21.03.2014 Views

Wind turbine gearboxes - KISSsoft AG

Wind turbine gearboxes - KISSsoft AG

Wind turbine gearboxes - KISSsoft AG

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

<strong>KISSsoft</strong> <strong>AG</strong><br />

Frauwis 1<br />

CH-8634 Hombrechtikon<br />

www.<strong>KISSsoft</strong>.ch<br />

Slide 1, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Gear analysis for the gear buyer<br />

Qualified interaction between<br />

gear manufacturer and gear buyer<br />

Quick yet<br />

detailled<br />

concept<br />

analysis<br />

Second<br />

opinion<br />

Buil up of<br />

know-how,<br />

„Local<br />

content“<br />

Gear, shaft, bearing, shaft-hub analyis with <strong>KISSsoft</strong> & KISSsys<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 2, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


<strong>KISSsoft</strong> / KISSsys in wind <strong>turbine</strong> gear analysis<br />

-Calculate the Kinematics (power split in compound <strong>gearboxes</strong>)<br />

-Do a quick and fairly accurate strength / life rating<br />

-Size a set of gears (helical or planetary) quickly for a given load and<br />

required safety / life rating<br />

-Consider shafts, gears shaft-hub connections and bearings<br />

simultaneously<br />

-Compare different gearbox concepts, good preliminary design<br />

-80% of the answers at 20% of the costs<br />

-No dynamic analysis<br />

-No load pattern analysis (LVR)<br />

-Support, training, consultancy services available<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 3, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Development of wind <strong>turbine</strong> power<br />

Today:<br />

Multibrid M5000: 5MW by<br />

PROKON Nord using Renk<br />

Multibrid gearbox<br />

REpower 5M: 5MW by<br />

REpower using Winergy<br />

(two planetary + one helical<br />

stage) or Renk Aerogear<br />

gearbox, tip height 183m<br />

On-shore -> Off-shore<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 4, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Gearboxes in a wind <strong>turbine</strong><br />

Focus in this presentation: main drive between<br />

rotor and generator<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 5, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Design driver<br />

1. Power generation is a function of third power of rotor<br />

diameter<br />

2. Optimum blade tip speed however is a linear function of<br />

wind speed, maximum blade tip speed is given<br />

3. Increasing power with maximum speed -> increasing the<br />

torque<br />

4. Gondola mass should be minimised<br />

-> Gearboxes with high power density and high input torques<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 6, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Gondola masses<br />

•Tower gondola mass directly affects costs of foundation, tower,<br />

transport, assembly (availability of cranes)<br />

•Gearbox mass (current maximum): 60’000kg<br />

Turbine<br />

Nominal Power<br />

Rotor Diameter<br />

Gondola mass<br />

Specific mass<br />

Vestas V90<br />

3MW<br />

90m<br />

108to<br />

17kg/m 2<br />

GE-3.6, offshore<br />

3.6MW<br />

104m<br />

272to<br />

32kg/m 2<br />

NEG Micon NM110<br />

4.2MW<br />

110m<br />

219to<br />

23kg/m 2<br />

Enercon E-112<br />

4.5MW<br />

114m<br />

500to<br />

49kg/m 2<br />

Multibrid<br />

5MW<br />

116m<br />

285to<br />

27kg/m 2<br />

Repower 5M<br />

5MW<br />

126.5m<br />

352to<br />

28kg/m 2<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 7, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Loads on main drive<br />

•Production loads<br />

•Speed / torque for different wind speeds<br />

•<strong>Wind</strong> speed profile (depending on site, simulated by special<br />

software) results in time dependent torque / speed profiles<br />

•Torque / speed is classfied into a load spectra, used for design<br />

•Load assumptions are verified once wind <strong>turbine</strong> is operational<br />

•Braking loads<br />

•Peak loads<br />

•Negative torque<br />

•Exceptional loads<br />

•Start up (cold start with cold lubricant)<br />

•Operation at small speed / torque (idling)<br />

•-40C…+50C, salty environment<br />

Slide 8, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Gearbox principles<br />

