08.03.2014 Views

Therapeutic Drug Monitoring in Oncology: The key to individualised ...

Therapeutic Drug Monitoring in Oncology: The key to individualised ...

Therapeutic Drug Monitoring in Oncology: The key to individualised ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong><strong>The</strong>rapeutic</strong> <strong>Drug</strong> <strong>Moni<strong>to</strong>r<strong>in</strong>g</strong><br />

<strong>in</strong> <strong>Oncology</strong>: <strong>The</strong> <strong>key</strong> <strong>to</strong><br />

<strong>in</strong>dividualised chemotherapy?<br />

Graham Sewell<br />

Professor of Cl<strong>in</strong>ical Pharmacy<br />

K<strong>in</strong>gs<strong>to</strong>n University / Plymouth<br />

Hospitals Trust UK


Contribution of Chemotherapy <strong>to</strong> 5<br />

year survival <strong>in</strong> adult malignancies<br />

• 5-year survival rate (1992-97) for 22 adult<br />

malignancies <strong>in</strong> Australia = 63.4% (CI 95 63.1-<br />

63.6)<br />

• Contribution of “curative and adjuvant”<br />

chemotherapy = 2.3% (USA = 2.1%)<br />

• Ma<strong>in</strong> role of chemotherapy is palliation<br />

Morgan G et al Cl<strong>in</strong>ical <strong>Oncology</strong> (2004) 16, 549-560<br />

• Many reasons for chemotherapy failure<br />

<strong>in</strong>clud<strong>in</strong>g drug resistance and sub-optimal<br />

dosage schedules


Cancer Chemotherapy<br />

• High <strong>to</strong>xicity<br />

• Low efficacy<br />

• Inter-patient variability<br />

• Narrow therapeutic w<strong>in</strong>dow<br />

• Dos<strong>in</strong>g usually based on avoidance of<br />

<strong>to</strong>xicity rather than on ensur<strong>in</strong>g<br />

efficacy.<br />

• Need for therapeutic optimisation


Presentation Outl<strong>in</strong>e<br />

• TDM <strong>in</strong> Pharmacotherapy<br />

• Dose determ<strong>in</strong>ation <strong>in</strong> cancer<br />

chemotherapy<br />

• Use of TDM <strong>in</strong> chemotherapy:<br />

- Opportunities<br />

- Limitations and challenges<br />

• TDM <strong>in</strong> chemotherapy: Future<br />

developments


Pharmacok<strong>in</strong>etics<br />

• Describes the process of drug absorption,<br />

distribution and elim<strong>in</strong>ation<br />

• Key terms: Bioavailability (F)<br />

Volume of Distribution (Vd)<br />

Prote<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g<br />

Clearance (Cl)<br />

Half –Life (T1/2)<br />

Area Under Cp Vs time curve (AUC)


Cl<strong>in</strong>ical Pharmacok<strong>in</strong>etics<br />

• Many drug doses are empirical<br />

• <strong>Drug</strong> elim<strong>in</strong>ation (and hence efficacy<br />

and <strong>to</strong>xicity) varies between patients.<br />

• Body wt. and BSA – not always good<br />

<strong>in</strong>dica<strong>to</strong>rs of drug clearance<br />

• Some drugs have narrow therapeutic<br />

w<strong>in</strong>dow E.g. cy<strong>to</strong><strong>to</strong>xic drugs used <strong>in</strong><br />

cancer chemotherapy


<strong><strong>The</strong>rapeutic</strong> <strong>Drug</strong> <strong>Moni<strong>to</strong>r<strong>in</strong>g</strong><br />

(TDM)<br />

• Large variation <strong>in</strong> drug plasma<br />

concentration between <strong>in</strong>dividuals for a<br />

given dose;<br />

Formulation<br />

<strong>Drug</strong> <strong>in</strong>teractions<br />

Life-style (eg diet, smok<strong>in</strong>g)<br />

Disease (renal & hepatic function)<br />

Genetic variation (<strong>in</strong> metabolism)


