22.05.2014 Views

PH2200 Formula Sheet - Physics

PH2200 Formula Sheet - Physics

PH2200 Formula Sheet - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>PH2200</strong> <strong>Formula</strong> <strong>Sheet</strong><br />

Electric Fields<br />

! kqq e 1 2 1<br />

F ˆ<br />

12<br />

= r k<br />

2<br />

e<br />

=<br />

r<br />

4πε<br />

o<br />

!<br />

! Fe<br />

E = lim<br />

qo<br />

→0<br />

qo<br />

! kq e<br />

E = rˆ<br />

2<br />

r<br />

! " kq<br />

E = E = rˆ<br />

∑<br />

∑<br />

e i<br />

i<br />

2 i<br />

i i ri<br />

! " kdq e<br />

E = ∫dE = ∫ rˆ<br />

2<br />

r<br />

Gauss's Law<br />

! !<br />

Φ = E⋅dA<br />

# ∫<br />

E<br />

! ! qin<br />

E⋅ dA=<br />

ε<br />

σ<br />

E =<br />

ε<br />

°<br />

∫<br />

°<br />

at conductor surface<br />

Electric Potential<br />

B ! !<br />

∆ U =−q E⋅ds<br />

kq e<br />

V()<br />

r =<br />

r<br />

kq e i<br />

V = ∑<br />

r<br />

x<br />

i<br />

12<br />

o<br />

i<br />

A<br />

B<br />

∆U<br />

! !<br />

∆ VA→B<br />

= =− E⋅ds<br />

q<br />

∫<br />

kdq e<br />

V = ∫<br />

r<br />

kqq e 1 2<br />

U =<br />

r<br />

E<br />

dV<br />

=−<br />

dx<br />

∫<br />

o<br />

Capacitance and Dielectrics<br />

Q<br />

C = ∆ V<br />

ε A<br />

C = °<br />

parallel-plate capacitor<br />

d<br />

A<br />

C 1<br />

= cylindrical capacitor<br />

l ⎛b<br />

⎞<br />

2ke<br />

ln⎜<br />

⎟<br />

⎝a<br />

⎠<br />

ab<br />

C =<br />

spherical capacitor<br />

k ( b − a )<br />

e<br />

C = C + C + C + ... parallel<br />

eq<br />

1<br />

2<br />

1 2 3<br />

1 1 1 1<br />

= + + + ... series<br />

C C C C<br />

eq<br />

1 2 3<br />

2<br />

Q<br />

1 1<br />

U = =<br />

2Q∆ V =<br />

2C( ∆V)<br />

2C<br />

2<br />

u = ε E<br />

E<br />

C = κC<br />

°<br />

o<br />

Current and Resistance<br />

∆Q<br />

Iav<br />

= ∆ t<br />

dq<br />

I =<br />

dt<br />

Iav<br />

= nqvd<br />

A<br />

! !<br />

J = nqvd<br />

! !<br />

J = σ E<br />

∆V<br />

R =<br />

I<br />

1<br />

ρ = σ<br />

ρl<br />

R =<br />

A<br />

ρ = ρ [1 + α( T −T<br />

)]<br />

o<br />

P = I∆V<br />

2 ( ∆V<br />

)<br />

P = I R=<br />

R<br />

Direct Current Circuits<br />

2<br />

R = R + R + R + ... series<br />

eq<br />

1 2 3<br />

1 1 1 1<br />

= + + + ... parallel<br />

R R R R<br />

eq<br />

∑Iin<br />

∑<br />

=<br />

closed loop<br />

o<br />

1 2 3<br />

∑<br />

I<br />

out<br />

∆ V = 0<br />

2<br />

qt = CE<br />

−e<br />

−t/<br />

RC<br />

( ) (1 ) charging<br />

It<br />

E<br />

= e<br />

R<br />

qt = Qe<br />

−t/<br />

RC<br />

( ) charging<br />

−t/<br />

RC<br />

( ) discharging<br />

Q<br />

=− e<br />

RC<br />

−t/<br />

RC<br />

( ) discharging<br />

It<br />

Magnetic Fields<br />

! ! !<br />

F = qv×<br />

B<br />

B<br />

FB<br />

= q vBsinθ<br />

! ! !<br />

FB<br />

= I L×<br />

B<br />

! ! !<br />

dFB<br />

= Ids × B<br />

! !<br />

µ = NIA<br />

! ! !<br />

τ = µ × B<br />

! !<br />

UB<br />

=−µ<br />

⋅B<br />

! ! ! !<br />

F = qE + qv×<br />

B<br />

mv qB<br />

r = , ω =<br />

qB m<br />

Sources of the Magnetic Field<br />

!<br />

!<br />

µ<br />

o Ids × rˆ<br />

dB =<br />

2<br />

4π<br />

r<br />

µ<br />

oI<br />

B = long straight wire<br />

2π<br />

a<br />

FB<br />

µ<br />

oII<br />

1 2<br />

=<br />

l 2π<br />

a<br />

! !<br />

B⋅ ds = µ I<br />

# ∫<br />

µ<br />

oNI<br />

B =<br />

2π<br />

r<br />

N<br />

B= µ<br />

o I = µ<br />

onI<br />

l<br />

! !<br />

Φ<br />

B<br />

= ∫ B⋅dA<br />

! !<br />

B⋅ dA=<br />

0<br />

