06.03.2014 Views

paraffin wax deposition and fouling

paraffin wax deposition and fouling

paraffin wax deposition and fouling

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

ci 0<br />

Ilc (i)<br />

s_ri P4<br />

4) •,-1 0’ p<br />

cr p :pi<br />

4-.’ 3)<br />

ci W d ‘c<br />

-1’ i ci.) ;) cj<br />

.4 ci))ci<br />

o (1)<br />

li) !.(DCIS 00)<br />

OrI<br />

ri<br />

-i-) lO ci -1 •H<br />

p<br />

0 P1 - ‘<br />

P 0 1.4 ccl c<br />

O tc g<br />

F1<br />

r1 -t ) fl ci<br />

C ()<br />

-<br />

I I 0 U) -<br />

I<br />

E-ci i’i c’j<br />

s—.<br />

+1<br />

$-i<br />

0 -1<br />

4<br />

-<br />

o >-,G)•d<br />

p ci)<br />

— o)fli<br />

ti2 -p bQj<br />

0 OOci)<br />

p IcFG)0<br />

(1<br />

ci4o<br />

0 ‘-1-<br />

0 ci)<br />

ci


giving rise to r<strong>and</strong>om fluctuations. Deposition was shown to decrease<br />

asymptotically to a cri;ical value <strong>and</strong> then break down to build ur again,<br />

mental studies using solutions of <strong>paraffin</strong> <strong>wax</strong> in kerosene fiowin over<br />

cooled surfaces. t was found that <strong>paraffin</strong> <strong>wax</strong> deposits build u<br />

rate, temuerature, composition <strong>and</strong> time. This was confirmed by experi—<br />

The literature revealed that <strong>paraffin</strong> <strong>deposition</strong> denenuod on flow—<br />

planes of weakness close to the <strong>deposition</strong> wall.<br />

down <strong>and</strong> removal of deposits was probably caused by the formation of<br />

the boundary layer suspension <strong>and</strong> at the <strong>deposition</strong> surface. The break—<br />

f3ulig is conroed by he cohesive properties of <strong>wax</strong> partices in<br />

:t is suggested that the mechanism of <strong>paraffin</strong> <strong>wax</strong> deposi:ion <strong>and</strong><br />

a boundary layer suspension of <strong>wax</strong> particles in kerosene.<br />

tion wall, at or below the solution solidification limit, there existed<br />

interface inside the boundary layer. From the interface to the deposi<br />

<strong>paraffin</strong> <strong>wax</strong> crystals came out of solution at a solubility temperature<br />

For the experimental conditions adopted it was calculated that<br />

with fiowrate <strong>and</strong> temperature but increase with concentration.<br />

cI1r’’r’) TC’


ACKC’bJLED3E.:ENTS<br />

should like to thank the following:<br />

Professor J.. flavies for allowing me<br />

to make use of the research<br />

facilities of the Department of Chemical Engineering.<br />

Dr. T. Reg Bott for his able supervision <strong>and</strong> support.<br />

Mr. Tom Steel, Mr. John Clark, Mr. Dave Hepell <strong>and</strong> other members<br />

of the departmental workshops, without whose help none of the apparatus<br />

used would ever have beer constructed.<br />

The Atomic Energy Research Establishment for the provision of a<br />

studentship <strong>and</strong> the Science Research Council for providing funds ;o<br />

build the apparatus.<br />

Mrs. Audrey Tanner for her patient trping.


2.1 :nti-oduction 4<br />

2. A iiv:u OF v:ous WO ON PAFFIN DESITI0N 4<br />

1.4 Approach of Thesis 3<br />

1.2 Effect of FoulinG 1<br />

1.3 Tyoes o± FoulIng 2<br />

1 1 FoulinLc in General 1<br />

1. INTRO IiUCTION<br />

L) Dscusscr.<br />

r..),p Star;u- o: Test Sections<br />

4.5.2 Startup o± Oircu.ation System<br />

--.5.1 :nodction<br />

4.5 Exuerimental Procedure 34<br />

4.4 cDerlmenta. Soluton 34<br />

4.5.5 Safety System 52<br />

:nstruntation 32<br />

33 The Test Sections 31<br />

Lr<br />

4.3.2 The Circulation System 30<br />

—.3.1 ntrod:ccion 50<br />

1+3 erimental Aparatus 30<br />

.2 Coiifications of Aparatus 29<br />

4.1 :roduction 29<br />

4. STiY G BY SOTiO\S O. PARhFi WAX IN KROS 29<br />

3.5 rermen;al ::ethod 27<br />

3.2 Eerimen;a System 26<br />

Results <strong>and</strong> Discussion 27<br />

3.5 Con&usions 28<br />

3i :ntroduction 26<br />

3. BAOXGRQLND TO o:- ?RESNT STJDIES 26<br />

2.4 Summary 23<br />

2.3.- Surface Properties 18<br />

2.3.2 Temperatures 12<br />

2.5.3 :± 16<br />

2.3.5 Additives 22<br />

2p. FZo’..rate 9<br />

2.3 Factors Affecting Paraffin Deposition 9<br />

2.2.2 Crys;aiiisation 5<br />

2.2.3 Sofoility 7<br />

2.2.4 Rheological Properties 8<br />

2.2 Paraffin iax <strong>and</strong> Solutions 4<br />

2,2.1 Petroleum <strong>wax</strong>es 5<br />

CQTENTS


46 iixperimental Results<br />

461 IntroJuction 36<br />

Lf.6.2 Testing of Apparatus 37<br />

4.6.3 Results 37<br />

4.6.4 A Single Test Section Result 38<br />

4.y Discussion 33<br />

4.8 Conclusions 40<br />

5. A STUDY OF PARAFN WAX DESITI0N 41<br />

5.1 Introduction 41<br />

5.2 Experimental Apparatus 41<br />

5.2.1 Introduction 41<br />

5.2.2 The Circulation Systems 42<br />

5.23 Deposition Assembly 43<br />

5.2.4 Instrumentation 44<br />

5.3 Experimental Solutions 45<br />

5.4 Experimental ?rocedures 45<br />

5.4.1 introduction<br />

.4.2 Startup<br />

5.4. Procedure During Experiments if7<br />

5.4.4 Determination of Derosited Wax 47<br />

5.5 Exoerimental Results L9<br />

5.5.1 Introduction<br />

5.5.2 Main Results 50<br />

5.5.3 ffect of Flowrate 50<br />

5.6 Discussion<br />

5.6.1 Comments on Results 50<br />

5.6.2 Comrarabiiity o± Results 51<br />

5.6.3 Recommendations 53<br />

5,7 Conclusions<br />

6. ANAI,YSS OP FOULING DATA USING TEMPERATURE PROFES<br />

6.1 Introduction<br />

6.2 Application to Previous Results<br />

6.2.1 Introduction 55<br />

6.2.2 Method of naysis 55<br />

6.2.3 Different Reynolds Numbers<br />

6.2.4 Different Concentrations 59<br />

emperatu:e Pro:i.es Szuy<br />

Discussion<br />

Conc.sons<br />

F.


7. GENIL DiSCU2ION 63<br />

7.1 Introduction 63<br />

7.2 General Caaracterjstjcs of Derosition 63<br />

7.5 Behaviour of \Iax in Boundary Layers 64<br />

7.4 Buildu of Deposits 64<br />

75 Roova1 of Deposits 66<br />

7.6 R<strong>and</strong>om :‘luctuations 68<br />

7,7 Other Ccnsidcrations 69<br />

?.d Mechanism o .Depos;ion 69<br />

7.9 Conclusions 71<br />

8 RECONDATOcS 72<br />

9. CONCLUSIONS 75<br />

WJMENCLATURE 74<br />

RBRNCRS 73


APPNNDICES<br />

1. PHYSICal PRSPHTIES Oi.’ PAiAFFIN WAX IN KEROSENE SOLUTIONS<br />

.1 Introduction Al<br />

Al ..2 Solubility [.2<br />

Al.3 Viscosity [.3<br />

Specific Gravity [.4<br />

[.9.5 Socific Heat [.Lf<br />

[.9.6 Thermal Conductivity [.5<br />

[.9.7 Discussion<br />

A1f<br />

2. CCHP 1.RISON CF THEORETICAL EifIRICAL AND EXPERIMENTal[.10<br />

SOLITY OF PARAFFIN WAX IN KEROSENE<br />

3. :NSTRUEENT CalIBRATIONS FOR THE FOULING STUDIES APPARATUS [.14<br />

[.3.9 Th;roduc;ion<br />

[.5.2 Pressure Transducer Calibration<br />

[.5.3 Calibraicn of Orifice 2eters [.14<br />

4. THE os’x TU3EX AND :s EXPER:XENTA: RESULTS OF THE 19<br />

FCU::NG STDThS<br />

5. CalBRATIQN CF ORIFICE EE:ER5 AND THERMISTORS USED IN THE [.20<br />

::PcS:T:cx STUDIES APPARATUS<br />

[.5.1 Orifice Meters<br />

[.5.2 Thermistors<br />

6. cERILINTal RESULTS OF THE DE2OS:T:ON STUDIES<br />

7. BOUNDARY YER TREORY USED IN THE CALCULATION OF ERATURE<br />

PROFI2S IN JR3UlET PIPE FIDW<br />

[.7.9 Basic çuaions [.53<br />

[.72 Expressicas for Eddy Diffusivity [.5--<br />

[.7.3 Dimensicnless cua;ions [.35<br />

[.7.4 Velocity Distribution jf FlUid Properties<br />

are Constant<br />

[.7.5 Teraure Dstriouton if uid ProDer1es<br />

are Constant<br />

[.7.6 Velocity <strong>and</strong> Temperature Distribution with [.37<br />

Variable Viscosity<br />

P r-: D’’ )‘ ‘ - ‘—m --r-i- ‘ — rn- ‘--r1-<br />

c). .—‘.---‘ — _;__-__ -. — —.--- 4J .-<br />

r.troauctzon<br />

-2 .2 Su orou ines<br />

3.2.9 Data<br />

:.3.2.2 Friction Factor<br />

Calcalatica of Physical Proerties<br />

• [.3.24 Calculated Characteristics of System<br />

[.3.2.5 Dalculatica cf Dimensionless Velocity<br />

[.3 2.6 Calculation of Dimensionless Temperature<br />

AC .-<br />

-. —<br />

:rm.: Use<br />

[.3.5 Cc:.::utcr Ccu:.aticns


NOIJ 1DflaoLNI —


the major unresolved problem in heat transfer<br />

8. In spite of<br />

increases capital <strong>and</strong> operating costs of transfer equipment.<br />

transfer surfaces. It reduces heat transfer coefficients <strong>and</strong><br />

ouling is tne deositon of undesirable substances on heat<br />

1.1 Foulinç in General<br />

Though being well known, <strong>fouling</strong> is poorly understood <strong>and</strong> remains<br />

1. ITP3DUCTlON<br />

ing resistances <strong>and</strong> are caiie <strong>fouling</strong> factors anc are casea<br />

are obtained from design correlations but R (tube wail) from the<br />

specified. The resistances R. (inside tube) <strong>and</strong> (outside tube)<br />

shut down <strong>and</strong> cleaning costs.<br />

Operating costs result from increased pressure drops <strong>and</strong> excessive<br />

Capital costs of transfer equipment increase due to <strong>fouling</strong><br />

in industry make most <strong>fouling</strong> situations unique, rendering<br />

coefficients. The vast range of process streams <strong>and</strong> conditions<br />

—1—<br />

advances in heat transfer in the past decades, <strong>fouling</strong> continues<br />

to negate any improved methods of evaluating heat transfer<br />

comprehensive underst<strong>and</strong>ing difficult.<br />

1.2 Effeccs of ‘ouling<br />

be cause extra heat transfer area is required for the same duty.<br />

The heat transfer area of an exchanger can be determined from<br />

a relation of the form:<br />

A = -4’ (R. + R + R + . + i ) ..... (.2)<br />

1 0 w<br />

The transfer rate <strong>and</strong> mean temerature difference T are usually<br />

m<br />

therma conauc;vzty o± tuce material <strong>and</strong> its thic.mess. The Iou—<br />

on previous ererience. They are the designers safety factors<br />

amc<br />

•. (i)<br />

account zor :oL.ing ama rougnness o transzer suraces .<br />

The extra surface area required, due to <strong>fouling</strong> can be quite<br />

tme aesn oz excman;ers’ This area mas ocen


in fire 1.1. Using the recommended<br />

calculated for a typical water/water heat exchanger <strong>and</strong> is shown<br />

8 <strong>fouling</strong> factors the<br />

required heat transfer area increases by 100 per cent, showing<br />

generation, desalination <strong>and</strong> the oil <strong>and</strong> chemical industries.<br />

1.3 Tyes of Fouling<br />

Fouling has mainly been studied in water cooling, steam<br />

clearly the impairment caused by <strong>fouling</strong>.<br />

surfaces by an eva’3orating fluid. Occurs in steam generatic:.<br />

(5) 3oiling <strong>and</strong> evarora;ion <strong>fouling</strong>, where solids are left on<br />

deosit out <strong>and</strong> adhere to transfer surfaces.<br />

(4) Particulate <strong>fouling</strong>, where particles suspended in fluids<br />

temperatures.<br />

hydrocarbons polymerize or decompose due to excessive<br />

a product that deposits on transfer surfaces. Common ere<br />

(3) Chemical reaction <strong>fouling</strong>, where a substance reacts to form<br />

water <strong>and</strong> <strong>wax</strong>es in hydrocarbon solvents.<br />

due to heating or cooling. Commonly inorganic salts in<br />

(2) Solubility <strong>fouling</strong>, where a substance comes out of solution<br />

ing forms.<br />

on transfer surfaces, promoting <strong>and</strong> influencing other fcul—<br />

(1) Corrosic:. <strong>fouling</strong>, where a heat resistant layer is roduced<br />

to divide the main <strong>fouling</strong> types into the foilowi±ig six groups:<br />

contain fouiants arising from several sources, it is convenient<br />

Although it should be appreciated that most real deposits<br />

include geothermal silica scaling.<br />

both organic, inorganic <strong>and</strong> biological. Other <strong>fouling</strong> problems<br />

other industries <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> substances are numerous,<br />

<strong>and</strong> erosion product such as magnetite, causes difficulties. ifl<br />

inorganic salts are troublesome <strong>and</strong> in steam generation a corrosion<br />

ifl cooling water systems <strong>and</strong> desalination inverse solubility<br />

—2—


<strong>and</strong> time, <strong>fouling</strong> factors are usually published independently<br />

surfaces.<br />

rrocess variables such as velocity, temperature, concentration<br />

Though being recognised that <strong>fouling</strong> depends on the various<br />

1.4 Auproach of Thesis<br />

as crud” deposits, for example.<br />

(6) Biological <strong>fouling</strong> where some form of life grows on transfer<br />

:urtner paraf:n <strong>wax</strong> aeosition <strong>and</strong> <strong>fouling</strong>.<br />

tne recent wor carried ou at Brmzngnam Lr.lverslty to stucy<br />

:uctuatec. ac.u; an n:tal vajue. The present tness cescrices<br />

asyartotic au’roacn anc. tne neat transzer resistance unexpec;em_y<br />

not show the expected time dependence. There was no apparent<br />

The model system studied, <strong>paraffin</strong> <strong>wax</strong> in kerosene, however, did<br />

<strong>fouling</strong> at different flowrates, concentrations <strong>and</strong> temperatures.<br />

heat exchangers was concerned with the time characteristics of<br />

The early work(1) at Birmingham University into <strong>fouling</strong> of<br />

performances.<br />

for predicting economic cleaning cycles <strong>and</strong> transient thermal<br />

with time. This time deendence makes <strong>fouling</strong> studies imrortant<br />

<strong>fouling</strong> resistances of most exchangers increase asymptotically<br />

between, for examle, the amount deposited <strong>and</strong> velocity, the<br />

Tnile many types of <strong>fouling</strong> show different relationships<br />

material balance<br />

<strong>and</strong> are usually based on a general <strong>deposition</strong> <strong>and</strong> removal<br />

are almost as numerous as the <strong>fouling</strong> situations studied(1 9)<br />

constructing, largely empirical, <strong>fouling</strong> models. These models<br />

concerned with isolating the effects of different variables <strong>and</strong><br />

of these variables. Research into <strong>fouling</strong> has therefore been<br />

—3—


-<br />

-i :<br />

-<br />

.<br />

ru<br />

ii<br />

(1) I<br />

-n rn<br />

1-il<br />

ni m<br />

rn<br />

C<br />

0G)<br />

C<br />

ri-i<br />

f<br />

U<br />

c:<br />

ri<br />

C)<br />

U)<br />

mov<br />

C--i<br />

ru<br />

C, r’i<br />

5)3<br />

[‘I<br />

- >_<br />

---<br />

C)<br />

ru<br />

5)3<br />

r<br />

r<br />

—I I<br />

C)<br />

C)<br />

5)3<br />

1’ I<br />

(1)<br />

(/)<br />

C)<br />

[II<br />

:i<br />

-J‘-‘3<br />

C’<br />

C)<br />

c<br />

C)<br />

1’)<br />

C)<br />

C)<br />

C) I<br />

L_ J I I -<br />

OV[.iA{.L HEAT iRANsrTI -CoEEr1[iNT(V/i<br />

- F’J<br />

C) C)<br />

‘-7<br />

o’11<br />

) 01<br />

CE)<br />

l &<br />

A LX1 E/’ HI A1 iIA1 [i SUF[/\CE ( ‘)<br />

2CC)<br />

(I C)<br />

C) ru<br />

W<br />

C<br />

‘—0<br />

ru<br />

r-3r1<br />

r n<br />

- c’<br />

z<br />

(A)<br />

C)


o<br />

F-I<br />

0<br />

U J<br />

,ij<br />

cn J<br />

‘I—I<br />

F3 Fl<br />

Fl 0<br />

C) c<br />

(12<br />

d<br />

C)


sur:ace ilowines <strong>and</strong> otner proauction equirment - The doposits<br />

consist mainiy of n—<strong>paraffin</strong>s with smaller amounts of branched <strong>and</strong><br />

cyclic para tns ana aromattcs<br />

(ia)<br />

(10.11)<br />

formation of any predominantly organic matter in oiiwell tubing,<br />

ifl the oil industry <strong>paraffin</strong> <strong>deposition</strong> is referred to a the<br />

2.1 Introduction<br />

2. A iJvZf 0 fJi0U CI ON ?fJAFE’iN OEra)SlT:C<br />

ra:aff:n teuDsIonco. ,_ne a::.c;n: 0: raraf:in founc. In cruac tt_ cat<br />

The c_out rctn; of a sc_uton s a control_tog factor to<br />

congealing coin; refers to re;roeum <strong>wax</strong>es.<br />

‘;.riereas toe acc’e tests a:ly to rara::tn anen re:roeum oI_s,<br />

:or exac;y 5 secoocs. .ne arparatus cor toe two tests s toe sane.<br />

snows no c.Dver.ieot woer. he test car :s nc_n n a ncrzon;a_ rcsttton<br />

whch toe o_, suocectec. to cooiing unner rrescricea conantons,<br />

given cy toe staaara metooc. is c.e:tnen as toat emrerature a:<br />

-<br />

LOi<br />

( -,<br />

under prescribed conditions. The rour toint of petroleum oils as<br />

crys;a_s appears at toe cottom o: a test ar woen toe 16 coo_cc.<br />

method’ is defined as that temperature at which a cloud of <strong>wax</strong><br />

The cloud point of petroleum oils, as given by the st<strong>and</strong>ard<br />

2.2 Paraffin Thx <strong>and</strong> Solutions<br />

<strong>deposition</strong>.<br />

racers have arpeared dealing with specific aspects of raraffin<br />

of the problem is from 1932 . In the last 15—20 years several<br />

tion, is from 1955’ <strong>and</strong> prior to that the most thorough e::amination<br />

The latest cootrehensive review available on <strong>paraffin</strong> derosi<br />

making it relevant ;o heat transfer <strong>and</strong> processing conditions.<br />

however, iscusses the various factors affecting <strong>paraffin</strong> deucsi;ioo,<br />

fow:nes uncer laminar fow conditions. Some of the literature.<br />

ann toe JS.SJ. t dea±s primarily with <strong>paraffin</strong> <strong>deposition</strong> in<br />

The literature on <strong>paraffin</strong> <strong>deposition</strong> is mainly from the u.S.A.<br />

—4—


—5—<br />

vary from less than 1 per cent to more than 30 per denonstrat—<br />

ing clearly the range of problems encountered.<br />

2.2.1 Petroleum<br />

a:es<br />

The<br />

technology <strong>and</strong> Properties of petroleum <strong>wax</strong>es have been<br />

reviewed extensively in several references<br />

-<br />

V<br />

Petroleum <strong>wax</strong>es can in general be divided into <strong>paraffin</strong> <strong>and</strong><br />

microcrystalline <strong>wax</strong>es.<br />

Paraffin <strong>wax</strong>es are obtained from<br />

distills<br />

:ion of petroleum at<br />

300—460°c <strong>and</strong> microcrystalline waves at higher temperatures.<br />

Paraffin<br />

<strong>wax</strong>es are available in various stages of refinement like siack <strong>wax</strong>,<br />

yellow crude scale, white crude scale or semi refined <strong>wax</strong> <strong>and</strong> then<br />

fully refined <strong>wax</strong>.<br />

Paraffin <strong>wax</strong>es consist mainly of normal :Darafns<br />

015 to C with small proportions of branched <strong>paraffin</strong>s <strong>and</strong> have<br />

meting potnts from<br />

0<br />

-, o_,<br />

to 70 L.<br />

Microcrystalline <strong>wax</strong>es are seldom available with the same 10;<br />

range of oil contents as refined <strong>paraffin</strong> <strong>wax</strong>es.<br />

They are apt to<br />

deposit from <strong>wax</strong>y crudes during production (rod <strong>wax</strong>es), transror;ation<br />

(ripeline <strong>wax</strong>es) <strong>and</strong> storage (tank bottom <strong>wax</strong>es).<br />

Microcrystalline<br />

<strong>wax</strong>es contain higher proportions of branched <strong>paraffin</strong>s than raraffin<br />

<strong>wax</strong>es, together with long side chains which interfere with the growth<br />

of large crystals.<br />

Microcrystalline <strong>wax</strong>es have melting points from<br />

60 to 90°C.<br />

2.2.2 Crystallization<br />

Rnones et<br />

a<br />

(20)<br />

ootainea two<br />

tyes o<br />

paraf:zn <strong>wax</strong> crysta_s,<br />

needles <strong>and</strong> plates, the relative amounts of which are determined by<br />

the conditions under whi-ch<br />

crystallization is effected.<br />

:ere<br />

was<br />

no indication chat the two crystal tymes represented different<br />

alle;rcric modifications of <strong>paraffin</strong> <strong>wax</strong> so they were consincrei as<br />

b.:o cr:rct hallcs of the saae solid phase.<br />

:t<br />

.cur-. chat<br />

neec_es are no; ;rce snag_c cr:s;a±s but are comorasea o_<br />

OIca.<br />

aggregates<br />

ormea by the curling of the<br />

rates.


—6—<br />

Gruse <strong>and</strong> Stc•vens 8 stated that <strong>paraffin</strong> <strong>wax</strong> will form olates<br />

or needles deuenciing on what impurities are adsorbed on the crystal<br />

suri’acas The existence of solid crystal transitions at temporaures<br />

below the melting roint has been established, giving rise to hexa<br />

gonal or orthorhombic plates depending on at what temperature the<br />

crystallization occurs.<br />

(21‘<br />

Holder <strong>and</strong> Winkler<br />

studied <strong>wax</strong> crystallization from<br />

distillate fuels.<br />

They stated that <strong>paraffin</strong> <strong>wax</strong> crystals have t:e<br />

arpearance oz very thin diamond shaped plates consisting of layers<br />

of n—<strong>paraffin</strong>s stacked side by side parallel with the longer axis of<br />

the crystal.<br />

It was suggested that the crystal needles reported by<br />

otner worcers mgat gust cc rates, seen engewise.<br />

The raraffin <strong>wax</strong><br />

crystals were considered not to be made up 0f discrete terraces, but<br />

grow via dislocations to consist of extremely shailow solid sairals.<br />

The size <strong>and</strong> number of <strong>wax</strong> crystals formed in solutions depend<br />

on the rate of cooling.<br />

Tronov(22) stated that a high rate of cooling<br />

favoured the formation 0f a large number of small crystals. afikov<br />

(a—) ‘<br />

et al<br />

studying <strong>paraffin</strong> based petroleums, observed that on rapid<br />

cooling many centres of crystallization arise, which lead to the<br />

formation of fine crystals with highly developed surface areas.<br />

Since the crystallization process has a non—ecuiThbrium nature, the<br />

crystals which are formed have irregular shapes <strong>and</strong> incomplete angles,<br />

<strong>and</strong> possess an elevated surface tension. Or. slow cooling afikov et al<br />

observed that the crystallization process occurs under more ‘n:iL’crm<br />

conditons, as a resu..t of waica iarge, more un:orrmy :oacea crysua..s<br />

are formed, which possess a reat1vey smaJ sectfic sur:ace area ann<br />

free energy.<br />

Paraffin crystais formed unner s_ow coc_ng were ocserven<br />

to nave _ess ;ennency to form sovatem systems ana strong struc:ura_<br />

networks, than crystals formed under r<strong>and</strong> cooling.<br />

Surface active comuonents such as resins <strong>and</strong>. asmha;enes can<br />

have an a;precaac_e e::ect on ;ie nature o: nara:::n crysta._:zation,


2.2.3 Solubility<br />

refined <strong>paraffin</strong> <strong>wax</strong>es in petroleum fractions. The <strong>wax</strong>es used had<br />

thus reduce the surface tonsion whida moans that tho system is loss<br />

Berne-Allen <strong>and</strong> Work<br />

likely to form strong structural network.<br />

that resins <strong>and</strong> nsphaltcnos are adsorbed on <strong>paraffin</strong> crystals <strong>and</strong>.<br />

1 did extensive work on solubility of<br />

loading to the deproesion of the pour point. llafikov at al stated<br />

carbon sclvants includins crude oil, could be ccL.clated aatisac;cri:j.<br />

heat of fascn of the <strong>wax</strong>. Nathan found that solubiIites n hydro—<br />

tore x is the zale fraction, 2r the as constant <strong>and</strong> &, the latent<br />

- s1: -<br />

.:.n x = — — ..... 2.2.5.2,<br />

the ideal solubilty relation<br />

petroletm rod <strong>wax</strong>es <strong>and</strong> had nelting points from 76 to 92°C. Zsins<br />

weijht <strong>wax</strong>es in a number of solvents. Zae <strong>wax</strong>es were obtained from<br />

26) stu&ied the solubility of purified high zolecular<br />

tozorap2 of the above equation.<br />

values was found to be about 5 oer cent. Davis has presented a<br />

point. e avera;e deviation of calculated values fran experir.ettal<br />

ten the solution temperature 2 is within 10°C of the <strong>wax</strong> melting<br />

from 60 to 300°C for <strong>wax</strong> melting points Cc<br />

3,) from 45 to 7C°C <strong>and</strong><br />

of solvent. Vhis equation holds good for solvent bo±ling points (.<br />

ae concentration is expressed as rams of <strong>wax</strong> dissolved in ‘100 ml<br />

(2.2.3..,<br />

aS<br />

c = [1120 — 2.97 I.1357<br />

points of <strong>wax</strong>es <strong>and</strong> average boiling points of solvents.<br />

developed to express <strong>paraffin</strong> <strong>wax</strong> solubility in terms of melting<br />

solubilities in the various petroleum fractions. A relation was<br />

The cloud point method was employed to determine the <strong>paraffin</strong> <strong>wax</strong><br />

basically normal hydrocarbons with boiling points from ‘150 to 490°C.<br />

melting points from 50 to 65°C <strong>and</strong> the petroleum fractions used wore<br />

-7—


study cloud <strong>and</strong> pour point Dhenomena in solutions o± binary n-<strong>paraffin</strong><br />

I:olaer <strong>and</strong> ier(21) used the ideal solubility relation to<br />

relation was found not to apply to chlorinated <strong>and</strong> oxygenated solvents.<br />

point is about 1000 below the melting point. The ideal solubitty<br />

caroon numbers. i’or <strong>wax</strong>es with 30 carbon atoms the transition<br />

than 45 carbon atoms but its validity gradually decreases for lower<br />

tem-ocrature were ecual. This assunrotion is true for <strong>wax</strong>es with more<br />

It was assumed that the transition temperature <strong>and</strong> the aeltin point<br />

otartea .-nen tne snear rate, exressea as au/uy, :.‘iS . 0 .3 ),<br />

Its VIecoSity was )p cP. avIes snowea that non—)ewtonan eenavtcur<br />

o rara:::ns. ,.nen ne f C nettng po:nt :oara::n ‘,-.as £(eDt at ; ,<br />

-- lID<br />

-, - “- - .<br />

av:es usea n—uooosane to stuny tne e::ect o: s:.ear rate<br />

-<br />

27) .<br />

forces the solution assumes the properties of a Newtonian fluid.<br />

louna tnau wnen a crys;a structure is comretey orocen &own ty sa ear<br />

about the rour point, depending on the rate of cooling. Raiikov et a<br />

when the <strong>paraffin</strong> crystals form three—dimensional structures at or<br />

such systems assume the prorerties of a plastic solid. This hapens<br />

based petroleurns. They stated that at certain specific temperatures<br />

Rafikov et ai(2 studied the rheological properties of raraffin<br />

2.2.4 Rheolo4cal Procerties<br />

rate.<br />

shows the cloud point of a typical solution as a function of cooling<br />

depeis on the cooling rate of the soiution°. Fire 2.2.3.<br />

The solubility of petroleum <strong>wax</strong>es in hydrocarbon solvents<br />

independent crystallization predominated.<br />

difference in molecular weight between the two n—oaraffins increased,<br />

from soution both independently <strong>and</strong> as solid solutions. .s the<br />

is not an ideal solvent. t was found that the <strong>wax</strong>es crys:aisei<br />

coulo. exceen exoerimen;ai values by a factor of 2, since the gas oil<br />

028<br />

<strong>wax</strong>es. They found that calculated cloud <strong>and</strong> pour point values<br />

blends in a de<strong>wax</strong>ed gas oil. The <strong>wax</strong>es used were high purity C to<br />

—8—


-.9—<br />

whica is well novc conditions existing in tubes <strong>and</strong> pipes carr’fint<br />

Para’fin <strong>wax</strong>co dissolved in hy:ccarbon solvents.<br />

t has been found that in laminar flow small particles carL<br />

migrate across<br />

th<br />

planes of shear.<br />

In turbulent pipe flow a particle<br />

placed in the laminar boundary layer will therefore move away from<br />

the wall to settle at the limit of the boundary(2S<br />

It has in fact<br />

been shon by a laser—doppler anemometer that there is a ccncerLtra—<br />

tion gradient set up within a laminar susrension boundary<br />

ayer(29).<br />

d particle iiich has sufficient momentum to enter the boundary layer<br />

may therefore exacrience difficulty in let alone adhering to the wall.<br />

2.3 Factors ffectin,g Paraffin Deposition<br />

The<br />

first<br />

attempts to evaluate the raraffin derosition rrobem<br />

1nvovea the exam:naton of cruc.es sy use of vascosaty—temnerature<br />

curves <strong>and</strong> chromatography.<br />

More recently important factors<br />

effect<br />

ing <strong>paraffin</strong> decosition have been identified, such as surface pro-Der—<br />

ties ann ancitaves.<br />

2.3.<br />

F.owrate<br />

essen ann<br />

3<br />

owen<br />

stuacen tne ef:ect of<br />

ioxate<br />

on<br />

ra:in<br />

derosition in stee:. <strong>and</strong> rlas;ic coated steel pipes; their arparatus<br />

consisted of 0.75 inch :Dipe 5<br />

ft.<br />

long submerged in a cold water bath.<br />

From a 30 gallon reservoir, in a hot water bath, microcrystalline <strong>wax</strong><br />

in keroser.e solutions <strong>and</strong> several crude OilS were circulaten far acout<br />

3 hours.<br />

:<br />

all the runs tac solution bulk temperature was kant below<br />

its<br />

cloud roint.<br />

The <strong>wax</strong> derosited was removed mechanically from the<br />

pire which was then washed wita normal penoane. The amount of <strong>wax</strong><br />

aeposat was tner. cetermarn cy separatIon :rom tne pencame in a<br />

centrifuge.<br />

The main conclusion of the ‘‘ork was that in laminar flow.<br />

dprosition increasea with flowrate, reacn:n; a maximum rrnor to tranaa—<br />

tion to turbuenn Z.ow ama ;nen decreasin: with increasin turbulence.<br />

The<br />

increase in arosi:ion, in laminar flow, with increased<br />

florate,


- -<br />

‘.ac a-Dlai-ieci in terms of more particles being carries by the moving<br />

s;rea:, orovic ng a greater cpoortunity for deoosition on the oioe<br />

surface.<br />

urtheranre, viscous drag exerted by the stream tends to<br />

reaove the accumulation <strong>and</strong>, at high velocities, becomes ecua<br />

to or<br />

may exceed the shear stresses within the deposited <strong>paraffin</strong> <strong>and</strong><br />

iteraiy<br />

tear tne paraf fan de230sit apart.<br />

Paraffin derosied at<br />

hia<br />

flowrates was observed to be<br />

considerably harder than raraffin<br />

ae-:osatea at _owcr :owrates. The increase in ootn viscous arag ann<br />

snearlag stresses in mie rara::lr. aerosit at aign :lowrates was<br />

consaneren to account for the gradual decrease in <strong>deposition</strong> at high<br />

:owrates raner tnan a sunnen ann compete eminatioa of oarai::rL<br />

derosition as would be exoected of the shearing stress of the <strong>paraffin</strong><br />

remained constant <strong>and</strong> was suddenly exceeded by the viscous drag of the<br />

:_ow stream.<br />

(22)<br />

rrcnov sunaten t:.e e:Iect 01 owrate on rara::in &ercsltaon<br />

.<br />

usinga5 per cent solution of technical <strong>paraffin</strong> in kerosene.<br />

The<br />

aroaratus used by Tronov consisted of a room temrerature reservoir<br />

from which the soThtion flowed to an experimental chamber.<br />

The raraffin<br />

deposited on the outside of a jacketed tube cooled from the inside with<br />

water C<br />

- - -.<br />

oc_ow anoaen.<br />

ezner<br />

-.<br />

.<br />

ne melting<br />

ront<br />

of ne •:ax uses<br />

nor the solution cloud point were given.<br />

The thickness of the amaffin<br />

deposit was measured after 2 minutes by a camera fitted with a micro—<br />

score. CrZy flowrates less than 1; cm/s were investigated.<br />

The results obtained by Troaov show that the deposit thickness<br />

decreases with increasing velocity <strong>and</strong> that the deposit harness. as<br />

exoressed by the velocity recuired to remove<br />

it<br />

from the cuoc wall,<br />

increases wita velocity. (See fig. 2.3.1.1) The behavicur was<br />

by saving that as the Llow:’ate increases onv those<br />

rahin<br />

crystals <strong>and</strong> cr:-sual clusters capable of firm attachment to the mur:he<br />

anc. havins sccd cchesion with one <strong>and</strong> other will not be removef from


— -ii<br />

—<br />

deposit.<br />

Tronov statej thal scudies on <strong>paraffin</strong> <strong>deposition</strong> ineicate that<br />

the ouilc—up 0±<br />

cposits alternates wtn their partial or total<br />

removaa,<br />

lndepenoenL of tne nature<br />

o<br />

the suriace.<br />

ior e:a:nple,<br />

it<br />

has been observed that deposits are removed from a glass surface in<br />

large lumps ieaving the surface very clean.<br />

fronov considers that removal of deposits from pipe walls<br />

governed by a lifting force acting at right angles to the direction<br />

of flow, <strong>and</strong> a shearing force acting in the direction of flow.<br />

The<br />

transport of removed particles or lumps, away from the surface, is<br />

then effected by the increase in fluid shearing in the radial direc<br />

tion, •mnich is also responsible for keeping the <strong>paraffin</strong> ‘ax Partc_es<br />

an susuension.<br />

:t<br />

should be noted that Tronov ony consaderec. c.erosi—<br />

ton<br />

in the lamInar flow region.<br />

The idea of a<br />

lfting<br />

force<br />

effectang removal of deposats mas not arearem an tne avaaao_e<br />

literature before <strong>and</strong> therefore Tronov’ s arguments wiil now ‘cc<br />

considered.<br />

Paraffin deposits being porous, means that the oil not only flows<br />

in the pice centre, but also in the mass of the deposits. The Thow<br />

velocity above the deposits will be<br />

considerably higher than inside<br />

it,<br />

leadins to a lifting force proportional to velocity scuare, as<br />

in aerodynamics <strong>and</strong> river oem aeveLopment. The<br />

fting<br />

aiim snearang<br />

forces wi<br />

of the lump<br />

act samu._taneous_y ifl ratios cerenciang on ;ne oraentataon<br />

ceing removec..<br />

Jthough no<br />

information was found in the literature on the roro—<br />

sity of raxaffin derosit,<br />

it<br />

was considered unlikely that ror.ov s<br />

conce;:on o: a a:tzrg torce cou._m cc true.<br />

accon nan Oasaci<br />

staten mat :or a gaven tame reraom tnc<br />

altount of <strong>paraffin</strong> derosited in a cold srot tester decreased as the<br />

stirring rate increased.<br />

:,<br />

considering the cold spot tester as a


13,000 indicate fulli turbulent CoflditjOfl52) Patton <strong>and</strong> Casad<br />

<strong>wax</strong>es. higa shearing stresses resulting from ncreased stirrmg<br />

:ncreased stirring rate resulied in a more rapid failure of these<br />

sloughed” from smooth surfaces <strong>and</strong> “flaked off roughened surfaces.<br />

observed that low molecular weifht <strong>wax</strong>es formed deposits that<br />

loss than 10 indicate laminar conditions <strong>and</strong> numbers greater than<br />

tonal COnditIOns. fle :TLmccr ca.Lcujatec. was asout 00u but numcers<br />

mlxer, a calcu.aion a: tac :cl::lnf .1ejnoids numoer indcacez trn,;i—<br />

of the so.utioa ..as :.:ain:aincd a; 53—39°C, so the :?araffir would<br />

rcin; refined tarafffn with a cloud oint of 350f• The tearerature<br />

ton used throughout the .:ork contained 8 per cent o± a r.:etlnf<br />

at a o..,’ :_o.•.ra:e cver a cnea coener rate for 2 nours. Ehe so_u—<br />

raraffin dercsition. This was done by passing a kerosene—<strong>wax</strong> solution<br />

bet.:een a soliticn cloud oint <strong>and</strong> a confining surface, affected<br />

3o.e ara essen stualec now :ne temnerature aif:erence<br />

2.3.2 Demneratures<br />

tene crudes showed similar results to those obtained by Tronov.<br />

low athesion rcrerties as discussed in section 2.2.2. Low asphal—<br />

tion used <strong>and</strong> the high asphaltene crudes which both have relativey<br />

show, however, that their conclusions only arply to the model solu<br />

flow conditions. n exa::.ina;ion of the results of Jessea <strong>and</strong> Ec:ell<br />

decreases with increasing velocity both at laminar <strong>and</strong> turbuent<br />

wlta increasing :owra:e. Outer worers state taat aeposltlon<br />

reach a maximum at the transition to turbulent flow <strong>and</strong> then cecrease<br />

stated that <strong>deposition</strong> in laminar flow increases with flowrate o<br />

all respects as the conclusions of other workers. Jessen <strong>and</strong> ho<br />

1:ell<br />

The main conclisior.s of Jessen <strong>and</strong> howeli are not the same in<br />

deposits foliowing their ‘cuili—u-e.<br />

diameter due to taraffin deosition, observed slight removal of<br />

rmenski et ai in a paper analysing reduction in pire<br />

rates therefore serve to decrease derosition. See fig. 2.5.3.5.<br />

— 12 —


—<br />

13<br />

remain in solution <strong>and</strong> the plate temperature varied from LF to 3200.<br />

The amount of raraffin derozited was determined by removing the<br />

copuer :)late <strong>and</strong> v:eig’nin it. The<br />

temperature difference between<br />

the cloud roint <strong>and</strong> the plate temperature was considered most<br />

important in controlling the accumulation. It was found that the<br />

Paraffin deposit contained 8 per cent kerosene. The <strong>paraffin</strong> was in<br />

crystalline form,<br />

but the retained kerosene was enough to maie its<br />

consistency that of a heavy paste.<br />

The experimental results showed<br />

that deuosition increased with increasing temperature differential.<br />

See fig. 2.3.2.1.<br />

Further experiments by Cole <strong>and</strong> Jessen showed<br />

that the initial rate of <strong>deposition</strong> increased with increasing<br />

tem-cerature differential.<br />

The cnange ifl rate o: parazzin aenosation<br />

was attributed to the thermal insulation by the deposited <strong>wax</strong> layer<br />

<strong>and</strong> the variation in the amount of <strong>paraffin</strong> available for <strong>deposition</strong>,<br />

per degree temperature differential, since the rate of change in<br />

<strong>paraffin</strong> solubility with temperature is much greater just below<br />

the cloud roin; than it is for lower temperatures.<br />

Jorda’ 2 studied <strong>paraffin</strong> <strong>deposition</strong> <strong>and</strong> its prevention, jn<br />

a modified version of the cold spot tester developed by gun;’<br />

The apparatus consisted of a flat circular plate mounted on a curved<br />

tube <strong>and</strong> positioned in a vessel containing a <strong>wax</strong>—oil solution.<br />

The<br />

apparatus was arranged such that the temperature of the central<br />

uor;ion 0: trie circaar pate coulo. cc varien oy means oz a crcua;—<br />

trig :qutd stream,<br />

The souutton was maintatnec. at a constant<br />

tenrerature <strong>and</strong> stirred wtth a magnettc st:rrer.<br />

PIe scuu;cn usec.<br />

in the experiments consited of a 25 weight rer cent refined petroleum<br />

<strong>wax</strong> in a refined petroleum solvent. The cloud cia; of the<br />

sollticn as 36°C.<br />

The olution temperature was at all times lea:<br />

L,.<br />

aria the stirring areec. at 300 r.r.m. resa sc_u;ioas were<br />

used for each ;es, which lasted 16 hours, Paraffin was de:ooited<br />

a; coTh oro; to:rDera;ures 2, 4, 6, 8 <strong>and</strong> 10°C below the solltior.


picture camera with a close un attachment. ulot of the weight of<br />

<strong>paraffin</strong> deposited as a function of cold spot tenrerature is snown<br />

<strong>deposition</strong> mechanism was obtained by the use of a high speed motion<br />

to the initially orttranped specks <strong>and</strong>, as the progress continued, an<br />

mill scale surface. Other stocks of rara±’.’ir. were observed to stick<br />

in the form ol’ small white snecks which collected in crevices in the<br />

cloud noint, on a mill scale steel trobe. The earaffia fir:;t aared<br />

unbroken layer was obsoi’ved to form. Further confirmation of this<br />

tecerature.<br />

of ote. tearerature. Zaca cee-.e ccrresocnas to a :oar;acu_ar wa_<br />

comuosite grath of weight <strong>and</strong> molting noirit of derosits as a functio::<br />

The exrcrimeetoZ results are shown in fig 25.2.3. ‘;:ich is a<br />

eynods nunoer 6D0—7.0) anc. each exeramenta. run .zastea 7 note-s.<br />

uoe e:e coro_e.. ..‘-e oZ ve_oc.v ias ceo at 0.5 “i/s<br />

temperature of tee oti ann the wa_2 temperature of tne exoeramenta.<br />

viscosity at was 12 c <strong>and</strong> the c.oud point :as 4300. The 1u.k<br />

exoeraments. it cor.zaaneo 10 welint per cent oaraf:in <strong>wax</strong>, itS<br />

gave operataona na1:acutaes .n :oaanes was usec. an a-... ;ne<br />

detacHable monitoring tube in a water acke;. crude oil known to<br />

circulation system with a 20 litre oil reservoir <strong>and</strong> a 12 mm diameter<br />

in raraffin derosition. Tao apparatus used consisted of a closea<br />

Fustogov <strong>and</strong> Federov<br />

5 investigated the effect of tearerature<br />

<strong>and</strong> cohesive strength of the raraffin.<br />

cold spot plate is governed by such factors as fluid flow velocity,<br />

higher. Jorda concludes that tao amount of <strong>paraffin</strong> deposited on the<br />

deposited <strong>wax</strong> showed, that the mean carbon number of the latter was<br />

Xeasurements of the a.kane distribution of the parer.t <strong>wax</strong> <strong>and</strong> the<br />

the <strong>wax</strong> particles were no longer sticky <strong>and</strong> no adhesion was observed.<br />

entire system ...ras cooled unti. a heavy <strong>wax</strong>—oil slurry was obtained,<br />

temperature of the <strong>deposition</strong> surface decreases. However if the<br />

in rig. 2.).22. Tao \lCifOt oj te <strong>wax</strong> detonates. increases as tee<br />

— lb. —


-<br />

iuctoov <strong>and</strong> dorov concluded<br />

hat terrncrature affectecj<br />

cortuosition of uaraffin deoosits; also that bocauae there is a<br />

range of <strong>paraffin</strong>s dissolved in crude oils, t:cese will scuarate out<br />

according to their melting ooint. As the temuerature difference<br />

between the tube wall <strong>and</strong> the oil increases the deposits become<br />

looser since on r<strong>and</strong> cooling both high <strong>and</strong> low melting noint <strong>paraffin</strong>s<br />

wI crystallize simultaneously lorming a weak porous structure wtn<br />

cavities full of oil.<br />

Tinally, the rapid fall in the quantity <strong>and</strong><br />

meting point, as the oii temoerature decreases, confirms that the<br />

mechanism of <strong>paraffin</strong> denosition is one of crystal growth directly<br />

on a surface.<br />

o_esni et a... stucaen tae e:ec. 0... crune oi... temperature<br />

on :Daraf:nn c.euostcn. The exper1menta nrocemure conssuen 0:<br />

pouring a tca_ desalled cruae oil tnto a steel tuoe (O cm<br />

_ong<br />

1.5 cm diameter) rlaced in a constant temperature bath. The oi. uas<br />

kept stirred for the duration of the exueriment, which was one hour.<br />

At the end of each experiment the oil was poured off the tube <strong>and</strong><br />

the tube weited to record the amount of uaraffin deoosited. :n<br />

exueraents a; success1vey<br />

temneratures tne para::in aepcsl;ec.<br />

in the previous exreriment was left in the tube. See fi. 2.5.2.—.<br />

Above 25°C evidently no <strong>deposition</strong> occurred, but a ZLll o<br />

adhered to the tube wall.<br />

At 25°C <strong>deposition</strong> started when the oil<br />

ter:er;ure fell oeow tne c_oum point. e.ow 5°C meros;;oa<br />

mown,<br />

acaarent_y cecause ot consmeraoe increase ifl Oi VSCDSiy.<br />

elow —5°Z demosition increased, nrobally because the <strong>paraffin</strong><br />

nartices a;lomera;ed e.ad because more <strong>and</strong> more low melliaf noini<br />

parafffns crysta..;zen.<br />

-. .. -<br />

.essen arm :C.1eu<br />

-<br />

staten ;nat tne ....css o: temoera;ure o: tue<br />

(30)<br />

came c: was tue razor :nctor rvo..ved ;n tue :orzat;or C..<br />

At lo,er terteratures <strong>paraffin</strong> deposits are acre crt:Z_ine<br />

arc. ;nere:ore narc..er ann more tign;y ne...c. tofetner. non coo.:rg C:


— ‘i6<br />

—<br />

tao oil from t<br />

:pernurea above the cloud roint toJer; ploce a; the<br />

uijo wall, an incroasec. <strong>deposition</strong> of <strong>paraffin</strong> results, as coatarod<br />

with that obtained aen the oil has been cooled below the cloud<br />

point prior to circulation through Pipes.<br />

Patton <strong>and</strong> CasadüD stated that the amount of <strong>paraffin</strong> dorosited<br />

on a surface will increase as the temoerature differential between<br />

the surfce <strong>and</strong> the solution is increased.<br />

The <strong>deposition</strong> wifl only<br />

occur if the surface temoerature is below both the temperature of<br />

the solution <strong>and</strong> the solution cloud point.<br />

2.5.3 Time<br />

studied <strong>paraffin</strong> <strong>deposition</strong> in the laboratory under<br />

conditions Simulating <strong>deposition</strong> in well tubing.<br />

:ts arparatus<br />

consstea 0±<br />

a c_ose circu.ation boo watn a 7 a ong c..<br />

pipe eo; at p2°C by a constant temoerature acke;.<br />

The solutton<br />

used was a S/91°C melting point white <strong>wax</strong> dissolved in a relatively<br />

cure rpxere of C r <strong>and</strong> ,- caraff_s The soi:_o c..5 et<br />

1022 -<br />

5503<br />

at 93°C in the circulation system but cooled pricr<br />

entry into tue test section.<br />

Tue SQIUt1OL c_out ootnt was<br />

<strong>and</strong> the floate 22 c/n corresponding to a Reynclus nuacer of<br />

about 2’#OO in the test section. fter each exeriaen; the 7 a test<br />

section was cut into 25 cm<br />

lengths <strong>and</strong> the amount of derosit in<br />

eaca piece determtnea oy weigning.<br />

The amount o: <strong>wax</strong> present in<br />

the deposit formed from the refined <strong>wax</strong>—oil system was deteratned<br />

oy evaorat:ig tee oil arc. oig g tte ax. Pg. 2.5..2 s-o s<br />

tne ancun: of 0000Sit a; :ne out_et o: tne 7 a test sectcn as a<br />

function of time. ax goncentration in the denosi:s was fount to<br />

increase with time.<br />

hunt proposed that oaraffin dercsiticn is<br />

initiated by the direct nucleation of <strong>wax</strong> on or adjacent to the<br />

•cioe wall <strong>and</strong> that the denosit rows ‘cy<br />

diffusion of <strong>wax</strong> from<br />

solution to the r:eviousy de:csited <strong>wax</strong>.<br />

attor ant .essen<br />

anvestigatea para::tr aepcsataon usng


— 17<br />

—<br />

a deporsiion ce:Ll in a circulation loop as developed by Cole <strong>and</strong><br />

(7!)<br />

;ecsen - The chilled dpcsition plate was made of polished<br />

utainless L3teei<br />

The solution used was a l.5 pcr cent weiht<br />

melting point refined <strong>wax</strong> in commcrcial grase n—hetane.<br />

0<br />

The solution was maintained ac 2tt C<br />

ann clrcujatea tarougi. te<br />

<strong>deposition</strong> cell at the rate of 1.06 cm/S waich corresponcied to<br />

a laminar flow velocity of 24 cm/s over the <strong>deposition</strong> surface.<br />

The solution cloud point was 2200 <strong>and</strong> the <strong>deposition</strong> plate was<br />

maintained at 19°C.<br />

Ipon completion of a test run the <strong>deposition</strong><br />

plate was removed <strong>and</strong> turned on edge to drain.<br />

Any Dart of the<br />

deposit which slid off was caught in an evaorating disn along<br />

wita any iquin that aratnec :rom tne aeposat.<br />

The remaining<br />

ne:Doslt was wasned off wica n—neutane anc. caugac ifl a separate<br />

dish<br />

These were recorded as the total deposit <strong>and</strong> the adhere<br />

detosit respectively.<br />

See fig. 2.3.3.2 where adhered <strong>and</strong> total<br />

deposit are plotted as a function of time.<br />

:t ‘ias determined definitely by Patton <strong>and</strong> Jessen that the<br />

acnerec. c.eposat was atcacnem to tae suriace.<br />

The ouer port:on<br />

of tne cieposat wr ach immeaiatey sougaea was a resu_t of tne<br />

orerational crocedure.<br />

Then the flow of <strong>paraffin</strong> solution through<br />

the cell was halted at the end of each test, the cell was full of<br />

stagnant raraffin solution for a few seconds prior to draining the<br />

cell.<br />

During this brief period, the rortion of the fluid adjacent<br />

to tae decosat was coclen seow its cloum POiflt ann tae precaci atea<br />

<strong>wax</strong> rartices :ornea a seconnary c.erosa; on too o: tne org:na_ one.<br />

