08.03.2014 Views

Acute Lymphoblastic Leukemia (ALL): Advances? YES!

Acute Lymphoblastic Leukemia (ALL): Advances? YES!

Acute Lymphoblastic Leukemia (ALL): Advances? YES!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Acute</strong> <strong>Lymphoblastic</strong> <strong>Leukemia</strong><br />

(<strong>ALL</strong>): <strong>Advances</strong>?<br />

<strong>YES</strong>!<br />

Stephen P. Hunger, M.D<br />

STOP! Children’s Cancer Chair<br />

Chief, Pediatric Hematology/Oncology<br />

Vice Chair, COG <strong>ALL</strong> Committee<br />

University of Florida College of Medicine


Outline<br />

• Overview<br />

– Childhood cancer incidence and epidemiology<br />

– <strong>Acute</strong> leukemia: epidemiology and pathobiology<br />

• Childhood <strong>ALL</strong><br />

– Classification and treatment<br />

• <strong>ALL</strong> in adolescents and young adults (AYA)<br />

• Relapsed childhood <strong>ALL</strong><br />

• The role of SCT in children and AYA with <strong>ALL</strong>


Causes of Mortality Before Age<br />

20 in the United States<br />

#1 Unintentional Injury<br />

#2 Homicide<br />

#3 Suicide<br />

#4 Cancer


Epidemiology of Cancer in<br />

Children and Young Adults<br />

• 30% of U.S. population is


Cancer Mortality: Causes Among<br />

U.S Children 0-19 Years of Age<br />

7% 6% <strong>Leukemia</strong><br />

3%<br />

35% CNS tumors<br />

7%<br />

Endocrine<br />

Other<br />

8%<br />

Soft Tissue<br />

Kidney<br />

Bone tumors<br />

9%<br />

NHL<br />

25%


<strong>Acute</strong> <strong>Leukemia</strong>s<br />

<strong>ALL</strong><br />

• 3% of all cancers<br />

– 30-35% for children<br />

• #1 cause of cancer death at ¡ 35 yrs<br />

• ~3250 cases/yr in US 0-19 yr olds<br />

– 4000-5000 <strong>ALL</strong>s/yr in US<br />

• Median age 10 years (children=adults)<br />

– 2500 <strong>ALL</strong>s/yr in US 0-19 yrs<br />

– 9000 AMLs/yr in US<br />

• Median age 65 years (adults>>children)<br />

– 650 AML/yr in US 0-19 yrs<br />

AML


<strong>Leukemia</strong> Subtypes by Age<br />

14%<br />

2%3%<br />

9% 4%<br />

<strong>ALL</strong><br />

AML<br />

CML<br />

Other<br />

36%<br />

51%<br />

81%<br />

0-5 years 15-19 years


<strong>ALL</strong>: Molecular Pathogenesis<br />

• While <strong>ALL</strong>s are morphologically similar, they are<br />

clinically and biologically heterogeneous<br />

• <strong>ALL</strong> is not caused by a single mutation but<br />

requires 2-6 mutations<br />

– Mutations almost always somatic<br />

• Initiating mutations often result from chromosome<br />

translocations<br />

– Initiating events can occur in utero


<strong>ALL</strong>: Cytogenetics<br />

• Careful analysis shows that 90% + of <strong>ALL</strong>s contain<br />

cytogenetic abnormalities<br />

– Abnormalities are acquired (somatic; not present in<br />

germline) and disappear when remission is achieved<br />

• Some cytogenetic abnormalities have important<br />

prognostic and therapeutic implications<br />

• Types of abnormalities<br />

– Numerical: Gain or loss or one or more chromosomes<br />

– Structural: Exchanges of information between<br />

(translocations) or within (inversions) chromosomes


<strong>ALL</strong>: Role of Chromosome<br />

Translocations<br />

• <strong>ALL</strong> is biologically heterogeneous<br />

• Role of chromosome translocations<br />

– Critical role in leukemogenesis<br />

– Specific recurrent abnormalities are powerful predictors of<br />

outcome and can be used for treatment stratification in riskadapted<br />

therapy<br />

– Oncogenes involved in leukemogenesis play a critical role<br />

in normal hematopoiesis<br />

– Identify targets and pathways for rationally-designed<br />

therapeutic interventions


Common Targets of<br />

Translocations in <strong>Leukemia</strong><br />

Gene Location #Partners<br />

E2A 19p13.3 3 cloned<br />

MLL (HRX) 11q23 30+, 18 cloned<br />

CBFα or β 21q22/16p13 5 cloned<br />

TEL (ETV6) 12p13 9+ cloned<br />

RARα 17q21 4 cloned


Molecularly-Targeted Therapy: Imatinib<br />

in Chronic Myelogenous <strong>Leukemia</strong><br />

N Engl J Med 348: 994, 2003


Outline<br />

• Overview<br />

– Childhood cancer incidence and epidemiology<br />

– <strong>Acute</strong> leukemia: epidemiology and pathobiology<br />

• Childhood <strong>ALL</strong><br />

– Classification and treatment<br />

• <strong>ALL</strong> in adolescents and young adults (AYA)<br />

• Relapsed childhood <strong>ALL</strong><br />

• The role of SCT in children and AYA with <strong>ALL</strong>


Therapy of Childhood <strong>ALL</strong>:<br />

Milestones<br />

• 1948: Aminopterin induces temporary remissions in<br />

children with leukemia (Farber)<br />

– First demonstration that chemotherapy was effective for<br />

cancer<br />

• Early 1960s: First cures of childhood <strong>ALL</strong><br />

• Early 1970s: Adoption of prophylactic CNS Rx<br />

– Radiation initially; most now receive intrathecal chemotherapy<br />

• 1960s-present: Empiric optimization of chemo regimens<br />

• 1980s-present: Improved understanding of biology<br />

paves way for new era of targeted biological therapies


Estimated Survival Percentage<br />

Improved Survival in Childhood<br />

<strong>ALL</strong><br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 4 6 8 10 12<br />

Years From Study Entry<br />

1996-2000<br />

(n=3421)<br />

1989-1995<br />

(n=5121)<br />

1983-1988<br />

(n=3711)<br />

1978-1983<br />

(n=2984)<br />

1975-1977<br />

(n=1313)<br />

1972-1975<br />

(n=936)<br />

1970-1972<br />

(n=499)<br />

1968-1970<br />

(n=402)


