03.04.2014 Views

Greenhouse Effect and Atmospheric Chemistry

Greenhouse Effect and Atmospheric Chemistry

Greenhouse Effect and Atmospheric Chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In nature there are neither rewards nor punishments –there are consequences<br />

Robert tG G. Ingersoll<br />

The <strong>Greenhouse</strong> <strong>Effect</strong><br />

‐ the atmospheric energy balance ‐


Organic Carbon Cycle<br />

The pre‐industrial (1800) amount of CO 2 in the<br />

atmosphere was 600Gt, balanced by equilibrium<br />

between absorption by photosynthesis <strong>and</strong><br />

sequestration <strong>and</strong> emission through respiration<br />

<strong>and</strong> release.<br />

d(<br />

CO2)<br />

dt<br />

d(<br />

CO2)<br />

dt<br />

d(<br />

CO2)<br />

dt<br />

abs<br />

abs<br />

ems<br />

d(<br />

CO2)<br />

<br />

dt<br />

Gt<br />

74<br />

y<br />

atm<br />

atm<br />

ems<br />

0<br />

ocean<br />

Gt<br />

74.6<br />

y<br />

ocean<br />

0.6<br />

Gt<br />

y<br />

Gt<br />

50<br />

y<br />

soil<br />

soil<br />

100<br />

Gt<br />

y<br />

Gt<br />

50<br />

y<br />

photosynth.<br />

respiration<br />

Each process has its own time scale depending<br />

on the conversion rate which in turn depend on<br />

environmental conditions such as light, water,<br />

temperature. The conversion rate is proportional<br />

to the product of CO 2 abundance in the reservoir,<br />

the conversion cross section <strong>and</strong> the<br />

leaf area A.<br />

R<br />

conv<br />

N ,<br />

CO<br />

2<br />

<br />

L,<br />

H T A


Photosynthesis<br />

<br />

<br />

chlorophyll<br />

<br />

sunlight<br />

<br />

<br />

C<br />

6<br />

H<br />

O 6<br />

O<br />

6<br />

CO2<br />

<br />

6<br />

H<br />

2<br />

O<br />

12 6<br />

6<br />

2<br />

<strong>and</strong> respiration<br />

C 6 H12 O6<br />

<br />

6<br />

O2<br />

<br />

6<br />

CO2<br />

<br />

6<br />

H<br />

2<br />

O<br />

Chemical reaction takes place<br />

on a pico‐second timescale<br />

which translates into a high<br />

reaction probability or crosssection.<br />

The absorption yield<br />

depends on the cross section<br />

integrated over the spectrum of<br />

the incoming light <strong>and</strong> the<br />

luminosity the actual light<br />

absorption <strong>and</strong> conversion<br />

cross section depends on the<br />

wavelength, the leaf structure,<br />

t<br />

the pigment composition <strong>and</strong><br />

the cell conversion mechanism.<br />

The timescale for CO 2 absorption is fast, making<br />

photosynthesis an extremely efficient absorption<br />

process if sufficient leaf surface area is available!


Change of balance<br />

Increase of CO 2 emission <strong>and</strong> increase of deforestation since the 19 th century!


Drastic increase of the anthropogenic<br />

CO 2 production due to fossil fuel<br />

consumption by growing<br />

industrialization<br />

Impact on CO 2 equilibrium conditions, which<br />

maintain the present status quo in climate !


Observational evidence, CO 2<br />

YEAR<br />

The dashed red line with diamond symbols represents the monthly mean values,<br />

centeredonthemiddleofeachmonth.Theblack line with the square symbols<br />

represents the same, after correction for the average seasonal cycle. The curve shows<br />

a continuous increase of the CO 2 level in Earth’s atmosphere .


CO 2 Global Distribution<br />

2


Strong seasonal variations<br />

due to climate variances<br />

between the northern <strong>and</strong><br />

the southern hemisphere<br />

<strong>and</strong> feed back correlations<br />

over the year.<br />

CO 2 observations from Mauna<br />

Loa reflect medium location in<br />

northern hemisphere, but the<br />

observations reflect consistently<br />

the seasonal variations in CO 2 emission


Other <strong>Greenhouse</strong> Gases<br />

N 2 O nitrous oxide level was stable<br />

for the last 3000 years according to<br />

ice core analysis. The present<br />

annual increase in emission i by 0.2%<br />

to 0.3% is due to widespread <strong>and</strong><br />

rapidly increasing applications of<br />

nitrogen based fertilizers, tropical<br />

deforestation, <strong>and</strong> conversion of<br />

forest to pasture <strong>and</strong> farml<strong>and</strong>.<br />

CH 4 methane increases at an annual rate of 0.8% to<br />

1%. Thistrackswell with ihpopulation growth. Naturally<br />

occurring from wetl<strong>and</strong>s such as bog <strong>and</strong> swamp<br />