•Low noise, low vibration over a wide torque / speed range<br />

•Low mass, low stiffness (of gearbox and of the support)<br />

•Differenet loads: operating, braking, emergencies<br />

•Load peaks, unknown loads<br />

•Environment<br />

6<br />

•Or compound /<br />

differential <strong>gearboxes</strong><br />

•Not used anymore:<br />

average power rating of<br />

new <strong>turbine</strong> today ><br />

1.5MW<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Tw o / three stage helical<br />

Nominal Pow er, [MW]<br />

Planetary stage / tw o<br />

helical stages<br />

Tw o planetary stages /<br />

helical stage<br />

Others<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 9, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


One planetary, two helical stages<br />

•Helical gears for low<br />

noise<br />

•Input on carrier<br />

•Output on sun<br />

•Offset required<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 10, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


One planetary, two helical stages<br />

•100% of power flows through<br />

first planetary stage<br />

•Ring gear is part of casing,<br />

structure borne sound<br />

•Shrink disk to attach to propeller<br />

shaft<br />

•Usually three planets<br />

•Sun free to move, not directly<br />

connected to next gear<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 11, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


One planetary, two helical stages<br />

•CAD model<br />

•KISSsys model of<br />

power flow<br />

•KISSsys tree<br />

•Arrangement of gears,<br />

couplings, shafts<br />

(bearings not included)<br />

•Three kinematic<br />

constraints (input speed,<br />

input torque, ring speed<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 12, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Two planetary, one helical stage<br />

•Driving the ring planet carrier with a<br />

fixed ring gear allows for high ratios<br />

•Winergy 2.5MW<br />

•KISSsys schematic<br />

•KISSsys tree<br />

•KISSsys 3D<br />

•Load spectra<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 13, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Compound planetary <strong>gearboxes</strong><br />

•Internal load splitting<br />

•Ring gear may not be part of casing<br />

•Ring gear may be driven<br />

•Load is shared between planetary stages<br />

•Fixed planet carrier simplifies lubrication<br />

•Axial loads on carrier from ring gear<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 14, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Compound planetary <strong>gearboxes</strong><br />

•Solution proposed by MA<strong>AG</strong>,<br />

eta=97.8%<br />

•Sound at max power = 99dB(A)<br />

•Five / seven planets<br />

•Study by Winergy<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 15, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Compound planetary <strong>gearboxes</strong><br />

•KISSsys allows for<br />

quick modelling of<br />

compound planetary<br />

<strong>gearboxes</strong> of any type<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 16, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Compound planetary <strong>gearboxes</strong><br />

•Only one planet<br />

shown<br />

•Automatic collision<br />

check is performed<br />

•Input: on first ring and second planet carrier (red)<br />

•First sun connected to second ring (green)<br />

•Followed by helical (white) and high speed<br />

planetary stage (pink)<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 17, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Differential gears<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 18, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Differential gears<br />

•1a: Fixed ring gear, carrier<br />

is driving (epicyclic set)<br />

•1b: Fixed planets, ring is<br />

driving the sun through the<br />

planets (stationary set)<br />

•1c: Ring and carrier are<br />

driven by previous stages,<br />

sun speed is difference of<br />

ring and carrier speed<br />

•1d: Helical offset<br />

•Not only power is<br />

summarised but also speeds<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 19, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Differential gears<br />

•Rexroth (Bosch Group)<br />

drive<br />

•Target power range: 5MW<br />

•High power density due to<br />

power split<br />

•Requires same space as<br />

typical 2MW gearbox (!?)<br />

•Three planets per stage,<br />

floating sun<br />

•i=25…60<br />

•Power on first stage: 65%<br />

•m=18.7to (Pnom=3.1MW)<br />

•Mass saving 10%-22%<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 20, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Integrated design: Gearbox,<br />

generator and azimuth drive in<br />

one part<br />

Planet carrier is fix<br />

Climate control<br />

Gondola mass: 300to<br />

Multibrid M5000, Renk<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 21, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Multibrid M5000, Renk<br />

Four planets<br />

Hydrodynamic bearings<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 22, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Aerogear, Renk<br />

•Compound planetary<br />

gearbox, high ratio using few<br />

elements (reduces losses)<br />

•Driven on the ring gear<br />

•Helical stage for offset<br />

•Planetary bearings are on a<br />

fixed location, simplifying<br />

lubrication<br />

•Double row bearings are<br />

lubricated from centre<br />

outwards<br />

•Specific tooth loads are<br />

reduced to acceptable levels<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 23, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Aerogear, Renk<br />