Treatment of Childhood <strong>ALL</strong>:<br />

Progress Continues<br />

1<br />

0.9<br />

CCG EFS COMPARISON BY STUDY ERAS<br />

0.8<br />

PROBABILITY<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

3 YEAR EFS (p=.0001):<br />

1983-89 74.5%<br />

1989-95 81.4%<br />

1996-01 84.5%<br />

1983-89<br />

(N=3711)<br />

1989-95<br />

(N=5121)<br />

1996-01<br />

(N=3806)<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19<br />

YEARS OF FOLLOW-UP


Improvements in Outcome of<br />

Children with <strong>ALL</strong>: Reasons<br />

• Critical improvements in supportive care<br />

– Transfusion support + treatment of infections<br />

• Introduction of new chemotherapy agents has played a<br />

relatively minor role<br />

• Major improvements have come through a series of<br />

empirically-designed clinical trials<br />

– Essential role of US and European cooperative groups<br />

– Importance of treatment stratification and risk-adjusted<br />

therapy


Chemotherapy Agents Used in<br />

Childhood <strong>ALL</strong>: FDA Approval<br />

• 6-Mercaptopurine 1953<br />

• Methotrexate 1953<br />

• Prednisone 1955<br />

• Dexamethasone 1958<br />

• Cyclophosphamide 1959<br />

• Vincristine 1964<br />

• Cytosine Arabinoside 1969<br />

• L’Asparaginase 1978<br />

• Daunorubicin 1979


Key Components of Successful <strong>ALL</strong><br />

Therapy<br />

• Empiric multi-agent<br />

chemotherapy<br />

• Pre-symptomatic CNS<br />

therapy<br />

• Risk adapted therapy<br />

• Post-induction<br />

intensification


Prevention of CNS <strong>Leukemia</strong><br />

Dramatically Improves <strong>ALL</strong> Outcome<br />

• 1960s: induced remissions in most<br />

patients but very high rate of early<br />

CNS relapses<br />

– 50-75% had CNS relapse within 6-12<br />

months<br />

• Most chemo agents have poor CNS<br />

penetration and prophylactic CNS<br />

treatment is essential<br />

– Dramatic increase in cure rates in early<br />

70s with universal use of craniospinal<br />

irradiation<br />

– Most patients now receive intensive<br />

intrathecal chemo rather than<br />

irradiation<br />

CSF cytospin<br />

Lymphoblast in CSF


Risk Group Stratification and<br />

Risk-Adjusted Therapy<br />

• Patients are grouped to select proper treatment strategy<br />

– High risk patients fare poorly when treated with less intensive<br />

regimens appropriate for standard risk patients but do much<br />

better with more intensive therapy<br />

– Data based on groups, but therapy is applied to individuals<br />

• Risk group definitions<br />

– NCI/Rome criteria based on age and initial WBC<br />

– New COG criteria include genetic features and early<br />

treatment response


Clinical Risk Groups in Childhood B-<br />

Precursor <strong>ALL</strong>: NCI/Rome Criteria<br />

• Standard risk (~65% patients with EFS ~80%)<br />

– Age 1.00-9.99 years<br />

– Initial white blood count


Biological Features Refine<br />

• Immunophenotype<br />

Clinical Risk Groups<br />

– T-<strong>ALL</strong> patients fare relatively poorly when treated with low<br />

