strong>al scheme Z is called curvilinear if<br />
dim TxZ ≤1 for every x ∈Zred.)<br />
In [12] we made the following definiti<strong>on</strong>: A line bundle L <strong>on</strong> a smooth surface S is birati<strong>on</strong>ally k–very ample<br />
(resp. birati<strong>on</strong>ally k–spanned), for an integer k ≥ 1, if there exists a n<strong>on</strong>–empty Zariski–open subset U of S<br />
such that the restricti<strong>on</strong> map H0 (L) → H0� �<br />
L ⊗OZ is surjective for any (resp. any curvilinear) 0–dimensi<strong>on</strong>al<br />
subscheme Z of S of length h0� �<br />
OZ = k +1with support in U.<br />
2.3 <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
A surface S is called a <strong>Del</strong> <strong>Pezzo</strong> surface if its antican<strong>on</strong>ical bundle −KS is ample. The degree of S is defined<br />
as deg S = K2 S . We have the following classificati<strong>on</strong> of such <strong>surfaces</strong>:<br />
Propositi<strong>on</strong> 2.1 [4] Let S be a <strong>Del</strong> <strong>Pezzo</strong> surface. Then<br />
(a) 1 ≤ deg S ≤ 9,<br />
(b) deg S =9if and <strong>on</strong>ly if S � P2 ,<br />
(c) if deg S =8, then either S � P1 × P1 �<br />
2 or S � BP P � ,<br />
�<br />
2 (d) if 1 ≤ deg S ≤ 7,thenS�BP1,...,P9−deg P S<br />
� .<br />
We will often denote a <strong>Del</strong> <strong>Pezzo</strong> surface of degree deg S by Sn, wheren =9− deg S. Letπ : S → P2 be<br />
the blowing up as in (d). Denote by l the class of π∗�OP2(1) � and by ei the class of π−1 (Pi). Wethenhave<br />
and<br />
l 2 = 1, ei .ej = −δij , ei .l = 0,<br />
Pic Sn � Zl ⊕ Ze1 ⊕ ...⊕ Zen � Z n+1 .<br />
Therefore any line bundle <strong>on</strong> Sn is of the form al − � n<br />
1 biei and −KS =3l − � n<br />
1 ei.<br />
A (−1)–curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface is a curve Γ satisfying Γ 2 = −1. Such a curve is necessarily smooth<br />
and rati<strong>on</strong>al and satisfies Γ .KS = −1 (by the adjuncti<strong>on</strong> formula), and those are the <strong>on</strong>ly <str<strong>on</strong>g>curves</str<strong>on</strong>g> with negative<br />
self–intersecti<strong>on</strong> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. It follows that a line bundle D ≥ 0 is not nef if and <strong>on</strong>ly if there exists<br />
a (−1)–curve Γ such that Γ .D 0, L �∼ −KS8 and L is not a (−1)–curve <strong>on</strong> S, then−L.KS ≥ 2 (Hodge index theorem and<br />
adjuncti<strong>on</strong> formula).
62 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
(P7) If L is nef with L 2 > 0 we have h i (L) =h i (L + KS) =0,fori =1, 2, h 0 (L + KS) =g(L) ≥ 1 and the<br />
general member of |L| is smooth and irreducible.<br />
To show the last c<strong>on</strong>diti<strong>on</strong>, note that h 1 (L) =h 2 (L) =0by (P5) and h 2 (L + KS) =h 0 (−L) =0by Serre<br />
duality since L>0. Moreover, L is numerically 1–c<strong>on</strong>nected by the Hodge index theorem � since L 2 > 0 � and<br />
so h 1 (L + KS) =0by Ramanujam vanishing. By (P1) and (P4) L is either base point free or has <strong>on</strong>ly <strong>on</strong>e base<br />
point, so smoothness and irreducibility follow from Bertini’s theorem.<br />
2.4 Clifford index, g<strong>on</strong>ality and the vector bundles E(C, A)<br />
Let C be a smooth irreducible curve of genus g ≥ 2. We denote by g r d<br />
d. The g<strong>on</strong>ality g<strong>on</strong> C of C is defined as<br />
g<strong>on</strong> C := min � k | C has a g 1� k .<br />
a linear system of dimensi<strong>on</strong> r and degree<br />
In particular, C is called hyperelliptic if g<strong>on</strong> C =2and trig<strong>on</strong>al if g<strong>on</strong> C =3. Note that if g<strong>on</strong> C = k, allg 1 k s<br />
must necessarily be base point free and complete.<br />
If g ≥ 4 and A is a line bundle <strong>on</strong> C, then the Clifford index of A is the integer<br />
Cliff A := deg A − 2 � h 0 (A) − 1 �<br />
and the Clifford index of C itself is defined as<br />
Cliff C := min � Cliff A | h 0 (A) ≥ 2, h 1 (A) ≥ 2 � .<br />
Clifford’s theorem then states that Cliff C ≥ 0 with equality if and <strong>on</strong>ly if C is hyperelliptic and Cliff C =1if<br />
and <strong>on</strong>ly if C is trig<strong>on</strong>al or a smooth plane quintic.<br />
⌊ g+3<br />
2<br />
At the other extreme, we get from Brill–Noether theory (cf. [1, V]) that the g<strong>on</strong>ality of C satisfies g<strong>on</strong> C ≤<br />
⌋, whence Cliff C ≤⌊g−1<br />
2<br />
⌋. For the general curve of genus g,wehaveCliff C = ⌊ g−1<br />
2 ⌋.<br />
We say that a line bundle A <strong>on</strong> C c<strong>on</strong>tributes to the Clifford index of C if both h 0 (A) ≥ 2 and h 1 (A) ≥ 2,<br />
and that it computes the Clifford index of C if in additi<strong>on</strong> Cliff C = Cliff A.<br />
Note that Cliff A = Cliff � ωC ⊗ A −1� and also observe that by Riemann–Roch<br />
h 0 (A)+h 1 (A) = g +1− Cliff A. (2.1)<br />
The Clifford dimensi<strong>on</strong> of C is defined as<br />
min � h 0 (A) − 1 | A computes the Clifford index of C � .<br />
A line bundle A which achieves the minimum and computes the Clifford index, is said to compute the Clifford<br />
dimensi<strong>on</strong>. A curve of Clifford index c is (c +2)–g<strong>on</strong>al if and <strong>on</strong>ly if it has Clifford dimensi<strong>on</strong> 1. For a general<br />
curve C, we have g<strong>on</strong> C = c +2.<br />
Lemma 2.2 [3, Theorem 2.3] The g<strong>on</strong>ality k of a smooth (irreducible) projective curve C satisfies<br />
Cliff C +2 ≤ k ≤ Cliff C +3.<br />
The <str<strong>on</strong>g>curves</str<strong>on</strong>g> satisfying g<strong>on</strong> C = Cliff C +3are c<strong>on</strong>jectured to be very rare and called excepti<strong>on</strong>al (cf. [8]<br />
or Propositi<strong>on</strong> 3.11 and Remark 3.12 below). The <str<strong>on</strong>g>curves</str<strong>on</strong>g> of Clifford dimensi<strong>on</strong> 2 are exactly the smooth plane<br />
<str<strong>on</strong>g>curves</str<strong>on</strong>g> of degree ≥ 5.<br />
Let C be a smooth curve <strong>on</strong> a regular surface S � i.e. h 1 (OS) =0 � . Recall that if A is a line bundle <strong>on</strong> C<br />
which is generated by its global secti<strong>on</strong>s, then <strong>on</strong>e can associate to the pair (C, A) a vector bundle E(C, A) of<br />
rank h 0 (A) as follows (this vector bundle was introduced by Lazarsfeld in [13], for more details we refer to [2]<br />
and [17]). Thinking of A as a coherent sheaf <strong>on</strong> S, we get a short exact sequence<br />
0 −→ F (C, A) −→ H 0 (A) ⊗C OS −→ A −→ 0 (2.2)
Math. Nachr. 256 (2003) 63<br />
of OS–modules, where F (C, A) is locally free (since A is locally isomorphic to OC and hence has homological<br />
dimensi<strong>on</strong> <strong>on</strong>e over OS).<br />
Dualizing this sequence, <strong>on</strong>e gets<br />
0 −→ H 0 (A) ∨ ⊗OS −→ E(C, A) −→ N C/S ⊗ A ∨ −→ 0 , (2.3)<br />
where E(C, A) :=F (C, A) ∨ . This vector bundle has the following properties:<br />
det E(C, A) = OS(C) , (2.4)<br />
c2(E(C, A)) = deg A, (2.5)<br />
rk E(C, A) = h 0 (A) ,<br />
h<br />
(2.6)<br />
i (E(C, A) ∨ ) = h 2−i� �<br />
E(C, A) ⊗ ωS = 0,<br />
h<br />
i = 0, 1 , (2.7)<br />
0 (E(C, A)) = h 0 (A)+h 0� NC/S ⊗ A ∨� , (2.8)<br />
If A ≤NC/S, thenE(C, A) is generated by its global secti<strong>on</strong>s off a finite<br />
set coinciding with the (possibly zero) base divisor of NC/S ⊗ A<br />
(2.9)<br />
∨ .<br />
Note that if A is any line bundle <strong>on</strong> C computing the g<strong>on</strong>ality or the Clifford index of C, thenAisgenerated by its global secti<strong>on</strong>s, and we can carry out the c<strong>on</strong>structi<strong>on</strong> of the vector bundle E(C, A) above.<br />
Specializing to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, we get from (2.3) tensored by ωS that<br />
h 1 (A) = h 0� �<br />
E(C, A) ⊗ ωS . (2.10)<br />
Moreover, we have NC/S ⊗ A∨ � ωC ⊗ A∨ ⊗OC(−KS), and by (P1) we get:<br />
Lemma 2.3 Assume A and ωC ⊗ A∨ are both base point free (as will be the case if A computes the Clifford<br />
index of C).<br />
Then E(C, A) is generated by its global secti<strong>on</strong>s except possibly at the base point x of |−KS|,whenK2 S =1<br />
and C passes through x.<br />
3 <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />
We will in this secti<strong>on</strong> study the excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. Clearly, <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface<br />
of type Sn, all the strict transforms of the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al. The following is a n<strong>on</strong>–trivial<br />
example of smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> of Clifford dimensi<strong>on</strong> 3.<br />