•Total efficiency of gearbox >95%, Lhmin=20 years<br />

•d~2m<br />

•Four planets<br />

•Problem of hydrodynamic bearings: start / braking<br />

•Low noise since ring gear is seperated from casing<br />

•Principle<br />

arrangement<br />

•KISSsys<br />

tree<br />

•KISSsys<br />

schematic<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 24, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Torque limiting <strong>gearboxes</strong><br />

•Early wind <strong>turbine</strong>s were operated at one or two fixed rotor speeds<br />

•Leads to high torques or low efficiency<br />

•Large <strong>turbine</strong>s are operated with variable rotor speed to generate<br />

energy also at low or high wind speeds<br />

•Rotor of a wind <strong>turbine</strong> takes maximum power from wind flow only<br />

at a certain ratio of blade tip speed / wind speed<br />

•Demands with respect to grid compatibility has increased, therefore,<br />

load peaks should be eliminated<br />

•Load peaks are driving the gearbox mass<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 25, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Henderson Gearbox<br />

Torque on ring gear of last planetary stage<br />

is controlled by a hydraulic unit<br />

However, power is lost<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 26, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Henderson Gearbox<br />

Uses a planetary set where the torque on the ring gear is controlled by<br />

means of a hydraulic pump with adjustable torque<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

KISSsys model of<br />

power flow<br />

Slide 27, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Voith WinDrive<br />

Generator<br />

•Basic problem: Speed at<br />

generator should remain<br />

constant but input speed<br />

(wind speed) is fluctuating<br />

with low (e.g. morning<br />

winds) and high frequency<br />

(gusts)<br />

•Rotor drives single planetary stage (or double planetary stage),<br />

combined with single helical stage for axis offset<br />

•Output speed of single helical stage is then controlled by a<br />

variable speed gearbox (CVT gearbox)<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 28, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Voith WinDrive<br />

•Red: epicyclic gear<br />

•Blue: stationary gear<br />

•Yellow: converter fluid<br />

•Green: converter control blades<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

•WinDrive by Voith<br />

(Germany)<br />

•Output speed may be<br />

independent from input<br />

speed over considerable<br />

speed range<br />

•Hydrodynamic torque<br />

converter reduces load<br />

peaks and torsional<br />

vibrations (flexible<br />

coupling)<br />

•Increases grid<br />

compatibility and reduces<br />

load on machine elements<br />

Slide 29, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Voith WinDrive<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 30, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Voith WinDrive<br />

•Only small amount of power flows through hydrodynamic path,<br />

therefore, overall efficiency is maximised<br />

•Maximum of 10% of the power is taken from the main shaft<br />

•Output speed is constant<br />

•Main gear: i=20…30<br />

•Hydrodynamic “gear” with variable ratio<br />

•Speed control through hydrodynamic converter<br />

•Vibration analysis has been performed using multi body<br />

analysis (3D model) including grid simulation<br />

•Gondola mass can be reduced since load peaks are reduced<br />

•Requires control electronics<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 31, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Basic formulas for root and flank stress<br />

•Root stress acc. ISO6336<br />

•Flank stress acc. ISO6336<br />

σ<br />

F<br />

= σ<br />

FO<br />

⋅ K<br />

A<br />

⋅ K<br />

V<br />

⋅ K<br />

Fβ<br />

⋅ K<br />

Ft<br />

σ<br />

FO−B<br />

= ⋅YF<br />

⋅YS<br />

⋅Y β<br />

bm<br />

σ<br />

FO−C<br />

n<br />

Ft<br />

=<br />

bm<br />

n<br />

⋅Y<br />

Fa<br />

⋅Y<br />

Sa<br />

⋅Y<br />

ε<br />

Fα<br />

⋅Y<br />

≤ σ<br />

β<br />

FP<br />

σ<br />

σ<br />

H<br />

HO<br />

= Z<br />

B<br />

= Z<br />

⋅σ<br />

H<br />

HO<br />

⋅ Z<br />

E<br />

⋅<br />

⋅ Z<br />

K<br />

ε<br />

A<br />

⋅ Z<br />

⋅ K<br />

β<br />

⋅<br />

v<br />

⋅ K<br />

Hβ<br />

⋅ K<br />

Hα<br />

Ft<br />

u + 1<br />

⋅<br />

d ⋅b<br />

u<br />

1<br />

≤ σ<br />

HP<br />

Index “0”: Nominal stress level<br />

K factors: Load increasers<br />

These stresses are compared with permissible stress levels<br />

For gear pair. For planetary set, Kγ is considered too<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 32, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


