Which do you trust more: a radar echo 2km above ... - MeteoSchweiz
Which do you trust more: a radar echo 2km above ... - MeteoSchweiz
Which do you trust more: a radar echo 2km above ... - MeteoSchweiz
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
Federal Department of Home Affairs FDHA<br />
Federal Office of Meteorology and Climatology MeteoSwiss<br />
Das Radar Ensemble<br />
auf hydrologischer Wanderschaft<br />
Urs Germann, MeteoSwiss, Locarno-Monti<br />
Dank an<br />
M Zappa (WSL), I Zawadzki, M Berenguer (McGill Montréal), FOEN.<br />
Radar+Satelllite team: M Boscacci, A Hering, I Giunta, L Panziera, M Gabella, L Clementi<br />
J Joss
High resolution in 4 dimensions<br />
2<br />
1<strong>2km</strong><br />
0km<br />
Groundview: precipitation rate 1km x 5min<br />
Sideviews: max reflectivity <strong>2km</strong> x 5min<br />
dBZ<br />
55<br />
mm/h<br />
100<br />
black symbols: lightning<br />
Quantitative estimation of<br />
precipitation at ground?<br />
Systematic objective largesample<br />
verification<br />
(daily rainfall, all days!, May-Oct)<br />
40<br />
25<br />
10<br />
1<br />
Bias Stdev ETS<br />
% factor %<br />
0.3mm<br />
1997 -43 2.5 40<br />
2004 -1 1.7 63<br />
13 0.2<br />
18 June 2006 100km<br />
Boscacci, Intranet<br />
Joss et al, vdf, 1998<br />
Germann+Joss, Springer, 2004<br />
Germann et al, QJRMS, 2006
Uncertainty [dB]<br />
8dB<br />
6<br />
4<br />
2<br />
Uncertainty everywhere<br />
Uncertainty of point precipitation<br />
measurement in N-Ticino<br />
(otl, mag, cim, com, hir, pio, roe, sbe)<br />
2.<strong>2km</strong> 6.4km 10.7km<br />
0dB<br />
0 2 4 6 8 10 12<br />
Distance from nearest rain gauge [km]<br />
Conclusion:<br />
For 3h rainfall sums gauge<br />
uncertainty reaches that of<br />
<strong>radar</strong> at separation distance<br />
of about (N-Ticino)<br />
2.<strong>2km</strong> for spatial<br />
variability of 2 Sep 05,<br />
6.4km for spatial<br />
variability of 19-22 Aug 05,<br />
10.7km for spatial<br />
variability of 14 Jun 05.<br />
Remember: Average<br />
distance from nearest<br />
gauge in Switzerland is<br />
1<strong>2km</strong><br />
3
Use <strong>radar</strong> for hydrology?<br />
4<br />
Yes, if<br />
- catchment is small (say,
Think ensemble<br />
5<br />
Radar<br />
ensemble<br />
vary<br />
sligthly<br />
?<br />
Ensemble of runoff<br />
Rain map<br />
?<br />
?<br />
Runoff<br />
model<br />
100 m 3 /s<br />
50 m 3 /s<br />
Time
Radar ensemble precipitation estimation<br />
6<br />
original field<br />
(unperturbed)<br />
estimate of<br />
<strong>radar</strong> error for<br />
each point in<br />
space and time<br />
(error<br />
variances)<br />
“deterministic”<br />
stochastic<br />
simulation of<br />
error field<br />
Singular-value decomposition<br />
of error covariance matrix<br />
+ auto-regressive filter<br />
perturbation<br />
field<br />
with correct<br />
space-time<br />
variances and<br />
covariances<br />
estimate of how<br />
errors are<br />
correlated in<br />
space and time<br />
(error<br />
covariances)<br />
Produce many<br />
members, the<br />
spread among<br />
which represents<br />
the uncertainty<br />
in <strong>radar</strong><br />
precipitation<br />
estimates.<br />
probabilistic<br />
ensemble member<br />
(perturbed)
3 ensemble members (example)<br />
perturbation fields (from stochastic simulation)<br />
7<br />
+<br />
original field<br />
(unperturbed)<br />
-8<br />
dB 0 8<br />
=<br />
ensemble members (perturbed precipitation fields)<br />
0.2<br />
1 10 100<br />
mm in 1h<br />
0.2<br />
1 10 100<br />
mm in 1h
Radar ensemble implementation<br />
8<br />
Automatically running in<br />
real-time since May 2007<br />
(MAP D-PHASE,<br />
with M Zappa WSL)<br />
As far as we<br />
know, the 1st<br />
real-time<br />
experiment of<br />
this type<br />
worldwide.<br />
Germann et al, 2008
Questions<br />
9<br />
Does <strong>radar</strong> reach accuracy of raingauges for modelling runoff of Pincascia?<br />
Does <strong>radar</strong> ensemble correctly represent true <strong>radar</strong> uncertainty?<br />
Objective verification using 1 year of data<br />
from operational coupling<br />
of <strong>radar</strong>-ensemble and runoff model<br />
for Pincascia catchment (44km 2 ).<br />
(All days are considered. No subjective selection of events.)<br />
FOEN rivergauge of Pincascia river in Lavertezzo
Does <strong>radar</strong> reach accuracy of raingauges for modelling runoff of Pincascia?<br />
YES…<br />
10<br />
Radar<br />
Raingauge<br />
Bias -10%<br />
Stdev 2.1dB<br />
Bias -36%<br />
Stdev 2.0dB
Does <strong>radar</strong> ensemble correctly represent true <strong>radar</strong> uncertainty?<br />
YES…<br />
11<br />
Radar<br />
Radar-Ensemble<br />
Bias -10%<br />
Stdev 2.1dB<br />
Bias +3%<br />
Stdev 2.1dB
Collaboration with Canton of Ticino<br />
12<br />
Radar<br />
precipitation<br />
estimates for<br />
subcatchments of<br />
Lago di Lugano<br />
(=Ceresio).<br />
with A Salvetti,<br />
Ufficio dei corsi d‘acqua,<br />
Bellinzona
Collaboration with FOEN (BAFU)<br />
13<br />
Radar<br />
precipitation<br />
estimates for<br />
subcatchments of<br />
Rhine.<br />
with S Vogt,<br />
FOEN, Bern
14<br />
Does <strong>radar</strong> reach accuracy of raingauges for modelling runoff of Pincascia?<br />
Does <strong>radar</strong> ensemble correctly represent true <strong>radar</strong> uncertainty?<br />
YES…<br />
YES…