Presentation - National Water Research Institute

nwri.usa.org

Presentation - National Water Research Institute

Characterization of DOM in humic rich tributaries of a

drinking water reservoir in Saxony using

FTICR/MS and EEMF


Helmholtz Centre

For Environmental Research – UFZ

Peter Herzsprung, W. v. Tümpling, J. Bravidor

(peter.herzsprung@ufz.de)

Helmholtz Zentrum München

German Research Centre for Environmental Health

N. Hertkorn, M. Harir, P. Schmitt-Kopplin

Characterization of DOM in humic rich tributaries of a

drinking water reservoir in Saxony using

FTICR/MS and EEMF


Problem: In Saxony drinking water is supplied

from Ore Mountains reservoirs influenced

by increasing DOC concentration of raw water


Problem: In Saxony drinking water is supplied

from Ore Mountains reservoirs influenced

by increasing DOC concentration of raw water

Consequence:

Usability of reservoir water as raw water can be limited by:

- unpleasant taste, odour, and colour

- increase of flocculation costs

- undesirable harmful disinfection byproducts


Questions to be answered.

1. What can be said about the relation between

fluorescence and DOC?

2. Is there any seasonal influence on the fluorescence

DOC relation?

3. What can be said about the abundance of typical

compound groups?

4. How can the information be used for using best

raw drinking water?


water sampling

DOC

UV

EEMF

FTICR/MS

bulk

concentration

bulk

optical

properties

group

species

elemental

formulae

data analysis

biogeochemical evaluation


water sampling

DOC

UV

EEMF

FTICR/MS

bulk

concentration

bulk

optical

properties

group

species

elemental

formulae

data analysis

biogeochemical evaluation


Catchment area of reservoir Muldenberg

Effluent TSP

Saubach

SBA

Red Mulde

RMU

White Mulde

WMU

Sauteich

STE

Germany

Saxony

Muldenberg

1 km

W

N

S

E


Reservoir

Effluent

Coloured water


water sampling

DOC

UV

EEMF

FTICR/MS

bulk

concentration

bulk

optical

properties

group

species

elemental

formulae

data analysis

biogeochemical evaluation


water sampling

DOC

UV

EEMF

FTICR/MS

bulk

concentration

bulk

optical

properties

group

species

elemental

formulae

data analysis

biogeochemical evaluation


methods

2 0 0 0

1 8 0 0

1 6 0 0

1 4 0 0

1 2 0 0

1 0 0 0

8 0 0

6 0 0

4 0 0

2 0 0

0

3D fluorescence (EEMF)

2 4 0

2 5 0

2 6 0

2 7 0

2 8 0

2 9 0

3 0 0

3 1 0

3 2 0

3 3 0

3 4 0

3 5 0

3 6 0

intensity

(A.U.)

emission 260 – 585 nm

excitation

240 – 360 nm


methods

humic-like

Ligninphenol

like

HO

H

C

R

?

protein-like

Excitation (nm)

360

340

320

300

0

100

200

300

400

500

Intensity

(A.U.)

HO

OCH 3

280

According to Burdige et al,

Marine Chem. 51, 325-346 (2004)

260

240

Contour plot

300 350 400 450 500 550

Emission (nm)


methods

Scaling of fluorescence diagrams

Excitation (nm)

Seite 14

360

340

320

300

280

260

240

Sampling site, date

0

200

400

600

800

Intensity (A.U.)

300 350 400 450 500 550

Emission (nm)

Median values

Excitation:

320 – 345 nm

Emission:

410 – 440 nm

Wave length area

for evaluation of

fluorescence intensity

(Humic like fluorescence)


water sampling

DOC

UV

EEMF

FTICR/MS

bulk

concentration

bulk

optical

properties

group

species

elemental

formulae

data analysis

biogeochemical evaluation


OH

O

H

H

O

C

OH

H

H

HOOC

OH

H

O

C

C

COOH

H

HO

H

H

C 17 H 14 O 11 - millions of isomeric solutions?

HO

HO

OH

O

OH

H

HO

HO

OH

OH

OH

O C C

H

H

H

H


methods

FTICR/MS elemental formulae

van Krevelen diagrams: geochemical pools of DOM

2,5

2.5

Simplified illustration

H/C ratio

2.0 2

1.5 1,5

1.0

1

0.5

0,5

lipids

lignins

black carbon

proteins

carbohydrates

tannins

0 0 0.2 0.4 0.6 0.8 1.0

0 0,2 0,4 0,6 0,8 1

O/C ratio


Questions to be answered.

1. What can be said about the relation between

fluorescence and DOC?

2. Is there any seasonal influence on the fluorescence

DOC relation?

3. What can be said about the abundance of typical

compound groups?

4. How can the information be used for using best

raw drinking water?


esults

Humic like fluorescence versus DOC

March July August

RMU 0309

RMU 0709

RMU 0809

RMU

WMU

excitation

Excitation (nm)

Excitation (nm)

360

340

320

300

280

260

240

360

340

320

Excitation (nm)

300

440 A.U. 280

622 A.U.

WMU 0309

Excitation (nm)

360

340

320

260

240

260

0

200

400

600

800

Excitation (nm)

360

340

320

300

280

260

11.7 mg/l 10.3 mg/l

240

300 350 400 450 500 550

300 350 400 450 500 550

Emission (nm)

WMU 0709

300

300

435 A.U.

280

280 453 A.U.