K factors, KA<br />

•Application factor<br />

•Can be used during sizing of gear sets or simplified rating<br />

•Use either nominal torque with KA or equivalent torque<br />

•Equivalent torque is calculated according to DIN3990, Part 6,<br />

Method III or <strong>AG</strong>MA6006<br />

•The result (equivalent torque) is a torque with equivalent<br />

damage as the torque spectrum<br />

•Limitation: other K factors (Kv, KH/Fbeta, KH/Falpha) are<br />

assumed to be constant<br />

•Teq=(∑n*T^p/Neq)^1/p<br />

Input of KA in <strong>KISSsoft</strong><br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 33, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


K factors, KV<br />

•Dynamic factor<br />

•Considers dynamic tooth load based on gear speed and tooth<br />

stiffness<br />

n E 1<br />

30⋅10<br />

=<br />

π ⋅ z<br />

1<br />

3<br />

⋅<br />

cγ<br />

mred<br />

Input of KV in <strong>KISSsoft</strong><br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 34, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


K factors, KHβ, KFβ<br />

•Face load factor for flank and root<br />

•Considers uneven load distribution over face width<br />

•Due to deformation of gear, shafts, ring gears<br />

•Due to misalignement of shafts, gears<br />

•Deformation of tooth flank is corrected by form grinding<br />

•Such that under load, even load distribution is achieved<br />

Input of KHβ, KFβ in <strong>KISSsoft</strong><br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 35, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


K factors, Kγ<br />

•Load sharing factor Kγ considers that the load is not equally shared<br />

by the n planets<br />

•Regulations by DNV, GL or standards like ISO6336, <strong>AG</strong>MA6006<br />

give information on Kγ to be used<br />

•Kγ=1+0.25*√(n-3) according to GL, DNV<br />

•Kγ=1.15…1.23, for four planets, according ISO<br />

•<strong>AG</strong>MA6006?<br />

•<strong>AG</strong>MA6123?<br />

•Low Kγ values require accurate machining / assembly or a flexible<br />

planet carrier pin (see below)<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 36, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


K factors, Kγ<br />

•Torsional wind-up of double sided planet carrier<br />

•Position accuracy of the pins on the carrier<br />

•Misalignement between carrier and ring gear<br />

•Statically overdertimed support of floating sun with number of<br />

planets higher than three<br />

•Bearing clearances (of the planet bearing)<br />

•Floating sun gear is required<br />

Input of Kγ in <strong>KISSsoft</strong><br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 37, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


K factors, Kγ, the FlexPin<br />

•Introduced by Ray Hicks in the sixties<br />

•Widely used e.g. by MA<strong>AG</strong><br />

•Allows simple planet carrier (disk) which<br />

allows for tighter positioning of planets<br />

•Also for misalignment between ring gear<br />

and planetary carrier<br />

•Sun gear need not be floating anymore<br />

F<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 38, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


K factors, Kγ, the FlexPin<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 39, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

K factors, Kγ, the FlexPin<br />

•Pretensioned tapered roller bearings (no<br />

axial play, beneficial at low loads)<br />

•Bearing cages are directly integrated into<br />

flex pin and gear<br />

•Pretension reduces axial play wich reduces<br />

tilting of helical planets, reducing Khβ<br />

•Single sided planet carrier will not tilt<br />

planet carrier shaft (compared to double<br />

sided carrier)<br />

•No wandering of races possible<br />

•Flexibility may reduce load peaks (?)<br />

•However, spur gears are recommended<br />

•Gear wall height should be at least 3*mn<br />

Slide 40, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Damages on <strong>gearboxes</strong><br />