Example 3.1 Let S � S6 and c<strong>on</strong>sider the line bundle L ∼−3KS6. All the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are of genus<br />
10,andforanysuchC∈|L|,wehaveh0� � ��<br />
1<br />
OC − KS6 = h � � �� � �<br />
OC − KS6 =4,soOC − KS6 c<strong>on</strong>tributes<br />
to the Clifford index of C. We compute<br />
� � � � � 0<br />
Cliff OC − KS6 = degOC−KS6<br />
− 2 h � � �� �<br />
OC − KS6 − 1 = 3.<br />
Now assume C is not excepti<strong>on</strong>al of Clifford index 3. Thend := g<strong>on</strong> C ≤ 5, and by [11, Prop. 3.7] there has<br />
to exist an effective divisor D satisfying D.L− D 2 = d andsuchthatD is of <strong>on</strong>e of the following types:<br />
(a) D 2 =0, −D.KS6 =2,<br />
(b) D 2 =1, −D.KS6 =3,<br />
(c) D ∼−KS6.<br />
In these three cases we get respectively D.L− D 2 = −3D.KS6 − D 2 =6, 8, 6, whence a c<strong>on</strong>tradicti<strong>on</strong>.<br />
Hence all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality 6 and Clifford index 3, which shows that they are excepti<strong>on</strong>al.<br />
If the Clifford dimensi<strong>on</strong> of any such C is 2, thenC is isomorphic to a smooth plane septic, and we easily get a<br />
c<strong>on</strong>tradicti<strong>on</strong> from the genus formula of a smooth plane curve. So all the <str<strong>on</strong>g>curves</str<strong>on</strong>g> have Clifford dimensi<strong>on</strong> 3.<br />
We show in this secti<strong>on</strong> that the <strong>on</strong>ly excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface are precisely the strict transforms<br />
of the smooth plane <str<strong>on</strong>g>curves</str<strong>on</strong>g> and of the <str<strong>on</strong>g>curves</str<strong>on</strong>g> in the above example.<br />
First we need the following result, which we formulate in a general setting:
64 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
Propositi<strong>on</strong> 3.2 Let R be a vector bundle of rank ≥ 2 <strong>on</strong> a surface S generated by its global secti<strong>on</strong>s off a<br />
finite set and such that H 0 (R ∨ )=0and c1(R) 2 ≥ 0.<br />
(a) If c1(R) 2 > 0, thenc2(R) − 2rk R ≥ min{−2,c1(R) .ωS}. Iffurthermoreh 0 (ωS) =h 1 (ωS) =0and<br />
h 0 (R ⊗ ωS) > 0,thenc2(R) − 2rk R ≥−2.<br />
(b) If c1(R) 2 =0and h 1 (OS) =0,thendet R ∼OS(kΣ) for a base point free pencil |Σ| <strong>on</strong> S and an integer<br />
k ≥ 1, and c2(R) − 2rk R ≥ k min{−2, Σ .ωS}.<br />
Proof. Let r := rk R. For a general r–dimensi<strong>on</strong>al subspace V ⊆ H 0 (R), the evaluati<strong>on</strong> map eV :<br />
V ⊗OS → R is generically an isomorphism and has rank exactly r − 1 al<strong>on</strong>g a divisor D ∈|det R| defined<br />
by the vanishing of det eV . By Bertini’s theorem, D is smooth except possibly at the points where R fails to be<br />
generated. Moreover, B := coker eV is a torsi<strong>on</strong> free sheaf <strong>on</strong> D (which is a line bundle outside of the singular<br />
points of D), and we have the exact sequence:<br />
0 −→ V ⊗OS −→ R −→ B −→ 0 (3.1)<br />
of OS–modules. Dualizing this sequence, <strong>on</strong>e obtains<br />
0 −→ R ∨ −→ V ∨ ⊗OS −→ A −→ 0 , (3.2)<br />
�<br />
where A := Hom OD B,OD(D) � is also torsi<strong>on</strong> free. Moreover we find from (3.1) and (3.2) that<br />
c2(R) = degA, (3.3)<br />
rk R ≤ h 0 (A) , (3.4)<br />
deg B =2pa(D) − 2 − deg A − D.KS , (3.5)<br />
where the degree of A is defined by the Riemann–Roch type formula deg A := χ(A) − χ(OD) =χ(A) +<br />
pa(D) − 1, and similarly for B.<br />
To prove (a), let now D 2 > 0. Then by Bertini’s theorem, D is reduced and irreducible (i.e. what we call a<br />
curve).<br />
If h 1 (A) > 0, then by Clifford’s theorem for torsi<strong>on</strong> free rank 1 sheaves <strong>on</strong> singular <str<strong>on</strong>g>curves</str<strong>on</strong>g> (see the appendix<br />
of [7]), Cliff A ≥ 0, whence by (3.3) and (3.4)<br />
c2(R) − 2rk R ≥ deg A − 2h 0 (A) ≥ Cliff A − 2 ≥ −2 ,<br />
which is what we want to prove. Also note that h 1 (A) =h 0 (R ⊗ ωS) when h 0 (ωS) =h 1 (ωS) =0.<br />
If h 1 (A) =0,thendeg A = h 0 (A)+pa(D) − 1. By (3.1) B is generated by its global secti<strong>on</strong>s off a finite<br />
set, whence h 0 (B) > 0 and deg B ≥ 0. Combining (3.3), (3.4) and (3.5) we get<br />
c2(R) − 2rk R ≥ deg A − 2h 0 (A) = − deg A − 2+2pa(D) = degB + D.KS ≥ D.KS ,<br />
which finishes the proof of (a).<br />
Finally we prove (b), so let D 2 =0. Since the evident map Λ r H 0 (R) → Λ r R = OS(D) is surjective off<br />
a finite set, |D| is a linear system without fixed comp<strong>on</strong>ents, and is therefore base point free, since D 2 =0.<br />
Since we assume S to be regular, it follows that |D| is composed with a rati<strong>on</strong>al pencil, i.e. there is a smooth<br />
curve Σ ⊆ S and an integer k ≥ 1 such that D ∼ kΣ and D is the disjoint uni<strong>on</strong> of k <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |Σ|, write<br />
D = D1 + ...+ Dk.<br />
The sheaves A and B are therefore the direct sums A = ⊕Ai and B = ⊕Bi of sheaves <strong>on</strong> each Di. By<br />
arguing as in the proof of (a) we find that deg Ai − 2h 0 (Ai) ≥ min{−2,Di .KS}, whence<br />
c2(R) − 2rk R ≥ deg A − 2h 0 (A) = � � deg Ai − 2h 0 (Ai) � ≥ k min{−2, Σ .KS} .<br />
This c<strong>on</strong>cludes the proof of (b).<br />
In particular, by specializing to a <strong>Del</strong> <strong>Pezzo</strong> surface, using (P6) and the fact that h 0 (kΣ) = k +1by (P5),<br />
we get
Math. Nachr. 256 (2003) 65<br />
Corollary 3.3 With the same assumpti<strong>on</strong>s as in Propositi<strong>on</strong> 3.2, assume that S is a <strong>Del</strong> <strong>Pezzo</strong> surface. Set<br />
D := det R. Then<br />
(a) c2(R) − 2rk R ≥−2,whenD∼−KS8, (b) c2(R) − 2rk R ≥−2r, forr := h0 (D) − 1,whenD2 =0,<br />
(c) c2(R) − 2rk R ≥ D.KS =2g(D) − D2 − 2 otherwise.<br />
Furthermore, in case (c),ifh0 (R ⊗ ωS) > 0, then we have the str<strong>on</strong>ger inequality c2(R) − 2rk R ≥−2.<br />
We now make the following assumpti<strong>on</strong>s:<br />
(∗) Let C0 be a smooth curve of genus g ≥ 4 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. Set L := OS(C0). LetA be a base point<br />
free line bundle <strong>on</strong> C0 such that 3 ≤ h 0 (A) ≤ h 1 (A) (this implies deg A ≤ g − 1) and ωC0 ⊗ A ∨ is base<br />
point free.<br />
As in Subsecti<strong>on</strong> 2.4 we get the vector bundle E := E(C0,A), which is of rank h 0 (A) ≥ 3. Since by (2.10)<br />
h 0 (E ⊗ ωS) > 0, we can find an invertible subsheaf 0 → M → E, and after saturating, we can assume we have<br />
an exact sequence<br />
0 −→ M −→ E −→ R −→ τ −→ 0 , (3.6)<br />
where R is locally free of rank ≥ 2 and τ is supported <strong>on</strong> a finite set.<br />
Define D := det R. Wehave<br />
Lemma 3.4 (a) h0 (R∨ )=h1 (R∨ )=0,<br />
(b) D is n<strong>on</strong> trivial and either D ∼−KS8or D is base point free. In particular h1 (D) =h2 (D) =0.<br />
Moreover L ∼ M + D.<br />
P r o o f. Similar to the proof of [17, (1.12)].<br />
For any C ∈|L| we write DC := OC(D).<br />
Propositi<strong>on</strong> 3.5 (a) h0 (DC) is the same for any C ∈|L|,<br />
(b) DC0 ≥ A,<br />
(c) h1 (DC) =h0 (M ⊗ ωS) > 0 for any C ∈|L|,<br />
(d) Cliff DC is the same for any C ∈|L| and Cliff DC ≤ Cliff A.<br />
P r o o f. The statements (a) – (c) follow as in the proof of [17, (1.13)]. To prove (d), note that R is globally<br />
generated off a finite set, so Corollary 3.3 applies.<br />
We have<br />
Indeed,<br />
Cliff A ≥ D.M + c2(R) − 2rk R. (3.7)<br />
Cliff A = c2(E) − 2(rk E − 1) (by (2.5) and (2.6))<br />
= D.M + c2(R)+length τ − 2rk R<br />
≥ D.M + c2(R) − 2rk R.<br />
(by (3.6))<br />
If D 2 =0, then by (3.7) and (b) of Corollary 3.3:<br />
Cliff A ≥ D.L− 2r. (3.8)<br />
At the same time, by the exact sequence<br />
and Lemma 3.4,<br />
0 −→ −M −→ D −→ DC −→ 0 (3.9)<br />
h 0 (DC) = h 0 (D)+h 1 (−M) ≥ r +1. (3.10)
66 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
Combining (3.8) and (3.10) we get the desired result Cliff A ≥ Cliff DC.<br />
Assume now D2 > 0. Wehave<br />
h 0� � 0 1 0 1<br />
DC = h (D)+h (−M) ≥ h (D) =<br />
2 D.(D − KS)+1,<br />
whence<br />
(3.11)<br />
Cliff DC = D.L− 2 � h 0� � �<br />
DC − 1 ≤ D.M + D.KS . (3.12)<br />
If D ∼−KS8, thenh0 (D) =2, and since DC0 ≥ A and h0 (A) ≥ 3, wehaveh0� �<br />
0<br />
DC = h � we have strict inequalities in (3.11) and (3.12).<br />
�<br />
DC0 ≥ 3, so<br />
Now the result follows by combining (3.7), (3.12) and parts (a) and (c) of Corollary 3.3.<br />
We need the following easy<br />
Lemma 3.6 Let L be a nef line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface with g(L) ≥ 4. Assume L + KS ∼ D1 + D2<br />
for two divisors D1 and D2 satisfying h0 (Di) ≥ 2. ThenOC(D1) and OC(D2) c<strong>on</strong>tribute to the Clifford index<br />