260

240

0

200

400

600

800

9.1 mg/l

300 350 400 450 500 550

0

200

400

600

800

Emission (nm)

10.8 mg/l

300 350 400 450 500 550

Emission (nm)

360

340

320

0

200

400

600

800

8.2 mg/l

240

300 350 400 450 500 550

Emission (nm)

emission

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

577 A.U.

0

200

400

600

800

Emission (nm)

WMU 0809

347 A.U.

5.7 mg/l

300 350 400 450 500 550

Emission (nm)


Answer

- No direct relation between the fluorescence

and the DOC.

- EEMF generates new information


Questions to be answered.

1. What can be said about the relation between

fluorescence and DOC?

2. Is there any seasonal influence on the fluorescence

DOC relation?

3. What can be said about the abundance of typical

compound groups?

4. How can the information be used for using best

raw drinking water?


esults Humic like fluorescence at different seasons

excitation

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

January March April July August

RMU 0109

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

360

340

320

300

280

260

240

360

340

320

300

280

260

240

360

340

320

300

280

260

240

Excitation (nm)

Excitation (nm)

360

340

320

300

280

260

240

Emission (nm)

WMU 0109

360

0

200

400

340

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

SBA 0109

360

0

200

400

340

600

800

320

300

Excitation (nm)

280

260

240

300 350 400 450 500 550

Emission (nm)

STE 0109

360

0

200

400

340

600

800

320

300

Excitation (nm)

280

260

240

300 350 400 450 500 550

Emission (nm)

TSP 0109

RMU 0309

RMU 0409

360

0

0

200

200

400

340 400

600

600

800

800

320

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

300

RMU

280

260

240

300 350 400 450 500 550

300 350 400 450 500 550

Emission (nm)

Emission (nm)

WMU 0309

WMU 0409

360

0

0

200

200

400

340 400

600

600

800

800

320

300

WMU

280

260

240

300 350 400 450 500 550

300 350 400 450 500 550

Emission (nm)

Emission (nm)

SBA 0309

SBA 0409

360

0

0

200

200

400

340 400

600

600

800

800

320

300

SBA

280

260

240

300 350 400 450 500 550

300 350 400 450 500 550

Emission (nm)

Emission (nm)

STE 0309

STE 0409

360

0

0

200

200

400

340 400

600

600

800

800

320

300

STE

280

260

240

300 350 400 450 500 550

300 350 400 450 500 550

Emission (nm)

Emission (nm)

TSP 0309

TSP 0409

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

RMU 0709

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

WMU 0709

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

SBA 0709

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

STE 0709

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

TSP 0709

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

RMU 0809

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

WMU 0809

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

SBA 0809

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

STE 0809

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

TSP 0809

Excitation (nm)

Excitation (nm)

Excitation (nm)

Sept.

RMU 0909

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

WMU 0909

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

SBA 0909

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

TSP 0909

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

October December

RMU 1009

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

WMU 1009

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

SBA 1009

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

STE 1009

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

TSP 1009

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

RMU 1209

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

WMU 1209

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

SBA 1209

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

STE 1209

360

0

200

340 400

600

800

320

300

280

260

240

300 350 400 450 500 550

Emission (nm)

TSP 1209

pond tributaries

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

TSP

300 350 400 450 500 550

Emission (nm)

Excitation (nm)

360

340

320

300

280

260

240

360

360

0

0

200

200

400

340 400

340

600

600

800

800

320

320

Excitation (nm)

300

300

280

280

260

260

240

240

300 350 400 450 500 550

300 350 400 450 500 550

emission

Emission (nm)

Emission (nm)

Excitation (nm)

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

effluent


esults

Seasonal behaviour of DOC and fluorescence

Quotient of

median fluorescence intensity

and DOC

Seite 23


Answer

- Specific fluorescence activity (of DOC) rise

between March and September.

- Specific fluorescence activity rise can not be explained

by EEMF.


Question to be answered.

1. What can be said about the relation between

fluorescence and DOC?

2. Is there any seasonal influence on the behaviour?

3. What can be said about the abundance of typical

compound groups?

- seasonal effect

- relation between fluorescence and

biogeochemical pools

4. How can the information be used for using best

raw drinking water?


esults

FTICR/MS data available

Quotient of

median fluorescence intensity

and DOC

Seite 26


esults

Bulk van Krevelen diagrams

2

1.5

1

0.5

0

black carbon

H/C

O/C

1

lipids

March

0 0.2 0.4 0.6 0.8 1

2

1.5

proteins carbohydrates

lignins

tannins

Evaluation of CHO formulae;

CHOS and CHON not considered

0.5

0

July

0 0.2 0.4 0.6 0.8 1


esults

Excitation (nm)

360

340

320

300

280

260

240

2

0

200

400

600

800

DOC

RMU3

RMU 0309

Difference in abundance of elemental formulae

Excitation (nm)

RMU 0709

280

260

9.1 mg/l 11.7 mg/l

300 350 400 450 500 550

Emission (nm)

360

340

320

300

240

0

200

400

600

800

DOC

RMU7

300 350 400 450 500 550

Emission (nm)

