14.03.2014 Views

Presentation: A New DOE Paradigm - JMP

Presentation: A New DOE Paradigm - JMP

Presentation: A New DOE Paradigm - JMP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>New</strong> <strong>DOE</strong> <strong>Paradigm</strong><br />

• April 12, 2012<br />

• Bradley Jones, SAS<br />

Institute<br />

• Doug Montgomery,<br />

Department of Industrial<br />

Engineering, Arizona<br />

State University<br />

1


<strong>New</strong>! Improved!<br />

2


Design Optimality<br />

• One of the truly great paradigm shifts in DOX<br />

• Can create custom designs for almost any situation<br />

• Modern software makes this easy for at least some<br />

optimality criteria<br />

• What optimality criteria should we use?<br />

3


Three Criteria:<br />

The D-criterion: M =<br />

X' X<br />

N<br />

Maximize the determinant of M<br />

D<br />

eff<br />

<br />

| X´<br />

X | <br />

<br />

Max[|<br />

´ |]<br />

<br />

X X <br />

1/ p<br />

The G-criterion: Minimize the maximum SPV<br />

over R<br />

NVar[ yˆ(<br />

m<br />

m<br />

SPV<br />

x )] ( ) <br />

<br />

Nx'<br />

X' X 1<br />

x<br />

2<br />

<br />

G<br />

eff<br />

<br />

p<br />

max ( SPV )<br />

xR<br />

The I-criterion: Minimize the average prediction variance over R<br />

I <br />

1 NVar[ yˆ<br />

( x)]<br />

d<br />

2<br />

A<br />

<br />

x<br />

<br />

R<br />

I eff<br />

Min(<br />

APV ( D))<br />

<br />

APV ( D)<br />

5


Which Criterion should I Use?<br />

• First-order models, first-order models with interaction<br />

– Objective is usually factor screening<br />

– Parameter estimation is key<br />

– Use the D-criterion<br />

• Second-order models, mixture models<br />

– Response estimation is usually of primary importance<br />

– Use the G or I criterion<br />

6


A problem with a constrained design region –<br />

amount of adhesive and cure temperature<br />

Page 391 & 392


How would we design an experiment for this<br />

problem?<br />

• “Force” a standard design into the experimental region<br />

– May lead to a case of the “square peg and the round hole”<br />

• Generate a unique design just for this particular situation<br />

– Need criteria for constructing the design<br />

– Computer implementation essential


<strong>JMP</strong> Default RSM Design


Design Comparison<br />

2 reps<br />

D-optimal Design Points<br />

I-optimal Design Points


Design Comparison cont.<br />

D-optimal Design Variance Profiles<br />

I-optimal Design Variance Profile


Let’s back up<br />

What we just showed was an experiment for optimization.<br />

But, usually designed experimentation starts with screening.<br />

We will first review some basics of screening.<br />

Then we will show you some really new stuff.<br />

12


Why do Regular Fractional Factorial<br />

Designs Work for Factor Screening?<br />

• The sparsity of effects principle<br />

– There may be lots of factors, but few are important<br />

– System is dominated by main effects, low-order interactions<br />

• The projection property<br />

– Every fractional factorial contains full factorials in fewer factors<br />

• Sequential experimentation<br />

– Can add runs to a fractional factorial to resolve difficulties (or<br />

ambiguities) in interpretation<br />

13


The Regular One-Half Fraction of the 2 k<br />

• DCM, Design & Analysis of Experiments, 8 th Edition, Wiley 2012<br />

• Notation: because the design has 2 k /2 runs, it’s referred to as a 2 k-1<br />

• Consider a really simple case, the 2 3-1<br />

• Note that I =ABC<br />

14


The Regular One-Half Fraction of the 2 3<br />

For the principal fraction, notice that the contrast for estimating the main<br />

effect A is exactly the same as the contrast used for estimating the BC<br />

interaction.<br />

This phenomena is called aliasing and it occurs in all fractional designs<br />

Aliases can be found directly from the columns in the table of + and - signs<br />