intensity therapy but do well when treated more intensively<br />

– Mature B-<strong>ALL</strong> (Burkitt’s) treated very differently<br />

• Ploidy<br />

– Hyperdiploid DNA index (DI >1.16) = favorable<br />

• Best group defined by “triple trisomies” (+4, +10, +17)<br />

– Hypodiploid (


Genetic Heterogeneity in<br />

Childhood <strong>ALL</strong><br />

11q23<br />

4%<br />

TEL-AML1<br />

18%<br />

14q11<br />

3%<br />

Ph<br />

2%<br />

t(1;19)<br />

4%<br />

“Normal”<br />

26%<br />

< 45 Chrom<br />

1%<br />

45 Chrom<br />

3%<br />

Pseudodiploid<br />

10%<br />

47-50 Chrom<br />

6%<br />

> 50 Chrom<br />

26%


Genotype and Outcome in<br />

Childhood <strong>ALL</strong><br />

100<br />

Probability<br />

80<br />

60<br />

40<br />

TEL (n =176)<br />

Trisomies 4,10,17 (n = 746)<br />

t(4;11) (n = 44)<br />

t(1;19) (n = 139)<br />

20<br />

0<br />

4 Yr EFS (%) SE (%)<br />

Tris 4,10,17 92.1 1.1<br />

TEL 89.0 3.1<br />

t(1;19) 68.9 4.1<br />

t(4;11) 49.9 11.2<br />

t(9;22) 27.5 4.4<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

Years Followed<br />

t(9;22) (n=132)<br />

B-precursor <strong>ALL</strong><br />

10/2001


Day 7 Marrow Response Predicts<br />

Outcome for Children with HR-<strong>ALL</strong><br />

1.00<br />

Event-Free Survival<br />

0.75<br />

0.50<br />

0.25<br />

RER<br />

IER<br />

SER<br />

d7 d14 d28<br />

M1 M1 M1<br />

M2/M3 M1 M1<br />

M2//M3 M2/M3 M1<br />

0 12 24 36 48 60 72 84<br />

Time (months)<br />

Steinherz et al: JCO 1996: 14:389-398


COG <strong>ALL</strong> Risk Groups<br />

Age, WBC<br />

Immunophenotype<br />

Trisomies<br />

Ploidy<br />

Translocations<br />

Marrow response<br />

MRD<br />

Low Risk<br />

Standard Risk<br />

High Risk<br />

Very High Risk


Outcome by New COG Risk<br />

Group Definitions<br />

Probability<br />

100<br />

80<br />

60<br />

Low Risk (n=544)<br />

High Risk (n=880)<br />

Standard Risk (n=1471)<br />

40<br />

20<br />

0<br />

Risk Group 4 Yr EFS (%) SE (%)<br />

Low 91.5% 1.6<br />

Standard 82.1% 1.4<br />

High 72.9% 2.1<br />

Very High 33.6% 6.0<br />

Very High Risk (n=78)<br />

0 1 2 3 4 5 6 7 8 9<br />

Years Followed<br />

POG ALinC 16<br />

B-precursor <strong>ALL</strong><br />

10/2001


Contemporary Therapy of Childhood<br />

<strong>ALL</strong>: General Overview<br />

• Remission induction<br />

– Remission = normal blood counts, normocellular marrow<br />

with


Risk-Adapted Therapy: Different<br />

Questions for Different Groups<br />

• Low risk (~90% cure)<br />

– Intensify modestly or reduce therapy?<br />

• Standard risk (~82% cure)<br />

– Test treatments effective in HR patients<br />

• High risk (~73% cure)<br />

– Add additional agents<br />

• Very high risk (~35% cure)<br />