of any smooth C ∈|L| and<br />
Cliff OC(D1) = Cliff OC(D2) ≤ D1 .D2 ,<br />
with equality if and <strong>on</strong>ly if h 0 (OC(Di)) = h 0 (Di) and h 1 (Di) =0for i =1, 2.<br />
Furthermore, if equality holds and there exists a smooth curve C0 ∈|L| such that Cliff C0 = D1 .D2, then<br />
any (−1)–curve Γ with Γ .L=0will satisfy (Γ .D1, Γ .D2) =(0, −1) or (−1, 0).<br />
P r o o f. From the exact sequence<br />
0 −→ KS − D2 −→ D1 −→ OC(D1) −→ 0 ,<br />
h0 (OC(D1)) ≥ h0 (D1) ≥ 2 and h1 (OC(D1)) ≥ h2 (KS − D2) =h0 (D2) ≥ 2, sothatOC(D1) c<strong>on</strong>tributes to<br />
the Clifford index of any smooth C ∈|L|.BysymmetrywegetthesameresultforD2.<br />
Now OC(D2) �OC(L + KS − D1) � ωC ⊗OC(D1) ∨ ,soCliff OC(D1) = Cliff OC(D2).<br />
One computes by Riemann–Roch <strong>on</strong> S:<br />
Cliff OC(D1) = D1 .L− 2 � h0 (OC(D1)) − 1 � ≤ D1 .L− 2 � h0 (D1) − 1 �<br />
≤ D1 .L− D1 . (D1 − KS) = D1 . (L − D1 + KS)<br />
= D1 .D2 .<br />
It is clear that equality holds if and <strong>on</strong>ly if h 0 (OC(Di)) = h 0 (Di) and h 1 (Di) =0for i =1, 2.<br />
For the last statement, since −1 =Γ. (L+KS) =Γ.D1 +Γ.D2, assume by symmetry to get a c<strong>on</strong>tradicti<strong>on</strong><br />
that Γ .D1 > 0. WethengetΓ .D2 = −1−Γ .D1 ≤−2. Clearly h 0 (D1 +Γ) ≥ h 0 (D1) ≥ 2 and h 0 (D2 −Γ) =<br />
h 0 (D2) ≥ 2, so by what we have just shown OC(D1+Γ) c<strong>on</strong>tributes to the Clifford index of any smooth C ∈|L|,<br />
and<br />
a c<strong>on</strong>tradicti<strong>on</strong>.<br />
Cliff OC0(D1 +Γ) ≤ (D1 +Γ). (D2 − Γ) = D1 .D2 − 2Γ .D1 < Cliff C0 ,<br />
As in [11] we say that a line bundle D satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for an integer k ≥ 1 if:<br />
h 0 (D) ≥ 2; h 0 (L − D) ≥ 2; D.(L − D) ≤ k +1; L + KS ≥ D ;<br />
and L ≥ 2D if L 2 ≥ 4k +3.<br />
One of the main results in [11], which we will use in the proof of the next propositi<strong>on</strong>, is the following:<br />
(†)
Math. Nachr. 256 (2003) 67<br />
Lemma 3.7 Let L be a nef line bundle <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface with g(L) ≥ 2 and k ≥ 1 an integer. If there is<br />
a line bundle D satisfying (†), then there is a smooth curve in |L| of g<strong>on</strong>ality ≤ k +1.Iffurthermorek≥2and D �∼ −KS8, then all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality ≤ k +1.<br />
C<strong>on</strong>versely, if there is a smooth curve C ∈|L| of g<strong>on</strong>ality k +1with A a g1 k+1 <strong>on</strong> it, then there exists a line<br />
bundle D satisfying (†) and such that OC(D) ≥ A.<br />
P r o o f. The two first asserti<strong>on</strong>s follow from [11, Prop. 3.9 and Prop. 4.1]. (The latter propositi<strong>on</strong> is reproduced<br />
in Propositi<strong>on</strong> 4.1 below.) The last asserti<strong>on</strong> follows from [11, Prop. 3.5].<br />
Also recall the following example of Serrano, which will be useful in the proof of the next propositi<strong>on</strong>:<br />
Example 3.8 (Serrano [21]) Let S be a <strong>Del</strong> <strong>Pezzo</strong> surface of degree 1. C<strong>on</strong>sider L := −nKS for an integer<br />
n ≥ 3 and let C be a smooth curve in |L|. IfC passes through the base point x of |−KS|, thenOC(−KS − x)<br />
is a base point free g 1 n−1 <strong>on</strong> C, otherwiseOC(−KS) is a base point free g 1 n <strong>on</strong> C. Serrano shows that in both<br />
cases, these pencils compute the g<strong>on</strong>ality and also the Clifford index (for more details see [17, Ex. (2.2)] and [21,<br />
Ex. (3.15)]).<br />
We can now prove the following important result, whose proof is unfortunately a bit l<strong>on</strong>g and tedious and<br />
involves the treatment of several special cases.<br />
Propositi<strong>on</strong> 3.9 Given the assumpti<strong>on</strong>s (∗) and the exact sequence (3.6). Assume C0 is excepti<strong>on</strong>al and that<br />
A computes the Clifford dimensi<strong>on</strong> of C0.<br />
Then h0 (R ⊗ ωS) =0.<br />
Proof. Assumethath 0 (R ⊗ ωS) > 0. Then we can put R in a suitable exact sequence as in (3.6), namely<br />
0 −→ P −→ R −→ R1 −→ τ ′ −→ 0 , (3.13)<br />
where P is a line bundle such that P + KS ≥ 0, R1 is locally free of rank rk R − 1 ≥ 1 and τ ′ is of finite length.<br />
Clearly R1 is globally generated off a finite set. Set Q := det R1. Lemma 3.4 applies for Q, which means that<br />
h 1 (Q) =h 2 (Q) =0, Q>0 and either Q ∼−KS8 or Q is base point free.<br />
Let C ∈|L|. We get from<br />
that<br />
where we define<br />
0 −→ −M − P −→ Q −→ QC −→ 0 (3.14)<br />
h 0 (QC) = h 0 (Q)+δ, (3.15)<br />
δ := h 1 (−M − P ) = h 1 (L − Q + KS) . (3.16)<br />
Since h 0 (Q) ≥ 2 and h 0 (L − Q + KS) =h 0 (M + P + KS) ≥ 2(the latter follows from M + P ≥−2KS),<br />
we have by Lemma 3.6 that QC c<strong>on</strong>tributes to the Clifford index of any C ∈|L|.<br />
From (3.6) and (3.13) we get<br />
c2(E) = D.M + c2(R)+length τ, (3.17)<br />
c2(R) = P.Q+ c2(R1)+length τ ′ . (3.18)<br />
Case I: rk R1 =1.<br />
We have Q = R1 and rk E = h 0 (A) =3.Furthermore,<br />
where<br />
Cliff QC = Cliff A +4+κ, (3.19)<br />
κ := −P .M+ Q.KS − length τ − length τ ′ − 2δ. (3.20)
68 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
Indeed,<br />
Cliff QC = Q.L− 2 � h0 (QC) − 1 �<br />
= Q.L− 2 � h0 (Q) − 1 � − 2δ (by (3.15))<br />
= Q.L− Q.(Q − KS) − 2δ (since h1 = Q.(M + P + KS) − 2δ<br />
(Q) =0)<br />
= Q.(M + KS)+c2(E) − D.M − length τ − length τ ′ − 2δ (by (3.17) and (3.18))<br />
= −P .M+ Q.KS +degA−length τ − length τ ′ − 2δ<br />
= Cliff A +4− P.M+ Q.KS − length τ − length τ<br />
(by (2.5))<br />
′ − 2δ.<br />
Since A computes the Clifford dimensi<strong>on</strong> of C0,wemusthave<br />
κ ≥ −4 . (3.21)<br />
We now divide the proof in several subcases.<br />
Case I–a: P.M=3.<br />
By (3.19) – (3.21) and (P6) we have Q ∼−KS8, δ =0and Cliff QC0 = Cliff A. Sinceh0� �<br />
0<br />
QC0 = h (Q) =<br />
2, thecurveC0 is not excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />
Case I–b: P.M=2, Q.KS = −1.<br />
By (3.19) – (3.21) and (P6) we have Q ∼−KS8, δ =0and Cliff QC0 ≤ Cliff A +1. As above, since C0 is<br />
excepti<strong>on</strong>al, we must have equality in the last inequality, whence by (3.20) we have length τ = length τ ′ =0.<br />
Since Q has <strong>on</strong>e base point x, it follows that R is not globally generated by (3.13), whence by (3.6) and Lemma<br />
2.3, we have that C0 passes through x.<br />
Define the line bundle A ′ := QC0 − x <strong>on</strong> C0. Then clearly A ′ c<strong>on</strong>tributes to the Clifford index of C0,<br />
h 0 (A ′ )=2and Cliff A ′ = Cliff A, again c<strong>on</strong>tradicting that C0 is excepti<strong>on</strong>al.<br />
Case I–c: P.M =2, Q.KS = −2. By (3.19) – (3.21) we have δ = length τ = length τ ′ =0, h 0 (QC) =<br />
h 0 (Q) and Cliff A = Cliff QC0 = Q.(M + P + KS) (the last equality follows by (∗) and Lemma 3.6).<br />
It is clear that OC0(P ) c<strong>on</strong>tributes to the Clifford index of C0, and by Lemma 3.6:<br />
Cliff OC0(P ) ≤ P.(M + Q + KS)<br />
=2+P.Q+ P.KS<br />
= Cliff A − Q.M − Q.KS + P.KS +2<br />
= Cliff A − Q.M + P.KS +4.<br />
The same reas<strong>on</strong>ing works for M,soweget<br />
(3.22)<br />
Q.M ≤ P.KS +4 and Q.P ≤ M.KS +4. (3.23)<br />
From (3.17) and (3.18), combined with deg A ≤ g(C0) − 1,weget<br />
M.(M + KS)+P. � � 2<br />
P + KS + Q ≥ 2 . (3.24)<br />
Furthermore, since QC0 computes the Clifford index of C0 and C0 is excepti<strong>on</strong>al we must have 3 ≤ h0� �<br />
QC0 =<br />
h 0 (Q) = 1<br />
2<br />
Q.(Q − KS)+1= 1<br />
2 Q2 +2, whence by the Hodge index theorem <strong>on</strong> Q and −KS :<br />
Q 2 =<br />
� 2 if S = S8 or Q ∼−KS7 ,<br />
4 if Q ∼ −2KS8 .<br />
(3.25)<br />
If P 2 ≤ 0, thenP.KS ≤−2(by (P6), since P ≥−KS), and by (3.23) we have Q.M ≤ 2. IfQ.M =2,<br />
then Cliff OC0(P ) ≤ Cliff A by (3.22) and h 0� OC0(P ) � = h 0 (P ) = 2 by Lemma 3.6, c<strong>on</strong>tradicting the<br />
excepti<strong>on</strong>ality of C0 again. So Q.M ≤ 1 and by the Hodge index theorem and (3.25) M 2 ≤ 0. But then<br />
M.KS ≤−2 and M.(L − M + KS) =M.(P + Q + KS) ≤ 2+1− 2=1, whence by Lemma 3.6 and
Math. Nachr. 256 (2003) 69<br />
the fact that C0 is excepti<strong>on</strong>al, we must have Q.M =1, M.KS = −2, M 2 =0, h 0� OC0(M) � = h 0 (M) and<br />
h 1 (M) =0.Butthenh 0� OC0(M) � =2and OC0(M) computes the Clifford index 1 of C0, c<strong>on</strong>tradicting the<br />
excepti<strong>on</strong>ality of C0 again.<br />
The same reas<strong>on</strong>ing works if M 2 ≤ 0.<br />
This means that P 2 ,M 2 ≥ 1.<br />
If P ∼ −KS8, thenCliff A = Q.(M + P + KS) = Q.M, whence Q.M ≥ 1. At the same time,<br />
M.(P + Q) =2+M.Q, and <strong>on</strong>e can show that M satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k =1+M.Q≥ 2. Since<br />