15


Aliasing in the One-Half Fraction of the 2 3<br />

A = BC, B = AC, C = AB (or me = 2fi)<br />

Aliases can be found from the defining relation I = ABC<br />

by multiplication:<br />

AI = A(ABC) = A 2 BC = BC<br />

BI =B(ABC) = AC<br />

CI = C(ABC) = AB<br />

Textbook notation for aliased effects:<br />

[ A] A BC, [ B] B AC, [ C]<br />

C AB<br />

16


The Alternate Fraction of the 2 3-1<br />

• I = -ABC is the defining relation<br />

• Implies slightly different aliases: A = -BC, B= -AC,<br />

and C = -AB<br />

• Both designs belong to the same family, defined by<br />

I ABC<br />

• Suppose that after running the principal fraction, the<br />

alternate fraction was also run<br />

• The two groups of runs can be combined to form a full<br />

factorial – an example of sequential experimentation<br />

17


• Resolution III Designs:<br />

– me = 2fi<br />

– example<br />

• Resolution IV Designs:<br />

– 2fi = 2fi<br />

– example<br />

• Resolution V Designs:<br />

– 2fi = 3fi<br />

– example<br />

Design Resolution<br />

31<br />

2 III<br />

41<br />

2 IV<br />

51<br />

2 V<br />

18


Construction of a Regular One-half Fraction<br />

The basic design; the design generator<br />

19


Projection of Fractional Factorials<br />

Every fractional factorial<br />

contains full factorials in<br />

fewer factors<br />

The “flashlight” analogy<br />

A one-half fraction will<br />

project into a full<br />

factorial in any k – 1 of<br />

the original factors<br />

20


Example 8.1<br />

21


Example 8.1<br />

Interpretation of results often relies on making some assumptions<br />

Ockham’s razor<br />

Confirmation experiments can be important<br />

Adding more runs to resolve ambiguities<br />

22


Confirmation experiment for this example:<br />

Use the model to predict the response at a test combination of interest<br />

in the design space – not one of the points in the current design.<br />

Run this test combination – then compare predicted and observed.<br />

For Example 8.1, consider the point +, +, -, +. The predicted response<br />

is<br />

Actual response is 104.<br />

23


Suppose we believe in the model:<br />

y = X 1<br />

b 1<br />

+ e<br />

But the true model is:<br />

y = X 1<br />

b 1<br />

+ X 2<br />

b 2<br />

+ e<br />

Then, the Alias matrix is:<br />

A = (X t 1<br />

X 1<br />

) -1 X t 1<br />

X 2<br />

The model for our specific example on the next slide is:<br />

y = b 0<br />

+x 1<br />

b 1<br />

+ x 2<br />

b 2<br />

+ x 3<br />

b 3<br />

+ e<br />

24


Main effects aliased<br />

with the 2fis<br />

26


The Alias Matrix:<br />

Columns represent the additional parameters in the full model<br />

Rows represent<br />

the parameters in<br />

the model that<br />

you fit<br />

Effect A*B A*C B*C<br />

Intercept 0 0 0<br />

A 0 0 1<br />

B 0 1 0<br />

C 1 0 0<br />

27


The Regular One-Quarter Fraction of the 2 k 28


The Regular One-Quarter Fraction of the 2 6-2<br />

Complete defining relation: I = ABCE = BCDF = ADEF<br />

This is a regular design 29


The Regular 2 k-p Fractional<br />

Factorial Design<br />

• 2 k-1 = one-half fraction, 2 k-2 = one-quarter fraction, 2 k-3 = oneeighth<br />