– New strategies needed<br />

• Novel intensive chemo backbone<br />

• Gleevec for Ph+ <strong>ALL</strong><br />

• SCT for some patients


Day 7 Marrow Response Predicts<br />

Outcome for Children with HR-<strong>ALL</strong><br />

1.00<br />

Event-Free Survival<br />

0.75<br />

0.50<br />

0.25<br />

RER<br />

IER<br />

SER<br />

d7 d14 d28<br />

M1 M1 M1<br />

M2/M3 M1 M1<br />

M2//M3 M2/M3 M1<br />

0 12 24 36 48 60 72 84<br />

Time (months)<br />

Steinherz et al: JCO 1996: 14:389-398


Slow Early Response – Rationale<br />

for “Augmented” BFM<br />

• German efforts to improve outcome for<br />

prednisone poor responders included addition of<br />

high dose Ara-C, high dose methotrexate,<br />

ifosfamide and vindesine<br />

– No improvement in outcome in 2 consecutive trials<br />

• Since addition of new myelotoxic drugs did not<br />

improve outcome, CCG chose to intensify<br />

Vincristine and L-Asparaginase and to use IV<br />

Methotrexate without rescue


“Standard” vs. “Augmented” Therapy:<br />

Dose Intensity in First Year<br />

Standard BFM<br />

Augmented BFM<br />

VCR 15 30<br />

L-ASP 15 53<br />

CTX 3 4<br />

Ara-C Courses 6 8<br />

IV MTX 0 10


CCG 1882: Augmented BFM<br />

Therapy<br />

Induction<br />

Interim<br />

Re-induction<br />

Interim<br />

Re-induction<br />

Maint<br />

Consolidation<br />

Maint<br />

Consolidation<br />

Maint<br />

Re-consolidation<br />

I<br />

I<br />

II<br />

II<br />

Differences Between Standard and Augmented Therapy<br />

Extend consolidation from 4 to 8 weeks and add a 2 week course of<br />

VCR/L-ASP to neutropenic phase of each 4 week block<br />

Capizzi pulses replace oral 6MP/MTX for interim maintenance<br />

VCR-IV MTX without Lcv rescue-ASP<br />

Addition of a second interim maintenance and re-induction reconsolidation<br />

course


CCG-1882: Augmented Therapy Improves EFS for<br />

Patients with an SER (M3 Marrow at day 7)<br />

Probability<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

DATA UPDATED DEC 2004<br />

Augmented BFM (n=155)<br />

BFM (n=156)<br />

Log Rank p=.0006<br />

8-Year EFS RHR<br />

BFM 52.3%(s.d. 6.5%) 1.9<br />

Augmented BFM 70.2%(s.d. 6.7%) Baseline<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Nachman et al., NEJM 338: 1663-1671, 1998<br />

Years Followed (from Randomization)


CCG-1882: Augmented Therapy Improves Survival<br />

for Patients with an SER (M3 Marrow at day 7)<br />

Probability<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

DATA UPDATED DEC 2004<br />

Augmented BFM (n=155)<br />

BFM (n=156)<br />

Log Rank p=.01<br />

8-Year Survival RHR<br />

BFM 63.7%(s.d. 6.1%) 1.7<br />

Augmented BFM 75.2%(s.d. 6.4%) Baseline<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Years Followed (from Randomization)<br />