P.M= −KS8 .M =2,wehaveM �∼ −KS8, whence by Lemma 3.7 all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality<br />
≤ 2+M.Q= Cliff A +2, whence C0 is not excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />
The same reas<strong>on</strong>ing works if M ∼−KS8.<br />
So P 2 ,M 2 ≥ 1 and P.KS,M.KS ≤−2. By (3.23) we also have Q.M,Q.P ≤ 2.<br />
We then easily see by the Hodge index theorem that the <strong>on</strong>ly soluti<strong>on</strong> to (3.24) and (3.25) is M ∼ P ∼ Q and<br />
M 2 = −M .KS =2. By (3.22) and Lemma 3.6 we get Cliff A = Cliff OC0(M) =M.(2M + KS) =2.At<br />
the same time M.(L − M) =2M 2 =4,soM satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k =3. Again by Lemma 3.7, all<br />
the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality ≤ 4, whence C0 is not excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />
Case I–d: P.M≤ 1.<br />
By combining Lemma 3.6 with (3.19) – (3.21) and (P6), and the fact that h 1 (Q) =0, we get as above<br />
whence as above<br />
Cliff OC0(P ) ≤ Cliff A +4− Q.M + P.KS , (3.26)<br />
Q.M ≤ P.KS +4 and Q.P ≤ M.KS +4. (3.27)<br />
As in case I–c we can show that Q.M ≤ 1 if P 2 ≤ 0. Hence M.(P + Q + KS) ≤ 2+M.KS, and<br />
by Lemma 3.6 and the fact that C0 is excepti<strong>on</strong>al, we have M.KS = −1 and P.M = Q.M =1, whence<br />
M ∼ P ∼ Q ∼−KS8 by (P6) and L ∼−3KS8, which bel<strong>on</strong>gs to the special case studied by Serrano and<br />
described in Example 3.8, where n<strong>on</strong>e of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />
The same reas<strong>on</strong>ing works if M 2 ≤ 0, whence P 2 ,M2 ≥ 1, as in case I–c. By the Hodge index theorem<br />
M ∼ P and M 2 =1. By (3.27) we have Q.M ≤ 3. If equality occurs, then M ∼−KS8 and Cliff OC0(M) =<br />
Cliff A by (3.26). By Lemma 3.6 h0�OC0(M) � = h0 (M) =2, c<strong>on</strong>tradicting the excepti<strong>on</strong>ality of C0.<br />
If Q.M =2, then by (3.27) we have −M .KS≤ 2, whence M ∼ P ∼−KS8 and by (3.26) again<br />
� �<br />
Cliff OC0 − KS8 ≤ Cliff A +1. (3.28)<br />
Since −KS8 .L = −KS8 . � − 2KS8 + Q � =2+2=4, � �<br />
� − � 1<br />
KS8 will induce a g4 <strong>on</strong> every member of |L|,<br />
whence Cliff A =1and C0 is a smooth plane quintic, so deg A =5and g(L) =6. Moreover, from (3.19) and<br />
(3.20) we see that δ =0.<br />
We compute<br />
10 = L. � � �<br />
L + KS8 = − 2KS8 + Q � . � − KS8 + Q � = 8+Q 2 ,<br />
whence Q 2 =2. In particular, by Lemma 3.4, Q is base point free, and so is QC0.<br />
Now g(Q0) =1, whence Q ≥−KS8 and we have<br />
Q ∼ −KS8 +Γ,<br />
for a (−1)–curve Γ. So<br />
L ∼ −3KS8 +Γ.<br />
Since C0 is a smooth plane quintic, it is well–known (see e.g. [14, Beispiel 4]) that we must have<br />
2A ∼ ωC0 ∼ � �<br />
L + KS8 ∼ � − 2KS8 +Γ �<br />
. (3.29)<br />
C0<br />
C0
70 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
Furthermore, it is classically known (see e.g. [8]) that any pencil computing the g<strong>on</strong>ality of C0 is obtained by<br />
projecting from <strong>on</strong>e point of the curve embedded by A. Inotherwords<br />
� �<br />
OC0 − KS8 ∼ A − y, (3.30)<br />
for a point y ∈ C0. Combining (3.29) and (3.30) we get OC0(Γ) ∼ 2y, and we have<br />
� �<br />
A ∼ OC0 − KS8 + y ∼ QC0 − y.<br />
Since h 1 (Q) =0, h 1� − 2KS8 +Γ � =0and δ =0, we get from (3.15) and (3.16) that<br />
h 0� � 1<br />
QC0 =<br />
2 Q.� � 0<br />
Q − KS8 +1 = 3 = h (A) ,<br />
c<strong>on</strong>tradicting the base point freeness of QC0.<br />
If Q.M ≤ 1, then either P ∼ M ∼ Q ∼−KS8 or M.KS ≤−3. In the first case we get L ∼−3KS8,<br />
which bel<strong>on</strong>gs to the special case studied by Serrano and described in Example 3.8, where n<strong>on</strong>e of the smooth<br />
<str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>. In the sec<strong>on</strong>d case, we get by Lemma 3.6<br />
Cliff OC0(M) ≤ M.(M + Q + KS) ≤ 1+1− 3 = −1 ,<br />
a c<strong>on</strong>tradicti<strong>on</strong> by Clifford’s theorem.<br />
Case II: rk R1 ≥ 2.<br />
We have h 0 (A) ≥ 4.<br />
By (2.5), (2.6), (3.17) and (3.18)<br />
Cliff A = c2(E) − 2(rk E − 1)<br />
= D.M + c2(R)+length τ − 2rk R<br />
= M.P+ M.Q+ P.Q+ c2(R1) − 2rk R1 − 2+length τ + length τ ′ .<br />
We can prove by (3.14) – (3.16) that<br />
(3.31)<br />
Cliff QC = Q.(M + P )+Q.KS − 2δ. (3.32)<br />
By using Corollary 3.3 and arguing as in the proof of Propositi<strong>on</strong> 3.5, we get the two possibilities:<br />
Q �∼ −KS8 , Cliff A ≥ P.M+ Cliff QC − 2+2δ + length τ + length τ ′ , (3.33)<br />
Q ∼ −KS8 , Cliff A ≥ P.M+ Cliff QC − 3+2δ + length τ + length τ ′ . (3.34)<br />
Note that if Q2 > 0, then equality in (3.33) occurs <strong>on</strong>ly if c2(R1) − 2rk R1 = −Q.KS.<br />
We see that we already get the desired c<strong>on</strong>tradicti<strong>on</strong>s if P.M>2 in (3.33) and if P.M>3 in (3.34). Also,<br />
if P.M =3in (3.34), we get Cliff A = Cliff QC0 and h0� �<br />
0 0<br />
QC0 = h (Q) =h � �<br />
− KS8 =2, c<strong>on</strong>tradicting<br />
the excepti<strong>on</strong>ality of C0.<br />
So we will from now <strong>on</strong> assume that P.M≤ 2.<br />
Before we divide the rest of the proof in four special cases, we deduce the following important informati<strong>on</strong>:<br />
h 0 (M + P + KS) = 1<br />
1<br />
M.(M + KS)+<br />
2 2 P.(P + KS)+M.P+1+δ, (3.35)<br />
M.(M + KS) ≤ 0 and P.(P + KS) ≤ 0 . (3.36)<br />
Indeed, (3.35) follows by Riemann–Roch. For (3.36), assume now, to get a c<strong>on</strong>tradicti<strong>on</strong>, that M.<br />
(M + KS) ≥ 2. Then h 0 (M + KS) ≥ 2 and by Lemma 3.6, (P + Q)C0 c<strong>on</strong>tributes to the Clifford index<br />
of C0,and<br />
Cliff (P + Q)C ≤ (P + Q) . (M + KS)<br />
= Q.(M + P + KS) − Q.P + P.(M + KS)<br />
= Cliff QC +2δ + M.P− Q.P + P.KS .
Math. Nachr. 256 (2003) 71<br />
By (3.33) and (3.34), we get<br />
�<br />
Cliff (P + Q)C − 2+Q.P − P.KS , if Q �∼ −KS8 ,<br />
Cliff A ≥<br />
Cliff (P + Q)C − 3 − 2P .KS8 , if Q ∼ −KS8 .<br />
(3.37)<br />
If Q �∼ −KS8, (3.37) gives that Q.P − P.KS ≤ 2, which means that either −P .KS =2and Q.P =0,<br />
or −P .KS =1and Q.P ≤ 1. In the first case we get P.(M + Q + KS) ≤ 2+0− 2=0, whence all the<br />
smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| would be hyperelliptic by Lemma 3.6, a c<strong>on</strong>tradicti<strong>on</strong> <strong>on</strong> the excepti<strong>on</strong>ality of C0. Inthe<br />
sec<strong>on</strong>d case, the Hodge index theorem would give the c<strong>on</strong>tradicti<strong>on</strong> Q ∼ P ∼−KS8.<br />
If Q ∼−KS8, (3.37) gives that −P .KS8 =1, whence P ∼−KS8 (by (P6) and the fact that P ≥−KS).<br />
Since M.P = −M .KS8 ≤ 2, the Hodge index theorem together with the assumpti<strong>on</strong>s M.(M + KS) ≥ 2,<br />
gives M ∼−2KS8. Hence L ∼−4KS8. But this case bel<strong>on</strong>gs to the special cases of Serrano described in<br />
Example 3.8 above, where we saw that n<strong>on</strong>e of the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| were excepti<strong>on</strong>al, a c<strong>on</strong>tradicti<strong>on</strong>.<br />
This proves that M.(M + KS) ≤ 0, and by symmetry we obtain the same result for P .<br />
This shows (3.36).<br />
Case II–a: Q �∼ −KS8 and P.M≤ 1.<br />
We first show that both P 2 > 0 and M 2 > 0. Assume to get a c<strong>on</strong>tradicti<strong>on</strong> that P 2 ≤ 0. ThenP.(P +KS) ≤<br />
−2 and by (3.35) and (3.36), combined with h 0 (M + P + KS) ≥ 2,wegetM.P+ δ ≥ 2, and by (3.33) we get<br />
the c<strong>on</strong>tradicti<strong>on</strong><br />
Cliff A ≥ Cliff QC0 − P.M+2 ≥ Cliff QC0 +1.<br />
The same argument works for M,sowehaveP 2 > 0 and M 2 > 0.<br />
We then see by (3.33), (3.35) and (3.36), combined with h 0 (M + P + KS) ≥ 2, the Hodge index theorem<br />
and (P6) that δ =0and M ∼ P ∼−KS8. Now (3.32) and (3.33) again give<br />
Cliff A ≥ Cliff QC − 1 = −KS8 .Q− 1 . (3.38)<br />
ButbyLemma3.6wehave<br />
Cliff � �<br />
− KS8<br />
C0<br />
≤ −KS8 .Q,<br />
and since C0 is excepti<strong>on</strong>al we must have equality in (3.38), whence also in (3.33), with<br />
τ = τ ′ = ∅ , (3.39)<br />
and moreover, by the remark right after (3.34), we have<br />
c2(R1) − 2rk R1 = −Q.KS , if Q 2 > 0 . (3.40)<br />
By (2.10), (3.6), (3.13) and (3.39), we get<br />
h 0� � 0<br />
R1 ⊗ KS8 = h � � 1<br />
E ⊗ KS8 − 2 = h (A) − 2 ≥ 2 . (3.41)<br />
By Corollary 3.3 we therefore have c2(R1) − 2rk R1 ≥−2, which by (3.40) means that Q.KS = −2 if Q 2 > 0.<br />
This last equality also holds if Q 2 =0, whence by (3.38) we get Cliff A =1,soC0 is a smooth plane quintic<br />
with h 0 (A) =3, a c<strong>on</strong>tradicti<strong>on</strong>.<br />
Case II–b: Q �∼ −KS8 and P.M=2.<br />
By (3.33), we have δ =0and Cliff A = Cliff QC0, and by our assumpti<strong>on</strong>s that A computes the Clifford<br />
dimensi<strong>on</strong> of C0 we have, by using (3.35) and (3.14)<br />