This secondary denosit as not the result of a crystalline growth<br />

process but rather a quickly chilled zoortion of the fluid which<br />

formed a gei. structure of annavaciua <strong>wax</strong> partac_es. ure<br />

threshold ceriod in fig. 2.5.3.2 was thought to indicate that a<br />

curtain amount of tine was necessary for the denosit to develor a<br />

recuired minimum cohesive strength.<br />

De-cosits become increasintly


difficult to rub off as tii depocition tine was increased indicating<br />

a cru;alliac a cure. r:ie amount of adrerent do;osit ‘.‘ias observc(1<br />

to sabilioc afuor aooro:aLuaioly one hour.<br />

Penton <strong>and</strong> oasaa used the cold soot test sevelo;ed r<br />

::um0) to study <strong>paraffin</strong> deosition.<br />

The solution they used :as<br />

a 10 e1’ cent weight Cit—don fI vien e iibining :ncrocrys;allinc<br />

properties, with a melting poin; of 72°C,<br />

in a Soltron 170 solvent<br />

with the boiling range 218—238°C. The solution cloud point<br />

- - - - - - _o -<br />

. C con iii a ne e::serameons tne scluaon vias Lept a; o C acove<br />

the cloud point, that is at 55°C.<br />

Among variables invesuigated<br />

were ;ine, temperature <strong>and</strong> rate of stirring. in fig. 2.5.3.5<br />

amount aeposi;ed is shown as a function of tine at 3<br />

differen; rates<br />

of stirring.<br />

Ii: fig. 2.3.5.4 amount daposi;e& is ohovsa as a func;ion<br />

of time at different tenrerature differences between the solu;ioi:<br />

cloud point <strong>and</strong> uhe surface tempera;ure.<br />

Phe results shorn in<br />

these fig-ures may be<br />

stated as follows:<br />

2eeos; v,’eight decreased vr;h increased s;irring ra;e;<br />

de:csit<br />

weight increased as uhe te:ererature differen;ial be;weem inc<br />

sonu;aon c_ou& roam; ann tue probe face temperamire was amcreasea;<br />

ne-coo;; weagn; ancreasec. rariony :or ;ne cars;<br />

;o 4 nouns<br />

end then increased at a much slower rate.<br />

2.3.4. S;rfEoe P:-oertues<br />

- - - (50) - -,<br />

essen ama ao’•,7e s;a;ea ama; amas;ac coa;ec. ronenmec<br />

reoucec. c.ra::ari aerosatson. fac reccnc;zon was reamue; ;o u.n<br />

v;etcabili;j by inc crude oil or sointion.<br />

:igh neting psin;<br />

naraffin c;u::es we; a pipe surface to a lesser degree then<br />

av/<br />

ncr_;;ng roamt <strong>wax</strong>es n-i so_u;:on. i .ow con;ac; ong_e means a<br />

:ree sur:acc energy one more ve;;aag,<br />

1<br />

c.e::onstrated that the presence of co:’;ain aissubec.<br />

en a :n;c surface would reduce the adherence of nmadfin


— 19<br />

-<br />

toat sur:ace.<br />

hjsima.a ot al showed that the nature of the<br />

couou:us aesorbed on a surface woulu determine its wettaoilty<br />

characteristic -<br />

Cole <strong>and</strong> Jessen<br />

studied the effect of wettabilitv on usraffin<br />

<strong>deposition</strong>.<br />

Their ecoerimental apparatus has been discussed in<br />

section 2.3.2.<br />

The wettability characteristic of a coroer nlate was<br />

varied by aurlying different silicone coatings. The contact angles<br />

were measurec. woth water.<br />

The amount of <strong>paraffin</strong> o.esosited for a<br />

given temrerature aiiierential decreasea iith increasing contact<br />

ang.Le. See fig. 2.3.7.. t was found that temperature differential<br />

<strong>and</strong> free surface energy acted inderendently in determining the amount<br />

of <strong>wax</strong> deposited.<br />

Cole <strong>and</strong> Jessen concluded that as <strong>paraffin</strong> <strong>wax</strong> is derosited on<br />

a surface, it is held in place by adsorption forces.<br />

These adsoru<br />

tion forces are dependent upon the free surface energy possessed by<br />

both the raraffin <strong>and</strong> the surface.<br />

..s the free surface energy of<br />

the plate is reduced, a resultant decrease in the adsorption forces<br />

holding the <strong>paraffin</strong> to the plate surface takes place.<br />

This causes<br />

a decrease in the ar.ount of raraffin which can be retair.ed on the<br />

plate surface for the flow conditions rresent.<br />

hunt .C<br />

developed the cold spot tester <strong>and</strong> studied the effect<br />

of roughness or. <strong>paraffin</strong> derosition.<br />

iP nis wenl tucong somu.atior. tests.<br />

used e same solution as<br />

Lie SOLUtiOfl c_ou& poInt was<br />

5900 <strong>and</strong> it was maintained at 4900 in t:te atoaratus roa.-cong It a<br />

<strong>wax</strong>—oI s..nirry. The tests snowea that cieposo;s aoc. not acnere to<br />

a rolosnec. staor._css ste surace, out aonerec. to a sana o_as;aa<br />

s;ainess stee_ sur:ace.<br />

.o oeuosots were :ounc to orm on s::ootn<br />

rastic coatlogs out cierosots were neci :orn.y on r...ace on sanc.—<br />

Paper rougnenea coat:n::s.<br />

nunS concauaeo tnat para::on aemosots<br />

00 OCt acuiere to a meta. sur:ace cut are ne_a on r.ace cy sur:ace


surface seemed to stabilize after approximately one hour (see fig.<br />

It was concluded that whereas deuosition on a freshly rolished<br />

contact angle, as measured by methyleie iodide, was about 40 degrees.<br />

steel surface was increased by adsorbing on it a film ci crude oil<br />

distribution rcsidua from a benzene solution (0. mg/cm). The<br />

Pctton <strong>and</strong> investigated the effect of wettahility<br />

- 20 -<br />

DD mesh s<strong>and</strong>, resulted in aerceition o± an extremely severe nature.<br />

postulated that :hen an adsorbed film is present on the surface,<br />

rolished steel striace Samdb:.asting of the plastic coatinms by<br />

on naraffin derosition. Tne aruaratus <strong>and</strong> solution used have been<br />

ahenclic ama ;clrrethane formulations behaved as derasition on the<br />

discussed in Section 2..5.5 The wettability of a polished stainless<br />

cit alternatec.. .Several tlastic coated surfaces were a_so mnvesta—<br />

end of two hours exceeded slightly the amount deposited on the bare<br />

roughness factor, as measured by the average distance between<br />

This allows the <strong>paraffin</strong> molecules to anchor themselves laterally<br />

gated. It was found that derosition on thenol—iormaliehye, asoxy—<br />

the heptanc—<strong>wax</strong> solution partially dissolves in it <strong>and</strong> the film<br />

2.3.5.2), derosition on the film continued to increase <strong>and</strong> at the<br />

surface. Paraffin <strong>deposition</strong> therefore increases with increased<br />

surfaces exceut the rdlished steel, dsere build—up <strong>and</strong> slldir.j<br />

mmt. sca_e stee; corromec. steel anc. rouga grouno. stee. tue<br />

<strong>deposition</strong> in a cold spot tester. The raraifin was deposited on<br />

5 to 70 microns. The -caraffia <strong>wax</strong> was found to athere to all the<br />

5 different steel surfaces: polished steel; saniblasted steel;<br />

thus increase the force with which they are held to the surface.<br />

is penetrated by the hii molecular weight <strong>paraffin</strong> molecules.<br />

free surface energy of the <strong>deposition</strong> surface. Patton <strong>and</strong> Jessen<br />

tac eas ama vaLeys of tne contour of tne suazaces, rangec. :rom<br />

tO adjacent molecules which are firmly adsorbed on the surface <strong>and</strong><br />

Jorda i2) investigated the effect of roughness on <strong>paraffin</strong>


— 2<br />

- S * .. -, ‘.: ,- - .-,-<br />

—<br />

hiditional plssticc, tetrafiuoretiiylenc, polyethylene ans noiy—<br />

propylene were also tested hut it was<br />

found that these co:Jccteci<br />

massive denosjts of extreme hardness <strong>and</strong> adhesion.<br />

3ecause these<br />

plastics are themselves oaraffinic in nature, they aPpear to possess<br />

a high chemical attraction for <strong>paraffin</strong> either through hydrogen<br />

bonding or a form of co—crystallization.<br />

Jorda concluded that <strong>paraffin</strong> <strong>deposition</strong> on metallic <strong>and</strong> non<br />

<strong>paraffin</strong>ic plastic surfaces, at a given temrerature, is governed<br />

oy surface rounaness. ee tag. 25.42. The experaments showes<br />

that the amount, hardness, adhesion, per cent <strong>wax</strong> <strong>and</strong><br />

molecular weight of the deposits increase as the surface roughness<br />

increases.<br />

Patton <strong>and</strong> Casad<br />

studied the effect 0f surface roughness<br />

on <strong>paraffin</strong> aeposition. Wne apparatus <strong>and</strong> exerimental rnethon has<br />

been discussec. in section 2.5. nree <strong>wax</strong>es in So1tro<br />

70 so_vent<br />

were investigated. Two of these, Cit—Con 550 <strong>and</strong> Sheli<strong>wax</strong> 200 with<br />

me__ng pons o ann o • .C<br />

— - — --— -<br />

resrec1Vey, 2C OW oec_: wea<br />

<strong>wax</strong>es composed primarily of normal <strong>paraffin</strong>s <strong>and</strong> are higaly crystal<br />

line. The third <strong>wax</strong> used was a Cit—Don recrystallized heavy<br />

insermedsate (hTI) wata melting poant 72°C, a nign moLecular weagat<br />

materaa contasnang sagnafcant amounts of non—norma para::ans,<br />

thus exhibiting microcrystaline properties.<br />

One<br />

cold spot plates used by Patton <strong>and</strong> Casad were a highly<br />

polished plate, a plate finished with 2D—gri; paper <strong>and</strong> a ma;e<br />

finished with 50—grit rarer.<br />

Plastic coatings were also used,<br />

both smooth ann roughened. by 53—grit paper<br />

It was found that the<br />

<strong>deposition</strong> of Cit—Con 550 <strong>and</strong> SheJ<strong>wax</strong> 203 differed from that cf<br />

Cit—Don -:_.<br />

.ae<br />

neuosats of tae two crys;a_lane <strong>wax</strong>es, or, s::.oo:n<br />

reta <strong>and</strong> las;c coatea surfaces, were :ouno. so se ocacue ann<br />

tend so slough off, leaving a snan granular resanua nercsass<br />

. . _. c..<br />

o._a c<br />

—.- _S_


failure. however, desosit weights on plastic coated surfaces<br />

was attributed to there being insufficient viscous drag to cause<br />

<strong>and</strong> deposit weight did not vary with roughness. This behaviour<br />

<strong>wax</strong> showed no tendency to fail on either rough or smooth surfaces<br />

sur.’accc in small pieces The deposits of the microcrystalline<br />

Ccu0JI dd not L;Loua but lalica as be fore rid fitx:d irum tc<br />

0 .i 2fl Z5&1L PICCCS rOu;.enee. surfaces the cra;:alhj ne •;c<br />

been discussed in sections 2.5.. <strong>and</strong> on site effects of<br />

The worn of a:son <strong>and</strong> essen<br />

extensea :cer:cns c: ;:ae.<br />

wnua cconcaican..y sc.ve sne rara: :in aepcsntuon pro e..em :or<br />

many additives in she fields hunt concluded that none was available<br />

of de-osits, thus irihibi-ing saraffiri deoosition :.iter trying<br />

ac..stVes offerea sac ‘Dsssieini;y 0: resucflg ;ne conesave streng:a<br />

networn o: oara::n crystals.. nun; states snat caemaca_<br />

oresence of asshasic substances prevented the formation of a rigid<br />

aaseraas are generai_y consac.ered to act as nnnnoors to crysta_—<br />

lization. Shesard has given exoerimental evidence that the<br />

‘Zr)<br />

se.son ann tewart’ states tnaz coourea peEroeum<br />

3C)<br />

235 .L.idi gives<br />

therefore, to surface roughness.<br />

a&:esive bond should be proportional to the surface area <strong>and</strong>,<br />

all surface irregularities <strong>and</strong> achieving maxisum contact, the<br />

of coarietely wetting a deoosition surface <strong>and</strong> hence penetrating<br />

on a surface. They oo:n:ed out, nowever, that a solution capacle<br />

<strong>wax</strong> corstoslslon ae;erared whesr.er or not a given deposit remaines.<br />

observed between surface roughness <strong>and</strong> deposit weight arid that she<br />

Patton <strong>and</strong> Casad concluded that no correlation could be<br />

plastic coatings.<br />

for sne same temoeratures because of the Insulation effects of the<br />

were at least D rer cent less than those obtained on bare steel<br />

— 22 -<br />

F —<br />

—<br />

1<br />

rara_::n aeoostzsori


<strong>and</strong> surface proueriez reapectlvely_ ‘dcn invcattating the cect<br />

ann comuare :ug. 2..3.2). Uhen derosittng on a surlace wtan an<br />

- 25<br />

in nature on which anot:uer deposit did not form (see fig. 2.3.5.<br />

as time went on, leaving a very thin film of <strong>wax</strong> auparently granular<br />

Itered the deuoaitior behaviour. Taen depositing on a i’rcshly<br />

diatillation residua to the hostane—<strong>wax</strong> solution drnnticrilly<br />

—<br />

oil inaustry, Th is defined as the formation of any rrcddhnctt;lg<br />

<strong>paraffin</strong> wan—kerosene—toluene solution prevented the formation of a<br />

struc:z’al la;ice of raraffin crystals.<br />

addition, the occlusion of additive molecules in a deposit resulto<br />

tao :o:c.ae: cu Dara:1:: auos::uo:: ts o: _on; smun_ng<br />

(_..<br />

::uravev et al i-euoried -:ha; asuhaitenes (3.5 er cent) in a<br />

firmly anchored <strong>and</strong> may be swept off by the flowing fluid. :n<br />

a <strong>paraffin</strong> crystal may nucleate on the film, it is no; as<br />

irg the <strong>paraffin</strong> molecules from penetrating the film. Then, even<br />

it is capable 0f maintaining any :ore—adsorbed film, thus prevent—<br />

failure. Thrthermore, when an additive is rresent in a solu;ic::<br />

in diminishing the cohesive strength of the deposit <strong>and</strong> allows<br />

the snielding effect of the <strong>paraffin</strong> derosit itself, ‘out succeens<br />

to result in the formation of a detectable adsorbed film because oi<br />

any adsorbed film the presence of an additive in a solution fails<br />

Patton <strong>and</strong> Jessen :oostulated that when the surface is free oi<br />

in one riece.<br />

to the rre—adsorbed film. The deposit simply slid off the specimen<br />

was removed from the arraratus; in no case did the denosit adhere<br />

that observed without an adsorbed film<br />

1 except when the specimen<br />

in decreased cohesive s:ren;h <strong>and</strong> thus encouroges cohesive dha:e.<br />

of additives they found that the addition of a smai amount of<br />

adsorbed distillation residua film the <strong>deposition</strong> was identical to<br />

:oolichcd surface an opaque cienosit was formed whica neeled off


— 24<br />

—<br />

organic detonits <strong>and</strong> as such is included in the suet of fouHn;.<br />

In an attumat to uncrst<strong>and</strong> the rnechanisrcs of <strong>paraffin</strong> derosition<br />

both crume oils <strong>and</strong> model solutiono have been studied.<br />

The<br />

oocrvations rerorted in tne literature <strong>and</strong> consicered most<br />

important for the present work, are summarized below<br />

The nature of the <strong>wax</strong> crystals formed in solutions is affected<br />

by the rate of cooling <strong>and</strong> sur±’actants. i high rate of cooThng<br />

favours the formation of a large number of small crystals with<br />

irregular shares <strong>and</strong> a high surface tension t a lower rate of<br />

cooling larger <strong>and</strong> more uniform crystals arc formed resulting in<br />

a lower surfac tension, as does the rresence of surfactants.<br />

ara:1in derosttion is cnaracterlzen cy an asrmpto;ac a:D:oac:<br />

to a final vaThe.<br />

The main factors affecting the <strong>deposition</strong> are<br />

fiowrate, temperatures <strong>and</strong> chemical pro:Derties.<br />

Increased flowrate decreases <strong>paraffin</strong> <strong>deposition</strong> <strong>and</strong> increases<br />

strength of derosits.<br />

Paraffin derosition <strong>and</strong> initia. rate of <strong>deposition</strong>, both<br />

increase witn increasec. temrerature ni::eren;aa cetlleen tile SOill—<br />

tior. coun roant ann tne c.epostaon waa temperature. fne rate o:<br />

c.eoosition granuay necreases nue to tne tnerma_ nsuataon 0I<br />

c.eposted <strong>wax</strong>, unlil the fir.a:. asyartotic value is renonec..<br />

a<br />

solutior contains a range of <strong>wax</strong>es, the strength of deposits will<br />

decrease with increased tearerature differential. .<br />

solution<br />

k temperature below the cloud :ooir.t will derosi; less than a<br />

solution where <strong>deposition</strong> is affected by cooling fro:: above the<br />

cloud point. -<br />

araI:i:: ercsts are :.enn to nepcsiincn sur:aces Dy<br />

aosorr—<br />

tion iorces ntc: aerena on tne :ree sur:ace energy 0.<br />

.<strong>wax</strong> crys;a_s ann tne nerosn:aon surace.<br />

eur:actan;s can mcaa::T<br />

tne sur:ace teusnar. o: <strong>wax</strong> crys:E.s ann nercs;nc:: sur:1ces.<br />

Cohesive<br />

aiThres ona occur in raraffin deosits, sometimes


- 25 -<br />

loading to a r<strong>and</strong>om process of buildup <strong>and</strong> renoval


58 —<br />

0<br />

C)<br />

C<br />

4-.<br />

0<br />

54<br />

-Q<br />

D0<br />

C-)<br />

0 2 3 4<br />

Rate of cootn<br />

Fig. 2.2.3.1.— CLoud Doint of a 8I$ C me’Jng pct<br />

<strong>wax</strong> in a mixture of C <strong>and</strong> C- 2 p.raffins, as a<br />

fu-cton of cooHng rate. Ccncer.traon 1.2<br />

Q1iDO.<br />

From ref.iO


y<br />

-<br />

F’J<br />

CD:’<br />

C)<br />

x— Dcpoit thickness (pm)<br />

p_) 4-- 0) 0) C)<br />

C) C) C) C) C)<br />

C) C) C) C) C)<br />

i0<br />

‘<br />

r<br />

:)<br />

-h<br />

-Ti P o<br />

•1 3<br />

Ct)<br />

-139<br />

-lCD <<br />

fi) ::1<br />

- 1<br />

:5<br />

CD<br />

c<br />

CD<br />

0 o i-s)<br />

-t<br />

r%).<br />

0<br />

,.. fl.<br />

(L<br />

U)<br />

—w<br />

(1) (<br />

U-)<br />

o<br />

—iC)<br />

C)<br />

.1 —<br />

c) 4— c_n<br />

C) C) C) C)<br />

u1-- Stripping velocity (cm/s)<br />

ci)<br />

(I)<br />

Li)


5—<br />

Reynoids number 40<br />

-o<br />

15.—<br />

Time 2 hours<br />

20<br />

C<br />

4—<br />

D<br />

cepos:ted T = icTw. From ref. 34<br />

0 5 10 15 20 25<br />

Effect of temerctwa on cmount of wcx<br />

T —Temerciture difference C°C<br />

Tb 38-39°C<br />

= 33 °C


0<br />

C<br />

15O—<br />

200<br />

From ref 2<br />

of <strong>wax</strong> eosited on a mi scce steeL TT Tw<br />

Fig.2.3.2.2— Effect of teperctua o t-e ci.o;<br />

tT— Temperoture dffeerce C°C)<br />

2 4 6 3<br />

(I)<br />

-o<br />

C)<br />

Tc 33°C<br />

Time 16 hours<br />

‘b =41 °C


From ref. 35<br />

temperature C°C)<br />

40<br />

o<br />

80—<br />

50<br />

55<br />

35°C<br />

2a<br />

0.<br />

50<br />

I-<br />

C-)<br />

0<br />

C<br />

C,<br />

0.<br />

r-g. 2.3..3.— Amount <strong>and</strong> metmg onz oc ceposts<br />

Cruce ot wtr 10 percent <strong>wax</strong>, Lc =3 03 ano p=22°D<br />

v bu< temperature at 3 constant watt tempeiats.<br />

0<br />

0<br />

Ci<br />

50 —<br />

C<br />

Li<br />

2<br />

C)<br />

-Q 40—<br />

-)<br />

S<br />

I 20-<br />

C<br />

33 35<br />

— Bu’k<br />

- 45<br />

C)<br />

Cl<br />

S


0<br />

o3<br />

Tb<br />

3D<br />

0•0<br />

L<br />

D<br />

2 •O—<br />

Fg.2.3.2.t..— Effect of ternperGture on wcx<br />

•;E 0.6—<br />

- 1.o-<br />

from c crude oiL From ref.35<br />

10 0 10 20<br />

— Bulk ternecture °C<br />

depcscn


300<br />

E<br />

U<br />

E<br />

200<br />

‘:3<br />

0)<br />

‘I)<br />

0<br />

CL<br />

0)<br />

‘3<br />

.4—’<br />

0<br />

E<br />

100<br />

0<br />

0<br />

Tc 59°C<br />

-<br />

.._I<br />

20<br />

I<br />

ReynoLds numb’r 2t00<br />

—<br />

52°C<br />

Tb 55°C<br />

.l. ,_______t.<br />

I0 LU 80 100 120 1/ID 160 10<br />

t— hmc’ (rin.)<br />

Fig. 2.3.3.1. Amount deposit us ci function of time cit outtot of test section.<br />

From ref. 10


2<br />

I<br />

In<br />

0 Tot<br />

-D<br />

-D<br />

U<br />

16H<br />

16<br />

20,<br />

In<br />

F<br />

In o6f<br />

- 10<br />

S —<br />

Fç. 2.3.3.2.- Depostcn as a fr a<br />

i45 percent heptane— <strong>wax</strong> soLon on a resniy<br />

poUshed surface. Tb 24°C,Tc 22°C, °C.<br />

0 20 40 60 80 100<br />

From ref.1i<br />

t—Tirrw (mini<br />

0 Adhere


22<br />

200<br />

1 30 H<br />

200 rpm<br />

1 6 0<br />

D<br />

0<br />

C<br />

100<br />

80<br />

450 rpn<br />

z 40—<br />

20—<br />

0<br />

—I<br />

I<br />

2 4 3 8 10 12 11+ 16 18<br />

f—Time hours)<br />

Fig.2.3.3.3.—Amount depcsted v time c feer<br />

rates Go stirring. c = D2 °, 5°C,LL<br />

From<br />

ref. 3t


C CE)<br />

CL) CE)<br />

()<br />

.: rJ\:<br />

- . c:<br />

CD<br />

0<br />

(0<br />

II<br />

0 -<br />

I iJ : 4—<br />

.::<br />

I ‘ U<br />

° J)<br />

o<br />

10<br />

-$ ‘-<br />

I ii<br />

•_<br />

I— II— :,<br />

-<br />

o<br />

•F<br />

L_<br />

:<br />

5- I Ii<br />

rjrO<br />

cDw Q)<br />

I 1- - 10<br />

). ci)<br />


From ref.37<br />

Eg 2.3.41. — Amount eosted v.cotcct<br />

9— Con;oct<br />

0 20 40 60 80 CQ<br />

C<br />

I I<br />

0<br />

C<br />

2.<br />

Tc = 33 °C<br />

5.—.<br />

Tb= 38—39°C<br />

D<br />

tT= Tc—Tw 17 °C<br />

Time 2 hours<br />

a)<br />

10 —<br />

C<br />

Re = 60<br />

U)<br />

a)<br />

1 s<br />

2O


400<br />

function of roughness factor. m ref2<br />

— —<br />

Fig. 2.D.L.2. —<br />

Aont<br />

of parcffin eosted Cs a<br />

e —Roughness FoctorCjJrn)<br />

0<br />

20 40 60 80<br />

QL_<br />

Tw 28°C<br />

IC 3 ,<br />

< 100—<br />

—<br />

S<br />

0<br />

Tb = 41 °C<br />

200—<br />

. 300—<br />

300 r.p.m.<br />

Time 16 hours


i-:i C:<br />

rr,— n -r


— 2o —<br />

3. i3:\CGRDU ND TO TI<br />

PRESENT SmJT)IS<br />

3.1<br />

:rocica<br />

The<br />

work at Eirmingham University into EculinE of heat transfer<br />

euipnent dares back to 9l9 when Bott<br />

Dointed out the lack of<br />

underst<strong>and</strong>jn- of the rnechanicrcs of foulIng.<br />

Since that tinie the<br />

subject of <strong>fouling</strong> has been reviewed by Bott <strong>and</strong> Walker<br />

<strong>and</strong><br />

research at Eirming’nam into <strong>fouling</strong> of heat transfer equirnent<br />

has been presented by<br />

aer ‘.<br />

The<br />

invesiga:ions by Waker<br />

included:<br />

heat transfer in clean commercial heat exchange tubes;<br />

mathematical representation of <strong>fouling</strong> data; a study of the<br />

<strong>fouling</strong> of a cooled heat transfer surface by <strong>wax</strong> from kerosene —<br />

raraf:an <strong>wax</strong> maxcures. The :arst two oz tnese nave ceer. puc.asnea<br />

by Walker <strong>and</strong> 3ott’<br />

<strong>and</strong> the third by<br />

3otc°<br />

<strong>and</strong> Do;: <strong>and</strong><br />

Waker.<br />

Presently, the work at Birming’:an on paraffir. wc<br />

<strong>fouling</strong> will be discussed.<br />

32 coeriaen;al Systea<br />

The cbjec;ives of the work by Walker’<br />

‘<br />

was to study the<br />

effect of f.owrate)<strong>wax</strong> concentration, bulk ;emrerature <strong>and</strong><br />

on the deosition of <strong>wax</strong> from kerosene—araffin <strong>wax</strong> mixtures onto<br />

coolec tuoe<br />

suraces<br />

Walker used a<br />

5/5°0<br />

fally refined raraffin <strong>wax</strong> dissclved<br />

an a commercaal grace cerosene. The :asn roan; 0: tne cerosene<br />

was 550Cm<br />

ie<br />

caraffin weoc<br />

concentratnons usec an Ene exceriaen:s<br />

ranged fror, -f.2 to 264 per cent by weight, corresponanr:g to anonc<br />

points from 10 to 5200 respectively.<br />

The average :u_ teaDeratures<br />

ranged from 28.9 to L9,50<br />

:n all of the -5 runs the bulk<br />

temperature ‘as keot above the &oud coint.<br />

t:<br />

concen’traticns<br />

oe_o;i<br />

.<br />

ocr cc:::, runs :cre mane a: accu:<br />

3<br />

can ou a.<br />

niaer<br />

ccr.cen:ranacns ca_y a: a:ou:<br />

ey::ocs nmoe:s<br />

rna:a<br />

fcc::: to 25+;’. ann o’a:ca:a.. tames were ur :c 5,’ .:c;rs.<br />

::rimi:::-<br />

excc:imea:s, asting ncurs, a.,ker ::ad


constructed a Closed circulation arraratus where<br />

.:uikcr ascuaeu that cy changing the composition of the system,<br />

5.5 erimental kethod<br />

the results could be obtained in a reasonable time.<br />

7.5 per cent at Reynolds number around 10,000.<br />

deposited on a cooed surface when <strong>wax</strong> concentrations exceeded<br />

dcmontratoci that at bulk temperature of about i0°C xmraffiri <strong>wax</strong><br />

— 27 —<br />

rate mci aecrin ter..perarure.<br />

.anc. ;rie ovara_.. neat :ran:er res:starice ttse:, cota were :cunt<br />

kert above the cloud roint. : this way <strong>fouling</strong> due to <strong>paraffin</strong><br />

kept constant during each run, but cooling water was used as<br />

received from the mains. Soution bulk temperatures were al’iays<br />

water :.owrate out afferent souton flowrates.<br />

section 4.5. All the heat excnangers oreratea at the sane coc:ng<br />

ress;ance uctua;ea mocu: an vEue. unese :u::uai:cn,<br />

an asyartottc vaue. nsteae, ;rie overa.. neat trans:er<br />

raraffin <strong>wax</strong> in kerosene solutions could be cooled in 10 water<br />

3.4 Reanlts <strong>and</strong> discussion<br />

jacketed heat exchanger tubes. For details of arparatus see<br />

where the overall heat transfer resistance is plotted against<br />

<strong>deposition</strong> was indicated by any changes in the overall heat trans<br />

transfer resistance didnot increase contnuousy, or apuroaca<br />

to tncreaso ncrearn’i’:ax ccncen:ratnons, aecreasng :c.:—<br />

2o.9 aria ;ara::in <strong>wax</strong> ccncentra:on 9.7 per cent, wttn an<br />

time, at 3 different owrates. Average bulk temerature is<br />

fer coeffcen;, since the wall resistance is low <strong>and</strong> the water<br />

cne main :eauure oz tne resu_;s s, ;riat trie overa neat<br />

Point o: 9.5°C.<br />

0 0 -<br />

roca_ results ootainem oy alker are snon in zig. 3.--. ,<br />

flowrate constant -<br />

The temuerature of a solution entering a heat exchanger was


3.5 Conclusions<br />

decreases<br />

At the inceution of an experiment a <strong>wax</strong> deposit is rapidly laid<br />

Ualker suggested a mechanism to explain the observed ofi’ccts.<br />

extenaive at the colder downstream end of test tubes.<br />

A viuual examination of the <strong>paraffin</strong> iax clc;pozitn , nhowed them<br />

— cL —<br />

roint the way for farther research.<br />

resultant concentration graaient will cause tne aiffusion o: <strong>wax</strong><br />

ness that it becomes mechanically weak an sheds.<br />

to vary from individual earticlos to extended areas, depcndia; on<br />

boundary layer the mixture will become suocrsaturated <strong>and</strong> the<br />

toe operat:uv; conditions. Toe ucposits were aLso ±ound to oe more<br />

inorta.. mractnon. oker postula;en tnat tots ceposatton toen<br />

gave rise to a secondary layer, that periodically builds up <strong>and</strong><br />

sheds. This secondary unstable layer builds un to such a thick<br />

work did show ale fluctuating nature of para::in i’ax cerosats ana<br />

down on the cooled surface from the adjacent mixture. This deronit<br />

<strong>and</strong> low concentrations the least <strong>fouling</strong> situation.<br />

onlv nartiallv covers the surface. At some point in the cooled<br />

from the bulk to the waIl. The <strong>wax</strong> crystals are then transferred<br />

boundary layer, to be most imoortant in reducing <strong>deposition</strong>,<br />

from the bour.dary layer to the wall, either by diffusion or<br />

sufficient information to study the fundamental mechanism of<br />

si cc cotact ‘<br />

<strong>deposition</strong> did not occur- over such a time scale as to :3rcv.e<br />

than those formed at higoer concentrations, making high :‘lcwrates<br />

the system studied did not oroduce the exoected resulis<br />

formed at low concentrations appearea to cc mecaaatcay wea.:ar,<br />

foaling which iat be used it. design situations. ::owever, the<br />

!alker considered the residence time of <strong>wax</strong> artices, in ale<br />

The general conclusion of the <strong>fouling</strong> work by ‘‘aker is that<br />

w;-i rcrLasra floate. Dc os s<br />

0 he


10<br />

9<br />

C-) 1-<br />

a<br />

c’.J<br />

81-<br />

7,—<br />

C)<br />

6-<br />

0<br />

U)<br />

U) 5-<br />

CU<br />

I<br />

—<br />

CU<br />

C<br />

0<br />

0<br />

C)<br />

2<br />

H<br />

::>< XXX<br />

Run<br />

0 P30 20868 6.1 28.6<br />

)< F31 8695 6•0 28•4<br />

Q P32 11740 60 28.5<br />

XXx,XXX XX,x;( X<br />

.:Qco 0<br />

C0c30o 0O 0 00<br />

C<br />

I I I 1<br />

20 40 33 63<br />

f—Time h)<br />

Fg. 3.4.1. —Hect trnser resisonce v<br />

Tc’19.5 CflQ c9.5 pecen<br />

when


L -<br />

A sz: CF Fo:;:NG BY<br />

SOLUTIONS OF PARAFFTN WAX<br />

:Ns:s


— 29 —<br />

-.. I 5JDY OP OUhl::c BY hOLUTIONd OF PAPLFFIN WAX IN<br />

EEBO<br />

F1<br />

Introduction<br />

The e;ooerimeutai results obtained by<br />

1;iaer<br />

1)<br />

raised the<br />

following main cuestions:<br />

Uas the exoected asymototic heat<br />

trnsfer<br />

resistance reached in a few minutes, not detectable by the arparatuc,<br />

or would<br />

it<br />

be reached<br />

if<br />

experimental times were extencied<br />

Also,<br />

were the measured fluctuations in the heat transfer resistance real,<br />

or caused by some external factors, rossibly the mechanical desin of<br />

the anoaratus?<br />

Section 4 deals with exoerimental work carried out in an<br />

endeavour to clarify some of the above questions.<br />

.2<br />

Dodificatioss of Inoaratus<br />

All the exeerinenta<br />

work on <strong>fouling</strong> by solutions of<br />

rarafin<br />

<strong>wax</strong> in kerosene<br />

1<br />

was carried out in the same aroaratus as used by<br />

Walker<br />

,<br />

with three moazficatons.<br />

u<br />

tnermometers were put in uan walea roccets, to :orevent<br />

accidents<br />

if<br />

one of the mercury in glass thermometers broke.<br />

The inside <strong>and</strong> outside (the building) steam tracings were<br />

connected such as to allow seoarate arrlication.<br />

:<br />

this way,<br />

the outside steam tracings could ‘cc<br />

kert on during experiments,<br />

thus creating a thermal barrier <strong>and</strong> minimizing the effect of ambient<br />

temuerature fuctuations on the solution bulk teaterature.<br />

This<br />

was acne Decause an examana;aon o: tue exoeramenta<br />

resu_ts<br />

ootaanea cy<br />

;auer<br />

insacatea some reatioasuar cetween tue amient<br />

temperature sac. tue<br />

souion<br />

oul ter.nDera;ure.<br />

tuis :ere true,<br />

tue :uctuataons an tue<br />

eat<br />

trans:er resastance comuc. Ce rea:-zo:ceo<br />

by ambient teuterature fluctuations.<br />

lAo<br />

final modification c:as to move tue ;ueruastcr, coutuc__ang<br />

the solution bul: tearerature, from the discharge .siae of tue<br />

centrifugal<br />

ru.o<br />

mac riace at near tue stem:.: oca_ an tac s.orage<br />

tear. unto mus acme cecauce usun__y, cetter ocr.crc_ :au_ cc


was designed to cut off the steam supply on shut down, experience<br />

There is a further advantage in having the thermistor in the<br />

steam to tue co n the storage tank. Although the safety system<br />

by the safety sstem, the temperature control can continue sumplying<br />

stora-c tank. If the araratus would be shut down automatically<br />

ten erature.<br />

tttjn to resuce the fluctuations in the solution bulk<br />

obLined thu nrr the zerrin, device is to the source.<br />

a ; c... ..:anuo.e ..n..;m a _ia. .Le as<br />

ide nirc. tica steS<br />

deposit e a.<br />

circu.ated througu ten ra:aThe hen; exchangers, ‘/ucre the o-.naat<br />

tearerature man. :..owrate rue exrern.mea:a so_uttdn ras ;uus<br />

an exoerimer.:a_ souttcn coun cc crcu.aten a: constant cu<br />

The acara.us was oastca.y a cosem cmrcuiation oOr, .;mere<br />

section L2• shows a flc; diagram of the aezaratus.<br />

but modifications to the accaratus are discussen in<br />

The eerimea;a aucaratus has been described in det&Z by<br />

3. :roction<br />

43 Exmerimenta.. Accaratus<br />

tank itself, is a much safer procedure.<br />

unattended during the nigkts, a thermistor laced in the storage<br />

accicent. or an acraratus destgnea to run contznuousy :or nays<br />

therefore be heated until something fails, possiby causing an<br />

storage tank. ue now stationary solution in the storage tank<br />

tion bulk temperature, steam wIll be suulied to the coil in the<br />

temperature. This temrerature being lower than the recimired soTh—<br />

shortly atcr emergency shut down, indicate the ambient room<br />

A thermistor mThced on the discharge side of the mu:se wil,<br />

showed this was not the case.<br />

— —


— 51<br />

—<br />

insulatcd by<br />

bruglass <strong>and</strong> zuDijarted on a frame about 1 .35m from<br />

the ground, outside the buIlding.<br />

The rest of the aoaratus was<br />

inside the building. The holding tank was fitted with a level<br />

indicator.<br />

The steam coil in the tank was a 0.5 inch stainless steel<br />

pine about m iOfl”. The steam coil was connected to a 50 psi.g.<br />

steam main anc. contro.Jed wath a solenoid steam vad.ve actlvatea Dj<br />

a tei: era;ure co:trolier using a thermastor oLacee tn tao tank.<br />

The<br />

condensate was returned to the condensate mains.<br />

The pirework from the holding tank to the pump was 2 inches<br />

correr riPe, wn_e tne rest of the pirewor: was<br />

. ncn copper<br />

:e.<br />

Ccmtress1on fattings <strong>and</strong> gate valves were used.<br />

The circuation r<br />

eworz anc. sceamllnes outsase tan otia—<br />

ing were lagged with rockwool <strong>and</strong> water—proofed with roofing felt.<br />

The circulation pinework inside <strong>and</strong> outside the building was steam<br />

traced with a 0.3125 inch correr pipe.<br />

The c:rcua:ion pumu was a boruar on—Sacroon C—Ci2<br />

centrifugal pump with a stainless steel impeller. The uap :as<br />

driver, by a 75 h.p. 4157 3<br />

ohase electrical motor.<br />

4.3.3 The Test Sections<br />

The<br />

test sectior.s were ten water cooled tubes mounted<br />

vertically between horizontal delivery <strong>and</strong> discharge manifolds.<br />

ae acne o flow zr. one test sectzons WaS counter currant.<br />

_ne test sections were mane o: 0 zncn copper rae, zasane<br />

diameter 15.1 mm <strong>and</strong>. outside diameter 15.00 mm. The test se:icns<br />

consisted of a 72 mm<br />

etry length, followed by a water jacae;ei<br />

section 914 mm ong. The water jacket was mane 0f 0.75 inch cctuer<br />

:ipe.<br />

• The coolhr water came directly from the mains <strong>and</strong> was<br />

discharged to the grains.


• saLLy measures were tacen. oa:D;y s,evsoes were srS;a._c ac;:’:rLlm’<br />

are given in Aurendin 5.<br />

mercury in water. The calibration constants oi the orifice meters<br />

the rressure drop across thorn measured in vertical manometers with<br />

<strong>and</strong> cooling water wore measured with —10 to 100 x o.°c <strong>and</strong> —C) to<br />

The Inlet <strong>and</strong> outlet tomeratures of the uxnerimerial ;oThtion<br />

. .5_si- ;wuma tation<br />

__) —<br />

Cooling water flowrates were measured by orifice meters with<br />

a ca:e;y system usa; smut sown em;sre arcamatus.<br />

pressure drop alonf ‘the test secticas.<br />

metrIc reccrcer surios cy ..;ner ;n.<br />

I :c ; ;a,_z’ St.L515 su an onon ;cDmca...I_:.. :3tDO_<br />

bcauso the e erimenia scli;ion was fiam:c:oe, se’i:ma<br />

4.3.5 Safety srsbe<br />

recorded on an Xactaline Series 7056 b D—I50C 5 :soin’t rotem;io<br />

were monItored by :hern:coupes. Their outputs were measured c.ns<br />

transaucer system ans tre oritace meters are gsven sn pren&ix ,.<br />

stabilizes, power suarly were suoohied by Thar,schzcers (0.-.)<br />

transducer <strong>and</strong> a tye XF—I00f. conditioning module with a<br />

53 x 0.1°C mercury in glass thermometers, respectively.<br />

‘±me outrut Iron-. trie transaucer strain gauge orisge networc was :nd<br />

on to a 27030 series 3ryans chart recorder. The calsoraucn of the<br />

a senarate VäVC SO wms_e one pressure was being measured, a:: the<br />

measures sy a ty-ne RV—24 0—200 rs.ig. pressure transcucer. The<br />

ny_on tusng to a mansfo_s connected to a transaucer. Thc:.. _:ne mad<br />

others were closed. The rressure drou across these floumetors was<br />

taraings of al the IC orsfice meters were connected with transaronu<br />

ten test sections., were measured with orifice meters. The pressure<br />

‘LIe transaucor system was not semsttve enougn to measre -:me<br />

Temperatures a; various rarts of ‘the experimental apraratus<br />

The floates of the exrerimental solution through each of the


— 53<br />

capable of Coat ining the entire contents of the circulation loon,<br />

in cane the tank onrang a leaks<br />

A<br />

t:rmostat was fitted in the holc.ing tank, activating the<br />

zalety system if excessive temneratures were reached, indicaaLng a<br />

The return rires entering the holding tank ‘iere carried do:rn<br />

to within a few cm<br />

static electricity<br />

of the tank floor, minimizing the rroduc;ion of<br />

areventing excessive mixing of the exsernentai<br />

solution.<br />

An<br />

electric eye level detector was fitted to the level indicator<br />

o: one ncatia zanc, i a s:oon_age occurree, Inc soactaon ev in<br />

one tan won_s eror, pass one eectrtc eye <strong>and</strong> act:vate tne Sãt oy<br />

system.<br />

All olnework was nressure tested. The entire annaratus insie<br />

the building was rut inside a mild steel barrier, carahe o±<br />

contain<br />

ing the entire contents 0f the circulation iOO<br />

2 in case of eakage<br />

A<br />

tnermistor was instalThd at the top of tne exrerimenton r:g<br />

to detect any undue rise in temrerature inside the building. :t<br />

would activate the safety system.<br />

An orifice was installed on the rump discharge side <strong>and</strong><br />

connected to a mercury electrode manometer.<br />

n the event of a<br />

blockage or nuar failure, the lack of differential rressure across<br />

tae ora:ace wons activate the safety systems<br />

tne entire arraraons was care:uLy eartacS to prevent one<br />

formation o static electricity <strong>and</strong> spark ignition.<br />

The<br />

safety svste: was essentially a groan of relays cconDcton<br />

in seraes on one was rtcrec. ouD on ;ne event oc a lire, :a__<br />

tank level, blockage or man failure, in would stop the nuar<br />

2O seconds ater, close the soenoid valve or. the tuna discharge<br />

side.


— 34<br />

.4 ‘mrii:ntal Solution<br />

The<br />

oeritDontal solution used was a 51/5°C noraffiri <strong>wax</strong> in<br />

commercial grade kerosene.<br />

It’s ohysical properties arc given in<br />

flCiX 1<br />

The solution nrovi’Jc$ a simale ohysical <strong>fouling</strong> model.<br />

y<br />

its nature, the solution din not change its ororertics during use,<br />

<strong>and</strong> could trefcre be used again <strong>and</strong> again.<br />

!ith tac large canaity o the circulatlon system, <strong>wax</strong> cxDOsitei<br />

was such a sr:ali fraction of the total, that composition during each<br />

run could be considered constant.<br />

L5<br />

:Dr:ianta: procedure<br />

4.5.1 :nt:cduction<br />

The exnerir:en;al orocedure has been descrid in detnal 1r<br />

\iaer ‘.<br />

n tac present stunies ony the ast concen:rat:cn cy<br />

aer was usen. This SOUtiOfl was 26.L1 rer cent weigat oara:::n<br />

<strong>wax</strong>. The cloud point of the solution was 32°C.<br />

L52 Startut of Circulation System<br />

To<br />

start ur the circuation system, the steam suoal:r to ne<br />

holding tank was turned on to me..t the aclidified <strong>paraffin</strong> <strong>wax</strong> in<br />

kerosene soiut:on.<br />

Comalete me;1ng took acout a nay at ;ne enc.<br />

of which t:te s:ea. tracing was turned on.<br />

Then an tne _iiifc.<br />

exueranen;a.. sou:aon in sac oioewor nan menten,<br />

sac nstc.e stea:<br />

tracIng was turnec. o::.<br />

L5)<br />

Star:us o:Ths: neestons<br />

The ses-: sectons nac. oreviousy Dee:.<br />

ceanen wita carcon<br />

;e;racaloride.<br />

This was done by removing them <strong>and</strong> fialia’ wiTh<br />

carcon tetrac.Thorise for about an hour.<br />

This was :coec.te. several<br />

times unta_ an e:caa:na;aon visa a sma_. iiameter rsrectioa<br />

scope showed the,: to be cca:: ‘Ther. ary.<br />

: stars The crcu.a.uaon iZong she main <strong>and</strong> ye :urn lines<br />

valve in the<br />

aTh siraline via orenea <strong>and</strong> one test sco v_ca ct.n..


exce-ot the one between the holding tank <strong>and</strong> the circulation rumr,<br />

<strong>and</strong> the electrode manometer shorted out. with all valves closed<br />

To start the circulation pumn the safety system was turned on<br />

switched on <strong>and</strong> allowed to warm u1.<br />

Tue uressure transaucer power supriy ama its recorder were<br />

could be started.<br />

the designed bulk solution temDerature was reached, the test sections<br />

Cnce it was clear Lhat no blockares were in the ni-oeork anu that<br />

with the inlet uiZre to the desined valve <strong>and</strong> the coolia:: uter<br />

manifdll. The Jll-.’:ra-; th:oan the test sectiom’.’as then attst5d<br />

tuts aci:es ac eymass Inc ona..ace meter cy osmg tnre’ign an-c<br />

:ean:fo_s to ate atuen ssce o tue ors:sce meter. ne so_utson as<br />

arcr across tue ors:sce meter was uses to c_ear tue _sne :rcm tue<br />

rressare. nce imiat was LDrie, tue a.rasn c.oses, ann tue :ressuro<br />

was great emoug:. to clear tuat ran of tue _sne, agaInst athos::ner:c<br />

manifoll, Tue rressare on the arrroach side of the orifice meter<br />

having a arain on the llme close to the rressume transducer<br />

had a solidified ecoerimentnl solution in them. This was done by<br />

rressure tarrangs were c_earec oust as tue masn Pipe’cr tney<br />

outlet valves had been opened, the lines from the orifice meter<br />

The test sections were startea simgy. hen the irZet ant<br />

this oeration,<br />

tes’Dera;ure, The tem-cerature recormer was swstcuea on to :ecnator<br />

vave aria the system auowed to reacu tue cesignea. ouk so_utson<br />

Tue ten:perauure controller was then set to tne dessgnea.<br />

now under the control of the safety system.<br />

electrode manometer could be removed. The circulktion system ‘ias<br />

-oressure across tue orafsce meter ama. the snort carcuat across tue<br />

was now flowing through the bypass lime. There was a iifferen;al<br />

its<br />

discharge side <strong>and</strong><br />

the bypass valve were orened. The solution<br />

the puar was startea \iuen ; nan run up to smeea, tue vave on<br />

— 35 —


sections were ke-:t the same.<br />

fosi:eratares <strong>and</strong> flcwrates were measured every 5 hours c3unin.<br />

5LL scrssion<br />

LvsL sections had ‘oeen started, oecauso the niccauLo sic i;rihii ;_ion a<br />

_lowraics in tiie test sections ham to oe ac1ustes once l tee<br />

nsj valve was closed<br />

turne3 on.. Is .:ore <strong>and</strong> more tez sections were :urr,et on ,hr; :rin<br />

the yatcic had chanod. The ccolinl water flowratcs in all the teat<br />

a_ncr. it::asuoseatuas ;.:as’:oasnowitaaasmnto;acusa:<br />

s;a:aes aunaratas, ‘:‘aS SO extent tue ex;eraaen;a_ sites ass:. 0’y<br />

The tam :arcse of the exuerisenial work on the fdllia<br />

latrofuctica<br />

a:eniaua;el iesults<br />

foarcea tarsal the ran.<br />

formea a neavy menosat on tit ansase wa__S, obscuran, any seresa’:s<br />

sections after each :‘un Then the test sections were drained there<br />

:t ‘:as not found rossille to insrect the incise of the tea;<br />

rune discharfe side was cloced <strong>and</strong> the rumr switched off.<br />

to sna; tue auraratus sown atter eac:: run, tue va_ye or.<br />

cc oeeratom to sassrate a;.<br />

rune was found to be excessive <strong>and</strong> at .east 5 test sections has to<br />

The heat: into the circulation system oy the cellrifu’;al<br />

read all temoeratures.<br />

tures were quate small, an itiurcinatea mafying gass was uses to<br />

Thecausc the dafferences in the inlet ana outlet Ouj,k teetera—<br />

larfe quantity of water involved.<br />

cause for concern, but little coad be done about i due tc the<br />

water flowrates increased sZihtly duninf the :eiht. This was a<br />

Soution i.owratos were found to remain constant, ‘sat coolin’<br />

about S hours.<br />

tue say. The anraraus was bit unattended dur:nn’ tue night for<br />

— ,o —


— 37 —<br />

traa_frr resistance would be reached or that it had been reached<br />

in the first few m:utes, not detectable on the apparatus.<br />

fo eva_uate the exieramentaL data a cornruter rrogram baa<br />

been developed, called TU3RX,<br />

the details oi which are Given in<br />

Aerendix 4.<br />

The exrerirnental results are given in the came<br />

Aependix.<br />

.n a_i crie experiments a parai:in <strong>wax</strong> in kerosene ca_utlon<br />

with cloud point 32°C ‘as used.<br />

The Reynolds numbers obtained<br />

ranged from 3000 to 13000 <strong>and</strong> the bulk temeeratures from 33 to<br />

ne maximum experimental times reacned were 220 hours. n all, 22<br />

runs were made.<br />

1f.b.2<br />

Thsting o± the eearatus<br />

efore an effort was made<br />

to extend the experimental times,<br />

trio atoaratus was testea for reroaucioirty, as compared wtth trio<br />

results of baer . For ta_S purpose four runs were made,<br />

Groue A.<br />

The results are shown in figs. 1.6.2.1 <strong>and</strong> L6 2 These<br />

results are comparable with those obtained by Walker in runs F54<br />

to F57, riere the <strong>wax</strong> concentration WaS trio same arid the average<br />

solution balk temeerature was 35.4°C.<br />

It siouTh be noted that the first character of the ran<br />

identifier refers to the grorie of runs, the first number refers<br />

to the test section used <strong>and</strong> the last number the test rum’cer.<br />