Cl<strong>in</strong>ical Use of TDM<br />

• Measure plasma concentration of drug <strong>to</strong><br />

adjust dose for <strong>in</strong>dividual :<br />

- maximises therapeutic effect<br />

- m<strong>in</strong>imises drug – related <strong>to</strong>xicity<br />

• Moni<strong>to</strong>rs on-go<strong>in</strong>g therapy<br />

• Checks patient compliance and<br />

adm<strong>in</strong>istration of medic<strong>in</strong>es <strong>to</strong> the patient


Requirements for TDM<br />

• No direct cl<strong>in</strong>ical measure <strong>to</strong> provide clear<br />

evidence of drug therapeutic effect or drug<br />

<strong>to</strong>xicity (or multiple <strong>to</strong>xicities)<br />

• <strong>Drug</strong> plasma concentration is related <strong>to</strong> either<br />

therapeutic or <strong>to</strong>xic effect<br />

• <strong>Drug</strong> has low therapeutic : <strong>to</strong>xicity ratio<br />

• <strong>Drug</strong> is used as prophylactic (eg. Pheny<strong>to</strong><strong>in</strong>)<br />

• <strong>Drug</strong> is not extensively metabolised <strong>to</strong> active<br />

metabolites


Medic<strong>in</strong>es Moni<strong>to</strong>red by TDM<br />

Digox<strong>in</strong> Pheny<strong>to</strong><strong>in</strong> Carbamazep<strong>in</strong>e<br />

Cyclospor<strong>in</strong> Gentamic<strong>in</strong> Lithium<br />

<strong>The</strong>ophyll<strong>in</strong>e Vancomyc<strong>in</strong> Valproate<br />

Amiodarone Phenobarbi<strong>to</strong>ne


TDM : Procedure<br />

• Take sample: - correct time<br />

- correct sample tube<br />

- correct state (plasma or<br />

serum)<br />

• Measure concentration (RIA, HPLC etc)<br />

• Interpret concentration and consider<br />

confound<strong>in</strong>g fac<strong>to</strong>rs


Examples of Non-<strong>Oncology</strong> TDM<br />

“therapeutic range”<br />

• Digox<strong>in</strong>; 1 – 3.8 nmol/L (gives therapeutic<br />

effect – avoids ADR’s of malaise,<br />

anorexia,vomit<strong>in</strong>g,confusion)<br />

• Gentamic<strong>in</strong>; <strong>to</strong> achieve bactericidal effect<br />

m<strong>in</strong> plasma conc = 5ug/ml<br />

To avoid <strong>to</strong>xicity, max plasma conc =<br />

10ug/ml and max trough conc = 2ug/ml


TDM- “<strong>The</strong> Old Way”<br />

• Give standard dose<br />

• Check plasma level<br />

• React <strong>to</strong> plasma level<br />

• If high- lower the dose and re-check<br />

• If low- <strong>in</strong>crease dose and re-check<br />

• No differentiation between upper and<br />

lower ends of therapeutic range<br />

• Tend <strong>to</strong> “treat the level, not the patient”


Is Dose Important <strong>in</strong> Cancer<br />

Chemotherapy?<br />

• Yes – for <strong>to</strong>xicity<br />

• Yes for efficacy?????<br />

• Inter-patient variability<br />

• Bonadonna: Reduced survival <strong>in</strong> breast<br />

cancer patients receiv<strong>in</strong>g < 85% of<br />

target dose <strong>in</strong> CMF regimen<br />

Bonadonna etal, N Engl J Med (1995), 332, 901


How Accurate/Relevant is<br />

BSA-Based Dos<strong>in</strong>g ?<br />

• Use of BSA arises from <strong>in</strong>terspecies dos<strong>in</strong>g<br />