whence<br />
4 ≤ h 0 (A) ≤ h 1� QC0<br />
� 0<br />
= h (M + P + KS) = 1<br />
1<br />
M.(M + KS)+ P.(P + KS)+3,<br />
2 2<br />
M.(M + KS)+P.(P + KS) ≥ 2 , (3.42)
72 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
which is incompatible with (3.36).<br />
Case II–c: Q ∼−KS8 and P.M≤ 1.<br />
We first show that both P 2 > 0 and M 2 > 0. Assume to get a c<strong>on</strong>tradicti<strong>on</strong> that P 2 ≤ 0. ThenP.(P +KS) ≤<br />
−2 and by (3.35) and (3.36), combined with h 0 (M + P + KS) ≥ 2,wegetM.P+ δ ≥ 2, and by (3.34) we get<br />
Cliff A ≥ Cliff QC0 − P.M+1,<br />
and this gives us the <strong>on</strong>ly possibility P.M = δ =1. But then Cliff A = Cliff QC0 and by (3.15) we get<br />
h0� �<br />
0<br />
QC0 =3 0 and M 2 > 0.<br />
By the Hodge index theorem we therefore must have P ∼ M and M 2 = 1. If M �∼ −KS8, wehave<br />
M.(M + KS) ≤−2 and by (3.35), again combined with h 0 (M + P + KS) ≥ 2,wegetδ ≥ 2. But then (3.34)<br />
yields the c<strong>on</strong>tradicti<strong>on</strong><br />
Cliff A ≥ Cliff QC0 +2.<br />
Therefore we have P ∼ M ∼ Q ∼−KS8 and L ∼−3KS8, again a case bel<strong>on</strong>ging to Example 3.8 above, a<br />
c<strong>on</strong>tradicti<strong>on</strong>.<br />
Case II–d: Q ∼−KS8 and P.M=2.<br />
By (3.34) and the fact that C0 is assumed to be excepti<strong>on</strong>al, we have δ =0and<br />
Cliff A = Cliff QC0 − 1 = −KS8. � �<br />
L +2KS8 − 1 = −L.KS8 − 3 , (3.43)<br />
where the middle equality follows from Lemma 3.6 and the fact that δ =0.<br />
By assumpti<strong>on</strong> h 1 (A) ≥ h 0 (A) ≥ 4, so by (2.1) and (3.43), we get<br />
whence<br />
8 ≤ g(L)+1− Cliff A = 1<br />
2 L.� �<br />
L + KS8 +2+L.KS8 +3 = 1<br />
2 L.� �<br />
L +3KS8 +5,<br />
L. � �<br />
L +3KS8 ≥ 6 . (3.44)<br />
But then <strong>on</strong>e easily computes<br />
L. � � � � � �<br />
L +3KS8 = M. M + KS8 + P. P + KS8 +2,<br />
and therefore (3.44) is incompatible with (3.36).<br />
This finally c<strong>on</strong>cludes the proof of Propositi<strong>on</strong> 3.9.<br />
As an immediate c<strong>on</strong>sequence we get<br />
Corollary 3.10 Given the assumpti<strong>on</strong>s in Propositi<strong>on</strong> 3.9. We have<br />
DC0 ∼ A, h 0� � 0<br />
DC0 = h (D) and Cliff C0 = D.(L + KS − D) .<br />
Proof. Since h 0 (R ⊗ ωS) = 0 by the last propositi<strong>on</strong>, we get by Propositi<strong>on</strong> 3.5 (c) and tensoring the<br />
sequence (3.6) with ωS that<br />
h 1� DC0<br />
� = h 0 (M + KS) = h 0 (E ⊗ ωS) (2.10)<br />
= h 1 (A) ≥ 3 ,<br />
whence DC0 c<strong>on</strong>tributes to the Clifford index of C0 and we must then have Cliff A = Cliff DC0 by Propositi<strong>on</strong><br />
3.5 (d). Since we just saw that h1� �<br />
1 0<br />
DC0 = h (A) it follows from (2.1) that h � �<br />
0<br />
DC0 = h (A) also. Since<br />
DC0 ≥ A and DC0 is base point free (because it computes the Clifford index of C0), we must have DC0 ∼ A.<br />
Finally, since Cliff A = Cliff DC0, <strong>on</strong>e easily sees that we must have equality in (3.10) and (3.11), whence<br />
h1 (−M) =0, h0� �<br />
0<br />
DC0 = h (D) andbyLemma3.6Cliff DC0 = D.(L + KS − D).
Math. Nachr. 256 (2003) 73<br />
Set r := h0 (A) − 1, which is by assumpti<strong>on</strong> the Clifford dimensi<strong>on</strong> of C0. We have then, by the last corollary,<br />
Riemann–Roch and the adjuncti<strong>on</strong> formula:<br />
r = 1<br />
2 D.(D − KS) = D 2 +1− g(D) = g(D) − 1 − D.KS . (3.45)<br />
By [8, Prop. 3.2] any pencil of divisors <strong>on</strong> C0 has degree ≥ 2r. In particular, since h0�OC0(−KS) � ≥<br />
h0 (−KS) ≥ 2,wemusthave−KS .L≥ 2r =2g(D) − 2 − 2D.KS, which yields<br />
−M .KS ≥ −D.KS +2g(D) − 2 . (3.46)<br />
Now if g(D) ≥ 2,wehaveh 0 (D + KS) ≥ 2,sobyLemma3.6,OC0(D + KS) c<strong>on</strong>tributes to the Clifford index<br />
of C0. Combining with (3.46), we get the c<strong>on</strong>tradicti<strong>on</strong><br />
Hence<br />
Cliff OC0(D + KS) ≤ (D + KS) .M = D.M + M.KS < D.M + D.KS = Cliff C0 .<br />
g(D) ≤ 1 . (3.47)<br />
By (3.45), this yields<br />
�<br />
D<br />
r =<br />
2 +1 if g(D) = 0,<br />
D2 if g(D) = 1.<br />
(3.48)<br />
Now define d := D.L and c := Cliff C0 = D.(L + KS − D). By [8, Lemma 1.1], the line bundle<br />
A = DC0 is very ample, whence it embeds C0 as a smooth curve C ′ 0 of degree d and genus g in Pr . Moreover,<br />
since H0� �<br />
0<br />
DC0 � H (D), we have the following commutative diagram, where we denote by φD and φDC the 0<br />
morphisms defined by D and DC0 respectively and set S ′ := φD(S):<br />
S��<br />
C0<br />
φD ��S ′ �� r<br />
�� P<br />
φDC0 �� C ′ 0<br />
�� P r<br />
(3.49)<br />
We therefore have deg S ′ ≤ D 2 . By [8, Cor. 3.5 and Prop. 5.1], a curve of Clifford dimensi<strong>on</strong> r ≥ 4 in P r of<br />
degree d and genus g with (d, g) �= (4r − 3, 4r − 2) cannot be c<strong>on</strong>tained in a (possibly singular) surface of degree<br />
≤ 2r − 3. By (3.48) we get<br />
deg S ′ ≤ D 2 ≤ r ≤ 2r − 3<br />
(when r ≥ 4). So we therefore must have<br />
(d, g) = (4r − 3, 4r − 2) if r ≥ 4 . (3.50)<br />
Now we make use of the following result:<br />
Propositi<strong>on</strong> 3.11 [8] Let C be a smooth curve of genus g, Clifford index c, Clifford dimensi<strong>on</strong> r ≥ 3 and<br />
degree d in Pr . C<strong>on</strong>sider the following properties:<br />
(a) (d, g) =(4r−3, 4r − 2) (whence c =2r− 3),<br />
(b) C has a unique line bundle A computing c,<br />
(c) A2 � ωC and A embeds C as an arithmetically Cohen–Macaulay curve in Pr ,<br />
(d) C is 2r–g<strong>on</strong>al, and there is a <strong>on</strong>e–dimensi<strong>on</strong>al family of pencils of degree 2r, all of the form |A − B|,<br />
where B is the divisor of 2r − 3 points of C.<br />
If r ≤ 9,thenCsatisfies (a) – (d).<br />
In general, if C satisfies (a), it also satisfies (b) – (d).
74 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
Remark 3.12 In [8] it is furthermore c<strong>on</strong>jectured that any curve of Clifford dimensi<strong>on</strong> r ≥ 3 satisfies (a) – (d).<br />
By this result and (3.50) we have<br />
Lemma 3.13 C0 satisfies the c<strong>on</strong>diti<strong>on</strong>s (a) – (d) in Propositi<strong>on</strong> 3.11 if r ≥ 3.<br />
By c<strong>on</strong>diti<strong>on</strong> (c) we have OC0(2D) � ωC0 �OC0(L + KS), so we have an exact sequence<br />
0 −→ KS − 2D −→ L + KS − 2D −→ OC0 −→ 0 ,<br />
from which we get h 0 (L + KS − 2D) =1. � Note that h 1 (KS − 2D) =h 1 (2D) =0by (P5). � This means that<br />
L + KS − 2D =: ∆ ≥ 0 , (3.51)<br />
where ∆ .L=0and ∆ is <strong>on</strong>ly supported <strong>on</strong> (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g>.<br />
Furthermore, from Lemma 3.6 and the fact that D is nef (Lemma 3.4 (b)), we must have ∆ .D =0, whence<br />
by (3.51) ∆ 2 =∆.KS. Riemann–Roch therefore yields<br />
From the exact sequence<br />
we therefore get<br />
h 1 (∆) = h 0 (∆) − 1<br />
2 ∆ . (∆ − KS) − 1 = 0.<br />
0 −→ KS − ∆ −→ 2D −→ OC0(2D) −→ 0 ,<br />
h 0 (2A) = h 0� OC0(2D) � = h 0 (2D) = D.(2D − KS)+1 = 2r + D 2 +1. (3.52)<br />
By Lemma 3.13 and c<strong>on</strong>diti<strong>on</strong> (c) in Propositi<strong>on</strong> 3.11, we have h 0 (2A) =4r − 2 if r ≥ 3. Combining (3.48)<br />
and (3.52) yields<br />
4r − 2 = h 0� OC0(2D) � = 2r + D 2 +1 = 3r + g(D) ,<br />
whence r = D 2 =3and g(D) =1.<br />
We have therefore proved that an excepti<strong>on</strong>al curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface has Clifford dimensi<strong>on</strong> 2 or 3.<br />
3.1 Curves of Clifford dimensi<strong>on</strong> 2<br />
From (3.48), we see that D2 =2if g(D) =1. Hence c = D.L− D2 + D.KS = d − 4. In particular d ≥ 5.<br />
On the other hand, since D satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k = d − 3 ≥ 2, we get from Lemma 3.7 above that<br />
all � the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality ≤ d − 2, which c<strong>on</strong>tradicts the excepti<strong>on</strong>ality of C0. Sowemusthave<br />
2 r, g(D),D � =(2, 0, 1).<br />
In particular D.KS = −3, so by [11, Prop. 3.10] we have that φD is an isomorphism outside of finitely many<br />
c<strong>on</strong>tracted (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g>. In particular it is birati<strong>on</strong>al.<br />
By the commutative diagram (3.49) with r =2,wehavethatφD : S → P2 is a blow up at finitely many<br />
points, which is equal to the number m(D). Clearly 0 ≤ m(D) ≤ 8 and S � Sm(D). Let<br />
R(D) = {Γ1,...,Γ m(D)} . (3.53)<br />
Since DC0 is very ample, we must have<br />
m(D) �<br />
C0 ∼ dD − aiΓi , (3.54)<br />
i=1<br />
with all ai =0or 1. InotherwordsΓi .L =0or 1 for all i. ThismeansthatDC is very ample for any smooth<br />
C ∈|L|, so any such is isomorphic to a smooth plane curve of degree d and is excepti<strong>on</strong>al.