4.63 GesuThs<br />

A<br />

first attesri to extend the experimental times, rrcfmced<br />

Group 3 of runs.<br />

ThiS rour riac. to cc a_u; c.oxri unexpec;ec_y a::er<br />

four days, for no fault of the arrarauss.<br />

The results are shorn in figs. 4.5.5.1 to<br />

• The ThnalgroueofruzswasGrourCwbich<br />

—‘-. _c_<br />

Dr DCa_<br />

The rca_The are shorn in figs. to


sectaon 4- at eajt tests sections had to be run to remove the<br />

lulnaclaf interactIons trom otner test sections. AS neatsonec. in<br />

To test this hrDothesis a sinie test section was run, thus<br />

fluctuins in t: heat tonsfer resistance.<br />

at arpr one time. ui;ht interact in such a ‘lay as to reinforce the<br />

It was conL.dered uosnihle tuat the tent secLion o)cr’.tsn<br />

•<br />

1<br />

IL<br />

&;in: C no C<br />

Do. roe ;userunrra rent ;:ans:e;’ resostance pore os:u e.<br />

boctet Zk solution ;:ss;erstsn’e c;rcl. Ye a-serpent dss.::r.<br />

feercer[ :.<br />

5r )c5.O n::J eat ;e:.serureotec ass 0 sserr<br />

the .coc.itica;ions aescrihed in section .2 :2re aired a;<br />

rensstance<br />

difcrant test sectuons, flvanf r:se to tre .lucrua:anD aes.; ;rs::s:Dr<br />

result dnanashes the chances of DOSSIDO nteractaons setwcen<br />

astac :ucruatins cnaracter Ot crc neat ;rans:er resastance. Th:s<br />

The san_e test SCCtIOfl resu_t o: run 2 snowea tne cnaraccer—<br />

eun te.;:perature.<br />

with increasing <strong>wax</strong> concentration, decreasing flcwrate anu decreasinT<br />

These fluctuations <strong>and</strong> the heat transfer resistance, both increased<br />

tc.r;es of 220 aours :nstead it fuctuated a coat an anataa va_se.<br />

ousry or approaca an asyrutocac value at ate ex;enaen e:;erc.menta_<br />

The overaJ heat transfer resistance did not increase ccnt::Tr—<br />

findings of hbZker(1).<br />

The eruerinental results rerorted in section i5 confirnec. the<br />

47 Discussion<br />

conjaracle to those of run 39—12. The results are shown in fi,.<br />

The sinie test section was run for six days, giving results<br />

one test section.<br />

Turner centr1.ufal pump was there:ore nstarreu, cauaole of runnr<br />

neat rut into the system cy the 7.5 n.p. pumP. .. snarl<br />

Stuart—<br />

— 58


— —<br />

.LnL:<br />

fact that the fluctuations are not conatant, but coeend<br />

on the concentration, flowrate rind temperature of ue <strong>paraffin</strong><br />

fa kerosene soluticn. sroniy suggests a real e:erirenta1<br />

ffuct<br />

n all tac c):Deriaental results the oror in solution oulk<br />

teaucracure aiong a test nectzon are very small.<br />

Ine avergae<br />

tenjerature dror in runs 1 to 21 was, for exarnole, i.5i-C_ The<br />

accuracy of the mercury in glass thermometers used in this work<br />

was about which is 75 rer cent of 1.5400. The maximum<br />

li:ey error is uner:ore acout 15 per cent.<br />

The ogarct::mzc meai: temuerature cn.iference ifl crc experi—<br />

- - - -. _o<br />

menta_ wor rangen !rom acout 2p to p5 0. -n error o: J. C<br />

therefore not affect the temperature driving force to any great<br />

extent -<br />

The recorcun ou:Dut iron the pressure transducer pro cacuy<br />

cannot be read with a greater accuracy than 0.25 ffV :n run 15<br />

where the Reynolds number is about 6000 the measured transducer<br />

output was accut p mV.<br />

The uotenta measurement error s taere:ore<br />

about 20 ocr cent<br />

Potential errors that can affect the heat transfer resistance<br />

are therefore present <strong>and</strong> should be considered in relation to the<br />

arrarent fluctuating nature of the heat transfer resistance -<br />

Ire vanue of tac neat transfer resistance cn ran 0;— .5<br />

cs<br />

ao:er uran woao oe ex’ectea a; Reynclns nameer 3T 2. .rc<br />

tjon of the resaTh showed the inlet solution tenreratare tD<br />

cc<br />

hicer then :n other runs in Grour C.<br />

:ercar’ column in the tnermome;er was<br />

t was aiscoverec.. tan;<br />

cro:en arcicatanc ccc ac—a<br />

termoerarures tans gavang a<br />

a-org neat trars:er reses:arce<br />

rIot of the everall hect transfer resistance versus EeyaoThs<br />

runs 5 cc 13 in Groar k wos consr-ncccn. Se<br />

—.7.2.’. e a c-’ log—_c. -:, s


These fluctuations were not reduced when interactions between<br />

nature of e overall heat rans±’er resistance.<br />

SO±Utlon bulk temuerature control, did not affect the fluctua:ing<br />

reduction ifl ambient temmerature effects arid an imorovea<br />

Thc oDcrjmentaj results confirmed the findings of kcrü).<br />

14 L C1cia: 5 car;<br />

X:C ted. The ;iope of the curve was found to equil urii by.<br />

amparatus.<br />

constciercia wnen evauatng tne cata from tac :ouling s;uaaes<br />

Temoerature ana :oa-’a;e measurement errors snoulo. cc<br />

asymoto-cc oehavtour CI tne hea transier resistance.<br />

xtended e-oerimental times did not produce the e:aected<br />

test sections were eliminated ‘cv running a single test section.<br />

—<br />

140 —


‘ci<br />

1<br />

V<br />

TEN<br />

TEST<br />

SECT IC N S<br />

DRAIN<br />

4<br />

V<br />

RETU RN<br />

BYPASS<br />

0<br />

III<br />

()<br />

Lii LU<br />

92L r\<br />

LU LU ILl<br />

cr: c’<br />

IL LL J<br />

WATER<br />

FROM<br />

MAINS<br />

STEAM<br />

50 psig<br />

.<br />

.— MAIr!<br />

FLLULINE<br />

L”<br />

j. L.._<br />

Fic. 4.3.1. —<br />

Flow<br />

dioqrcirn of th fouHrig studios OppCiFGtUS


ii<br />

ID<br />

XXX<br />

9<br />

C-)<br />

0<br />

(N<br />

x<br />

S<br />

x<br />

xx<<br />

7r-<br />

:: 6E<br />

J)<br />

Ci<br />

xc ox<br />

x<br />

00<br />

0<br />

0<br />

x<br />

00<br />

0<br />

RL<br />

oq<br />

0<br />

0<br />

o A7—1 EL.23 7.5 33.1<br />

0<br />

‘I<br />

A<br />

x -2 610 74 33.4<br />

L<br />

I<br />

20 40<br />

t —TIME<br />

60 80<br />

(h)<br />

Fig. 4.5.2..— HeGt fransfer ressnce v te when<br />

Tc = 32 °C <strong>and</strong> c = 23 ercnt


(.i<br />

fruflsferresis{Qnce(kW/m2OC<br />

0)<br />

O8c<br />

X<br />

x X X<br />

CL)<br />

Ow<br />

—<br />

1- C)<br />

Qoo ><<br />

E<br />

xs(<br />

x> —i-<br />

c<br />

o x<br />

0J_).<br />

Ii 0 U)<br />

U<br />

Cu<br />

(1) -•<br />

0 X<br />

0 ><<br />

0 X<br />

>,<br />

‘-‘U’<br />

C)<br />

.-:-<br />

U<br />

C)<br />

0<br />

o


12—<br />

-; 11L.<br />

s 10E<br />

- 9:<br />

‘3)<br />

0<br />

Run<br />

o 31-5 7635 7.1 425<br />

)< 32-6 6052 7.1 425<br />

0 36-9 13311 7i I+2.&<br />

fl 7-.<br />

C)<br />

x<br />

U)<br />

.4-.<br />

5—<br />

0<br />

ox<br />

>0< X<br />

xx<br />

x<br />

>‘<br />

xxx<br />

N<br />

fx<br />

0c<br />

0<br />

0 00<br />

2 H<br />

00<br />

0<br />

‘- a<br />

it<br />

0L_<br />

0<br />

20 60 50<br />

t — Trne h)<br />

A<br />

Fig. t.3.3.i.— HeQt transfer resiscince v time whefl<br />

Tc =.32 °C <strong>and</strong> c = 25 percent


-<br />

14 r<br />

1D —<br />

-i<br />

x<br />

—<br />

C)<br />

0<br />

12 —<br />

x<br />

Run<br />

0 B3-7 7697 7.1 43.1<br />

X 67-10 6306 66 42 4<br />

C)<br />

o -‘<br />

C<br />

0<br />

U)<br />

U)<br />

C)<br />

x<br />

0 610-13 6716 6•8 42.4<br />

x<br />

x<br />

0<br />

XX X<br />

0<br />

CI<br />

00 00<br />

CI 0 CI<br />

0<br />

00 0<br />

0<br />

ob<br />

0 Cc 00<br />

0<br />

0000<br />

f I I<br />

I I I I —<br />

20 40 60<br />

t— Time h)<br />

r<br />

Fig. h..6.3.2.— Heat<br />

transfer resistance<br />

32 °C <strong>and</strong> c 23<br />

v<br />

ne vien<br />

cent


(1)<br />

U)<br />

C’)<br />

C)<br />

Cl)<br />

It)<br />

0<br />

0<br />

0<br />

0<br />

ox<br />

ox<br />

o X<br />

ox<br />

‘<br />

C-,<br />

><br />

1:3)<br />

1)<br />

.4—<br />

4I)<br />

I)<br />

(U<br />

i).<br />

C)<br />

a)<br />

to<br />

0 0<br />

0<br />

0<br />

C-,<br />

It)<br />

C-)<br />

r<br />

U)<br />

It)<br />

IC)<br />

C’)<br />

c3<br />

0 0<br />

0<br />

0<br />

0<br />

c_<br />

hi<br />

1:3)<br />

10<br />

(N<br />

II<br />

E L<br />

0<br />

-tJ<br />

0<br />

U<br />

• 0<br />

Z<br />

—<br />

c r)IO’)<br />

i) ED<br />

0 X10<br />

0<br />

0<br />

0<br />

C)<br />

o x<br />

OX<br />

0<br />

0 X 0<br />

0÷.<br />

-4<br />

C’4<br />

U)<br />

-4--<br />

CI<br />

1:3)<br />

()<br />

0<br />

(N<br />

c-fl<br />

U<br />

(-a<br />

c-tj<br />

çtj<br />

0) CO t— tO U) -4 C) <<br />

.— 0<br />

-4<br />

J ?IM1 ) ouosisai iajsuoi i-j —<br />

U—<br />

-


-<br />

Fiq.<br />

12<br />

1o<br />

Run Re TaITb<br />

0 C3- 16 3s’ 12 68 386<br />

E —<br />

e<br />

-- C)<br />

C)<br />

U<br />

r /<br />

X C7-19 7264 69 383<br />

rJ<br />

x0 ><br />

x<br />

0<br />

X<br />

D<br />

2<br />

o I I ,__._I __i I.______j__ I I I ._i__._j __L___<br />

O 20 60 60 80 100 120 140 1GO 180 200 220 240<br />

t —<br />

Time<br />

(h)<br />

1-lout trunsfor roistunce v time vihen Tc 32 00 <strong>and</strong> C 26 percent


f-iq. 1.0-3.5.— Hecit trcinsfcr re.istcncc v timo vihon Tc = 32 °C arid C = 26 perc:<br />

‘I<br />

12<br />

11<br />

10<br />

Ci<br />

0<br />

E<br />

8<br />

C)<br />

0 I—<br />

C<br />

U)<br />

Li)<br />

C)<br />

I-<br />

C)<br />

4-<br />

If)<br />

14<br />

U<br />

-4-,<br />

3 -<br />

U<br />

C)<br />

9-<br />

2—<br />

0<br />

00<br />

0<br />

x<br />

X<br />

XX<br />

0<br />

X<br />

00<br />

cP<br />

XXX<<br />

0<br />

0000<br />

XXxXX<br />

0 C5-18 6688<br />

[<br />

6-8 38-2<br />

LzLoo_j.o 38-2<br />

0 0<br />

Co 00 00 0 0<br />

0 0 000 0Q 0000<br />

X X XX X X X XXX XXX X<br />

XXX<br />

XXX<br />

X<br />

XX<br />

X<br />

0<br />

0<br />

1<br />

0<br />

0<br />

I I I I____._L______I___L_____ !.. I i_.....I ._i...__._i<br />

20 140 60 80 100 120 1140 160 180 200 220 2/,l<br />

t— Time (h)


T<br />

Tb<br />

38•1<br />

382<br />

0<br />

o0<br />

0<br />

X<br />

XxXX<br />

0<br />

0<br />

0<br />

0<br />

Fig. 4.6.3.6.--- I oct truiifor reslsunc.u v time v’hen Tc 32 00 cind c = 20 p’rccnt<br />

Xx<br />

X<br />

X<br />

12r- -<br />

11’<br />

0<br />

Run<br />

Re<br />

0<br />

0<br />

(‘4<br />

E<br />

><br />

C)<br />

0<br />

a<br />

-1-’<br />

U)<br />

U)<br />

C)<br />

C)<br />

‘4-<br />

U)<br />

CD<br />

0<br />

I-<br />

.4-.<br />

U<br />

C)<br />

10<br />

9--<br />

8-<br />

7<br />

5-<br />

1,<br />

0<br />

00<br />

x XXX<br />

0<br />

x<br />

00<br />

00<br />

X<br />

XX X<br />

00<br />

0<br />

0 0<br />

000<br />

XXX X X Xxx<br />

X<br />

0 00<br />

0<br />

0<br />

.1<br />

x’.. ><br />

00<br />

X<br />

0 20<br />

x<br />

1,635<br />

7900<br />

67<br />

7.0<br />

0 000<br />

OCOO 00<br />

y >&<br />

XxxX XX’<br />

X<br />

2<br />

—I I<br />

2(1<br />

I<br />

1,0 60 80 100 120 1t0<br />

t —Tirno (hi<br />

• 160<br />

I _i 1? I<br />

180 200 220 240


I--i<br />

Fig. f.6.3.7. I ;ut transfer rcsistcinco v time vihcn Tc 32 °C <strong>and</strong> c 26 percent<br />

0<br />

X<br />

12 -—<br />

-- —--—---——______<br />

11<br />

10<br />

E 9”<br />

Run Th<br />

0 C2-15 5959 6.9 38.2<br />

xLC102187os_i<br />

00 0<br />

0<br />

0 ><br />

6 0 0 0<br />

o0<br />

0 0 0<br />

0 o0 0 o0 0 0 0 0 00 00 0 0<br />

0 oO°o 0<br />

0<br />

0<br />

XX x X X X x X X xxxx x x xx x X<br />

X X: X XX XX X X X X XX<br />

X<br />

Ti<br />

cr<br />

2<br />

0 -<br />

-—1 .I_L_J: I J L_IL_J I _i_L_<br />

0 20 40 C0 80 100 120 140 160 180 200 220 240<br />

Tirnc (h)<br />

t —


10<br />

..L9<br />

0<br />

C-)<br />

-<br />

0 00<br />

- 0<br />

0 0 0<br />

0)0 0 0co 0<br />

00<br />

5 o0<br />

0<br />

0<br />

/:.6.11. -<br />

0 20 I0 60 80 100 120 11.0 160<br />

I-cut<br />

t Tiruc ( h<br />

trcinslor rosisicuice v time cit Ic 32 °C unc c = 26 percent


0<br />

C’)<br />

R —<br />

[feat<br />

transfer resistcince (kVIIm 2 °c )<br />

1•1<br />

C)<br />

I-,)<br />

C!:-)<br />

Cm<br />

1<br />

0<br />

CD<br />

•1<br />

o 0<br />

r<br />

U)<br />

:<br />

U) 1<br />

0<br />

CL<br />

(n<br />

Cii 0<br />

‘U)<br />

—‘c-fl<br />

(I ‘<br />

0<br />

Cl-)<br />

C<br />

LI<br />

CD<br />

00<br />

—<br />

C) •-•--{ -<br />

C) Ci u<br />

II H U I<br />

C-)<br />

C’)<br />

0-)t3<br />

0 0 -<br />

0 0 0 0<br />

C) C) C)<br />

0


\-fl<br />

ci<br />

U<br />

U<br />

U<br />

C)<br />

p


characteristc does exist <strong>and</strong> is tyticLiy reached in 1—2 acurs.<br />

a section + was shoa tha in erDaa. cic.<br />

2.$’.3, ho’cever s;.ow that :n son:e .ode. sys;er:s an as c Th<br />

ansfer resistance’. The Dositica s;dies reviewed in son<br />

not produce the expected asyatotic behaviour o± the ovea. heat<br />

5’.<br />

5 r S1-JD<br />

1 O ‘‘‘T TY 21DD<br />

cefore cac aepcszancn :c_ac out tao coonnag auct :us; coverea tac<br />

The -esdu ie:sition dun evr, had a hc en;r section<br />

first used br Coe anc. esen anc. water cy atton ana essen .<br />

The deDosicion <strong>and</strong>. cccin ducts were sanjair to tne f_c.: ce_.<br />

ducts, separacec .y cne aSI;on :3ate’.<br />

soutaon anc. tne cconing water were crcanated carcugn rectanZanar<br />

cop;er p_ate, ccoea cy water. See zire p.2.1. The exerrencal<br />

circanaanon syseas waere araf:n <strong>wax</strong> was aic;:ec. to c.epcsan on a<br />

The <strong>deposition</strong> studies acai’atus was basicai:j two 1ose.<br />

5.2.1 :trodacticn<br />

5.2 :oc enta Zoarauus<br />

detosztori co<strong>and</strong> be observec. vsua1iy anc. examned on snutasan.<br />

few ninutes of operation’. . feature of the apparatus was that the<br />

The rCain emphasis was on obtaining data for deosition in the first<br />

the <strong>deposition</strong> characceristics of <strong>paraffin</strong> <strong>wax</strong> in kerosene so anions.<br />

-. deosition<br />

studies aDuarauLs was constructed to investia ;e<br />

f1uctua;jn heat transfer resistance :.a of a short duration.<br />

caereore uns itc.ane anere an f totlc c.uprcaca -Co ane<br />

to stuoy loaning over ncurs anc. c.ays, raaner tnar. ainanes. an<br />

The :ou.1ng studies aparatus anscussed in section ‘i<br />

— —


c-’<br />

51)<br />

C)<br />

F-”<br />

‘Li<br />

c-I,<br />

H<br />

PC;’<br />

Fr’<br />

Ci- (I)<br />

F.: C)<br />

5:’i<br />

:<br />

LI F<br />

C) H<br />

F 1’’<br />

I,’<br />

I’<br />

p<br />

“3 .<br />

o (‘<br />

C-- ()<br />

1 (,<br />

L<br />

5’i p<br />

F’ ci<br />

C’,<br />

‘Li LI<br />

!: C)<br />

‘ci I-”<br />

U ‘1<br />

•<br />

Ci<br />

)-‘ CL) F”<br />

F,<br />

13<br />

C_) P<br />

C-’<br />

C,)<br />

< a;<br />

‘1<br />

1_- C;’<br />

C> V<br />

P C’<br />

[‘ r<br />

Cl, “,ji<br />

C)<br />

C’<br />

Li<br />

C)<br />

‘3 CL<br />

C’<br />

C,)<br />

CL<br />

C<br />

r<br />

‘<br />

ci- ci ‘s ‘ci cn Cf 0 Cl) Cf :<br />

c,’<br />

0 V c-i- U ci- ij’ “Jl<br />

ci P’ c, p1 0 C’ 0 ‘,<br />

p CT)<br />

, [F P 1—-’ I—” 5)<br />

p ‘,,. ci LI . ‘ p i- p 0 (‘o<br />

,‘,‘ ,“, 0 C) CC> ‘<br />

F- C: —c C: ci’ ci c-i’ ‘‘<br />

C,, 0 P F-”<br />

< LI I” (I, P ci- (1) -‘<br />

V C C) C) Ri<br />

, P ci- Fl ci- F-’’ (3’ I” LI Cv CT) Ii ‘—S V ‘ ‘c-I p<br />

C: I” C-’ ci P ci- C) CD 0 513<br />

CT’ Cl) 51) ci I<br />

ci’ •<br />

, 0 CT’ 5” F’’ P Ci’ C: ci• CT) 51)<br />

LI c; 51 H’<br />

ci I’<br />

‘ (I) C-i C,) 5” 1) CT) p Fl i-)<br />

,-‘<br />

CT,’ (C’ V >j i-El<br />

ci V ci fT C) ci V<br />

P C) LI V 51’ Fl Ci) F-”<br />

C: P ‘I 113 F:” I” LI F” ‘iT Ci- CT) CD 5’) C) ‘<br />

p p ,> p cC F’) C)<br />

C) F) [1 C) C’ LI P 51’ H F”<br />

5” C: C) H’ ‘ c 5’) Cv CL) , 5)3 Cv C I—” —‘ C) ‘ ? CL) Cl) C)<br />

5’- 1”’ 0 1-’ U) ci- C’ ci 1’, 5” H p p . p 0 C) -; H’<br />

(1’ C i 0 , C.’ • CD F C) cl 51) cC F—,’ i- -51— F-” c ‘C-’<br />

‘ H (I) LI ci 0 F” C: F—” Cv p1 C: Cv ç-: í’. i” CD C)<br />

C) I” H H- LI C: F3 13 F LI U) 5’’ ‘3 F-” Ci F’’ LI H<br />

H, P p p’ Cv 51 1-3 H 0 (1) U) Cl) 13<br />

C)) c-i-<br />

(, L<br />

F—” F” P C. I-’<br />

CT) C) • C, P’ C-’ Cl) (‘ ci’<br />

F- 51’ C<br />

ci<br />

C;- c<br />

U- F ‘ 0 5’) F-’’ C) p<br />

I”’ ci- H LI p Ci- ci-<br />

5’, c-C LI ‘ P F’ 5” 0 ci’ I-?,<br />

F’ C,’ F- ‘Li c-i’ CD c-i F-i i-’<br />

51’ CT’ C4 ‘Li H I” 5)’ ci- ci- 1)1 I] F--” 0 Pci C)<br />

., F: ci- 51” C) F-” P3 c-i’ C)<br />

‘ci 0 ci p F-f F-” Ci H<br />

51’ U) CT’ LI LI ci C) Cl) C) 5-) 3<br />

C cC- 0) 5” CT’ c’<br />

F--: I—> C) P ‘S C?) C: 5’) F-f 5)) F-i c) H<br />

U) 5’’, C)<br />

‘ p. c’v C,<br />

5’?) Ci- cJ ci’ 5)) ‘1 13 5’)’ Cl)<br />

F<br />

I—” C,<br />

“<br />

C,) Ci- I<br />

‘ ,, Ci) C)’<br />

I) 53 5’), r,’ ci CT) Ci) “a<br />

Li C c-i- 0 (j)<br />

F- 1 C) ‘ • ci Ci LI<br />

‘<br />

(13 5-’-, C) 5)’ C) V C) (1)<br />

F-’’ (1) F:, C: ci- C’ 5’’ 3 IT) ‘(ST F-’ Ct’ Ci<br />

ç’ 51 F-i ci 5’ 5-’ C;<br />

C> Cu 51, Ci) I--’ ‘Li Cl)<br />

‘,j CT,’ CT’<br />

5” Ci) c-F’ ci’ C’<br />

F-i F-i ci- 51 C<br />

‘3 P (<br />

Q<br />

I-] C) ci<br />

(11 LI C) 0 5L3’<br />

ci’ C) ci<br />

cl F’ H<br />

ci- • ‘3 C,) F’ (CT ci 5’)<br />

Ci- 0 Ci) C) C: ci’ ci’ 0 F-” C)<br />

p P ‘3 Ci; C,) 511 0 Cv Cl’<br />

(C> C) C) ci’ F-C I—”<br />

Li<br />

Ci) CC) H’<br />

C: F’-<br />

0 C)<br />

P ci’<br />

(TL<br />

51 C: (i ci’ 3 515<br />

C,)<br />

I-,,, 0 51<br />

‘J F-> C: (ii 5-,’ 0 ‘3 ci LI ES ti CD U)<br />

F’ I’ ci 51 C’ C) LI CD ‘T) C: Ci- Cl’<br />

F—” 0 1)<br />

ci’<br />

5’) CD ci<br />

Or’ C) 3 ci Cv 51 5” F—” ,‘<br />

Ci F-’ ‘3 13 p. 5’) j<br />

5’ C’?’ t’ 5” F’ 515 Ct,<br />

, 5—’ ci- c-F’ c-i- C)<br />

Li CT F---’ C) 1-” 5)) ii F-i<br />

5° 5-’ F-” 5”<br />

c-F’ ) C) 5---’ 51)’ F-DC C)<br />

2- (C CC><br />

‘ci F-” 51 ci’ C) ci<br />

U) 5) ci ‘>1 C) F-—’ H’ 51 Cv<br />

C) Co Fj<br />

p. C) Cc- C: ci C)<br />

‘3 Cl) F-) Ci- 0 Ci) 513 ci- lj F-,) LI Ci) Ci 0<br />

U C) ) 51 C: CD ‘3 (i P (iT S 0 CC<br />

F’ I” 5CC 5’) CD c Ci- C)<br />

F-’ p C) • 5” ‘3 513 ci- C) C) C) I)<br />

51) F--’ c-i- CT’ 51-f<br />

Cfl<br />

L>j<br />

C’ Li F—’<br />

cf 0 c-I- C) F-’ Cl) 5” CD c-I ‘ci F”<br />

0 ci 0 • I-” 3 5--’ Cf F-” 51)<br />

CC, 5’) 13<br />

ci- P 5i) l) C,, 51<br />

o F’-’ F--) ‘3 1--’ cC c--’4 F--’ I--’ 5’?, 5’)’ C) c-i’ c-i- .3 ‘3 Q-<br />

c-- (ii C,, ‘-C p ci C><br />

,-c<br />

F-” F-’ ci 55 ‘3 C) CD F-s’ 5’)<br />

I] c-- CC) 13 Cv<br />

C)<br />

c-Fci<br />

ci<br />

‘3 • LI ‘3 c-i’ 15<br />

Cv P 5” 12 V 50 C) I>’ Cl)<br />

P Fl C? C: 5))<br />

“ C) F-” Ci) C) 5’) 5’)<br />

‘-_‘ Cl)<br />

C<br />

U) C) >1 Cf 5” ‘3 c-i’<br />

i-1 ci- Cii C) O c-i’ Fl’ 0 Q ‘Q F] P<br />

51) Cn C) CD<br />

r’. C,) ci C) (C) c-i’- F ‘ Ci- P ci ‘3<br />

i- 0 5— C: F---’ 51 0 F-” l) ‘3 (T,<br />

c-I- F-C’<br />

5-’ C:<br />

V 5” cT<br />

P 1” 0 0 F-f ‘ 51 .3 F-” • 5’) ‘?<br />

5” ci- 5’) F Ci) LI 53 C: 51 CD Cl)<br />

r’ ‘d ci CS [‘C) [‘j<br />

r-’<br />

Ct’ U) 0 Ci) 3<br />

eq i-’ Oq 51) ‘3 ‘3 CC) Cl) ,-‘,‘<br />

,, CT’> ,-‘,‘<br />

I” LI 13 C’)<br />

‘ 55 51 C F-” C) C) 5’ F-i :-<br />

Cv I—’)<br />

5” Cl) ci-<br />

5” C’ I” (C’ Ti ‘1 0 ‘0 Ci- 513’ C,’ F—” (C’<br />

ci<br />

511 LI “F 0 0 51 ‘3 Co I-” H’ (1) 5’)’ 0 Cv p<br />

5’ F--’ ci- C) C)<br />

I’-” 0 Ci- 51 5”, F --‘ ‘3 CC)<br />

C’’ Ci Ci- Li C)<br />

‘<br />

1-’’ 1-’ 0 Cl) : ci’ c F-s’ (‘1’ 5’) C,) 13<br />

C,) 5, Ci- C) 5)) fT 13 c-i 51) 0 5) t C) Ci Ci<br />

T • C,, s-i 5$ Cl ‘3 “- C: I—’ 1-1, 0 C) Ci- C,, i, 53 C) C)<br />

c-I I--’ F 5” — P F-’ C) ‘I ii ‘-3 ,, F-’ F--’’ >1<br />

• F—’’ 5’-’ , P 1-’ 1” LI Li Ci-<br />

C) Ci-<br />

Ci- I—’ 513 Cl)<br />

LI 5> Cl) 51 I-’<br />

C)? CC’ C<br />

LI<br />

V<br />

5-’ P P C)<br />

“'<br />

Ci’ C) Cv 5’)<br />

I--’ Ci c< 5’)<br />

F’s’ C:<br />

c C/)<br />

Ci’ F--’<br />

Cl’ 515<br />

51 I


The ziuewor in the circulation systeu was stear. tracec<br />

0.555 364 —--)<br />

tion duct. The rest of the piping was 0.5 inch copper uipe (i.d.<br />

.eopper pipe. So was the Dipe on the downstream side of the deposi—<br />

The :Ji:es feeding the circulation puaps were 0.75 inch<br />

a srrer.<br />

I. staL. austin pump was fitted to the water ‘eath to act as<br />

.;ere t;en oeuween the Pers:e::<br />

.., .. ...O j... ..,0 0... .. -.._...-<br />

-..- --<br />

J_,_,<br />

to 1 -i Cu. 2ors.:: Piucs ware crilled into tae tatarac. etiens<br />

c..uc; nac. o en nen tatorac. sectnons aero tao c_ow area was recucec.<br />

cut to u a coper pata. Tao :aet ana ouu.et of the cezstou<br />

.-; the dowastrenu end of the duct a 2 -; 10 on area was ct<br />

c_C&<br />

-‘ -“ -. ..<br />

-<br />

, ..<br />

... . —<br />

. F’ — .<br />

- •- -.‘•-‘ --<br />

(‘0 ... a O s.i.) C... .. ...cO iJ..i<br />

r..<br />

The doucsithon duet was a I x 2 cu re .f.ar channel,<br />

The daposthon <strong>and</strong> coo..ing c..ucts were uade of ?erspax.<br />

coolzng ;:ater at tao ;op ngtae i.ow arranouen; countercurrent...<br />

2. . T..’.e s:ceruan;al so_uticn enterec at tao osuton ana tao<br />

•rt:cay n tae eeposizicn stuales apparatus as snown n ::o<br />

:egures 52..i, 5.2.3.2 an& 5_2..3. The asseu’ay was pJaco<br />

o ceposjton ai-io. coo1ug cucts <strong>and</strong> a copper plate, as sno.a:<br />

tion of <strong>paraffin</strong> <strong>wax</strong> ifl heat exchangers. The asseu’oly ccnsstac.<br />

The <strong>deposition</strong> asceubly was designec to siuthate the drcth—<br />

5.25 Dosition assanIy<br />

ara:r..s eaca.<br />

uae crcuation systeus were zitte with a oyass anc two<br />

were gate valves <strong>and</strong> water cocks<br />

9 respectively.<br />

Tao vaves in tae solution <strong>and</strong> cooling water circuiation ssteus<br />


.ne co-rer cae :s as.ec. on une sur_ae arc.as :acin<br />

ing be;een he copper pae anc. the deposin<br />

h± wali of the <strong>deposition</strong> ciu. .. a;er gaske; was used for seal—<br />

fore c4eveLopec a:ore i rencn3a he :3ae.<br />

51 c:i. The velocity d riuicn the position duc as nore—<br />

The effcive entry len,h before the d o.i;ion late .ias<br />

The 2 x 10 cra surface of he ccrer late .:as flush<br />

- are given in ::enii: 5<br />

rrnanrcd in ver;io.Z. ..ro.n-; ...anonetrs.. The c t’crations of<br />

c./2 ta;o:ngs The aaarentl&_ Dressures across tre Dra:lc.D :ni<br />

crifico cieters having diasw’;&rs half that of the rioss ano d <strong>and</strong><br />

Solution ash. cooling water flc:rates were seasured with<br />

These were tesed against a st<strong>and</strong>ard ther:iueter<br />

were neasured with —10 to 50 ci°C :cercury in glass therscueters..<br />

Solion <strong>and</strong> cooling water inlet ash. outlet traturis<br />

neasured with conventional pressure ganges<br />

ne sz.... cc. s o. .._e c.._.o ... ..<br />

-‘ _. -— -I<br />

_4 V - — -fl *<br />

524 str:entatioa<br />

auct<br />

cooDer plate was tnere:ore not znusa watti tae wali. 01 tae C03.ii<br />

wnere tre ccpier .ate .:as. une wals rere 0 ct:.icn. rae<br />

duct. The rec an.uiar d.ict was I x 2 cci at each end but 1.5 : 2 c::.<br />

filled with wire ries’n to rouote better flow distr ution in the<br />

anc. ou;et sections, 5 an cng eaca. The taperec. oticus .ere<br />

The CDc.Ing water c.uc was 2 or. long wini ta;ereo it<br />

fou.=ing sudes neat excnaners .tter tnan wou_c. a:s: s:ace..<br />

blastec. piate ‘oc. r resent ;he surface cond:oons eis;r. in<br />

descrioed as ,O/40 cesh, nci—sLica It was hoed tha: ne sano—<br />

tne c.eoosston <strong>and</strong> cooi.ing c.ucs The oas;ing r.ec.a useo was<br />

— —


The calibrations o the tesperature controllers are given<br />

The coriea temperature setting couid cc adjusted wz.ta zne<br />

r. Denca::<br />

acted as sensing devicos<br />

sent.. rnerastcrs piacca an the tanks of the circulataon system<br />

Thistors. They were ra&e in the electronic workshop of ;he depart—<br />

The kW to erature controllers were ciescribud az cre:canl<br />

care ‘,:as au:-an an r-an.. :orcocrcs to aana:..aze ane<br />

rrcc.an. of ;anw. e::;ra war ro an.ave aewosats an anna..<br />

-_;e c :cs_tacn sc.as a aratus was aesagaca wa:.<br />

the still colder ‘an argace giving rise to further cepositica.<br />

worse by the fact that the sdlltion would be irainea alcwhy cer<br />

&ura: eratacn sac. ocsctre tac true ao:osit. wnas wownc ce<br />

a film o± solution would adhere to tao <strong>wax</strong> doitod<br />

was that. when the ckcosition duct :c. to be drainec after an<br />

— - — -— —<br />

— - _.<br />

•<br />

a •• •.<br />

4<br />

--<br />

._<br />

.<br />

--<br />

J . ... —. 0 C. ...<br />

... 0 _...<br />

- ‘, -<br />

-—<br />

:terience had shown that it might ‘cc dffffcult to obtain<br />

_...z_.<br />

rara an .cerosene cor detaa_s see Lppcnc.ix 1<br />

<strong>wax</strong> was also used.. This was a 57/50°C meting point ‘ully redined<br />

however, a saluticn containing a higher melting point <strong>paraffin</strong><br />

poznt Iuy re:anea para::an <strong>wax</strong> an ccrosene.<br />

as in the fou±ing stuc.ies.. This was a solutaon 01 51/54°C seitang<br />

:n the c.arosition work the same exterircental solution was used<br />

53 Z: rimearn Soluticus<br />

were kett at maxi:.;um..<br />

The controllers had sensitivity dials which at all tir.es<br />

reteatec. ursts, the duration o which could be adjusted<br />

ana coarse chans.. The controllers turned the 1kw heater on in short<br />

— 45 —


— L6 —<br />

effects of these extra deposits<br />

542 Start<br />

3efore a new experi:entai solution was nade tr, the a:atus<br />

was run for some tiie with !ar; kerosene for cleanin<br />

Similary,<br />

the cooling water system was cleaned.<br />

An eeriental soiution was mace up y<br />

litres of fresh kerosene n the 46 litre tank<br />

The 2k heater ..as<br />

turned on <strong>and</strong> the water bath warned<br />

As the kerosene war,ec. up the <strong>paraffin</strong> <strong>wax</strong> was added<br />

ly.<br />

t<br />

<strong>and</strong> oeen ilaked <strong>and</strong> weiaea The circuatloa -uir was tarnec. on,<br />

the solution returning via the byass.<br />

This provided good stirring<br />

<strong>and</strong> hastened comniete soiu;ion<br />

The soution tercerature was rconztore<br />

aen it aaa. rec.cnc<br />

about 10°C above its expected cjOd point, the 2kW heater was turned<br />

ozf. The •i controlled neater was turnec on arc tae soutc.cn<br />

maintainec at that temperature until all tae <strong>wax</strong> nac.<br />

ssc..vee..<br />

A samDie was taken 01 tae soution arc its coua pint<br />

.etermined by the st<strong>and</strong>ard method, <strong>wax</strong> or kerosene was accec.<br />

until the sonution nad the cloud roint cesjrec for taa; exte:c.c.n;.<br />

The ;emera;ure ccnzro was now set to tne cesc.res teurera—<br />

tare <strong>and</strong> the small cooling coil turnea cn. The mac.n f r.ne tnrou:<br />

;ne c.erosc.;on cuct was oenea, tac :iowra;e ac.us;ec arc. tac sy;en<br />

a.o’ec. to reaca equliorc.u:<br />

To<br />

start u tne Coo.1ng water circuiazica systen the tar.k<br />

was :c..._ec wc.tn fresa water. The c;. neater arc. tae In.; controt_ec<br />

heater ware turned cn<br />

The tump was u; on arc tac water a__c;.ae<br />

to cIrcuate t:.rou:. ne coo.ng Sc.C 0: tac c.e:c:stc.en cue; arc.<br />

the pas.<br />

in<br />

hen the ssteu ::ad reached its desrectete—<br />

;ure, tao<br />

i.<br />

:.c.n;er as ;rnoa. c_: arc. ;.:e sc..zJ_ ceo.i.iag 001... ci.


the solution <strong>and</strong> water o::a;es throu3h the depositio. <strong>and</strong> cooiin<br />

the c.epcsttaor. anc. cooi.zn aucts aic tac six ooazs tcenec.<br />

Uhen the a:aratus hac. rachec ts ecu±dbru tct2ratures,<br />

The cean aeDosatlon p.a; was sertec. carefui.y betweer.<br />

cazcts w.re dratnec. anc. tne a osttaon p_ate reaovec. <strong>and</strong> washed.<br />

ducts were tu.’nec’. off <strong>and</strong> diverted through the bypass lines,. The<br />

54.3 ?rocedurc duriexrir.ients<br />

later ca.ct :ro:. the iecositin duct.<br />

The iecsi;icn tiata .:as re...oved by disaalwcin2 tIle<br />

5.4.4 2 :erzi::acio:. o :ttei :ecc<br />

The shudcwn w:oceaure tock about 3D seconds.<br />

the in t:errtcc.ezar.<br />

strea:: :rca tac cu;e; tner::.oc.a;er,. vent was createc. cy<br />

cue c was c.raanea. This was cone by o,cer.an tne c.razn valve c.on—<br />

e:ore tne ceposition u±ate was renoved, zne coanin2 water<br />

con;roaaed ra;t.<br />

vaave at tae tottoct. The so...utoa now c.rainec. :rcz ne c.uct a.. a<br />

duct was ained by.otenng the vent valve a; the top a:cc. tne c.raan<br />

tneraoae;ers. The sanu;ior now fowea b’r tac rcass ..:ne. tac<br />

cone by caosng cne vanves ustream froc ;ne inaet anc. ou..ae;<br />

was turnec. off anc. tc.e c..e:lls:zIcn awct arainec cuaccay.. Ths was<br />

recorded, the cociin water was turned off. The solution f.c’..’:c.te<br />

...t ;ne enc. of an eerir.’.ent ‘inca the teaperatures nac.. teen<br />

temperatures recorded.<br />

beveran taLes aurin5 a run fowrates were ac.us;ed anc.<br />

water inlet <strong>and</strong> outet tea:;eratures ware recorded.<br />

care:uL.y acustea ana ;ne tiae recorcea. SolutiOn anc COOL.rl’<br />

tion was then achaitted to the <strong>deposition</strong> duct <strong>and</strong> the flowrate<br />

flowrate was adusted <strong>and</strong> the inlet tanlerature checked. The solu<br />

Tne cooiing water was ac.mattea to tne coo...in auct. The<br />

— 47 —


nara <strong>wax</strong> oerosizeo. ouring tne experiment.<br />

me surry .me extra <strong>wax</strong> was washec off, eaving the relatively<br />

plate at 450 angie <strong>and</strong> gently pouring kerosene over the decosit.<br />

at room temperature after removal. This was done by holding the<br />

To overcome this uroblem, the plate was washed with fresh kerosene<br />

sdown were found to be effective, some extra <strong>wax</strong> still deoosited.<br />

:..lthough the measures taken to minimize <strong>deposition</strong> during<br />

at was c an b:ruam off the wmx<br />

r.m_ y.<br />

e;s was taken to gave an anlacataon OZ t.-iear<br />

‘or ;ne ‘an; of a :e;;er metnoa, tne reuo’oc.uci: ;y o: •m:e<br />

overa_m urenas ..cua tne same.<br />

wcud uherore very -ey obtain different results, a;houh<br />

c.ecenaec. great...y on eeeri:.:en;al scm zz:eren eert.m;ers<br />

;ssues was ;nere:ore ;ne greatest coricern, oecause ;:ier use<br />

to re::.cve the moose extra <strong>wax</strong>, woulu not af:ec; t. me<br />

expe::erca. conc.i;mons was so z:r.u.y acierec.. znat gerte wa:x:g<br />

: was considered that the <strong>wax</strong> deposited at the turbuien;<br />

drying.<br />

aeposmS was consicerec. not so important as tae use 0: tiSsues :cr<br />

wa: aeposicec., was conszc.erec. questzonaae. The wasning ol tne ‘.m:<br />

The acove metnoa usec. :or the c.eternnaton of tne ameunt Ot<br />

dry weight ano considered as tne true atount 0f <strong>paraffin</strong> <strong>wax</strong> ;osited.<br />

ne p±ate was weigheo again. This weight was recorded as the<br />

tiOfl plate zace ocwn on a tissue for O seconds.<br />

<strong>wax</strong> was removed w.tn tiSSUCS. This was done by placing the deposi—<br />

The kerosene still adsorbed to the surface of the decosited<br />

was recoroco as tme wet wegnt<br />

oriea wn tissues. The pate was accurate.y weignea. Ths weigmc<br />

Without touching the deposited <strong>wax</strong> the plate was carefully<br />

— L3 —


‘--<br />

5,5 wocrinentsl Resuts<br />

with fingers or allow dirt to adhere to it.<br />

the plate was wiped dry, every care being taken not to touch it<br />

was then placed in a carbon tetrachioride bath The pate was<br />

a tissue soaked in carbon tetrachloride<br />

0 The reativel-i cea: tlate<br />

— L9 —<br />

5.5,1 ±ntrocuction<br />

usea in tie ouing stud:es. Preznary tests saowe that a O<br />

cental cata representatve of tie enavour o. tne heat excnan;crs<br />

er cent <strong>paraffin</strong> wa: in kerosene solution woua cc suitao.e. Sacn<br />

resoved severa taites :ron the cata to cc wipea wit:.. a cean ;ssue.<br />

a so±ution wouc. cc conparace to the one usea in runs —2<br />

<strong>and</strong> 29°C, resectivel-.<br />

bien tne pate was clean t was &roc cy a tissue ana pacan In a<br />

the average cooling water <strong>and</strong> solution bulk ter:.peratures were 6°C<br />

fresh kerosene bath. efore beTh; back in tne sition duct<br />

cy waer . n tnese runs the concentraton was 9,o er cent ana<br />

tenperature of the cooling water ::uch below rco tentarature.<br />

circulation water tez’erature was therefore naintained at ‘i5°C at<br />

above the cloud :oint. The exDeri:Letai tines were acut 2 hou:s<br />

rate selected gave a C c.g differential head aSross the soThtion<br />

orifice aeter. ca Taba .5,2 the average value for tie<br />

coefficient in euauion .5, was evaluated as 0.0355. The<br />

The urpose of the <strong>deposition</strong> stu&ues was to obtaIn n;eri—<br />

in all the e::DerThentai runs the bulk tenuerature was kctt 5°C<br />

wperience snowec. unat it wouaa cc diz:cut to see; t.ce<br />

—<br />

—.d 1. Z. — _.<br />

to a ancs nuacer o: aouu tn an<br />

the ezçerinenuaticn was very tine ccnsu;.’Lng, only one<br />

_. fl. t’ ‘-.l-. — 0<br />

detosiffon duct was investigated. The


.<br />

-S<br />

I’•<br />

5,-n<br />

0<br />

‘C;<br />

p1<br />

p<br />

P<br />

1•’.-<br />

C,<br />

.,; Ci<br />

C,<br />

C’,<br />

1’’<br />

ci ,<br />

I’’<br />

(P l<br />

(P<br />

C) F<br />

Si ci<br />

P cm<br />

C<br />

o s<br />

H,<br />

‘ci -:<br />

F’ p.<br />

P Cl<br />

)- ‘,<br />

H, C))<br />

so<br />

‘—‘<br />

C’)<br />

Ic<br />

C) c;<br />

‘ci I’.<br />

C) Cc<br />

If’<br />

I,. 5-I<br />

ci 5l’<br />

C;<br />

(. Ii<br />

Cc<br />

I-,.<br />

5’ 0<br />

F’<br />

Oi<br />

‘..Jl (N ci<br />

C F” ‘- C,.<br />

Cr, 0


two hours, the deposits were observed to wear off at the leac.ing<br />

decreased with concentration. .u e:neriaenta ffmes aeachi:.<br />

The <strong>paraffin</strong> deposits were found to cover the deoosition<br />

indicating higher deiDosition rates, as shown in fiLure<br />

with tiae to reach a final fluctuating value.<br />

::laue ever.y. The deosits were firm, although the fir:ness<br />

This final value was reached faster at gher coactrations,<br />

sance most c:mae ram•maua.. resu_us mactea a corre_a;:c:.<br />

as ffscusees an cuima 4, mas an obvious source of error. -an;<br />

parucusr srcsiuaon curve, ‘:ere obusaned in a ranso::. crser.<br />

aciptotic nature of <strong>paraffin</strong> <strong>deposition</strong>.<br />

able <strong>deposition</strong> curves were, however, obtained <strong>and</strong> did shoW the<br />

each run, the amount of <strong>wax</strong> depositing could vary reatly. asan—<br />

._unouga every care was ;aen to rerocuce ;ne sa.me proceanres in<br />

The main ex-3erimer.tal problem was that of reproducibility.<br />

5.6.2 Cc a:-ability of results<br />

with increasing flowrate.<br />

-s ex-Dectea, the amount of <strong>paraffin</strong> <strong>wax</strong> depositang decreases<br />

thickness was reached.<br />

was consac.eres ;aat the deposits broke town wnen a certain crztaca_<br />

o: the <strong>paraffin</strong> aeposits increases wits time ans concentration, at<br />

tion <strong>and</strong> experimental time were increases. \o;ing ;na; ;ne tnac.ness<br />

vaaenty tae paraffan deposaus Droe sown sooner as concr.::a—<br />

a; gave ;ae nagacs; deposazon rae<br />

concentration run aid no; produce the hignest linal va_ne, a;aougn<br />

plate once renovea from the deooston anct<br />

edge of the <strong>deposition</strong> plate. The deposits did not slide off the<br />

— 5_ —<br />

r. the three runs ;here the 51/54°C <strong>wax</strong> was used, the :i:st<br />