fraction, …, 2 k-p = 1/ 2 p fraction<br />

• Add p columns to the basic design; select p independent<br />

generators<br />

• Important to select generators so as to maximize<br />

resolution, see Table 8.14<br />

• Projection – a design of resolution R contains full factorials<br />

in any R – 1 of the factors<br />

31


The Regular 2 k-p Design: Resolution<br />

may not be Sufficient<br />

• Minimum aberration designs<br />

33


Regular Designs may not Always be the Best Choice<br />

for Screening<br />

• In regular designs the alias matrix consists of either 0, +1 or -1<br />

entries<br />

• That means that effects are completely confounded<br />

• Unless the experimenter has some “process knowledge”, effects<br />

cannot be separated without conducting additional experiments<br />

– Fold-over<br />

– Partial fold-over<br />

– Optimal augmentation<br />

34


Number of Orthogonal Designs versus<br />

Number of Factors<br />

Number of Factors<br />

Number of Nonisomorphic Designs<br />

6 27<br />

7 55<br />

8 80<br />

9 87<br />

10 78<br />

11 58<br />

12 36<br />

13 18<br />

14 10<br />

15 5<br />

35


Define Nonisomorphic<br />

Two designs are nonisomorphic if you cannot get one<br />

from the other by:<br />

–Permuting rows<br />

–Permuting columns<br />

–Relabeling the level names<br />

36


Could one of these other orthogonal designs<br />

work better?<br />

Jones and Montgomery 2010 discuss specific designs for 6 – 8<br />

factors and provide recommendations.<br />

We will start with a motivating example and then show you the<br />

designs and how to construct them.<br />

37


Main effects of A, B, C<br />

and E are important<br />

The AB + CE<br />

interaction is important<br />

How do we separate<br />

these interactions?<br />

Unless there is outside<br />

information available,<br />

we’ll need more data<br />

39


The No-Confounding Design<br />

40


Where Did the Data in this Experiment<br />

• Simulated data<br />

Come From?<br />

• We chose the significant main effects A, B, C and E along<br />

with the interaction CE.<br />

• We selected the random component to have the same<br />

standard deviation as the original data<br />

• The result is data that represents closely the original<br />

experiment if the no-confounding design had been run<br />

41


Color Plot for the No-Confounding Design<br />

The design is orthogonal<br />

No two-factor interactions are aliased with each other<br />

There is no complete confounding<br />

42


Stepwise Fit<br />

Response: Shrinkage<br />

Stepwise Regression Control<br />

Prob to Enter<br />

Prob to Leave<br />

Direction:Forward<br />

Rules:<br />

SSE<br />

6659.4375<br />

0.250<br />

0.100<br />

Combine<br />

Current Estimates<br />

DFE<br />

15<br />

LockEnteredParameter<br />

Intercept<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

A*B<br />

A*C<br />

A*D<br />

A*E<br />

A*F<br />

B*C<br />

B*D<br />

B*E<br />

B*F<br />

C*D<br />

C*E<br />

C*F<br />

D*E<br />

D*F<br />

E*F<br />

Step History<br />

MSE<br />

443.9625<br />

Estimate<br />

27.3125<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

RSquare<br />

0.0000<br />

nDF<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

RSquare Adj<br />

0.0000<br />

SS<br />

0<br />

770.0625<br />

5076.563<br />

