28.04.2014 Views

Which do you trust more: a radar echo 2km above ... - MeteoSchweiz

Which do you trust more: a radar echo 2km above ... - MeteoSchweiz

Which do you trust more: a radar echo 2km above ... - MeteoSchweiz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Federal Department of Home Affairs FDHA<br />

Federal Office of Meteorology and Climatology MeteoSwiss<br />

Das Radar Ensemble<br />

auf hydrologischer Wanderschaft<br />

Urs Germann, MeteoSwiss, Locarno-Monti<br />

Dank an<br />

M Zappa (WSL), I Zawadzki, M Berenguer (McGill Montréal), FOEN.<br />

Radar+Satelllite team: M Boscacci, A Hering, I Giunta, L Panziera, M Gabella, L Clementi<br />

J Joss


High resolution in 4 dimensions<br />

2<br />

1<strong>2km</strong><br />

0km<br />

Groundview: precipitation rate 1km x 5min<br />

Sideviews: max reflectivity <strong>2km</strong> x 5min<br />

dBZ<br />

55<br />

mm/h<br />

100<br />

black symbols: lightning<br />

Quantitative estimation of<br />

precipitation at ground?<br />

Systematic objective largesample<br />

verification<br />

(daily rainfall, all days!, May-Oct)<br />

40<br />

25<br />

10<br />

1<br />

Bias Stdev ETS<br />

% factor %<br />

0.3mm<br />

1997 -43 2.5 40<br />

2004 -1 1.7 63<br />

13 0.2<br />

18 June 2006 100km<br />

Boscacci, Intranet<br />

Joss et al, vdf, 1998<br />

Germann+Joss, Springer, 2004<br />

Germann et al, QJRMS, 2006


Uncertainty [dB]<br />

8dB<br />

6<br />

4<br />

2<br />

Uncertainty everywhere<br />

Uncertainty of point precipitation<br />

measurement in N-Ticino<br />

(otl, mag, cim, com, hir, pio, roe, sbe)<br />

2.<strong>2km</strong> 6.4km 10.7km<br />

0dB<br />

0 2 4 6 8 10 12<br />

Distance from nearest rain gauge [km]<br />

Conclusion:<br />

For 3h rainfall sums gauge<br />

uncertainty reaches that of<br />

<strong>radar</strong> at separation distance<br />

of about (N-Ticino)<br />

2.<strong>2km</strong> for spatial<br />

variability of 2 Sep 05,<br />

6.4km for spatial<br />

variability of 19-22 Aug 05,<br />

10.7km for spatial<br />

variability of 14 Jun 05.<br />

Remember: Average<br />

distance from nearest<br />

gauge in Switzerland is<br />

1<strong>2km</strong><br />

3


Use <strong>radar</strong> for hydrology?<br />

4<br />

Yes, if<br />

- catchment is small (say,


Think ensemble<br />

5<br />

Radar<br />

ensemble<br />

vary<br />

sligthly<br />

?<br />

Ensemble of runoff<br />

Rain map<br />

?<br />

?<br />

Runoff<br />

model<br />

100 m 3 /s<br />

50 m 3 /s<br />

Time


Radar ensemble precipitation estimation<br />

6<br />

original field<br />

(unperturbed)<br />

estimate of<br />

<strong>radar</strong> error for<br />

each point in<br />

space and time<br />

(error<br />

variances)<br />

“deterministic”<br />

stochastic<br />

simulation of<br />

error field<br />

Singular-value decomposition<br />

of error covariance matrix<br />

+ auto-regressive filter<br />

perturbation<br />

field<br />

with correct<br />

space-time<br />

variances and<br />

covariances<br />

estimate of how<br />

errors are<br />

correlated in<br />

space and time<br />

(error<br />

covariances)<br />

Produce many<br />

members, the<br />

spread among<br />

which represents<br />

the uncertainty<br />

in <strong>radar</strong><br />

precipitation<br />

estimates.<br />

probabilistic<br />

ensemble member<br />

(perturbed)


3 ensemble members (example)<br />

perturbation fields (from stochastic simulation)<br />

7<br />

+<br />

original field<br />

(unperturbed)<br />

-8<br />

dB 0 8<br />

=<br />

ensemble members (perturbed precipitation fields)<br />

0.2<br />

1 10 100<br />

mm in 1h<br />

0.2<br />

1 10 100<br />

mm in 1h


Radar ensemble implementation<br />

8<br />

Automatically running in<br />

real-time since May 2007<br />

(MAP D-PHASE,<br />

with M Zappa WSL)<br />

As far as we<br />

know, the 1st<br />

real-time<br />

experiment of<br />

this type<br />

worldwide.<br />

Germann et al, 2008


Questions<br />

9<br />

Does <strong>radar</strong> reach accuracy of raingauges for modelling runoff of Pincascia?<br />

Does <strong>radar</strong> ensemble correctly represent true <strong>radar</strong> uncertainty?<br />

Objective verification using 1 year of data<br />

from operational coupling<br />

of <strong>radar</strong>-ensemble and runoff model<br />

for Pincascia catchment (44km 2 ).<br />

(All days are considered. No subjective selection of events.)<br />

FOEN rivergauge of Pincascia river in Lavertezzo


Does <strong>radar</strong> reach accuracy of raingauges for modelling runoff of Pincascia?<br />

YES…<br />

10<br />

Radar<br />

Raingauge<br />

Bias -10%<br />

Stdev 2.1dB<br />

Bias -36%<br />

Stdev 2.0dB


Does <strong>radar</strong> ensemble correctly represent true <strong>radar</strong> uncertainty?<br />

YES…<br />

11<br />

Radar<br />

Radar-Ensemble<br />

Bias -10%<br />

Stdev 2.1dB<br />

Bias +3%<br />

Stdev 2.1dB


Collaboration with Canton of Ticino<br />

12<br />

Radar<br />

precipitation<br />

estimates for<br />

subcatchments of<br />

Lago di Lugano<br />

(=Ceresio).<br />

with A Salvetti,<br />

Ufficio dei corsi d‘acqua,<br />

Bellinzona


Collaboration with FOEN (BAFU)<br />

13<br />

Radar<br />

precipitation<br />

estimates for<br />

subcatchments of<br />

Rhine.<br />

with S Vogt,<br />

FOEN, Bern


14<br />

Does <strong>radar</strong> reach accuracy of raingauges for modelling runoff of Pincascia?<br />

Does <strong>radar</strong> ensemble correctly represent true <strong>radar</strong> uncertainty?<br />

YES…<br />

YES…

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!