•20-25% of all wind <strong>turbine</strong> damages are on the gearbox<br />

•Toothing and bearings are critical<br />

•Gearbox is located between the two large rotating masses, that is the<br />

propeller and the generator -> dynamic torque peaks (up to 3.5)<br />

•<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong> therefore should use higher safety factors<br />

compared to <strong>gearboxes</strong> used in stationary power generation<br />

•Failure are typcially premature<br />

Probability of failure<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Typical product<br />

<strong>Wind</strong> <strong>turbine</strong> gearbox<br />

Time<br />

Slide 41, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Damages on <strong>gearboxes</strong><br />

•Load assumptions<br />

•Knowledge of load spectra is required, requires dynamic analysis<br />

of whole drivetrain, wind-propeller-gearbox-generator-grid<br />

•Not only torsional vibration, also translational vibration<br />

•Torque load spectra will not be sufficient any more<br />

•Multi body analysis is time intensive / expensive<br />

•Lubrication<br />

•Filtering of oil<br />

•Heating / cooling of oil<br />

•Pre-heating at start of wind <strong>turbine</strong><br />

•Oil injection<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 42, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Damages on <strong>gearboxes</strong><br />

•Markings due to load during stand still of gearbox<br />

•Poor load sharing patterns<br />

•Load on coasting flank (torques can be negativ in braking operations)<br />

•Micro pitting (Graufleckigkeit)<br />

•Pitting<br />

•Flank failure<br />

•Root failure (less common)<br />

•Load distribution on ring gear is not even (relative position of planet<br />

carrrier to ring varies<br />

•Bearings are moving in their seat, resulting in play, resulting in tilting<br />

of planet resulting in poor load bearing over tooth thickness<br />

•Load distribution on three planets may be poor (high Kγ)<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 43, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Damages on <strong>gearboxes</strong>: bearings<br />

•Bearing failure may not be due to fatigue but due to a change in the<br />

environment<br />

•If e.g. a modified lifetime of 300’000h is calculated, the calculation<br />

method is valid for maybe 150’000h only, then it is more important to<br />

control lubrication<br />

•Operating conditions are relevant for bearing life, not the fatigue<br />

•For high loads, shocks, misalignement, oil contamination:<br />

hydrodynamic bearings<br />

•ISO281, AMD 4, extended lifetime analysis, based on load bearing<br />

coefficient C<br />

•<strong>AG</strong>MA6006: uses local contact pressures<br />

•Specialised software by F<strong>AG</strong>/INA, Timken, SKF<br />

•Movement of outer ring leads to axial load on bearings<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 44, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Damages on <strong>gearboxes</strong>: bearings<br />

During idling or<br />

braking, thrust (due to<br />

helical gears and<br />

torque reverse) reverse<br />

may occur resulting in<br />

high axial loads at low<br />

speeds -> static<br />

overload of bearings<br />

Pre-tensioned tapered<br />

bearings with rib ring<br />

proposed by Timken<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 45, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Hydrodynamic vs. roller bearings<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 46, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Number of planets used in planetary gears<br />

Zähnezahlverhältnis<br />

Z 3 /Z 1<br />

12.0<br />

5.2<br />

3.4<br />

2.7<br />

2.2<br />

2.0<br />

Mögliche Anzahl Planeten<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 47, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Number of planets used in planetary gears<br />

380<br />

160<br />

415<br />

517<br />

1540<br />

130<br />

1522<br />

Lower load per planet allows<br />

for thinner planets<br />

Thinner planets will result in<br />

lower Khβ values and lower<br />

overall length of gearbox<br />

However, Kγ increases<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

535<br />

1522<br />

Slide 48, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Number of planets used in planetary gears<br />

PU - 3 PU - 8 PU - 10<br />

z1/z2/z3 [-] 21/37/96 53/23/99 63/22/107<br />

i Stufe [-] 5.57 2.87 2.70<br />

a mm 415 517 535<br />

b mm 380 160 130<br />

m mm 14 13.5 12.5<br />

Ft kN 442 133 103<br />

kMA<strong>AG</strong> % 100 63 63<br />

SigmaB MA<strong>AG</strong> % 100 73 75<br />

Lh10 26‘000 71‘000 148'000<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 49, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Analysis of gears using load spectrum<br />