emissions the increase is associated with rice<br />

cultivation, l<strong>and</strong>fills, biomass burning, mining, natural<br />

gas venting, <strong>and</strong> pipeline leaks. Release of CH 4 from<br />

Alaskan <strong>and</strong> Siberian permafrost regions could result<br />

in an sudden increase by 500Gt within next century.<br />

CFC chlorofluorocarbons have been<br />

developed in the 1920ies for<br />

cleaning solvents, refrigerants, <strong>and</strong><br />

propellants spray cans. Industrial<br />

mass production after 1950 caused<br />

an unprecedented increase. Inert to<br />

chemical processes expected to<br />

occur in the troposphere, p CFCs<br />

accumulate in the stratosphere,<br />

where photodissociation breaks up<br />

molecules, releasing halogen gases.


Anthropogenic sources of CO 2


Alternative World Views<br />

http://www.worldmapper.org/display.php?selected=295<br />

Territory size shows the proportion of carbon dioxide emissions in 1980, 2000, 2006.<br />

CO 2 emission 1980 CO 2 emission 2000<br />

>17t/p<br />

>2t/p<br />

~8t/p<br />

~6t/p<br />

>2t/p<br />

~3t/p<br />

CO CO emission 2006 per capita<br />

2 emission 2006 2<br />

"... the world need[s] to differentiate between the survival emissions of<br />

the poor <strong>and</strong> luxury emissions of [the] rich." Sunita Narain, 2002


<strong>Greenhouse</strong> gases<br />

<strong>Greenhouse</strong>gasestraptheemittedinfraredradiationfromearthsurfaceinthe<br />

lower troposphere by atomic or molecular absorption processes, causing a<br />

gradual heating of the lower atmosphere layer.<br />

H 2 O is the most natural occurring greenhouse gas (humidity, clouds). CO 2 is<br />

2 2<br />

primarily an anthropogenic greenhouse gas (industry, traffic). Additional<br />

anthropogenic greenhouse gases are industry produced Chlorofluorcarbons<br />

(CFCs) <strong>and</strong> Hydrofluorcarbons (HCFCs).


Single layer <strong>Greenhouse</strong> model<br />

Infrared radiation from theearth surface of emission i temperaturet<br />

T e is completely absorbed in atmosphere <strong>and</strong> radiates into space<br />

<strong>and</strong> back to earth surface increasing surface temperature T s .<br />

F 0<br />

( 1<br />

)<br />

F<br />

Incoming net solar flux:<br />

0<br />

F avg<br />

<br />

F 0 4<br />

( 1 ) F<br />

i<br />

4 0<br />

Emission temperature: T e<br />

<br />

F<br />

Flux A ↑ radiated to space<br />

depends on atmospheric<br />

temperature T a :<br />

A<br />

<br />

T<br />

4 <br />

4<br />

a<br />

<br />

A<br />

<br />

F<br />

F ↑<br />

Flux S ↑ radiated from<br />

<br />

F <br />

surface with terrestrial<br />

<br />

T<br />

A 0<br />

F T<br />

s<br />

surface temperature T <br />

<br />

in <br />

s<br />

4 F<br />

Ts<br />

<br />

2<br />

4<br />

s<br />

( 1 )<br />

0<br />

4<br />

4<br />

Te<br />

<br />

Te<br />

4<br />

T 2 T<br />

1. 19 T<br />

e<br />

e<br />

Emission temperature<br />

T =255K=‐18 o e C<br />

Surface temperature:<br />

T s =303K=30 o C<br />

4


Considering a change in albedo <br />

<strong>and</strong> an atmospheric absorption <br />

T e<br />

T<br />

s<br />

<br />

<br />

4<br />

4<br />

<br />

1<br />

<br />

<br />

F<br />

<br />

<br />

<br />

4 <br />

0<br />

<br />

<br />

<br />

<br />

<br />

1<br />

<br />

F0<br />

<br />

2 T<br />

4<br />

e<br />

<br />

2 <br />

<br />

Earth’s surface temperature depends on<br />

the albedo . Increasing the albedo<br />

(reflection of incoming radiation) reduces<br />

the emission temperature T e <strong>and</strong> therefore<br />

also the temperature T s of the earth<br />

surface. Enhanced cloud coverage would<br />

cause a temperature reduction.<br />

T<br />

T<br />

2 <br />

of the emitted radiation is absorbed by the<br />

<br />

<br />

2 <br />

atmosphere (full absorption =1) reduces<br />

s<br />

4 T e<br />

a<br />

<br />

4<br />

1 1<br />

T<br />

4<br />

<br />

e<br />

2 <br />

<br />

2<br />

T<br />

No absorption: 0 ≤ ≤ 1 full absorption<br />

s<br />

A leaky greenhouse where only a fraction <br />

the greenhouse effect <strong>and</strong> lowers the<br />

surface temperature T s (This corresponds to<br />

a reduction of greenhouse gases) <strong>and</strong> also<br />

the atmospheric temperature T a .