3.16e-30<br />

3.16e-30<br />

28.89063<br />

28.89063<br />

6410.688<br />

781.4608<br />

885.625<br />

819.0536<br />

809.2569<br />

5076.563<br />

5087.961<br />

5115.757<br />

5125.554<br />

13.78835<br />

2577.449<br />

690.0164<br />

345.2905<br />

2382.766<br />

60.24101<br />

"F Ratio"<br />

0.000<br />

1.831<br />

44.900<br />

0.000<br />

0.000<br />

0.061<br />

0.061<br />

103.086<br />

0.532<br />

0.614<br />

0.561<br />

0.553<br />

12.829<br />

12.951<br />

13.256<br />

13.366<br />

0.008<br />

2.526<br />

0.462<br />

0.219<br />

2.229<br />

0.037<br />

Cp<br />

.<br />

AIC<br />

98.49923<br />

"Prob>F"<br />

1.0000<br />

0.1975<br />

0.0000<br />

1.0000<br />

1.0000<br />

0.8085<br />

0.8085<br />

0.0000<br />

0.6691<br />

0.6192<br />

0.6509<br />

0.6556<br />

0.0005<br />

0.0005<br />

0.0004<br />

0.0004<br />

0.9989<br />

0.1068<br />

0.7138<br />

0.8815<br />

0.1374<br />

0.9902<br />

Step Parameter Action "Sig Prob" Seq SS RSquare Cp p<br />

We can use<br />

stepwise<br />

regression model<br />

fitting<br />

All main effects<br />

and two-factor<br />

interactions are<br />

candidate<br />

variables for the<br />

model<br />

Because there is<br />

no complete<br />

confounding, all<br />

interactions are<br />

potential<br />

candidates 43


Stepwise regression<br />

selects the main<br />

effects of A, B, C and<br />

E along with the CE<br />

interaction<br />

The no-confounding<br />

design correctly<br />

identifies the model<br />

without any ambiguity<br />

and no need for<br />

additional runs<br />

44


No-Confounding Designs<br />

• The 16-run minimum aberration resolution IV designs (6, 7,<br />

and 8 factors) are among the most widely used designs in<br />

practice<br />

• It is possible to find no-confounding designs that are<br />

superior to the standard minimum aberration resolution IV<br />

designs in the sense that they offer a better chance of<br />

detecting significant two-factor interactions<br />

• These designs are constructed from the Hall matrices<br />

45


Hall I 15 Factor Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1<br />

2 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

3 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

9 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1<br />

10 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

12 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1<br />

14 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

15 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

46


Hall II 15 Factor Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1<br />

47


Hall III 15 Factor Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1<br />

48


Hall IV 15 Factor Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1<br />

49


Hall V 15 Factor Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1<br />

8 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1<br />

9 -1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 1<br />

10 -1 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1<br />

50


Constructing the Recommended 6 Factor<br />

Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1<br />

Hall II – Columns D, E, H, K, M, Q<br />

51


Recommended Nonregular 6 Factor Design<br />

Run A B C D E F<br />

