Bestandesparameter aus der Invertierung von Fernerkundungsdaten

ikb.weihenstephan.de

Bestandesparameter aus der Invertierung von Fernerkundungsdaten

IKB Abschlußkolloquium, Weihenstephan, 11/12 Oktober 2005

Bestandesparameter aus der

Invertierung von

Fernerkundungsdaten

(IKB 1, TP 5)

Thomas Schneider, Joannis Manakos

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


contents:

• motivation

• Research goals

• Research concepts

• Investigation approach

• Measurement system

• Results

• Conclusions

• Outlook

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


5 Signature types are known in RS:

• spectral:

pigment- and water status, cell structure

• angular:

plant architecture, canopy structure

•textural:

pattern of similar frequency inside a structure

• polarisation

not sufficient explored, to low experience

•temporal

change of signatures between two

or more observations

(Gerstl, 1990)

Information content

with respect to the status

of objects

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


“Multispectral” versus “anisotropy” representation

“Multispectral” versus “anisotropy” representation

FCC Dürnast

“Multispektral”

Freising

RGB =

ms 4

(st6+st7)/2

ms 1

RGB =

st 6 / st 7

st 6

st 7

MOMS-2P data set from the

Kranzberger Forst area near

Freising

r

m

b w

r = rape, m = maize, b = barley, w = wheat

“Anisotropie”

Spectral and angular signatures are related to differing physical properties. The

combination of both give us the most information about the surfaces, leading to a

significant improvement in identification and status assessment

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Anisotropy effects in

all days life and in RS data

Soccer field

Aligned grass blades

due to mowing direction

„hot spot“

Foto from helicopter with „hot spot“ In RS data(MOMS-02 Tana lake)

In RS data (Daedalus ATM data set Kranzberger Forst)

„hot spot“ line

Mirror like reflection

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Derivation of

Geo- and

biophysical

parameters

from RS data

-

ESA´s strategic

goal for the next

decade (stated

1998)

AO /1-3381

Remote sensing

data

e.g.: σ o , ρ

Inversion algorithms

Ancillary

information

e.g.: sun illumination, rain,

mean air temperature

Vegetation growth

models

e.g. : number of

leaves, LAI

Direct models

e.g.: σ o , ρ

e.g.: biomass, crop yield

under investigation

Geo- and biophysical parameters

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Trends of optical air- and space-borne systems:

‣ resolution improvements (spatial, spectral, radiometric, temporal)

‣ programable systems with cross track pointing capabilities (Spot,

Ikonos, Quick Bird, etc.)

‣ “on-track” multiangle data registration (Spot 5, IRS 6, ALOS,

HRSC, WAAC, DPA, LV, AirMISR, DMC, CHRIS/Proba, etc.

‣ frame cameras (DMC), multispectral scanner, imaging spectrometer

with unfavourable height to base line ratio (air borne: AVIRIS,

MIVIS, Rosis, HyMap, ARES, etc.)

Additional:

‣ on the ground “real time” systems (HydroAgri, etc.)

‣ etc.

Problems to be solved or bypassed:

illumination to observation geometries !

changing illumination conditions

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


General investigation concept:

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Specific goals :

The creation of a normalization data base for the

adaptation of physical models and their inversion for the

surface type under the specific site conditions of the

research area.

measurements appropriate for BRDF approximation

measurements covering the whole vegetation period

measurements documenting growth differences on subplots with

differing field water storage capacities

Surface types under investigation:

forests, crops, grassland, reed

Our requirements on such a device ?

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Basic requirements on the measurement device:

10°

“high, mobile and fast enough to

achieve an acceptable amount of

representative measurements for

more than one surface during

comparable illumination conditions”

10 m

representative plot section

high: 10m above target

mobile: movable within the plot

fast: one series within 20 min

max 10° aperture angle

more than one surface type at

comparable illumination conditions

device concepts in use ?