(animals <strong>to</strong> humans) <strong>in</strong> Phase 1 studies.<br />

• BSA does not correlate well <strong>to</strong> drug clearance<br />

plasma or tumour levels.<br />

• Errors <strong>in</strong> BSA calculation (DuBois and<br />

DuBois, Arch. Int.Med 1916 : 17 :863-71)<br />

• No basis for physiological scal<strong>in</strong>g with<strong>in</strong><br />

species


Further Read<strong>in</strong>g on BSA <strong>in</strong><br />

Cancer Chemotherapy<br />

• Reilly JJ, Workman P . Normalisation of<br />

anticancer drug dosage us<strong>in</strong>g body weight<br />

and surface area; is it worthwhile ? Cancer<br />

Chemotherapy and Pharmacology 1993, 32,<br />

411-418<br />

• Rata<strong>in</strong> MJ. Body surface area as a basis for<br />

dos<strong>in</strong>g of anticancer agents; science myth or<br />

habit. J Cl<strong>in</strong> Oncol 1998, 16, 2297-2298<br />

• Egor<strong>in</strong> M Edi<strong>to</strong>rial 2003, J Cl<strong>in</strong> Oncol, 21, 182


Problems with TDM <strong>in</strong> <strong>Oncology</strong><br />

• Plasma level does not reflect tumour level of<br />

drug or drug level <strong>in</strong> sensitive healthy tissues<br />

• Lag time between exposure of tumour <strong>to</strong><br />

drug and therapeutic effect<br />

• Often no clear relationship between Cp and<br />

<strong>to</strong>xicity/therapeutic effect<br />

• Tumours (and metastasis) are heterogenious


Examples of TDM (1)<br />

Methotrexate<br />

• High-dose MTX therapy<br />

• Moni<strong>to</strong>r plasma MTX 24-48 hours postdose<br />

• Fol<strong>in</strong>ic acid rescue until plasma level<br />


Examples of TDM (2)<br />

5-Fluorouracil<br />

• Colorectal cancer (<strong>in</strong> comb<strong>in</strong>ation)<br />

• Toxicity: Haema<strong>to</strong>logical and mucositis<br />

• Predicted <strong>to</strong>xicity if AUC > 30,000<br />

ug/L.hr<br />

Milano G et al, Int J Cancer (1988), 41, 537-541


2- 13 C-Uracil Breath Test<br />

• Estimates DPD activity<br />

• Give test dose of 2- 13 C-Uracil<br />

• Measure 13 CO 2 levels <strong>in</strong> exhaled breath<br />

• 13 CO 2 levels correspond <strong>to</strong> DPD activity<br />

• Can identify patients with DPD deficiency<br />

• Use these data <strong>to</strong> adjust and optimise 5-FU<br />

dose


Example of TDM (3)<br />

Mercap<strong>to</strong>pur<strong>in</strong>e<br />

• Children with ALL (repeated sampl<strong>in</strong>g)<br />

• Relapse associated with Cp max<br />

363ng/hr.ml<br />

Hayder S etal, <strong>The</strong>r drug Monit 1989, 11, 617-<br />

622


Genetic Polymorphisms <strong>in</strong><br />

Metaboliz<strong>in</strong>g Enzymes<br />

www.sciencemag.org/feature/data/1044449.shl<br />

Science 1999;286:487-91


Mercap<strong>to</strong>pur<strong>in</strong>e Catabolism<br />

Liver<br />

GI Tract<br />

Target Cell<br />

6-MP<br />

HGPRT<br />

TIMP<br />

TGTP<br />

TPMT<br />

Thiouric Acid<br />

Me-MP<br />

Me-TIMP<br />

Catabolism


TDM <strong>in</strong> <strong>Oncology</strong>: Confound<strong>in</strong>g<br />

Fac<strong>to</strong>rs<br />

• Genetic polymorphism<br />

• <strong>Drug</strong> resistance<br />

• <strong>Drug</strong> <strong>in</strong>teractions<br />

• Assay difficulties<br />

• Active metabolites<br />

• Some drugs are pro-drugs (e.g.<br />

cyclophosphamide)


PK-PD Relationships <strong>in</strong> Cancer<br />

Chemotherapy<br />

• Difficult <strong>to</strong> select a reliable and relevant<br />

PD measure<br />

• PD measure is usually a <strong>key</strong> <strong>to</strong>xicity<br />

• Case Study: Change of schedule of<br />

Carboplat<strong>in</strong> from short-<strong>in</strong>fusion <strong>to</strong><br />

prolonged cont<strong>in</strong>uous <strong>in</strong>fusion


PK-PD Relationship <strong>in</strong> change of<br />

Schedule<br />

• Example:<br />

Carboplat<strong>in</strong> by short IV <strong>in</strong>fusion<br />

Change <strong>to</strong>:<br />

Carboplat<strong>in</strong> by prolonged cont<strong>in</strong>uous<br />

<strong>in</strong>fusion (+RT)