Th resuce mae rossao:i;y o: ransom errors, mae paa;s or. a<br />

mae ::emaoa maca to c.euer.:.ane mae amount of aepzsa;ea max,


P C)’<br />

C) C)<br />

c-U ci<br />

C)’<br />

C) C)<br />

CL<br />

I-’<br />

F—) )<br />

C) It’ c-I’<br />

U) It)’<br />

C,) CD<br />

Cl) C)<br />

C) C) CL<br />

c-U C)<br />

p. Cn ::<br />

o i-’•<br />

:i CL F-’<br />

(ti F)<br />

‘,J1 Ij ç’z,<br />

c CD<br />

‘.31 CL<br />

C CC)<br />

ci<br />

9,‘ I-” F-)<br />

C’)- I” H<br />

U) (_)<br />

iL F)<br />

F Ii C)<br />

Cl) C) ct<br />

ci’ CL)<br />

U) C’<br />

CD L’5 0<br />

Ci’ c-’, i-l<br />

C)<br />

H1 d<br />

ci’ 0 F))<br />

FL’ L’S L’5<br />

F)) F)’<br />

c-I’ ci’ ‘—CL<br />

L” L’,<br />

c-i’ (C) 1-”<br />

C)<br />

CD ‘-U ‘-S )!Z<br />

Cl) (C’ F’<br />

O C)<br />

H CL)<br />

CS C)<br />

c-i’ c-i’ CD<br />

H’ “U<br />

o C)<br />

Si U)<br />

L’5<br />

)).<br />

F):) ‘c-S<br />

c-U<br />

CL) C) C)<br />

U’)<br />

—, Cl) —<br />

o CL)<br />

H • c-I-<br />

CL C)<br />

C’) CD<br />

[‘0<br />

P<br />

p<br />

o ‘<br />

C’, H<br />

p<br />

ci C: C- ‘S<br />

)<br />

-,‘<br />

I’’ F’ I-.,,<br />

(LL<br />

ci- F”<br />

F’5 (,,<br />

C’<br />

C,’-’ C) C)’<br />

C) C’ C)<br />

1- 1’ CL)<br />

F” I”<br />

I” I”<br />

U) C. p<br />

‘<br />

1 o<br />

0 ‘,:<br />

F’, t,<br />

P• p<br />

c-U c,’<br />

C’)<br />

— (_., ci’<br />

C)- C) I<br />

C,, (‘1<br />

1L C,’<br />

‘Ci Ci’<br />

I; ‘-S c-i’<br />

(,, I’’. C)’<br />

(Li P Ci’<br />

Ct’ C<br />

p p<br />

cl c-I- i.i.<br />

—<br />

C”,,<br />

‘S C”)<br />

: c, c’<br />

I---’ C)<br />

1’ p<br />

ci U)<br />

I:)<br />

:-- c-, C:<br />

(U p<br />

S C)<br />

p<br />

IL U’ C,<br />

‘<br />

(1<br />

V.<br />

I,.<br />

p. Q<br />

F<br />

I,,; C) FL’<br />

IS<br />

1; 0<br />

F” C’)<br />

l’• F’ ‘-:<br />

: i<br />

C,’ CD<br />

.“ i_i<br />

• :. C)<br />

CL’)<br />

‘1,_I “<br />

r ct’<br />

C,’ CL) 15<br />

ci 0<br />

CL,’ F’, Ii.<br />

F’<br />

F”<br />

F” U-’<br />

‘<br />

Cl ‘L<br />

C” 15 p.<br />

C) C) C)<br />

Cl<br />

(Li F’ P (D F’,<br />

C)’<br />

CL’ C<br />

C,:: U’<br />

C,)<br />

ci F’<br />

F) C)’ C:’<br />

c-i’ (U<br />

I” 5’,t<br />

C) C,’ (ii<br />

P CL (CL<br />

P [‘:<br />

c”<br />

C) F)<br />

CL) U)<br />

‘CS (<br />

p. (, o<br />

C) p.<br />

(ci C) ‘,;<br />

ci- C)<br />

C,<br />

CD Cj CL)<br />

is F’<br />

C) )<br />

U) < 0<br />

CL C,- I<br />

C,) F’<br />

(I,<br />

UI<br />

C<br />

.-“ . .“<br />

Ito N<br />

ci, cit ci,<br />

C” .‘‘ .—.-<br />

C) J, 0<br />

[‘0 N ri)<br />

-‘.D C) (5-i<br />

• I S<br />

[‘0 \C) D<br />

C)<br />

ro Ito -..D 0-i • ci o Co r’j C)’i • 0’, F)<br />

c-U<br />

H<br />

CD<br />

c-I<br />

._,_% __i .-<br />

.Il ‘Ui • C .P’<br />

•<br />

.— C) CX)<br />

___i _)i<br />

‘ji -Fl- f<br />

S C I<br />

o ‘.0<br />

.<br />

p.<br />

C)<br />

S<br />

ci<br />

I’--I (CL<br />

ii<br />

p<br />

‘C_i<br />

C)) C Cfl<br />

ci’ 5 0<br />

FLI j.-L<br />

c F’<br />

1- ci<br />

“ p.<br />

oCLO<br />

C)<br />

C—,<br />

0<br />

C’)<br />

c-I’<br />

H (DO<br />

P 0<br />

1—’ iJ C’)<br />

CD (DL’<br />

c-I’ ‘, p.<br />

F) F’<br />

0’)<br />

C) (Dpi<br />

I”<br />

ci’ ‘“CL)<br />

I’ Oj<br />

C)) C-)<br />

\,,fl El<br />

1.1<br />

UI<br />

CL<br />

V•<br />

C) 0 :;‘<br />

CD ,) CD<br />

Ei P. \Ji ‘U<br />

‘U 0 ci’<br />

Ct: 0 CD<br />

‘-5 0 c-I<br />

) 0 C)’<br />

ci- H ‘S Cl)<br />

Ii P• 0<br />

“-5 F’ P CL)<br />

(CL CC) 0<br />

‘S I-.’<br />

i-s F’<br />

It-) Ct’ L<br />

C) c-i<br />

F-) c-I’ I-”<br />

F’- CD cU C)<br />

(CL . I’S 0 F’<br />

‘fl {‘4 1’ “S FL)<br />

o C’) $)‘ F’<br />

0i 0 I<br />

F’pi<br />

ci’ ci’<br />

Cl) 5)5<br />

CL) i<br />

C))<br />

C i-L 1 c-U<br />

‘-5<br />

CD<br />

F,<br />

F’,<br />

‘-I.<br />

C)<br />

‘IC)<br />

U)<br />

I”.<br />

F’S<br />

F-”<br />

Li<br />

CL)<br />

“-S C,) C)<br />

o 0<br />

PCD<br />

CL) ci’<br />

(I,<br />

\J’) U) p<br />

p pi<br />

F) Ci) ci<br />

p I--’ ‘S CD<br />

I--I. I” F’ “5<br />

C) S ci’<br />

F) Ii c-I<br />

ci ‘5 CD<br />

CU II Cu 1-1<br />

Cl) F-’ i-U<br />

c)’ F’- CC’<br />

“U F1 ‘S “5<br />

o F)<br />

1.-I. i-(<br />

5 C)’<br />

‘U’) C’) F’<br />

S I--S<br />

ci’ C) CD<br />

F-’ U)<br />

C) N C)<br />

F’ F’<br />

I-S U) 6-i C)<br />

p<br />

C) 0 ci- -<br />

D ‘-S<br />

U U) Ct’ F))<br />

‘i_I) c-I’<br />

. c’l f’ C!)<br />

CD<br />

I(,) ‘(,) c-;<br />

l--’ C) C)<br />

o 0<br />

F-, P•<br />

I ‘ ci’ I—’’<br />

I-” c-U<br />

0 1”<br />

F’ F-”<br />

Ii<br />

H £ C)<br />

f-I. c- 5 F’ H’ 10 F’<br />

C) C) 6j CX) P<br />

C’)’ C) U- CL’<br />

H C F’ “S ci’ CU<br />

CC’ C) (CL C< I’S<br />

0<br />

ii c-U ci- i,,j \,J1 :‘,<br />

H’<br />

C) 0 C)’ N C F’<br />

Cl) Cl) CO Q’<br />

H1 1-5<br />

,-,‘ P<br />

c-U F’-’ F-Li 10 C) F)<br />

C)) F) H H I-’ I’)<br />

p o p C’<br />

,-,_5 c’<br />

C) C) —‘ U<br />

(CL F’ c-i- c’i- F-D “—‘ F-i<br />

‘-S F’ 0 F’ C)’<br />

Fl’ ci’ “S p) C:,<br />

ci’ I- U) c-CL C) F’<br />

C-’ C) ci C) CD U,<br />

L’S C) 0) Fl’ ‘S<br />

CD U) H C C)<br />

1-J CD F’<br />

C’) i) C) Cl) ci’ 0<br />

o ,“ CD ci’ C<br />

C) F’ CC’ C) CC’ F’-<br />

c--I F’ F’<br />

“S H CD U) ,j ‘U)<br />

o 0 “U P ci- C:, ro<br />

)i<br />

‘ C) ., C,L,<br />

C)’ C’)<br />

1’ Cl) CD Cl) F’ 0<br />

C)) L’5 p. )‘ Ci<br />

‘S C)) c-I’ c, o -‘<br />

cii “U ‘<br />

< F’-<br />

“S C) ,‘ CL’ 0 F’ CL) i-5 C’: ‘-‘El<br />

I,.)<br />

o F’-’ C) F’ F’<br />

‘-‘S F’ 0) 1” F’ CL C’)<br />

C)’ C) c-U C) F” Ui<br />

CL) F’. F’ ()‘<br />

p. ‘ P CD F)’ Ct’ p<br />

F-’. f-1. CD P r”<br />

F-’ CD C) C) C)<br />

CC) I--’. Ci) I-:, c-U :‘ U)<br />

“5 c-i- p<br />

c-U<br />

Cl) It) CD F) F’<br />

C) F) C) ci’ C)<br />

c-U H H U) 0 C)<br />

I” c-i’ 0 IL,<br />

Cl) U) CL) cl ‘-ci<br />

“S ci- ci’ CLI 1-’<br />

I Cl) F)’ P H1 I,)<br />

C)<br />

C) )E:<br />

CD 15 o (CL p<br />

.,‘) ci- c, CC) U ‘<br />

o CD ‘-5 F’ C) C’) p Ci H<br />

CD<br />

I” ci- I-’ C’)<br />

F C)’ F’, ci’<br />

ci<br />

CD bi C n 0<br />

‘5 S Ci’<br />

F’ (U F’ 0 CD I-<br />

IL1 F’ CD C<br />

0 p<br />

“5 C)’<br />

C) CL)<br />

is


wcr: on ara:zic: c.eposc.tion<br />

considered this ana usea an oxc.daton irJic.bitor i:: nis<br />

a fact a fectiag the coaparability of the ecerisenta results.<br />

Oxatzoa ci tac parazzia <strong>wax</strong> ifl kerosene SQiutloas CO OC<br />

derositia frcr.: a rcsh so.ion was, in sorie cases slighty<br />

he couc oi<br />

— 53 —<br />

.‘&ien the solution circulation systea was eniptied <strong>and</strong> &eaneó.<br />

ac. on ctc.oa.<br />

ci <strong>wax</strong> deposited could also be deternined by urea<br />

evaporating -h solvent under vacnurc or passing warn dry air over<br />

dposted <strong>wax</strong>. The iepcsi;ion plate could possibly be dried br<br />

The use of a better aethod to deternine the anount of<br />

migxzt tac recuctc.on Zn coatancaants present in solvents ana wac:es<br />

znnt c.ncrease ;:..e conparaJc._c.ty oz tac ecpeI’iaenuai resn;s,, as<br />

The use of an oxidation ibitor <strong>and</strong>/or a nitrogia blanket<br />

cible results.<br />

recuce tie proJ_en o: evaporation o: igat encs. ae use Di c.Ec.<br />

The use of a solvont with a closer bo:lang range won_c<br />

zuture wor.c., are ;ae :oowang:<br />

exists for c.ntroveaen;s .zcng the jtCSS to ce ccnsc.cerec in any<br />

Although the exuerimental systera produced results shcwing<br />

56. :teccencatifl3<br />

the <strong>paraffin</strong> <strong>deposition</strong> in one way or another.<br />

bottorc of the solution tank. These impurities probably affected<br />

LC1 roint fuly refined <strong>paraffin</strong> <strong>wax</strong>es would give nore reirocu—<br />

the asy::.Dtotic behaviour of <strong>paraffin</strong> <strong>deposition</strong>., considerabe scope<br />

i:aurc.ties iron the kerosene <strong>and</strong> the <strong>paraffin</strong> <strong>wax</strong> were foarco. on the<br />

greater than at _a-er tiaus altnoug’n no difereace was cetectec. in


— 54 —<br />

57 Concl:ons<br />

The <strong>deposition</strong> studies showed that <strong>paraffin</strong> <strong>deposition</strong> increases<br />

asymptotcaliy to a final fluctuating vaiue<br />

Then trio .:az c.epOSItS<br />

have reacned a critical ;nckness they say orea aon anc cuic U:?<br />

again, giving rise to the fluctuations.<br />

Initial rates of deosition increased with increased co:cenra—<br />

tion <strong>and</strong> dauosits firmness decreased.<br />

Deposition decreased ‘‘ith<br />

flo’ira;e <strong>and</strong>, i general, <strong>deposition</strong> increased with<br />

The exerimental system used for the <strong>deposition</strong> studies worked<br />

well but considerable scope exists for lzprovesents.


-- II<br />

1<br />

L1<br />

SOLUIIOIJ C;IFCU1_/:[ION SYSTEI4<br />

COOLING WATER CIRCULiVHC)N SYSTE•1<br />

--F<br />

-<br />

-<br />

(-n<br />

I—<br />

()<br />

cj<br />

(D<br />

-J<br />

0<br />

0<br />

C-)<br />

V<br />

Co<br />

1’<br />

L<br />

\/<br />

T<br />

r<br />

N’<br />

—<br />

0<br />

F<br />

(1)<br />

0<br />

fl<br />

[II<br />

C-)<br />

‘‘<br />

‘ •itc.<br />

DK1OS1TION uD1R; APPAR?\Us


_<br />

-<br />

o.d.-i 5<br />

COOLING WATER DUCT<br />

SC/’LE2 12 5<br />

-- 12<br />

od-1 5<br />

02<br />

- DEPOSITION<br />

PLATE<br />

L<br />

rr<br />

DLPOSI1ION DUCI<br />

Fl G. 5. 2.3.1. [) E POSITI ON AND COOLING DCiS WITI<br />

B:iV’!EEN TI<br />

I EK<br />

I<br />

DEl ‘05111 ON PLATE


SCAR FE 1<br />

DEPOSITION PLATE<br />

- -<br />

0<br />

C) C)<br />

-- 12<br />

0<br />

2i<br />

DEPOSITION DLJCi<br />

12 2<br />

FIG. L. 2.3.2. DEPOSITI ON DUCT AND PLATE


[-10. 5. 2.33. COOLI NO \VATER DUCT AND DH’OSITI UN PLATL<br />

05<br />

1•5<br />

SCALE 1:1<br />

DEPOSITION PLATE<br />

io<br />

O’2<br />

-<br />

5ZZ 35 05<br />

1.o--<br />

2<br />

-----<br />

12 -<br />

COOLING WATER DUCi


M—AMOUNI DEPOSITED (mg)<br />

T1<br />

0_i<br />

c)<br />

< C)<br />

Ui C) Q<br />

C) C) C)<br />

0 0 I<br />

0 0<br />

0 0 o 0<br />

0 0 0 0 ci<br />

> 0 C) ri CJ<br />

-I - I —<br />

0 0 0 C) I<br />

< C)<br />

ni C: o •U<br />

0 0<br />

ci<br />

E 0 0<br />

3— -3<br />

0 C) —I -<br />

•<br />

-u<br />

C)<br />

0 0<br />

- 0 0 00 U)<br />

C) C)<br />

o o<br />

0 0<br />

° C)<br />

0 C)<br />

c__ ‘—‘<br />

—-—-‘. —<br />

‘_ I - ‘_—. — — ———— —-——--—- - —


---5’<br />

c)<br />

—I..’<br />

Y1 M— AMOUNT DEPOSITED (mg)<br />

01<br />

M U)<br />

—“ \ . (11 C) 0i CD C)<br />

S<br />

C)<br />

C) C) C) C) C) C> C)<br />

1i i 1. i a a1 iii1j<br />

0 0<br />

z 0 0<br />

-1<br />

0<br />

5rtr<br />

0 0<br />

>( 0 00 0<br />

(_) —I<br />

rn 0 0<br />

c_)<br />

0 0<br />

ri .E < ci ii 0<br />

—I 0<br />

—I<br />

r<br />

i -< tJ<br />

C) U<br />

— r C)<br />

rn<br />

;-I1<br />

CD<br />

0 C)<br />

- 0<br />

-. 0<br />

0 C)<br />

0 0<br />

CZ 0 C’<br />

1-’) C)


C)<br />

0 0<br />

0<br />

Li.]<br />

CD<br />

-<br />

3 0<br />

3 0 h<br />

Iii<br />

(ED<br />

•- Il) . 0<br />

(0<br />

t_,1<br />

00 0 0 I II 3:<br />

0 0 C)<br />

0<br />

tj)<br />

-4<br />

U C) —<br />

0 0<br />

o 0 ‘ [---I<br />

0 0 :><br />

o 0 C) -:-<br />

0 0 0 0<br />

(3<br />

0 0 0<br />

o 0<br />

0 0 0 Q C) C’)<br />

0 0<br />

o 0 0 0<br />

0 0 (3<br />

..L [Jj_J I.t_J. I LIA.Li L_L.L iIL_LJ._?.I .LJ_ LL<br />

(3 C) C) C) C) CD (ED C) C)<br />

U) C) U) C) U) C) (3 U)<br />

-4 .4 C’) C’) (N (N<br />

(I5UJ) GEI1ISOc]O JNflOV]V VJ<br />

I’-)


—<br />

NJ<br />

M —<br />

A tvl 0 U NT 0 E P051 T E D (rn g)<br />

T]<br />

--S —S tJ<br />

U]<br />

C) (fl C)<br />

G)<br />

ci<br />

C) CD C)<br />

CD<br />

Fl<br />

(_n<br />

0 0<br />

00 0 0<br />

0 0<br />

r%j<br />

CD<br />

0 0<br />

0 0 0 0<br />

ci 0 0<br />

C)<br />

Ill<br />

C:<br />

—I<br />

—<br />

0 0<br />

—<br />

z -i ‘CD<br />

—I<br />

0 0<br />

0<br />

—I<br />

m ni<br />

0 0<br />

z<br />

U<br />

U<br />

Ii)<br />

—U<br />

C)<br />

(1)<br />

U<br />

Co<br />

C)<br />

—S<br />

C)<br />

C)<br />

— 1<br />

-<br />

o<br />

0<br />

t II<br />

F’J N)<br />

(,) C)<br />

o o<br />

C) ()<br />

00<br />

0<br />

TT iT<br />

ri<br />

—S<br />

C)


- II<br />

-fl M—AMOUNT DEPOSITED (rng)<br />

C) —‘<br />

J1 (J C) (Ti CL)<br />

Y c: —i—i-—--r————--r———j<br />

— CE) CE) C) C)<br />

‘li<br />

no<br />

><br />

><br />

rn rn<br />

co<br />

-o 0<br />

o 0<br />

N)<br />

o 0<br />

< 3<br />

o (i-lu C)<br />

111<br />

o<br />

U o 0 .-u---I<br />

D C)<br />

00<br />

II<br />

I O)<br />

-<br />

r C) N) N)<br />

Ci]-’ C)<br />

U<br />

< 0 C)<br />

:<<br />

[‘1<br />

0<br />

—-‘<br />

N)<br />

C)


CT<br />

II Ii<br />

olco<br />

1<br />

. 0<br />

-1<br />

C)<br />

I’<br />

Fj<br />

C,-,<br />

0<br />

C)<br />

i1<br />

M—AMOUNT DEPOSITED (mg)<br />

\-____<br />

-\•<br />

(ii<br />

(31 C) (31<br />

0 C) C)<br />

C) [r11 r1<br />

1<br />

1i<br />

0<br />

z<br />

91<br />

-n<br />

0<br />

9<br />

C)<br />

C ru<br />

- 00<br />

-<br />

23<br />

-- ru<br />

r r<br />

- -U_U<br />

U0<br />

C))<br />

-o<br />

0<br />

(-n<br />

Ill<br />

(-C--)<br />

(1)<br />

C)<br />

C)<br />

C—)<br />

-<br />

- r’i<br />

‘——I<br />

rn<br />

—<br />

0<br />

0<br />

I-il<br />

ci<br />

(51<br />

-Il<br />

r<br />

C)<br />

C)<br />

rj:)<br />

C)<br />

III


91<br />

9)<br />

:<<br />

C)<br />

--z<br />

9]<br />

mc-)<br />

.;J -i<br />

ru —<br />

><<br />

C-)<br />

OD z<br />

C-)<br />

C)<br />

Ui<br />

-I<br />

:<<br />

m<br />

M—AMOUNT DEPOSITED (mg)<br />

—<br />

(Ii C) Ui C)<br />

C) cz C)<br />

1—rirm—’<br />

—0<br />

1rifrirr<br />

u<br />

ci U<br />

U t 0<br />

;o j2O<br />

c CC<br />

z z<br />

ci ci c3<br />

w r<br />

r’<br />

—ID<br />

C) <<br />

(fl-I<br />

:<<br />

ill<br />

(TI<br />

N)<br />

C<br />

ci


C)<br />

0<br />

L<br />

c’J L)<br />

: 8 -<br />

Tc<br />

R:n=<br />

Re= 5737<br />

=<br />

1b<br />

2 r<br />

tn<br />

LU<br />

4 X<<br />

XX)<br />

x<br />

X>


.1<br />

1•<br />

ci<br />

E<br />

0<br />

Ci)<br />

c)<br />

— nj


—55—<br />

6Q :.zxs:s o rouL::G :s:: p’s<br />

F- — —<br />

0, rcaaCtio:x<br />

Ia the <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> studies the effect<br />

oz :uma veocaty nas oeen aemonstrated<br />

increased velocity decreases<br />

the neposition,<br />

The effects of concentration <strong>and</strong> temperature have<br />

also been shown, alas, not -as clearly.<br />

lthough increased concentra<br />

tion <strong>and</strong> decreased temperature increase <strong>deposition</strong> independently,<br />

they are i:aea cy a soluozlaty reataon,<br />

The efzects of concentra—<br />

taon ann temrerature are triereiore ootn characterized cy waere a<br />

zouling <strong>wax</strong> partacle or crystal comes out of soiution.<br />

Jhetner or<br />

not it :orr.s an tac oz a rassage or an tne oounnary layer. n<br />

all the present erperimental work the solution bulk temperature was<br />

kept above the cloud roint.<br />

There are two significant temperatures at which changes take<br />

place near a cola neposatior. wall.<br />

At the cloua pcant a <strong>wax</strong><br />

partacne is formed <strong>and</strong>. at the roar point solac. <strong>wax</strong> s formen<br />

Between znese two points taere exists a &urry of <strong>wax</strong> crystals an<br />

erosene.<br />

The tearerature ais;rloution zrom oulk to wall an a<br />

foaling solution is therefore most important,<br />

The purpose of the rres.ent section is to investigate the<br />

likely temperature distribution <strong>and</strong> to see how that knowledge<br />

could halp in e::oiainirg the <strong>deposition</strong> <strong>and</strong> foaling mechanism.<br />

computer p:ogra::. caed P<br />

(Prozames) was c.evenopen to<br />

calculate tne velocity ann temrerature oro:ales an turo.en; tare<br />

flow.<br />

The boundary layer theory used in the program is given in<br />

pendx 7 <strong>and</strong> -.tpendi S givos details of the program. The<br />

was cm’:e_.oaen zor tne Dara::in <strong>wax</strong> an erosene sowataon.3<br />

uea ifl tIe o.l:ng swanacs. wac comwa..r ‘:cr. was carraec. out<br />

at the Oowatr Oertre, ‘IniverLty of 3irmingnam, <strong>and</strong> at the Central<br />

— -- —‘<br />

: i. .-.... \._.<br />

.,..,<br />

. a. a,...i..,


- . O, O,<br />

I—<br />

—,-,<br />

<strong>fouling</strong> studies ifl the present work the W&i1 temperature Tw :as<br />

In the data required by the program P’I ony one terpera<br />

621 ntrOc.UC1on<br />

6,2 Dlicatiafl o Previous 2esults<br />

— 56 —<br />

applied to the case where a thin layer of <strong>wax</strong> had derosited.<br />

average solution bulk temperature was determined 3y aastin,<br />

c.ata was c.etermined by tne zact znat all varao.es ware :non<br />

6.2.2 Nethod of na1ysis<br />

rrofile ccrresconded a the average balk aen-Deratare, recai:ei<br />

tare was uknorn the wall Tw Reynods number <strong>and</strong><br />

The particaiars of tne ran were as foliows:<br />

inlet/cutlet temreratures were determined exoerimentnl_y in<br />

except the wall temperature. For a given experimental ran the<br />

The esllts are alotted in figure 6.2.2.1.<br />

considered as being the temperature of a surface that reresented<br />

compared. to the average bulk temperature.<br />

the effective boundy of a i’iow in a assage :n this ;ay the<br />

tue wall temperature in tue caculations a temperature prozie<br />

correations cievec’em for tar calent flow in clean tu’zes cca_c za<br />

coulc. be proauced corresonc.ing to the real dstributon as<br />

verage balk temrerature Tb = 30.200<br />

verage Reynolds number Re = 13922<br />

stmatec. c.cuc. Point Ta’ = 27k) C<br />

ol an eaaticn otne worm:<br />

_ —.<br />

direct measure o hc... wel:. the calcnlated te::atu_e<br />

une wa temae:atares ware seectec. o Dc 22 , anc. — .<br />

dax concentration c =<br />

cne metuoc. was es;ec. uslng data zram run o oy ,aer<br />

The approaca usec. n to ana..yse tne :oaaang staiies


U.<br />

The tubes used in the <strong>fouling</strong> studies had i.d. 13.1 mm.<br />

integration of this equation had to be made numerically <strong>and</strong> was<br />

Jr<br />

ii(r—y)d(r—y)<br />

Tb = r<br />

. (6.2.2)<br />

(r - y) d (r - y)<br />

— 57 —<br />

The radius of the tubes was therefore 6550 m. In figure 6.2.2.1<br />

an indirect method was used.<br />

I W.<br />

distance of 3000 .tm, almost half the radius. A separate plot extend<br />

plot;ed in figure 6.2.2.2. The velocity at the centre = 1.95 /s<br />

profile does not change much for y > 500 im, which is the approxi<br />

would be obtained. As seen from figure 6.2.2.1 the temperature<br />

where T. is the bulk temperature, T <strong>and</strong> u the temperature <strong>and</strong> velocity<br />

at about 3000 m, a fair representation of the true distribution<br />

at distance y from the “wall” <strong>and</strong> r the radius of the passage. An<br />

the temmerature profiles for run F36 were plotted up to a radial<br />

was obtained at y = 6550 in. The bulk velocity was = 1.60 a/s.<br />

considered too tediQus to be of value in the present xork. Instead,<br />

mate limit of the boundary layer.<br />

ing to the centre of the passage, showed that if the calculated<br />

was selected as 23°C, the calculated temperature profile would<br />

U<br />

S<br />

= 0.82<br />

Tue ratio: -<br />

is only slightly higher than data given by >ucAdams<br />

temperature profile passed or crossed the average bulk temperature<br />

correspond to the average bulk temperature.<br />

The velocity profile for the wall temperature T = 23°C was<br />

Figure 6.2.2.1 showed that if the effective wall temperature<br />

4 for isothermal


profiles at different Reynolds numbers were investigated.<br />

analysis of temperature distribution in turbulent flow, the<br />

was also found to correspond to established data. To further the<br />

ing to a given experimental bulk temperature. The velocity profile<br />

could be selected to give rise to a temperature profile correspond<br />

In the previous section it was shown how a wall temperature<br />

6.23 Different Reynolds Numbers<br />

scales for y in these two figures.)<br />

layer exist, figure 6.2.3.5 was plotted. C.cote the aifferent<br />

To show at what distances the various regites of the boundary<br />

profile, figure 6.2.3.4 as plotted giving the results expected.<br />

To show the effect o± Reynolds nuaber on the teaperature<br />

<strong>wax</strong> in kerosene solution.<br />

ing to the bulk teuperatures, was the cloud point of the <strong>paraffin</strong><br />

show that the wail teiperature selected to give a profile correspond<br />

are plotted in figures 6.2.3.1, 6.2.3.2 <strong>and</strong> 6.2.3.3. These figures<br />

or runs .30 <strong>and</strong> .32, but 17 C <strong>and</strong> 19.5 C for run P31. .ne resuts<br />

0 0<br />

ri —<br />

The wail tenperatures selected were 17°C, 19.5°C <strong>and</strong> 23°C<br />

Tc’ 19.5°C.<br />

with concentration c = 9.6 per cent <strong>and</strong> an estimated cloud point<br />

P32 11741 28.5 6.0<br />

P31 8699 28.4 6.0<br />

P30 20868 28.6 6.1<br />

Run I b (°c) (°c)<br />

by walker(1). The particulars for these runs were as follows:<br />

The <strong>fouling</strong> studies results used were runs P30, P31 <strong>and</strong> P32<br />

— 58 —


— 59<br />

Temperature profiles obtained at different <strong>wax</strong> concentrations<br />

Run c (%) Tc’ (°c) o (°c) a (°C)<br />

lars of the runs were as follows:<br />

results used were runs F2, Fil <strong>and</strong> F26 by Walker. The particu<br />

the selected wall temperature be about the same as the cloud point.<br />

that only where the temperature difference is great enough will<br />

cooling water ternperatu?e was about 13°C. In the present runs the<br />

the relatively high concentration of 9.6 per cent in those runs,<br />

all cases about the same as the solution cloud point. Because of<br />

the cloud point for runs F2, Fil <strong>and</strong> F26 respectively.<br />

sary to give the required profiles are about 7°C, 2°C <strong>and</strong> 2°C aoove<br />

6.2.4.3. As seen fror these figures the wail temperatures neces<br />

Eli; Tw = 12°C, 15°C<br />

Eli 25451 6.o 14 45.9 8.0<br />

F 2 20819 4.2 10 47.0 9.2<br />

F26 27123 7.9 17 46.2 6.9<br />

The wall temperatures selected were as follows:<br />

F 2; Tw = 8°c, io°c, 16°c<br />

F26; Tw = 15°C, 17°C, 19°C<br />

The results are plotted in figures 6.2.4.1, 6.2.4.2 <strong>and</strong><br />

6.2.4 Different Concentrations<br />

corresponding differences were about 1°C, 6°c <strong>and</strong> 10°C. It follows<br />

the temperature difference between the cloud point <strong>and</strong> average<br />

<strong>and</strong> similar Reynolds numbers were investigated. The <strong>fouling</strong> studies<br />

In the previous section the selected wall temperature was in


L<br />

Run .<br />

(°c)<br />

used to calculate temperature profiles.<br />

numbers. The particulars were as follows:<br />

Prom the 22 runs obtained in the present work, 6 runs were<br />

In section 6.2 data obtained by Walker(1) was used to calculate<br />

6.3 Temperature Profiles Study<br />

temperature profiles in <strong>fouling</strong> studies heat exchanger tubes. In<br />

- 60 —<br />

Profile given in ppendix 8, ‘igure 8.2.’+, mensoress temperature<br />

where concentration was c = 26 per cent <strong>and</strong> cloud point Tc = 32°C.<br />

Tw = 34°C. The results are plotted in figures 6.3.1, 6.3.2, 6.3.3,<br />

experimental bulk temperature. Two figures gave a correct profile<br />

same as tie cloud point, gave a pro;ile corresponang to the<br />

this section data obtained in the present <strong>fouling</strong> studies will be<br />

in two of them the temperature profile with a wall temperature the<br />

6.3.4, 6.3.5 <strong>and</strong> 6.3.6. From these six figures it was seen that<br />

if the wall temperature was 10C below the cloud point <strong>and</strong> two<br />

selected, covering two bulk temperatures <strong>and</strong> a range of Reynolds<br />

the dimensionless distance y to produce the Universal Velocity<br />

figures if it was 1°C above the cloud point.<br />

The wall temperatures selected were Tw = 30°C, Tw = 32°C <strong>and</strong><br />

Just as the dimensicr-ess velocity u can be plotted against<br />

B0-13 6716 6.8 42.4<br />

B 6- 9 13311 7.1 42.8<br />

B 1- 5 7635 7.1 42.5<br />

C 8—20 4635 6.7 38.1<br />

c 1—4 8890 6.9 38.2<br />

C 5-16 6888 6.8 38.2<br />

(°c)


The boundary layer theory used to calculate the velocity ad<br />

6.4 Discussion<br />

tube.<br />

18.7 at the wall to about 17.5 near the centre of the heat exchanger<br />

wall temperature Tw = 32°C. The Pr<strong>and</strong>tl number ranged from about<br />

— 61 —<br />

particles on the boundary layer could therefore not be included.<br />

T can be plotted. As an example this was done for run C8-20 with<br />

but no information was found on its applicability to situations where<br />

calculations of temperature profiles for common heat transfer problems<br />

viscosity in the basic boundary layer theory <strong>and</strong> variable Pr<strong>and</strong>tl<br />

<strong>deposition</strong> occurs simultaneously. Any distortion effects of <strong>wax</strong><br />

number was also included in the evaluation of the dimensionless<br />

temperature.<br />

temperature profiles was derived from data obtained in isothermal<br />

as vindicated by the results of the analysis.<br />

turbulent flow with air (45). It has however proven valid in<br />

the cooling water temperature <strong>and</strong> the cloud point was great enu;h<br />

<strong>paraffin</strong> <strong>wax</strong> in kerosene boing 3—4°C below the cloud point (se&<br />

computer program. This was a concern but proved a valid assumption<br />

Appendix 1) meant that a thin boundary layer suspension or slurry<br />

fluctuating in nature, ory average values could be supplied to the<br />

with the eerimenta1 bulk temperature. The cloud point was there<br />

the selected wall temperature is equal or close to the solution<br />

- - 0<br />

cloud point, the calculated temperature profile corresponds well<br />

existed. The above would only e true where the aifference cezween<br />

fore the temperature of that surface representing the effective<br />

DoUndary to tae 110w in tne tuoe passage. The pour p0iflt o: 5 /54 C<br />

The advent of modern computers allowed the inclusion of variable<br />

Because the <strong>paraffin</strong> <strong>wax</strong> in kerosene <strong>fouling</strong> system was<br />

Most of the results given in previous sections showed that, if


Due to a concentration gradient they diffuse to the cold surface<br />

The suggested physical model of the <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong><br />

— 62 —<br />

cold wall <strong>and</strong> deposit.<br />

tion side..<br />

to allow the latter to be reached in the boundary layer on the solu<br />

will presumably deposit <strong>and</strong> be removed.<br />

<strong>and</strong> deposit. Under equilibrium conditions an equal amount of <strong>wax</strong><br />

<strong>wax</strong> particles are formed at a cloud point ter;perature interface.<br />

process was based on the above results. It is snown in figure 6.<br />

6.5 Conclusions<br />

as an ideal temperature profile across the wall of a <strong>fouling</strong> studies<br />

the shear field into the<br />

heat exchanger tube. in this Cloud Point Model <strong>wax</strong> crystals or<br />

inside the boundary layer. The particles can either move across<br />

particles will be formed at the cloud point temperature interface.<br />

for the mechanism of <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong>. ifl the model <strong>paraffin</strong><br />

The analysis of the <strong>fouling</strong> studies data resulted in a model<br />

4 bulk of the solution or diffuse to the


Q---O<br />

50<br />

40<br />

0<br />

()<br />

III<br />

30<br />

-0- --<br />

:E> ZEZEE EEEEEEZ<br />

-o-----—--- OC<br />

L ‘1<br />

ft.<br />

>:<br />

II<br />

II<br />

20<br />

10<br />

R o = 1 3922<br />

0 T w 22 °C<br />

T = 2 1 5 °C x Tv 23 °C<br />

c Tw = 2t °C<br />

0<br />

I, I I l1j.L LLLI<br />

0 500 1000 1500 2000 2500 3000<br />

y<br />

—<br />

EAUl/\L<br />

DI iANCE (J m)<br />

Fl 6. 6. 2.2.1 .—TEIH P i ATU F L v R/’.DIA L Dl ;T/’. NCE /i D F -1 ENI V/ALL<br />

\‘\‘IILN C 14 6 [LECLNI.


1 I C. (1.2.2.2 \1L. I .OC[FY V [A[) L/\L [) VTANCL. WI EN C 1/ 6 PD CENT<br />

U=l..9:; rn/s<br />

U b 1.60 rn’s<br />

20<br />

I U<br />

16<br />

cri<br />

14<br />

>-<br />

I<br />

C—)<br />

12<br />

10<br />

nfl<br />

I_I_<br />

><br />

I i<br />

06<br />

o ‘1<br />

0 2<br />

Re = 13922<br />

Tw 23 °C<br />

c 2i:!3 °C<br />

0•0<br />

I__ I L_L<br />

0 500<br />

I1_iLi_ I_!.I_J I I •i.<br />

1000 1500 2000 200 3000<br />

yRAOLAL D!E.LANCL (; iii)


-1b=26 °C<br />

50<br />

C)<br />

0<br />

30<br />

—<br />

V<br />

LU —-c<br />

Lii<br />

= 20000 o T\v 170 0<br />

10 Th 0 lvi 195 °C<br />

= 61 °C X Tv 230 0<br />

0<br />

I I Li i.. i i1 !Lii<br />

0 1,00 1000 1500 2J0 2500 3000<br />

y —<br />

LADIAL<br />

DL STANC[ (pm<br />

HG. 6.2.3.1 .-——lrMrLIATU[IE V RADIAL DIlAN;E Al DIrFFRL:NT WALL<br />

TE1 L[/:i UES WI EN C 9 •6 IHCLN 1.


V<br />

40 -<br />

0<br />

C—,<br />

lt!<br />

-—<br />

o.<br />

---—-<br />

a<br />

o-<br />

.-o-- -.<br />

—.---‘--—. — -c<br />

-——Ib284<br />

C<br />

[ij 20<br />

0 / -<br />

ILl<br />

Tci=6.O °C<br />

Re 8699 c Tw = 17.0°C<br />

l’c= 19.5 0 Tvi= i95°C<br />

Q VLIJl.I i. I! LI.J_JlJ.V IV. ILiJ LI •IIL.I<br />

0 500 1000 V300 2000 200 3000<br />

y --<br />

RADIAL<br />

DISIANCL (pm)<br />

H(. 6.2.3.2. TE1PEflATURE V. RADLAL DISTANCE AT [)IEFERENT V/ALL<br />

1 E1IFRfTU1F’ V!H[H1’ C 9.6 PL[-CENT


—Tb=28 5°C<br />

50<br />

40<br />

0<br />

0<br />

°<br />

ui 20<br />

V<br />

CL —<br />

II<br />

> Re 11741 0 Tv,:: 17.0°C<br />

(Ii<br />

F11<br />

T : 19.5°C x Tv.’ 195 °C<br />

Ict G0 °C 0 Fvi 230°C<br />

1 !L!<br />

0 .J1iLi -LI.i I L1._L I_.1L1 LI.LI_lL<br />

0 500 1000 1500 2000 2500 3000<br />

y —<br />

F?A[)IAL<br />

DViAi!CE ( ,ur)<br />

11 1. 6.2.3.3. TE11PRF/’i UFt v. flADIA[_ OIS17.NCL AT DIFE1 ENT WALL<br />

TEMPLI?ATU1: \VHLN C = 96 PLRGENI


Li<br />

FIG. G.2.3./. TEMPERAI URE v RADIAL DITANCE AT DIFITRENT<br />

REYNOLP NU11 \VfILN C= 9-6 PERC-[!i.<br />

- I<br />

-<br />

50<br />

/0<br />

Tvi= 195 °C<br />

C-)<br />

0<br />

30<br />

Cr 20<br />

Lu<br />

CL —<br />

H<br />

0 Re 8099<br />

10 x [e 11741<br />

Ii— 0 he 2OU’<br />

o<br />

‘<br />

‘ I<br />

j -<br />

i.<br />

0 50 100 150 200<br />

y RADI/\l_ DI SiNCV (Mm )<br />

-


I-—.<br />

-7<br />

Li I<br />

CD<br />

C-)<br />

U)<br />

(_) C<br />

Li I<br />

(.)<br />

(I)<br />

H<br />

c<br />

I.’i<br />

IL<br />

IL<br />

D<br />

(1)<br />

C’-)<br />

C-)<br />

c’.J<br />

II<br />

Ii2<br />

()<br />

0<br />

(C,<br />

(:1)<br />

S.—<br />

II<br />

C)<br />

C)<br />

0<br />

[C)<br />

3:<br />

, Ii<br />

C)<br />

- .1<br />

Lii<br />

C)<br />

> (C)<br />

LU (:y)<br />

:.<br />

z<br />

CD><br />

r:<br />

[‘1<br />

>-<br />

(Li<br />

1—<br />

CD<br />

LC)<br />

-----<br />

CD<br />

C-’,<br />

C)<br />

(‘4<br />

(Do) iflJVJiJVJELL —<br />

0<br />

I<br />

C’,<br />

(‘4<br />

(0<br />

(<br />

IL.


—<br />

1 7.0 0<br />

--Tc.=10.0°C<br />

50<br />

140<br />

— .<br />

1S —<br />

f_..... .<br />

-0—-•-<br />

—— ‘S —i’— — -<br />

0<br />

0<br />

3<br />

L’i<br />

[j<br />

0<br />

L tJ<br />

20<br />

To 2O1O<br />

= O2°C<br />

o Tw = U °C<br />

x Tw=1O°C<br />

C) 1w = 16 °C<br />

I J._L.L. I L..I. II .I..i.i I i I i_.I.I.IL_J._I LLL.I L<br />

500 1000 1500 2000 2500 3000<br />

y —<br />

RADIt’L<br />

DISTANCE (1u m<br />

FIG. 6.?f:i. TLMPLI /\TU [E V RAD I/\ L DISTANCE AT DI rFI_FENT \‘‘LL T[ PERAI U [ E<br />

WHEN C 1•2 PEFiENI


—Tb=459 °C<br />

1,0<br />

—0 —--------O- 0<br />

U<br />

0<br />

LU<br />

:)<br />

I-- -<br />

3<br />

Li!<br />

fl<br />

uJ<br />

I--’.<br />

1 F—<br />

2<br />

10k-<br />

0<br />

25/.51<br />

Tci 8.0 00<br />

I , .[_i_<br />

0 500 1000<br />

y— RADIAL<br />

[:((3 Q. 2./;.2. 1HPLRAYU1L v. RADIAL DISTANCE<br />

WHEN C 6.0<br />

Li L.. .1<br />

i00 2000 2500 3000<br />

DISTANCE (pm)<br />

o Tv: = 12 00<br />

x Tv = 15 00<br />

AT DIFEERENT WLL TLMPERATURLS<br />

I’LL CE.iii<br />

——T 14.0 °C


— --<br />

—<br />

-——— —<br />

-—Tb = 16.2 °C<br />

417<br />

fl 0<br />

iC — ii’<br />

50<br />

40<br />

-<br />

—- _\‘- -— —- — - ‘--—-——— S<br />

0<br />

0<br />

L J<br />

30<br />

F-<br />

Lii<br />

ft.<br />

LI!<br />

2<br />

Re = 27123<br />

0 Tw 15°C<br />

To - 6 9 00 x Tvi = 17 0 C<br />

0 1v.’z19 C<br />

0<br />

ii LL.iIt1 I 1J.Lj IJ I Li<br />

500 1000 1500 2000 2500<br />

y -RADIAL DISTANCI: (jim)<br />

O.2./:.3. TEMPEIATURE V. RADIAL DI<br />

WhEN<br />

‘ I/\L<br />

C = 7.0<br />

I- -j<br />

3000<br />

/\T [) I FE LR tNT WA EL TEM Pr RATU H ES<br />

Pt H C EN I


-<br />

T 32O O<br />

I<br />

40 - o<br />

-.----——<br />

-- 425°C<br />

C)<br />

!J 30-<br />

I<br />

‘.1<br />

CL<br />

F<br />

I<br />

It--<br />

Re 7635 o Tw —<br />

30<br />

°C<br />

10 Ta 71 °C x Tv’, = 32 °C<br />

Tw 37 °C<br />

0 ..J..i.J_IIj_jJ<br />

I<br />

i.i J.LI.I I_i]., .L.J.I.IIH ....L_I.._<br />

0 300 i(JUO 1500 2000 2500 3000<br />

y —<br />

F?<br />

AD<br />

I AL DI S TA N C E lu m )<br />

rio. 6.3.1. —TEM Pr FATULE v RADIAL DI3TANCE AT Di FTF?ENT V/AL)<br />

T ,, F) ) A C<br />

I I<br />

‘IL<br />

t<br />

\/ \<br />

I<br />

U i . J ii<br />

I<br />

I<br />

‘1<br />

\<br />

fl<br />

f<br />

\lJ<br />

\I r) -<br />

4 I<br />

•<br />

3 Vt<br />

It Jr<br />

I<br />

t I<br />

U<br />

—<br />

Li --<br />

— iDf t)1<br />

-<br />

/0<br />

I<br />

‘.J SLL


Z_o_—o--<br />

50<br />

l0<br />

-<br />

yX—--X— —-<br />

—_.--______<br />

-—--—---—-—<br />

- t+28<br />

LI<br />

I<br />

30 ;- T 320 °C<br />

: 20<br />

10<br />

133’ii o Tw 30 °C<br />

m<br />

rj. x T vi 32 °C<br />

11’<br />

o Tvi 3/: °C<br />

I<br />

I.J_ L.LV I., Lii<br />

0 500 1000 2000 2500 3000<br />

y R/\D 1/IL DI ;i/NCL: ( ).1i )<br />

IC. G. 3. 2. —- TLMPLAIU v FADIAJ., DI SIANCL / [)Ii:r:Lr I \VALL<br />

TEll L[/\ UI ES<br />

I<br />

N 1W N [ O-9 \l E NE C = 2 PL_NCE NI.


-<br />

I<br />

110. 6. 3.3.-—- TLPErATU LE v FAD1/’L DI iA NCE AT DIEV[TENI V/ALL<br />

L 1b 424 °C<br />

50<br />

;zizZJ :z_.__<br />

30<br />

Tc 320 °C<br />

UI<br />

20<br />

6716 o Tw=30 O<br />

1] —<br />

F-- To 5 0 °C X Tv’ 32 00<br />

10<br />

o Tvi34°0<br />

o<br />

--<br />

, I I I I I I<br />

0 300 1000 1L0O 2000 2U00 3000<br />

y —<br />

F<br />

A [31 AI_ DI [A NC L (p i )<br />

TLH R I AT r; IN IU N B 10-13 VVI L: FE C 26 PLI NT.


I:302 00<br />

50<br />

Ito<br />

-0———<br />

---—----—-C--C<br />

.-———-x<br />

O0O<br />

—<br />

C)<br />

0<br />

U I<br />

30<br />

—T=320 °C<br />

20<br />

IL!<br />

IL.<br />

= 3890<br />

o Tv.’<br />

30<br />

OC<br />

III<br />

F<br />

I I—<br />

10<br />

0<br />

0<br />

a = 6’9 °C<br />

LI.IL[. !LI<br />

500<br />

y<br />

1OUO<br />

I<br />

L.[J.i<br />

I 1<br />

[ADIAL [JITANCE<br />

X<br />

lvi 32<br />

c 1w 3/ °C<br />

[J. LLI.i II. LI<br />

iL00 2000 2!O0 3000<br />

( ju m )<br />

DC<br />

FL C C.3. 1;<br />

I[M<br />

[)<br />

H ATLJ I<br />

TEI’. 1Il/.i UIE Ii<br />

[<br />

v<br />

RUN Ci—<br />

[ADl/’.L<br />

i/<br />

Lii<br />

jJi\ N Ci<br />

AT<br />

f\<br />

V/I Zi C: 2i [‘L.RCI<br />

GE \‘ L N V/A L 1_<br />

NT.


la<br />

- ----<br />

-‘Yb 3B•2 °C<br />

—-Tc=32°C<br />

50 -<br />

40<br />

w 30’<br />

I.<br />

20-<br />

L I<br />

L<br />

10 -<br />

G86i o Tw3O °C<br />

68 x Tw32 °C<br />

0 Tv’ : 3/, °<br />

0<br />

, I_I I__I_ ii LJ t<br />

0 00 1000 ibOO 2000 2500 3000<br />

y —<br />

F?<br />

A D I /‘ I. U I STA N C L ( p r n )<br />

:j C. G. 3. [ ThM PLR/.TUr E v. RAE) IAL DI STANCE AT F) IEFEE?ENT WALL TEM PERAIU[?ES<br />

N RUN CS— 16 WHERE C 26 PERCENT


I<br />

50<br />

;) 30c’/<br />

/<br />

C —------------- 0 —--—0<br />

—<br />

Lii<br />

0<br />

20<br />

[l<br />

10--<br />

R = 4635 0 Tvi 30 °C<br />

1 ci 6 ‘7 ° C x Tw 32 ° C<br />

0 Tv’ 34 °C<br />

C)<br />

•_<br />

I , I<br />

0 1000 ibuQ 2000 2b00 3000<br />

y —<br />

RA<br />

Dl AL [)l STA N C [- ( p m )<br />

110. 0. .6. TLIIPERATU EE v. PA DIAL DIST/\NCE Al DlFFLELNi \VALL TEMPLJ?ATUIRES<br />

FOF? [?UN CO— 20 ‘Hrrr: C 26 PL[CENT<br />

-<br />

I


100 :zz<br />

[Ii<br />

or<br />

Lii<br />

CL<br />

>:<br />

Li I<br />

F<br />

(I)<br />

LU<br />

10<br />

C)<br />

Li I<br />

C)<br />

I----<br />

-i-:<br />

1 10<br />

- 1<br />

y-- DI1ENS10NLrSS DtTANCF<br />

100 1UC)0<br />

FiG. (.3.7. tili’iENSIONLESS 1 L: PEt/iUL ‘.1. DIi”1VNSI0NL[SS UI [ANO[* FO RUN<br />

CO --<br />

20<br />

WHL N WALL TL[i I LiATU I[ WAS 32. °C


FIG. 6. 4.1. AN IDEEAL TEMPERATURE PROFILE ACROSS THEE WALL<br />

OF A FOULING IUD[ES HEAl EXCHANGER TUBE<br />

< Tp Tc<br />

-_‘--<br />

I —<br />

BUFFER LAYER<br />

I AMINAR SU3LY[R<br />

-:: dVAX PARTICLES<br />

SOLID PARAFFIN ‘iVAX<br />

1 Ii B E ‘iVA I - L


Cl)<br />

C)<br />

Cl)<br />

Cl)


— 63 —<br />

7. DISCUSSIOI<br />

7.1 Introduction<br />

In the present work it has been shown how the <strong>deposition</strong> of<br />

<strong>paraffin</strong> <strong>wax</strong> is affected by flowrate, temperature, concentration<br />

<strong>and</strong> time. A review of the literature revealed that other factors<br />

also play a part, for example, the presentce of surfactants.<br />

The<br />

problem of <strong>paraffin</strong> <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> is therefore complex in<br />

nature, as indeed are most <strong>fouling</strong> problems.<br />

It is therefore not<br />

surprising that the information available on <strong>paraffin</strong> <strong>deposition</strong> is<br />

very qualitative <strong>and</strong> not directly applicable to practical situations.<br />

Any new underst<strong>and</strong>ing of the problem will therefore be of vaue <strong>and</strong><br />

horefully lead to the development of quantitative relations. :n<br />

the present section the characteristics of <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong><br />

will be discussed <strong>and</strong> a possible <strong>deposition</strong> mechanism suggested.<br />

7.2 General Characteristics of Deposition<br />

The problem of <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> usually<br />

arises when a hydrocarbon solution containing <strong>paraffin</strong> <strong>wax</strong> is<br />

cooled below its solubility limit, or more commonly,<br />

below its solidi<br />

fication limit.<br />

As discussed in section 2.2 the solubility limit<br />

depends on the rate of cooling <strong>and</strong> the solidification limit on the<br />

existing shear stresses.<br />

6) conditions these limits<br />

At st<strong>and</strong>ard(151<br />

are defined as the cloud <strong>and</strong> pour point, respectively.<br />

fl<br />

the present work <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> at turbulent flew<br />

conditions were considered. In au exoeriments the solution hulk<br />

temperature was kent well above the cloud roint, resulting in waD:<br />

particles forming in th colder boundary layer.<br />

The main character<br />

istics of the system were that the amount of <strong>wax</strong> deposited increased<br />

asymptotically <strong>and</strong> rapidly to a final fluctuating value that<br />

decreased with flowrate, decreased with temperature <strong>and</strong> increasec.<br />

with concentration.<br />

3ui1du of deposits alternated with their reaovcZ,<br />

giving rise to r<strong>and</strong>om fluctuations.


point temperature interface. Clearly the behaviour of small<br />

It is anticipated therefore that a suspension of <strong>wax</strong> crystals in<br />

particles depositing came out of solution inside the boundary layer.<br />

solution pour point, it was calculated in section that the <strong>wax</strong><br />

where the tube wall temperature was always kept well below the<br />

For the experimental conditions adopted in the <strong>fouling</strong> studies,<br />

I 0-f —<br />

particles in boundary layers is important in <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong><br />

<strong>and</strong> <strong>fouling</strong>.<br />

7.3 Behaviour of ax in Bouncarv Layers<br />

may move due to Brownian motion giving rise to diffusion. During<br />

<strong>deposition</strong> therefore, both <strong>wax</strong> particles <strong>and</strong> molecules probably<br />

deposits. s <strong>wax</strong> molecules diffuse toward the wall more <strong>and</strong> more<br />

contribute to the diffusion toward the wall. The diffusional driving<br />

wi devlop ra;idiy. s the <strong>wax</strong> detosits build up the heat fux<br />

solubility limit. it is therefore likely that <strong>wax</strong> particles<br />

kerosene existed from the surface of the solid <strong>wax</strong> to the cloud<br />

probably also influence the moveaent of particles in boundary<br />

of them will come out of solution because of the decreasing<br />

force resulting from the <strong>wax</strong> depletion at the wail where the <strong>wax</strong><br />

If these shearing forces act similarly in boundary layer suspensions<br />

in laminar flow may move small particles away from the tube waZ...<br />

constitute the major proportion of <strong>wax</strong> deposited.<br />

7.4 3uZ.du of Ds:ts<br />

layers.<br />

they may move particles outside the cloud point ter.perature inter<br />

face, where they will dissolve. Particle interactions will<br />

that is cooled, cepcsition occurs. Velocity <strong>and</strong> teaterature profiles<br />

As is well known molecules <strong>and</strong> even small particles in solutions<br />

It was shom in section 2.2.4 that the shear field existing<br />

inen a solution containing a <strong>wax</strong> foulant enters a clean tue


— 65 —<br />

through it decreases gradually due to the increased thermal resist<br />

ance resulting from the presence of the <strong>wax</strong>.<br />

cooling decreases fewer <strong>wax</strong> particles will be<br />

As the heat flux or<br />

formed in the boundary<br />

layer.<br />

This lower particle concentration reduces the number of<br />

particles reaching the wall <strong>and</strong> thereby also the <strong>deposition</strong>.<br />