Math. Nachr. 256 (2003) 75<br />
3.2 Curves of Clifford dimensi<strong>on</strong> 3<br />
From (3.48), we have D2 =3and g(D) =1, whence −D.KS =3. By the Hodge index theorem K2 S ≤ 3<br />
with equality if and <strong>on</strong>ly if D ∼−KS6. It is known from the results of G. Martens in [15] (and also c<strong>on</strong>tained in<br />
Propositi<strong>on</strong> 3.11 (a)) that a curve C0 of Clifford dimensi<strong>on</strong> 3 satisfies<br />
g(C0) = 10, c := Cliff C0 = 3, d := D.L = 9 and (2D)C0 ∼ ωC0 . (3.55)<br />
The Hodge index theorem gives 3L 2 = D 2 L 2 ≤ (D.L) 2 =81, whence L 2 ≤ 27 with equality if and <strong>on</strong>ly<br />
if L ∼ 3D. Since g(L) =10,wehaveL.(L + KS) =18, and combined with the Hodge index theorem<br />
K 2 S L2 ≤ (L.KS) 2 = � L 2 − 18 � 2 , we end up with the following possibilities:<br />
(i) L 2 =23, −L.KS =5, K 2 S =1.<br />
(ii) L 2 =24, −L.KS =6, K 2 S =1.<br />
(iii) L2 =25, −L.KS =7, K2 S =1.<br />
(iv) L2 =26, −L.KS =8, K2 S<br />
=1, 2.<br />
(v) L2 =27, −L.KS =9, K2 S =1, 2, 3 � K2 �<br />
S =3implying L ∼ 3D ∼−3KS6 .<br />
We now show that we can rule out the two first cases.<br />
Indeed, in case (i), the pencil � �<br />
� − KS8<br />
� will cut out a g1 5 <strong>on</strong> each member of |L|, in particular <strong>on</strong> C0, c<strong>on</strong>tradicting<br />
its excepti<strong>on</strong>ality.<br />
In case (ii) we calculate<br />
χ(L − 2D) = 1 � � 2 2<br />
L − 4L.D+4D − KS8 .L+2D.KS8 +1 = 1,<br />
2<br />
whence either L − 2D ≥ 0 or KS8 − L +2D ≥ 0. But � KS8 − L +2D � .L= −12, and since L is nef, we must<br />
have L − 2D ≥ 0. Since(L−2D) .KS8 =0,wemusthaveL∼2D, but this c<strong>on</strong>tradicts (L − 2D) .L=6.<br />
We now c<strong>on</strong>sider the cases (iii) – (v).<br />
First note that D satisfies the c<strong>on</strong>diti<strong>on</strong>s (†) for k =5. We claim that there is no line bundle satisfying (†) for<br />
k
76 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
In the same way we can treat the case (v) and we leave it to the reader to verify that we end up with the<br />
following cases:<br />
L ∼ −3KS8 +3Γ1 +3Γ2 , R(L) = {Γ1, Γ2} , Γ1 . Γ2 = 0, (3.60)<br />
L ∼ −3KS7 +3Γ, R(L) = {Γ} , (3.61)<br />
L ∼ −3KS6 . (3.62)<br />
We now claim that any smooth C ∈|L| for an L as in (3.57) – (3.62) is excepti<strong>on</strong>al. Indeed, note that any<br />
smooth curve in |L| for L as in (3.57) – (3.61) is a strict transform of some smooth curve in |−3KS6|, fora<br />
blowingupofS6 in <strong>on</strong>e or two points (in general positi<strong>on</strong>), so what we claim now follows from Example 3.1<br />
above.<br />
We have therefore proved:<br />
Theorem 3.14 Let C0 be a smooth curve of Clifford index c and Clifford dimensi<strong>on</strong> r ≥ 1 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong><br />
surface S. LetAbe a line bundle computing its Clifford dimensi<strong>on</strong>. Set L := OS(C0).<br />
Then C0 is excepti<strong>on</strong>al if and <strong>on</strong>ly if it is as in <strong>on</strong>e of the following two cases:<br />
(a) There exists a base point free line bundle D <strong>on</strong> S satisfying<br />
D 2 = 1, D.KS = −3 , D.L = c +4 and<br />
Γi .L ≤ 1 for all Γi ∈R(D)<br />
(3.63)<br />
(the latter c<strong>on</strong>diti<strong>on</strong> is equivalent to DC being very ample for all C ∈|L|).<br />
In this case r =2, A ∼OC0(D) and φD : S → P 2 gives the identificati<strong>on</strong> S � S m(D) and maps every<br />
smooth curve in |L| to a smooth plane curve of degree D.L= c +4, whence all these <str<strong>on</strong>g>curves</str<strong>on</strong>g> are excepti<strong>on</strong>al of<br />
Clifford dimensi<strong>on</strong> 2 and Clifford index c.<br />
(b) S � Sn for n ∈{6, 7, 8} and<br />
n−6 �<br />
L ∼ −3KSn +<br />
i=1<br />
aiΓi , Γi = (−1)–curve , ai ∈{2, 3} .<br />
In this case r =3, g(L) =10, c =3and A ∼OC0(D), for<br />
n−6 �<br />
D := −KSn +<br />
i=1<br />
Γi<br />
and all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al of Clifford dimensi<strong>on</strong> 3 and Clifford index 3.<br />
This c<strong>on</strong>cludes the proof of part (c) of Theorem 1.1.<br />
It is clear that after a change of basis of Pic S we can assume that we have<br />
L ∼ dl −<br />
n�<br />
aiei , ai∈{0, 1} , and D ∼ l,<br />
i=1<br />
in case (a), and that we have<br />
in case (b).<br />
L ∼ 9l −<br />
6�<br />
ei −<br />
i=1<br />
n�<br />
biei , bi∈{0, 1} , and D ∼ 3l −<br />
i=7<br />
4 C<strong>on</strong>clusi<strong>on</strong> of the proof of Theorem 1.1<br />
From [11] we have the following result:<br />
6�<br />
i=1<br />
ei<br />
(3.64)
Math. Nachr. 256 (2003) 77<br />
Propositi<strong>on</strong> 4.1 [11, Prop. 4.1] Let L be a nef line bundle of secti<strong>on</strong>al genus g(L) ≥ 2 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface<br />
such that L �∼ −2KS8. Assume that the minimal g<strong>on</strong>ality of a smooth curve in |L| is k +1, for an integer k ≥ 1<br />
and that am<strong>on</strong>g all the divisors satisfying (†), there is <strong>on</strong>e not being of <strong>on</strong>e of the following types:<br />
(a) k =1, D ∼−KS7 and L ∼−2KS7,<br />
(b) k =1, D ∼−KS8 +Γ, with Γ a (−1)–curve and L ∼ 2D,<br />
(c) D ∼−KS8.<br />
Then all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| have g<strong>on</strong>ality k +1.<br />
In [11, Secti<strong>on</strong> 4] we furthermore showed that the cases (a) and (b) are exactly the cases (I) and (II) in<br />
the introducti<strong>on</strong>. We also showed that if the <strong>on</strong>ly divisor satisfying (†) for k = k0 is −KS8, then there is a<br />
codimensi<strong>on</strong> 1 family of smooth (k0 +1)–g<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L|, c<strong>on</strong>sisting precisely of the <str<strong>on</strong>g>curves</str<strong>on</strong>g> passing through<br />
the base point x of � �<br />
� − KS8<br />
�, whereas all the other <str<strong>on</strong>g>curves</str<strong>on</strong>g> are (k0 +2)–g<strong>on</strong>al.<br />
We have therefore left to prove that the case (c) above is Case (III) in the introducti<strong>on</strong>. We have to prove the<br />
numerical c<strong>on</strong>diti<strong>on</strong>s, which follow by:<br />
Lemma 4.2 Let L be a base point free line bundle of secti<strong>on</strong>al genus g(L) ≥ 2 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface of<br />
degree 1 and k0 ≥ 1 an integer. Assume that the minimal g<strong>on</strong>ality of a smooth curve in |L| is k0 +1. The<br />
following c<strong>on</strong>diti<strong>on</strong>s are equivalent:<br />
(i) the <strong>on</strong>ly divisor satisfying (†) for k = k0 is −KS,<br />
(ii) L2 ≥ 5k0 +2, −L.KS = k0 +2, L is ample, L.C ≥ k0 +2for all smooth rati<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g> C with<br />
C2 =0, and L.Γ ≥ 2 for all (−1)–<str<strong>on</strong>g>curves</str<strong>on</strong>g> Γ if L2 ≥ 8.<br />
P r o o f. Assume (i) holds. As remarked right after Propositi<strong>on</strong> 4.1 above, we have that the general smooth<br />
curve in |L| has g<strong>on</strong>ality k0 +2.Sincek0 +2 ≤⌊ g(L)+3<br />
2 ⌋ (see Secti<strong>on</strong> 2.4), we get g(L) ≥ 2k0 +1.Furthermore<br />
−KS .L= k0 +2and L2 =2g(L) − 2 − L.KS ≥ 5k0 +2.<br />
By [11, Prop. 3.7] we have that L + KS is nef, whence R(L) =∅. If there exists a (−1)–curve Γ such<br />
that Γ .L =1,defineD := −KS +Γand M := L − D = L + KS − Γ. If L2 ≥ 8, <strong>on</strong>e easily computes<br />
h0 (L − 2D) ≥ 1<br />
� �<br />
2 2<br />
2 L − 3k − 6 +1> 0 and L.D− D = k0 +1,soD will satisfy the c<strong>on</strong>diti<strong>on</strong>s (†) for<br />
k = k0, a c<strong>on</strong>tradicti<strong>on</strong>.<br />
If there is a smooth rati<strong>on</strong>al curve C with C2 =0and L.C ≤ k0 +1,thenCsatisfies (†) for k = k0,againa<br />
c<strong>on</strong>tradicti<strong>on</strong>.<br />
Assume now (ii) holds and that D is a divisor satisfying (†) for k = k0. By [11, Prop. 3.7 and Rem. 3.8] either<br />
g(D) =0and � D2 �<br />
, −D.KS =(0, 2) or (1, 3),org(D) =1and D is of the form (3.56).<br />
If L 2 =7(so that k0 =1),wefind(−2KS +Γ) 2 =(−2KS +Γ).L =7, whence by the Hodge index<br />
theorem L ∼−2KS +Γ, and the <strong>on</strong>ly divisor satisfying (†) for k = k0 is −KS.<br />
So we can assume L2 ≥ 8, whence by our assumpti<strong>on</strong>s R(L) =R1(L) =∅,soifg(D) =1,thenD∼−KS by (3.56). So we have left to treat the cases where � D2 �<br />
, −D.KS =(0, 2) or (1, 3).<br />
