30.05.2014 Views

HEAT PROCESSING Read all about the exhibition in the Aluminium 2014 Special (Vorschau)

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

International Magaz<strong>in</strong>e for Industrial Furnaces<br />

Heat Treatment & Equipment<br />

02 I <strong>2014</strong><br />

ISSN 1611-616X<br />

Vulkan-Verlag<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

<strong>Read</strong> <strong>all</strong> <strong>about</strong> <strong>the</strong> <strong>exhibition</strong> <strong>in</strong> <strong>the</strong> ALUMINIUM <strong>2014</strong> SPECIAL<br />

Visit us <strong>in</strong> H<strong>all</strong> 10 / Booth F54<br />

ALUMINIUM <strong>2014</strong><br />

7 th - 9 th October <strong>2014</strong><br />

Düsseldorf, Germany<br />

2 EcoMelter©, capacity 105t per day / content 35t each<br />

PulsReg® Medusa Regenerators<br />

October, 07.-09.<br />

Düsseldorf, Stand 10C11<br />

Sett<strong>in</strong>g The Standards For Highest<br />

Efficiency In Thermal Process<strong>in</strong>g<br />

JASPER<br />

Gesellschaft für Energiewirtschaft und Kybernetik mbH / Bönn<strong>in</strong>ghauser Str. 10 / D-59590 Geseke<br />

Telefon: +49 2942 9747 0 / Fax: +49 2942 9747 47 / www.jasper-gmbh.de / <strong>in</strong>fo@jasper-gmbh.de


EDITORIAL<br />

Alum<strong>in</strong>ium <strong>in</strong> <strong>the</strong> automotive <strong>in</strong>dustry:<br />

A material with a promis<strong>in</strong>g future<br />

The history of <strong>in</strong>dustrial alum<strong>in</strong>ium production is as old as <strong>the</strong><br />

automobile. However, <strong>the</strong> path shared by <strong>the</strong> lightweight<br />

metal and <strong>the</strong> product segment is still relatively recent. But <strong>the</strong>re<br />

are strong <strong>in</strong>dications that this relationship will become even<br />

closer. Alum<strong>in</strong>ium is now <strong>the</strong> most important lightweight material<br />

used <strong>in</strong> <strong>the</strong> automotive sector. And its development cont<strong>in</strong>ues.<br />

Vehicle manufactur<strong>in</strong>g will offer good growth prospects<br />

to alum<strong>in</strong>ium <strong>in</strong> <strong>the</strong> future as well.<br />

Lightweight, corrosion-resistant, and recyclable, without<br />

any loss of quality – alum<strong>in</strong>ium meets <strong>all</strong> <strong>the</strong> requirements of<br />

a modern material for <strong>the</strong> implementation of modern mobility<br />

concepts. The automobile manufactur<strong>in</strong>g <strong>in</strong>dustry is <strong>in</strong>creas<strong>in</strong>gly<br />

exploit<strong>in</strong>g <strong>the</strong> flexible capabilities of lightweight alum<strong>in</strong>ium. It<br />

can be used <strong>in</strong> a wide variety of components and also enables<br />

a variety of manufactur<strong>in</strong>g processes. S<strong>in</strong>ce 1990, alum<strong>in</strong>ium<br />

content <strong>in</strong> cars has almost tripled, from 50 to 140 kg. And <strong>the</strong><br />

demand for <strong>in</strong>novative lightweight solutions cont<strong>in</strong>ues to rise.<br />

In <strong>the</strong> competition between construction materials, alum<strong>in</strong>ium<br />

has excellent prospects. The automotive <strong>in</strong>dustry and its<br />

suppliers <strong>in</strong>creas<strong>in</strong>gly demand new applications for alum<strong>in</strong>ium.<br />

The times <strong>in</strong> which <strong>the</strong> lightweight metal was primarily used <strong>in</strong><br />