Nachman et al., NEJM 338: 1663-1671, 1998


CCG 1961: A Pivotal Trial for the<br />

Design of New COG <strong>ALL</strong> Studies<br />

• 2078 children with NCI HR <strong>ALL</strong> from 9/16/96-5/1/02<br />

• Tested components of augmented BFM<br />

– Randomized 1303 RER (day 7 M1/M2 marrow) patients to receive 1 of 4<br />

arms in a 2 x 2 manner<br />

• A: Standard therapy with 1 IM and 1 DI phase<br />

• B: Standard with 2 IM and 2 DI phases<br />

• C: Standard + augmented consolidation, IM and DI<br />

• D: Augmented BFM with 2 IM and DI phases<br />

• Differences between augmented BFM in 1882 and 1961<br />

– No XRT for RER patients in 1961<br />

– 1882 used native L’Asp throughout; 1961 had native in induction and PEG<br />

thereafter


CCG 1961: Results<br />

• Augmented BFM is superior to standard BFM<br />

• Augmented BFM has increased morbidity but no<br />

difference in mortality<br />

– Major morbidity is avascular necrosis of bone in<br />

patients 13+ years old<br />

• Risk can be decreased significantly by interrupted Dex<br />

• There is no benefit to longer duration of intensive<br />

therapy<br />

• Regimen C (augmented BFM with 1 IM + 1 DI) is<br />

the standard regimen for future HR-<strong>ALL</strong> trials


CCG-1961 EFS Outcome by RER Groups:<br />

Augmented Therapy Improves EFS<br />

1<br />

0.9<br />

Augmented BFM (N=647)<br />

Standard BFM (N=646)<br />

Probability<br />

0.8<br />

0.7<br />

Log rank p = .001<br />

0.6<br />

0.5<br />

5 Yr EFS RHR<br />

Augmented BFM 81.0% Baseline<br />

Standard BFM 70.2% 1.54<br />

0 1 2 3 4 5 6 7 8<br />

Years Followed<br />

Seibel NL et al Blood 102: #787, 2003


CCG-1961 EFS Outcome by RER Groups:<br />

No Benefit to Prolonged Intensification<br />

1<br />

0.9<br />

Standard Duration (N=645)<br />

Increased Duration (N=648)<br />

Probability<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

Log rank p = .45<br />

5 Yr EFS RHR<br />

Standard Duration 76.3% Baseline<br />

Increased Duration 74.8% 1.11<br />

0 1 2 3 4 5 6 7 8<br />

Seibel NL et al Blood 102: #787, 2003<br />

Years Followed


CCG-1961 EFS Outcome by RER Groups<br />

Probability<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

Log rank p = .01<br />

5 Yr EFS RHR<br />

SBFM/SD 71.1% Baseline<br />

ABFM/SD 81.5% .68<br />

ABFM/ID 80.7% .71<br />

SBFM/ID 69.3% 1.13<br />

SBFM/SD (N=321)<br />

ABFM/SD (N=324)<br />

ABFM/ID (N=323)<br />

SBFM/ID (N=325)<br />

0 1 2 3 4 5 6 7 8<br />

Years Followed<br />

Seibel NL et al Blood 102: #787, 2003


Outline<br />

• Overview<br />

– Childhood cancer incidence and epidemiology<br />

– <strong>Acute</strong> leukemia: epidemiology and pathobiology<br />

• Childhood <strong>ALL</strong><br />

– Classification and treatment<br />

• <strong>ALL</strong> in adolescents and young adults (AYA)<br />

• Relapsed childhood <strong>ALL</strong><br />

• The role of SCT in children and AYA with <strong>ALL</strong>


Incidence of <strong>ALL</strong> by Age:<br />

SEER 1986-1995<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Cases per million<br />