By the assumpti<strong>on</strong>s in (ii) <strong>on</strong>e immediately sees that D cannot be as in the first case.<br />
So assume now D2 =1and D.KS = −3. Sinceg(L) ≥ 2k0 +1,wehave(k0,g(L)) �= (2, 3), whence<br />
by [11, Prop. 3.7] all the smooth <str<strong>on</strong>g>curves</str<strong>on</strong>g> in |L| are excepti<strong>on</strong>al, and by Theorem 3.14 (a) Γi .L ≤ 1 for any<br />
Γi ∈R(D). (Note that R(D) �= ∅, in fact m(D) =8, by Theorem 3.14 (a).) This c<strong>on</strong>tradicts the c<strong>on</strong>diti<strong>on</strong>s<br />
(ii).<br />
This c<strong>on</strong>cludes the proof of parts (a) and (b) of Theorem 1.1.<br />
We have shown above that if L is as in Case (III) with L 2 =7,thenL ∼−2KS +Γfor a (−1)–curve Γ.<br />
C<strong>on</strong>versely any such L is easily seen to satisfy the c<strong>on</strong>diti<strong>on</strong>s of Case (III).<br />
For L 2 ≥ 8, a line bundle in Case (III) is determined by its intersecti<strong>on</strong> numbers with <str<strong>on</strong>g>curves</str<strong>on</strong>g> D <strong>on</strong> S with<br />
D 2 = −1 and D 2 =0. Now Pic S8 � Zl ⊕ Ze1 ⊕ ... ⊕ Ze8 and −KS8 =3l − � 8<br />
1 ei as described in<br />
Secti<strong>on</strong> 2.3. Writing D ∼ bl − � 8<br />
1 biei with b1 ≥ ... ≥ b8 we get finitely many tuples (b; b1,...,b8) yielding<br />
D 2 = −1 and D 2 =0(see e.g. [5, pp. 4 – 5]). More precisely, writing � a0; a n1<br />
1 ,an2<br />
2 ,...� for the class of the<br />
curve a0l − �n1 1 eit − �n2 1 ejt − ...we get the following seven types of <str<strong>on</strong>g>curves</str<strong>on</strong>g> D with D2 = −1:<br />
� �<br />
0; −1 ,<br />
� 2<br />
1; 1 � ,<br />
� 5<br />
2; 1 � ,<br />
� 6<br />
3; 2, 1 � ,<br />
� 3 5<br />
4; 2 , 1 � ,<br />
� 6 2<br />
5; 2 , 1 � ,<br />
� 7<br />
6; 3, 2 � ,
78 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
and the following fifteen types of <str<strong>on</strong>g>curves</str<strong>on</strong>g> D with D2 =0:<br />
� � � 4<br />
1; 1 , 2; 1 � , � 3; 2, 1 5� , � 4; 3, 1 7� , � 4; 2 3 , 1 4� , � 5; 2 6 , 1 � , � 5; 3, 2 3 , 1 4� , � 6; 3 2 , 2 4 , 1 2�<br />
� � � 4 3 6<br />
7; 3 , 2 , 1 , 7; 4, 3, 2 � , � 8; 3 7 , 1 � , � 8; 4, 3 4 , 2 3� , � 9; 4 2 , 3 5 , 2 � , � 10; 4 4 , 3 4� , � 11; 4 7 , 3 � .<br />
Now we set L ∼ al − � 8<br />
1 aiei, and we can assume a1 ≥ ...≥ a8 by symmetry. The c<strong>on</strong>diti<strong>on</strong> −L.KS = d<br />
now reads d =3a − a1 − ...− a8 and L 2 ≥ 5d − 8 gives<br />
a 2 ≥ a 2 1 + ...+ a 2 8 +5d − 8 = a 2 1 + ...+ a 2 8 +15a − 5a1 − ...− 5a8 − 8 .<br />
Posing the remaining c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> L we leave it to the reader to verify that we get the following alternative<br />
descripti<strong>on</strong> of the line bundles in Case (III):<br />
Alternative descripti<strong>on</strong> of Case (III): deg S =1, and either L2 =7,g(L) =3,d=3,L∼−2KS +Γ<br />
for a (−1)–curve Γ, orL ∼ al − �8 1 aiei, d := 3a − a1 − ...− a8, with the following c<strong>on</strong>diti<strong>on</strong>s, assuming<br />
a1 ≥ ...≥ a8:<br />
a8 ≥ 2 , a7 + a8 ≥ a1 , a5 + ...+ a8 ≥ a, a2 + ...+ a8 ≥ 2a,<br />
a ≥ a1 + a2 +2, a ≥ 2a1 , a+ a8 ≥ a1 + a2 + a3 ,<br />
2a ≥ a1 + ...+ a5 +2, 2a ≥ 2a1 + a2 + a3 + a4 , 2a + a8 ≥ a1 + ...+ a6 ,<br />
3a ≥ 2a1 + a2 + ...+ a7 +2, 3a ≥ 2a1 +2a2 + a3 + ...+ a6 ,<br />
4a ≥ 2a1 +2a2 +2a3 + a4 + ...+ a8 +2,<br />
4a ≥ 3a1 +2a2 + a3 + ...+ a8 ,<br />
4a ≥ 2a1 + ...+2a4 + a5 + a6 + a7 ,<br />
5a ≥ 2a1 + ...+2a6 + a7 + a8 +2, 5a ≥ 2a1 + ...+2a7 ,<br />
5a ≥ 3a1 +2a2 + ...+2a5 + a6 + ...+ a8 ,<br />
6a ≥ 3a1 +2a2 + ...+2a8 +2, 6a ≥ 3a1 +3a2 +2a3 + ...+2a7 + a8 ,<br />
7a ≥ 3a1 + ...+3a4 +2a5 + ...+2a8 ,<br />
8a ≥ 3a1 + ...+3a7 +2a8 ,<br />
a(a − 15) ≥ a1(a1 − 5) + ...+ a8(a8 − 5) − 8 .<br />
5 Pencils computing the g<strong>on</strong>ality<br />
In Theorem 3.14 we described the line bundles A computing the Clifford dimensi<strong>on</strong> of smooth excepti<strong>on</strong>al <str<strong>on</strong>g>curves</str<strong>on</strong>g><br />
<strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface. In particular, we saw that such a line bundle is the restricti<strong>on</strong> of a line bundle <strong>on</strong> the<br />
surface.<br />
We c<strong>on</strong>clude this paper by describing the pencils computing the g<strong>on</strong>ality of a smooth curve <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong><br />
surface. This will make some of the results of Pareschi more precise (see [17, Lemma (2.8)]), and extend them<br />
to <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong> of degree 1.<br />
By Lemma 3.7, if A computes the g<strong>on</strong>ality of a smooth curve C <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface S, then there exists<br />
a line bundle D <strong>on</strong> S such that OC(D) ≥ A. Furthermore, if the g<strong>on</strong>ality is the minimal am<strong>on</strong>g the smooth<br />
<str<strong>on</strong>g>curves</str<strong>on</strong>g> in |C| (which is always the case, except possibly for the cases (I), (II) and (III) described above), the line<br />
bundle D has to be as in (a) – (f ) of [11, Prop. 3.7], i.e. either D ∼−KS8 or � D2 �<br />
, −D.KS =(0, 2), (1, 3),<br />
(2, 2), (3, 3) or (4, 4), the latter implying that the g<strong>on</strong>ality is 4. Furthermore, by [11, Prop. 3.7] and Theorem<br />
3.14 combined, if � D2 �<br />
, −D.KS =(3, 3),then(g<strong>on</strong> C, g(C)) = (3, 4), (4, 5) or (6, 10).<br />
In the special cases (I), (II) and (III), if C has minimal g<strong>on</strong>ality d − 1, then we have seen that D ∼−KS7,<br />
D ∼−KS8 +Γ(where Γ is a (−1)–curve) and D ∼−KS8 respectively, and there are no other line bundles<br />
satisfying (†) for k = d − 2 by Propositi<strong>on</strong> 4.1. If C has g<strong>on</strong>ality d, a careful analysis is needed. Denoting by<br />
A again a line bundle computing the g<strong>on</strong>ality, by Lemma 3.7 there exists an effective divisor D ′ <strong>on</strong> S satisfying<br />
(†) for k = d − 1 � in particular D ′ .L− D ′2 �<br />
≤ d such that OC(D ′ ) ≥ A. If D ′ �∼ D, then we must have<br />
D ′ .L− D ′2 ′ ′ ′ ′ = d. IfD is not nef, then there is a (−1)–curve Γ satisfying Γ .D < 0. By arguing as in [11,<br />
(3.9)], we find that Γ ′ .D ′ =1, Γ ′ .L =0and D ′ − Γ ∼ D. Since L is ample in the cases (I) and (III), we
Math. Nachr. 256 (2003) 79<br />
must be in case (II), and we also see that Γ ′ =Γ, whence D ′ ∼−KS8 +2Γ. But since Γ .L =0,wehave<br />
OC(D ′ ) �OC(D), whence we can work with D ∼−KS8 +Γin this case. So we can assume that D ′ is nef. By<br />
the same argument, we also get that M ′ := L − D ′ is nef, except when we are in case (II) and M ′ ∼−KS8 +2Γ.<br />
In this case D ′ ∼−KS8, and again since Γ .L =0,wehaveOC(D ′ ) �OC(D), whence we can assume that<br />
M ′ is nef as well.<br />
We now treat the three different special cases and will find out that such a divisor D ′ does not exist in the cases<br />
(I) and (II), and that there are a few possibilities in case (III).<br />
Case (I): We have d =3and L ∼−2KS7. In particular −2KS7 .D ′ = D ′ .L = D ′2 +3.SinceL − D ′ ≥<br />
−KS,wehaveD ′ .L≤ (L + KS) .L=4, whence L.D ′ =4, D ′2 =1and −KS7 .D ′ =2, a c<strong>on</strong>tradicti<strong>on</strong> <strong>on</strong><br />
the parity.<br />
Case (II): This case is similar to case (I) and left to the reader.<br />
Case (III): We have deg S =1and −L.KS8 = d ≥ 3.<br />
We first treat the case g(D ′ ) ≥ 2. Thenh 0 (D ′ + KS) ≥ 2.<br />
Assume first −D ′ .KS ≤−M ′ .KS. Wehave<br />
(D ′ + KS) . (M ′ − KS) = D ′ .M ′ + KS . (M ′ − D ′ ) − K 2 S < D′ .M ′ , (5.1)<br />
whence D ′ + KS8 ∼−KS8, i.e.D ′ ∼−2KS8. One has d = D ′ .L− D ′2 = −2KS8 .L− 4K2 =2d− 4,<br />
S8<br />
whence d =4.Wehaveh0�D ′ �<br />
′<br />
C =4and deg D C =8, so there exists an effective divisor Z of degree 4 <strong>on</strong><br />
C such that A ∼ D ′ C − Z. This implies that h0�D ′ �<br />
0 ⊗IZ = h (A) =2, so there are two distinct elements<br />
D1 and D2 in |D ′ | passing through Z. Since the <strong>on</strong>ly reducible elements of |D ′ | are of the form H1 + H2 for<br />
Hi ∈ � �<br />
� �<br />
� − � KS8 and C does not pass through the base point of � − � KS8 , <strong>on</strong>e easily sees that D1 and D2 must be<br />
reduced and irreducible, in particular they intersect properly. Since D1 .D2 =degZ =4,wehaveZ = D1∩D2.<br />
C<strong>on</strong>versely, picking any two irreducible elements D1 and D2 in � �<br />
� − � 2KS8 intersecting in 4 distinct points and<br />
setting Z := D1 ∩ D2, <strong>on</strong>e sees from the exact sequence<br />