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


[A]

Step 1: check of existing solutions:

1. Goniometer principle (EGO, FIGOS)

WAAC system

Spektroradiometer [C]

Parabola

2m Höhe

-75°

+75°

[B]

Steuerung

Zielobjekt -

Weizenkiste

0°- 360°

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Evaluation of concepts:

‣ FIGOS is the perfect system for physical measurements but :

restricted mobility

distance instrument / surface too short for our application

‣ Parabola very fast, measurement height sufficent but :

only some few spectral bands

‣ WAAC very fast, narrow spectral bands, measurement height

sufficient but:

restricted on VIS/NIR

Conclusion ?

no „ready made“ solution fulfilling our requirements!

Proceed to step 2: device development

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


1th solution:

Stable instrument position, changing view direction

(PARABOLA; WAAC concept), high spectral resolution

Assumptions:

(i) Helmholtz reciprocity theorem

is supposed to be valid

(ii) the backscatter characteristic

right and left of the principal

plane is symmetrical,

(iii) the plot as a whole is the

object of interest:

Consequences

• arrangement is delivering measurements

which are acceptable from the physical point

of view

• measurements can be restricted on one

part of the hemisphere (time saving

assumption)

• contradictory to the goniometer principle,

not the observation position is changed but

the measured section of the plot (simplify

the measurement arrangement)

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


The prototype …..

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Mobile Unit for Field Spectroradiometric

Measurements (MUFSPEM)

Developed in the frame of IKB Dürnast project

Funded by DFG

GER 3700

Moving head

- 80°- +80°

Zenith

0° -180° Azimuth

reference panel (Spectralon)

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


MUFSPEM „half“ hemisphere measurement scheme:

Reference measurements

„spectralon plate“ at the

beginning and at the end

of the series.

Difference in time :

15-20 min

Interpolation according to

registration time of the

measurement for

reflectance calculation

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Change of position in accordance with the principal plane

Hemispherical measurement set

Afternoon

Noon

N

Row alignment

Morning

High field capacity subplot

Low field capacity subplot

Aim: range of backscatter values within one plot over the day

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


MUFSPEM success stories :

• The Mobile Unit for Field Spectroscopy Measurements (MUFSPEM), has

been used over the period 1999 – 2001

• The concept for the measurement arrangement to be high,

mobile and fast was reached

• A data base for BRDF approximation throughout the vegetation period of

winter wheat, winter barley and maize (74, 51 & 67 available BRDFhemispheres

respectively) has been created. Rape (about 15) not

evaluated until now.

Some examples

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


a.

Anisotropyof of backscatteras

as

shownby by signature curvesof of a

maize canopy measuredwith

differingview angles

%

Reflectance

a. Maize reflectance at differing

view zenith angles in the

principal plane

b.

Zenith angle

7%

(µm) wavelength

b. 2D hemispherical plots

at 551 and 671nm

551nm


671nm


Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Wavelength dependency:

Winter wheat Dürnast

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Maize Thalhausen: reflection distribution (upper two lines) and