RMU3 + RMU7

2

1.5

1

0.5

0

2

RMU3

different abundance

0 0.2 0.4 0.6 0.8 1

RMU7

1.5

1.5

1

0.5

0

common abundance

H/C

0 0.2 0.4 0.6 0.8 1

1

0.5

O/C

0

different abundance

0 0.2 0.4 0.6 0.8 1


esults

mass peaks

biunique

assignment

intensity values

Rank analysis (different seasons) FTICR/MS

for 638 common elemental formulae in 4 samples

C 17 H 14 O 11

rank within

638 el.

formulas

rank within

4 samples

RMU3 124 4

March

RMU4 86 3

April

RMU7 36 1

July

RMU8 52 2

August


esults

mass peaks

Rank analysis (different seasons) FTICR/MS

for 638 common elemental formulae in 4 samples

2.5

biunique

assignment

C 17 H 14 O 11

rank within

638 el.

formulas

rank within

4 samples

RMU3 124 4

March

RMU4 86 3

April

RMU7 36 1

July

RMU8 52 2

August

intensity values

0 1

Van Krevelen diagrams

2

1.5

1

0.5

H/C

0

O/C

0

Rank 1

Rank 2

Rank 3

Rank 4

Red Mulde / July

depiction of the ranked formulae

0 0.2 0.4 0.6 0.8 1


esults

2

1.5

1

Rank analysis (different seasons) FTICR/MS

Red Mulde

2.5

0

Rank 1

Rank 2

Rank 3

Rank 4

0 1

lignins

tannins

0.5

0

March

H/C

O/C

0 0.2 0.4 0.6 0.8 1

2

1.5

Red Mulde

1

0.5

0

July

0 0.2 0.4 0.6 0.8 1


esults

2

1.5

1

Rank analysis (different seasons) FTICR/MS

Red Mulde

2.5

0

Rank 1

Rank 2

Rank 3

Rank 4

0 1

lignins

tannins

0.5

0

March

H/C

O/C

0 0.2 0.4 0.6 0.8 1

2

1.5

Red Mulde

1

0.5

0

July

0 0.2 0.4 0.6 0.8 1


esults

2

1.5

1

Rank analysis (different seasons) FTICR/MS

Saubach

2.5

0

Rank 1

Rank 2

Rank 3

Rank 4

0 1

lignins

tannins

0.5

0

March

H/C

O/C

0 0.2 0.4 0.6 0.8 1

2

1.5

Saubach

1

0.5

0

July

0 0.2 0.4 0.6 0.8 1


Question to be answered.

1. What can be said about the relation between

fluorescence and DOC?

2. Is there any seasonal influence on the behaviour?

3. What can be said about the abundance of typical

compound groups?

- seasonal effect

- relation between fluorescence and

biogeochemical pools

4. How can the information be used for using best

raw drinking water?


Flößgrabenquelle

Red Mulde

Black

pool

DOC 0.37 mg/l

DOC 10.3 mg/l

DOC 83 mg/l

2

2

2

1.5

1.5

1.5

H/C

1

H/C

1

H/C

1

0.5

0

0 0.2 0.4 0.6 0.8 1

Pr4 SBA 0809 O/CFlöss Q unten

0.5

0

0 0.2 0.4 0.6 0.8 1

O/C RMU 0809

0.5

0

1:5 diluted

0 0.2 0.4 0.6 0.8 1

O/C

Rote Mulde Pr11

excitation

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

emission

Emission (nm)

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

undiluted

300 350 400 450 500 550

Emission (nm)


360

340

320

300

280

260

240

360

340

320

300

280

260

240

360

340

320

300

280

260

240

360

340

320

300

280

260

240

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

0

200

400

600

800

300 350 400 450 500 550

0

200

400

600

800

0

200

400

600

800

Emission (nm)

300 350 400 450 500 550

0

200

400

600

800

Emission (nm)

300 350 400 450 500 550

Emission (nm)

300 350 400 450 500 550

Emission (nm)

results

EEMF

Comparison between fluorescence ranking

and mass intensity inter samples ranking

Sample EEMF FTICR/MS-Ranks (455 common compounds)

Nr Name Ranks C 17 H 14 O 11 C 20 H 28 O 7

Comp. …

RMU 0709

3

Comp.

455

1 RMU7 1 1 17 … … …

… WMU7 3 2 14 … … …

… TSP7 8 10 16 … … …

… STE7 15 15 19 … … …

… SBA7 18 19 11 … … …

… … … … … … … …

20 … … … … … … …

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

WMU 0709

TSP 0709

STE 0709

SBA 0709

Rank correlation

(Spearman)

FTICR/MS

for each compound


360

340

320

300

280

260

240

360

340

320

300

280

260

240

360

340

320

300

280

260

240

360

340

320

300

280

260

240

360

340

320

300

280

260

240

0

200

400

600

800

300 350 400 450 500 550

Emission (nm)

0

200

400

600

800

300 350 400 450 500 550

0

200

400

600

800

0

200

400

600

800

Emission (nm)

300 350 400 450 500 550

0

200

400

600

800

Emission (nm)

300 350 400 450 500 550

Emission (nm)

300 350 400 450 500 550

Emission (nm)

results

EEMF

Comparison between fluorescence ranking

and mass intensity inter samples ranking

Sample EEMF FTICR/MS-Ranks (455 common compounds)

Nr Name Ranks C 17 H 14 O 11 C 20 H 28 O 7

Comp. …

RMU 0709

3

Comp.