1 1 1 1 1 1 1<br />

2 1 1 -1 -1 -1 -1<br />

3 -1 -1 1 1 -1 -1<br />

4 -1 -1 -1 -1 1 1<br />

5 1 1 1 -1 1 -1<br />

6 1 1 -1 1 -1 1<br />

7 -1 -1 1 -1 -1 1<br />

8 -1 -1 -1 1 1 -1<br />

9 1 -1 1 1 1 -1<br />

10 1 -1 -1 -1 -1 1<br />

11 -1 1 1 1 -1 1<br />

12 -1 1 -1 -1 1 -1<br />

13 1 -1 1 -1 -1 -1<br />

14 1 -1 -1 1 1 1<br />

15 -1 1 1 -1 1 1<br />

16 -1 1 -1 1 -1 -1<br />

52


Constructing Recommended Design<br />

Using the “Generator” Approach<br />

E = 0.5AC+0.5AD+0.5BC-0.5BD F = -0.5AC+0.5AD+0.5BC+0.5BD<br />

Run A B C D<br />

Run<br />

E<br />

Run<br />

F<br />

1 1 1 1 1<br />

1 1<br />

1 1<br />

2 1 1 1 -1<br />

2 1<br />

2 -1<br />

3 1 1 -1 1<br />

3 -1<br />

3 1<br />

4 1 1 -1 -1<br />

4 -1<br />

4 -1<br />

5 1 -1 1 1<br />

5 1<br />

5 -1<br />

6 1 -1 1 -1<br />

6 -1<br />

6 -1<br />

7 1 -1 -1 1<br />

7 1<br />

7 1<br />

8 1 -1 -1 -1<br />

8 -1<br />

8 1<br />

9 -1 1 1 1<br />

9 -1<br />

9 1<br />

10 -1 1 1 -1<br />

10 1<br />

10 1<br />

11 -1 1 -1 1<br />

11 -1<br />

11 -1<br />

12 -1 1 -1 -1<br />

12 1<br />

12 -1<br />

13 -1 -1 1 1<br />

13 -1<br />

13 -1<br />

14 -1 -1 1 -1<br />

14 -1<br />

14 1<br />

15 -1 -1 -1 1<br />

15 1<br />

15 -1<br />

16 -1 -1 -1 -1<br />

16 1<br />

16 1<br />

53


Color Plot for the Standard Minimum<br />

Aberration Resolution IV 7-Factor Design<br />

54


Constructing the Recommended 7 Factor<br />

Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1<br />

Hall III – Columns A, B, D, H, J, M, Q<br />

55


Recommended Nonregular 7 Factor Design<br />

Run A B C D E F G<br />

1 1 1 1 1 1 1 1<br />

2 1 1 1 -1 -1 -1 -1<br />

3 1 1 -1 1 1 -1 -1<br />

4 1 1 -1 -1 -1 1 1<br />

5 1 -1 1 1 -1 1 -1<br />

6 1 -1 1 -1 1 -1 1<br />

7 1 -1 -1 1 -1 -1 1<br />

8 1 -1 -1 -1 1 1 -1<br />

9 -1 1 1 1 1 1 -1<br />

10 -1 1 1 -1 -1 -1 1<br />

11 -1 1 -1 1 -1 1 1<br />

12 -1 1 -1 -1 1 -1 -1<br />

13 -1 -1 1 1 -1 -1 -1<br />

14 -1 -1 1 -1 1 1 1<br />

15 -1 -1 -1 1 1 -1 1<br />

16 -1 -1 -1 -1 -1 1 -1<br />

56


Comparison of Color Plots for the Standard<br />

and No-confounding Designs<br />

The recommended design is orthogonal and does<br />

not have any complete confounding of effects<br />

57


Color Plot for the Standard Minimum<br />

Aberration Resolution IV 8-Factor Design<br />

58


Constructing the Recommended 8 Factor Design<br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1<br />

Hall IV – Columns A, B, D, F, H, J, M, P<br />

59


Recommended Nonregular 8 Factor Design<br />

Run A B C D E F G H<br />

1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 -1 -1 -1 -1<br />

3 1 1 -1 -1 1 1 -1 -1<br />

4 1 1 -1 -1 -1 -1 1 1<br />

5 1 -1 1 -1 1 -1 1 -1<br />

6 1 -1 1 -1 -1 1 -1 1<br />

7 1 -1 -1 1 1 -1 -1 1<br />

8 1 -1 -1 1 -1 1 1 -1<br />

9 -1 1 1 1 1 1 1 1<br />

10 -1 1 1 -1 1 -1 -1 -1<br />

11 -1 1 -1 1 -1 -1 1 -1<br />

12 -1 1 -1 -1 -1 1 -1 1<br />

13 -1 -1 1 1 -1 -1 -1 1<br />

14 -1 -1 1 -1 -1 1 1 -1<br />

15 -1 -1 -1 1 1 1 -1 -1<br />

16 -1 -1 -1 -1 1 -1 1 1 60


Comparison of Color Plots for the Standard<br />

and No-confounding Designs<br />

The recommended design is orthogonal and does<br />

not have any complete confounding of effects<br />

61


Alternatives to Resolution III Designs<br />

The regular resolution III designs with from 9 to 15 factors in 16 runs are<br />