During the initial rapid buildup of deposits, particles will<br />

have a greater chance of depositing because of the strong thermal<br />

effects.<br />

As the heat flux decreases it becomes more difficult for<br />

particles to deposit <strong>and</strong> <strong>deposition</strong> of particles containing less<br />

kerosene than at initial <strong>deposition</strong>, might occur. The rapid deposi<br />

tion initially may give an opportunity to ‘trap” kerosene between<br />

crystals, but the slower <strong>deposition</strong> rate later may give an<br />

opportunity for a less contaminated layer.<br />

In this ‘ay the <strong>wax</strong> close<br />

to the wall would contain more kerosene than the <strong>wax</strong> away from it.<br />

The shear stresses acting on deposits will increase during<br />

buildup because of reduction in the area of the flow passage.<br />

Waiker’ calculated the1thermal resistances for run F38 having the<br />

following particulars:<br />

Reynolds number<br />

Re = 14345<br />

Wax<br />

concentration<br />

c = 14.6%<br />

Estimated cloud point<br />

3verage bulk temperature<br />

verage overall heat<br />

transfer resistance<br />

Using the well knoi Dittus—Boelter<br />

resistances, the <strong>fouling</strong> resistance<br />

= 27.5°C<br />

= 30.9°C<br />

R = 2.3987 (k,Vm<br />

2 Oc)_l<br />

equation, to determine the film<br />

could be obtained by subtraction<br />

from the overall resistance.<br />

:nsic e resistance<br />

resistance<br />

3ucside tuce resistance<br />

Fouling resistance<br />

= 0.6164<br />

w<br />

= 0.0023<br />

R = 0.0317<br />

2, = 1.7483<br />

2 = 2.3987<br />

• 2 o,, —i<br />

(c../m i-,)<br />

VT<br />

TI<br />

‘I<br />

TI


0<br />

w<br />

2 °c)<br />

shear stress of 30.4 per cent. As shown by Walker the Dittus—<br />

rerresents a change in diameter of 6.4 per cent resulting in an<br />

1. k = 0.42 mm. For a tube having i.d. 13.1 mm this<br />

— 66 —<br />

plane of weakness will devalor. Time is often an important factor<br />

•crystans. .s tse trisc.tncss cuilas up se oz sacs a<br />

Using the thermal conductivity of a typical <strong>wax</strong> given in Appendix 1<br />

resistances will be as follows:<br />

as k = 0.0002387 (kW/m °c) the average deposit thickness was<br />

evaluated as fl<br />

Using the new <strong>fouling</strong> resistance the deposit thickness was evaluated<br />

value, a cohesive faalure within it is likely to occur. The strength<br />

regalar pattern being sustained is reduced so that eventually a<br />

increase in average velocity of 1.2 per cent <strong>and</strong> an increase in<br />

of the <strong>wax</strong> layer will depend upon a close <strong>and</strong> regalar pattern of <strong>wax</strong><br />

as 0.45 mm. The resulting increase in shear stress will therefore<br />

Boelter equation gives heat transfer coefficient values constantly<br />

7.5 Remova.. of eosi:s<br />

below those xperimentaliy obtained in commerciai tubes. Substract—<br />

<strong>and</strong> <strong>fouling</strong>.<br />

ing therefore 30 per cent, as recommended by Walker, the various<br />

be about 32.9 per cent.<br />

by over 30 per cent during <strong>deposition</strong>. These increases <strong>and</strong> the<br />

contributing to the asymptotic behaviour of <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong><br />

decreases in heat flux will therefore be the major factors<br />

Outside tube resistance R = 0.024’<br />

IT<br />

Wall resistance 2 = 0.0023<br />

U<br />

Inside tube resistance R. = 0.4742 (kW/m<br />

Fouling resistance = 1.8978<br />

II<br />

2en a <strong>wax</strong> deposit has increased its thickness to some critical<br />

The shear stresses acting on deposits may therefore increase<br />

2 = 2.3987


For breakdown <strong>and</strong> removal to occur some transformation of the<br />

weakness).<br />

weakness the <strong>wax</strong> deposit breaks down <strong>and</strong> is removed from the tube<br />

— 67 —<br />

istic r<strong>and</strong>om fuctuations in <strong>paraffin</strong> deositicn <strong>and</strong> foulinT.<br />

shear forces. In <strong>paraffin</strong> <strong>wax</strong>es there exists a solid crystal<br />

in the establishment of regular crystal matrices, that is, time being<br />

<strong>wax</strong> deposit structure may take place, reducing its resistance to<br />

required for orientation. As the <strong>deposition</strong> is a rapid process there<br />

is added opportunity for weakness. As a result of cohesion loss or<br />

On breakdo’. <strong>and</strong> removal of deposits? only strongly held Crystals<br />

responsible for the creation of weak planes in the <strong>paraffin</strong> <strong>wax</strong><br />

surface, leaving a thin granular layer. (The granular layer probably<br />

It was considered possible that some similar transition might be<br />

represents a well oriented matrix of crystals with few planes of<br />

at low temperatures where the <strong>wax</strong> transformed into a new crystal<br />

transition (section 2.2.2) at temperatures below the melting point.<br />

lubricating layer around them. The deoosit will therefore be most<br />

kerosene solvent will be exuded from the crystals <strong>and</strong> form a<br />

near a <strong>deposition</strong> surface after rapid initial <strong>deposition</strong>, the<br />

deoosits. These weak planes could be formed near the rube waZ<br />

stresses as deposits build up, are probably the main factors<br />

structure.<br />

will ‘cc left on the tube surface, giving rise to the granular<br />

rapid cooling. As regular denser crystal structures are formed<br />

systems <strong>and</strong> strong structural network than crystals formed under<br />

structure. As sho in section 2.2.2. crystals formed under slow<br />

likely to break where transition has occurred near the tube wall.<br />

cooling were observed to have less tendency to form solvated<br />

causlnf the breakdon ana removal that give rise to the character<br />

The creation of planes of weakness <strong>and</strong> the increases in shear


experienced in other runs by Walker. The st<strong>and</strong>ard deviation from<br />

temperature. See section 7.4 for details. The magnitude of the<br />

waiier(1) was at a high flowrate <strong>and</strong> concentration but a low<br />

tration but decreased with flowrate <strong>and</strong> temperature. Run F38 by<br />

7.6 R<strong>and</strong>om Fluctuations<br />

—o —<br />

The magnitude of the r<strong>and</strong>om fluctuations in the overall heat<br />

r<strong>and</strong>om fluctuations was therefore substantial, about double those<br />

:ndeed, the tube surfaces were observed to be covered with patches.<br />

merefore give rise to r<strong>and</strong>om fluctuations.<br />

establish some average cverage of the tube surface by deposits.<br />

per cent from the <strong>fouling</strong> resistance. The maximum fluctuation in<br />

using the Dittus Boelter equation to evaluate the film resistances.<br />

<strong>fouling</strong> resistance for run F38 was R = 1.7483 (kW/m<br />

2 °c)’ when<br />

the average overall heat transfer resistance R = 2.398? (kW/m<br />

was calculated as 0.1585 (kW/m<br />

The st<strong>and</strong>ard deviation therefore, represents a deviation of 9.1<br />

run F38 from the average overall resistance was found to be<br />

0.3100 (kW/m<br />

The calculations show that the amount of <strong>wax</strong> required to break<br />

down or build up, giving rise to the fluctuations, is typically<br />

10—20 per cent of the average <strong>wax</strong> deposited. It is therefore<br />

The rap rtia_ 3uaup 01 OCO51t5 was not aetectae or.<br />

ny additional buildup or breakdown of <strong>paraffin</strong> <strong>wax</strong> deposits oula<br />

surface. These deposits probably broke down in a short time to<br />

studies, a deposit was rapidly laid down over most of the cola tube<br />

typically only by 2 st<strong>and</strong>ard deviations.<br />

st<strong>and</strong>ard deviations going from minimum to maximum, but more<br />

resistance. The <strong>fouling</strong> resistance therefore changes by about 4<br />

2 oc)_l, representing 17.7 per cent of the <strong>fouling</strong><br />

2 oc)l As shown in section 7. the<br />

2 °C)<br />

anticipated that, at the start of an experiment in the <strong>fouling</strong><br />

transfer resistance in the <strong>fouling</strong> studies, increased with concen


— 69 —<br />

the large <strong>fouling</strong> studies aparatus. Some indication wan, however,<br />

found of more <strong>wax</strong> depositing in the first hour than at subsequent<br />

times, particularly at low Reynolds numbers as in run A1O—4<br />

shown<br />

in figure 4.6.2.2.<br />

7.7 Other Considerations<br />

At turbulent flow conditions the shearing stresses are probably<br />

greater than those existing at the st<strong>and</strong>ard pour point condition.<br />

As was shown in section 2.2.4, increased shear stresses can oreak<br />

down the structure of solidified hydrocarbon solutions such that<br />

they show Newtonian behaviour.<br />

For the experimental conditions<br />

existing in the present work a particle suspension<br />

there fore<br />

probably exist at temperatures below the st<strong>and</strong>ard pour point.<br />

As <strong>deposition</strong> progresses the resulting increase in shear<br />

forces will mean that <strong>wax</strong> particles are more effectively moved<br />

across the shear fields away from the tube surface.<br />

hen paraffir. <strong>wax</strong> derosits it will give u its heat of fusion<br />

(see Appendix 2) <strong>and</strong> thereby raise the temperature of the depcsi—<br />

tion site.<br />

The effect of roughness on <strong>paraffin</strong> <strong>deposition</strong> would be to<br />

increase the shear stresses at the wall <strong>and</strong> hence decrease the<br />

<strong>deposition</strong>.<br />

Fewer particles would have the cohesive properties<br />

for <strong>deposition</strong>.<br />

increased shear fields in boundary layers, heat of fusicn <strong>and</strong><br />

roughness will therefore all contribute to lower <strong>deposition</strong> rates.<br />

7.8 :echanism of Deosition<br />

A<br />

derosition <strong>and</strong> fling mechar.ism must explain the buZdup<br />

of deposits <strong>and</strong> the final asymrtotice values reached before break<br />

down. : the foulinç stuc.es (Section it was found that a;<br />

syr:rtotic conditions the aeos1D1Dn ‘as less at high<br />

<strong>and</strong> ten era;ures, bu; greater a; high concn;ra;ions.<br />

Eowrn;es<br />

:n the


As a result, the cloud point temperature interface moves closer<br />

<strong>and</strong> increase heat <strong>and</strong> mass transfer rates between bulk <strong>and</strong> wall.<br />

Increased flowrates will decrease the boundary layer thickness<br />

temoerature was also raised.<br />

more <strong>wax</strong> deposited at increased concentrations, although the<br />

- 70 —<br />

<strong>paraffin</strong> <strong>wax</strong> arttces.<br />

opposite to <strong>deposition</strong>, they are not likely to control <strong>paraffin</strong><br />

<strong>deposition</strong> studies (Section 5) it was found that the <strong>wax</strong> deposited<br />

temperature of the solid <strong>wax</strong> decreases. It has been shown how<br />

in a given time decreased with flowrate. It was also found that<br />

<strong>wax</strong> <strong>deposition</strong>. Momentum transfer or shear stresses also increase<br />

both heat <strong>and</strong> mass transfer rates increase with flowrate, the<br />

<strong>deposition</strong> at asymptotic conditions decreases with flowrate. Since<br />

with flowrate <strong>and</strong> decrease the number of particles able to derosit<br />

particles capable of depositing because of their differer;t sizes,<br />

li:nitirg factor, but the cohesive properties of the particles<br />

to the wall, shear stresses at the wall increase <strong>and</strong> the surface<br />

The transport of material to the surface is therefore not the<br />

derositing. :ncreased shear stresses will decrease the number of<br />

ayer tnc.-ness w.u cecrease anc. tne emperature ncrease in tne<br />

shaoes <strong>and</strong> packir. properties.<br />

ture was increased, other variables remaining constant, the <strong>wax</strong><br />

temperature. If exoerimental conditions were such that the ;emera—<br />

immediately after breakdown <strong>and</strong> removal.<br />

during the rapid asymptotic ‘oui:.dup. It is anticipated that heat<br />

conditions it was shown in Section 7.4 how heat flux decreased<br />

transfer may play an equally important par; as momentum trar.sfer,<br />

.ounsary ayer wt Lecrease ne conesive properties 0: the<br />

Cohesive proerties of <strong>wax</strong> particles are also affected by<br />

thile heat transfer is not the limiting factor at asymptotic


Increased flowrate <strong>and</strong> temperature therefore both decrease<br />

increased concentration increases the total number of particles<br />

build up.<br />

the number ofparticles having cohesive properties to deposit while<br />

increases the probability of cohesion.<br />

An increase in <strong>wax</strong> concentration, at unchanged temperature <strong>and</strong><br />

flow conditions, will move the Cloud point temperature interface<br />

away from the wall. More particles will be formed in the extended<br />

boundary layer suspension <strong>and</strong> the greater number of particles<br />

tion progresses. The main factors causing breakdown of raraffin<br />

shear stresses that decrease <strong>and</strong> increase respectively, as derosi—<br />

<strong>paraffin</strong> <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> are robably he hea: flux <strong>and</strong><br />

7.9 Conclusions<br />

— 71 —<br />

The main factors influencing the asymptotic behaviour of<br />

<strong>wax</strong> deposits are most likely the creation of planes of weakness<br />

The amount of <strong>wax</strong> that deposits or is removed, giving rise<br />

<strong>wax</strong> deposited at any one time.<br />

The mechanism of <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> is<br />

formed in the boundary layer. Fiowra;e <strong>and</strong> temperature decrease<br />

by greater <strong>wax</strong> concentration in the bulk solution.<br />

in the <strong>fouling</strong> studies, is typically 10—20 per cent of the total<br />

probably controilecL by the cohesive properties of the <strong>wax</strong> particles<br />

the number of particles able to deposit while the umber is increased<br />

present <strong>and</strong> thereby the <strong>deposition</strong>.<br />

to the r<strong>and</strong>om fluctuations in the overall heat transfer resistances<br />

inside the deposits <strong>and</strong> the increase in shear stresses as deposits


OD<br />

(2<br />

()<br />

Li<br />

C)<br />

(n


— 72 —<br />

8. ICOi’NDATTCNS<br />

It is recommended that further work should be done on <strong>fouling</strong> of<br />

heat exchanger tubes to produce date for evaluation of the various<br />

<strong>fouling</strong> models.<br />

Any work using the present <strong>fouling</strong> studies apparatus<br />

should include friction factor measurements.<br />

The apparatus would be<br />

improved if the 24 hour fluctuations of flowrate <strong>and</strong> temperature arising<br />

in the cooling water mains, could be eliminated.<br />

Considerable scope exists for further work using the <strong>deposition</strong><br />

apparatus.<br />

It is recommended that a high melting point <strong>paraffin</strong> <strong>wax</strong> be<br />

used in a close boiling range solvent.<br />

The <strong>wax</strong> determination method<br />

should be improved.<br />

Extensive data on one solution at different<br />

concentrations, temperatures <strong>and</strong> flowrate would allow the evaluation<br />

of the <strong>deposition</strong> <strong>and</strong> <strong>fouling</strong> models that have been proposed, particularly<br />

to demonstrate how the initial <strong>deposition</strong> rates depend on fiowrate.<br />

Some<br />

fundamental problems of interest in <strong>fouling</strong> include; the<br />

behaviour of small particles in boundary layers, the effect of cooling<br />

<strong>and</strong> shear stresses on cloud <strong>and</strong> pour points, composition <strong>and</strong> crystallisa—<br />

tion of particles <strong>and</strong> deposits, shape <strong>and</strong> size of partIcles <strong>and</strong> the<br />

adhesion properties to smooth <strong>and</strong> rough surfaces.<br />

Underst<strong>and</strong>ing of these prbblerns would help explaining the character<br />

istic buildup <strong>and</strong> removal of <strong>paraffin</strong> <strong>wax</strong> deposits.


— —<br />

9. CONCLUSIONS<br />

The nature <strong>and</strong> properties of solutions containing <strong>wax</strong> foulants have<br />

been studies in the oil industry where extensive work has been done<br />

on <strong>paraffin</strong> <strong>deposition</strong> at laminar flow conditions.<br />

In the present work the effects of flowrate, temperature, concentra<br />

tion <strong>and</strong>. time were investigated.<br />

The experimental flow conditions were<br />

turbulent <strong>and</strong> solution bulk temperatures were kept well above the cloud<br />

points.<br />

I; was found that <strong>paraffin</strong> <strong>wax</strong> <strong>deposition</strong> increased asymtotic—<br />

ally to some<br />

critical value <strong>and</strong> then broke dom to build up again, giving<br />

rise to r<strong>and</strong>om fluctuations.<br />

The amount of <strong>wax</strong> depositing <strong>and</strong> the<br />

magnitude of the fluctuations, resulting from the buildup <strong>and</strong> removal<br />

process, were found to decrease with fiowrate <strong>and</strong> temperature, but<br />

increase with concentration.<br />

3y calcuiathng temperature distributions the raraffin <strong>wax</strong> was found<br />

to come out of solution inside the boundary layer at a temperature inter<br />

face eaual to the cloud Doint.<br />

From the interface to the <strong>deposition</strong><br />

surface there existed a suspension of <strong>wax</strong> particles in kerosene.<br />

The<br />

temperature of the <strong>deposition</strong> surface was at or below the solution rour<br />

point.<br />

The breakdown <strong>and</strong> removal of derosits is considered to be due to<br />

crystal transformation at the tube wall giving rise to planes of weakness<br />

resulting in failure.<br />

The <strong>deposition</strong> mechanism is thought to be controlled<br />

by the cohesive prorer;es of tne <strong>wax</strong> partcles in tne bounary iayer<br />

suspension.<br />

Low shear stresses <strong>and</strong> high concentrations both increase<br />

the rrobabili;y of cohesion.


EEfiDN2WON


:0<br />

e = Roughness factor<br />

Cp = Heat capacity<br />

C, Discharge coefficient (= CD)<br />

c = Concentration<br />

b = Constant<br />

= rea of flow passage<br />

?‘)MNCLTURE<br />

— 7 —<br />

h = Enthalpy<br />

X = Anount deposited<br />

A = Hcat transfer area<br />

k Thermal conductivity<br />

Pr = ?r<strong>and</strong>ti nunber<br />

n = Constant or exponent<br />

q = Heat flux<br />

S = DCCi.C gaV;y<br />

R = Overall resistance<br />

R. = Fouling resistance<br />

r :adius<br />

R. = Outsicie tue zcu.in ress;ance<br />

R = ‘al. resistance<br />

Re = Renolns nu:<br />

= verage Rajnolds ncber<br />

= Osi tube resistance<br />

= Gas cons:an<br />

= .sya’xotic <strong>fouling</strong> r.sis;ance<br />

= inside tube <strong>fouling</strong> resistance<br />

= aea; cranszer rate<br />

= Pressure difference<br />

= Constant<br />

atent heat of fusion<br />

= Fluctuating enthalpy


T TemDerature<br />

T = Average temperature<br />

= Dimensionless teriperature<br />

= iean temperature difference<br />

T,<br />

= Boiling point<br />

= Estir.iated cloud point<br />

= Bulk teriperature<br />

—<br />

—<br />

— 75 —<br />

T = Pour point<br />

3 = Ielting point<br />

T = Cloud point<br />

= Temperature difference<br />

Ta = Average cooling water temperature<br />

Tb = Average bulk temperature


+<br />

= Average velocity at centre of tube<br />

= Dzmensionless ve±ociy y1<br />

u = Velocity<br />

u = Average velocity<br />

— 76 —<br />

U = Overall heat transfer coefficient<br />

v’ = Fluctuating velocity<br />

x = Xole fracticn,axial direction or deposit thickness<br />

W = Flowrate<br />

u’ = Fluctuating velocity<br />

y = Radial distance<br />

u = Dimensionless velocity<br />

y = Dimensionless cstance<br />

+ +<br />

= Dimension.ess ciszance at<br />

÷ +<br />

= Shearing stress velocity


= :ieat eddy dfusivity<br />

= Xoent eddy di±’usivity<br />

= Constant<br />

13 = Constant<br />

a = Constant orEh/Cu<br />

— 77<br />

P = Density<br />

v = Kinematic viscosity<br />

T = Momentum flux<br />

1’ = Viscosity<br />

(U = Viscosity at wall<br />

Ti! = Momentum flux at wall<br />

0 Contact angle<br />

= Density at waJ<br />

= Deposition fuic;on<br />

= Removal function


Siid


in Exchar.ge: Tubes”, Chem. Engr., CEI51, (March 1973).<br />

4, Walker, R.A., Eott, T.1, “Effect of Roughness on Heat Transfer<br />

Chem. Engr., cE216, (June 1969).<br />

Chera. Engr., CE391, Nov. 1971.<br />

University of Birminam, 1973.<br />

1. \‘1alkr, R.A., “Polling in Heat Exchanger Tubes”, Ph.D. Thesis,<br />

xcs<br />

— 78<br />

10. Hunt, E.3., “aboratorr Study of Paraffin Deositicn”,<br />

13. Shock, D.A., Sudhury, J.D., Crockart, J.J., “Studies of ;he<br />

12. Jorda, R.M., “Paraffin Denosition <strong>and</strong> Prevention in Oil ells”,<br />

11. Patton, C.C., Jessen, F.W., “The Effect of ?etroeu:’. Residua on<br />

14. •Reiste, C.E., “Paraffin <strong>and</strong> Congealing Oil Problems”,<br />

15 AST 22500—56 <strong>and</strong> I? 219/57<br />

2. Bott, T.R., “industrial Fellow Report on Heat Transfer’,<br />

6. Eott, T.R., “Fouling in She <strong>and</strong>—Tube Heat Exchangers”,<br />

3. Bott, T.R., Walker, R.A., “Poullag in Heat Transfer Equipment”,<br />

7. Bott, T1R., Walker, R.A., “Fouling in Heat xchaager Tubes — Some<br />

8. Taborek, J., Aoki, T., Ritter, R.3., Palen, J.W., Naudsen, J.G.<br />

9. Watkiason, A.P., “Particulate Fouling of Sensible Heat Exchangers”,<br />

Proceedings Syraaosium Advances in Thermal <strong>and</strong><br />

5. Walker, R.A., Eott, TR., “An Arproach to the Prediction of<br />

Fouling in Heat Exchanger Tubes from Existing Data”<br />

Mechanical Design of Shell—<strong>and</strong>—Tube Heat Exchangers,<br />

Trans. Insta Chem. Eagrs., 51, 165—167 (1973).<br />

Observations”, D.S.I.R. — S.A..Ch.E. — S.A.i.Xech.E.<br />

Birniehill Institute, N.E.L., Glasgow, (November 28th,<br />

Heat Exchangers, Johaunesberg, April 1974<br />

Symo. Heat Transfer <strong>and</strong> the Design <strong>and</strong> Operation of<br />

1973).<br />

Behaviour”, Char. Eng Prog., 68(7), 69-78,<br />

Ph.D. Thesis, University of British Columbia,<br />

Transfer”, Chem. Exg. Prsg., 68(2), 59—67<br />

Clcud Roin; of Petroleum Oils”.<br />

Paraffin Deosition From a Heptane—Refined Wax<br />

J. Ret. Tech., 1605—1619 (Dec. 1966).<br />

J. Pet. Tech., 1259—1269 (Nov. 1962).<br />

Setu. 1968.<br />

“Pouling The Major Unresolved Problem in Heat<br />

System”, Soc. Pet. Engrs. J., 333—340 (Dec. 1965).<br />

(Feb. 1972) <strong>and</strong> “Predictive Methods for Fouling<br />

J. Pet. Tech., 23—28, Sept. 195)).<br />

Mechanism of Paraffin Derosition <strong>and</strong> :ts Ocatrol”,<br />

(July 1972).<br />

3u11 ls::•:,<br />

5L8, (1952).<br />

1


17. Nazee, W.M., “Modern Petroleum Technology”, Institute of<br />

29. Lee, S.L<br />

33 (7), 806—812 (July 1938).<br />

1st ed., (1960).<br />

md. Eng. Chem., 19, 935—8 (1927).<br />

‘Crystallisation of Paraffin Wax”,<br />

19. Guthrie, V.B., “Petroleum Products H<strong>and</strong>book”, McGraw Hill,<br />

20. Rhodes, F.H., Xason, C.W., Sutton, W.R,<br />

Petroleum, 4th ed., (1973).<br />

“Pour Point of Petroleum Oils”.<br />

— 79<br />

—<br />

McGraw Hill, 3rd ed., (1960).<br />

50. Jessen, F.W., :c’.:el, J.N., “ffect of Flow Rate on Paraffin<br />

21. Holder, G.A., Winkler, J. “Wax Crystailisation from DistIllace<br />

16. fST: 97—67 <strong>and</strong> ]? 15/67<br />

22. Tronov, V.P., ‘ffect of Fiowrate <strong>and</strong> Other Factors on the<br />

28. Brenner, H., “Hrc.rodynamic Resistance of Particles at Small<br />

24. Berne—Allen, A., Work, LT., “Solubility of Refined Paraffin<br />

25. Rafikov, S.R., Cutsalmk, V.G., Epelbaum, K.E., Yatsenko, E.A.,<br />

27. Davies, P.A., Ph.D. Thesis, University of 3irminnam, (1972).<br />

18. Cruse, W.A., Stevens, D.R., “Chemical Technology of Petroleum”,<br />

25. Davis, D.S. “Nomograph for Paraffin Wax Solubility in ?etroieum<br />

26. i\athan, C.C., “Soucii.ity Szucies on alga oecuar eca araffn<br />

0, Einav, S., ‘Migration in a Laminar Susension Bouadar:,<br />

Pet. Trans., AkE, 215, 80—87 (1958).<br />

Haifa, (1971).<br />

Accumulation in Plastic, Steel <strong>and</strong> Coated Piue”,<br />

Laser—Dopp.er Anemometer”, Progress in :ieat :raasr,<br />

Formation of Paraffin Deposits”, Tr., Tatar. Neft.<br />

Fuels”, J. Inst. Pet., 51 (499), 228—252 (July 1965).<br />

Academic Press, (1966).<br />

Hydrocarbons Obtained from Petroleum Rod Waxes”,<br />

:ernationai Symposium on Two—Phase Systems,<br />

Reynolds Numbers”, Advan. Chem. Eng., 6, 287—438,<br />

Pet. Trans., AI, 20f, 151—155 (1955).<br />

6, 384—03. Pergamon Press, (1972), Proceedings<br />

Paraffin—Based Petroleums”, 14t. Chem. Eng., 13 (3),<br />

Sdobnov, E.., “The Rheological Properties of<br />

Fractions”, md. Eng. Chem., 30, 1293 (1938).<br />

Waxes in Petroleum Fractions”. lad. Eag. Chem.,<br />

Nauch. — ssled. Inst., No. 13, 207—30, (1969),<br />

500—506 (July 1973).<br />

(m Russian).<br />

ayer easured by the Use of a Two—Dimensional


Oil Gas J., 58 (38), 87—91 (Sept. 1960).<br />

32. Perry, J.H., “Chemical Engineers H<strong>and</strong>book”,<br />

Cole, R.J., Jezzcn, F.W., ‘Paraffin Deposition”,<br />

(1971), (In Russian).<br />

33. Armenski, E.A., Novoselov, V.F, Tugunov, P.1.,<br />

McGraw Hill, 4th ed, (‘950).<br />

17—24 (March 9970).<br />

Wax — Solvent Systems”, Soc. Pet. Engrs. J.,<br />

- 0 -<br />

“Paraffin Deposition in Short Pirelines”,<br />

Izv. Vysak. Ucheb Zaved., Heft Gas, 9- (7) 71—3w<br />

6. Kolesnik, .0., Lukashevick, 1.?., Susanina, 0.0.,<br />

8. Zisrnan, W.A., “Influence of Constitution on Adhesion”,<br />

57. Parks, G.E., “Chemical Inhibitors Combat Paraffin Deposi;ion<br />

31. Patton, C.C., Caaad, B..., “Paraffin Deposition from Refined<br />

39. Nelson, W.L., Stewart, 1.2., “Effect of Oil on Plastic ?rcser;ies<br />

40. Shepard, J.C., “Theory <strong>and</strong> Mechanism of :iaffin Deposition”,<br />

41. Muravev, i.X., Osk, l.A., Mishchenho, .T.,<br />

43. McAdar.:s, W.H., “Heat Transmission”, McGraw Hill, 3rd ed., (195--).<br />

42. Nelson, W.L., “Petroleum Refining En;ineerin;”, McGraw Hill,<br />

44. :cezso, W.L., ‘TouTh; of Ee.t :changers”, Refiner <strong>and</strong> Natural<br />

4. Deissler, 2.0. “Thrbulent }eat Z’ansar <strong>and</strong> frioticn in<br />

Lin, Oxford University -ress, (9959).<br />

<strong>and</strong> 13 (6), 292—298, (Aust 193).<br />

4th ed., (9958).<br />

(1949).<br />

nd. En;. Chern., 55, 99 (1953).<br />

Oil Gas J., 58, 97 (April 4th 1960).<br />

85—8, (1971), (In Russian). —<br />

Isv. Vyssh. Uche. Zaved, Heft Gaz, 14 (2),<br />

12 (2), 35—9, (1969), (In Russian).<br />

Deposition” Izv. Vyssh. Jcheb. Zaved., Heft Gaz,<br />

35. Pustogov, V.1., Federov, EE., “Role of Temperature in ;ax<br />

“Effect of Temperature on Paraffin Deposition”,<br />

of Petroleum Waxes”, md. En;. Chem., 41, 2239,<br />

Short Course, University of Oklahoma, (1958).<br />

Presence of Sumerfactants”, Heft Khoz., -8 (12),<br />

‘-8—5, (n Russian).<br />

Digest, Proc. of first Annual Paraffin Conhro<br />

Gasoiene aziufacturer, 93 (7), 279—275, (July 995--)<br />

Valume 7, Section , Convective ieat Transfer <strong>and</strong><br />

Passages”, HiCk Seed .erodynamics <strong>and</strong> Jet Proralsion,<br />

“Crystallization of Paraffin in Solution in the<br />

friction in flow of licuids, 238—33?, falter D.C.<br />

t,


— 81 —<br />

46. Coulson, J., Richardson, J.P., “Chcnical Engineering”,<br />

Vol. One, Pergarnon Press, Revised Second Edition,<br />

(1970) -<br />

47. Cooper, A., “Recover More Heat with Plate Heat Exchangers”,<br />

Chern Engr., No. 285, 280—285, (May 1974).<br />

48 St<strong>and</strong>ards of the Th’oular Exchanger Manufacturers Association,<br />

5th edition, New York, (1968).<br />

49. Galloway, T.R., “Heat Transfer ?ouling Through Growth of<br />

Calcareous Ruin Deposits”, mt. J. Heat Mass<br />

Transfer, 16, 43—460, (1973).


U<br />

U<br />

F--I<br />

C)<br />

(f


i S-i Ti .1” 0 -P<br />

-‘‘ •) 0 ci .i Pu<br />

c- • 0 -4 ci ‘‘ flu<br />

ci Si S-i Si H<br />

U -P H -P ‘) Ui<br />

H S-i UI d C) H Cc)<br />

2c ii)) ci 0 “Si c- •, c<br />

‘i c,ci LI—i ci) 4<br />

o ii Si 0 ‘-4<br />

-d ci) •<br />

o a ci) H<br />

0 i cci f r1 1<br />

4) 0 U)<br />

4) Q) U) U) U) 0 ‘Si Cci<br />

1 C)<br />

r4 ‘Si LC () I))<br />

o U) $ -P I”i<br />

H 0<br />

ii Si u<br />

ci)<br />

o<br />

Si 0 fl. 0<br />

cii<br />

0<br />

Si<br />

ci.)<br />

ri 0<br />

4.) • H<br />

C) r4<br />

U) 0<br />

Si<br />

0<br />

(I)<br />

d<br />

r1<br />

cii ci<br />

UI)<br />

if<br />

r-i II)<br />

Si<br />

‘Si -<br />

.rc ci)<br />

cii •<br />

S-i<br />

Ai 1.1)<br />

ci Si 0<br />

CI) Si Si ci)<br />

C<br />

0<br />

Si o<br />

ci Cc) 4,)<br />

lf<br />

U)<br />

,Si<br />

0<br />

Si CD<br />

C[<br />

ci) Si<br />

I:)<br />

ci<br />

0<br />

Si<br />

r- 0<br />

,i<br />

i)’<br />

Si (‘2 ci Si<br />

(I) P<br />

cc-i<br />

P-i<br />

0<br />

Si -4 U)<br />

‘Si Cc) C U) U) ,i H<br />

ci •<br />

U) “4<br />

‘1<br />

Cl<br />

0<br />

‘Si<br />

ci ri<br />

ri<br />

-P<br />

ci flu Cl<br />

cci<br />

Pu<br />

-“4 -i<br />

4.)<br />

‘J<br />

‘2) C-)<br />

0<br />

1 -O Ii)<br />

Ci<br />

c.4 Ii<br />

cci)<br />

U ii<br />

C!)<br />

“2<br />

“1<br />

4.)<br />

,‘2 C-)<br />

C— Si<br />

-1<br />

(4 :1 C--i<br />

)<br />

.4<br />

C-u ‘Si P, 0 ci<br />

0<br />

-< cci<br />

C) C-) 0<br />

Si<br />

ci 5-.<br />

Si P<br />

cii<br />

(2)<br />

0<br />

0<br />

‘2<br />

Pu<br />

C) Si<br />

Si U) C--u<br />

ii) Si •<br />

Si -Si ‘Si<br />

U’ ‘H<br />

‘ci ci Si C-i<br />

Si 5-. C) C)<br />

ci i’D CI)<br />

P<br />

C-i<br />

‘Si C) (‘—i Ii) U)<br />

2 r. a v ci r- s-.<br />

ci.) Si o Si Si<br />

ci c-— ‘cJ Lf’ .5) C) (I)<br />

—i<br />

_— • ,X) Si Cc)<br />

o<br />

j) cij Ci P cii 0 Ci ci)<br />

o ii ,i — ci 1i Si ‘4 ci<br />

o ,i ---c o<br />

o<br />

•r-i<br />

o


The o1ubi1ity of 5i/54°Cparafin <strong>wax</strong>, in kerosene wac measured by<br />

Tue pour point 0: i/p4°C purafiir <strong>wax</strong> n :erosene was aiso aeasureo<br />

‘-- .—.<br />

uinr he stadard cloud point method(15). The results are given in<br />

2 SoIubi1ir<br />

)<br />

waues, are Given in Tables A.2.2 — A1.2.5.<br />

uthr data, a:: the soubillty of :ea-affin <strong>and</strong> micrccrystaire<br />

n 01 C.<br />

that the our eoiat is give:: in multiples of 5°C <strong>and</strong> the cloud point<br />

found to be 5—4°c bebow the cloud point. it should be noted<br />

using the st<strong>and</strong>ard method°. For a given concentration, the prnr<br />

— —


—<br />

- 5<br />

The viscosity of <strong>paraffin</strong> <strong>wax</strong> in kerosene solutions was measured<br />

by aiker<br />

in a capillary viscometer.<br />

The exoerimental data were fitted to the Walther equation:<br />

lOg log (i’ +1) = a log T + ...... (Ai.3)<br />

where P is the absolute temperature in °K, i’ the kinematic viscosity<br />

in cS <strong>and</strong> a, , y csnstans.<br />

The constant y was eva’aatea y successive approximation, as outlinec.<br />

. . .•<br />

. (27) •<br />

sy<br />

.<br />

iavaes . lmcing ;ae average va.ue o’ - as Q9p), c. anc. were<br />

evauated t different <strong>wax</strong> concentrations.<br />

These values were plotted zn<br />

-. _o -<br />

z:g.<br />

•• ,- —-<br />

so taat vascost:es o: C<br />

.. . -<br />

rarain <strong>wax</strong> in erosene soi.u—<br />

tons coua Dc es,;aaatea Smoo;nes vaiues or tne viscosaty measurements<br />

oDtalnea by !aer are plottea in iig. .3.2.


— —<br />

.‘.ti+<br />

c:Lic gravity<br />

The spoct:ic gravity oi raraffin wac in kerosene solutions at<br />

a1jron; to<br />

ratures ias r.ures oy ier(1).<br />

.‘ne anta saowaci that <strong>wax</strong> concentration hac a negiigibe eziect on<br />

the specific gravity of <strong>paraffin</strong> <strong>wax</strong> in kerosene solutions.<br />

The data<br />

was found to be weil rcpresento. by:<br />

S = 0.7962 — 00D0729T . (.4)<br />

where T is in C. This corresponds to an ?.P.i. gravity of 50.40.<br />

Succific n3at<br />

The specific heat of an oil with an .i.P.I. gravity of 50.4° was<br />

taken as (42)<br />

0.4036 0.00’62T<br />

.....<br />

whore Cp is the specific heat in Btu/ib °F <strong>and</strong> T is in 0C.


— A5 —<br />

..-6 ThD-1 DQactiv1r<br />

Thc<br />

e:rosion used by Wa1ke for the thersal conductviy of<br />

paraz<br />

<strong>wax</strong> in keroser.e was:<br />

1: = (869 — 00045 T) /100 .... (16)<br />

where Ic<br />

is the thermal conductivity in Btu/hr<br />

0,<br />

<strong>and</strong> T in °C.<br />

Tao reference from whica this expression was obtanea is not cnown.<br />

The thermal conductivity of pure kerosoac at i80c4 <strong>and</strong> of an<br />

o(f•)<br />

uaociuea <strong>wax</strong> at 0 C wore given as O0CSo ana 0. tu/nr it. i<br />

respoc;jvely 0 Using equation ?1 .6 the thermal conductivity at correspond—<br />

jag temperatures ‘.;ould be oo86i <strong>and</strong> 00B69 Btu/nr. ft.°11’.


In section Al .4 the auount of pcraffin <strong>wax</strong> dissolved in keroceno<br />

characterizing keroseae.<br />

8) have stated taat specific gravity is the best tay of<br />

<strong>and</strong> stve,as(1<br />

was shown to have neGliaible effects on the specific gravity. Cruse<br />

Al.7 D3cucaion<br />

1•<br />

present <strong>fouling</strong> studies.<br />

used, with a fair degree of accuracy for the solutions usqd in the<br />

nature, t2ic specific heat <strong>and</strong> thermal conductivity of kerosene can be<br />

Because pcraffin <strong>wax</strong> <strong>and</strong> kerosene are so s4 in chezical<br />

— —


(:)<br />

rr<br />

0<br />

Ill<br />

U,<br />

.<br />

CD<br />


0 •) X<br />

S (N<br />

U<br />

‘0<br />

-°<br />

CD<br />

c-)<br />

( -<br />

(._) i)<br />

n_ — - C fl<br />

0<br />

[1)<br />

— Iii<br />

i’c C)<br />

;:.- C)<br />

C)<br />

(.:)<br />

LiJ<br />

[ii<br />

,lI ;:<br />

Lii<br />

;<br />

{(<br />

lii<br />

IL<br />

fl_ tJ_<br />

0:::<br />

iii -< f<br />

E0 dD) ,kJJSODSIA—r/


0<br />

:<br />

0<br />

4-)<br />

ri<br />

()<br />

0<br />

(‘C<br />

0<br />

“C<br />

C’)<br />

I-’<br />

0<br />

‘J) C)<br />

C-,<br />

C)<br />

C-i<br />

11<br />

4.)<br />

N<br />

I<br />

C)<br />

‘C<br />

0<br />

0 4.)<br />

i-H CD r N CO UN CO 1f’ 0 U-’i ()<br />

—z- C”. C)’i c 0 N v<br />

N -<br />

N N<br />

C) 0,<br />

CI)<br />

U<br />

0<br />

(U<br />

f:-- 1<br />

0<br />

0<br />

I<br />

9<br />

H N C) C’- C) N 0<br />

Co<br />

C’) Cli UN ‘-.0 0\ U’<br />

i—I<br />

‘r4<br />

0<br />

CCI<br />

CH<br />

11)<br />

I--I<br />

r1<br />

0<br />

C-i<br />

C)<br />

C)<br />

C’)<br />

“5<br />

‘I<br />

C,<br />

C-i<br />

4,<br />

(U<br />

0<br />

Ti<br />

Cl)<br />

c-.- o ir g’ ic’, UN Co -.- o<br />

N N Cli UN UN -<br />

CO 0 0 ‘.-- ‘. -<br />

0<br />

I I I • I I • I I<br />

N -t ‘0 (3’ UN O- UN (,,‘ C.)<br />

- C) C;”<br />

i- Cli i\J -<br />

‘C—<br />

C’.<br />

C)<br />

H<br />

C)<br />

1—-i f-,. 1


I-]<br />

H<br />

— C<br />

C) p<br />

0’ H 0’<br />

H<br />

CD C) CD<br />

\.Tj 0 ‘Ji<br />

• •<br />

‘J N N<br />

• r’<br />

4<br />

N ro 0 0<br />

‘.i4 C<br />

‘_“<br />

‘5)4 C’<br />

I”.<br />

C) C)<br />

CD C) F’<br />

H)<br />

C)<br />

C) C)<br />

C)<br />

‘rC)<br />

C) C) H<br />

H CD C)<br />

0<br />

C) C)<br />

ci c- C) C) C)<br />

S_SC)<br />

0 p d<br />

C)<br />

F) ci ‘‘<br />

C) H) ci<br />

C) ‘- C)<br />

5—<br />

J -3 ‘•“C) 0 H’J<br />

C’ C) 0 C) C) HO<br />

H’ C) C)<br />

C) H) C) ‘1<br />

F”<br />

‘ C’ ‘)<br />

C)0j 10 C) C)<br />

1H C) H’ F-”<br />

C) ,-,, )_. ,<br />

< 0<br />

C’ F” --.)<br />

‘—‘ 0<br />

C) C) -,.,p I-” 0<br />

—S<br />

(1”,)<br />

C) C)<br />

N N H)<br />

- o -r c-)<br />

‘J4 ‘.1) [) O’ C) 3 CD C 1 C) C)<br />

‘— 0 ‘—i C) H’ ‘C)<br />

H’ C) H<br />

H)<br />

C) C) ,i F’’<br />

CD C) C) C)<br />

CD ‘‘C<br />

C)F-


— A9 —<br />

Table Ai.2.4 Cloud <strong>and</strong> our ioiciiarnt<br />

ConcDntl’:.3 of a 0/63’C fiüiy<br />

refinc rra±1in in kcroacne<br />

Weigit <strong>wax</strong><br />

(C,<br />

/3<br />

1’<br />

Oi1<br />

(°c)<br />

Pour oint<br />

(°c)<br />

2.6<br />

27<br />

22<br />

5.3<br />

32<br />

29<br />

10.3<br />

39<br />

34<br />

13.1<br />

42<br />

36<br />

Table<br />

Cd an our nircs a diffeea<br />

cOa.;nra1OnS o a o0o C iincro—<br />

cr:stallie :iz kercsene<br />

-- —<br />

W..<br />

Ic’<br />

Pour z.:a-;;<br />

(0<br />

2.6<br />

3.9<br />

5.1<br />

7.9<br />

< 10<br />

3D<br />

32<br />

37<br />

41


fully refined <strong>paraffin</strong> <strong>wax</strong> in kerosene.<br />

:.ppenai:c 1, experiirental results are given for the solubility of 51/5+°C<br />

the solubility of refined <strong>paraffin</strong> <strong>wax</strong>es in hydrocarbon solvents. In<br />

In section 2.2.3 eirica1 <strong>and</strong> theoretical expressions were given for<br />

PAAFFi ‘!fX Ii’! iROIii<br />

AiDP:I?i:::J. SULW-aLL’LI CJ<br />

APPENDIX 2 CCVPATTs0 CF i__OTTIc p.1, • E:PIPIcAL<br />

To oo;azn tac naten; na; 0I zusaca ar ;ne zonecu_ar wen 0..<br />

cisaovec. <strong>wax</strong>.<br />

/<br />

the uairsal as constant <strong>and</strong> the latent head of fusion ofthe<br />

<strong>wax</strong> citwa; :zoiat T <strong>and</strong> the solution teaperature T, are in I<br />

gives the r.oie fraction x of paraf:n <strong>wax</strong> c.asso_vea n eros.ne. ne<br />

/ ......... (2.2.3.2,<br />

lax = — :-— —<br />

1<br />

The theoretical equation:<br />

are ivn as :er cent <strong>wax</strong> in solution.<br />

averaged to give the values in Table A2.1, where the <strong>wax</strong> concentrations<br />

The soub±iity was calculated a; selting points 51 anc 54°C <strong>and</strong><br />

avera:ed to give Tb as 194°C.<br />

at ;hich 10, 30, 50, 70 <strong>and</strong> 90 per cent of the kerosene had evaporated,<br />

..pnd:: 1 • s recoasended by Lerne—Alien <strong>and</strong> Work 24) teaporatre<br />

The averase kerosene biiin, point was derived froi Table .1.1 in<br />

teaperature, ai in<br />

soaven; point. T the <strong>wax</strong> melting point <strong>and</strong> T the ao1ubii;y<br />

;ne concen;ra;ion c s expressec.. n g/aOO rnl sovent. Tb is ne<br />

bj 1.1357 . 23 )<br />

— 2.97<br />

.A.<br />

‘I— — CT-)<br />

In the er.ipirical equation:<br />

theoretical relations coapared with the experimental results.<br />

It was conso.ered iaporant to investigate how the erpiricai <strong>and</strong><br />

- AlO —


— A91 —<br />

parafi’in w, it was assumed to be composed entirely of one ncraal :araffin.<br />

The<br />

chain length <strong>and</strong> heat of fusion of this normal <strong>paraffin</strong> were obtained<br />

(26) 0<br />

rom Natnan . $or a normal <strong>paraffin</strong> with the melting point of 525 C,<br />

the chain length was estimated to be<br />

25, corresponding to a molecular<br />

weight of 352 <strong>and</strong> a latent heat of fusion of 18.88 kcal/mole.<br />

The average molecular weight of the kerosene was obteined from<br />

4)<br />

erne_iicn <strong>and</strong> wori2<br />

by assuming it to be ãfl aliphatic hydrocarbon<br />

solvent. A solvent with a boiling point corresponding to kerosene, the<br />

molecular weight was estimated to be 53.<br />

Table A2.1 shows the calculated theoretical solubility, expressed<br />

as per cent WaX<br />

in solution.<br />

The experimental solubility given in Appendix I<br />

<strong>and</strong> the empirical<br />

<strong>and</strong> theoretical solubilities calculated here, are plotted in fig A2.i -<br />

The capirical <strong>and</strong> theoretical solubility curves are similar in shape,<br />

tac foraer consistently preaictng aigaer saturation coacentratjons, a;<br />

at given temperature.<br />

-s tae souzion temperature rises, tne iz:erence<br />

tac ompirca ana tneore;icaj curves rses.<br />

The exerimental curve is fairly close to the empirical curve at<br />

low concentrations but then approaches <strong>and</strong> crosses the theoretical<br />

curve.<br />

It is n;erestng to note how ciose the experizen;a ana<br />

;neore;cal curves are at aiga concentrations..<br />

This 15 contrary to<br />

what was expected because iea.ty c.ecreases wtri increasec. concentration.<br />

It was considered that the similarity in the shape of the empirical<br />

<strong>and</strong> theoretical curves, indicated that the solvents used by 2crne—Allen<br />

<strong>and</strong> ork(2 were purer ana c’oser to eali;y taan tao commarcian graae<br />

used in the present work.<br />

The difference in the empirica. ana<br />

theoretical curves could be due to errors involving the assumptions<br />

rocua: to ootann ta. neat o :n.iioa 0: ae paran wX.<br />

As anscu&ioa n section 2.p ana saown in fig. 2.2...,<br />

rate affects ;ne cloud point oe;roleum <strong>wax</strong>es in hNdrooarbon solvents.


— A12 —<br />

The cloud point decrenses with increased coo1in rate. The true oquili—<br />

Dri.’. concentration saould theexore be sligaJy nigacr than tne<br />

experimental value, measured at a finite cooling rate.


)< 0 0<br />

-H rn rn<br />

t - ><<br />

rn —<br />

o m<br />

FIC A2.1 SoL1JI nv or 51 /I: O FULLY 1LFINLJJ PA[ALFIN W/\X IN K1’R OSE NE<br />

u<br />

1’<br />

C —<br />

WAX<br />

Co N CE N I [/I I 0 N ( % w<br />

C.)<br />

C) (3 CD C) CD C) C)<br />

— C.) .N Cl)<br />

r—-<br />

11<br />

— Li<br />

— :i> i:.i<br />

C:<br />

I<br />

C)<br />

L<br />

C)<br />

C?<br />

c.<br />

(3<br />

(ii<br />

C.)


— A3 —<br />

Tnble A2.1 Ca1culccd c iric:L nnd theDrctici<br />

solubility o± 751+JC fuLLy refinori<br />

rffin <strong>wax</strong> in kerosene<br />

Tezerature<br />

(°c)<br />

Weight per cent <strong>wax</strong><br />

Empirical<br />

Theoretical<br />

5 229 1.43<br />

10 4.26 2.78<br />

15 7.78 485<br />

20 13,77 1 8.41<br />

25 23.20 13.19<br />

30 36.34 22.31<br />

35 51.87 33.43<br />

40 67.04 51.58


The pressure transducer was calibrated using a deadweight pressure<br />

A3.2 Pressure transducer calibration<br />

—.4-<br />

A3..i Introduction<br />

TOULING STUD S APP.’TUS<br />

PPEDIX 3 IlTiEl’r CLIB’TT0DS F3<br />

Instrument calibratIons for the <strong>fouling</strong> studies apparatus were<br />

poi. Cu .r. .<br />

given bj:<br />

orifice were found by regression where the flowra W in lb/in.. was<br />

these results the calibration constant C.. <strong>and</strong>. xi for cash<br />

pressure crop across tae orfce meters p was neasurea n cm ag.<br />

dcharges over given time intervals at different fiowrates. The<br />

The cooling water orifice meters were calibrated by weighing the<br />

Calira;on of orifice reters<br />

nanufacturer’s test results are shown in Table A3.2.<br />

constant of 20.0 could be applied to convert the mV to p.s.i.g. The<br />

over its operating range of 0—200 p.s.i.g. <strong>and</strong> that a calibration<br />

The results showed that the transducer gave consistent readings<br />

transaucer output was measure on tac recorer an the poten;ome;er.<br />

small increments to 200 p.s.i.g. <strong>and</strong> cack again. After eacti step tac<br />

Starting rom zero p.s.i.g. the appliea pressure was increasea in<br />

of zero aV.<br />

200 p.s.i.g. gave an output of 10 n1V <strong>and</strong> zero p.s.i.g. gave an output<br />

tLe associated iF—00 conc.itionng module, so an applied Pressure of<br />

First, the zero span of the transducer output was adjustea u$ng<br />

Series 27000 recorder, which was used in the experimental work.<br />

by W.G. Pye & Co. Ltd. The transducer output was recorded on a ryans<br />

meter in conjunction with a Scanlamp Type 78915 galvanometer, both supplied<br />

tostr. The transducer output was measured with a Type 7565 Potentio—<br />

— A1+ —<br />

W<br />

=<br />

C


calibration constants are given in Table A3.3.2.<br />

Using equation 1.3.3 the calibration constants were obtained. The<br />

previously calibrated rotametcr.<br />

Because the solution dischargos from the toot sections back to the<br />

The values of CD<br />

sad n for each orifice are tabulated in Pablo A3.3.i.<br />

holding tank were inaccessible, the orifices were calibrated against a<br />

flowrate W is in lb/sin, as tafore, but 4p expressed in raV/100. The<br />

— A15 —


— A16 —.<br />

Table P.3.2<br />

Pressure transducer ca1ibration<br />

manufacturer& results<br />

Pressure<br />

(p.s.i..)<br />

Transducer output<br />

(niV)<br />

0 0.CO<br />

2.00<br />

8o 4.o<br />

120 6.02<br />

16o 8.01<br />

2D 10.00<br />

o0 o.0<br />

120 6.01<br />

80<br />

4.00<br />

40 2.00<br />

0 0.00


— Al? —<br />

Table A3.3.1<br />

Calibration constants<br />

for :ater orifice<br />

I2eters<br />

ThbeNo.<br />

CD<br />

I_______<br />

I 36.21 0.454<br />

2 31.60 0.498<br />

3 34.31 0.447<br />

4 30.28 0.488<br />

5 37.14 0.456<br />

6 35.32 0.525<br />

7 35.40 0.489<br />

8 38.72 0.438<br />

9 36.42 0.454<br />

10 37.23 0.473<br />

I


- AlS -<br />

Table A33.2<br />

Calibiation consats<br />

for SOi.UtiOfl orifice<br />

meters<br />

Tube 0.<br />

CD 11<br />

1 4.322 0.487<br />

2 4.987 0.464<br />

3 4.407 0.491<br />

4 4.417 0483<br />

5 4_44 0496<br />

6 4.457 0.497<br />

7 44 0.493<br />

8 4.580 0.457<br />

9 4.492 0.490<br />

L<br />

10 4.703 0.443<br />

I


— A19 —<br />

APPENDIX 4 THE PRDGR’M TTJBEX AND THE<br />

EXPEPIMENTAL RESULTS Oi’<br />

Ifl iOULANG STUDIES<br />

A<br />

program called TUBEX was developed to process the data obtained<br />

in the <strong>fouling</strong> studies, Section 4.<br />

The<br />

cooling water <strong>and</strong> solution flowrates were calculated using<br />

the calioration constants given in Tables A3.3.1 <strong>and</strong> A3.3.2 in equation<br />

A3 .3<br />

The physical properties of the <strong>paraffin</strong> <strong>wax</strong> in kerosene solution<br />

were calculated using the relations given in Appendix I, at the<br />

average bulk temperature.<br />

The appropriate Waither equation constants<br />

were obtained from figure A1.3.<br />

The overall heat transfer resistance was calculated from:<br />

R = T (4.i)<br />

2o<br />

ana was given in icW/m C. The heat flux was ana . he logan hniic<br />

mean :epera;ure ci fference .across tne exchanger.<br />

Pr<strong>and</strong>tl <strong>and</strong> Reynolds numbers were calculated in the usual way.<br />

Although the progra was made to calculate friction factors, the low<br />

zcnzitivity of the pressure transducer used (see Appendix 3), did not<br />

allow this.