<strong>the</strong> luxury car segment have long s<strong>in</strong>ce passed. More and more,<br />

alum<strong>in</strong>ium is be<strong>in</strong>g used for compact cars as well as mid-size<br />

vehicles – <strong>in</strong> eng<strong>in</strong>es, <strong>the</strong> auto body, and chassis. In particular,<br />

complex and highly stressed structural parts are prov<strong>in</strong>g to be<br />

growth drivers for this material. As a result, <strong>the</strong> outlook is good:<br />

Experts forecast that on average up to 180 kg of alum<strong>in</strong>ium will<br />

be <strong>in</strong>st<strong>all</strong>ed per vehicle by 2020.<br />

The requirements of car manufacturers and <strong>the</strong> highly specialized<br />

supplier <strong>in</strong>dustry are also push<strong>in</strong>g <strong>the</strong> material and process<br />

development of <strong>all</strong> th<strong>in</strong>gs alum<strong>in</strong>ium. We are regularly develop<strong>in</strong>g<br />

new <strong>all</strong>oys with improved mechanical properties, <strong>in</strong>clud<strong>in</strong>g<br />

stability, formability, and corrosion resistance. Alum<strong>in</strong>ium recycl<strong>in</strong>g<br />

is also of grow<strong>in</strong>g importance. In times of costly power<br />

and dw<strong>in</strong>dl<strong>in</strong>g reserves of raw materials, <strong>the</strong> materials cycle is<br />

<strong>in</strong>creas<strong>in</strong>gly ga<strong>in</strong><strong>in</strong>g value. The use of recycled alum<strong>in</strong>ium also<br />

leads to a significantly better carbon footpr<strong>in</strong>t. It not only reduces<br />

<strong>the</strong> environmental impact of production process, but ensures a<br />

higher-quality end product.<br />

The <strong>in</strong>tensive collaboration between materials specialists,<br />

fabricators, and automobile manufacturers will open fur<strong>the</strong>r<br />

application areas and development potential for <strong>the</strong> lightweight<br />

material alum<strong>in</strong>ium. We live <strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium age. This “young”<br />

metal has by no means reached <strong>the</strong> zenith of its development.<br />

I'm look<strong>in</strong>g forward to <strong>the</strong> Alum<strong>in</strong>ium trade fair – see you <strong>in</strong><br />

October <strong>in</strong> Düsseldorf, Germany.<br />

Thomas Reu<strong>the</strong>r<br />

Member of <strong>the</strong> Management Board<br />

Trimet Alum<strong>in</strong>ium SE<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

1


HOT SHOTS<br />

8 heat process<strong>in</strong>g 2-<strong>2014</strong>


HOT SHOTS<br />

Heated Transfer Table<br />

State-of-<strong>the</strong>-art furnace design: tailor-made<br />

combustion and control systems guarantee<br />

higher temperatures (up to 1,120 °C) and<br />

optimum head – tail uniformity (+/- 5 °C).<br />

(Source: Danieli Centro Combustion S.p.A.)<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

9


NEWS<br />

Trade & Industry<br />

Tulachermet-Steel and SMS Group sign 180 million euro order<br />

Tulachermet-Steel and SMS Group have<br />

concluded a contract for <strong>the</strong> supply<br />

of a complete steelworks with a connected<br />

cont<strong>in</strong>uous billet caster and two<br />

connected light-section mills. The order<br />

value comes to around € 180 million. The<br />

contract was signed <strong>in</strong> <strong>the</strong> presence of<br />

<strong>the</strong> State Secretary of <strong>the</strong> M<strong>in</strong>istry of Economic<br />

Affairs of <strong>the</strong> Federal State of North<br />

Rh<strong>in</strong>e-Westphalia, Gün<strong>the</strong>r Horetzky, and<br />

<strong>the</strong> Consul General of <strong>the</strong> Russian Federation,<br />