used frequently in practice<br />

These designs completely confound some interactions with main effects<br />

For example, in the minimum aberration nine factor case, 12 two-factor<br />

interactions are aliased with main effects and 24 two-factor interactions<br />

are confounded in groups with other two-factor interactions<br />

Follow-up experiments are often necessary, and the best augmentation<br />

approach may not be obvious.<br />

Nonregular designs with no pure confounding of main effects and twofactor<br />

interactions are useful alternatives.<br />

We provide a collection of these designs.<br />

62


Recommended 9 Factor Design<br />

Run A B C D E F G H J<br />

1 -1 -1 -1 -1 -1 -1 1 -1 1<br />

2 -1 -1 -1 1 -1 1 -1 1 -1<br />

3 -1 -1 1 -1 1 1 1 1 -1<br />

4 -1 -1 1 1 1 -1 -1 -1 1<br />

5 -1 1 -1 -1 1 1 -1 1 1<br />

6 -1 1 -1 1 1 -1 1 -1 -1<br />

7 -1 1 1 -1 -1 -1 -1 1 -1<br />

8 -1 1 1 1 -1 1 1 -1 1<br />

9 1 -1 -1 -1 1 -1 -1 -1 -1<br />

10 1 -1 -1 1 1 1 1 1 1<br />

11 1 -1 1 -1 -1 1 -1 -1 1<br />

12 1 -1 1 1 -1 -1 1 1 -1<br />

13 1 1 -1 -1 -1 1 1 -1 -1<br />

14 1 1 -1 1 -1 -1 -1 1 1<br />

15 1 1 1 -1 1 -1 1 1 1<br />

16 1 1 1 1 1 1 -1 -1 -1<br />

Correlation of Main Effects and Two-Factor Interactions


Recommended 10 Factor Design<br />

Run A B C D E F G H J K<br />

1 -1 -1 -1 -1 1 -1 -1 1 -1 1<br />

2 -1 -1 -1 1 1 1 -1 -1 1 1<br />

3 -1 -1 1 -1 -1 1 1 1 1 1<br />

4 -1 -1 1 -1 1 -1 1 -1 1 -1<br />

5 -1 1 -1 1 -1 1 1 1 -1 1<br />

6 -1 1 -1 1 1 -1 1 -1 -1 -1<br />

7 -1 1 1 -1 -1 -1 -1 1 -1 -1<br />

8 -1 1 1 1 -1 1 -1 -1 1 -1<br />

9 1 -1 -1 -1 -1 1 1 -1 -1 -1<br />

10 1 -1 -1 1 -1 -1 -1 1 1 -1<br />

11 1 -1 1 1 -1 -1 1 -1 -1 1<br />

12 1 -1 1 1 1 1 -1 1 -1 -1<br />

13 1 1 -1 -1 -1 -1 -1 -1 1 1<br />

14 1 1 -1 -1 1 1 1 1 1 -1<br />

15 1 1 1 -1 1 1 -1 -1 -1 1<br />

16 1 1 1 1 1 -1 1 1 1 1<br />

Correlation of Main Effects and Two-Factor Interactions<br />

64


Recommended 11 Factor Design<br />

Run A B C D E F G H J K L<br />

1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1<br />

2 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1<br />

3 -1 -1 1 -1 1 1 -1 1 -1 -1 -1<br />

4 -1 -1 1 1 -1 1 1 1 -1 1 1<br />

5 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1<br />

6 -1 1 -1 1 -1 1 1 -1 -1 -1 -1<br />

7 -1 1 -1 1 1 1 -1 1 1 1 -1<br />

8 -1 1 1 -1 1 -1 1 1 1 1 1<br />

9 1 -1 -1 -1 -1 1 -1 1 1 -1 1<br />

10 1 -1 -1 -1 1 1 1 -1 -1 1 1<br />

11 1 -1 -1 1 -1 -1 1 1 1 1 -1<br />

12 1 -1 1 1 1 -1 -1 -1 -1 1 -1<br />

13 1 1 -1 -1 1 -1 1 1 -1 -1 -1<br />

14 1 1 1 -1 -1 1 -1 -1 1 1 -1<br />

15 1 1 1 1 -1 -1 -1 1 -1 -1 1<br />

16 1 1 1 1 1 1 1 -1 1 -1 1<br />

Correlation of Main Effects and Two-Factor Interactions<br />

65


Recommended 12 Factor Design<br />

Run A B C D E F G H J K L M<br />

1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1<br />

2 -1 -1 -1 1 -1 1 1 1 -1 -1 1 -1<br />

3 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1<br />

4 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1<br />

5 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1<br />

6 -1 1 -1 1 1 1 1 -1 1 1 1 1<br />

7 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1<br />

8 -1 1 1 -1 1 -1 1 1 -1 1 1 -1<br />

9 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1<br />

10 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1<br />

11 1 -1 1 1 -1 -1 -1 1 -1 1 1 1<br />

12 1 -1 1 1 1 1 1 1 1 -1 -1 1<br />

13 1 1 -1 -1 -1 1 1 1 -1 1 -1 1<br />

14 1 1 -1 1 1 -1 -1 1 1 1 -1 -1<br />

15 1 1 1 -1 1 1 -1 -1 -1 -1 1 1<br />

16 1 1 1 1 -1 -1 1 -1 1 -1 1 -1<br />

Correlation of Main Effects and Two-Factor Interactions<br />

66


Recommended 13 Factor Design<br />

Run A B C D E F G H J K L M N<br />

1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1<br />

2 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1<br />

3 -1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1<br />

4 -1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1<br />

5 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1<br />

6 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1<br />

7 -1 1 -1 1 -1 -1 1 1 1 -1 1 1 1<br />

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 1 -1<br />

9 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 -1<br />

10 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1<br />

11 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1 1<br />

12 1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 1<br />

13 1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1<br />

14 1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1<br />

15 1 1 1 -1 1 1 -1 1 1 1 1 1 1<br />

16 1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1<br />

Correlation of Main Effects and Two-Factor Interactions<br />