10<br />

0<br />

0-4<br />

yr<br />

5-9<br />

yr<br />

10-<br />

14 yr<br />

15-<br />

19 yr<br />

20-<br />

24 yr<br />

25-<br />

29 yr<br />

30-<br />

34 yr


<strong>ALL</strong> 5-Year Survival Rates:<br />

SEER 1986-1995<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0-4<br />

yr<br />

5-9<br />

yr<br />

10-14<br />

yr<br />

15-19<br />

yr<br />

20-24<br />

yr<br />

25-29<br />

yr<br />

30-34<br />

yr<br />

5 yr Survival


AYA <strong>ALL</strong>: Reasons for<br />

Differences in Outcome<br />

• Age is a powerful predictor of outcome<br />

– UK<strong>ALL</strong> studies<br />

• Selective entry onto trials results in children receiving<br />

more “state of the art” therapy<br />

• Treatment on pediatric trials is better: CCG vs.<br />

CALGB and FR<strong>ALL</strong>E-94 vs. LALA-94 comparisons<br />

– Better therapy vs. more comprehensive and aggressive<br />

treatment approach<br />

• Parallel pediatric and adult trials will help to address this question


The Impact of Age on Outcome in<br />

<strong>ALL</strong> with Identical Therapy:<br />

UK<strong>ALL</strong> X and XA<br />

Age (n) DFS S<br />

1-9 yr (1349) 62% 81%<br />

10-14 yr (238) 49% 72%<br />

15-19 yr (200) 35% 60%<br />

20-39 yr (228) 29% 43%<br />

Proportional hazard<br />

analysis<br />

Age RR<br />

10 yr old 1<br />

20 yr old 2<br />

40 yr old 4<br />

Chessels et al: <strong>Leukemia</strong> 12: 463-473, 1998


Accrual to NCI Cooperative Group<br />

Clinical Trials: 10/97-9/98<br />

2500<br />

2000<br />

1500<br />

1855<br />

1263<br />

Patients < 20 years old:<br />

~1% of patients with CA<br />

22% of total cooperative group accrual<br />

1000<br />

997<br />

761<br />

819<br />

500<br />

413<br />

126 162<br />

0<br />

00-04 5-9 10-14 15-19 20-24 25-29 30-34 35-39<br />

Age (Years)


Enrollment in NCI Cooperative<br />

Group Protocols: 15-19 years of age<br />

Adult Groups<br />

2.8%<br />

Pediatric<br />

Groups<br />

97.2%


AYA <strong>ALL</strong> Patients: Outcome on<br />

CCG vs. CALGB Trials<br />

• CALGB 1988-98: 103 patients 16-20 years<br />

– 93% CR rate, 38% 6 yr EFS<br />

– Outcome similar to patients 21-29 yrs on same trials<br />

• CCG 1989-1995: 196 patients 16-21 years<br />

– 96% CR rate, 64% 6 yr EFS<br />

• No significant differences in characteristics<br />

between CALGB and CCG patients<br />

Stock et al: Blood 96: 467a, 2000 (abstr.)


<strong>Acute</strong> <strong>Lymphoblastic</strong> <strong>Leukemia</strong>:<br />

Disease Free Survival is Better on Pediatric Trials<br />

Stock W Sather H, Dodge RK, Bloomfield CD, Larson A, Nachman J.<br />

Blood 96: 467a, 2000.<br />

CCG-1800 Series 16-21 Year-Olds (N = 175)<br />

68+2%<br />

DFS<br />

16-20 Years (N = 103)<br />

CALGB<br />

20-29 Years (N = 123)


AYA <strong>ALL</strong>: Comparison of<br />

FR<strong>ALL</strong>E-93 and LALA-94<br />

• Adolescents 15-20 yrs. enrolled 6/93-9/94<br />

– Pediatric FR<strong>ALL</strong>E-93: 77 pts (median 15.9 yrs)<br />

– Adult LALA-94: 100 pts (median 17.9 yrs)<br />

• No other significant differences in characteristics<br />

between FR<strong>ALL</strong>E-94 and LALA-94 patients<br />

• Outcome significantly better on pediatric trial<br />

– FR<strong>ALL</strong>E-93: CR 94%, 5-year EFS 67%<br />

– LALA-94: CR 83%, 5-year EFS 41%<br />

Boissel et al, JCO 21: 774, 2003


AYA with <strong>ALL</strong>: CCG 1961<br />

• 262 AYA <strong>ALL</strong> patients entered onto CCG 1961<br />

trial for high risk <strong>ALL</strong> from 11/96 to 5/02<br />

• Overall 5 yr. EFS 68%, 5 yr. Survival 77%<br />

– Rapid responders randomized to 4 regimens<br />

• Augmented therapy: 83% 5 yr EFS<br />

• Standard therapy: 61% 5 yr EFS<br />

– Slow responders had 76% 5 yr. EFS (all received<br />

augmented therapy)<br />

– Initial WBC<br />

• Less than 50,000: 73% 5 yr. EFS<br />

• More than 50,000: 54% 5 yr. EFS<br />

Nachman et al, Blood 104: 196a, 2004 (abstr.)