Examples<br />

320<br />

T<br />

s<br />

2 <br />

1 1<br />

T T<br />

T<br />

<br />

<br />

<br />

<br />

2 <br />

<br />

2 <br />

<br />

2<br />

4 <br />

e a<br />

4 4<br />

e<br />

T<br />

s<br />

Tempe erature [K]<br />

300<br />

280<br />

260<br />

240<br />

220<br />

200<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

The globally averaged solar incident<br />

(or emitted) flux F e on the surface is<br />

only a fraction f≈0.16 (for =0.35)<br />

of the incoming total flux F o .<br />

<br />

Te<br />

Ts<br />

Ta<br />

T e<br />

<br />

4<br />

<br />

<br />

<br />

<br />

<br />

1<br />

F<br />

4 <br />

Emission temperature depends<br />

on the amount of incoming solar<br />

radiation flux, the insolation F o !<br />

4 1 <br />

Fe<br />

Te<br />

F<br />

4<br />

<br />

W 1 0.35 W<br />

1 6<br />

2 <br />

m 4 m<br />

0<br />

<br />

<br />

0<br />

2


Climate feed‐backs<br />

<strong>Greenhouse</strong> models have to account for several potential positive or<br />

negative feedbacks that can occur, if the equilibrium of the climate system is<br />

perturbed by an additional energy input or energy loss dQ (in units W/m 2 ).<br />

The impact can be expressed in terms of surface temperature change dT s .<br />

dTs<br />

Ts<br />

<br />

dQ QQ<br />

<br />

is a measure for climate sensitivity<br />

<br />

4<br />

3<br />

QBB Te<br />

4 Te<br />

Te<br />

4<br />

Te<br />

since const<br />

T<br />

T<br />

Q<br />

s<br />

BB<br />

<br />

s<br />

K<br />

Wm<br />

T<br />

3<br />

e<br />

T<br />

<br />

3<br />

1<br />

4 <br />

<br />

<br />

T <br />

0.26<br />

for<br />

T<br />

<br />

255<br />

K<br />

2<br />

e<br />

For every Q=1 Wm ‐2 increase in the forcing of energy balance at the earth’s<br />

surface, the surface temperature T s will change by 0.25K ! Each such change<br />

requires altering total insolation by 6 Wm ‐2 due to albedo or geometrical shifts!<br />

<br />

s<br />

e


Climate feedback from water vapor in the atmosphere depends on the<br />

saturated vapor pressure SVP. If the temperature increases the amount<br />

of water at saturation ti increases, enhancing the greenhouse effect of<br />

water <strong>and</strong> raising the temperature (humid <strong>and</strong> hot weather conditions).<br />

SVP<br />

<br />

A<br />

<br />

e<br />

0.06706<br />

T<br />

A 6.11mbar<br />

<br />

0<br />

C<br />

<br />

1<br />

A change by 1 o C leads to a 7% change in SVP<br />

Ts K<br />

0.5<br />

for Te<br />

255K<br />

2<br />

Q<br />

Wm<br />

BBH<br />

2<br />

O<br />

See lecture 7.1.<br />

<br />

d SVP<br />

SVP<br />

<br />

dT s<br />

Taking into account the water vapor for every Q=1 Wm ‐2 increase in the<br />

forcingofenergybalancethesurfacetemperatureT s will change by 0.5K !<br />

This is a positive feedback of water vapor formation. However, water<br />

vapor will favor cloud formation which increases albedo, reduces<br />

insolation <strong>and</strong> therefore reduces temperature as negative feedback.


Observed annual global temperature<br />

trends compared with the simulated<br />

global mean surface temperatures,<br />

considering separately the natural <strong>and</strong><br />

anthropogenic forcing contributions.<br />

The observed trend suggests an<br />

increasing dominance of anthropogenic<br />

based forcing contributions. This<br />

conclusion is still heavily contested!


Temperature increase predictions as<br />

a function of future CO 2 emission


Predictions IPCC 2001 for the development<br />

of mean temperatures in Europe until 2080 Reality in summer 2010<br />

Comparison with 2003<br />

Science 332 (2011)


Conclusions by the intergovernmental Panel on Climate Change (IPCC)<br />

Possible consequences<br />

predicted by theoretical<br />

model dl studies of the<br />

IPCC <strong>and</strong> other research<br />

institutions or research<br />

groups.<br />

Detailed analyses <strong>and</strong><br />

study are summarized<br />

in a number of different<br />

reports by the National<br />

Academies <strong>and</strong> are<br />

available on‐line:<br />

www.nap.edu/topics.php?topic=367


Counterstrategies: how to cool the<br />

earth by climate‐ or geoengineering<br />

g g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!