refl. differences of high and low capacity sites across the VP

550nm

Sun zenith 45° morning 35° noon 55°afternoon

Sonnenzenit : 45 °

Standort niedriger nFk

Sonnenzenit : 35 °

Standort niedriger nFk

Reflexion %

18

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

40

20

0

20

30 36 42 48 53 59

40

Entwicklungsstadium EC

60

Sonnenzenit : 45 °

Vergleich der

Standorte

Reflexion %

18

Unterschied %

56

41

26

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station

16

13

11

8

6

3

„high“ field capacity site „low“

„high“ field capacity site „low“

16

13

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

11

20

-4

0

-19

20

30 37 44 51 57 64

40

-34

Entwicklungsstadium EC

60

60

40

11

20

8

0

6

20

30 37 44 51 57 64

40

3

Entwicklungsstadium EC

60


view

zenith

Reflexion %

18

Sonnenzenit : 35 °

Standort höherer nFk

Reflexion %

18

16

13

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

11

20

8

0

6

20

30 36 42 48 53 59

40

3

Entwicklungsstadium EC

60

Unterschied %

56

41

26

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

20

0

20

30 37 44 51 57 64

40

Entwicklungsstadium EC

60

60°-

Sonnenzenit : 45 °

Standort höherer nFk

16

13

11

8

6

3

Sonnenzenit : 35 °

Vergleich der

Standorte

60

40

11

20

-4

0

-19

20

30 36 42 48 53 59

40

-34

Entwicklungsstadium EC

60

60° +

30

65

EC stage

Sonnenzenit : 55 °

Standort niedriger nFk

Reflexion %

18

15

13

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

40

10

20

7

0

5

20

30 36 42 48 53 59

40

2

Entwicklungsstadium EC

60

Sonnenzenit : 55 °

Standort höherer nFk

Reflexion %

18

15

13

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

40

10

20

7

0

5

20

30 36 42 48 53 59

40

2

Entwicklungsstadium EC

60

Sonnenzenit : 55 °

Vergleich der

Standorte

Unterschied %

56

41

26

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

40

11

20

-4

0

-19

20

30 36 42 48 53 59

40

-34

Entwicklungsstadium EC

60


Maize Thalhausen: wavelength dependency of reflection

differences between high and low capacity sites across the VP

Sun zenith 45° morning 35° noon 55°afternoon

Sonnenzenit : 45 °

Vergleich der

Standorte

Unterschied %

56

41

Sonnenzenit : 35 °

Vergleich der

Standorte

Unterschied %

56

41

Sonnenzenit : 55 °

Vergleich der

Standorte

Unterschied %

56

41

26

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

26

26

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

40

11

11

11

20

20

20

-4

0

0

-4

-4

0

-19

20

20

-19

-19

20

40

-34

Entwicklungsstadium EC

60

30 36 42 48 53 59

30 36 42 48 53 59

40

40

Entwicklungsstadium EC

60

-34

-34

30 37 44 51 57 64

Entwicklungsstadium EC

60

Sonnenzenit : 45 °

Vergleich der

Standorte

Unterschied %

103

79

Sonnenzenit : 35 °

Vergleich der

Standorte

Unterschied %

103

79

Sonnenzenit : 55 °

Vergleich der

Standorte

Unterschied %

103

79

55

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

55

55

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

31

40

31

20

20

31

20

6

0

0

6

6

0

-18

20

20

-18

20

30 36 42 48 53 59

-18

40

40

-42

Entwicklungsstadium EC

60

60

-42

30 36 42 48 53 59

40

Entwicklungsstadium EC

Entwicklungsstadium EC

-42

30 37 44 51 57 64

60

Sonnenzenit : 45 °

Vergleich der

Standorte

Unterschied %

165

128

Sonnenzenit : 35 °

Vergleich der

Standorte

Unterschied %

165

128

91

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

55

20

18

0

-19

20

30 36 42 48 53 59

40

-56

Sonnenzenit : 55 °

Vergleich der

Standorte

Unterschied %

165

128

91

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

Entwicklungsstadium EC

60

60

91

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

55

20

20

55

18

0

0

18

-19

20

20

30 36 42 48 53 59

-19

40

40

-56

Entwicklungsstadium EC

60

60

-56

-60°


view

zenith

30 37 44 51 57 64

Entwicklungsstadium EC

+60°

30

65

EC stage

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station

2185nm 805nm 550nm


(critical) Evaluation of results:

High and low field capacity subplots show different angular

backscatter behaviour !

Backscatter difference pattern differ with:

• view zenith angle expected

• across the vegetation period expected

• sun zenith angle not expected with such a magnitude

but obviousely of systematic nature (wheet, barley, maize)

Arising question:

Do physical models consider these diurnal differences ??

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Next step of data integration:

• Adaptation of ProSail

and inversion for

parameter retrieval

Example: maize, EC

stage 67

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Maize, EC stage 67, nadir look

high field capacity site

morning noon afternoon

low field capacity site

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Parameter retrieved by ProSail inversion, maize EC 67

RMSE

Cab (µg /cm ²)

Root mean square error (RMSE) Leaf angle inclination (LAD)

0,14

0,12

0,1

0,08

0,06

0,04

0,02

120

100

80

60

40

20

0

0

low UWSC site

high UWSC site

65° M 55° M 45° M 35° N 35° N 45° A 55° A 65° A

morning (M), noon (N), afternoon (A)