455

1 RMU7 1 1 17 … … …

… WMU7 3 2 14 … … …

… TSP7 8 10 16 … … …

… STE7 15 15 19 … … …

… SBA7 18 19 11 … … …

… … … … … … … …

20 … … … … … … …

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

Excitation (nm)

WMU 0709

TSP 0709

STE 0709

SBA 0709

Rank correlation

(Spearman)

Level of significance 0.001 non sign.

FTICR/MS

for each compound


esults

H/C

2

1.5

1

0.5

Elemental formulae and their corresponding levels of

xxxsignificance for correlation with humic like fluorescence

Level of significance

for rank correlation

0.001

0.005

0.01

0.025

0.05

0.1

non sig.

C 20 H 28 O 7

C 17 H 14 O 11

0

0 0.2 0.4 0.6 0.8 1

O/C


Answers

Typical compound groups:

- No or minor proteins, carbohydrates, and lipids

- Dominant lignins and tannins

Seasonal behaviour

- Elevated input of tannins during summer months,

mainly in Red Mulde and White Mulde

- Opposite behaviour of the Saubach

Relation of fluorescence – compound groups

- The origin of humic like fluorescence (in this area)

can be allocated within the pool of tannic acids


Question to be answered.

1. What can be said about the relation between

fluorescence and DOC?

2. Is there any seasonal influence on the behaviour?

3. What can be said about the abundance of typical

compound groups?

4. How can the information be used for using best

raw drinking water?


As an example: citation from the U.S. Geolical Survey

tannins are more reactive with chlorine to produce

undesirable disinfection by-products than are terpenoids

the abundance of tannins correlates with humic like

fluorescence

low

Raw water

is appropriate

Fluoresc./DOC

quotient

+

DOC

?

quality

quantity

high

tannins

Raw water

is unsuitable

Drinking water abstraction


4. How can the information be used for using best raw drinking

water?

clear decision

better quality

worse quality

?


Conclusion

• In our study area tannins could be identified as an

ximportant biogeochemical pool within the DOC cycle of

xthe surface water

• The inter samples ranking analysis is the key to connect

xoptical properties of DOM with geochemical pools derived

xfrom FTICR/MS

• The humic like fluorescence is an easy and low cost

xadditional criterion for raw water quality evaluation


Visions:

• Investigation of different fluorescent compounds using

xPARAFAC (statistical fluorescence analysis)

• Correlation of fluorescence compounds derived from

xPARAFAC with geochemical pools derived from van

xKrevelen diagrams

• Correlation of fluorescent compounds and elemental

xformulae compounds with disinfection byproducts

xformation potential or flocculation costs


0.51 1.52 2.50

01

2.5 2,5

2.0 2

1.5 1,5

1.0 1

0.5 0,5

0

0 0,2 0,4 0,6 0,8 1

0,51 1,52 2,50

0

Opportunity to visit me at the posters

NOM characterisation in highly acidic iron rich pore waters of

mine pit lakes using ultra high – resolution mass spectrometry

Peter Herzsprung 1 , Norbert Hertkorn 2 ,MouradHarir 2 , Kurt Friese 1 , Philippe Schmitt-Kopplin 2

1 UFZ Centre for Environmental Research Leipzig-Halle, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany

2 HelmholtzZentrum München, German Research Center for Environment and Health, Institute of Ecological Chemistry, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

Contact: samples & ecology; elemental formula evaluation: peter.herzsprung@ufz.de, FTICR/MS: schmitt-kopplin@helmholtz-muenchen.de

Introduction

Analysis of DOM

The leakage of acidic mine drainage from abandoned mine tailings and High-resolution spectra were acquired (in the negative ion

overburden dumps, as a result of chemical and microbial oxidation of sulphide mode) with a APEX Qe FTICR mass spectrometer (Bruker,

minerals is of major environmental concern. While chemical parameters such Bremen, Germany) equipped with a 12 TESLA superconducting

as the amount of dissolved inorganic ions and the concentration of bulk magnet and an Apollo II microelectrospray source. FTICR mass

dissolved organic carbon (DOC) can be accurately determined, understanding spectral peaks with a signal-to-noise ratio (S/N) > 2 were

of the molecular composition of DOM in such acidic iron-rich environments exported to peak lists. Feasable elemental formulae (C≤100,

remains incomplete. The exceptional complexity of DOM requires highresolution

structural spectroscopy such as electrospray ionisation (ESI) validation). The procedure for extraction of reliable formulae

O≤80, N≤5, S≤1) were computed for each peak (after 13 C

Fourier transform ion cyclotron resonance mass spectrometry (FTICR/MS).

from the data set is described by Herzsrung et al. [1].