Evgeni Shmag<strong>in</strong>.<br />

Agreed was <strong>the</strong> construction of a converter-based<br />

steel and roll<strong>in</strong>g mill complex<br />

<strong>in</strong> <strong>the</strong> immediate vic<strong>in</strong>ity<br />

of <strong>the</strong> Tulachermet<br />

iron works around<br />

200 km to <strong>the</strong> south of<br />

Moscow. Tulachermet-<br />

Steel will assume <strong>the</strong><br />

project management<br />

and <strong>the</strong> construction<br />

activities. The contracts<br />

for <strong>the</strong> construction<br />

and <strong>in</strong>st<strong>all</strong>ation work<br />

will be placed with Russian<br />

companies.<br />

The roll<strong>in</strong>g mills,<br />

which will make light<br />

sections, bar steel<br />

and wire rod, will be<br />

designed for an annual<br />

capacity of 1.5 million t<br />

<strong>in</strong> <strong>the</strong> first phase, with <strong>the</strong> possibility of a<br />

later <strong>in</strong>crease to 2 million t. The major part of<br />

<strong>the</strong> production will be supplied to Moscow<br />

and to o<strong>the</strong>r regions <strong>in</strong> Central Russia. Here,<br />

<strong>the</strong>re is a demand for high-quality steel<br />

products, above <strong>all</strong> from <strong>the</strong> construction<br />

<strong>in</strong>dustry and from mechanical eng<strong>in</strong>eer<strong>in</strong>g<br />

and automotive companies. The steelworks<br />

and roll<strong>in</strong>g mill complex will go <strong>in</strong>to operation<br />

<strong>in</strong> 2016.<br />

SMS Siemag is supply<strong>in</strong>g a 160-t converter<br />

shop, equipped with a restra<strong>in</strong>t-free<br />

lamella suspension system and a dedust<strong>in</strong>g<br />

plant. The latter will be fitted with<br />

electrostatic precipitators from SMS Elex.<br />

SMS Siemag will also be supply<strong>in</strong>g an<br />

energy recovery system. For <strong>the</strong> fur<strong>the</strong>r<br />

optimization of energy efficiency, SMS Siemag<br />

can provide a converter-gas recovery<br />

and mix<strong>in</strong>g plant for subsequent combustion<br />

of <strong>the</strong> gas <strong>in</strong> <strong>the</strong> exist<strong>in</strong>g Tulachermet<br />

power station. SMS Concast is supply<strong>in</strong>g a<br />

ladle furnace, a tw<strong>in</strong>-tank vacuum degass<strong>in</strong>g<br />

facility for secondary met<strong>all</strong>urgical<br />

treatment and a six-strand billet caster.<br />

The cont<strong>in</strong>uous caster will be equipped<br />

with Convex ® technology and be able<br />

to produce square sections <strong>in</strong> sizes from<br />

150 х 150 to 180 х 180 mm. SMS Meer is<br />

supply<strong>in</strong>g two almost identical light-section<br />

mills, each of which will be supplied<br />

by a walk<strong>in</strong>g beam furnace with a capacity<br />

of 160 t/h. One of <strong>the</strong>se light-section mills<br />

will be equipped with a wire rod l<strong>in</strong>e for<br />

<strong>the</strong> production of quality steel <strong>in</strong> <strong>the</strong> form<br />

of bar steel and wire rod. SMS group is also<br />

supply<strong>in</strong>g <strong>the</strong> electrical and automation<br />

systems for <strong>all</strong> production l<strong>in</strong>es.<br />

Tulachermet-Steel is a Russian-based<br />

company established by several <strong>in</strong>vestors<br />

with <strong>the</strong> participation of shareholders<br />

of <strong>the</strong> KOKS Group. The KOKS Group is a<br />

lead<strong>in</strong>g producer of merchant pig iron and<br />

coke. Fur<strong>the</strong>rmore, <strong>the</strong> group possesses<br />

various assets for <strong>the</strong> production of highquality<br />

cok<strong>in</strong>g coal and <strong>the</strong> extraction and<br />

process<strong>in</strong>g of iron ore.<br />

Schneider Electric completes <strong>the</strong> acquisition of Invensys<br />

Schneider Electric announced that it<br />

has completed its acquisition of Invensys<br />

plc, a global automation player with a<br />

large <strong>in</strong>st<strong>all</strong>ed base and a strong software<br />

presence. With this acquisition, Schneider<br />

Electric is significantly enhanc<strong>in</strong>g its position<br />

as a provider of efficiency solutions<br />

<strong>in</strong>tegrat<strong>in</strong>g power and automation. The<br />

transaction will <strong>all</strong>ow <strong>the</strong> comb<strong>in</strong>ed entity<br />

to have a unique position <strong>in</strong> <strong>in</strong>dustrial and<br />