0 −→ M ′ −→ L ⊗IZ −→ M ′ D2<br />
−→ 0<br />
that |L ⊗IZ| is n<strong>on</strong>empty and has no base points off Z, whence from Bertini’s theorem the generic member is<br />
smooth. For any such smooth C, the line bundle � �<br />
− 2KS8 C − Z is then a g1 d .<br />
Assume now −D ′ .KS > −M ′ .KS. If −M ′ .KS =1then M ′ ∼−KS8by (P6), whence the absurdity<br />
d = D ′ .M ′ = −D ′ .KS8 = − � �<br />
L + KS8 .KS8 = d − 1. So −M ′ .KS8 ≥ 2, which in particular yields<br />
d = −L.KS8 ≥ 5.<br />
Furthermore, by (5.1) with D ′ and M ′ interchanged, we have g(M ′ )=1, unless possibly if M ′ ∼−2KS8.<br />
But in this case, we get d =4as above, a c<strong>on</strong>tradicti<strong>on</strong>. So g(M ′ )=1.<br />
By the c<strong>on</strong>diti<strong>on</strong>s (†) and [11, Lemma 3.1 and Rem. 3.4 (ii)], we must have g(L) =2d − 3 or 2d − 2 and<br />
L 2 ≤ 4d−2. Since−L.KS = d,wegetL 2 =2g(L)−2−L.KS =5d−6 (resp. 5d−8)ifg(L) =2d−2(resp.<br />
g(L) =2d − 3). Sinced ≥ 5 we end up with the <strong>on</strong>ly possibilities (d, g(L)) = (5, 7) and (6, 9). In the first case,<br />
we get g(D ′ )=2, whence −D ′ .KS =3and D ′2 =5. In particular D.L =10, whence A ∼ D ′ C − Z5, for<br />
Z5 a scheme of length 5. Similarly, we get g(D ′ )=3and −D ′ .KS =4in the sec<strong>on</strong>d case, whence D ′2 =8,<br />
D ′ .L=14,andA∼ D ′ C − Z8,forZ8a scheme of length 8.<br />
The cases that are left are now g(D ′ )=0or 1. By computing Cliff D ′ C as in the proof of [11, Prop. 3.7], we<br />
leave it to the reader to check that we end up with <strong>on</strong>ly three possibilities:<br />
(1) g(D ′ )=0, D ′2 =0,<br />
(2) g(D ′ )=0, D ′2 =1, d =3,<br />
(3) g(D ′ )=1, D ′2 =2.<br />
Summarizing, we obtain the following complete classificati<strong>on</strong>:<br />
Propositi<strong>on</strong> 5.1 Let C be a smooth curve of genus g ≥ 2 <strong>on</strong> a <strong>Del</strong> <strong>Pezzo</strong> surface and A a line bundle<br />
computing its g<strong>on</strong>ality.<br />
(a) If C is of g<strong>on</strong>ality d and not as in the cases (I), (II) and (III),thenAisof <strong>on</strong>e of the following types:<br />
(i) A = DC,forD2 =0, −D.KS =2,<br />
(ii) A = DC − P , P any point of C, D2 =1, −D.KS =3,<br />
(iii) A =(−KS8)C − x, x base point of |−KS8|,
80 Knutsen: <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong><br />
(iv) A = DC − Z2, D2 = −D.KS =2, Z2 a length 2 scheme where D fails to be very ample, K2 S ≤ 2,<br />
(v) A = DC − Z3, D2 = −D.KS =3, Z3 a length 3 scheme where D fails to be 2–very ample, (d, g) =<br />
(3, 4), (4, 5) or (6, 10), K2 S ≤ 3,<br />
(vi) A = DC − Z4, D2 = −D.KS =4, Z4 a length 4 scheme where D fails to be 3–very ample, (d, g) =<br />
(4, 5), K2 S ≤ 4.<br />
(b) If C is as in case (I) (resp. (II)), thenA = � � � �<br />
− KS7 − Z2 resp. A = − KS8 +Γ C �<br />
C − Z2, with<br />
Γ a (−1)–curve � �<br />
, with Z2 a length 2 scheme where −KS7 resp. −KS8 +Γ � fails to be very ample if C is<br />
hyperelliptic; and A = � �<br />
− KS7 C − P � resp. A = � − KS8 +Γ �<br />
C − P � for any point P ∈ C if C is trig<strong>on</strong>al.<br />
(c) If C is as in case (III) and of minimal g<strong>on</strong>ality d − 1,thenA = � �<br />
− KS8 − x, wherexisthe base point<br />
C<br />
of |−KS8|. IfChas g<strong>on</strong>ality d (equivalently C does not pass through x),thenAisof <strong>on</strong>e of the following types:<br />
(i) A = � �<br />
− KS8 C ,<br />
(ii) A = � �<br />
− 2KS8 C − Z4, whereZ4has length 4 and Z4 = D1 ∩ D2 for two distinct <str<strong>on</strong>g>curves</str<strong>on</strong>g> D1 and D2<br />
in |−2KS8|,<br />
(iii) A = DC, forD2 =0, −D.KS =2,<br />
(iv) A = DC − P , P any point of C, D2 =1, −D.KS =3, d =3,<br />
(v) A = DC − Z2, D2 = −D.KS =2, Z2 a length 2 scheme where D fails to be very ample,<br />
(vi) A = DC − Z5, D2 =5, −D.KS =3, Z5 a length 5 scheme, (d, g) =(5, 7),<br />
(vii) A = DC − Z8, D2 =8, −D.KS =4, Z8 a length 8 scheme, (d, g) =(6, 9).<br />
We also make the following observati<strong>on</strong>:<br />
Corollary 5.2 Let S be a <strong>Del</strong> <strong>Pezzo</strong> surface of degree n ≥ 3 embedded in Pn by −KS, and let C ⊆ S be a<br />
smooth curve of genus g ≥ 6 which is not excepti<strong>on</strong>al. Then any pencil computing the g<strong>on</strong>ality of C is cut out<br />
<strong>on</strong> C by a pencil of c<strong>on</strong>ics <strong>on</strong> S, whence the number of such pencils <strong>on</strong> C is finite. (In particular, S c<strong>on</strong>tains no<br />
bi–elliptic curve of genus ≥ 6.)<br />
Acknowledgements The author would like to thank S. A. Strømme for help in correcting a mistake in an earlier versi<strong>on</strong> of<br />
the paper and a referee for useful comments, in particular for suggesting to include Cor. 5.2.<br />
The author was supported by a grant from the Research Council of Norway. Most of the paper was written at the University<br />
of Bergen, Norway.<br />
References<br />
[1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of Algebraic Curves, Volume I, Grundlehren der<br />
Mathematischen Wissenschaften 267 (Springer–Verlag, Berlin – Heidelberg – New York – Tokyo, 1985).<br />
[2] C. Ciliberto and G. Pareschi, Pencils of minimal degree <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface, J. Reine Angew. Math. 460,15–36<br />
(1995).<br />
[3] M. Coppens and G. Martens, Secant spaces and Clifford’s theorem, Comp. Math. 68, 337 – 341 (1991).<br />
[4] M. Demazure, Surfaces de <strong>Del</strong> <strong>Pezzo</strong> I, II, III, IV, V, in: Séminaire sur les singularités des <strong>surfaces</strong>, edited by M. Demazure,<br />
H. Pinkham and B. Teissier, Lecture Notes in Mathematics 777 (Springer–Verlag, 1980).<br />
[5] S. Di Rocco, k–very ample line bundles <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, Math. Nachr. 179 (1996).<br />
[6] R. D<strong>on</strong>agi and D. R. Morris<strong>on</strong>, Linear systems <strong>on</strong> K3 secti<strong>on</strong>s, J. Diff. Geom. 29, 49 – 64 (1989).<br />
[7] D. Eisenbud, J. Koh, and M. Stillman, Determinantal equati<strong>on</strong>s for <str<strong>on</strong>g>curves</str<strong>on</strong>g> of high degree, with an appendix with J. Harris,Amer.J.Math.110,<br />
513 – 539 (1988).<br />
[8] D. Eisenbud, H. Lange, G. Martens, and F.–O. Schreyer, The Clifford dimensi<strong>on</strong> of a projective curve, Comp. Math. 72,<br />
173 – 204 (1989).<br />
[9] M. Green and R. Lazarsfeld, Special divisors <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> a K3 surface, Invent. Math. 89, 357 – 370 (1987).<br />
[10] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differ. Geom. 19, 125 – 171 (1984).<br />
[11] A. L. Knutsen, Higher order birati<strong>on</strong>al embeddings of <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, Math. Nachr. 254–255, 183 – 196 (2003).<br />
[12] A. L. Knutsen, On kth order embeddings of K3 <strong>surfaces</strong> and Enriques <strong>surfaces</strong>, Manuscr. Math. 104, 211 – 237 (2001).<br />
[13] R. Lazarsfeld, Brill–Noether–Petri without degenerati<strong>on</strong>s, J. Diff. Geom. 23, 299 – 307 (1986).<br />
[14] G. Martens, Funkti<strong>on</strong>en v<strong>on</strong> vorgegebener Ordnung auf komplexen Kurven, J. Reine und Angew. Math. 320, 68–85<br />
(1980).<br />
[15] G. Martens, Über den Clifford–Index algebraischer Kurven, J. Reine und Angew. Math. 336, 83 – 90 (1982).<br />
[16] M. Mella and M. Palleschi, The k–very ampleness <strong>on</strong> an elliptic quasi bundle, Abh. Math. Sem. Univ. Hamburg 63,<br />
215 – 226 (1993).
Math. Nachr. 256 (2003) 81<br />
[17] G. Pareschi, <str<strong>on</strong>g>Excepti<strong>on</strong>al</str<strong>on</strong>g> linear systems <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> <strong>on</strong> <strong>Del</strong> <strong>Pezzo</strong> <strong>surfaces</strong>, Math. Ann. 291, 17 – 38 (1991).<br />
[18] I. Reider, Vector bundles of rank 2 and linear systems <strong>on</strong> algebraic <strong>surfaces</strong>, Annals of Math. 127, 309 – 316 (1988).<br />
[19] M. Reid, Special linear systems <strong>on</strong> <str<strong>on</strong>g>curves</str<strong>on</strong>g> lying <strong>on</strong> a K3 surface, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. 13(2), no. 3, 454 – 458 (1976).<br />
[20] B. Saint–D<strong>on</strong>at, Projective Models of K3 Surfaces, Amer. J. Math. 96, 602 – 639 (1974).<br />
[21] F. Serrano, Extensi<strong>on</strong> of morphisms defined <strong>on</strong> a divisor, Math. Ann. 277, 395 – 413 (1987).