Differences in DOM quality abundance of elemental formulae

Lake 111 (2007) Lake Moritzteich (2007)

Lake Waldsee (2007)

Mixolimnion pH 2.6 + Monimolimnion pH 6.8

Monimolimnion pH 6.6

Mixolimnion pH 3.1

Mixolimnion pH 7.0

H/C

0.5

pore-water pH Fe SO 2-

4

DOC

0 - 2.5 cm

Lake 111 2.6 80 mg/l 1060 mg/l 19 mg/l

Lake Moritzteich 6.8 450 mg/l 330 mg/l 220 mg/l

acidic pore water neutral pore water

0

0 0.2 0.4 0.6 0.8 1

O/C

Further differentiation of elemental formulae with common abundance

inter samples ranking analysis of mass intensities

example pH rank within rank within

C 15 H 12 O 9 420 comp. 7 samples

0 – 2 cm 2.8 278 7

2 – 4 cm 3.0 220 5

4 – 6 cm 2.9 221 6

6 – 8 cm 3.0 205 4

10 – 15 cm 3.0 80 3

15 – 20 cm 3.2 71 2

> 20 cm 3.2 35 1

Conclusions

Differences in DOM quality can be demonstrated:

exemplified:

by C x H y O z S 1 and C x H y O z N 1 compounds for different lakes

and 2 different sediment depths respectively

by C x H y O z compounds for 7 sediment depths

by C x H y O z compounds for pore waters from 4 different lakes

• by different abundance diagrams

• by ranking analysis of formulae with

xcommon abundance

• in pore waters from different lakes

• as a function of sediment depth

H/C

2.5

2

C x y x H y O z z

Lake 111 (2009)

0-2 cm

1.5

2-4 cm

4-6 cm

6-8 cm

1

10-15 cm

15-20 cm

0.5

> 20 cm

rank 1

C15H12O9 C 12O 9

0

0 0.2 0.4 0.6 0.8 1

O/C

Trends can be observed:

Lake Waldsee pH Fe SO 2-

4 DOC

pore-water 0 - 2.5 cm 6.7 94 mg/l 68 mg/l 71 mg/l

pore-water > 20 cm 12 < 1 mg/l < 20 mg/l 29 mg/l

2.5

2.5

2.5

C common abundance

common abundance

x H y O z S 1 C x H y O z S 1

C x H y O z N 1

acidic

2

2

2

alkaline

1.5

1.5

1.5

neutral

1

different

1

1

abundance

H/C

0.5

Neutral iron rich pore waters seem to contain

more aromatic and oxygen rich NOM whereas

acidic or even alkaline pore waters are

dominated by more aliphatic and oxygen poor

compounds

H/C

alkaline pore water neutral pore water

0

0 0.2 0.4 0.6 0.8 1

O/C

H/C

2.5

0.5

alkaline pore water neutral pore water

0

0 0.2 0.4 0.6 0.8 1

O/C

Different pore waters

> 20 cm sediment depth (2007)

C x H y O z

References:

common abundance

2

Lake 111

pH 3

1.5

Waldsee

pH 12

1

Moritzteich

pH 6.5

0.5

Lake

rank 1

Goitsche

pH 5.8

0

0 0.2 0.4 0.6 0.8 1

O/C

[1] Herzsprung, P. et al. (2010)

Rapid. Commun. Mass Spectrom. 24,

2909-2924

Photochemical degradation of NOM compounds – itemisation

by single elemental formula evaluation received from ultrahigh-resolution

mass spectrometry

1.5

H/C

1

2.5

0.5

1. Samples from acidic

pit lake pore-waters

Artificial experiment

Sediment

Fe 3+ solution

pore-water

pH 2.3

rich in DOC and Fe 2+

contains no Fe 3+

Sunlight

Artificial solution

2

1.5

H/C

1

Dark

Br control

C x H y O z

0

0 0.2 0.4 0.6 0.8ND

1

O/C

PD

Lake Moritzteich

MinP

pore water (20 – 30 cm)

TD

NewP

2.5

2

0.5

FTICR / MS

Irradiated

sample Q

Comparison of educts and

products formula by formula

Q = Quartz glass

Br = Brown glass

Data mining

C x H y O z S 1

0

0 0.2 0.4 0.6 0.8 1

O/C

Examination of

degradation status

Peter Herzsprung 1a , Wolf von Tümpling 1b , Norbert Hertkorn 2 , Mourad Harir 2 , Kurt Friese 1a , Philippe Schmitt-Kopplin 2

1 UFZ Centre for Environmental Research Leipzig-Halle, Department a Lake Research / b River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany

2 HelmholtzZentrum München, German Research Center for Environment and Health, Institute of Ecological Chemistry, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

Contact: samples & ecology; elemental formula evaluation: peter.herzsprung@ufz.de, ICR-FT/MS: schmitt-kopplin@helmholtz-muenchen.de

Introduction

Analysis of DOM

Sunlight-induced photooxidation is an important removal pathway for DOM. ESI-

High-resolution spectra were acquired (in the negative ion

FTICR/MS as an high end analytical method becomes more and more important

mode) with a APEX Qe FTICR mass spectrometer (Bruker,

to explain sunlight-induced degradation processes [1,2]. For the assessment of

Bremen, Germany) equipped with a 12 TESLA superconducting

magnet and an Apollo II microelectrospray

photochemical changes in DOM a comparison of mass reactants and products,

which were received from FTICR/MS data tables, can be done formula by

source. FTICR mass spectral peaks with a signal-to-noise

formula [1,3]. In a rather simplified experiment, two different types of samples

ratio (S/N) > 2 were exported to peak lists. Feasable

(1. from acidic pit lake pore waters; 2. from a drinking water reservoir tributary)

elemental formulae (C≤100, O≤80, N≤5, S≤1) were computed

were exposed to sunlight. The spectra of the reactants were derived from

for each peak (after 13 C validation). The procedure for

measured dark control (brown glass flask) and the spectra of the products were

extraction of reliable formulae from the data set is

derived from investigated solution in the quartz glass flasks.

described by Herzsrung et al. [3].