Chlorophyll a+b content (Cab) Canopy dry matter (Cm) Canopy water content (Cw)

low UWSC site

high UWSC site

65° M 55° M 45° M 35° N 35° N 45° A 55° A 65° A

morning (M), noon (N), afternoon (A)

Cm (g /c m ³)

leaf area norm al zenith ang le

80

75

70

65

60

55

50

45

40

35

30

0,035

0,03

0,025

0,02

0,015

0,01

0,005

0

low UW SC site

high UWSC site

65° M 55° M 45° M 35° N 35° N 45° A 55° A 65° A

low UWSC site

high UWSC site

65° M 55° M 45° M 35° N 35° N 45° A 55° A 65° A

Cw (g /c m ³)

LAI

7

6

5

4

3

2

1

0

0,05

0,045

0,04

0,035

0,03

0,025

0,02

0,015

0,01

0,005

0

Leaf area index (LAI)

65° M 55° M 45° M 35° N 35° N 45° A 55° A 65° A

py ( )

low UWSC site

high UWSC site

morning (M), noon (N), afternoon (A) morning (M), noon (N), afternoon (A)

sun zenith angle

low UWSC site

high UWSC site

65° M 55° M 45° M 35° N 35° N 45° A 55° A 65° A

morning (M), noon (N), afternoon (A) morning (M), noon (N), afternoon (A)

sun zenith angle

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Which may be the reasons ???

measured area is not really homogenious !!

– management lanes,

– aligned ears, leaves due to wind, etc.

– field capacity diferences

– growth differences

– Etc.

Changing atmospheric conditions during one series

- (affecting the measurement esp. via the white ref. meas.)

ProSail not adapted sufficiently ???

too many error sources to check

need to reduce variables for backtracing

step 1: Improved measurement system !

step 2: Adaptation of reflection models !

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Irregular distortions of a canopy target

Source: Joannis Manakos, 2003

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Step 1: Scheme of a new mobile „goniometer“

Alternatively: a second head fixed at

the upper bar

Large sun zenith angle

Ausschnitt

5m 5m

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Object lenses (fiber cable 10° aperture

+ thermal detector)

5m

reference lenses

(fiber cable 10° aperture)

“Spectralon”-reference plate

(backside)

FieldSpek FR

Step 1:

Position of

stereo-photogrammetric

unit (2Canon G2, 3.2M)

5 m

30°

Measurement

area for 1,5 m

canopy height

2nd assembly

test in Iffeldorf,

01.10.2003

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


60°

45°

Movements of

the goniometer-arm for

zenith-angles

from nadir to 60°

The device platform is

oriented 45° toward the

main axis of the car

30°

15°

nadir view

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


2nd goniometer assembly test, 1.10.03, Iffeldorf

Trailer with goniometer device ready for transport,

Special construction, Landtechnik Müller company,

Engeneered by Ludwig Hunsrucker

Electronic device for rotation control: ANDRICH Industrieelektronik

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Step 1: Technical data

„goniometer“ device:

• height above ground: 10-12,5m, above canopy: 10m

• azimuth/zenith positioning accurracy +/- 3° resp. +/- 2° (worst case)

• azimuth angle range: 270°

• zenith angle range: 0° to 70°

• rotating assembly on the roof rack: 360°

• mounting time 2 persons: appr. 1h

Photogrammetric stereo device:

• 2 Canon G1 digital cameras, remote control

• base distance: 1m

• height above canopy: 5m

• software by Wilfried Linder based on BLUH and LISA

Detectors:

• Field Spec FR (350 – 2500nm) ASD company

• bifurcated fiber cable for alternate object/ reference measurement

• Heitronics KT 15D 8-14µm

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Step 1: Co-operation BOKU

Measurements at the

Augärten dry stress

and control testplots

in Vienna, Austria,

31.08.05

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Step 1: Data take sequence adaptation

15

16

14

17

21

10

18

20

11

12

13

19

9

8

2

1

24

23

22

25

7

5

4

6

3

• 25 object measurements for one series

• Start with nadir

• ref. meas. after each object meas.

• 1 hot spot, 4 around the hot spot in 5° distance

• time for one series: appr. 20 min.

