lecture - Infn

ccsem.infn.it

lecture - Infn

LABORATORI

NAZIONALI DEL GRAN

SASSO

Fernando Ferroni

INFN & Sapienza University Roma

51st Couse: Reflections on the next step for LHC Erice, 24 June- 3 July 2013


THE ASPECT I LIKE MOST


THE IDEA OF COSMIC

SILENCE

from dream to reality !


A SHORT HISTORY

1979 Submission to the Italian Parliament of the

proposal of the Gran Sasso Underground

Laboratory, conceived by Antonino Zichichi

1982 Approval of the Parliament

1987 The Underground Laboratory completed

1989 The first experimental apparatus, MACRO,

begins the data taking.


GRAN SASSO

A WONDER OF NATURE


THE MOST INTERNATIONAL

Others

Slovakia

Finland

Tunisia

Hungary

Croatia

Belgium

Turkey

Korea

India

Czech Rep.

Brazil

Portugal

Netherlands

UK

2

2

3

4

4

4

5

5

5

5

5

7

6

6

7

Total Users in 2011 n. 876

Italian users n. 284

Foreign users n. 592

Total Countries n. 33

300

250

200

150

100

284

153

100 100

INFN LAB

150

Total Users in 2011 n. 876

7

Foreign Italyusers n. 592

Slovakia 2

Italian users n. 284

2

Total Germany Countries n. 33

3

Hungary

Russia

Foreign users n. 592

4

4

4

Usa

Total Countries n. 33

Turkey 5

5 Italian users n. 284

5

Japan

Czech Rep. 5

5

Switzerland

Foreign users n. 592

6

Netherlands 6

France

7

50

10

Ukraine

Poland

Total Countries n. 33

20

20

China

24

0

France Total 27 Users in 2011 Poland n. 876

Total Users in 2011 n. 87633

Italian 35 users

Usa

Israel n. 284

Italian users n. 284

100

100

UK

153

Foreign users Italy n. 592

Foreign users n. 592

284

Netherlands

Total Countries n. Total 33 Countries n. 33

0 50 100 Portugal 150 200 250 300

Brazil

Czech Rep.

India

Korea

Turkey

Belgium

Croatia

Hungary

Tunisia

Finland

Slovakia

Others

200

100

Italy

Germany

Russia

Usa

Japan

Switzerland

France

Ukraine

China

Poland

Israel

UK

Netherlands

Portugal

Brazil

Czech Rep.

Total Users in 2011 n. 876

India

Korea

Turkey

Belgium

Croatia

Hungary

Tunisia

Finland

Slovakia

Others

Israel

Poland

China

Ukraine

France

10

20

20

24

27

50

0

35

33

27

24

20 20

10

7 6 6 5 5 5 5 5 4 4 4 3 2 2

7

Switzerland

33

Japan

35

Usa

100

Russia

100

Germany

153

Italy

284

0 50 100 150 200 250 300


UNDERGROUND SCIENCE

LABORATORIES

LNGS is (by far) the largest, the

easiest to access and deep enough


OUTLINE

Introduction

Neutrino Physics

Dark Matter

more science....

Summary


GRAN SASSO LABORATORY

3 main halls A B C ~100 x 20 m 2 (h 20 m)

Muon Flux

3.0 10 -4 μ m -2 s -1

Neutron Flux

2.92 10 -6 n cm -2 s -1 (0-1 keV)

0.86 10 -6 n cm -2 s -1 (> 1 keV)

Depth: 1400 m (3800 m w.e.)

Surface: 17800 m 2

Volume: 180000 m 3

external facilities

Rn in air: 20-80 Bq/m 3

ISO 14001

Ventilation: 1 Lab volume/3 h

Electrical power: 1300 kW

Access: horizontal


A BUSY LAB

CRESST

CUORE

LUNA

GERDA

LVD

XENON 1T

XENON

ERMES

GIGS

ICARUS

DarkSide

BOREXINO

VIP

COBRA

OPERA

LOW ACTIVITY LAB

DAMA/LIBRA


NEUTRINO PHYSICS

High Energy Neutrinos

Solar and Cosmogenic Neutrinos

Double β decay


OPERA


FIRST TAU NEUTRINO

CANDIDATE EVENT

Muonless event 9234119599, taken on 22 nd

August 2009


LOOKING AT WHAT THE

EMULSIONS ARE GOOD AT

τ − →ρ − ν τ

ρ − →π 0 π -

π 0 → γ γ


INTERPRETATION

PL17

careful visual inspection of the

films behind/in front of the

secondary vertex:

no “black” or “evaporation”

tracks. Support topological

hypothesis of a particle decay

PL18

Primary

vertex

PL19 PL20 PL21

4

kink point

5

1 7

8

2

3

γ1

1mm lead

6


ICARUS-T600 @ LNGS

0.77 kton LAr-TPC


THE LAR-TPC

THE ELECTRONIC BUBBLE CHAMBER

Total visible energy 4.5 GeV

close-up of two e.m. showers

3D

Collection

Induction

π 0

Primary vertex (A):