Degradation

mass

Sample Calculated

(Da)

ND

ND

NewP

TD

PD

PD

MinP

MinP

H/C ratio

Br

Q

Q

Br

Br

Q

Br

Q

Mass

intensity

206.130680 3487448 18 13 2

206.130680 2700959 18 13 2

207.053159 12215212 9 10 4

207.071785 347281 13 11 1

208.019416 7829639 8 10 3

208.019416 2483020 8 10 3

208.037175 11848488 8 10 5

208.037175 177581290 8 10 5

H

C

O N S

ND: 50% (Br) < Int. (Q) < 200% (Br)

not significantly degraded

PD: Int. (Q) < 50% (Br)

partially degraded

MinP: Int. (Q) > 200% (Br)

minor new photoproduct

TD: Not found in Q, found in Br

totally degraded

NewP: Found in Q, not found in Br

newly formed photoproduct

Allocation of

geochemical pools in

van Krevelen diagrams

Simplified illustration

lipids proteins carbohydrates

lignins

tannins

black carbon

0

0 0.2 0.4 0.6 0.8 1.0

O/C ratio

References:

[1] Gonsior, M. et al. (2009)

Environ. Sci. Technol. 43,

698-703

[2] Kujawinski, E.B. et al. (2004)

Mar. Chem. 92, 23-37

[3] Herzsprung, P. et al. (2010)

Rapid. Commun. Mass Spectrom. 24,

2909-2924

0 0

0 0

1 0

1 1

0 1

0 1

0 0

0 0

2.5

2

1.5

H/C

1

0.5

2. Sample from a drinking

water reservoir tributary

Dark

Br control

Sample

FTICR / MS

Irradiated

sample Q

Comparison of educts and

products formula by formula

C x H y O z

Sunlight

Q = Quartz glass

Br = Brown glass

Data mining

0

0 0.2 0.4 0.6 0.8 1

O/C

Conclusions

Color coded van Krevelen diagrams

differentiation of the photo degradation behaviour of NOM

xxxis possible

Drinking water reservoir tributary

< 10% DOC mineralisation

total degradation mainly of tannic acid like compounds

C x H y O z S 1 not relevant compared to C x H y O z

ND

PD

MinP

TD

NewP

Pore waters from acidic mine pits (+ ferric iron)

> 40% DOC mineralisation on average

degradation of compounds from different geochemical

xxxpools

Higher degradation rate of C x H y O z S 1 compared to C x H y O z


2 0 0 0

1 8 0 0

1 6 0 0

1 4 0 0

1 2 0 0

1 0 0 0

8 0 0

6 0 0

4 0 0

2 0 0

0

2 4 0

2 5 0

2 6 0

2 7 0

2 8 0

2 9 0

3 0 0

3 1 0

3 2 0

3 3 0

3 4 0

3 5 0

3 6 0

Thank you for your attention

2

1.5

1

0.5

0

0 0.2 0.4 0.6 0.8 1

Questions?


Discussion


Discussion

Fluo-Imager M153

Used in the

laboratory

Excitation: 240 – 360 nm

Emission: 260 – 575 nm


Discussion

Excitation (nm)

360

340

320

300

280

irradiated sample

irradiated sample (mean)

0

200

400

600

800

Red Mulde

Excitation (nm)

360

340

320

300

280

dark control

0

200

400

600

800

dark control (mean)

260

9.1 mg/l DOC 260

9.7 mg/l DOC

240

300 350 400 450 500 550

Emission (nm)

dark control - irradiated sample

240

300 350 400 450 500 550

Emission (nm)

dark control - irradiated sample

Excitation (nm)

360

340

320

300

280

0

10

20

30

40

50

Excitation (nm)

360

340

320

300

280

0

50

100

150

200

260

240

300 350 400 450 500 550

Emission (nm)

relative

difference [%]

260

240

300 350 400 450 500 550

Emission (nm)

absolute

difference


Discussion


Discussion

MacDonald, B.C., Lvin, S.J., Patterson, H.: Correction of fluorescence

inner filter effects and the partitioning of pyrene to

dissolved organic carbon. Anal. Chim. Acta 338, 155-162 (1997).