<strong>in</strong>frastructure end-markets.<br />

Jean-Pascal Tricoire, Chairman and<br />

CEO of Schneider Electric, commented<br />

that <strong>the</strong>y are delighted to announce <strong>the</strong><br />

completion of <strong>the</strong> acquisition of Invensys<br />

and warmly welcome <strong>the</strong> teams<br />

jo<strong>in</strong><strong>in</strong>g <strong>the</strong>m. With Invensys, Schneider<br />

Electric will re<strong>in</strong>force its <strong>in</strong>dustrial automation<br />

capabilities, boost its positions<br />

<strong>in</strong> key energy-<strong>in</strong>tensive segments and<br />

streng<strong>the</strong>n its software offer<strong>in</strong>g. Clemens<br />

Blum, Executive Vice-President of <strong>the</strong><br />

Industry bus<strong>in</strong>ess of Schneider Electric<br />

added that Invensys br<strong>in</strong>gs proven capabilities<br />

<strong>in</strong> process automation technologies<br />

that are very complementary with<br />

those of Schneider Electric’s Industry<br />

bus<strong>in</strong>ess and that <strong>the</strong>y are now <strong>in</strong> a position<br />

to offer to both <strong>the</strong> own customers<br />

and those of Invensys a unique value<br />

proposition <strong>in</strong> terms of segment knowhow,<br />

technologies and geographic footpr<strong>in</strong>t.<br />

10 heat process<strong>in</strong>g 2-<strong>2014</strong>


Trade & Industry<br />

NEWS<br />

Cooperation contract between Aichel<strong>in</strong> Group and<br />

BSN Thermoprozesstechnik<br />

The market for press-hardened steel<br />

sheets for <strong>the</strong> automotive <strong>in</strong>dustry, soc<strong>all</strong>ed<br />

blanks, is one of <strong>the</strong> most rapidly<br />

grow<strong>in</strong>g markets <strong>in</strong> <strong>the</strong> <strong>the</strong>rmo-process sector<br />

and has quadrupled with<strong>in</strong> <strong>the</strong> last decade.<br />

In order to take account of this dynamic<br />

development, two companies <strong>in</strong> this <strong>in</strong>dustry<br />

have now signed a trendsett<strong>in</strong>g cooperation<br />

and license contract <strong>in</strong> order to comply even<br />

more precisely with <strong>the</strong>ir customers’ highly<br />

demand<strong>in</strong>g and <strong>in</strong>novative ch<strong>all</strong>enges.<br />

Based on <strong>the</strong>ir common vision “We will<br />

not do anyth<strong>in</strong>g but we will strive for perfection<br />

<strong>in</strong> what we do” Aichel<strong>in</strong> and BSN<br />

signed a license treaty, which stipulates a<br />

close technological cooperation between<br />

<strong>the</strong> two companies accord<strong>in</strong>g to <strong>the</strong> “best<br />

practice“ pr<strong>in</strong>ciple.<br />

Their common service portfolio comprises<br />

design, eng<strong>in</strong>eer<strong>in</strong>g, manufactur<strong>in</strong>g,<br />

delivery and start<strong>in</strong>g-up as well as <strong>the</strong><br />

after-sales service of ready-for-use plants for<br />

<strong>the</strong> heat<strong>in</strong>g of blanks for subsequent pressharden<strong>in</strong>g<br />

for <strong>the</strong> automotive <strong>in</strong>dustry as<br />

well as <strong>the</strong> harden<strong>in</strong>g of shafts and o<strong>the</strong>r<br />