# ∫<br />

Faraday's Law<br />

dΦ<br />

E =−N<br />

dt<br />

E =−Blv<br />

o<br />

B<br />

dΦ<br />

∫ E ! !<br />

# ⋅ ds =−<br />

dt<br />

B<br />

toroid<br />

solenoid


Inductance<br />

dΦ<br />

E<br />

dt<br />

NΦB<br />

L =<br />

I<br />

2<br />

µ<br />

oN A<br />

L =<br />

l<br />

E<br />

I = −e<br />

R<br />

E −Rt / L<br />

I = e<br />

R<br />

2<br />

U = LI<br />

B<br />

L<br />

=− N =−<br />

1<br />

2<br />

dI<br />

L<br />

dt<br />

−Rt / L<br />

(1 ) rising current<br />

2 12 1 21<br />

12 21<br />

I1 I2<br />

solenoid<br />

decaying current<br />

2<br />

B<br />

uB<br />

=<br />

2µ<br />

°<br />

N Φ N Φ<br />

M = = M = = M<br />

dI<br />

dI<br />

E =− M and E =−M<br />

dt<br />

dt<br />

Q= Qmax<br />

cos( ωt+<br />

φ)<br />

1<br />

ω =<br />

LC<br />

U = UC<br />

+ UL<br />

2 2<br />

Qmax<br />

2 LImax<br />

2<br />

= cos ωt+<br />

sin ωt<br />

2C<br />

2<br />

1 2<br />

2 12 1 21<br />

Alternating Current Circuits<br />

Irms<br />

= 0.707I<br />

∆Vrms<br />

0.707V<br />

X = ωL<br />

L<br />

1 1 2 2<br />

max<br />

max<br />

1<br />

X C<br />

=<br />

ωC<br />

2 2<br />

Z = R + ( XL<br />

− XC)<br />

−1<br />

⎛ XL<br />

− XC<br />

⎞<br />

φ = tan ⎜ ⎟<br />

⎝ R ⎠<br />

Pav = Irms∆Vrms<br />

cosφ<br />

2<br />

Pav<br />

= IrmsR<br />

∆Vrms<br />

Irms<br />

=<br />

R + ( X − X )<br />

1<br />

ωo<br />

=<br />

LC<br />

I ∆ V = I ∆V<br />

2 2<br />

L C<br />

Electromagnetic Waves<br />

# ∫<br />

S<br />

# ∫<br />

S<br />

! ! Q<br />

E⋅ dA=<br />

εo<br />

! !<br />

B⋅ dA=<br />

0<br />

! ! dΦ<br />

B<br />

# ∫ E⋅ ds =−<br />

dt<br />

! !<br />

dΦ<br />

# ∫ B⋅ ds = µ<br />

oI<br />

+ ε<br />

oµ<br />

o<br />

dt<br />

1<br />

c =<br />

εµ<br />

o o<br />

fλ<br />

= c<br />

Emax<br />

E<br />

= = c<br />

Bmax<br />

B<br />

! !<br />

! E×<br />

B<br />

S =<br />

µ<br />

°<br />

E B<br />

= = =<br />

max max<br />

I Sav<br />

cuav<br />

2µ<br />

o<br />

2<br />

1 2 B<br />

uB = uE = ε<br />

2 oE<br />

=<br />

2µ<br />

o<br />

B<br />

u = ε E =<br />

av<br />

1<br />

2<br />

o<br />

2<br />

2 max<br />

max<br />

2µ<br />

o<br />

U S<br />

p= P=<br />

c c<br />

2U<br />

2S<br />

p = P =<br />

c c<br />

E<br />

complete absorption<br />

complete reflection<br />

The Nature of Light and<br />

the Laws of Geometric Optics<br />

θ'<br />

1<br />

= θ1<br />

n1sinθ1 = n2sinθ2<br />

c<br />

n =<br />

v<br />

λ<br />

λn<br />

=<br />

n<br />

n<br />

θ = ><br />

2<br />

sin<br />

c<br />

(for n1 n2)<br />

n1<br />

Geometric Optics<br />

h'<br />

M =<br />

h<br />

1 1 2 1<br />

+ = =<br />

p q R f<br />

n n n − n<br />

+ =<br />

p q R<br />

1 2 2 1<br />

1 ⎛ 1 1 ⎞<br />

= ( n −1)<br />

⎜ − ⎟<br />

f ⎝ R1 R2<br />

⎠<br />

1 1 1<br />

+ =<br />

p q f<br />

Physical Constants<br />

9 2 2<br />

ke<br />

= 8.988× 10 N⋅m / C<br />

−12 2 2<br />

εo<br />

= 8.854× 10 C / N⋅m<br />

−19<br />

e= 1.602 × 10 C<br />

−31<br />

melectron<br />

= 9.109 × 10 kg<br />

−27<br />

mproton<br />

= 1.672×<br />

10 kg<br />

−7<br />

µ<br />

°<br />

= 4π<br />

× 10 T⋅m/<br />

A<br />

1<br />

8<br />

c= = 2.998×<br />

10 m/<br />

s<br />

εµ<br />

° °<br />

Useful Geometry<br />

Circle<br />

2<br />

Area = π r<br />

Circumference = 2π<br />

r<br />

Sphere<br />

Surface area = 4π<br />

r<br />

4 3<br />

Volume = π<br />

3<br />

r<br />

Cylinder<br />

Lateral surface<br />

area = 2π<br />

rL<br />

2<br />

Volume = π rL<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!