Discussion

Intensity

(humic like fluorescence)

Median values

Excitation:

320 – 345 nm

Emission:

410 – 440 nm

700

600

500

400

300

200

100

0

Humic like fluorescence at different seasons

SBA

RMU8

STE

WMU

WMU7

RMU WMU8

TSP

RMU3

RMU1

SBA1

RMU4

WMU4

0 2 4 6 8 10 12 14

DOC mg/l

RMU7

WMU3

1= January

3= March

4= April

7= July

8= August


Discussion

0,6

RMU7

0,5

WMU3

0,4

RMU3

WMU7

RMU8

SBA

UV254

0,3

STE3

SBA3

TSP3

TSP4

STE

WMU

RMU

TSP

0,2

0,1

SBA8

SBA7

WMU8

TSP7

STE7

RMU4

WMU4

TSP8

STE8

Alle

Linear (Alle)

STE4

SBA4

0

0 2 4 6 8 10 12 14

DOC mg/l


Discussion

700

RMU7

600

RMU8

fluorescence intensity

500

400

300

200

STE4

TSP8

STE8

RMU4

WMU4

SBA7

WMU7

TSP4

TSP7

TSP3

WMU8

STE7 STE3

SBA3

RMU3

WMU3

SBA

STE

WMU

RMU

TSP

Alle

Polynomisch (Alle)

100

SBA4

SBA8

0

0 0,1 0,2 0,3 0,4 0,5 0,6

UV 254nm


Discussion

Evaluation of spectra by PARAFAC

Used: 52 Spectra, 11 sampling sites in 2009

PARAFAC = parallele faktor analysis

• based on a 3D-Matrix

X

( Ix JxK)

I

J

K

with

I … sample

J … excitation wave lengths

K … emission wave lengths

• aim: minimisation of error square sum

• algorithm: alternating least squares (ALS)

result: PARAFAC-model with 5 fluorescent compounds


Discussion

evaluation of spectra by PARAFAC

result: PARAFAC-model with 5 fluorescent compounds

Compound 3

Compound 1

Compound 2

Compound 4 Compound 5


intensity

25

20

15

10

5

0

sample 1 sample 2

sample 3

f 1 f 2 f 3 f 4 f 5

rank value

6

5

4

3

2

1

0

f 1 f 2 f 3 f 4 f 5

scaling by

rank calculation

rank value =

= 1 + number of formulae - rank

rank of

formula 1

formula 2

formula 3

formula 4

formula 5

rank

6

5

4

3

2

1

0

f 1 f 2 f 3 f 4 f 5

Discussion


ank value

10

8

6

4

2

0

sample 1 sample 2 sample 3 sample 4 sample 5

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

Discussion

Rank calculation between

samples considering the

specific rank values for

all formulae which are

abundant in each sample

sample rank compound

1 4 m1=300

2 1 m1=300

3 5 m1=300

4 3 m1=300

5 2 m1=300

rank

6

5

4

3

2

1

0

sample 1 sample 2 sample 3 sample 4 sample 5

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8


Discussion

2

Red Mulde / March

2

Red Mulde / April

1.5

1.5

1

1

RMU 0309

RMU 0409

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

0

2

1.5

1

0.5

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

Excitation (nm)

360

340

320

300

280

260

240

0

200

400

600

800

RMU 0709

Red Mulde / July

H/C

2,5

0

0

2

Rank 1

Rank 2

1.5

Rank 3

Rank 4

1

0.5

O/C

0 1

260

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

Excitation (nm)

360

340

320

300

280

260

0

200

400

600

800

RMU 0809

Red Mulde / August

260

0

240

300 350 400 450 500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1


Discussion

2

Red Mulde / March

2

Red Mulde / April

1,5

1,5

1

1

0,5

0,5

0

2

1,5

H/C

0 0,2 0,4 0,6 0,8 1

Red Mulde / July

0

O/C

2

1,5

0 0,2 0,4 0,6 0,8 1

Red Mulde / August

1

1

2,5

0,5

0,5

tannins

0

0

Rank 1

Rank 2

0Rank 3 0,2

Rank 4

0,4 0,6 0,8 1

0 1

0

0 0,2 0,4 0,6 0,8 1


Discussion

2

Saubach / March

2

Saubach / April

1.5

1.5

1

SBA 0309

1

SBA 0409

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

260

260

0

240

300 350 400 450 500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

2

Saubach / July

2

Saubach / August

1.5

1.5

1

SBA 0709

1

SBA 0809

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

260

260

0

240

300 350 400 450 500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1


Discussion

2

White Mulde / March

2

White Mulde / April

1.5

1.5

1

1

WMU 0309

WMU 0409

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

260

260

0

240

300 350 400 450 500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

2

White Mulde / July

2

White Mulde / August

1.5

1.5

1

WMU 0709

1

WMU 0809

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

260

260

0

240

300 350 400 450 500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1


Discussion

2

Sauteich Effluent // March

2

Sauteich Effluent // April

1.5

1.5

1

0.5

Excitation (nm)

360

340

Excitation (nm)

320

300

280

360

340

320

300

280

0

200

0

400

200

600

400

800

600

800

TSP 0309

STE 0309

1

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

TSP STE 0409

260

260

260

0

240

300 350 400 450 500 550

240

300 350 400 Emission 450(nm)

500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

2

Sauteich Effluent // July

2

Sauteich Effluent // August

1.5

1.5

1

STE TSP 0709 0709

1

STE TSP 0809 0809

0.5

Excitation (nm)

360

340

320

Excitation (nm)

300

280

360

340

320

300

280

0 0

200 200

400 400

600 600

800 800

0.5

Excitation (nm)