steel components. They have developed<br />

an <strong>in</strong>novative furnace whose walk<strong>in</strong>g beam<br />

technology <strong>all</strong>ows to heat lam<strong>in</strong>ated blanks<br />

or components up to <strong>the</strong> right temperature<br />

with<strong>in</strong> a short period of time and <strong>the</strong>n<br />

subsequently convey <strong>the</strong>m <strong>in</strong>to <strong>the</strong> press<br />

with maximum precision, said Dipl.-Ing. W.<br />

Schütt, manag<strong>in</strong>g partner of company BSN,<br />

regard<strong>in</strong>g <strong>the</strong> technology process, which<br />

has been patented <strong>in</strong> <strong>the</strong> meantime. For<br />

a promis<strong>in</strong>g customer, a major supplier <strong>in</strong><br />

<strong>the</strong> automotive sector, BSN and Aichel<strong>in</strong> are<br />

already work<strong>in</strong>g <strong>in</strong>tensively on <strong>the</strong> technological<br />

solution as well as <strong>the</strong> actual design<br />

for four comprehensive plants. The particular<br />

ch<strong>all</strong>enge with this first project consists<br />

<strong>in</strong> <strong>the</strong> fact that <strong>the</strong> customer has demanded<br />

two plants for his sites <strong>in</strong> Europe as well as<br />

one for Ch<strong>in</strong>a and one for <strong>the</strong> USA, which<br />

are to be supplied with<strong>in</strong> a cont<strong>in</strong>uous<br />

period of 18 months. The customer trusts<br />

<strong>in</strong> <strong>the</strong> new cooperation with BSN, which<br />

comb<strong>in</strong>es <strong>the</strong> <strong>in</strong>novation, precision and<br />

<strong>in</strong>ternationality of <strong>the</strong> sites <strong>in</strong> a unique way<br />

<strong>in</strong> order to carry out <strong>the</strong> project accord<strong>in</strong>g<br />

to <strong>the</strong> customer’s wishes and <strong>in</strong> due time.<br />

Accord<strong>in</strong>g to Dr. Thomas Dopler, CEO of<br />

Aichel<strong>in</strong> Ges.m.b.H., Mödl<strong>in</strong>g, Austria, <strong>the</strong><br />

placement of an order is imm<strong>in</strong>ent.<br />

Innovative Heat Treatment Systems<br />

H<strong>all</strong> 10<br />

Stand E30/08<br />

For hot-form harden<strong>in</strong>g,<br />

harden<strong>in</strong>g, anneal<strong>in</strong>g,<br />

s<strong>in</strong>ter<strong>in</strong>g and braz<strong>in</strong>g<br />

etc.<br />

Also under protective and<br />

reactive atmospheres<br />

schwartz GmbH<br />

Edisonstrasse 5<br />

D-52152 Simmerath<br />

Germany<br />

schwartz Heat Treatment Systems<br />

Asia (Kunshan) Co. Ltd.<br />

278 JuJ<strong>in</strong> Road<br />

Zhangpu Town Kunshan City<br />

Jiangsu Prov<strong>in</strong>ce<br />

215321, P.R. Ch<strong>in</strong>a<br />

For more <strong>in</strong>formation visit: www.schwartz-wba.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

schwartz, Inc.<br />

2015 J. Route 34<br />

Oswego IL 60543<br />

USA<br />

11


NEWS<br />

Trade & Industry<br />

Schuler celebrates 175 th anniversary<br />

The press manufacturer<br />

Schuler<br />

is celebrat<strong>in</strong>g its<br />

175 th year <strong>in</strong> bus<strong>in</strong>ess<br />

<strong>in</strong> <strong>2014</strong>. Louis<br />

Schuler founded<br />

<strong>the</strong> company <strong>in</strong><br />

1839 as a metalwork<strong>in</strong>g<br />

shop <strong>in</strong><br />

Göpp<strong>in</strong>gen’s Sauerbrunnengasse<br />

<strong>in</strong><br />

Germany. Nobody<br />

at <strong>the</strong> time would<br />

have thought that<br />

<strong>the</strong> little workshop<br />

would one<br />

day become a<br />

global corporation with sales of almost<br />

€ 1.2 billion.<br />

A 175 th company anniversary is rare. To<br />

mark <strong>the</strong> occasion, Schuler’s celebrations will<br />

<strong>the</strong>refore <strong>in</strong>clude a central event for employees<br />