CCG-1961 Augmented vs. Standard BFM<br />

EFS outcome (Age 16+ subset)<br />

Probability<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

AUG BFM (N=87)<br />

STD BFM (N=76)<br />

p=.11<br />

5-Yr EFS<br />

AUG BFM 83.3% (s.d.9.8%)<br />

STD BFM 60.8% (s.d.11.0%)<br />

0 1 2 3 4 5 6 7 8<br />

Years Followed


CCG 1961: Effective Therapy<br />

Negates the Impact of Older Age<br />

Age Group<br />

1 yr<br />

2-5 yr<br />

6-9 yr<br />

10-15 yr<br />

16+ yr<br />

O/E<br />

1.40<br />

0.67<br />

1.20<br />

1.06<br />

1.04<br />

4yr EFS<br />

64.2%<br />

79.3%<br />

66.9%<br />

69.5%<br />

73.6%


<strong>ALL</strong> in Adolescents and Young<br />

Adults: Conclusions<br />

• Outcome is superior for similar patients treated on<br />

pediatric trials<br />

– Difference is substantial: cure rates are 20-30% higher in<br />

absolute numbers<br />

– Therapy vs. the context in which it is delivered?<br />

• Adolescents with <strong>ALL</strong> should be treated in pediatric<br />

centers on pediatric protocols<br />

– Where would you want your teenager treated if s/he had<br />

<strong>ALL</strong>?<br />

• Therapies effective in adolescents should be tested in<br />

young adults<br />

– Dissect the benefits of the therapy vs. the system


COG A<strong>ALL</strong>0232: HR B-Precursor<br />

<strong>ALL</strong><br />

• 2 x 2 randomized trial<br />

– Induction<br />

• 14 days Dex vs. 28 days Pred (rest of trial is Dex)<br />

– Interim Maintenance<br />

• Capizzi escalating IV MTX without rescue + Asp vs. 4 courses HD<br />

MTX<br />

• Efforts to improve AYA <strong>ALL</strong> outcome<br />

– Eligibility for COG A<strong>ALL</strong>0232 increased from


Outline<br />

• Overview<br />

– Childhood cancer incidence and epidemiology<br />

– <strong>Acute</strong> leukemia: epidemiology and pathobiology<br />

• Childhood <strong>ALL</strong><br />

– Classification and treatment<br />

• <strong>ALL</strong> in adolescents and young adults (AYA)<br />

• Relapsed childhood <strong>ALL</strong><br />

• The role of SCT in children and AYA with <strong>ALL</strong>


Relapsed <strong>Leukemia</strong><br />

• Reasons for relapse are uncertain<br />

– The patient was not treated intensively enough<br />

the first time<br />

– The patient’s leukemia cells developed<br />

resistance to particular chemotherapy agents<br />

• In general, treatment must be changed or<br />

intensified after relapse


Childhood <strong>ALL</strong>: Prognostic Factors<br />

at Relapse<br />

• Site of relapse<br />

– Bone marrow worse than extramedullary<br />

• CNS, testicular, etc<br />

• Time to relapse<br />

– Earlier much worse than later<br />

• Genetic features<br />

– Relapsed T-<strong>ALL</strong> very poor outcome in some studies<br />

• No cures with chemo alone in recent matched cohort study<br />

– Relapsed Ph+ <strong>ALL</strong> has a dismal prognosis and less<br />

then 50% of patient will achieve a 2nd remission<br />

– Relapsed TEL-AML1+ <strong>ALL</strong> does relatively well<br />

• 80% vs 33% 2 year EFS in BFM REZ 90-06


<strong>ALL</strong>: Outcome Following Relapse by<br />

Site and Time in CCG 100 Series<br />

Site<br />

BM only<br />

0-17 mo.<br />

18-35 mo.<br />

36+ mo.<br />

CNS only<br />

0-17 mo.<br />

18-35 mo.<br />

36+ mos.<br />

Number<br />

642<br />

233<br />

194<br />

215<br />

220<br />

102<br />

84<br />

34<br />

6 yr EFS<br />

16%<br />