C<br />

C PROGRtt’ NAMF TUEEX J.S.GUOMUNflSSCN 11.11.74<br />

C<br />

C<br />

DI’ENSICN CO(2,10) ,CNC2, 10)<br />

REAL I<br />

REAL*8 R<br />

N R P t GE = 30<br />

C READS ORIFICE CALIPTIO CONSTANTS<br />

C<br />

DO 9 1=1,2<br />

DO S K=1,10<br />

READ(5,10) COCI ,V),Cr(I,K)<br />

10 FOR’AT (2FIC.6)<br />

9 CONTINUE<br />

C<br />

C COOLED TEST SECTION DIMENSIONS<br />

C<br />

C<br />

L=3. 0<br />

D=C.516<br />

C 999<br />

CA=3.12*D*Df576.0<br />

AHT=3.11i2*D*L/i2. 0<br />

C RE.ES DETAILS OF RUN<br />

C<br />

1 READ(5.20) NT,JR,,<br />

1P<br />

20 FQR’AT(2(I2,8X),2F10.6,?6)<br />

IFU’T.LT.1) GOTO O<br />

NK=NR<br />

21 WRIiE(6,23) R<br />

23 F!iP’T (lH1////12X,4HUN ,‘6/)<br />

55 RITE(6,3)<br />

3 FOR<br />

2, 5X ,3HDP1,’X,3HflPT, X ,1FIV,3Y ,4HCF/ ?,‘.X, ?HP.Ff 13, ‘H( HR ) l,4( IX, H(<br />

80<br />

1/H)2 C)!)<br />

IF(M’.LC.NRPAGr) Gq]C 77<br />

RLA\O. 0<br />

P R A V 0


C<br />

NC = C<br />

C REiCS EACH SET OF RE[iJCS FOP UN<br />

C<br />

2 REAC(5,4) rr,TIME<br />

4 FOP.AT(I2 ,7X,F1U.6)<br />

IF(M’..LT.l) GOTO 30<br />

IF(M.EC.RP.GE) Gn1021<br />

77 IF(’.Ec.NRPAGE) NRPñCF=NPPACE+29<br />

REAO (5,22) TWT,TWO,1KI,TKO,C’K,PW,DPT<br />

22 FOR”AT(F9. 6,6F10.6)<br />

GOTC 66<br />

C<br />

C CALCULATES PHYSICAL PROPERTIES OF MIXTtJRE<br />

C<br />

66 T=(IKI÷TKO)/2.0<br />

SG=c. 796163—0.00C729T<br />

DEN=SG*O.99904*62.3<br />

CP=C.1j038+0.031 62 *T<br />

TK=( 8.69—O.0045*T)/100.O<br />

VLL=A*O.43434LflG(T+273.0)+R<br />

IF(VLL.GF.38.0) GOTO 16<br />

1]. VL=1C.O**VLL<br />

IF(VL.GE.38.J) GOTO 16<br />

12 V=1.C.0**VL—O.953<br />

V=V*36. 0/029. 0<br />

C<br />

C CALCULATES FLOWRATES<br />

C<br />

13 FK=CO(1,NT)(DPKC(1,’iT) )‘60.0<br />

15 FW=CD(2,NT)(DPWCN(2,NT))*60.0<br />

V K F K / ( 00 N * CA)<br />

VFPS=VK/3600.0<br />

VMS=W PS*J.3348<br />

C<br />

C CALCUI ATES REYNOLD5 uMPEP. Nfl PRANOTL NI)WER Fop SET OF EATA<br />

C<br />

C<br />

RE= (D/J 2.)) VK/’J<br />

PR=CP*V*DCN!TK<br />

C CALCULATFS HEAT TRNFFP PFSISTAtCF FOR DATA ST


C<br />

C<br />

0 11 = 1K I —<br />

T<br />

D T 2 -=1K o T —<br />

W 0<br />

W I<br />

HK=(TKI—TKtJ)*1.8*CP*FI<<br />

IF(flTI.NE.DT2) GOTO 88<br />

ALID-=D11*1 .8<br />

GO IC 89<br />

88 ALTD=( (f)T1—0T2) /ALOG(CTI/flT2))*I .8<br />

89 RF1=tHT*ALTD/HK<br />

RFSI=RF1/J. C05678<br />

C CALCULATES FRICTION FC1OR FOR CTA SET<br />

C<br />

C<br />

DpTt=DPI/5. C<br />

HEAD=144. 0CP14/DEN<br />

CFHEAD*D/ (L*12.0)*(3 2.?/(VFPS*VFPS) ) /4.0<br />

IF ( DPT.GE. 10.0) CF=9999.9<br />

C WRIIE CUT RESULTS FOP DATA SET<br />

C<br />

C<br />

WRITE(6,18) TIME,TWI,TWC,TKI,TKO,EPK,EPW,DPT,VMS,CF,RFST<br />

18 FOfU’AT(lX,11X,F6.2,4(1X,F5.2,1X),2X,F4.I,4X,F4.2,3X,F3.1,X,4.2,2<br />

5( 3X,F6.3))<br />

RE=REAV+RE<br />

PRA’=PRAV+ PR<br />

NC=rC-’-l<br />

GOTC 2<br />

C CALCULATES AVERAGE REYNOLDS \IJMBEP AND PRANDTL NUMBER FOR RUN<br />

C<br />

30 FNC=FLOAT(NC)<br />

REAV=PEAV/FNC<br />

PRAV=PRAV/FNC<br />

WRITE(6 ,31) REAV, PRA’I ,NC<br />

31 FORrAT(lFIO,11X,8HMEA RE ,F1O.1,9H ME/’N PR ,F8.2,13H NO. PEADINS,<br />

915)<br />

N P P t’ GE 30<br />

GOTC I<br />

16 WRITF(6,17) A, r3<br />

17 FOPMAT(1X.20UCECK A AND B A = ,Fl0.’!1 B = ,FlQ.)<br />

GOIC 1<br />

go s-Fop<br />

[NE]