at its base <strong>in</strong> Göpp<strong>in</strong>gen, Germany, to<br />

be held <strong>in</strong> July. In addition, a special website<br />

presents 175 m<strong>in</strong>or and major moments<br />

which have shaped Schuler over <strong>the</strong> years.<br />

These <strong>in</strong>clude, for example, <strong>the</strong> moment<br />

<strong>in</strong> 1852 when founder Louis Schuler –<br />

<strong>in</strong>spired by <strong>the</strong> Great Exhibition <strong>in</strong> London<br />

one year previously – decided to dedicate<br />

his future to <strong>the</strong> construction of mach<strong>in</strong>es<br />

for sheet metal process<strong>in</strong>g. However, he<br />

himself could no longer witness his company’s<br />

own exhibit at <strong>the</strong> World Exhibition <strong>in</strong><br />

Paris <strong>in</strong> 1900: <strong>the</strong> world’s first transfer press.<br />

Over <strong>the</strong> follow<strong>in</strong>g years, <strong>the</strong> company’s<br />

headcount grew to 1,000. With a car body<br />

press for Opel <strong>in</strong> 1924, Schuler began supply<strong>in</strong>g<br />

<strong>the</strong> fledgl<strong>in</strong>g auto <strong>in</strong>dustry, which<br />

is still its most important customer today.<br />

After <strong>the</strong> Second World War, Schuler was<br />

<strong>the</strong> first company <strong>in</strong> <strong>the</strong> American sector<br />

to receive an export license. In <strong>the</strong> 1970s<br />

<strong>the</strong> company drove its <strong>in</strong>ternationalization<br />

with <strong>the</strong> foundation of subsidiaries <strong>in</strong> Brazil<br />

and North America, for example, followed<br />

by Ch<strong>in</strong>a and India <strong>in</strong> <strong>the</strong> 1990s.<br />

Meanwhile, Peugeot launched production<br />

on <strong>the</strong> first Crossbar Transfer press with<br />

suction-cup tool<strong>in</strong>g – supplied by Schuler.<br />

Fur<strong>the</strong>r <strong>in</strong>novations <strong>in</strong> recent years, such<br />

as Compact-Crossbar presses, ServoDirect<br />

and Tw<strong>in</strong>Servo technologies, have<br />

underl<strong>in</strong>ed Schuler’s position <strong>in</strong> <strong>the</strong> field<br />

of metalform<strong>in</strong>g. This is also reflected by<br />

its bus<strong>in</strong>ess success: <strong>in</strong> 2012, <strong>the</strong> Schuler<br />

Group posted sales of more than € 1 billion.<br />

Tata Steel began fourth trial on breakthrough ironmak<strong>in</strong>g<br />

technology<br />

At its IJmuiden works <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands<br />

Tata Steel is to beg<strong>in</strong> a fourth test production<br />

campaign on <strong>the</strong> HIsarna pilot plant.<br />

The trial is scheduled to start mid-May and<br />

last <strong>about</strong> six weeks.<br />

HIsarna is a new technology, partly<br />

developed <strong>in</strong> IJmuiden, which enables <strong>the</strong><br />

direct <strong>in</strong>put of coal and f<strong>in</strong>e iron ore <strong>in</strong>to <strong>the</strong><br />

ironmak<strong>in</strong>g furnace. The technology saves<br />

energy consumption by elim<strong>in</strong>at<strong>in</strong>g two of<br />

<strong>the</strong> key raw materials process<strong>in</strong>g stages <strong>in</strong><br />

blast furnace ironmak<strong>in</strong>g: cok<strong>in</strong>g (<strong>the</strong> production<br />

of coke from coal) and s<strong>in</strong>ter<strong>in</strong>g (<strong>the</strong><br />

agglomeration of f<strong>in</strong>e iron ore). Should <strong>the</strong><br />