5%<br />

10%<br />

33%<br />

37%<br />

24%<br />

44%<br />

59%<br />

6 yr OS<br />

20%<br />

6%<br />

11%<br />

43%<br />

48%<br />

33%<br />

59%<br />

72%<br />

Gaynon PS et al, Cancer 82: 1387-95, 1998


CCG 1941: Marrow Relapse within<br />

12 Months of Completing Therapy<br />

• Only about 70% of<br />

patients achieved<br />

remission<br />

• Overall EFS from<br />

study entry is 15-20%<br />

• No difference based<br />

on post-induction<br />

therapies<br />

Figure 1. Probability of event-free survival after marrow<br />

relapse according to treatment received. Data from<br />

CCG-1941. Alt BMT=alternative BMT. Chemo =<br />

chemotherapy. CBMT = family donor BMT.


<strong>ALL</strong> With BM Relapse:<br />

A<strong>ALL</strong>01P2 and A<strong>ALL</strong>0433<br />

Remission Induction<br />

+/- new agent<br />

for early<br />

relapse<br />

0-35 months CR1 36+ months CR1<br />

Alternative Donor BMT<br />

Matched Sib BMT<br />

Chemotherapy


<strong>ALL</strong> with Extramedullary Relapse<br />

0-17 mos. CR1:<br />

A<strong>ALL</strong>0433<br />

18+ mos. CR1:<br />

A<strong>ALL</strong>02P2<br />

Matched Sib BMT<br />

Chemotherapy


Early Relapse <strong>ALL</strong>: Integrate New<br />

Agents with Intensive Chemotherapy<br />

• Limited benefit from treatment intensification alone<br />

• Stem cell transplant is only part of the answer<br />

– Many patients never get to transplant<br />

– Very high risk of relapse post transplant<br />

• Hypothesize that integration of newer molecularly targeted<br />

therapies into chemotherapy backbones will increase # of CR<br />

and depth of CR pre SCT<br />

• COG <strong>ALL</strong> plan<br />

– Develop an effective therapeutic backbone<br />

– Integrate promising agents into backbone and test efficacy<br />

• 4 month EFS and MRD assessment of leukemia kill


Integration of New Agents with Intensive<br />

Chemotherapy in Relapsed <strong>ALL</strong><br />

Reduction<br />

Phase<br />

Reinduction<br />

Block 1<br />

Reinduction<br />

Block 2<br />

Reinduction<br />

Block 3<br />

A<strong>ALL</strong>01P2<br />

VCR, PRED,<br />

PEG, DOX<br />

CTX, VP-16, MTX<br />

ARA-C, ASP<br />

MRD<br />

Future new agent pilot studies<br />

MRD<br />

VCR, PRED,<br />

PEG, DOX<br />

CTX, VP-16, MTX<br />

ARA-C, ASP<br />

Time<br />

MRD<br />

ADVL0423 (Epratuzumab) in 2005<br />

Correlate with 4<br />

month EFS


Outline<br />

• Overview<br />

– Childhood cancer incidence and epidemiology<br />

– <strong>Acute</strong> leukemia: epidemiology and pathobiology<br />

• Childhood <strong>ALL</strong><br />

– Classification and treatment<br />

• <strong>ALL</strong> in adolescents and young adults (AYA)<br />

• Relapsed childhood <strong>ALL</strong><br />

• The role of SCT in children and AYA with <strong>ALL</strong>


The Role of SCT in <strong>ALL</strong> in CR1<br />

• Little role for routine use of SCT in patients with<br />

<strong>ALL</strong>


SCT for Children and<br />

Adolescents with <strong>ALL</strong> in CR1<br />

• Matched sibling SCT is generally considered the<br />

therapy of choice for:<br />

– Ph+, Hypodiploidy with n


SCT for Children and Adolescents<br />

with <strong>ALL</strong> Following Relapse<br />

• Matched sib SCT indicated for <strong>ALL</strong> with 1 st<br />

marrow relapse at any time or early CNS relapse<br />

(

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!