13.42 7.40 7.SC 33.90 33.10 13.8 0.60 0.0 1.18 0.0 5.2C1<br />

13.50 7.5C 7.5C 33.90 33.00 13.3 0.65 0.0 1.16 0.0 4.SSI<br />

13.58 7.50 7.50 33.80 33.10 13.3 0.60 0.0 1.16 0.0 6.031<br />

13.75 7.5C 7.SC 33.80 33.10 13.4 0.60 0.0 1.17 0.C 5.cc8<br />

13.92 7.50 7.45 33.80 33.10 13.0 0.65 0.0 1.15 0.0<br />

14.08 7.40 7.45 33.70 33.00 13.0 0.60 0.0 1.15 0.0 6.085<br />

14.25 7.40 7.45 33.7 33.00 13.0. 0.60 0.0 1.15 0.0 6,085<br />

15.13 1.4C 7.3C 33.50 32.80 13.0 0.65 o.0 1.15 C.C 6.059<br />

16.25 7.40 7.40 33.40 32.80 12.8 0.65 0.0 1.14 0.0 7.111<br />

17.05 7.30 7.4C 34.10 33.3o 13.0 0.65 0.0 1.15 0.0 5.405<br />

42.03 7.60 7.60 33,40 32.70 13.5 o.5 0.0 1.17 0.0 5.969<br />

“4.08 7.55 7.50 33.30 32.60 13.8 0.75 0.0 1.18 C.C 5.913<br />

57.87 7,50 7.50 33.4 32.60 12.5 0.65 0.0 1.13 0.C 5.346<br />

60.17 7.50 7.50 33.20 32.50 12.5 0.65 0.0 1.13 0.0 6.076<br />

63.00 7.40 7.4C 33.20 32.60 12.5 0.70 0.0 1.13 0.0 7.130<br />

RUN A7—l<br />

TIME flU TWC TKI TKC OPK CPW CPT V CF/2 RF<br />

(UR) (0 C) (0 C) (0 C) (0 C) (MV) (CM.HG) (MV) (MPS)<br />

1.0/(/(1)2 C)<br />

18.13 7.50 7.EC 33.70 33.00 13.0 0,65 0.0 1.15 0.0 6.067<br />

19.10 7.55 7.75 33.60 33.00 13.0 0.7C 0.0 1.15 0.0 7.025<br />

20.33 7.55 7.60 33.90 33.20 13.5 0.75 0.0 1.17 0.0<br />

33.62 7.45 7.SC 33.50 32.75 13.8 0.65 0.0 1.18 C.C 5.470<br />

35.22 7.45 7.30 33.50 32.90 13.8 0.65 0.0 1.18 0.0 6.2<br />

37.C7 7.50 7.50 33.50 32.90 13.5 0,65 0.0 1.17 0.0<br />

38.93 7.6C 7.6C 33.50 32.80 13.5 0.65 0.0 1.17 C.0 5.8CC<br />

66.50 7.40 7.4C 32.80 32.00 12.5 0.75 0.0 1.13 0.C 5.22<br />

68.07 7.35 7.35 33.00 32.30 13.5 0.80 0.0 1.17 0.0<br />

82.17 7.40 7.4C 32.80 32.20 13.5 0.75 0.0 1.17 0.0 6,766<br />

84.83 7.60 7.70 33.20 32.50 13.5 0.75 0.0 1.17 C.C 5.816<br />

5.33 7.65 7.60 33.10 32.40 13.5 0.80 0.0 1.17 0.0<br />

MrAN RE 8422.7 1FAi PR 18.01 NO. PE!n1NGS 27


11.17 7.40 7.65 34.30 33.50 9.5 0.60 0.0 0.93 0.0 6.677<br />

11.25 7.50 7.65 34.30 33.60 ç.5 0.60 0.0 0.93 0.0 7.630<br />

11.33 7.40 7.60 34.30 33.60 9.5 0.60 0.0 0.93 0.0 7.f’52<br />

11.t2 7.40 7.6C 34.3 33.60 9.5 0.60 0.0 0.93 0.0 7.652<br />

11.67 7.40 7.65 34.10 33.40 9.3 0.60 .0 0.92 0.0 7.695<br />

11.3 7.5C 7.65 34.10 33.40 9.3 0.60 0.0 0.92 0.0 7.670<br />

17.00 7.3C 7.50 34.10 33.40 7.8 0.60 0.0 0.85 0.0 8.3t<br />

44.05 7.40 7.6C 33.30 32.65 7.8 0.60 0,0 0.85 C.C 8.7’0<br />

57.83 7.30 7.SC 33.40 32.7 9.0 0.60 0.0 0.86 0.0 8.052<br />

60.08 7.30 7.50 33.40 32.70 7.5 0.60 0.0 0.81+ 0.0<br />

RUN A8—2<br />

TtE TN! TC TKI TKO DPK<br />

(FIR) (0 C) (a C) (0 C) (0 C) (MV)<br />

rPT V<br />

(C.I-G) (MV) (MPS)<br />

CFI2 RF<br />

1.C/(!KN/(M)*2 C)<br />

11.00 7.5C 7.55 34.50 33.50 9.0 0.60 0.0 0.91 0.C<br />

11.08 7.40 7.70 34.40 33.50 9.5 0.60 0.0 o.° 0.0 5.0<br />

12.00 7.’*0 7.55 34.80 33.40 8.5 0.60 0.0 0.89 0.0 4.049<br />

13.00 7.30 7.4C 34.20 33.40 8.8 0,60 0.0 0.qO 0.C<br />

14.00 7.25 7.C 33.80 33.10 8.8 0.55 0.0 0.90 0.0 7.961<br />

15.08 7.3C 7.C 33.60 32.90 7.8 .55 0.0 0.85 0.C<br />

16.20 7.20 7.SC 33.50 32.80 7.8 0.60 0.0 0.85 0.0 8.2!4<br />

18.IC 7.3C 7,55 33.80 33.10 8.0 0.60 0.0 C.8 0.0 8.158<br />

19.05 7.40 7.55 33.70 33.00 8.0 0.60 0.0 0.86 0.0<br />

20.3C 7.40 7.6C 34.03 33.20 8.0 0.60 0.0 0.86 0.0 7.155<br />

33.57 7.3C 7.45 33.50 32.80 7.8 0.60 0.0 0.85 C.C 8.206<br />

35.20 7.00 7.25 33.60 7.9 0.60 0.0 0.85 0.0<br />

37.03 7.35 7.SC 33.60 33.00 7.8 0.60 0.0 0.5 0.0 9.606<br />

38.90 7.40 7.55 33.50 32.90 7.5 0.60 0.0 0.84 0.0<br />

42.OC 7.50 7.6C 33.40 32.80 7.5 0.60 0.0 0.94 0.0 9.635<br />

62.07 7.25 7.C 33.20 32.60 7.5 0.60 0.0 0.8 0.0 9.551<br />

66.47 7.20 7.’tC 32.60 32.00 7.5 0.60 0.0 0.84 0.0<br />

68.02 .2C 7.3C 33.00 32.40 1.5 0.60 0.0 0.8& c.c<br />

92.13 7.20 7.4C 32.q 32.30 7.3 060 0.0 0.82 0.C 9.707


TIME TI TO TKI TKC DPK EPW DPT V CF/2 RF<br />

(HR) (0 C) (0 C) (0 C) (0 C) (“v) (C.HG) (MV) IMPS) 1.C/(KW/(M)*2 C)<br />

34.82 7.C 33.20 32.60 7.3 0.60 0.0 O.R2 C.0 q.726<br />

S6.*2 7.0 7.60 33.20 32.60 7.3 0.60 0.0 0.82 C.C 9.736<br />

90.12 7.30 7.4C 33.7 .32.60 7.3 0.60 0.0 0.82 0.0 5.38<br />

RUN A8—2<br />

MEAN RE 6109.6 MEAN PR 18.61- NC. cF.DINGS 32


RUN Aq-3<br />

TIME ThI T0 TKI TKC DPK CPU CPT V CF/2 RF<br />

(HR.) (0 C) (0 C) (0 C) (0 C) (MV) (CM.FG) (MV) (PS)<br />

1fl,(W/(!)*2 C)<br />

13.42 7.70 8.CC 34.90 33.80 31.5 0.65 C.O 1.78 C.C 2.58<br />

l3.5C 7.65 7.cC 34.90 33.90 31.5 0.65 0.0 1.78 0.0 2.827<br />

13.67 7.6C 7.85 34.85 34.00 31.5 0.6 0.0 1.73 C.C 3.335<br />

13.75 7.60 7.65 34.80 33.90 32.0 0.65 0.0 1.79 (D.C 3.118<br />

13.92 7.60 7.65 34.83 33.90 31.g .0.65 0.0 1.78 0.0 3.130<br />

14.5C 7.60 7.80 34.60 33.80 31.5 0.65 0.0 1.78 (D.C 3.520<br />

15.25 7.55 7.80 34.5j 33.50 31.5 0.65 0.0 1.78 0.0 2.99<br />

15.3C 7.5C 7.8C 34.40 33.50 31.3 0.65 0.0 1.77 0.0 3.120<br />

16.00 7.50 7.80 34.30 33.50 30.8 0.65 0.0 1.76 0.0 3.53?<br />

17.05 7.60 7.75 34.20 33.5 31.0 0.65 0.0 1.76 0.0 4.010<br />

1.0C 7.65 7.85 34.00 33.20 29.5 0,70 0.0 1.72 (D.C 3.853<br />

19.00 1.75 7.çc 34.00 33.10 20.5 0.70 0.0 I.2 0.0 3.144<br />

33.25 7.80 8.C0 34.75 33.90 3t.5 .65 0.0 1.86 C.C 3.158<br />

33.75 7.70 7.SC 34.60 33.70 34.5 0.65 0.0 1.86 C.C 2.S76<br />

34.00 7.60 7.75 34.g 34.00 3.5 0.65 0.0 1.86 0.0 3.021<br />

3.83 7.50 7.70 34.60 33.70 34.5 0.65 0.0 1.86 0.0 2.C98<br />

36.00 7.4Q 7.60 34.00 33.30 34.5 0.60 0.0 1.86 0.0 3.904<br />

37.00 7.35 7.60 34.30 33.40 3.5 .6fl 0.0 1.86 0.0 2.S92<br />

38.00 7.30 7.60 33.80 33.00 345 0.60 0.0 1.86 C.C 3.3C6<br />

39.07 7.30 7.60 33.60 32.90 34.5 0.60 0.0 1.86 C.C 3.758<br />

40.10 7.30 7.50 33.50 32.80 34.5 0.60 0.0 1.86 0.0<br />

40.97 7.40 7.5C 34.13 33.20 3.5 0.60 0.0 1.86 C.C 2.964<br />

42.07 1.40 7.60 33.90 33.00 34.5 .60 0.0 1.86 0.0 2.938<br />

‘i3.03 7.45 7.60 33.80 33.00 34.5 0.60 0.0 1.86 0.0 3.2C6<br />

44.25 7.50- 7.70 34.00 33.23 30.0 0.65 0.) 1.73 (D.C 3.84<br />

57.55 7.30 7.50 33.50 32.80 30.0 0.60 0.9 1.73 C.C 4.018<br />

50.17 7.1(D 7.40 33.60 32.90 30.0 0.60 0.0 1.73 C.C<br />

61.00 7.45 7.60 33.60 32.90 30.0 0.60 0.0 1.73 (D.C 4.013<br />

62.88 7.45 7.65 33.50 32.80 30.0 0.60 0.’) 1.73 0.0 3.9C5


81.15 7.45 7.7C 33.40 32.70 30.0 0.60 .O 1.73 0.0 3,ç77<br />

84.07 7.40 7.SC 33.30 32.70 30.0 0.60 0.0 1.73 O.C 4.654<br />

86.93 7.30 7.C 33.CC 32.4j 30.0 0.65 0.0 1.73 0.0 4.614<br />

90.45 7.40 7.40 32.60 32.00 30.0 0.70 0.0 1.73 0.0 s.47<br />

92.00 7.20 7.4c 33.00 32.40 27.8 0.75 0.0 1.67 0.0 4.82<br />

106.12 7.3C 7.:C 32.90 32.30 27.8 o.70 0.0 1.67 0.0 4.76<br />

108.75 7.50 7.7C 33.20 32.50 27.F 0.70 0.0 1.67 0.0<br />

110.25 7.50 7.7C 33.20 32.50 27.8 0.75 0.0 1.67 C.C 4.C98<br />

114.25 1.35 7.50 33.10 32.50 27.8 0.75 0.0 1.67 0.0<br />

RUN A9-3<br />

TIME TWI TC TKI TKC OP1< CP OPT V CF/2 RF<br />

(FIR) (C Ci (0 C) (0 C) (0 C) (NV) (CM.I-G) (1V) (MPS) 1.C/(KW7(M)*2 C)<br />

65.S8 7.50 7.7C 33.50 32.70 30.0 0.65 C.0 1.73 C.C<br />

6.02 7.60 7.6C 33.4 32.60 30.0 0.70 0.0 1.73 0.0 3.470<br />

MEAN R[ 12941.c ‘EAN PR 17,q2 No. REMDINGS 40


RUN AIC—’i<br />

TIME TWI TC TKI TKC DPK FDPW OPT V CF/2 RF<br />

(HR) (C C) (0 C) (0 C) (0 C) (MV) (CM.hG) (MV) (MP5) 1.C/(Wi/(M)*2 C)<br />

10.67 7.OC 7.C 34.43 32.00 3.0 0.60 0.0 0.56 0.0<br />

10.75 1.SC 7.GC 34.60 33.40 3.0 0.60 0.0 0.56 0.0 7.394<br />

10.83 1.85 7.G 34.60 33.40 3.0 0.60 040 0.56 0.0 7.377<br />

10.92 7.95 7.5 34.60 33.20 2.8 0.60 0.0 0.54 C.C 6.554<br />

11.OC 7.85 7.95 34.60 33.30 2.5 0.60 0.0 0.51. C.C 7.376<br />

11.09 7.80 7.85 34.60 33.30 2.5 0.60 0.0 0.51 0.0 7.393<br />

11.17 7.80 7.P0 34.6C 33.4w 2.3 0.60 0.0 0.49 0.0 8.4C3<br />

11.33 7.7C 7.SC 34.70 33.30 2.3 0.60 0.0 0.4g C.0 7.216<br />

1l.5C 7.7C 7.5 34.70 33.35 2.0 0.60 0.0 0.7 0.0 7•8


RUN A1C—4<br />

TIME 1WI TWO TKI TKC DPK OPW OPT V CFI2<br />

(HR) (C C) (0 C) (3 C) (3 C) (‘V) (CM..HG) (MV) (MPS)<br />

RF<br />

1.0/(K’/(M)2 C)<br />

40.05 7.30 7.C 33.20 30.50 0.5 0.50 0.0 0.25 0.0 6.59<br />

60.9_ 7.25 1.4C 33<br />

.8L 3.63 0.5 0.50 0.0 0.25 0.0<br />

42.03 1.35 7.4C 33.63 30.90 0.5 0.50 0.0 0.25 0.0<br />

43.OC 7.40 7.40 33.63 31.10 0.5 0.55 0.0 0.25 C.C<br />

L4.22 7.40 7.50 33.33 30.90 0.5 0.60 0.0 0.25 D.C 6.465<br />

57.5C 7.40 7.40 33.33 33.40 0.5 0.50 0.0 0.75 C.C 6.359<br />

5.15 7.05 7.1C 33.33 3..50 0.5 0.50 0.0 0.25 0.0<br />

61.00 7.45 7.4C 33.3) 30.53 0.5 0.50 0.0 0.25 D.C<br />

62.83 7.4 7.50 33.33 33.40 0.5 0.55 0.0 0.25 0.0 6.346<br />

65.5 7.50 7.50 33.20 30.50 0.5 0.50 0.0 0.25 C.C 6.C3<br />

67.98 7.40 7.50 33.1) 30.40 0.5 0.60 0.0 0.25 0.0<br />

81.65 7.40 7.<br />

1tC 33.20 30.10 0.5 0.55 0.0 0.25 D.C<br />

84.00 7.30 7.140 33.10 30.50 0.5 0.55 0.0 0.25 C.0 7.096<br />

86.90 7.30 7.3C 32.80 29.70 0.5 0.60 0.0 0.25 0.0 5.R38<br />

90.42 7.30 7.5 32.50 0.5 0.60 0.0 0.25 0.0 5.065<br />

frEAN RE 2178.9 MEAN PP 18.7 NO. PE.orNrs 44


11.03 8.8C 9.8C 43.40 42.00 6.3 0.50 0.0 0.78 0.0 5.65Q<br />

11.75 8.7C 8.7C 45.2 44.30 7.4 0.50 0.0 0.85 0.0 8.689<br />

12.83 6.80 8.10 44.20 41.80 10.0 0.50 0.0 0.9 0.0 2.7C1<br />

14.OC 6.gC 7.9C 43.00 40.90 13.5 0.50 0.0 1.13 0.C 2.6<br />

15.17 6.60 8.CC 44.20 42.80 9.3 0.50 0.0 0.94 C.C 5.053<br />

16.35 6.50 7.80 44.30 42.30 9.3 0.50 0.0 0.94 0.0<br />

IR.02 6.30 7.5C 44.20 41.80 9.3 0.40 0.0 0.96 0.0 2.944<br />

20.83 6.35 7.4C 43.80 41.70 9.3 0.50 0.0 0.94 0.0 3.347<br />

34.7 6.30 7.45 43.40 41.20 9.5 0.60 0.0 0.95 C.0 3.118<br />

34.33 6.20 7,SC 43.30 41.20 9.5 0.60 0.0 0.95 C.C 3.265<br />

35.75 6.20 7.SC 43.40 41.20 9.5 0.60 0.0 O.g5 0.0 3.121.<br />

39,03 6.20 7.5C 43.00 41.00 9.3 0.60 0.0 0.94 0.C 3.452<br />

41.97 6.10 7.20 43.00 41.00 9.3 0.6 0.0 0.94 0.0 3.471<br />

14,75 6.10 7.3C 43.00 41.00 9.3 0.50 0.0 0.94 0.0 3.467<br />

45.03 6.10 7.2C 43.00 41.00 9.3 0.50 0.0 0.94 0.0 3.471<br />

57.25 6.20 7.4C 43.40 41.20 9.3 0,40 0.0 0.o4 0.0 3.166<br />

60.13 6.30 7.4C 43.40 41.40 9.3 0.40 0.0 0.94 0.0 3.486<br />

62.17 6.30 7.6C 43.40 41.20 9.3 0.40 0.0 0.94 C.C 3.153<br />

65.63 6.30 7.50 43.10 41.00 9.3 0.40 0.0 0.04 0.0 3.’87<br />

68.25 6.30 7.50 43.10 41.00 9.3 0.50 0.0 0.94 0.0 3.287<br />

81.75 6.4C 7.6C 43.20 41.00 9.3 0.36 0.0 Q.g4 0.0 3.132<br />

84.75 6.50 7.70 43.60 41.30 0.3 0.40 0.0 0.04 0.0 3.’i4<br />

8.5C 6.5C 7.7C 43.60 41.20 9.3 0.40 0.0 0.94 0.0 2.985<br />

94.30 6.50 7.8C 43.73 41.50 9.3 0.40 0.0 094 0.0 3.1.58<br />

RUN 81—5<br />

TIME TWI T0 TKI TKC DPK 0°T V CF/2 RF<br />

(HR) (C C) (0 C) (0 C) (0 C) (MV) (CM,HG) (MV) (MPS)<br />

l.0/(J()*2 C)<br />

‘EAN RE 7534.7 EAi PR 16.61 NO. PFOINCS 24


RUN 82—6<br />

TIME TiI TC TKI TKC OPK OPT V CF/2<br />

(HR) (0 C) (0 C) (3 C) (0 C) (Mv) (CM.HG) (MV) (MPS) 1.cI(K1/çM)*2 C)<br />

11.35 .oC 8.CC 44.20 3.90 4.3 0.50 0.0 0.72 0.0 2.n44<br />

11.67 7.80 8.50 45.00 43.80 6.8 0.50 0.0 0.89 0.0 6.2c1.<br />

12.92 7.8C 8.CC 43.80 41.90 4.8 0.50 0.0 0.75 C.0 4.502<br />

14.08 6.90 7.C 43.10 41.50 6.5 0.50 0.0 0.87 0.0 433<br />

15.20 6.6C 7.8C 43.83 42.00 6.5 0.50 0.0 0.87 0.0 4.198<br />

16.35 6.50 7.60 44.40 42.50 6.5 0.50 0.0 0.87 C.C 4.c47<br />

18.20 6.40 7,30 43.90 42.00 4.3 0.50 0.0 0.72 0.0 4qq<br />

6<br />

21.12 6.40 7.30 44.60 41.80 4.3 0.50 0.0 0.72 0.0 3.31*2<br />

34.58 6.40 7.4c 43.20 41.43 4.3 0.50 0.0 0.72 O,C<br />

35.78 6.40 7.4C 43.20 41.43 4.3 0.50 0.0 0.72 0.0 5.079<br />

39.05 6.30 7.30 43.00 41.10 4.3 0.50 0.0 0.72 0.0 4•795<br />

41.98 6.20 7.IC 42.80 41.00 4.3 0.50 0.0 0.72 0.0 5,C4<br />

45.02 E.2C 7.10 42.90 41.00 4.3 0.50 0.0 fl.2 0.0 4.C4<br />

57.22 6.30 7.30 43.20 41.30 4.3 0.50 0.0 0.72 0,C 4.819<br />

60.12 6.40 7.40 43.13 41.40 4.3 0.50 0.0 0.72 0.0 5.371<br />

62.28 6.20 7.5C 43.00 41.20 4.3 0.50 0.0 0.72 (,Q 5.061<br />

65.62 6.40 7.’C 43.30 41.20 4.3 0.53 0.0 0.72 0.0 5.054<br />

68.’i2 6.40 7.30 43.00 1.20 4.3 0.50 0.0 0.2 0.0 5.061<br />

81.75 6.50 7.50 43.00 41.30 4.3 0.50 0.0 0.72 0.0 5.31*3<br />

84.75 6.60 7.6C 43.40 41.40 4.3 0.50 0.0 0.72 0.0<br />

88.50 6.60 7.50 43.43 41.60 4.3 0.50 0.0 0.72 0.0 5.082<br />

S4.00 6.7C 7.6C 43.40 41.70 4.3 0.50 0.0 0.72 0.0 5.373<br />

[A N P E 605 1 • S F A H P 16.62 rIO. RECINGS 22


TINE ThI TWO TKI TKO 00K CPU OPT V CF/2 RF<br />

(HR) (C C) (0 C) (0 C) (‘3 C) (MV) (C’.HG) (MV) (MPS) 1.C/(K1/(M)**2 C)<br />

11.83 L3C 8.7C 46.6C 43.90 9.0 0.80 0.0 0.96 C.C 2.652<br />

13.00 7.00 8.10 44.40 42.00 5.5 0.80 0.0 0.75 0.0 3.’63<br />

14.17 6.7 7.SC 44.30 41.90 12.0 0.80 0.0 1.10 0.0 2.C8<br />

15.25 6.70 7.90 44.60 42.30 12.0 0.80 0.0 1.10 0.C 2.9<br />

16.40 6.50 7.70 45.00 42.70 12.0 0.80 0.0 1.10 C.C 2.6C<br />

18.22 6.40 7.50 44.70 42.30 8.5 0.80 0.0 0.93 0.0 3.029<br />

21.22 6.40 7.0 44.50 42.10 8.5 0.80 0.0 0.93 C.C 3.019<br />

34.47 6.40 7.40 44.OC 41.80 8.5 0.70 0.0 0.93 0.0 3.2’1<br />

34.67 6.30 7.50 44.00 41.80 8.5 0.80 0.0 0.93 0.0 3.261<br />

35.80 6.40 7.50 44.00 41.80 8.5 0.80 0.0 O.n3 0.0 3.257<br />

38.07 6.30 7.45 43.70 41.50 8.5 0.80 0.0 0.93 0.0 3.2/iO<br />

42.OC 6.20 7.2C 43.50 42.30 8.5 0.80 0.0 0.93 0.0 6.013<br />

6.20 7.3C 43.70 41.40 8.4 0.80 0.0 0,2 0.0 3.124<br />

57.2C 6.10 7.35 43.90 41.70 8.4 0.70 0.0 0.92 C.C 3.288<br />

50.10 6.40 7.5C 43.90 41.70 8.4 0,70 0.0 0.92 0.0 3.268<br />

62.42 6.40 7.60 43.90 41.60 8.4 0.70 0.0 0.92 0.0 3.118<br />

55.60 6.40 7.’iC 43.80 41.50 8.5 0.7) 0.1) 0.93 0.0 3.100<br />

68.50 6.35 7.5C ‘i4.10 41.50 1•5 0.80 0.0 0.3 o.C 2.751<br />

81.15 6.50 7.6C 43.90 41.70 8.5 0.80 0.0 0.q3 0.C 3.2)<br />

84.75 6.50 7.7C 44.10 41.80 8.5 0.O 0.0 o.3 C.0 3.1C6<br />

88.50 6.60 7.6C 44.10 41.80 8.5 0.R0 0.0 0.93 0.0 3.1C6<br />

94.00 6.60 T.7C 44.40 42.00 8.5 0.80 0.0 0.3 0.C<br />

RUN 83—7<br />

NEN RE 7697.3 MEAN PR 16.50 Nfl. PP.tDtN0S 22


TIME TWI TWO TKI TKC OPK CPW OPT V CF/2 RF<br />

(HR) (0 C) (3 C) (0 C (3 C) (MV) (CM.HG) (MV) (MPS) l.0/(Kt1/(M)**2 C)<br />

RIJN P4—8<br />

13.25 E.9C 8.4C 43.30 41.50 12.8 o.0 0.0 1.11. 0.0 3.220<br />

14.22 6.6C 8.20 43.60 42.00 14.0 0.Q0 0.0 1.16 C.C 3.23<br />

15.27 6.60 8.2C 44.00 L2.5 0 14.0 0.Q0 0.0 1.16 0.0 3.9<br />

16.42 6.50 8.CC 44.50 42.50 14.0 1.00 0.0 1.16 0.0 2.97q<br />

18.22 6.30 7.7C 44.00 42.20 10.5 0,80 0.0 1.31 0.C 3,665<br />

21.33 6.40 7.50 43.80 42.00 10.5 0.90 0.0 1.01 0.0 3.652<br />

31.75 .40 7.70 43.30 41.70 10.5 0.80 0.0 1.01 C.C 4.08<br />

35.82 6.40 7.60 43.30 41.70 10.5 0.80 0.0 1.01. C.C 4.063<br />

39.38 6.20 7.60 43.00 ‘+1.50 10.5 0.80 0.0 1.01 0.0 4.220<br />

42.30 6.20 7.2C 42.90 41.30 1.0.5 0.90 0.0 1.01 C.C<br />

44.98<br />

4.057<br />

6.20 7.C 43.03 41.30 10.5 o.90 0.3 1.01 C.C 3.813<br />

57.1.8 6.10 7.70 43.30 41.70 10.5 0.80 0.0 1.01. o.c 4.075<br />

60.0 6.20 7.7C 43.3 41.70 10.5 0.80 0.3 1.01 0.0 4.070<br />

62.50 6.30 7.80 ‘+3.20 41.60 10.5 0.70 0.0 1.01 0.0<br />

65.58 6.30 7.6C 43.00 41.30 10.8 0.70 0.0 1.02 0,0 3.754<br />

6.5C 6.30 7.65 43.00 41.50 10.8 0.90 0.0 1.02 0.C<br />

81.75 6.40 1.80 43.20 41.50 10.8 0.70 0.0 1.02 0.0 3.756<br />

84.75 6.50 1.50 43.4 41.80 10.8 0.73 0.0 1.02 0.C<br />

P.5C<br />

4.0C<br />

6.50 7.8C ‘+3.40 41.60 10.8 0.80 0.0 1.02 C.C 3.556<br />

94.0c 6.50 7.9C 43.60 41.90 10.8 0.80 0.0 1.02 0.C 3.783<br />

iN 8’+34.c iFA’i PR 16.60 NO. RF1)INS 20


16.08 6.6C 8.2C 44.60 42.80 25.5 ‘0.70 0.0 1.64 0.0 2.260<br />

16.20 6.60 8.2C 44.70 43.00 25.5 0.70 0.0 1.64 0.C 2.411<br />

16.43 6.5C 8.20 44.50 42.80 25.5 0.73 0.0 1.64 C.C 2.118<br />

18.25 6.3C 7.80 44.10 42.30 25.5 0.60 0.0 1.64 C.C 2.263<br />

21.35 6.40 7.8C 43.90 42.10 25.5 0.70 0.0 1.64 0.C 2.’49<br />

34.8’ 6.30 7.80 43.50 41.80 25.5 0.eO 0.0 1.64 o.c 2.365<br />

35.83 6.30 7.5C 43.So 41.80 25.5 0.60 0.0 1.64 0.0 2.375<br />

36.C 6.30 7.8C 43.20 41.50 25.5 .60 cj.0 1.64 0.C 2.347<br />

42.02 6.20 7.50 43.00 41.30 25.5 0.60 0.0 1.64 0.0 2.340<br />

44.7 6.40 7.10 43.10 41.43 25.5 0.70 0.0 1.64 0.0 2.361<br />

84.75 6.60 R.CC 43.50 41.80 25.5 0.60 0.0 1.64 0.C 2.348<br />

88.50 6.6C 3.Q 43.50 41.70 25.5 0.60 0.0 1.64 0.0 2l0<br />

94.00 6.70 8.00 43.70 42.30 25.5 .6g 0.0 1.64 0.C 2.356<br />

RUN 86—9<br />

TIME TWI TC TK1 TKO OPK DPW OPT V CF/2<br />

(HR) (0 C) (J C) (0 C) (0 C) (‘V) (CM.HG) (MV) (MPS)<br />

PF<br />

1.0I(Kw/(M)*2 C)<br />

57.17 6.20 7.70 43.40 41.80 25.5 0.60 9.0 1.64 0.C 2.516<br />

60.C7 6.40 7.30 43.50 41.80 25.5 0.60 0.0 1.64 0.0 238<br />

65.57 6.40 7.3C 43.30 41.60 25.5 0.60 0.0 1.64 0.0 2.366<br />

63.87 6.40 7.70 43.30 41.70 25.5 0.70 0.0 1.64 0.0<br />

81.75 6.50 8.CC ‘+3.50 41.63 25.5 0.60 0.0 1.64 0.0 2.099<br />

MEAN RE 1J313.6 MEAN PR 16.56 NO. R[,M)INGS 1,9


RUN B7—1C<br />

TIME TWI TWC TKI TKO DPK OPW OPT V CF/2 RF<br />

(HP) (C C) (o C) (0 C) (0 C) (MV) (C.Hr;) (MV) (PS) l.C/(K’J/(M)**2 C)<br />

l6.3 .5C 7.2C 43.50 42.40 3.5 0.90 0.0 0.61 0.C<br />

16.47 6.5C 7.20 44.30 42.30 3.5 0.90 0.0 0.61 0.0 5.524<br />

15.28 6.3Q 6.cC 43.93 41.90 3.5 0.90 0.0 0.61 0.0 5.509<br />

21.38 6.4C 6.E5 43.60 41.80 2.5 1.00 0.0 0.52 0.0 7.186<br />

33.55 6.20 6.7C 43.20 41.40 2.5 0.90 0.0 0.52 0.0<br />

35.8 C.3C 6.3c 43.30 41.40 2.5 0.90 0.0 0.52 0.C 6.811<br />

39.10 6.20 6.D 43.03 41.10 2.5 0.90 0.0 0.51 0.C<br />

42.03 6.20 6.70 42.00 41.00 2.5 1.00 0.0 0.51 0.0 12,22<br />

44.93 6.20 6.7C 42.90 41.00 2.8 1.00 0.0 0.54 0.0 6.4C8<br />

57.15 6.20 6.8C 43.10 41.40 2,8 0.90 0.0 0.54 0.0 7.206<br />

58.67 6.30 6.0 43.10 41.30 2.8 0.80 0.0 0.54 0.0 6.778<br />

60.05 6.40 6.9C 43.20 41.40 2.8 0.80 0.0 0.54 0.0 6.785<br />

62.83 6.35 7.CC 43.20 41.20 2.8 0,83 3,0 Q.4 c.c 6.087<br />

65,55 6.40 6.C 43.00 41.10 2,6 Q,.o 0.0 0.52 0.0 ,567<br />

68.1? 6.40 5.E5 43.00 41.20 2.6 1.00 0.0 0.53 0.0 6.946<br />

81.75 6.5C 7.CC 43.10 41.20 2.3 0.90 0.0 0.49 C.C 6.c7’t<br />

84.75 6.50 7.10 43.40 41.50 2.3 0.°0 0.0 0.4° 0.0 7.01w<br />

88.5C 6.50 7.10 43.30 41.50 2.3 0.90 0.0 0.49 0.0 7.q7<br />

94.OC e.5C 7.10 43.50 41.60 2.3 0.90 0.0 0.49 0.0 7.024<br />

‘EAN RE 4306.4 1EAN PR 16.65 NO. REIflINGS


.<br />

13.92 6.7C 7.cC ‘t2.8C 41.30 19.5 1.10 0.0 1.31 0.c 3.284<br />

14.25 6.60 7.0 44.00 42.20 20.0 1.10 0.0 1.32 0.0 2.71<br />

15.42 6.6C 8,CC 44.50 42.80 20.0 1.13 0.0 1.32 0.C 2.P0<br />

16.48 6.50 7.70 44.50 42.S0 20.0 1.10 0.0 1.32 0.C 2.6<br />

18.32 6.30 7.40 44.10 42.4Q 14.3 1.00 0.0 1.13 0.0 3.488<br />

21.40 6.40 7.40 43.50 42.20 14.3 1.10 0.0 1.13 0.0 4.512<br />

33.68 6.10 7.35 43.50 41.50 14.3 1.00 0.0 1.13 0.0 2•q<br />

22<br />

35.8 6.30 7.SC 43,50 41.00 14.3 1.C 0.0 1.1.3 0.C 3.’2<br />

3g.12 6.20 7.40 43.30 41.60 14.3 1.00 0.0 1.1.3 0.0 3.426<br />

42.20 6.20 7.30 43.00 41.30 14.3 1.C0 0.0 1.13 0.0 3.405<br />

44.58 6.40 7.3C 43.10 41.40 14.3 1,00 0.0 1.13 0.0 3.404<br />

57.12 6.20 7.2C ‘i3.40 41.80 14.4 1.C0 0.0 1.1.4 C.C 3,’-46<br />

58.58 6.30 7.50 43.40 41.80 14.4 1.00 0.0 1.14 0.0 3.626<br />

60.05 6.40 7.4C 43.40 41.80 1.3 1.00 0.) 1.13 0.C 3.643<br />

65.53 6.30 7. IC 43.3 41.6C 14.3 1.00 0.0 1.13 0.C 3.435<br />

68.08 6.40 7.40 43.30 41.60 14.3 1.10 0.0 1.13 0.0 3.416<br />

81.75 6.5 7.SC 43.40 41.73 14.3 1.00 0.) 1.13 0.0 3.l5<br />

84.75 6.50 7.6C 43.50 41.50 14.3 1.00 0.0 1.13 0.C 2.895<br />

88.50 6.50 7.60 43.60 41.80 1.4.3 1.10 0.0 1.13 0.0 3.233<br />

94.00 6.60 i.7C 43.00 42.00 14.3 1.10 0.0 1.13 0.0 3.240<br />

RUN B8—ll<br />

TIME TWI TC TKI TKC DPK CPW OPT<br />

V<br />

CF/2 RF<br />

(HR) (0 C) (3 C) (0 C) to C) (MV) (CM1-G) (MV) (MPS) l.C/(/(M)*2 C)<br />

‘EAN RE 9499.6 EA><br />

PR.<br />

16.58 NO. PE,DINCS 20


RUN B9—12<br />

T V’E ThI TWC TKI TKC OPK CPW CPT V CF/2 RF<br />

(HR) (0 C) (0 C) (0 C) (0 C) (MV) (CM.HG) (MV) (MPS 1.0/(KI/fM)2 C)<br />

lf).63 é.5C 7.3C 44.30 42.50 4.5 0.80 0.0 0.69 C.C<br />

17.05 6.30 7.20 44.30 42.40 4.5 0.80 0.0 0.69 0.0<br />

18.33 6.30 7.1C 43.90 42.10 4.5 0.80 0.0 0.69 0.0 5.396<br />

21.42 6.40 7.tc 43.70 41.90 4.0 0.80 0.0 0.65 0.0<br />

33.75 6.10 6.95 43.20 41.50 4.0 0.70 0.0 0.65 0.0 597<br />

35.87 6.30 7.10 1t3.jQ 41.50 4.0 0.70 0.0 0.65 0.C 5.634<br />

39.13 6.30 7.3C 43.10 41.3 ‘.0 0.70 0.0 0.65 0.0 5.590<br />

‘i2.13 6.IC 6.90 ‘i2.80 41.10 3.8 0.70 0.0 0.63 0.0 6.123<br />

44.92 e.1C 6.9C 43.00 41.10 3.8 0.70 0.0 0.63 0.C 5.492<br />

57.10 6.20 7.CC ‘t3.2C 4i50 3.8 .60 0.0 0.63 0.0 6.167<br />

58.53 6.25 7.1C 43.10 41.40 3.8 0.60 0.0 0.63 0.0 8.139<br />

60.03 6.50 7.LtC 43.10 41.50 3.8 0.60 0.0 0.63 0.0 6.490<br />

63.00 6.40 1.25 43.20 ‘4.40 3.8 0.60 0.0 0.63 C.C<br />

65.52 6.3e 7.10 43.00 41.30 3.5 0.60 0.0 0.61 0.0 6.330<br />

67.92 6.30 7.1C 1*3.00 41.40 3.5 0.70 0.0 0.61 0.0 6.734<br />

81.75 6.50 7.30 43.10 41.40 3.5 0.60 0.0 0.61. 0.0 6.310<br />

8’t.75 6.50 7.3C 43.3c 41.60 3.5 0.60 0.0 0.61 0.0 6.31*1<br />

88.50 C.5C 7.3C 43.30 41.60 3.5 0.70 0.0 0.61 0.0<br />

94.00 6.60 7.C 43.40 41.80 .5 0.7) 0.0 0.61 0.C<br />

“EAN RE 5130.5 “EAN PR 16.62 NO. PEOINCS


42.15 6.4C 7.CC 42.80 41.00 7.3 1.00 0.0 0.83 0.0 4.3’l<br />

44.18 €.2C 7.CC 42.90 41.10 7.3 1.10 0.0 0.83 0.C 4.385<br />

6.40 7.1C 43.10 41.30 7.3 1.00 0.3 0.83 0.C 4.388<br />

67.78 6.40 7.10 43,CC 41.40 7.3 1.10 0.0 0.83 0.C 4.7<br />

1.75 6.60 7.0 43.00 41.30 7.3 1.00 0.0 0.83 0.C 4.4<br />

84.75 6.60 7.4C 43.40 41.50 7.3 1.00 0.0 0.83 0.0 4.1.53<br />

88.SC 6.60 7.C 43.40 41.50 73 1.10 0.0 0.83 0.0 4.153<br />

c..oc 6.8j 7.5C 43.60 41.70 7.3 1.10 0.0 0,83 0.C 4.156<br />

RU B1C-13<br />

TIVE TWI TWO flu TKC OPK CPW OPT V CF/2 RF<br />

(HR) (C C) (0 C) (0 C) (0 C) (MV) (CN.HG) (MV) (MPS) 1.Cf(KN/P)*2 C)<br />

l.75 6.50 7.30 44.50 42.53 7.3 1.00 0.0 0.83 0.0<br />

1.C8 .4C 7.30 44.20 42.40 7.3 1.00 0.0 0.83 0.0 4.4<br />

IS.37 6.40 7.20 43.90 42.00 7.3 1.10 0.0 0.83 0.0<br />

21.43 .4C 7.80 43.80 41.30 7.3 1.10 0.0 0.83 0.C 3.16<br />

33.7 6.20 7.10 43.20 41.53 7.3 1.00 0.0 0.83 0.0 4.677<br />

3.88 6.40 7.2C 43.30 41.50 7.3 1.00 0.j 0.83 0.C<br />

3.t5 6.40 7.10 43.10 41.40 7.3 1.00 0.0 0.83 0,0 4.’,92<br />

1.92 6.20 7.CC 42.90 41.1.0 7.3 1.10 0.0 0.83 0.0 4.385<br />

5.C8 6.30 7.1C 43.20 41.50 7.3 1.00 0.0 0.83 0.0 4.670<br />

5.42 6.40 7.20 43.20 41.40 7.3 1.00 0.0 0.83 0.0 4,3q3<br />

60.02 6.40 7.3C 43.10 41.50 7.3 1.00 0.0 0.83 0.0<br />

p2.67 6.40 7.20 43.10 41.40 7,3 1.00 0.0 .83 0.0 4.’45<br />

.E 6 116. C IEAM PR 16.63 Mfl• PEfl1NCS 20


RUN C1—1t<br />

T1’E IWI TWO TKI TKC DPK CPW opT V CF/2 RF<br />

C H) C C C) (0 C) CO C) (0 c) (MV) (C4. HG) (MV) ( MPS) • M) **2 C)<br />

1.3.33 6.70 ;3.CC £34Q 38.80 14.3 0.60 0.0 1.16 C.C 3.234<br />

j&.6C 5.90 7.2C 38.00 35.80 14.8 0.60 0.0 1.18 0.0 2.Ici<br />

17.17 6.00 7.CC 39.80 37.43 14.5 0.60 0.0 1.17 0.0 3.610<br />

10.83 5.7C 6.80 39.90 37.50 14.5 0.60 0.0 1.17 0.0 2.15?<br />

33.OC 5.90 7.CC 38.90 37.2o 14.5 0.60 0.0 1.17 0.0 2.S73<br />

37.17 5.90 7.10 .39.80 37.40 14.5 0.60 0.0 1.17 0.0 3.6C9<br />

3°.5C 5.9C 7.20 38.80 37.40 14.5 0.60 0.0 1.17 O.C 3.6C4<br />

41.75 6.10 7.2C 38,80 37.40 14.5 .60 0.0 1.17 0.0 3.592<br />

43.75 5.80 6.80 39.80 37.40 l’.5 0.60 0.0 i’’-? 0.0<br />

56.83 5.80 7.CC 33.80 37.40 14.5 0.60 0.0 1.17 0.0 3.621<br />

59.91 E.OC 7.1C 38.80 37.40 14.8 0.60 0.0 1.18 0.0 3.980<br />

62.33 6.10 7.20 38.8C 37.40 14.5 0.60 0.0 1.17 0.0 3.992<br />

65.75 6.33 7.50 38.80 37.40 14.5 .60 0.0 1.17 0.0 3.564<br />

69.75 6.00 7.IC 38.8C 37.43 14.5 0.60 0.0 1.17 0.C 3.C4<br />

80.91 6.00 7.10 38.80 37.20 14.3 0.60 0.0 1.16 0.C 3.ll<br />

Rt.3C 6.10 7.10 38.80 37.4] 14.5 0.60 0.0 1.17 0.C 3.993<br />

26.75 e.2C 7.2C 38.30 37.20 14.5 0.60 0.0 1.17 0.C 3.129<br />

89.91 6.20 7.20 38.80 37.40 14.5 Q.60 0.0 1.17 0.0 3,597<br />

91.83 6.3C 7.30 33.90 37.30 14.8 0.63 0.0 1.18 C.C 3.102<br />

105.08 6.20 7.3C 39.00 37.60 14.3 0.60 0.0 1.16 0.C 3.632<br />

107.75 6.43 7.20 39.20 37.80 14.5 0.60 0.0 1.17 0.0 3.616<br />

110.67 6.40 7.50 39.13 37.60 14.5 0.60 0.0 1.17 0.C 3.45<br />

113.17 6.45 7.55 39.00 37.30 14.5 0.60 0.0 1.17 0.0 2.920<br />

120.33 6.40 7.70 33.80 37.L0 1.5 0•60 0.0 1.1.7 0.0<br />

13’.5C 6,70 7.75 39.00 37.6) 14.5 0.60 0.0 1.17 D.C 3.547<br />

152.75 6.60 1.8C 38.80 37.40 1.4.8 0.60 0.0 1.19 0.C 3.5CC<br />

155.OC 6.20 1.7C 38.80 37.20 14.8 0.60 0.0 1.18 0.0 3.079<br />

157.7 6.75 7.30 39.00 37.20 14.8 0.6) 0.0 1.19 D.C 2.716<br />

16’3.83 6.90 7.80 39.00 37.4) 14.5 0.60 0.0 1.17 0.0


RUN C1—14<br />

TIME TWI TWO TKI TKC DPK CPW DPT<br />

(HR) (C C) (0 C) (0 C) (0 C) (MV) (CM.HC) (MV)<br />

V<br />

(MPS)<br />

CF/2 RF<br />

1.0/(1)/(M)*2 C)<br />

162.91 6.60 7.70 39.00 37.50 14.8 0.60 0.0 1.18 0.C 3.266<br />

176.17 6.20 7.70 38.80 37.20 1L.5 0.60 0.0 1.17 0.0 3.105<br />

178.83 6.60 7.70 38.80 37.20 14.5 0.60 .O 1.17 0.0 3.084<br />

181.75 7.00 8.10 38.90 37.50 14.5 0.60 0.0 1.17 0.0<br />

185.OC 6.90 8.CC 39.00 37.60 14.8 0.60 0.0 1.18 0.0 3.42<br />

197.00 6.60 7.70 38.80 37.40 14.8 0.60 0.0 1.18 0.C 3.506<br />

200.08 6.70 7.85 38.80 37.50 14.8 0.60 0.0 1.18 0.0 3.766<br />

202.83 .3C 8.5 38.90 37.60 14.8 0.60 0.0 1.18 0.0 3.764<br />

205.93 7.10 8.20 38.90 37.60 14.8 0.60 0.0 1.18 0.0 3.731<br />

209.00 7.05 3.IC 39.00 37.60 14.8 0.60 0.3 1.18 0.C 3.’78<br />

211.00 6.8C (.8C 38.8) 37.40 14.8 3.60 0.0 1.19 0.C 3.489<br />

224.08 6.95 8.10 38.30 37.40 14.8 0.6iJ 0.0 1.19 0.0 3.’64<br />

227.5C 7.10 8.55 39.00 37.60 15.0 0.60 0.0 1.19 0.0 3.’21<br />

230.OC 7.35 8.SC 33.80 37.40 15.0 0.60 0.3 1.19 0.0 3.3c0<br />

233.5C 7.10 •3.3C 39.oc 37.60 1.8 0.60 0.0 1.18 0.0 3.’64<br />

‘EAN RE 88B9.2 1A PR 17.51 Nfl. PflINCS 1t4


PUN C2—15<br />

TIME T’iI T0 TK1 TKC DPK 1DP4 OPT V<br />

(HR) (0 C) (0 C) (3 C) (3 C) (MV) (CM.HG) (MV) (S)<br />

CF12 RF<br />

l.0/(k/(M)*’2 C)<br />

13.00 9.00 l0.C 43.30 39.00 4.3 0.70 0.0 0.71. C.C 6.CC’<br />

13.41 6.CC 7.i,C 43.20 39.00 5.5 0.70 0.0 0.81 0.0 6.31,1<br />

1t.58 6.00 6.60 37.30 35.50 5.5 0.60 0.0 C.80 0.0<br />

17.17 6.00 6.80 38.70 37.50 5.5 0.70 0.3 0.80 0.0 6.11,2<br />

1.19 5.90 D.6C 33.70 37.50 5.5 0.70 0.0 0.80 0.0 6.171<br />

33.08 6.00 6.80 33.50 37.50 5.5 0.70 0.0 0.80 0.0 7.350<br />

37.17 6.C0 7.6C 3


RUN C2—15<br />

TIME TiI TWO TK! TKC DPK CP DPT V CFI2 RF<br />

(HP) (0 C) (0 C) (0 C) (0 C) (7EV) (C.HG) (‘V) (s)<br />

l.0/(K/()*2 C)<br />

160.8.3 6.80 7.6C 38.SJ 37.70 5.3 0.70 0.0 0.79 0.C f.7C3<br />

163.00 6.60 7.1C 38.80 37.60 5.3 0.70 0.0 0.79 0.0 6.175<br />

176.] 6.70 7.40 33.80 37.60 5.3 0.70 o.o 0.C 6.1.65<br />

173.91 6.6C 7.4C 38.80 37.50 5.0 0.70 0.0 0.77 0.0 5.5322<br />

181.83 7.CC 7.8C 38,80 37.70 5.0 .70 0.0 0.77 0.0 6.312<br />

1?5.0C 7.00 7.7C 38.90 37.70 5.0 0.70 0.0 0.77 0.0<br />

137.08 6.70 7.1C 38.80 37.60 5.0 0.70 0.0 0.77 0.0 6.3Cfj<br />

200.17 7.65 7.5c 33.80 37.60 5.0 0.70 0.0 0.0<br />

202.83 6.40 3.20 38.90 37.70 5.0 0.éO 0.0 0.77 0.0 6.3<br />

2C5.01 6.30 7.CC 33.80 37.60 5.0 0.70 0.0 0.77 0.0 6.387<br />

2C9.OC 7.10 7.C 38.90 37.73 5.0 0.70. 0.0 0.77 C.0 6.233<br />

211.00 6.30 7.60 33.90 37.60 .0 0.70 0.0 0.77 0.0 5.Ci<br />

224.1 7.00 7.80 38.60 37.50 4.8 0.70 0.0 0.0 6.36<br />

227.SC 7.5C 8.30 39.00 37.70 5.0 0.60 0.0 0.77 0.0 5.P7<br />

230.03 7.’tC 3.20 33.80 37.60 5.0 0.70 0.0 0.77 0.0<br />

2’3.5 7.10 7.C 38.8.) 37.10 5.0 0.70 0,0 0.77 c.c 6.90<br />

LAN RE 5050. 1 MEAN PR 1.1.50 Ni’. FCI(S 45


}U•” C-16<br />

TIME TWI TWO TKI TKC DPK OPW OPT V CF/2 RF<br />

( H ) ( 0 C ) ( 0 C) (0 C) (0 C) (MV) (CM. G) (Mv ) ( MPS ) 1 • C/ ( KN/( ) **7 C<br />

13.41 6.40 7.CC 41.60 39.90 2.3 0.80 0.0 0.48 0.0 7.727<br />

14.67 6.00 6.50 39.10 36.70 2.3 0.80 0.0 0.48 0.0 5.137<br />

17.25 6.00 6.6C 43.iO 37.53 2.3 0.80 0.0 0.48 0.0<br />

20.CC 5.90 6.4C 40.10 37.40 2.2 0.90 0.0 0.48 c.c 4.741<br />

33.17 6.00 6.60 39.93 37.00 2.0 0.80 0.0 0.45 0.0 4.566<br />

37.25 6.20 6.70 39.90 37.20 2.0 0.80 0.0 0.45 0.0 4,8q5<br />

30.50 6.20 6.7C 40.00 37.20 2.0 0.80 0.0 0.45 C.C 4.727<br />

41.83 5.50 6.6C 40.10 37.20 2.0 0.90 0.0 0.45 0.0 4.628<br />

43.83 5.50 6.50 40.00 37.10 2.0 0,90 0.0 0.45 0.0 4.622<br />

57.30 5.90 6.5C 39.90 37.10 2.0 0.80 0.0 0.45 C.C<br />

60.00 6.00 6.50 40.00 37.20 2.0 0.70 0.0 0.45 0.0 4.756<br />

63.00 6.10 6.8C 43.C0 37.30 2.0 0.80 0,0 0.65 C.C 4.909<br />

65.91 6.20 6.8C 43.1w 37.20 2.0 0.80 0.0 0.45 C.C 4.563<br />

63.91 6.00 6.60 43.10 37.10 2.0 0.90 0.0 0.45 0.0<br />

1.0O 6.1 6.7C 43.10 36.83 2.0 0.80 0.0 0.5 C..0<br />

34.OC 6.10 6.8C 40.10 36.90 2. 0.80 0.0 0.45 0.C 4.124<br />

86.83 6.50 6.70 43.10 37.00 2.0 0.80 0.0 0.45 C.0 4.242<br />

90.00 6.20 6.80 37.00 2.0 0.81) 0.0 0.45 C.C 4.39?<br />

92.00 6.30 6.8C 43.10 37.00 2.0 0.80 0.0 0.45 C.0 4.250<br />

105.17 6.30 6.C 40.20 31.30 2.0 0.80 0.0 3,45 C,C 4.5E1<br />

107.83 6.40 ?.1C 40.40 37.53 2.0 0.80 0.0 0.45 0.0 ,565<br />

110.75 6.35 7.CC 43.33 37.30 2.0 0.80 0.0 0.45 0.0 4.405<br />

113.25 6.5C 7.10 43.20 37.20 2.0 0.80 0.0 C.0 4.376<br />

1?.50 6.70 7.30 43.10 37flQ 2.0 o.on 0.0 0.45 C.C 4,1)1)<br />

136.52 6.80 1.3C 4.3.20 37.20 2.0 0.90 0.0 0.45 D.C 4.341<br />

1?.83 6.60 7.20 39.90 3A.60 2.0 0.30 0.0 0.45 0.0 3.ff15<br />

155.0.9 6.60 T.3C 40.10 36.70 2.0 0.80 0.0 j.’.S 0.0 3.810<br />

157.83 6.7C 7.3C 40.10 37.0) 2.0 0.80 0.0 0.45 0.0 4.190<br />

V1 6.80 7.4C 40.20 31.20 2.0 o.90 0.0 0.45 0.0 4.334


RUN C3—lé<br />

TIME TI TiC TKI TKO OPK CPW OPT V CF/2 RF<br />

(Hp,) (0 C) (0 C) (0 C) (0 C) (MV) (CM.I-lfl) (1v) (MPS) l.0/(K,i/(M)t*2 C)<br />

163.00 6.8C 7.2C 1+0.20 37.10 2.0 0.90 0.0 0.15 0.0 4.201<br />

175.25 6.65 v.25 40.00 36.90 2.0 0.80 0.0 0.45 0.0 4.85<br />

178.91 6.65 7.25 43.30 36.90 2.0 0.80 0.0 0.45 0.0<br />

181.91 7.00 7.5C 40.10 37.20 2.0 0.80 0.0 0.45 0.0 4.456<br />

185.00 6.90 i.5c ‘+0.20 37.10 2.0 0.80 0.0 0.45 C.C 4.l5<br />

137.08 6.70 7.2C 43.10 37.00 2.0 0.90 0.0 0.45 0.0 4.196<br />

200.25 6.75 7.3C 43.03 37.00 1.8 0.80 0.0 O.’+2 0.0 4.613<br />

202.91 7.4C 8.CC 40.10 37.20 1.5 0.80 0.0 0.39 0.0 5.fl5<br />

206.CC 7.15 7.8C 1,3.10 37.00 1.8 0.80 0.0 0.42 0.0 4.407<br />

209.08 7.05 7.65 ‘t3.23 37.10 1.8 0.80 0.0 0.42 0.C<br />

211.08 e.8C 7.’+C 40.jO 37.00 1.5 0.90 0.0 0.39 0.0 4.811<br />

224.17 7.00 7.5C 39.00 36.80 1.5 0.90 0.0 0.3g 0.0 6.623<br />

227.58 7.20 8.10 ‘+3.20 37.20 1.5 0.80 0.0 0.39 0.0 4.9C6<br />

0 0.0 0.42 0.0 4.514<br />

230.25 7.40 8.C0 40.30 37.00 1.8 QP<br />

233.67 1.10 7.65 1+0.20 37.20 1.8 0.80 0.0 0.42 C.C 4.588<br />

‘AEAN RE 3’+1.5 MEA PR 17.42 NO. REACINOS 44


TIME flit TC TKI TKO DPK DPW OPT V CF/2 RF<br />

(HR) (0 C) (0 C) (3 C) (0 C) (MV) (CM.H() (“iV) (MPS) 1.0/(kI’(M)**2 C)<br />

13.41 e.2C 7.SC 43.20 39.00 1.0.8 0.70 0.0 1.02 0.C 4.CS1.<br />

14.75 6.00 7.10 33.50 37.30 11.0 0.60 0.0 1.03 0.0 4.754<br />

17.33 6.60 7.20 38.9’) 37.70 11.3 0.70 0.0 1.04 0.0 4.C3<br />

20.08 5.90 6.cC 38.30 37.60 11.3 0.70 0.0 1.04 0.0 4.164<br />

33.17 6.OC 7.2C 33.80 37.30 11.0 0.70 0.0 1.03 0.0 3.13<br />

37.33 5.9C 7.2C 33.83 37.40 11.3 0.70 0.0 1.04 0.0<br />

39.5C 6.00 7.3C 33.90 37.50 11.3 0.70 0.3 1.04 4.1)52<br />

41.91 6.OC 7.20 33.7Q 37.40 11.3 0.70 0.0 1.04 0.0 4.32<br />

43.91 5.80 7.C0 33.30 37.40 1.1.3 0.70 0.0 1.04 0.0 4.C3<br />

57.00 5.7C 7.CC 33.30 37.40 11.3 0.10 0.0 1.04 0.C<br />

60.08 5.80 7.IC 39.00 37.60 11.3 0.60 0.0 1.04 0.0<br />

63.08 6.00 7.2C 39.03 37.60 11.0 0.70 0.0 1.03 0.0 4.1.14<br />

65.91 6.1.0 7.30 39.OC 37.50 11.0 0.7C 0.0 1.03 0.C 3.822<br />

68.91 6.00 7.20 33.90 37.50 11.3 0.70 0.0 1.04 0.0 4.058<br />

31.08 6.00 7.2C 38.90 37.2) 11.3 0.70 ‘3.3 1.04 C.0 3.328<br />

84.03 6.00 7.3C 39.30 37.40 11.5 0.70 0.0 1.05 0.0 3.5C8<br />

86.83 é.1C 7.30 33.30 37.40 11.5 0.60 C.0 1.5 0.0 3.CCt<br />

90.00 6.10 7.2C 33.93 37.40 11.3 0.70 0.0 1.04 C.0 3776<br />

92.00 6.30 7.30 30.00 37.50 11.3 o.7o 0.0 1.04 0.0 379<br />

105.25 6.20 7.0 33.03 37.60 1.1.3 0.70 0.0 1.04 0.0<br />

1C.91 6.30 7.2C 39.20 37.80 11.3 0.70 0.0 1.04 0.C 4.073<br />

110.8 6.30 7.50 39.00 37.70 11.3 0.70 0.3 1.04 0.0<br />

113.33 6.45 7.60 39.00 37.60 11.3 0.70 0.0 1.04 0.C<br />

129.50 6.50 7.7C 33.90 37.5Q 11.o 0.70 C.) 1.03 0.0<br />

1.36.67 6.60 7.80 33.90 37.60 11.3 0.70 0.0 1.04 0.0<br />

152.91 6.60 ?.C 33c 37.20 11.5 0.60 0.0 1.05 0.0 3.”i2<br />

155.33 6.50 7.80 38.90 37•30 1.1.3 0.60 .0 1.04 0.0<br />

157.91 6.60 7.85 39.30 37.50 11.3 0.70 0.0 1.04 0.0 3.7I<br />

1.6C.91 6.70 t.cs 39.10 37.6o 11.3 0.70 0.0 1.04 C.C 3.’lI’<br />

RUN C4—17


13.08 6.50 7.70 38.0 37.40 1.1.5 0.70 0.0 1.05 0.0 3.683<br />

176.32 ,55 7.80 33.90 37.40 11.3 0.70 0.0 1.04 0.0 3.713<br />

17.0C 6.60 7.8C 30.00 37.50 11.3 0.70 0.0 .04 0.0 3.721<br />

181.91 6.90 8.10 39.10 37.70 11.5 0,70 0.0 1-.0 0.C 3.23<br />

185.08 6.90 .c0 39.00 37.50 11.5 0.70 0.0 1.05 0.0 3.qiq<br />

1<br />

224.33 7.00 8.15 38.60 37.20 11.5 0.70 0.0 1.05 C.C 3,c57<br />

227.58 7.50 8.55 30.10 37.70 11.3 0.70 0.0 1.04 0.0 3•3c8<br />

230.41 7.20 3.40 38.50 37.60 11.5 0.70 .O 1.05 0.0 5.2<br />

23.67 7.00 8.1C 39.00 37.70 11.5 0.70 0,0 !.05 C.C 4.212<br />

I<br />

RUN C1_17<br />

TIME TWI TC TKI TKO DPK CPW OPT V CF/2 RF<br />

(HR) (0 C) (0 C) (0 C) (0 C) (MV) (CM.HG) (1V) (MPS)<br />

l.C/(KIl()**2 C)<br />

17.17 6.60 7.90 33.90 31.50 11.5 0.70 0.0 1.05 0.0 3.Q33<br />

20.25 6.65 7.8C 39.00 37.60 11.5 0.70 3.0 i.5 C.C<br />

202.91 7•1Q 8.60 39.10 37.70 11.3 0.70 0.0 1.04 0.0 3,O<br />

206.00 7.20 8.45 39.00 37.60 11.3 0.70 0.0 1.04 0.C 3.913<br />

209.08 6.90 8.00 39.00 37.60 11.5 0.70 0.0 1.05 C.C<br />

211.17 6.75 7.50 38.90 37.60 11.5 0.70 0.0 1.05 0.0 4.28<br />

‘JEAN RE 7899.S 1EA PR 17.50 NC. RE1fl1.NGS 44


UN C5-18<br />

TIME TWI TfD TKI TKO DPK CPW OPT V CF/2 RF<br />

(FIR) (0 C) (0 C) (0 C) (0 C) (MV) (CM.HG) (‘4V) (MPS) 1..0/(KW/(M)*2 C)<br />

13.5C 6.CC 7.20 30.90 39.00 7.3 o.So 0.0 0.87 0.0 7.81.5<br />

14.75 5.90 7.10 38.70 37.70 8.3 0.50 0.0 093 0.0 6.393<br />

17.41 5.80 7.00 33.70 37.70 8.0 0.50 0.0 0.91 0.0 6.512<br />

20.08 5.6C 6.8G 33.80 37.50 8.3 0.50 0.0 3.93 0.C 4.958<br />

33.25 5.90 7.10 38.60 37.20 7.8 0.50 0.0 O.’0 0.0 4.571<br />

37.33 5.80 6.9C 38.70 37.40 8.0 .5O 0.0 0.91 00 4.c96<br />

39.67 5.90 7.IC 30.7C 37.40 8.0 0.50 0.0 0.91 0.0 4.972<br />

42.OC 5.90 7.10 38.80 37.40 8.0 0.50 0.0 0.flI 0.0 4.24<br />

44.OC 5.70 6.80 38.80 37.40 8.0 0.50 0.0 0.91 0.0 4.’60<br />

57.C8 .7c 6.90 38.70 37t<br />

1J 8.0 0.50 0.0 3.91 0.C .CC4<br />

60.08 5.80 7.00 38.90 37.50 0.50 0.0 0.91. 0.0 4.652<br />

63.08 5.80 7.10 38.00 37.50 8.0 0.50 0.0 0.91 0.C 4.645<br />

66.17 5.90 7.IC 38.80 37.40 8.0 0.50 0.0 0.91 0.0 4.624<br />

69.00 5.80 7.CC 33.80 37.40 8.0 0.50 0.0 0.1 0.0 4.639<br />

81.17 7.10 38.80 37.10 8.0 0.50 0.0 0.91 0.0 3.792<br />

84.17 5.90 7.20 33.90 37.30 8.0 0.40 0.0 0.91 0.0 4.040<br />

86.91 5.90 7.20 38.80 37.40 8.0 0.50 0.0 C.l 0.0 4.616<br />

90.08 6.10 7.1C 38.90 37.40 8.0 0.50 0.0 0.91 0.C 4.3C8<br />

92.08 6.00 7.20 38.90 37.50 8.0 O.5o 0.0 0.91 0.0 4.622<br />

1.o5.25 6.10 7.3C 39.00 37.60 8.0 0.50 0.0 0.91 0.0 4.621<br />

107.91 6.20 7•40 39.10 37.80 8.0 0.50 0.0 0.91 0.0 4.98?<br />

110.8 6.20 7.4C 39.00 37.60 8.3 0.50 3.0 0.91. 0.0 4.606<br />

113.32 6.30 7.5c 39.00 37.50 8.0 0.70 0.0 fl.1 0.C 4.279<br />

129.58 .50 7.65 38.80 37.’.O 7.8 0.So 0.0 0.90 0.0 4.612<br />

136.75 .50 7.70 38.80 37.40 8.0 0,51) 0.0 0.91 0.0 4.536<br />

153.OC 6.40 7.7C 33.7C 37.10 8.0 0.50 0.0 0.91 0.0 3.953<br />

155.41 .1tC .7C 38.80 37.20 P.O 0.50 0.0 o.°i 0.0 3.96”<br />

157.91 6.4C 7.70 38.90 37.40 8.0 0.50 0.0 0.°1 0.0 4.247<br />

161..OC 6.6C 1.SC 3).0D 3!.50 8.0 0.0 0.0 0.01 0.0 “.288


TIME TWI TC TKI TKC DPK CPW OPT V CF/2 RF<br />

(PR) (0 ci (0 C) (0 C) (0 C) (MV) (CM.HG) (1V) (MPS) 1.0/(K.W/(M)*2 C)<br />

I3.17 ..4C 7.60 38.90 37.40 8.0 0.50 0.0 0.91 0.0 4.254<br />

176.33 6.40 7.70 38.80 37.30 7.8 0.50 0.0 0.90 0.0 4.302<br />

170.QC .6.55 7.80 33.90 37.40 8.0 0.50 0.0 0.91 0.0 4.230<br />

12.0C 6.70 8.CC 30.03 37.50 8.0 0.50 0.3 D.91 0.C 4.218<br />

185.17 6.7C 7.5 39.00 37.50 8.0 0.50 0.0 0.91 0.0 4.721<br />

137.25 6.45 7.60 38.90 37.40 8.0 0.50 0.0 0.91. 0.C 4.250<br />

200.33 6.60 7.cS 33.90 37.40 7.8 0.50 0,0 0.90 C.C 4.283<br />

203.00 7.60 8.5 37.60 8.0 0.50 0.0 0.91 0.0 4.420<br />

7C6.OC 7.00 8.30 39.0.) 37.50 7.8 0.40 0.0 0.90 0.0 4.244<br />

209.17 6.70 1.SC 3:.39Q 3T.40 7.8 0.50 0.0 0.90 0.0 4.280<br />

211.17 6.60 7.80 38.90 37.50 7.8 0.50 0.0 0.°0 0.0 4.607<br />

22’.41 6.90 8.15 38.60 37.10 7.3 0.40 0.0 0.90 0.0 4.211<br />

227.67 7.30 8.60 3.0c 37.60 7.8 0.40 0.0 0.90 O.C<br />

230.41 7.05 3.20 33.70 37.40 7.8 0.40 0.0 0.90 0.0<br />

233.75 6.70 8.CC 39.03 36.50 7.8 0.50 0.0 0.90 0.0 2.533<br />

RL C5—18<br />

?E 6895.7 PR 17.52 NO. P.FCTNCS 44


14.25 7.IC 10.2C 39.10 38.00 8.8 0.60 0.0 0.95 0.C 5.29<br />

14.83 5.99 7.C3 38.90 37.50 .0 0.60 0.0 0.96 0.0 4.392<br />

17.50 5.90 7.C0 38.90 37.70 8.8 0.60 0.0 0.95 0.0 5.211<br />

20.17 5.80 6.80 38.80 37.50 8.R 0.60 0.0 .95 0.0 4.


163.17 6.50 7.C 38.OG 37.’0 9.0 0.60 0.0 0.96 o.c<br />

176.’iI 6.55 7.55 39.00 37.50 8. 0.60 0.0 0.95 0.0 4.04<br />

179.08 6.70 7.7C 39.00 37.50 9.0 0.60 0.0 .97 0.C “.008<br />

182.C8 6.9C 7.8C 39.1C 37.70 9.0 0.60 0.0 0.97 0.C 4.2c2<br />

185.17 6.80 7.&C 39.00 37.60 9.0 0.60 0.0 0.97 0.0 4.286<br />

187.25 6.55 7.50 38.90 37.50 9.0 0.60 0.0 0.96 0.0 4.312<br />

200.33 6.80 7.7C 37.50 9.0 0.60 0.0 0.97 0.C 4.001<br />

203.00 7.25 8.3C 39.10 37.30 9.0 0.60 0.0 0.0 4.566<br />

2C6.08 7.10 8.2C 39.10 37.60 9.0 0.60 0.0 0.97 0.C 3.961<br />

209.25 6.80 7.80 39.00 37.50 9.0 0.60 0.0 0.97 0.0 3.995<br />

211.25 6.70 7.75 39.00 37.60<br />

0Q 0.60 0.0 0.97 0.0 4.27<br />

224.5C 7.00 8.C5 3-’3.3C 31.30 9.0 0.60 0.0 0.96 0.C 3.943<br />

227.67 7.50 8.50 39.10 37.70 9.0 0.6) 0.0 .97 0.0 4.2C2<br />

230.50 7.20 8.20 33.90 37.50 .0 0.60 0.0 O.6 C.C 4.219<br />

233.75 6.90 7.E5 39.00 37.60 9.0 0.60 0.0 0.97 0.0 4.276<br />

RUN C7-19<br />

TP’E TWI TWO TKI TKC DPK CPW DPT V CF/2 RF<br />

(HP) (0 C) (0 C) (0 C) (0 ) (MV) (CM.HG) (MV) (MPs) 1.0f(KW/(M)**2 C)<br />

‘EAN RE 7254. C tEAN PR 4/-f<br />

17.49 Nfl. REfrIGS


RUNJ<br />

C8-2C<br />

T[’E<br />

TWE<br />

T0 TKI<br />

(Hg) (0 C) (0 C) (0 C) (0 C)<br />

TKC DPK CPW OPT V<br />

(MV)<br />

(MV)<br />

(CM.HC)<br />

CF/2 RF<br />

(PS) l.0/(VlI(M)2 C)<br />

l’t.41 7.00 7.80 37.70 36.90 3.8 0.70 o.o O..6i. C.C<br />

15.08 5.90 6,50 38.10 37.50 3.8 0.70 0.0 0.61 0.0<br />

17.50 6.90 6.50 33.80 37.50 4.0 0.80 0.0 0.63 0.0 7.164<br />

20.25 5.90 6.C 38.60 37.30 4.0 0.90 0.0 0.63 0.C 7.251<br />

33.33 6.00 6.50 38.50 37.40 3.8 0.80 0.0 0.61 0.0<br />

37.50 5.90 6.SC 33.70 37.50 4.0 0.80 0.0 0.63 C.C 7.76<br />

39.75 6.10 6.6C 38.60 37.50 ‘-.0 0.80 0.0 0.63 0.C 8.39<br />

42.08 5.90 6.40 38.60 37.40 4.0 0.80 0.0 0.63 0.0<br />

4&,j7 5.80 6.30 38.60 37.50 4.0 0.90 0.0 0.63 0.C 8.620<br />

57.17 5.80 6,30 33.60 37.40 4.0 0.80 0.0 0.63 0.0<br />

60.25 5.90 6.50 38.80 37.50 4.0 0.80 0.0 0.63 0.0 7.2O<br />

63.17 6.00 6.60 33.83 37.60 4.0 0.80 0.0 0.63 0.C 7.873<br />

66.25 6.00 6.70 38.70 37.50 4.0 Q.8 0.0 0.63 0.0 7.839<br />

69.08 6.OC 6.50 33.70 37.40 4.0 0.90 9.0 0.63 0.C 7.2<br />

t<br />

81.25 6.00 6.60 33.70 37.30 3.8 0.90 0.0 0.61 0.0 6.911<br />

84.25 6.00 6.60 38.80 31.40 3.8 0.80 0.0 0.61 0.0 6.930<br />

87.OC 6.00 6.70 38.80 37.40 3.8 0.80 0.0 0.61 0.0 6.920<br />

0.17 6.10 6.60 38.70 37.70 4.0 0.80 0.0 0.63 0.0 9.433<br />

Q2.17 6.10 6.7C 38.80 37.50 3.8 0,90 0.0 0.61 0.0 7.5l<br />

105.33 6,2C 6.8C 38.90 37.60 3.8 0.93 0.0 0.61. 0.0 7./48<br />

108.00 6.30 7.C0 39.00 37.70 3.8 0.80 0.0 .61 0.C 7.434<br />

111.00 6.30 6.8C 38.90 37.50 3.8 0.90 0.0 0.61 0.0 6.895<br />

113.41 6.4C T.CC 38.70 37.50 3.8 0.90 0.0 0.61 0.0 7.984<br />

12’.67 6.60 7.20 38.70 37.40 3.8<br />

-<br />

0.90 0.0 0.61 0.0 7.212<br />

136.82 6.60 7.20 38.70 37.40 3.8 0.90 0.0 0.61. 0.0 7.212<br />

153.08 6.60- 7.7C 38.60 37.20 3.8 0.70 0.0 0.61 0.0 6.7C7<br />

155.50 6.50 7.10 38.10 37.30 3.8 0.70 0.0 0.61 0.0<br />

152.00 6.50 7.10 33.83 37.40 3.8 0.8) 3.0 3.61 0.0 6.822<br />

L6L.08 6.70 7.20 33.80 37.50 3.8 0.80 3.0 0.61 C.C 7.310


163.25 6.50 7.1C 38.70 37.30 3.8 0.90 0.0 0.61 0.0 6.9c2<br />

176.41 é.6C 7.1.5 38.70 37.4 3.9 0.80 0.0 fl.A1. 0.0 7.318<br />

1.79.08 6.60 7.25 38.70 37.40 3.8 0.80 0.0 .6l 0.0 7.307<br />

182.1.7 6.OC 7.50 38.90 37.50 3.5 0.70 0.0 0.59 0.0 6.970<br />

185.25 6.80 7.43 38.90 37.40 3.5 0.80 0.0 0.5° 0.0 6.517<br />

187.33 6.6C 7.10 38.60 37.30 3.5 0.90 3.0 0.59 C.C 7,537<br />

200.41 6.80 7.4C 38.70 37.40 3.5 0.90 0.0 0.5 0.0 7.498<br />

203.00 7.25 7.85 38.90 37.50 3.5 0.80 0.0 .59 0.0 6.891<br />

206.08 7.20 7.75 38.90 37.50 3.5 0.80 9.0 0.59 0.0 6.9C8<br />

209.25 6.70 7.3C 38.70 37.20 3.5 0.90 0.0 0.59 0.0 6.C0<br />

211.33 6.70 7.30 38.90 37.53 3.5 0.00 0.0 0.59 0.0 v.015<br />

224.50 7.10 7.F 38.60 37.30 3.5 0.83 0.0 0.59 0.0 7.410<br />

227.75 7.30 7.90 38.90 37.50 3.5 0.90 0.0 0.59 0.0 6.80<br />

230.5C 7.2c 1.10 38.60 37.40 3.5 0.80 0.0 0.59 0.0 ‘3.01.0<br />

233.83 6.00 7.4C 38.80 37.50 3.5 0.90 0.0 0.59 0.0 7.5C8<br />

RUN C8-20<br />

TIME TWI TWO TKI TKC DPK cPw opr V CF/2 RF<br />

(HR) (0 C) (0 C) (0 C) (0 C) (MV) (C’.iG) (MV) (MPS) 1.0i(


TIVE M)*2 C)<br />

TWI TWO TKI TKC DPK opw CPT V CF/2 RF<br />

(Hp) (0 C) (0 C) (0 C) (0 C) (MV) (CM.HG) (MV) (MPS) 1.C/{K/( cL’: C 10—21<br />

15.17 6.CC 7.2C 30.00 37.70 15.3 O.7C 0.0 1.15 0.C 3.968<br />

17.58 6.00 7.20 33.90 37.FO 1.5.3 0.70 0.0 1.15 0.0<br />

20.33 5.90 7.1.0 38.33 37.70 15.3 0.80 0.0 1.15 0.0 4.690<br />

33.41. 6.20 7.4C 39.80 37.70 1.5.0 0.80 0.0 1.14 0.C 4.6€0<br />

37.50 5.10 7.20 33.90 37.70 15.0 .70 0.0 1.14 0.0 4.384<br />

39.83 6.20 7.50 39.00 37.80 15.0 0.80 0.0 1.1.4 0-C 4.301.<br />

42.08 6.00 7.1C 33.93 37.70 15.3 0.60 0.0 1.15 0.C<br />

4-.17 5.90 6.90 39.80 37.70 150 0.80 0.0 1.14 0.0 4.740<br />

5.25 5.90 7.10 39.00 37.80 15.0 0.70 0.0 1.14 0.0<br />

60.25 6.00 7.20 39.00 37.90 15.0 0.70 0.0 1.14 C.C 4.736<br />

3.33 6.10 7.20 39.00 37.80 15.0 0.70 0.0 1.14 0.0 4.329<br />

66.25 6.10 7.3C 39.03 37.80 15.0 0.70 0.0 1.14 0.C 4.32?<br />

‘p.17 6.10 7.10 33.90 37.73 15.0 0.80 0.0 1.14 0.0 4.324<br />

1.25 a.2C 7.30 39.00 37.80 15.0 0.80 0.0 1.14 0.0<br />

24.25 6.10 7.3C 39.00 37.80 15.0 0.80 0.0 1.14 C.C 4.322<br />

37,33 6.20 7.3C 38.90 37.30 15.3 0.70 0.0 1.15 0.C 4.666<br />

90.17 6.20 7.3C 39.00 37.80 15.0 0.80 0.0 1.14 0.0 4.31.6<br />

‘2.25 e.20 7.40 30.00 37.80 15.3 0.30 0.0 1.15 0.0 4377<br />

105.41 6.4C 7.60 30.00 37.90 15.3 0.83 0.0 1.15 0.0 4.643<br />

103.00 6.5C ?.6C 30.20 33.00 15.3 0.70 0.0 1.15 0.C 4.268<br />

111.00 6.40 7.60 39.00 31.00 15.0 - 0.00 0.0 1.1.4 0.0 4.77<br />

13.33 6.60 7.65 38.90 37.80 15.3 0.80 0.0 1.15 0.0 4.611<br />

12.75 6.80 7.85 39.00 37.80 15.0 0.80 0.0 0.0 4.237<br />

L3.-1 6.70 39.00 37.90 15.3 0.30 0.0 1.15 0.0 4.8<br />

53.17 6.80 7.90 38.80 3r.7Q 15.3 0.70 0.0 1.15 0.0<br />

15.53 6.80 7.30 38.90 37.80 15.3 0.70 0.0 1.15 0.0 4.535<br />

53.03 6.90 7.90 30.00 37.90 1.5.3 0.70 0.0 1.15 0.0<br />

11.17 6.80 7.90 39.00 37.90 1.5.3 Q.80 0.0 1.15 0.0<br />

163.33 6.70 7.7C 38.00 37.70 15.3 0.30 0.0 1.15 C.C


RUN C1C—21<br />

TIME ThI TWO TKJ TKO DPK 0P’i CPT V CF/2 RF<br />

(IIR) (0 C) (0 C) (0 C) (0 C) (MV) (CM.)-jG) (MV) (MPS) 1.0f(K/(M)**2 C)<br />

176.5C .7C 7.qC 39.00 37.80 15.0 0.70 0.0 1.14 0.C 4.240<br />

179.17 6.90 8.10 39.00 37.90 15.0 0.70 0.0 1.14 0.0 4.602<br />

182.17 7.00 8.20 39.20 38.00 15.0 0.80 0.0 1.14 0.0 3.875<br />

18.25 6.80 8.CC 39.30 37.90 15.0 0.80 0.0 1.14 C.C 4.617<br />

187.41 6.70 7.70 38.90 37.70 15.0 0.80 0.0 1.14 0.0 4.242<br />

200.50 6.90 8.C5 39.30 37.93 15.0 0.70 0.0 1.1-4 C.c 4.606<br />

203.08 7.40 8.60 39.10 38.00 15.0 0.70 0.0 1.14 0.C<br />

206.17 7.40 8.55 30.20 38.00 15.0 0.70 0.0 1.14 °.0 4,174<br />

200.33 7.80 8.00 39.03 37.80 15.3 0.80 0.0 1.15 G.C 4.1-28<br />

211-.3 .9G 7.80 39.00 37.90 15.0 0.80 0.0 1.14 C.C 4.618<br />

224.5€ 7.3C 8.40 38.80 37.10 15.0 0.80 0.0 1.14 0.0 4.824<br />

227.75 7.40 8.55 38.00 15.0 0.70 0.0 1.14 0.0 4.°92<br />

230.50 7.30 8.40 38.90 37.80 15.0 0.70 o.0 1.14 C.C 4.231<br />

233.3 7.OC 3.10 39.00 36.90 15.3 0.80 0.0 1.15 0.0 2.35<br />

ME A N RE .3 73 7 • E ‘ F A N P Q 17.47 Nfl. PEM)TNGS 113


Tt’iE TWI TC TKI TKO OPK CPW DPT V CF/2 RF<br />

(HR) (0 C) (0 C) 3 C) (3 C) (MV) (CM.H) (1V) (MPS) l.0I(K’/()2 C)<br />

RUN D1C—22<br />

11.25 15.50 1.2C 43.90 43.1.0 5.0 1.00 0.0 0.71 D.C 9.040<br />

11.5C 12.20 13.C0 42.40 40.60 5.0 1.00 0.0 0.70 0.0 tt.227<br />

12.00 12.10 12.SC 39.60 38.00 4.8 1.00 0.0 0.69 0.0<br />

12.5C 12.00 12.C 33.10 36.80 4.5 1.00 0.0 0.67 0.0 5.412<br />

13.17 12.1c 12.7C 36.10 35.00 4.8 1.00 0.0 0.68 D.C 5.787<br />

14.OC 12.10 12.60 35.20 34.20 4.8 1.00 0.0 0.68 0.0 6.1.64<br />

15.OC 12.30 12.80 35.10 34.05 4.8 1.00 0.0 0.68 0.C 5.788<br />

16.00 12.20 12.7c 34.90 33.90 4.8 1.00 0.0 0.68 0.C 6C60<br />

17.OC 12.50 13.C0 34.30 33.90 4.8 1.o 0.0 0.68 0.0<br />

18.00 12.60 13.C5 35.00 34.00 5.0 1.00 0.0 0.70 0.0 5.848<br />

19.00 12.55 13.C5 35.13 34.20 4.8 1.00 0.0 0.68 D.C<br />

33.15 12.70 13.30 37.70 36.50 5.0 1.00 0.0 Q.7 0.0<br />

34.33 12.7C 13.3c 37.90 36.73 5.0 1.00 0.0 0.70 D.C 5.410<br />

35.41. 12.7C 13.3C 37.90 36.60 5.0 1.0 0.0 0.70 0.0<br />

37.17 12.50 13.20 33.00 36.80 5.0 1.00 0.0 0.70 D.C 5.464<br />

3.0C 12.80 13.4C 38.10 36.90 5.0 1.00 0.0 0.70 0.0 5.428<br />

37.87 12.85 13.50 38.63 37.30 5.0 1.00 0.0 0.70 C.C<br />

60,00 12.55 13.15 37.20 35.00 5.0 1.00 0.0 0.70 0.C 5.C0<br />

60.25 12.50 13.10 37.jO 36.00 5.o 1.10 0.0 0.70 C.0 5•7Q3<br />

65.25 12.50 13.10 37.40 36.20 5.0 1.10 0.0 0.70 D.C 5.3’?<br />

81.17 12.50 L2.5 34.10 L.8 1.00 0.0 0.68 0.0 6.737<br />

P4.3 11.75 12.25 35.40 34.40 ,8 1.00 0.0 0.68 0.0 6.311.<br />

87.25 11.TC 12.30 36.35 35.25 5.0 1.00 0.3 0.70 D.C 5.811<br />

89.75 11.70. 12.25 36.53 35.40 5.0 1.00 0.0 0.0 0.0<br />

1.50 12.00 12.55 36.63 35.50 5.0 1.10 0.0 0.70 D.C<br />

105.41 11.70 12.20 35.53 34.70 1.00 0.0 0.68 0.0<br />

108.25 11.65 12.15 34.95 34.05 5.0 1.00 0.0 0.70 0.0 4,775<br />

110.92 11.80 12.30 33.70 34.75 5.0 1.00 0.0 0.70 0.0 6.5<br />

113.25 11.80 12.3C 35.D5 35.05 5.0 1.00 0.) 0.70 0.0


RUN D1C—22<br />

TIME TWI TC TKI TKC OPK CPW OPT V CF/2 RF<br />

(HR) (C C) (3 C) (0 C) (3 C) (4v) (CM.HG) (1V) (MPS) l.O/(/(M)2 C)<br />

114.58 12.00 12.C 36.10 35.05 5.0 1.00 0.0 0.70 0.0 5.S70<br />

135.17 11.20 11.8C 36.83 35.50 5.0 1.00 0.0 0.70 0.0<br />

139.17 11.50 12.IC 37.40 36.10 5.0 1.00 0.0 0.70 0.0 5.137<br />

141.75 11.50 12.C0 37.30 36.10 5.0 1.10 0.) 0.70 0.0<br />

143.50 11.45 12.CC 31.10 .35.00 5.0 1.10 0.0 0.70 C.C 5.531<br />

1s3.75 11.45 12.C0 37.10 35.90 5.0 1.10 0.0 0.70 0.0 5.531<br />

MEAN RE 5128.7 4EAN PR 17.91 NO. PEtflINGS 35


— A23 —<br />

APPENDIX 5 OALT2RATTUNS 0? 0RiICE<br />

; JTE13 PJE iJE1IS<br />

US:n) IN Ti Dfl-QSiTI0N<br />

ur)Iis APPAPAWS<br />

A5.1 Orifice keters<br />

The orifice meters, used in the <strong>deposition</strong> studies apparatus, had<br />

st<strong>and</strong>ard d <strong>and</strong> d/2 tappings <strong>and</strong> a diameter half that of the pipe.<br />

The<br />

0.5 inca pipe usea han i.d. 13.64 mm <strong>and</strong> o.d. 15 nun.<br />

The orifice meters were calibrated by measuring the time taken to<br />

fill a given volume.<br />

Using the appropriate density vaiues, the flow—<br />

rates in terms of kg/s were obtained.<br />

The solution orifice meter was calibrated by using pure kerosene.<br />

The temperatures of the cooling water <strong>and</strong> kerosene were kept constant<br />

during the calibrations.<br />

Table .5.1 gives the results for the water orifice <strong>and</strong> Table A5.2<br />

for the solution orifice.<br />

Using the equation:<br />

W = C.\/zh (A5.1)<br />

<strong>and</strong> the data in Tables A5.1 <strong>and</strong> 5.2, the discharge coefficients were<br />

calculated. W is the flowrate in kg/s, C. the discharge coefficient<br />

<strong>and</strong><br />

h the differential head in ci-g across the orifice meters.<br />

The average values of the nischarge coefficients for eerimental<br />

solution <strong>and</strong> water orifices were 0.0365 <strong>and</strong> 0.0401, respectively.<br />

)


against a st<strong>and</strong>ard thermometer, was fastened to the thermistor. The<br />

—0 to 50 x 0.1°C mercury in glass thermometer, previously tested<br />

controllers -<br />

tanks were calibrated at the maximum sensitivity of the temperature<br />

The thermistors placod in the experimental solution <strong>and</strong> cooling water<br />

A52 Thermistors’<br />

calibration values are plotted in figure k5.1.<br />

water <strong>and</strong> experimental solution circulation systems, respectively. The<br />

Tables A5.3 <strong>and</strong> show the calibration values for the cooling<br />

were recorded as the calibration vaiues.<br />

mercury in glass thermometer at that point <strong>and</strong> the controller setting,<br />

reached where the light stopped Zmshing. The temperature shown by the<br />

:as on. 3y gradually decreasing the controller setting, a point ‘as<br />

-an. Th:s turne ;ae 1 neater on ana a lgnt :asaed, inccatzng i<br />

the temperature controller WaS set above the actual tempera;ure in the<br />

ture fell below the required value. In order to calibrate the thermistor,<br />

In practice, the 1kW controfled heater was turned on if the tempera<br />

for both the circulation systems.<br />

recorded as the heating occurred. The same calibration method was used<br />

system now gradually increased its temperature. Calibration values were<br />

2kW heater <strong>and</strong> the circulation pump were turned on. The circulation<br />

- A21 -


T—- TEI\iFERATUFE (°C)<br />

—I’<br />

Ui<br />

—s<br />

NJ C)<br />

.Z—<br />

i<br />

C) C) CD C) ç C)<br />

0) -ci<br />

i<br />

C-c)<br />

C) C) C)<br />

ii<br />

C)<br />

;j (1<br />

C)<br />

C)<br />

Cl’)<br />

h<br />

x o<br />

C)<br />

1• —<br />

C-: n<br />

:1 ;,j<br />

C)<br />

1<br />

III<br />

(1)<br />

(e<br />

(i•) (1)<br />

—i<br />

i:<br />

rI -<br />

.