67


Recommended 14 Factor Design<br />

Run A B C D E F G H J K L M N P<br />

1 -1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 1<br />

2 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1<br />

3 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1<br />

4 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 1 -1<br />

5 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1<br />

6 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1<br />

7 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1<br />

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1<br />

9 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1<br />

10 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1<br />

11 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1<br />

12 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1<br />

13 1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1<br />

14 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 1<br />

15 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1<br />

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

Correlation of Main Effects and Two-Factor Interactions<br />

68


Introducing Definitive Screening<br />

Jones and Nachtsheim (2011) provide a class of screening<br />

designs for 5 factors and up.<br />

These are three level designs for numeric factors.<br />

We will discuss their properties, show how to construct them<br />

and give an example.<br />

69


Motivation: Problems with Standard Screening Designs<br />

Resolution III designs confound main effects and two-factor interactions.<br />

Plackett-Burman designs have “complex aliasing of the main effects by twofactor<br />

interactions.<br />

Resolution IV designs confound two-factor interactions with each other, so if<br />

one is active, you usually need further runs to resolve the active effects.<br />

Center runs give an overall measure of curvature but you do not know which<br />

factor(s) are causing the curvature.<br />

Even the nonregular orthogonal designs we just discussed have aliasing of<br />

+0.5 or -0.5 of some main effects by some two-factor interactions. Plus they<br />

have no way of resolving quadratic effects.


Screening Conundrum – Two Models<br />

The full model containing both 6 first-order and 15 secondorder<br />

terms is:<br />

But n = 12, so we can only fit the intercept and the main<br />

effects:<br />

Standard result: some main effects estimates are biased:<br />

where the “alias” matrix is:<br />

71


Alias Matrix of Plackett-Burman design<br />

PB (non-regular) design has “complex aliasing”


If only there were another six factor 12 run design with<br />

this alias matrix:


Screening Design – Wish List<br />

1. Orthogonal main effects.<br />

2. Main effects uncorrelated with two-factor interactions and<br />

quadratic effects.<br />

3. Estimable quadratic effects – three-level design.<br />

4. Small number of runs – order of the number of factors.<br />

5. Good projective properties.


Design Structure<br />

1. Scaled values of each element of the design are either +1, -1 or 0.<br />

2. Each even numbered row is a mirror image of the previous row.<br />

3. For the kth column, rows 2k and 2k−1 contain zeros.<br />

4. The last row contains all zero elements.<br />

Run A B C D E F<br />

1 0 1 -1 -1 -1 -1<br />

2 0 -1 1 1 1 1<br />

3 1 0 -1 1 1 -1<br />

4 -1 0 1 -1 -1 1<br />

5 -1 -1 0 1 -1 -1<br />

6 1 1 0 -1 1 1<br />

7 -1 1 1 0 1 -1<br />

8 1 -1 -1 0 -1 1<br />

9 1 -1 1 -1 0 -1<br />

10 -1 1 -1 1 0 1<br />

11 1 1 1 1 -1 0<br />

12 -1 -1 -1 -1 1 0<br />

13 0 0 0 0 0 0


How did we find this design? – we used an<br />

optimization algorithm


Problem: Finding orthogonal main effects plans.<br />

Algorithmic approach gave orthogonal main effects<br />

plans for:<br />

6 factors<br />

8 factors<br />

10 factors<br />

but not 12 factors.


Orthogonal Main Effects Design Construction<br />

Conference matrix<br />

From Wikipedia, the free encyclopedia<br />

In mathematics, a conference matrix (also called a C-matrix) is a square<br />

matrix C with 0 on the diagonal and +1 and −1 off the diagonal, such that<br />

C T C is a multiple of the identity matrix I. Thus, if the matrix has order n,<br />

C T C = (n−1)I.<br />

Conference matrices first arose in connection with a problem in<br />

telephony. [3] They were first described by Vitold Belevitch who also gave<br />

them their name. Belevitch was interested in constructing ideal telephone<br />

conference networks from ideal transformers and discovered that such<br />

networks were represented by conference matrices, hence the name. [4]<br />

Other applications are in statistics, [5] and another is in elliptic geometry. [6]