•„hot spot“ position: measurement geometry = sun incidence

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Step 1: Maize, Raasdorf (BOKU) „hot spot“ surrounding

"Hot Spot" position, VIS

0.10

"Hot Spot" position

reflectance (Spectralon)

0.00

Mais1_0-SZW-5.mn

Mais1_0-SZW.mn

Mais1_0-SZW+5.mn

Mais1_-5-SZW .mn

Mais1_+5-SZW.mn

350 550 750

Wavelength (nm)

reflectance (S pectralon)

0.50

0.40

0.30

0.20

0.10

Mais1_0-SZW-5.mn

Mais1_0-SZW.mn

Mais1_0-SZW+5.mn

Mais1_-5-SZW.mn

Mais1_+5-SZW.mn

0.00

350 550 750 950 1150 1350 1550 1750 1950 2150 2350

Wavelength (nm)

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Present status meaurement system:

‣ Solved problems (subset):

Reference and object measurements within seconds same illumination

conditions

Same surface section measured for all view angles (goniometer principle)

measured backscatter signal is durectly comparable

‣ Weak points (major):

- Fiber cable transmission decrease from 1700 to 2300 nm from around 60

to 25% and is blocked above 2400 nm

- Azimuth angle may be affected by wind induced displacements of the arm

- Etc.

‣ Open points (subset):

o Integration of a thermal device (Heitronics KT 15D, 8 – 14 µm)

o Shutter solution for alternate object and reference measurements still not

optimal

o Software solution for the photogrammetric evaluation of stereo pairs not

finished

o Etc.

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Growth model / reflectance model link

Planned on behalf of accompanying measurements in the

field and laboratory.

• Problem :

variability of ground reference data larger than of

reflectance data !

(ground truth ?? Better to speak about accompanying measurements !)

• How to optimise the accompanying measurements ?

Development of a simple digital stereophotogrammetric

registration unit and the respective

software tool for stereo data analysis

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Parameter extraction:

Parameter to be measured:

• fraction of vegetation / non

vegetation (soil)

•fraction of leave, stalk,

bloom, ears, etc.

• shaded, sunlit, specular

reflection

•LAI

•LAD

•etc.

Software solution:

Wilfried Linder, IPI

Hannover on base of

BLUH and LISA

in progress

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Other imponderabilities:

• Diurnal cycle:

– Changing conditions across the day (cloud, aerosol, wind)

– row direction related illumination effects

– etc.

• Vegetation period:

– Soil wetness

– Atmospheric conditions

– Deseases

– Fertiliser effects (agriculture)

– Canopy structure changes (e.g. down trampled reed, mowed

grasslands, wind aligned ears, etc.)

– etc.

• „Human factor“ in data evaluation !!

A lot of additional disturbing sources to be accounted !!

Research is just at the beginning!!!

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Outlook

• Wouter Dorigo, a PhD working in a co-operation project

with the DLR imaging spectroscopy WG and the

Limnological Station of the TUM is developing the Pro-

Sail model for grasslands

• The goniometer system was tested during summer 2005

in the frame of a co-operation with the BOKU in Vienna

during three measurement campaigns in Mai, June and

August. During the 2006 and 2007 vegetatioin period

reed related investigations at the Upper Bavarian Lakes

are planned.

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


acknowledgements

• We wish to thanks the Deutsche

Forschungsgemeinschaft (DFG) for funding the

research in the frame of the IKB Dürnast project

and the Bavarian State governament for funding

the new constructed goniometer device in the

frame of the High Tech Offensive Bayern

program (HTO)

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Thanks for attention!!