— A22 —<br />

Table A5.1<br />

Calibration of the water<br />

orifice rletcr<br />

xh W Cd<br />

(cm Hg) (kg/s) (kg/s cm Hg)<br />

0.5 0.032 0.0453<br />

1.3 0.048 0.0421<br />

2.4 0.063 0.0407<br />

4.7 0.087 00401<br />

7.2 0.106 0.0395<br />

9.0 0.116 0.0387<br />

11.0 0.131 0.0390<br />

13.2 0.141 0.0388<br />

17.3 0.164 0.0394<br />

19.8 0.176 0.0396<br />

j<br />

21.7 0.180 L 0.0385<br />

27.3 0.205 0.0394<br />

34.5 0.232 0.0395<br />

43.8 0.267 0.0403<br />

Ave:a;e C. = o.o401


d<br />

Average C<br />

Table A5.2<br />

0.0452<br />

0.0255<br />

0.0395<br />

0.0367<br />

0.0369<br />

0.0568<br />

0.0378<br />

0.0365<br />

0.0361<br />

0.0377<br />

0.0364<br />

0.0374<br />

0.0356<br />

0.0373<br />

0.0354<br />

0.0353<br />

0.0354<br />

0.0359<br />

C.0352<br />

0.0351<br />

0.0351<br />

0.0372<br />

o.o54<br />

o.o68<br />

xh w Cd<br />

.8<br />

43.1<br />

0.9<br />

2.0<br />

2.6<br />

32.5<br />

12.1<br />

23.1<br />

28.1<br />

3.3<br />

7.5<br />

1.6<br />

5.9<br />

14.4<br />

15.7<br />

20.9<br />

13.0<br />

18.6<br />

0.5<br />

9.9<br />

0.2<br />

8.5<br />

0.0193<br />

0.0242<br />

0.0465<br />

0.0595<br />

0.1157<br />

0.0279<br />

0.0826<br />

0.1265<br />

0.1350<br />

0.1353<br />

0.1472<br />

0.1557<br />

0. 0oo<br />

0.0jo<br />

0.0519<br />

0.0988<br />

0.2699<br />

0.2531<br />

0.1653<br />

0.1687<br />

0.1975<br />

0.2077<br />

0.2382<br />

orifice meter<br />

o.o88<br />

— A23 —<br />

= 0.0365<br />

- 1<br />

Calibration of the solution<br />

1 (cm Hg) (kg/s) (k/s cm Hg)


( C) setting<br />

Terorature Controller<br />

ther:istor<br />

.<br />

55.4<br />

60.5<br />

59.6<br />

53.1<br />

•<br />

52.0<br />

49,3<br />

50.0<br />

32.5<br />

35.4<br />

36.2<br />

37.5<br />

43.5<br />

47.6<br />

2.5<br />

41.1<br />

LrCQ<br />

23.0<br />

23.0<br />

29.4<br />

34.8<br />

.-‘-. Q<br />

15.3<br />

14.7<br />

13.1<br />

14.1<br />

20.1<br />

22.1<br />

12.0<br />

12.5<br />

13.6<br />

16.5<br />

18.4<br />

11.0<br />

10.2<br />

10.5<br />

9,7<br />

- A24 -<br />

10.102<br />

10. 25<br />

9.97-i<br />

3<br />

10.503<br />

10.1%D<br />

10,151<br />

10.0L,4<br />

9.325<br />

9.876<br />

97L5<br />

• 9.592<br />

8.773<br />

9.166<br />

8.742<br />

8.842<br />

8.995<br />

9.323<br />

9.545<br />

9.D7<br />

9,IDL:.<br />

8.2&÷<br />

7. o42<br />

7.172<br />

7.460<br />

5.937<br />

7.917<br />

8.119<br />

8.313<br />

02<br />

5895<br />

5,629<br />

5.855<br />

.304<br />

5 .505<br />

5.426<br />

5,546<br />

5.620<br />

5.685<br />

6.047<br />

6.133<br />

6.235<br />

COOli2i ‘;‘cr<br />

Table Calibration of the


11.1 6.517<br />

10.5 6.418<br />

10.1 6.346<br />

9.6 6.236<br />

(°C) settiz<br />

Teanerature Controller<br />

temistor<br />

ecriertal solution<br />

Table f5,4 Calibration of th<br />

11.0 : 6.523<br />

35.3 8.993<br />

34.7 9.092<br />

40,0 9.407<br />

47.5 9.772<br />

70.0 13.402<br />

18.3 7.595<br />

29.2 j 8.699<br />

50.0 8.753<br />

37.6 9.268<br />

42.5 9.539<br />

44.4 9631<br />

51.9 9.95+<br />

63.o 10.359<br />

32.2 8.955<br />

27.7 8.553<br />

25.6 8.175<br />

53.9 9.999<br />

64.0 10270<br />

65.4 10.507<br />

621 10.235<br />

45•5<br />

9.531<br />

35.3 9.121<br />

36.2 9.185<br />

22.1 8,044<br />

41,1 9.i5D<br />

20.0 7.795<br />

53.4 10.185<br />

.,<br />

IL). OJ<br />

58.1 13.125<br />

48.5 9.80?<br />

49.3 9.833<br />

55.2 10.049<br />

146 7.07+<br />

14.1 7.350<br />

12.4 6.736<br />

13.0 6.864<br />

13.6 6.949<br />

12.0 6.675<br />

11.4 6.568<br />

15.7 7.240<br />

— A25 —


— A26 —<br />

APPENDIX 6<br />

EXPEPINENTAL RESULTS OF THE<br />

DEPOSITION STUDIES<br />

Table A6.1<br />

Concentrations <strong>and</strong> temperatures used in<br />

the deoosition studies<br />

Wax<br />

- Wax<br />

: melting<br />

Coud Bulk<br />

n concenration poant e.,emrerature<br />

(%) (°c) (°c)<br />

•<br />

,<br />

/54 8.5 15 23<br />

D2 51/54 10.0 20 25<br />

D5 51/54 11.5 22 27<br />

D4 57/60 2.5 20 25<br />

D5 57/60 3.5 23 28<br />

.<br />

i<br />

57/60 5.5 23 28<br />

I<br />

I


— A27 —<br />

Tib1e A6.2<br />

Pun Dl<br />

.irn<br />

Amount deposited (nig)<br />

Dry<br />

Wet<br />

5 16 143<br />

10 22 200<br />

15 35 164<br />

20 36 150<br />

20 60 186<br />

25 40 119<br />

30 2 172<br />

30 70 197<br />

40 52 152<br />

50 58 174<br />

60 67 172<br />

70 73 133<br />

8o 88 199<br />

90 71 161<br />

90 48 154<br />

lCD 76 145<br />

106 27 102<br />

110 67 137<br />

120 47 144<br />

120 39 121


— A28 —<br />

Table A6.3<br />

Th.n D2<br />

Time<br />

(mm.)<br />

fmount deposiied (mg)<br />

Dry<br />

Wet<br />

2 8 170<br />

5 31 128<br />

10<br />

:<br />

43 124<br />

F.<br />

5 o2 100<br />

20 95 168<br />

30: 116 186<br />

40 123 170<br />

40 157 376<br />

50 126 302<br />

55 139 228<br />

60 142 214<br />

65 163 224<br />

70 162 359<br />

80 161 356<br />

50 188 269<br />

95 192 250<br />

100 190 228<br />

110 174 248<br />

120 176 233


-A29-<br />

Table A6.4 Pun 1)3<br />

‘ Time<br />

(mm.)<br />

Amount deposited (mg)<br />

Dry<br />

Wet<br />

5 48 238<br />

7 81 432<br />

I 15 132 256<br />

20 105 455<br />

20 153 282<br />

25 120 425<br />

30 149 530<br />

30 98 260<br />

35 109 277<br />

35 68 338<br />

40 171 440<br />

45 136 354<br />

H<br />

50 163 458<br />

55 100 427<br />

60 155<br />

70 119 294<br />

70 192 305<br />

80 154 556<br />

85 135 319<br />

90 172 441<br />

100 152 429<br />

110 178 514


-. A30 —<br />

Table A65<br />

Iun D4<br />

Time<br />

(mm.)<br />

mount deposited (mg)<br />

Dry<br />

Wet<br />

5 0 53<br />

7 13 46<br />

10 12 69<br />

15 18 48<br />

20 17 93<br />

25 30 57<br />

30 18 62<br />

40 24 63<br />

45 41 70<br />

50 31 79<br />

60 36 120<br />

70 51 86<br />

80 60 io<br />

ICC 59 90<br />

120 68 115


Time<br />

— A51 —<br />

Table A6.5<br />

Run D5<br />

Amount deposited (mg)<br />

(mm.)<br />

Dry<br />

Wet<br />

I<br />

5 44 90<br />

::<br />

110<br />

15 78 121<br />

15 95 136<br />

20 10 142<br />

25 86 134<br />

30 98 134<br />

.<br />

‘tO hi<br />

I,<br />

1’+o<br />

50 109 148<br />

60 117 157<br />

75 108 148<br />

8o 114 142<br />

90 123 158<br />

120 117 146


anoieter<br />

Flowrate<br />

— A32 —<br />

Table i6.7<br />

Run D6<br />

Experimental time 15 mm.<br />

Amount deposited (mg)<br />

Ccz:g)<br />

(ks/s)<br />

Dry<br />

Wet<br />

2 0.0516 105 176<br />

4 0.0730 1 86 I 159<br />

6 0.0894 90 141<br />

8 0.1032 64 131<br />

10 0.1154 78 121<br />

12 0.1264 I 79 117<br />

14 0.1366 52 87<br />

16 0.1460 64 99<br />

18 0.1549 57 95<br />

20 0.1632 48 93<br />

22 0.712 50


— A33 —<br />

APPENDIX 7 EOUNDARY LAYEE TrIZOBY USED<br />

IN THE CALCULATION OF<br />

TEIIPEflATUPE PROFILES IN<br />

‘UNBULE pTuT JyJ<br />

7.1 asc iiouaions<br />

n turbulent flow it is convenient to describe the transfer of<br />

roientum <strong>and</strong> heat by:<br />

-r =<br />

—<br />

p u’ v’ ..... (A7.1.1)<br />

q — k + p h’ v ..... (A7.1.2)<br />

where r <strong>and</strong> q are the momentum flux <strong>and</strong> heat flux, respectively, in these<br />

equations p,<br />

<strong>and</strong> k are density, viscosity <strong>and</strong> therrral conductivity <strong>and</strong><br />

H’ the fluctuating enthaipy. Mean values are denoted with a bar <strong>and</strong><br />

flucuating values with a prite.<br />

If u is the real velocity, then we<br />

have:<br />

U + U’<br />

<strong>and</strong> similarly for all other properties in turbulent flow.<br />

iile u is the<br />

velocity in the x<br />

(axial) direction, u’ <strong>and</strong> v” are the velocity fluctua<br />

tions in the x <strong>and</strong> y (radial) directions respective.y.<br />

Eoth u’ v’ <strong>and</strong> h’ v are unknown quantities which are usually<br />

uressed as:<br />

/ I<br />

U V = — —<br />

u<br />

dy<br />

-I ‘<br />

fl V = —<br />

i ay<br />

c <strong>and</strong> E. are the eddy diffusivities of momentum ard heat respectively.<br />

In thermodynamics dh = Cp dT, resulting in the following equations:


L<br />

U<br />

e;rression:<br />

/<br />

be used.<br />

diffusivities’ are required. Various methods <strong>and</strong> assumptions have been<br />

To solve equations A7.1.3 <strong>and</strong> A7.1.4 eç3ressions for the eddy<br />

q = — (c+pCpeh)<br />

U ay<br />

dT<br />

T (p + fI( )<br />

du<br />

— A3LF —<br />

= ressions :or dy D:fusvi<br />

where n is an experimental constant.<br />

employed. In the present work the analogy developed by Deissier Will<br />

hypothesis, where:<br />

<strong>and</strong> K is a universal exerimental constant.<br />

the wall; close to the wall.<br />

where Cp is the heat capacity.<br />

Deissler divided the flow in a passage into two regions: away from<br />

Ior he region close to the wall Deissier chose a semi—empirical<br />

‘or the region away from the wall Deissler used Karmans similarity<br />

= n u y 1 - exp<br />

U<br />

‘‘2<br />

ça u /cy )<br />

= K2<br />

2- /n_uy’<br />

\V /j<br />

/2- \?


— ;55<br />

—<br />

1.7.3 Dimensionless Expressions<br />

it is convenient to introduce the following diensionless constants:<br />

+ U<br />

U —<br />

+ = .....(A7.3.2)<br />

V W<br />

.1. =<br />

I i ri f’-. T<br />

— .i W<br />

u*<br />

I<br />

u = C TW /pwY<br />

;‘hore w rez’ers to values at y = o, i.e. at the wall, u is the shearing<br />

stress velocity <strong>and</strong> v<br />

the kineratic viscosity.<br />

Eçuaiors A7.1.3, h7.1.4, A7.2.i <strong>and</strong> A7.2.2 can now be expressed<br />

in diensioniess forz as follows:<br />

•fqW<br />

p 4 u<br />

Vw:Iw/Pw)<br />

/Pi<br />

dy’<br />

+<br />

(du / y<br />

EU : .....(A7.3.7)<br />

— .2÷ .÷2<br />

(ciu /c.y )<br />

2 ÷ + / 2 ++\<br />

EU = n u y — exp —n u y<br />

.....(A7.3.8)<br />

W


— A36 —<br />

A74<br />

Velocity Distribution if I’luid Properties are Constant<br />

Doissler used velocity distribution data for flow without heat<br />

transfer to evaluate the constants K <strong>and</strong> n.<br />

Assuming T<br />

= Tw <strong>and</strong> constant physical properties, a substitution<br />

for cu/rw in equation A73.5 gives:<br />

(1) Away from wall<br />

+<br />

+ y +<br />

u = in —- - u1<br />

.....(A7.4.i)<br />

where y is the lowest<br />

of y for which the equation applies <strong>and</strong> u<br />

is the value o u at y1. From experimental data Deissier found K = 0.3<br />

u<br />

—<br />

(2) Close to wall<br />

y ÷<br />

dy<br />

+<br />

(4<br />

2 + + 2 + +<br />

l+n u y 1-exp(—n u y)<br />

J<br />

From experimental data Deissler found n = 0.124. At small y (< 5) the<br />

equation reduces to<br />

+ +<br />

u = y .....(A7.4.3<br />

Equations A7.4.1 <strong>and</strong> A7.4.3 are the same as in the Universal<br />

Velocity Profile.<br />

Deissler found his data to Lit very well with these equations if<br />

ttaay from the wall” was considered when y26, at which point u = 12.82.<br />

A75<br />

ueratur Distribution if Fluid ProDorties are Constant<br />

Assuming q = q,,, <strong>and</strong> = 1 in the dimensionless form of the heat<br />

flux equation A7.3.6, results in the following equation:<br />

A<br />

dT’<br />

l=ç.+<br />

__)<br />

sucsti;ution for the dimensionless eddy diffusivity gives:


— = u — u<br />

= in — +<br />

± + +<br />

or<br />

(1) Away from wall<br />

yl<br />

= + T I<br />

given as:<br />

viscosity as calculated close to the wail. The temperature is similarly<br />

Now the velocity u is different from 12.82 since it is affected by the<br />

I yl<br />

U; = — Lfl = U<br />

+<br />

÷ 1<br />

+ 1_. y +<br />

(1) Away from wall<br />

similarity hyothesis A7.3.7., we obtain:<br />

viscosity does not enter the calculations directly, <strong>and</strong> use the Karman<br />

If for the region away from the wall we assume ,u


=<br />

y<br />

y<br />

+<br />

by iteration.<br />

dy’<br />

+<br />

(2) Close to wail<br />

1or the region close to the wall we substitute for given<br />

- A38 -<br />

For a given viscosityi, equation A7.6.4 can be solved for u+ at a given<br />

quation 7.6.5 can be solved with iteratior.<br />

by equation A7.3.8, <strong>and</strong> obtain:<br />

The dinsionless temperature is similarly given as:<br />

J<br />

0<br />

L /1<br />

I 2÷+ /2/Aw+ +‘\<br />

o L ,iJ<br />

+n u y 1-expi-n /wu y<br />

2 + ÷ / 2 +


I<br />

A8.21 Data<br />

2 Subroutines<br />

usng iteration <strong>and</strong> numerical integration.<br />

ASi introduction<br />

SU:TS<br />

ture ecuations given in section A7.6. The equations were solved by<br />

I<br />

iPPENDIX 8 TE_PECGIY_PFIIZ<br />

accuracy. The smooth ;ube correlation applies for glass <strong>and</strong> copper<br />

<strong>and</strong> the rough tube correlation for commercial pipes.<br />

A8.2.2 ‘riction ac;or<br />

D&tion 8.2.2.2 was solved by iteration.<br />

f =<br />

+ 3oi2’<br />

Re<br />

+ 5%<br />

...... (A8.2.2.1)<br />

= 3.2 log + 1.2 ÷ ‘iO% ...... (A8.2.2.2)<br />

(b) Rough tube<br />

0.)2 —<br />

(a) Smooth tube<br />

factor were derived from XcAdams:<br />

Subroutine ? calculated the friction factor for the<br />

reaa tne temperatures, tne Reynoas numer ana t.ie ViSCO6it<br />

Subroutine DATA read all input used y the program. It<br />

The program PFILE was developed to solve the velocity <strong>and</strong> tempera—<br />

correlation constants apna <strong>and</strong> beta. It also read tae frzcticn<br />

two eztemes encountered in turbulent flow <strong>and</strong> also gave the ercent<br />

conditions given by DAT., The correlations used for the friction<br />

factor indicator that was 0 for smooth tubes <strong>and</strong> I for rou tubes.<br />

These correlations were chosen because they represented the<br />

AND ITS CALCJLATND


—A40—<br />

A8.2.5<br />

Calculation of Physical Proertics<br />

Subroutine P1OPS<br />

calculated the physical properties of the<br />

experimental solution of <strong>paraffin</strong> <strong>wax</strong> in kerosene.<br />

These properties<br />

were evaluated at both tne oulk <strong>and</strong> wal’ temperatures <strong>and</strong> given<br />

in both British ng1neer1ng <strong>and</strong> S.. Units.<br />

The properties calculated were:<br />

neat capacity, theraa<br />

conductivity, densIty, viscosity <strong>and</strong> kinematic viscosity.<br />

The<br />

equations <strong>and</strong> correlations used are given in .ppendix 1.<br />

:8.P.L<br />

Calculated Characteristics of the Systc<br />

Subroutine JiX was used to evaluate the various character<br />

istics of the <strong>fouling</strong> studies experimental system.<br />

These were:<br />

average bulk velocity, heat flux, overall heat transfer coefficient<br />

<strong>and</strong> resistance, shear stress at wall <strong>and</strong> shearing velocity. .s<br />

before, these quantities were calculated using two units.<br />

Calculation of Binnsioniess Velocity<br />

Subroutine UP3’ calculated the dimensionless velocity<br />

at a given dimensionless distance y <strong>and</strong> viscosity.<br />

Three<br />

+<br />

ezc)resslons for u<br />

were use:<br />

+<br />

(a) y 5<br />

+ + fI,J —<br />

U .....<br />

(b) 5 o<br />

÷<br />

÷ V<br />

u = .n + UI<br />

..... (7.o.2)


— ALf1 —<br />

Equations L.7.4.3 <strong>and</strong> A7.6.2 were easily evaluated but<br />

couation A7.b.4 nau to be solved by iteration <strong>and</strong> numerical<br />

illtegraton.<br />

Simpson’ a rule was used for the integration where<br />

each interval was tacen in 10 steps. )her. was greater than 5<br />

<strong>and</strong> less or equal to 26, the first approximation for u was that<br />

of the previous distance y+_<br />

The iteration was considered<br />

completed when u changed by less than 0.001.<br />

The subroutine was tested by evaluating u at isothermal<br />

cOnc:ions.<br />

That is, the viscosity was cept constant in ;ne<br />

radial direction.<br />

The results are shown in Table .o.2.4 <strong>and</strong> plotted<br />

in fijre A8.2.4. At = 26 the subroutine gave u = 12.82 which<br />

is exactly what it should be according to Deissler. figure<br />

.o.2.4 snows tne nversa Velocity Pro:iie.<br />

It was coaparea<br />

wtn tne pro:lie given oy Deisser aa founa to concie.<br />

.‘.82.6 Calculation of Di:nsioniess Temperature<br />

Subroutine T?R0F calculated the dimensionless temperature<br />

T+ using the equations<br />

+<br />

(a) y ‘ 2o<br />

— dy<br />

— 1 2+÷r 2 ++<br />

÷nuy L1-exp(-n uy)J<br />

j<br />

..... (7.6.5)<br />

(b) y > 26<br />

= ]n + ..... (A7.5.3)<br />

yl<br />

Equation A7.6.3 was easily evaluated but equation A7,65<br />

had to be integrated nu;erically using Simpson’s.rule. The sa.<br />

mchod w.s used s for the evaluation of the dimensionless velocity,<br />

except no iteration was required.


— A42 —<br />

To evaluate equation f7.6.5 both dimensionless velocity<br />

<strong>and</strong> distance were given, also the viscosity <strong>and</strong> Pr<strong>and</strong>tl number.<br />

A83<br />

ain Program<br />

The various subroutines of the program PFLE were controlled by<br />

the main program. It called the subroutines DATA, ‘, ?ROPS <strong>and</strong> UX<br />

that read the input data <strong>and</strong> printed out the particulars for each run.<br />

The main program was an iterative one whose purpose was to obtain,<br />

via the subroutines UPROF <strong>and</strong> TPROF,<br />

the velocity <strong>and</strong> temperature profiles<br />

or distributions in the heat exchanger tubes used in the <strong>fouling</strong> studies.<br />

For a given dimensionless distance y+ the dimensionless velocity u+<br />

<strong>and</strong> temperature T were found.<br />

Knowing T+ the true temperature could. be<br />

deermine <strong>and</strong> hence the-viscosity.<br />

This viscosity was used to calcuiate<br />

+ + + -<br />

a new u ana T at the same y . ‘nen the caiculatec. viscosity ootainec.<br />

by this iterative procedure changed by less than 0.000001, the iteration<br />

was cansidered completed.<br />

when u+ <strong>and</strong> T+ had been determined for a given y the distance<br />

from the tube wall y <strong>and</strong> the velocity <strong>and</strong> temperature T for that<br />

distance were determined from the following equations as given in the<br />

previous Appendix:<br />

+ u (.<br />

u = —v<br />

.....<br />

u<br />

=<br />

(T —T:)Cp TW<br />

The main program printed out both the dimensionless <strong>and</strong> true distance,<br />

‘;elocity <strong>and</strong> temperature.<br />

The physical properties corresponc.ing to the<br />

evaluated temperature were also printed.


— A1i•3 —<br />

Lt Prorran Use<br />

The input data for PFILE was punched in two cards. On the first the<br />

terperatures were punched as follows:<br />

Colur.:s<br />

1.-lO<br />

i<br />

= Solution iniet terrperature<br />

11—20 IXO Solution outlet teiperature<br />

21—30 T’Ji = Water inlet temerature<br />

31—40 TV.0 = Water outlet temperature<br />

4—50 T,’ = all temperature<br />

On the record card the rest of the data was punched as follows:<br />

Colus<br />

1—10 Reno1ds number<br />

20 ‘Mction actor indicator<br />

21-30 lpha<br />

31-40 Beta<br />

There was no linit to how many sets of data could be calculated.<br />

t<br />

the back of the data cards two cards with 0.0 punchc in columns 1—3<br />

had to be placed to signify the end of the job.


30<br />

- A44 —<br />

85 Cornouter Calculations<br />

Computer calculations were made<br />

for the following runs:<br />

Run Re Tw (°C)<br />

F36 13922 22 23 24’<br />

F30<br />

20868i7I19.523<br />

F31 8699 17 19.5 —<br />

F32 11741 17 19.5 23<br />

F2 20819 8 10 16<br />

Fli 25451 12 15 —<br />

F26 27123 15 17 19<br />

31-5 7635 30 32 34<br />

B 6— 9 13311 30 32 34<br />

310—13 6716 ‘<br />

32 34<br />

C 1—14 8890 30 32 34<br />

C 5—16 6888 30 32 34<br />

c 8—20 4635 30 32 ,31+<br />

1<br />

3ecause the computer printouts of these calculations came to 185 pa;es<br />

they were not included here, but plotted on figures in Section 6.<br />

Run<br />

C-20 at Tw = 32°C, is however, shown as an example calculation <strong>and</strong><br />

printout.


DIM<br />

/\3.2./>. THE iJNI/E?j\I. \ELC)CIIY 0FlI.ti (;o1iu Iiii) C,i\1_C1JL/\TL0 0”( E<br />

‘:{[<br />

USIfIG TIlE IXi ?ElON GIVEN PY I)EISSLE (f3). 11[E 3ROKEN LINE S1IQV/S THE<br />

I)HiISlIJNLESS ‘JEL0I.1P( :‘orl1.E iUN C —20<br />

1000<br />

24i---<br />

22’-<br />

1.<br />

‘I ‘<br />

()<br />

()<br />

I<br />

ii<br />

><br />

16<br />

14<br />

(I.)<br />

If)<br />

hi<br />

-j<br />

C)<br />

.1<br />

I i’<br />

10<br />

If)<br />

fl<br />

i-i<br />

TI<br />

><br />

I,<br />

I j —<br />

0 1 10 100<br />

1-<br />

--—<br />

y-<br />

ENSIoNT_r5;s DISIA”JCE


2 2.00 27 12.93 74 I 15.73<br />

1 1.00 26 12.82 72 15.65<br />

y U y U U<br />

+ + + ÷ + +<br />

usii’ the e:orezions 4vcn by<br />

Deissler(5<br />

t. ii.l tubi flow. Cclcubted<br />

3 3.00 28 13.03 76 15.80<br />

oimenionles diJincc<br />

Table A8.2.4 Dirncnion1ess velocity at .he<br />

10 8.41 40 14.02 90 j 16.27<br />

13 9.71 46 14.41 95 16.45<br />

14 io.C5 48 14.53 98 16.51<br />

15 10.38 50 14.64 100 16.56<br />

17 ‘0.36 5+ 1+.85 300 ‘9.62<br />

20 11.69 60 15.15 600 21.54<br />

22 12.11 67 15.33 8co 22.34<br />

23 12.30 65 15.41 900 22.57<br />

25 12.66 70 15.57<br />

2’+ 12.48 68 15.49 1000 22.96<br />

16 10.68 52 14.75 200 18.49<br />

12 9.32 44 14.28 94 16.39<br />

11 8.89 42 14.16 92 16.53<br />

21 11.90 62 15.24 700 21.97<br />

18 11.22 56 14.95 400 20.42<br />

19 11.46 58 15.05 500 21.04<br />

5 5.00 30 13.22 80 ! 15.95<br />

7 6.60 4 15.57 84 16.08<br />

4 4.00 29 13.13 78 15.87<br />

6 5.87 32 13.40 82 16.01<br />

8 7.27 36 13.73 86 16.15<br />

9 / 7.88 38 13.88 88 15.21<br />

— A1i5 —


C<br />

DF1ENSIOH VIS(2.)<br />

REAL NUWSI<br />

INTEGER SR<br />

CflM4CN TKI,TK0,TWI,TW0,TW,R,SR,ALPI1A,ITA,ZZ,CP,EN,V1S[3,CPWSI,VI<br />

C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

IT<br />

5 CALL DATA<br />

CALL FF<br />

CALL PROPS<br />

CALL FLUX<br />

UP =0.0<br />

UT=00<br />

‘VP =0.0<br />

TP=0.0<br />

T ‘3 AR = TW<br />

vrsu )=V1SWSI<br />

11=33<br />

10 AA=ALPHAALDCl0(TR+2730)+5Td<br />

B=1O .C*AA<br />

CC=l0 .0*B<br />

DD=CC—0. ‘;53<br />

SG=0.7c6Z—00007Z9*T’3AR<br />

DiSISG*0 .9c904*10000<br />

VIS( )=DNSI*0.0O10.0O1*DD<br />

TC=(8 .59—0.0045*TRAR)*0.01<br />

r C I = T C 0 • 00173<br />

CP=O<br />

0’tO33+0 .00162*TRAR<br />

CPSI=CP’4.l85<br />

PR=CPSIVIS (2) ITCS I<br />

EE=ABS(vIS(1)—vIS(Z))<br />

VIS (1 )=VIS (2)<br />

IF(EE.LT.0.000001) GOTO 40<br />

1JP-UP —U<br />

TP=TP—T


C<br />

C<br />

C<br />

C<br />

GOTO 60<br />

0 UtP=UP’USTAR<br />

Y=’P-(NUw51/USTAR):c 1000000.0<br />

IF(1I.LT,38) GOTO O<br />

iRLTE (6, 100)<br />

100 i-0RAH1Hj/f/f 10X,2X,H VP,6X2HUP,6X,ZHTP,7X,1HY, /X,1HU,6X,1HT,7<br />

1XttVTS,9X,2HfC,8X<br />

7.HCP,6X,2HPR/)<br />

1IQ<br />

20 TF(Y’Q.0.0) GOb 30<br />

RtTh: (6,110) YP,LJP,TP,Y,U13AR,TBAR,VIS(2),CSI,CPSI, PR<br />

110 FJi


C<br />

C<br />

SUt3ROUTINE DATA<br />

INTEGER SR<br />

C<br />

CUiM0N TicI,TcO,TWI,THO,TW,RE,SR,ALHA,BETA<br />

READ(5,10) TKI,TK0 ,TWI ,TWL3,TW, RE ,SR,ALPI-IA,13 ETA<br />

10 FORRiT(5F10.0/F10,I10,2F10.6)<br />

IF(TKI.O.D.O) STOP<br />

WRI E (6, 0 )<br />

&t3 FXMAt(lH1f//!/10X,31H INPUT CATA ANO FRICTION FACTOR/I)<br />

WRITE (6,20) TK:,TKO,TWI,TwO,TW<br />

20 F{1RIAT(IHO 9X,7H TKI = ,F6c2,2<<br />

,F6.a,2X,HTw = ,F6.2)<br />

WRITE(6,3o) RE,SR, ALPHA,BETA<br />

96HTKO ,F62,2X,6HTWI<br />

30 URiATUI0,10X,5hRE ,F1O.2,2X,5HSR =,I2.,X,8HALPHA = ,F106,!X,<br />

1LT — cir ‘<br />

-I F’. — 1’Jg - I<br />

C<br />

I—I<br />

RETURN<br />

ND


C<br />

C<br />

C.<br />

SUPROUTINE FF<br />

L11:NS1C’N F(2)<br />

INTEGER SR<br />

C04EN Zi,Z2,Z3,Z4,75,RE,SR,Z8,Z9,Z10,Z11,Z12,Z13,Z 14,Z1 ,Z16,Z17,<br />

iZid ,Ll),CF<br />

IF(SR.E).H GflTO 10<br />

C<br />

C<br />

GOTO 40<br />

10 (1)=0.01<br />

20 I-(a)13L2*ALOCl0((RE)/(F(i)<br />

IF((c(F(1)—F(2));E)*o.’5).Lrao,oo1) GiTO 30<br />

F(1)-F(a)<br />

GOTO 20<br />

30 CF=F(2)<br />

40 RiT-E(6,100) CF<br />

100 roRMAT(1uo,1oX,2H:p,ax,r1o6)<br />

RETU.U’J<br />

E Ni)


LI)<br />

I Li<br />

.<br />

0<br />

0<br />

X<br />

..<br />

(1•)<br />

U..<br />

UI ‘—4 U..<br />

> 0<br />

- 0<br />

1—4<br />

_<br />

U 00 0 0 0 U<br />

“(I) .-<br />

- a’ — 0 -4 • C> 0 0’ • In .. . rn M C) — 45 — a. ‘5— •‘<br />

7 WOLf) 7 41oft. L)L) L9WJUJ _i>><br />

7 3: < +‘)C.. -..DL) Z00<br />

0J ‘C— ‘0<br />

4- CXC.C) C4’.}<br />

7 4- >- — - 4/’ V 7 B 1<br />

-..ç ><<br />

D < c<br />

frj . .. 7<br />

C U7 •U C) •InI—4) .JCOL)I!(/) !j C) % Z ‘ “<br />

“CD 3:<br />

.—<br />

LI) rJ F H *<br />

‘<br />

—4 0 CD 4— 3: 7 — - — H >( H<br />

H I’Jt’J*L H C...f’) 00’-<br />

D J) . C- D 0 4 C 0 C’ * IL C’ ‘.1) -.. > U 0 4— Q)< C) C’ CD<br />

U —i0 .1— 1”OllIn o. . °IC>-4 —---.‘-—C)<br />

‘ J 0 0 .:- — 4 LU ‘: ci ci<br />

3: 4-4 LO ‘J ‘*W ***L’U!U 71’>I •--Z.-<br />

c -s ‘CD 00 •r— C’ *4.9 -s4— -44) 44 4*<br />

.4 N Q.-”C) .— %.LLI..’< OL))< L4><br />

‘0 s 0 —. N C r..l — 4’) 7 I’<br />

‘57 * — C’ •a-4’a + ‘.tO U)7L.C’<br />

j’ Cfl0 N N “ — 1-41 4--4-3::..:tj<br />

a’ U<br />

—<br />

Li) C) 1— r— 0 r— — w 7 -s. 7 z<br />

‘5<br />

> C<br />

— 7 s H c —4 —<br />

ro<br />

—. C.+ I..) >-<br />

C... rJ<br />

45’ 4- L/)CY . U ><br />

<<br />

i—i — o C<br />

I—I 7 IL.<br />

j%.. > D C<br />

(<br />

LU — x *<br />

—‘ Li) IJ<br />

CD LI CD<br />

CD 4<br />

.4 a—I I’<br />

—<br />

D —.4<br />

5/13


..RIT2(6,%0) VLSR,VISBS1<br />

50 EORAT(1F1O,1oX,I’FIPULK VISCOSITY,’X,FlO.6.<br />

(F10c6,IX,811(KC/S 1))<br />

1X,1C1I(LB,HR FT),4X,<br />

C<br />

C PHYSTCAL C<br />

PRm:RTIFS EVALUATED AT IALL TEMPERATURE<br />

C<br />

C<br />

C<br />

CPWO .033+0 .00 162 :TW<br />

C PWS=CPW4 185<br />

rCw=(6<br />

YCWSITCWc0<br />

80013<br />

SGid-0. 1962 —O.C0O729-TW<br />

fl[NW=5 cw: 0 .99904 62 • 3<br />

DEWS tSCW*0999O1O0OO<br />

AA=ALt’HA.\LOG10 (TW+3 .0 )‘B1TA<br />

BBr1O .0*AA<br />

CC-10 .0**BB<br />

CDCC—0.953<br />

VI SWDENWSI0 0QI;cDD2 t.2<br />

‘/ISWSIDENJSI’0. CO1’DDO. 001<br />

NUW=VI W/DENW<br />

1HJ S I -VI SWS I IDE MWS I


C<br />

C<br />

WRt 1E(6,’O)<br />

60 FQR’AT(1HLf//f/10X,5H PHYSICAL PROPERTIES LVALUATED AT WALL TE1PE<br />

1RATURE TW//)<br />

WnITE(&,0) CP:’!,CPWSt<br />

70 rouA1(1Ho,1cx,13HIEAT CAACITY,X,F10671X,10II(8iU/L8 F),4X?F106<br />

1,1X,H(KJ/KG C))<br />

wRIiE(>,80) tW,fCwsI<br />

80 FuR:AT(110,1ox,2oHTHERcAL CCiDUCTIUETY,2X,F106,1X,l3H(3TU/HR FT F<br />

1) ,-X,F-106,1X,8IT(KW/t C))<br />

WRITE(6,90) OEN,0ENWSI<br />

ç3 :1JR AT(1 O,1OX,?DFNSITY,ZX<br />

1KC/(t43) )<br />

7FI( 6,lX,121t(itf(FT)cc3 ),4X, F1O6, laH(<br />

WRITE (27100) VISW,VISWSI<br />

100 DT(1HO,10X,17HVISCOSITY AT WALL,X,Fl0.6,1X,1011(L/HR FT),4X,F<br />

110.6,1X,EH(KG/S 1))<br />

WUTE(6,110) NUW,NUWSI<br />

110 rOIUiAT(lH0,I0X,ZlHKINEAT1C VISCOSITY AT WALL,X,F106,lX,11H((FT)<br />

12/S) ,X,F108,1X 10H( ( i’’2/S) )<br />

E TURN


C<br />

C<br />

C<br />

C<br />

C<br />

C<br />

SUROUTIE FLUX<br />

REAL L,Lt4T<br />

CUMUN ncr ,TKU,1 WI ,TWJ ,TW ,,Z7 ,Z8 ,Z9 ,Z10 ,C P, DEN, VI SF3, LI, Zi 5, ZI. 6<br />

l,()WSi,IAUWSI,USTAR,CI-,DENS!,DENWSI<br />

DATA L,D/30,0516/<br />

UF1 SE C=UFdLK /3600.0<br />

uEC=UiTS.ZC0.3048<br />

A1-2’:uu/57so<br />

=U[3ULKt)ENA<br />

Qi CP’( iKI YCU .:1 .8<br />

hTA=3 1L;:-D*L/12 .0<br />

!W=)/HTA<br />

CWSI-Qi0003154<br />

TULTi


te<br />

4Z’Xt’9’911’XZ’ 3DNVISISE)1 13iSNVVi. JV9H 11V)13A0 HEE’XOt’OHt)iVfUOJ 05<br />

((T—)**(D zn(w)/141)11c1’901J’X4’(t—)n(d Zn(J4) )IHIAJ.U)Ht<br />

15141W! (09’9)4.LIW4<br />

(t**(W)/NH9’Xt’9ON’X?’lVM IV SS)iiS bVBllS Ht!’XOt’OHT)SVhUO: 09<br />

)1ViSfl (OL’9)911VM<br />

(S/WHE’Xt’9’Otd’Xi’AI13O13A 553)1St SNIbV3HS Hcz’xot’o:nLLyno; OL<br />

NVfli3I


- V<br />

C<br />

C<br />

.URPUrINE UPROF<br />

DLMNSIQN FYP( 11), VIS ( :)<br />

CO;Mf]Nzi,Z2,Z3,ZL,Z5,Z6,Z?,Z8,Z’,ZiO,Zi1,Z12,i13,Z14,VISWSI ,Z16,Z<br />

i17,Z1P,L19,l?0,Zt,Z22,UP,YP,Z5,V,Z1,UT,U<br />

PEAL N,K<br />

INTc;: YA’T,YC,YD<br />

C<br />

K=0.36<br />

YP1=6O<br />

IF(YPGT50) GLiTO 6<br />

C<br />

C<br />

C<br />

ur=v<br />

GOTO E0<br />

6 1F(YPLL.Y:l.) GOTU 10<br />

IF(YPLEC)c27.0) UP1=UP<br />

UP(10/K)’LOG(VP/YP1)+UP1<br />

G(tTO 33<br />

1) ‘tA=IPIX(YP):c10+1<br />

y-- ( j j:’ (YP ) +1) I0+l<br />

YE=0<br />

1’i- P0 20 YC—YA,YB<br />

YPFLOAT(YC--1)/1O,0<br />

‘t’ P ‘(P—I. • 0<br />

D +1<br />

AA—2(V1SWSI/VIS(2))*UflYP<br />

-B1.C—2XP(AA)<br />

C<br />

2C CUNTINUE<br />

0<br />

C V F N C • 0<br />

r 30 1=2,10,2<br />

:VVEN+F:yp(I)<br />

0 CONTINUE


C<br />

C<br />

C<br />

C<br />

C<br />

)fl:O .0<br />

DO ‘O 1=3,9,2<br />

DD:]LD+FYP( I)<br />

‘-Q CONTiNUE<br />

H1 ,C/1O.0<br />

U=(H/3.O )(FYP( 1) ))<br />

uS=UP +tj<br />

UFMS(US—UT)<br />

IF(UF.LT.OOO1) GOTO &3<br />

UTU S<br />

GiTcj 1’t-<br />

8 UP=UP+U<br />

50 REtURN<br />

L. LJ


C<br />

C<br />

C<br />

SJtcLiJTINE TPC1F<br />

C<br />

LIfr:NSILN FT( ii) ,VISL)<br />

C0!-ON Z1,ZZ,Z3,Z4,l,76,L7,7Z9,Z10,Z11?Z12,Z13,Z147VIsWSI ?Z16,Z<br />

l1T,Z18,Zl9,Z0,Z?1,Z?2,UP,YP,TP,VIS,PR,UT,J,T<br />

REAL N,K<br />

INIECER YA<br />

N0.1L4<br />

K)36<br />

7Y,YC,YD<br />

C<br />

iFiYPLEYP1) GUTO 10<br />

IF(YPC70) TP1TP<br />

TP(1.0/K)’AL0G(YP/YPl)+TP1<br />

GOTO 30<br />

C I—J<br />

C<br />

C<br />

10 YA-I TX(Yt )‘i0+1<br />

Y3=LFIX(YP)±1)*10+l<br />

‘fDzzO<br />

IJR=UP—U--U-FLflAT(YD)/1O.O<br />

i’ r;o YC=’fA,Y8<br />

YPFLOAT(YCJ)/lQ.O<br />

YCYD+1<br />

(PYP—10<br />

IT(YP.LE.’.0) UR=YP<br />

C<br />

C<br />

flB’l .0—EXF (Ai)<br />

i-TP (Y[)=( 1 .oIp+ 2:-uRyp’eB<br />

)‘<br />

0 C0TINUE<br />

YD-0<br />

V C) • 0<br />

rfl<br />

30 I2,l0,Z<br />

[vE=EVN÷FTP( I)<br />

30 CTI1U<br />

(—1)


C,<br />

.4:’.<br />

0 0<br />

—; —s iZ fl r; —<br />

2 rr —i:; I! C D C<br />

c-( fl-’.-’ ZQ cz<br />

C —1 .:‘<br />

D -4000<br />

Z +‘.‘% 20<br />

—‘. C)Q -4<br />

m+<br />

..<br />

—I...<br />

—<br />

-n<br />

-4<br />

a<br />

+<br />

.<br />

0<br />

fl.<br />

2<br />

+<br />

0<br />

0<br />

÷<br />

—<br />

c.i/ I


INPUT DATA AND FRICTION FACTOR<br />

TKI 38.72 TKO = 37.43 TWI = 6.44 TWO 7.01 TW = 32.00<br />

RE = 4635.00 SR = 0 ALPHA —3.140000 BETA 7.460000<br />

FF 0.009723<br />

PHYSICAL PROPERTIES EVALUATED AT BULK TEMPERATURE AS GIVEN BY (TKI+TKO)/2<br />

HEAT CAPACITY 0.465481 (BTU/L13 F) 1.948040 (KJ/KG C)<br />

THERMAL CONDUCTIVETY 0.085187 (BTU/HR FT F) 0.000147 (KW/M C)<br />

DENSITY 47. 828049 (LB/(FT)**3) 767.705322(KG/(M)**3)<br />

BULK VISCOSITY 3.217826 (L13/HR FT) 0.001330 (KG/S M)


KINEMATIC VISCOSITY AT WALL 0.074072 ((FT)*2/S) 0.C0000191 ((M)**2/S)<br />

OVERALL HEAT TRANSFER COEFFICIENT 23.806244 (BTIJ/HR (FT)**2 F) 0,.l35172(KW/(M)*2 C)<br />

OVERALL HEATTRANSFER RESISTANCE 0.O42O0 (BTU/HR (FT)2 F)(—1) 7397987(K/(M)<br />

2 C)(—I)<br />

PHYSICAL PROPERTIES EVALUATED AT WALL TEMPERATURE TW<br />

hEAT CAPACITY 0.455640 (BTU/LB F) 1.906853 (KJ/KG C)<br />

THERMAL CONDUCTIVETY 0.085460 (BTU/HR FT F) 0.000148 (KW/M C)<br />

DENSITY 48. 103699 (LB/(FT)**3) 772.129883(KG/(M)4*3)<br />

VISCOSITY AT WALL 3.563143 (LB/HR FT) 0.001472 (KG/S M)<br />

CALCULATED CHARACTERISTICS<br />

BULK VELOCITY 2.014460 (FT/SEC) 0.614007(M/SEC)<br />

HEAT FLUX 1343.37695 (BTU/HR (FT)**2) 4.Z37011(KW/U)**2)<br />

SHEAR STRESS AT WALL 1.407072 N/(M)**2<br />

SHEARING STRESS VELOCITY 0.C42689 H/S


YP UP TP Y U T VIS rc CP PR<br />

1.00 1.00 18.66 44.7 0.04 33.26 0.001441 0.000148 1.9154 18.68<br />

2.00 2400 36.56 89.3 0.09 34.46 0.301412 0.000148 1.9236 18.39<br />

3.00 3.00 51.99 134.0 0.13 35.50 0.001387 0.000148 1.9306 18.15<br />

4.00 4.00 63.09 178.7 0.17 36.25 0.001370 0.000148 1.9357 17.98<br />

5.00 5.00 70.05 223.3 0.21 36.72 0.001360 0.000147 1.9389 17.88<br />

6.00 5.89 74.78 268.0 0.25 37.04 p.001353 0.000147 1.9410 17.80<br />

7.00 6.68 77.77 312.7 0.29 37.24 0.001348 0.000147 1.9424 17.76<br />

3.00 7.38 79.80 357.4 0.32 37.38 0.001345 0.000147 1.9433 17.73<br />

9.00 8.00 81.26 402.0 0.34 37.48 0.001343 0.000147 1.9440 17.71<br />

10.00 8.54 82.37 446.7 0.36 37.55 0.001341 0.000147 1.9445 17.69<br />

11.00 9.02 83.25 491.4 0.39 37.61 0.001340 0.000147 1.9449 17.68<br />

12.00 9.45 83.98 536.0 0.40 37.66 0.001339 0.000147 1.9452 17.67<br />

13.00 9.84 84.60 530.7 0.42 37.70 0.001338 0.000147 1.9455 17.66<br />

14.00 10.20 85.13 625.4 0.44 37.74 0.001337 0.000147 1.9458 17.65<br />

15.00 10.52 85.59 670.0 0.45 37.77 0.001336 0.000141 1.9460 17.64<br />

16.00 10.82 86.01 714.7 0.46 37.80 0.001336 0.000147 1.9462 17.64<br />

17.00 11.10 86.33 759.4 0.47 37.82 0.001335 0.000147 1.9463 17.63<br />

18.00 11.36 86.73 804.1 0.48 37.85 0.001335 0.000147 1.9465 17.63<br />

19.00 11.60 87.04 848.7 0.50 37.87 0.001334 0000147 1.9466 17.62.<br />

20.00 11.83 87.33 893.4 0.51. 37.89 0.001334 0.000147 1.9468 17.62<br />

21.00 12.05 87.60 938.1 0.51 37.90 0.001333 0.000147 1.9469 17.61<br />

22.00 12.25 87.85 982.7 0.52 37.92. 0.001333 0.000147 1.9470 17.61<br />

23.00 12.44 88.08 1027.4 0.53 37.94 0.001333 0.000147 1.9471 17.61<br />

24.00 12.63 88.30 1072.1 0.54 37495 0.001332 0.000147 1.9472 17.60<br />

25.00 12.80 88.51 1116.7 0.55 37.97 0.001332 0.000147 1.9473 17.60<br />

26.00 12.97 88.71 1161.4 0.55 37.98 0.001332 0.000147 1.9474 17.60<br />

27.00 13.08 68.81 1206.1 0.56 37.99 0.001332 0.000147 1.9474 17.60<br />

28.00 13.18 88.91 1250.8 0.56 37.99 0.001331 0.000147 1.9475 17.59<br />

€9.00 13.27 89.01 1295.4 0.57 38.00 0.001331 0.000147 1.9475 17.59<br />

30.00 13.37 89.11 1340.1 0.57 38.01 3.001331 0.000147 1.9476 17.59<br />

31.00 13.46 89.20 1384.8 0.57 38.01 0.001331 0.000147 1.9476 17.59<br />

32.00 13.55 89.29 1429.4 0.58 38.02 0.001331 0.000147 1.9417 17.59<br />

33.00 13.63 89.37 1474.1 0.58 38.02 0.001331 0.000147 1.9477 17.59<br />

34.00 13.72 89.45 1518.8 0.50 38.03 0.001331 0.000147 1.9477 17.59<br />

35,00 13,80 89.53 1563.4 0.59 38.04 0.001331 0.000147 1.9478 17.58<br />

36.00 13.87 89.61 1608.1 0.59 38,04 0.001330 3.000147 1.9478 17.58<br />

37.00 13.95 89.69 1652.8 0,60 38.05 0.001330 0.000147 1.9478 17.58


YP UP TP Y U T VIS TC CR PR<br />

39.00 14.10 89.84 1742.1 0.60 38.06 0.001330 0.000147 1.9479 17.58<br />

40.00 14.17 89.91 1786.8 0.60 38.06 0.001330 0.000147 1.9479 17.58<br />

41.00 14.24 89.97 1831.5 0.61 38.07 0.001330 0.000147 1.9480 17.58<br />

42.00 14.30 90.04 1876.1 0.61 38.07 0.001330 0.000147 1.9480 17.58<br />

43.00 14.37 90.11 1920.8 0.61 38.07 0.001330 0.000147 1.9480 17.58<br />

44.00 14.43 90.17 1965.5 0.62 38.08 0.001330 0.000141 1.9481 17.58<br />

45.00 14.49 90.23 2010.1 0.62 38.08 0.001330 0.000147 1.9481 17.57<br />

46.00 14.56 90.29 2054.8 0.62 38.09 0.001329 0.000147 1.9481 17.5?<br />

47.00 14.62 90.35 2099.5 0.62 38.09 0.001329 0.000147 1.9481 17.57<br />

48.00 14.67 90.41 2144.2 0.63 38.09 0.001329 0.000147 1.9482 17.57<br />

49.00 14.73 90.47 2188.8 0.63 38.10 0.001329 0.000147 1.9482 17.57<br />

50.00 14.79 90.53 2233.5 0.63 38.10 0.001329 0.000147 1.9482 17.57<br />

51.00 14.84 90.58 2278.2 0.63 38.11 0.001329 0.000147 1.9483 17.5?<br />

52.00 14.90 90.63 2322.8 0.64 38.11 0.001329 0.000147 1.9483 17.57<br />

53.00 14.95 90.69 2367.5 0.64 38.11 0.001329 0.000147 1.9483 17.57<br />

54.00 15.00 90.74 241.2 0.64 38.12 0.001329 0.000147 1.9483 17.57<br />

55.00 15.05 90.79 2456.8 0.64 38.12 0.001329 0.000147 1.9483 17.57<br />

56.00 15.10 90.84 2501.5 0.64 38.12 0.001329 0.000147 1.9484 17.57<br />

57.00 15.15 90.89 2546.2 0.65. 38.13 0.001329 0.000147 1.9484 17.57<br />

58.00 15.20 90.94 2590.9 0.65 38.13 0.001328 0.000147 1.9484 17.56<br />

59.00 15.25 90.99 2635.5 0.65 38.13 0.001328 0.000147 1.9484 17.56<br />

60.00 15.29 91.03 2680.2 0.65 38.14 0.001328 0.000147 1.9485 17.56<br />

61.00 15.34 91.08 2724.9 0.65 38.14 0.001328 0.000147 1.9485 17.56<br />

62.00 15.38 91.12 2769.5 0.66 38.14 0.001328 0.000147 1.9485 17.56<br />

63.00 15.43 91.17 2814.2 0.66 38.15 0.001328 0.000147 1.9485 17.56<br />

64.00 15.47 91.21 2858.9 0.66 38.15 0.001328 0.000147 1.9485 17.56<br />

65.00 15.52 91.25 2903.5 0.66 38.15 0.001328 0.000147 1.9486 17.56<br />

66.00 15.56 91.30 2048.2 0.66 38.15 0.001328 0.000147 1.9486 17.56<br />

67.00 15.60 91.34 2992.9 0.67 38.16 0.001328 0.000147 1.9486 17.56<br />

68.00 15.64 91.38 3037.5 0.67 38.16 0.001328 0.000147 1.9486 17.56<br />

69.00 15.68 91.42 3382.2 0.67 38.16 0.001328 0.000141 3.9486 17.56<br />

70.00 15.72 91.46 3126.9 0.67 38.17 0.001328 0.000147 1.9487 17.56<br />

71.00 15.76 91.50 3171.6 0.67 33.11 0.001328 0.000147 1.9487 17.56<br />

72.00 15.80 91.54 3216.2 0.67 38.17 0.001328 0.000147 1.9487 17.56<br />

73.00 15.84 91.58 3260.9 0.68 38.17 0.001328 0.000147 1.9487 17.55<br />

74.00 15.88 91.61 3305.6 0.68 38.18 0.)01327 0.000147 1.9487 17.55<br />

75.G0 15.91 91.65 3350.2 0.68 38.18 0.001327 0.030147 1,9497 17.55<br />

7 . ( ( 1 LZ Cl 1 Cl ‘ - Cl, Cl , r ‘ -‘ C’ Cl S ) C’ 1 C’ “ C’ C. I I 7 1 Cl I C’ (1 1 1 C C


VP UP TP Y U T VIS TC CP PR<br />

77.00 15.99 91.72 3439.6 0.68 38.18 0.001327 0.000147 1.9488 17.55<br />

78.00 16.02 91.76 3484.2 0.68 38.19 0.001327 0.000147 1.9488 17.55<br />

79.00 16.06 91.80 3528.9 0.69 38.19 0.001327 0.000147 1.9488 17.,5<br />

80.00 16.09 91.83 3573.6 0.69 38.19 0.001327 0.000147 1.9488 17.55<br />

81.00 16.13 91.87 3618.3 0.69 38.19 0.001327 0.000147 1.9488 17.55<br />

82.00 16.16 91.90 3662.9 0.69 38.20 0.001327 0.000147 1.9489 17.55<br />

83.00 16.20 91.93 3707.6 0.69 38.20 0.301327 0.000147 1.949 17.55<br />

84.00 16.23 91.97 3752.3 0.69 38.20 0.001327 0.000147 1.9489 17.55<br />

85.00 16.26 92.00 3796.9 0.69 38.20 0.001327 0.000147 1.9489 17.55<br />

86.00 16.29 92.03 3841.6 0.70 38.20 0.001327 0.000147 1.9489 17.55<br />

87.00 16.33 92.06 3886.3 0.70 38.21 0.001327 0.000147 1.9489 17.55<br />

88.00 16.36 92.10 3930.9 0.70 38.21 0.001327 0.000147 1.9489 17.55<br />

39.00 16.39 92.13 3915.6 0.70 38.21 0.001327 0.000147 1.9490 17.55<br />

90.00 16.42 92.16 4020.3 0.70 38.21. 0.001327 0.000147 1.9490 17.55<br />

91.00 16.45 92.19 4065.0 0.70 38.21 0.001327 0.000147 1.9490 11.55<br />

92.00 16.48 92.22 4109.6 0.70 38.22 0.001327 0000147 1.9490 17.55<br />

93.00 16.51 92.25 4154.3 o.7o 38.22 0.001327 0.000147 1.9490 17.55<br />

94.00 16.54 92.28 4199.0 0.71. 38.22 0.001327 0.000141 1.9490 17.54<br />

95.00 16.57 92.31 4243.6 0.71 38.22 0.001326 0.000147 1.9493 17.54<br />

96.00 16.60 92.34 4288.3 0,71 38.22 0.001326 0.000147 1.9491 17.54<br />

97.00 16.63 92.37 4333.0 0.71 38.23 0.001326 0.000147 1.9491 17.54<br />

98.00 16.66 92.39 4377.6 0.71 38.23 0.001326 0.000147 1.9491 17.54<br />

99.00 16.68 92.42 4422.3 0.71 38.23 0.001326 0.000147 1.9491 17.54<br />

100.00 16.71 92.45 4467.0 0.71 38.23 0.001326 0.000141 1.9491 17.54<br />

200.00 18.64 94.33 8934.0 0.80 38.36 0.001323 0.000147 1.9530 17.51<br />

300.00 19.76 95.50 13400.9 0.84 38.44 0.001322 0.000147 1.9535 17.50<br />

400.00 20.56 96.30 17867.9 0.88 38.49 0.001321 0.000147 1.9509 17.49<br />

500.00 21.18 96.92 22334.9 0.90 38.53 0.001320 0.000147 1.9511 17.48<br />

633.00 21.69 97.43 26801.9 0.93 38.57 0.301319 0.000147 1.9514 17.47<br />

700.00 22.12 97.86 31268.9 0.94 38.60 0.001318 0.000147 1.9515 17.46<br />

800.00 22.49 98.23 35735.9 0.96 3862 0.001318 0.000147 1,9517 17.46<br />

900.30 22.82 98.55 40202.9 0.07 38.64 0.001317 0.000147 1.9519 17.45<br />

1003.00 23.11 98.85 44669.8 0.99 38.66 0.001317 0.0001.47 1.9522 17.45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!