B

very long µ (1), e.m.cascades( 2), π (3)

Secondary vertex (B):

A

Conversion distances

6.9 cm, 2.3 cm

longest track (5) is a µ from stopping K (6)

µ decay is observed


LSND-LIKE EXCLUSION

New exclusion

area from ICARUS

• ICARUS result strongly limits parameters for LSND anomaly

(Δm 2 –sin 2 2θ) = (0.5 eV 2 -0.005)


NEUTRINO PHYSICS

High Energy Neutrinos

Solar and Cosmogenic Neutrinos

Double β decay


SOLAR NEUTRINOS

Sun is a precious source

of neutrinos. They are studied

thoroughly on Earth !


BOREXINO @ LNGS


BOREXINO CONTRIBUTION TO

SOLAR NEUTRINO

UNDERSTANDING

bB

aB


BOREXINO LOOKING

DOWN TO EARTH

The Earth shines in anti-ν

238

U

206

Pb + 8 α + 8 e - + 6 νe + 51.7 MeV

232

Th

208

Pb + 6 α + 4 e - + 4 νe + 42.8 MeV

40

K

40

Ca + e - + 1 νe + 1.32 MeV

Uranium & Thorium

contribution disentangled


BOREXINO

REINCARNATE IN SOX


NEUTRINO PHYSICS

High Energy Neutrinos

Solar and Cosmogenic Neutrinos

Double β decay


WHAT IS A NEUTRINO ?


NEUTRINOLESS DBD

INVERTED OR DIRECT ?

Three region

1) Degenerate : few 100meV

2) Inverse: few 10meV

3) Direct: few meV


THE NASTY PROBLEM

M ⋅t

∝ K

Sensitivity (i.a. • )

B ⋅ ΔE

m! ! ∝ √ (1/)

To gain a factor 10 you need 10000 !

GERDA: 15 kg , i.a.= 1, B=0.01 , 300 meV @ 2 year

what are the achievable limits ?

i.a. =1 ? $$$$$$$$$$$

B=0.0001 ideas !

M= kTon does it go with energy resolution ?

Daring

isn’t it ?


GERDA

29


GERDA CONSTRUCTION

PHASE

Text

30


228

TH CALIBRATION

SPECTRA

Energy resolution at Q ββ (FWHM, mass weighted average):

• 4.5 keV for coaxial detectors

• 3 keV for BEGe detectors


PHASE I BACKGROUND

INDEX AT Q


ERDA DBD

PECTRUM(FROM FIRST 5.04 KG-Y)

eagerly awaiting for neutrinoless DBD

results. To compare to HdM.


CUORE

Cryogenic Underground Observatory for Rare Events

Searching for neutrinoless double beta

CUORE Hut

decay of 130 Te

200 Kg

130

Te

Expected 5 Years sensitivity:

T 1/2 = 2.1 x 10 26 y, m ββ =41−95 meV

background counting rate

10 -2 c/keV/kg/y


PHYSICS & ARCHEOLOGY

A couple of hundred ingots

for the CUORE shielding

210

Pb free (22.3 y half-life)

2000 y shielded by sea water


CUORE PRINCIPLE

heat sink

(T 0 )

Basic Physics:T= E/C

(thermal conductance G)

atom x-tal

thermometer

T 0 ∼ 10 mK

C ∼ 2 nJ/K ∼ 1 MeV/0.1 mK

G ∼ 4 pW/mK


CUORE FIRST PHASE

CUORE-0

CTAL (CUORE Tower Assembly Line)

radioactivity control

reproducible protocols

Assembled in N 2 atmosphere

uses equipment developed for CUORE

e.g. new CUORE gluing semi-automatic machine

1 CUORE-like tower of 13 planes - 4 crystals each

52 TeO 2

5x5x5 cm 3 crystals

Ch. # 45 calibration spectrum

( 232 Th source)

E (@2615 keV) = 5.3 keV (FWHM)

Detector Mass: 39 kg TeO 2

130 Te mass (natural i.a.): 11 kg of 130 Te


CUORE SENSITIVITY


AN OPTION FOR A

BRIGHT FUTURE


LUCIFER (LUCEM FERRE)


LVD

Search for ν

from Core Collapse Supernovae


DUTY FACTOR

Run from 1992

1 kTon

100% duty cycle

90% U.L. of gravitational

collapses (for D


OPERA-LVD MUONS

a solution to the fast neutrino problem at hand !