360

340

320

Excitation (nm)

300

280

360

340

320

300

280

0 0

200 200

400 400

600 600

800 800

260

260

260

260

0

240 240

300 300350 350400 400450 450500 500550

550

Emission Emission (nm) (nm)

0

240 240

300 300350 350400 400450 450500 500550

550

Emission Emission (nm) (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1


2

Effluent / March

2

Effluent / April

1.5

1.5

1

1

TSP 0309

TSP 0409

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

260

260

0

240

300 350 400 450 500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

2

Effluent / July

2

Effluent / August

1.5

1.5

1

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

TSP 0709

1

0.5

Excitation (nm)

360

340

320

300

280

0

200

400

600

800

TSP 0809

260

260

0

240

300 350 400 450 500 550

Emission (nm)

0

240

300 350 400 450 500 550

Emission (nm)

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1


2

Discussion

March

Rank 1

2

April

Rank 1

1.5

1.5

H/C

1

H/C

1

Red Mulde

Red Mulde

Saubach

Saubach

0.5

Sauteich

0.5

Sauteich

Effluent

Effluent

White Mulde

White Mulde

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O/C

O/C

2

2

July

Rank 1

August

Rank 1

1.5

1.5

H/C

1

H/C

1

Red Mulde

Red Mulde

Saubach

Saubach

0.5

Sauteich

0.5

Sauteich

Effluent

Effluent

White Mulde

White Mulde

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O/C

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O/C


Discussion

2

Red Mulde / March

2

Red Mulde / April

1.5

1.5

1

1

0.5

0

2

1.5

0 0.2 0.4 0.6 0.8

0

1

Red Mulde / July

2.5

Rank 1

0.5

Rank 2

Rank 3

Rank 04

Rank 5

0 1

2

1.5

0 0.2 0.4 0.6 0.8 1

Red Mulde / August

1

1

0.5

0.5

0

0

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1


Discussion

2,5

Tannic acids

compositions Tanninverbindungen reported in

the aus literature der Literatur

2

CHO

1,5

H/C

1

0,5

no

Tannin 1

Tannin 2

Tannin 3

Tannin 4

0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

O/C


Discussion

Gallotannins (hydrolyzable)


Discussion

Proanthocyanidins (condensed tannins) polymeric flavanoids


Discussion

Pivot chart

rank RMU

Sample 1 2 3 4 total

RMU3 207 97 97 237 638

RMU4 96 191 228 123 638

RMU7 138 199 195 106 638

RMU8 217 144 115 162 638

total 658 631 635 628 2552


Discussion

0.4

0.3

AImod = (1 + C - 0.5·O - S - 0.5·H) / (C - 0.5·O - S - N)

CHO

SRFA

TSP3

TSP4

TSP7

TSP8

number / total number

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AImod

1000

800

AImod = (1 + C - 0.5·O - S - 0.5·H) / (C - 0.5·O - S - N)

CHO

SRFA

TSP3

TSP4

TSP7

TSP8

total number

600

400

200

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AImod


0.4

Discussion

AImod = (1 + C - 0.5·O - S - 0.5·H) / (C - 0.5·O - S - N)

0.35

0.3

CHO

RMU3

WMU3

SBA3

STE3

TSP3

0.4

0.35

0.3

AImod = (1 + C - 0.5·O - S - 0.5·H) / (C - 0.5·O - S - N)

CHO

RMU4

WMU4

SBA4

STE4

TSP4

number / total number

0.25

0.2

0.15

number / total number

0.25

0.2

0.15

0.1

0.1

0.05

0.05

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AImod

AImod

0.4

0.35

0.3

AImod = (1 + C - 0.5·O - S - 0.5·H) / (C - 0.5·O - S - N)

CHO

RMU7

WMU7

SBA7

STE7

TSP7

0.4

0.35

0.3

AImod = (1 + C - 0.5·O - S - 0.5·H) / (C - 0.5·O - S - N)

CHO

RMU8

WMU8

SBA8

STE8

TSP8

number / total number

0.25

0.2

0.15

number / total number

0.25

0.2

0.15

0.1

0.1

0.05

0.05

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AImod

AImod


2

Discussion

Rank 5

CHO

SRFA C < 21

2

Rank 5

CHO

SRFA C > 20

1.5

Rank 4

1.5

Rank 4

Rank 3

Rank 3

Rank 2

Rank 2

H/C

1

Rank 1

H/C

1

Rank 1

H/C

0.5

Data from

Koch, B.P. et al. (2007)

0

Anal. Chem. 79, 1758

2

1.5

1

0 0.2 0.4 0.6 0.8 1

O/C

Rank 5

Rank 4

Rank 3

Rank 2

Rank 1

CHO

RMU7 C < 21

H/C

0.5

Suwannee River Fulvic Acid

0

2

1.5

1

0 0.2 0.4 0.6 0.8 1

Rank 5

Rank 4

Rank 3

Rank 2

Rank 1

O/C

CHO

RMU7 C > 20

0.5

0

0

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

O/C

O/C

0.5

Red Mulde / July


2.5

2

H/C

1.5

1

0.5

0

CHON1 CHOS1 CHON2-6

0 0.2 0.4 0.6 0.8 1

O/C

More magazines by this user
Similar magazines