•Step 1: Definition of load spectrum<br />

•Step 2: Sizing of a suitable gear set (helical stage or<br />

planetary set) based on nominal load or equivalent load<br />

•Step 3: Lifetime calculation of given gear set based on<br />

nominal load and load spectrum<br />

•Step 4: Test<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 50, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 1: Definition of load spectrum<br />

•Knowledge of load spectra is required, requires dynamic analysis of<br />

whole drivetrain, wind-propeller-gearbox-generator-grid<br />

•Not only torsional vibration, also translational vibration<br />

•Torque load spectra will not be sufficient any more<br />

•Multi body analysis is time intensive / expensive<br />

•For load spectra with torque reverse<br />

•Method FA: S-N curve is used where torque reverse is<br />

considered. Requires extensive measurements or calculation of<br />

synthetic S-N curve.<br />

•Method FB: S-N curve is modified<br />

•Method FC: Steps in load spectrum with reversed torque are<br />

multiplied by 1/0.7<br />

•Method FD: Complete load spectrum is multiplied by 1/0.7<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 51, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 2: Sizing of gear set<br />

Sizing using <strong>KISSsoft</strong> sizing functions<br />

•Input, load: KA, speed, nominal torque (equivalent<br />

torque=KA*nominal torque)<br />

•Input, gear data: ratio, module/helix angle/pressure<br />

angle/… range<br />

•Output: Possible solutions for gear pair or planetary<br />

sets<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 52, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 2: Sizing of gear set<br />

•Rough sizing and<br />

fine sizing<br />

•For helical gear pair<br />

and planetary set<br />

•Variation of<br />

reference profile,<br />

pressure angle, helix<br />

angle, module, …<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 53, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 2: Sizing of gear set<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 54, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 3: Rating of gear set<br />

•According DIN3990, ISO3660, <strong>AG</strong>MA2001, (VDI2737), GL<br />

and DNV regulations<br />

•For ring gear: YS, YF: do not use 30deg rule (see planned<br />

imrovements in ISO6336 or VDI2737)<br />

•K factors (Kv, KH/Fbeta, KH/Falpha) are calculated for each<br />

steps individually<br />

•Calculate lifetime with required safety factors<br />

•Calculate safety factors for required lifetime<br />

•Calculate maximum permissible nominal torque based on<br />

required lifetime and safety factors<br />

•Use different modifications of S-N curve<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 55, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 3: Rating of gear set<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 56, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 3: Rating of gear set<br />

•<strong>AG</strong>MA 6006 in <strong>KISSsoft</strong>/KISSsys:<br />

•Load spectra analysis: ok (<strong>KISSsoft</strong>)<br />

•Different configurations of <strong>gearboxes</strong>: ok (KISSsys)<br />

•5.2.2: Sizing of profile shift: ok (<strong>KISSsoft</strong>)<br />

•<strong>AG</strong>MA 6001: will be included in <strong>KISSsoft</strong> (shaft analysis)<br />

•Shaft rating acc. DIN 743: ok (<strong>KISSsoft</strong>)<br />

•Gear rating acc. <strong>AG</strong>MA2001, ISO6336: ok (<strong>KISSsoft</strong>)<br />

•Scuffing acc. <strong>AG</strong>MA925: ok (<strong>KISSsoft</strong>)<br />

•Bearing acc. ISO281 AMD 4: ok (<strong>KISSsoft</strong>)<br />

•Contact stress in bearings: to be included in <strong>KISSsoft</strong><br />

•Equivalent torque calculation : to be included in <strong>KISSsoft</strong><br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 57, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Step 4: Testing of gears<br />

Back to back<br />

testing<br />

Bosch Rexroth<br />

Differential<br />

gearbox, 3.1MW<br />

Overload test:<br />

2xnominal max<br />

load for 20<br />

Minutes<br />

5MW test stand<br />

Slide 58, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


Step 4: Testing of gears<br />

Back to back<br />

testing<br />

Winergy currently<br />

uses a 7.5MW test<br />

rig<br />

12MW is planned<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 59, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch


References<br />

•U. Giger, G.P. Fox, Leistungsverzweigte Planetengetriebe in <strong>Wind</strong>energieanlagen mit flexibler Planetenlagerung, ATK03<br />