Time-shift in OPERA set-up

high energy horizontal µ

both LVD & OPERA

Eur.Phys.J.Plus 127 (2012) 71

Class A Class B Class A


DARK MATTER

SEARCHES


ROTATION CURVES


LENSING


DAMA/LIBRA

• Ultrapure Na(Tl)

Residual contamination

232

Th, 238 U and 40 K at level of 10 -12

g/g


Power spectrum

DAMA/LIBRA

ANNUAL MODULATION

Comparison between single hit residual rate (red points) and

multiple hit residual rate (green points);

A=-(0.0006±0.0004) cpd/kg/keV

Multiple hits events = Dark Matter particle “switched off”


DAMA

MODEL INDEPENDENT

ANNUAL MODULATION

ΔE = 0.5 keV bins

T=2π/ω=1 yr and t 0 = 152.5 day

• No modulation above 6 keV

• No modulation in the whole energy spectrum

• No modulation in the 2-6 keV multiple-hit events

Systematics or other processes do not explain

quantitatively

the measured modulation amplitude and

simultaneously satisfy the signal characteristics.

DAMA/NaI (7 years) + DAMA/LIBRA (6 years)

Total exposure: 425428 kg×day = 1.17 ton×yr


CRESST-II

light detector

“light channel”

W sensor

O

neutron test latest run

β+γ

300g scintillating

CaWO 4 crstal

light reflector

which also scintillates

W sensor

“phonon channel”

→ phonon channel provides precise measurement of deposited energy

→ Light channel distinguishes types of interaction

→ Types of recoiling nuclei distinguished by different slopes in light energy plane


THE LATEST CRESST RUN

Net exposure after cuts: 730 kg days

Assumes missing events due to WIMPs


THE XENON FAMILY


XENON100 SI RESULTS


XENON100 SD RESULTS


XENON1T SENSITIVITY


DARKSIDE (LAR DARK

MATTER SEARCH)


DARKSIDE

INNER CHAMBERS


DARKSIDE PROGRAM:

STATUS

• DarkSide-50 (2×10 -45 cm 2 )

Funded by DOE, INFN, NSF

• DarkSide-G2 (2×10 -47 cm 2 )

R&D funded by NSF (May 1 2012)

• Detector requirements

Low energy nuclear recoils (< 100 keV)

Low rate (~1 event/ton/yr for 10 -47 cm 2 )

Background, background, background

• Detector designed for discovery


A LOT OF LIGHT

• Pulse shape Discrimination

Primary Scintillation

• Ionization/scintillation Ratio

• Sub-cm Spatial Resolution

• Underground argon

DS-10 Results

– LY=8.9 pe/keVee


NUCLEAR

ASTROPHYSICS


THE LUNA EXPERIMENT

nuclear fusion reaction cross sections

Stars powered by nuclear reactions

Key parameters to model stars

chemical composition, opacity…

reactions cross sections

determine the origin of elements

stellar evolution and dynamics

Many reactions need high precision

data.


LUNA ASTROPHYSICAL

MOTIVATION

• Solar neutrinos:

3

He( 3 He,2p) 4 He, 3 He( 4 He,γ) 7 Be, 14 N(p,γ) 15 O

• Age of globular cluster:

14

N(p,γ) 15 O

• Light nuclei nucleosynthesis

( 17 / 18 O abundances, 19 F production, 26 Mg excess,...):

15

N(p,γ) 16 O, 17 N(p,γ) 18 O, 25 Mg(p,γ) 26 Al

• Big Bang Nucleosynthesis:

2

H(α,γ) 6 Li, 3 He( 4 He,γ) 7 Be, 2 H(p,γ) 3 He

• Next:

• Light nuclei nucleosynthesis:

17

O(p,α) 14 N, 22 Ne(p,γ) 23 Na, 23 Na(p,γ) 24 Mg, 18 O(p,γ) 19 F, 18 O(p,α) 15 N

• He burning and stellar evolution:

12

C(α,γ) 16 O

• s process nucleosynthesis:

13

C(α,n) 16 O, 22 Ne(α,n) 25 Mg


LUNA MV PROJECT

• Higher energy machine

3.5 MV single ended positive ion accelerator

Now funded by Italian Research Ministry

2,8 Million of Euros!

New collaborations highly welcome

• Aim

• key s-process reactions

Helium burning

neutron sources

12

C(α,γ) 16 O

13

C(α,n) 16 O

22

Ne(α,n) 25 Mg

(α,γ) reactions on 14,15 N and 18 O

Relevant at higher temperatures than hydrogen-burning


HELPING BIOLOGY


LOW BACKGROUND

RADIATION

• Test the “Linear No Threshold” model

No point in doubling the dose

Need to lower the dose

Is the damage to cells (DNA) ∝ dose

at low dose

or are low doses of radiation

more damaging ….. or ….

less damaging

than expected from the LNT model

in vitro studies done

with tantalising results

in vivo ??????


more.......


OTHER EXPERIMENTS

Test of fundamental principles (Pauli, General Relativity)

Environmental Sciences


SUMMARY

A great intuition

A superb facility

A great program

A brilliant future

The Scientific Programme at Gran Sasso is world leading

and addresses crucial scientific issues

Neutrino Physics

Dark Matter

Foundations of physics and cosmology

potentially Environment and health

A national lab & international asset

More magazines by this user
Similar magazines