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Differences high and low capacity sites over the VP

805nm

Sun zenith 45° morning 35° noon 55°afternoon

Sonnenzenit : 45 °

Standort niedriger nFk

Reflexion %

95

82

Sonnenzenit : 35 °

Standort niedriger nFk

Reflexion %

95

82

70

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

40

57

20

44

0

32

20

40

19

Reflexion %

95

60

60

70

Sonnenzenit : 55 °

Standort niedriger nFk

82

70

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

57

57

20

20

0

44

44

0

20

32

20

32

30 36 42 48 53 59

30 36 42 48 53 59

40

40

Entwicklungsstadium EC

Entwicklungsstadium EC

19

19

30 37 44 51 57 64

60

Entwicklungsstadium EC

60

Sonnenzenit : 45 °

Standort höherer nFk

Reflexion %

95

82

Sonnenzenit : 35 °

Standort höherer nFk

Reflexion %

95

82

70

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

57

20

44

0

32

20

30 36 42 48 53 59

40

19

Reflexion %

95

Entwicklungsstadium EC

60

60

70

Sonnenzenit : 55 °

Standort höherer nFk

82

70

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

57

57

20

20

0

44

44

0

32

20

32

20

30 36 42 48 53 59

40

40

19

Entwicklungsstadium EC

19

30 37 44 51 57 64

60

Entwicklungsstadium EC

60

Sonnenzenit : 45 °

Vergleich der

Standorte

Unterschied %

103

79

Sonnenzenit : 35 °

Vergleich der

Standorte

Unterschied %

103

79

Sonnenzenit : 55 °

Vergleich der

Standorte

Unterschied %

103

79

55

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

55

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

40

60°-

55

31

31

20

20

31

20

6

0

0

6

6

0

-18

20

20

-18

30 36 42 48 53 59

-18

20

40

40

-42

Entwicklungsstadium EC

60

60

-42

30 36 42 48 53 59

40

Entwicklungsstadium EC

Entwicklungsstadium EC

-42

30 37 44 51 57 64

60


view

zenith

60° +

30

65

EC stage

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Differences high and low capacity sites over the VP

2185nm

Sun zenith 45° morning 35° noon 55°afternoon

Sonnenzenit : 45 °

Standort niedriger nFk

Reflexion %

21

18

Sonnenzenit : 55 °

Standort niedriger nFk

Reflexion %

21

18

15

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

15

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

12

20

12

20

9

0

8

0

6

20

30 36 42 48 53 59

5

20

40

40

3

Entwicklungsstadium EC

60

2

Sonnenzenit : 35 °

Standort niedriger nFk

Reflexion %

21

18

15

60

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

40

12

20

8

0

5

20

40

2

30 37 44 51 57 64

30 36 42 48 53 59

Entwicklungsstadium EC

Entwicklungsstadium EC

60

Sonnenzenit : 45 °

Standort höherer nFk

Reflexion %

21

18

Sonnenzenit : 35 °

Standort höherer nFk

Reflexion %

21

18

15

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

12

20

8

0

5

20

30 36 42 48 53 59

40

2

Sonnenzenit : 55 °

Standort höherer nFk

Reflexion %

21

18

15

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

Entwicklungsstadium EC

60

60

15

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

40

12

12

20

20

8

0

20

0

8

5

20

5

30 36 42 48 53 59

40

40

2

30 37 44 51 57 64

Entwicklungsstadium EC

2

60

60

Entwicklungsstadium EC

Unterschied %

165

Sonnenzenit : 35 °

Vergleich der

Standorte

Unterschied %

165

128

91

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

40

55

20

18

0

-19

20

30 36 42 48 53 59

40

-56

Sonnenzenit : 55 °

Vergleich der

Standorte

Unterschied

16

12

91

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

Entwicklungsstadium EC

60

60

Zenitwinkel ° / Richtung

< Vorwärts - Rückwärts >

60

60°-

Sonnenzenit : 45 °

Vergleich der

Standorte

128

91

40

40

55

20

55

20

18

0

0

18

-19

20

20

30 36 42 48 53 59

-19

40

40

-56

Entwicklungsstadium EC

60

60

-56

30 37 44 51 57 64


Entwicklungsstadium EC

view

65

60° +

zenith 30 EC stage

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station


Control of

fertiliser application

by growth model

prediction derived

application map

and fine tuning by

„real time“ sensors

Growth model

+

GIS

BRDF data base

Higher vitality

Lower

vitality

Canopy status at the

present EC stage

Landnutzungsplanung und Naturschutz - TUM - Limnologische Station

More magazines by this user
Similar magazines