From Wikipedia<br />

article on<br />

Conference<br />

Matrices<br />

Conference Matrices &Telephony


Conference Matrix of Order 6


Statistical Properties<br />

1. Orthogonal for the main effects.<br />

2. The number of required runs is only one more than twice the number of<br />

factors. ***<br />

3. Unlike resolution III designs, main effects are independent of two-factor<br />

interactions.<br />

4. Unlike resolution IV designs, two-factor interactions are not completely<br />

confounded with other two-factor interactions, although they may be<br />

correlated<br />

5. Unlike resolution III, IV and V designs with added center points, all<br />

quadratic effects are estimable in models comprised of any number of<br />

linear and quadratic main effects terms.<br />

6. Quadratic effects are orthogonal to main effects and not completely<br />

confounded (though correlated) with interaction effects.<br />

7. If there are more than six factors, the designs are capable of efficiently<br />

estimating all possible full quadratic models involving three or fewer<br />

factors


Example 1<br />

6 factors and 13 runs.<br />

Run A B C D E F<br />

1 0 1 -1 -1 -1 -1<br />

2 0 -1 1 1 1 1<br />

3 1 0 -1 1 1 -1<br />

4 -1 0 1 -1 -1 1<br />

5 -1 -1 0 1 -1 -1<br />

6 1 1 0 -1 1 1<br />

7 -1 1 1 0 1 -1<br />

8 1 -1 -1 0 -1 1<br />

9 1 -1 1 -1 0 -1<br />

10 -1 1 -1 1 0 1<br />

11 1 1 1 1 -1 0<br />

12 -1 -1 -1 -1 1 0<br />

13 0 0 0 0 0 0<br />

Note that even numbered row mirrors the previous row.<br />

D-efficiency is 85.5% and the design is orthogonal for the main effects.


Alias Matrices<br />

The D-optimal design with one added center point has substantial aliasing of<br />

each main effect with a number of two-factor interactions.<br />

For our design there is no aliasing between main effects and two-factor interactions.


Column Correlations<br />

0.25<br />

0.5<br />

0.4655<br />

0.1333


Example 2<br />

12 factors – 25 runs.


Column Correlations<br />

Note the zero<br />

correlations<br />

among main<br />

effects


Example from JQT paper<br />

87


Where did the data come from?<br />

We simulated it using the model below…<br />

88


Stepwise Results<br />

89


Recapitulation – Definitive Screening Design<br />

1. Orthogonal main effects plans.<br />

2. Two-factor interactions are uncorrelated with main effects.<br />

3. Quadratic effects are uncorrelated with main effects.<br />

4. All quadratic effects are estimable.<br />

5. The number of runs is only one more than twice the number of<br />

factors.<br />

6. For six factors or more, the designs can estimate all possible full<br />

quadratic models involving three or fewer factors


References<br />

1. Box, G. E. P., and Hunter, J. S. (1961), “The 2k−p Fractional Factorial Designs,”Technometrics,<br />

3, 449–458.<br />

2. Goethals, J. and Seidel, J. (1967). ”Orthogonal matrices with zero diagonal”. Canadian Journal<br />

of Mathematics, 19, pp. 1001–1010.<br />

3. Hall, M. Jr. (1961). Hadamard matrix of order 16. Jet Propulsion Laboratory Research Summary,<br />

1, 21–26.<br />

4. Jones, B. A. and Montgomery, D. C. (2010) “Alternatives to Resolution IV Screening Designs in<br />

16 Runs.”, International Journal of Experimental Design and Process Optimization, 2010; Vol. 1<br />

No. 4: 285-295.<br />

5. Jones, B. and Nachtsheim, C. J. (2011) “Efficient Designs with Minimal Aliasing” Technometrics,<br />

53. 62-71.<br />

6. Jones, B and Nachtsheim, C. (2011) “A Class of Three-Level Designs for Definitive Screening in<br />

the Presence of Second-Order Effects” Journal of Quality Technology, 43. 1-15.<br />

7. Plackett, R. L., and Burman, J. P. (1946), “The Design of Optimum Multifactor Experiments,”<br />

Biometrika, 33, 305–325.<br />

8. Montgomery, D.C. (2012) “Design and Analysis of Experiments” 8 th Edition, Wiley Hoboken,<br />

<strong>New</strong> Jersey.<br />

9. Sun, D. X., Li, W., and Ye, K. Q. (2002), “An Algorithm for Sequentially Constructing Non-<br />

Isomorphic Orthogonal Designs and Its Applications,” Technical Report SUNYSB-AMS-02-13,<br />

State University of <strong>New</strong> York at Stony Brook, Dept. of Applied Mathematics and Statistics.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!