•F. D. Krull, T. Siegenbruck, <strong>Wind</strong>energieanlagen fordern hohe Leistungsdichten, Antriebstechnik 9/2004<br />

•M. Bodmer, F. Sxhwingshandl, <strong>Wind</strong>energie optimal umgewandelt, Antriebstechnik 9/2004<br />

•M. Bodmer, Planetenkoppelgetriebe mit Leistungsverzweigung, Erneuerbare Energien 2/2004<br />

•M. Stöckl, Initialschäden an Getrieben sind vermeidbar, Erneuerbare Energien 5/2004<br />

•N. Fecht, Die Antwort kennt nur der <strong>Wind</strong>, antriebspraxis, 01/2005<br />

•<strong>Wind</strong>flow Technology, Towards a Sustainable Future, company brochure<br />

•Voith, <strong>Wind</strong>Drive, product brochure<br />

•W. Kretschmer, Wohin der <strong>Wind</strong> weht, changeX Partnerforum 11/2003<br />

•REpower, REpower MD70, product brochure<br />

•MAN Group News Service, Renk Aerogear – new solutions for the wind power industry<br />

•Winergy, Die Winergy <strong>AG</strong> eröffnete am 8. Juni 2004 erneut Serienprüfstand mit Rekordleistung<br />

•E. Bauer, <strong>Wind</strong>energieanlagen Schadenbetrachtungen, AZ Expertentage <strong>Wind</strong>energieanlagen<br />

•R. Poore, T. Lettenmaier, Alternative Design Study Report: <strong>Wind</strong>PACT Advanced <strong>Wind</strong> Turbine Drive Train Designs Study<br />

•R. Dinter, Wie geht es weiter bei der Getriebeentwicklung?, Erneuerbare Energien 8/2003<br />

•Renk, Gear units for wind power plants, technical information<br />

•G. Berger, Differentialgetriebe – eine neue Getriebegeneration für Multi-Megawatt-<strong>Wind</strong><strong>turbine</strong>n, Fachbeitrag Bosch Rexroth<br />

•N. Erdmann, Die Offshore-<strong>Wind</strong>energieanlage Multibrid M5000, Erneuerbare Energien 10/2004<br />

•E. de Vries, Global wind technology, overview of developments 2003-2004, www.earthscan.co.uk<br />

•B. Schlecht, T. Schulze, T. Hähnel, Modelle für die Eigenfrequenzanalyse, Erneuerbare Energien 5/2005<br />

•J. Hermsmeier, C. Eusterbarkey, P. Quell, REpower 5M – Erste Betriebserfahrungen mit der grössten <strong>Wind</strong>energieanlage der Welt, ATK05<br />

•M. Tilscher, A. Basteck, Drehzahlgeregelte Getriebe für den Einsatz in modernen <strong>Wind</strong>energieanlagen der Multimegawatt-Klasse, ATK05<br />

•E. Bauer, F. Wikidal, T. Gellermann, Überblick über Schäden am mechanischen Strang von <strong>Wind</strong>energieanlagen, ATK05<br />

•G.P. Fox, E. Jallat, Use of the integrated Flexpin bearing for improving the performance of eplicyclical gear systems, Timken Technical Paper<br />

•R. Grzybowski, B. Niederstucke, Betriebsfestigkeitsberechnung von Getrieben in <strong>Wind</strong>energieanlagen mit Verweildauerkollektiven, Allianz Report 2004<br />

•J.B. Franke, R. Grzybowski, Lifetime prediction of gear teeth regarding micropitting in consideration of WEC operation states<br />

•DIN3990, ISO6336, <strong>AG</strong>MA6006, <strong>AG</strong>MA6123, VDI2737, GL Richtlinie, DNV Richtlinie<br />

•Vestas, Renk, Hansen, Winergy, Eickhoff, Siemens, Bosch Rexroth, REpower, Nordex, GE : company homepages<br />

<strong>Wind</strong> <strong>turbine</strong> <strong>gearboxes</strong><br />

Slide 60, August 05, H. Dinner, hanspeter.dinner@<strong>KISSsoft</strong>.ch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!