Carboplat<strong>in</strong> dose for manageable<br />

haema<strong>to</strong>logical <strong>to</strong>xicity<br />

Dose(mg) = Target AUC x (GFR + 25)<br />

(Calvert Equation)<br />

Target AUC values;<br />

4 - 6 mg.ml/m<strong>in</strong> (pre-treated patients)<br />

6 - 8 mg.ml/m<strong>in</strong> (untreated patients)


Carboplat<strong>in</strong> cont<strong>in</strong>uous <strong>in</strong>fusion with<br />

Synchronous Radiotherapy<br />

Carboplat<strong>in</strong> 25-40mg/day x 5days x 4<br />

courses<br />

by cont<strong>in</strong>uous <strong>in</strong>fusion + radiation (40Gy) ,<br />

fractionated


Carboplat<strong>in</strong> Cont<strong>in</strong>uous Infusion PK-<br />

PD Study: Conclusion<br />

• Dose – GFR relationship for short-<strong>in</strong>fusion of<br />

carboplat<strong>in</strong> is not valid for prolonged <strong>in</strong>fusion<br />

• PK-PD relationship for prolonged <strong>in</strong>fusion<br />

enables dose calculation from pre-treatment<br />

platelet count.<br />

• <strong>The</strong> PK-PD model ensures maximum dose –<br />

<strong>in</strong>tensity, but with acceptable <strong>to</strong>xicity.<br />

Allsopp and Sewell, Journal <strong>Oncology</strong> Pharmacy Practice<br />

(1995), 1 (3), 23-32


TDM – <strong>The</strong> New Way<br />

• Collect <strong>in</strong>formative data, apply <strong>to</strong> Baysian<br />

models (model “learns” from this)<br />

• Identify central tendency and dispersion of<br />

pk parameters.<br />

• Identify useful co-variates (BSA, GFR etc)<br />

• Apply Bayesian adaptive control strategy<br />

• Predict outcome and Control therapy


Bayesian <strong>The</strong>ory<br />

Rev. Thomas Bayes, 1702 - 1762<br />

• Maximal a posteri Bayesian estimation<br />

• Dose adjustment based on most relevant<br />

exposure <strong>in</strong>dex (Cp, Cp max , AUC etc)<br />

• Estimates made for each patient us<strong>in</strong>g<br />

limited <strong>in</strong>dividual data (demographic,<br />

cl<strong>in</strong>ical, [drug], pharmacogenomic, etc)


Bayesian Adaptive Dose<br />

Bayesian<br />

Approach:<br />

Prior<br />

probability<br />

New Info<br />

Objective<br />

function<br />

Posterior<br />

probability<br />

Goals<br />

Control<br />

therapy<br />

In<br />

Practice:<br />

Population<br />

model<br />

<strong>Drug</strong><br />

levels<br />

Prior +<br />

New <strong>in</strong>fo.<br />

Individual<br />

model<br />

Patient<br />

specific<br />

Calculate<br />

dose


Bayesian Adaptive Dos<strong>in</strong>g<br />

Prospective Review<br />

Genetic Fac<strong>to</strong>rs for <strong>Drug</strong> Disposition<br />

/Response/Toxicity<br />

Test – dose TDM<br />

Conventional Medication Review<br />

Patient Specific Fac<strong>to</strong>rs (eg organ function,drug –<br />

drug <strong>in</strong>teractions, cautions, life-style <strong>in</strong>fluences etc<br />

etc)<br />

Comb<strong>in</strong>ation = Optimal Pharmacotherapy?


Conclusions<br />

• Expectation of TDM + other parameters<br />

for reduced <strong>in</strong>ter-patient variability and<br />

reduced <strong>to</strong>xicity and improved efficacy.<br />

• Little evidence that TDM actually<br />

achieves this.<br />

• Need large, prospective Phase III<br />

studies us<strong>in</strong>g Bayesian approach

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!