HIsarna technology prove technic<strong>all</strong>y and<br />

commerci<strong>all</strong>y viable, <strong>the</strong> elim<strong>in</strong>ation of <strong>the</strong>se<br />

process<strong>in</strong>g steps could reduce <strong>the</strong> emission<br />

of carbon dioxide from conventional ironmak<strong>in</strong>g<br />

by 20 %.<br />

Hans Fischer, Chief Technical Officer of Tata<br />

Steel’s European operations and hub director<br />

of Tata Steel <strong>in</strong> IJmuiden, said that <strong>the</strong>y<br />

are very proud to have succeeded <strong>in</strong> design<strong>in</strong>g<br />

and construct<strong>in</strong>g this <strong>in</strong>st<strong>all</strong>ation and to<br />

have advanced this potenti<strong>all</strong>y breakthrough<br />

technology to this stage. Dur<strong>in</strong>g <strong>the</strong> third test<br />

campaign last year liquid HIsarna iron was<br />

produced <strong>in</strong> longer production runs than <strong>in</strong><br />

previous campaigns and was used for <strong>the</strong> first<br />

time <strong>in</strong> <strong>the</strong> commercial steelmak<strong>in</strong>g process.<br />

He added that a project of this size is not<br />

carried out by a s<strong>in</strong>gle company. Tata Steel<br />

is work<strong>in</strong>g closely with several o<strong>the</strong>r major<br />

steel companies <strong>in</strong> <strong>the</strong> ULCOS (Ultra Low CO 2<br />

Steelmak<strong>in</strong>g) consortium and with m<strong>in</strong><strong>in</strong>g<br />

firm Rio T<strong>in</strong>to. The project is be<strong>in</strong>g carefully<br />

monitored by scientists and steel producers<br />

from <strong>all</strong> over <strong>the</strong> world. HIsarna has <strong>the</strong><br />

potential to become a ‘game-changer’ <strong>in</strong> <strong>the</strong><br />

steel <strong>in</strong>dustry. It is one of several technologies<br />

regarded as hav<strong>in</strong>g real prospects of fur<strong>the</strong>r<br />

improv<strong>in</strong>g <strong>the</strong> susta<strong>in</strong>ability of steelmak<strong>in</strong>g.<br />

Despite <strong>the</strong> ch<strong>all</strong>eng<strong>in</strong>g economic circumstances<br />

<strong>in</strong> Europe, Tata Steel and its<br />

ULCOS partners have cont<strong>in</strong>ued to support<br />

<strong>the</strong> HIsarna project. But future phases of<br />

HIsarna’s development will require very substantial<br />

<strong>in</strong>vestment that will exceed what <strong>the</strong><br />

project partners can provide by <strong>the</strong>mselves.<br />

The partners are now look<strong>in</strong>g for fur<strong>the</strong>r support<br />

from <strong>the</strong> European Commission and <strong>the</strong><br />

Dutch government to enable this potenti<strong>all</strong>y<br />

breakthrough technology to progress to <strong>the</strong><br />

next and more advanced stage.<br />

The fourth test campaign aims to produce<br />

liquid iron <strong>in</strong> a series of production runs, each<br />

last<strong>in</strong>g several days, and to test <strong>the</strong> use of<br />

different types of coal and iron ore. After<br />

analys<strong>in</strong>g <strong>the</strong> results of this campaign, Tata<br />

Steel and its partners will start prepar<strong>in</strong>g for<br />

a prolonged fifth campaign <strong>in</strong> 2015 which<br />

would last six months. Should <strong>the</strong> results<br />

of this test prove positive, <strong>the</strong> next crucial<br />

step <strong>in</strong> HIsarna’s development would be <strong>the</strong><br />

design, construction and trial operation of an<br />

<strong>in</strong>dustrial-size HIsarna plant.<br />

12 heat process<strong>in</strong>g 2-<strong>2014</strong>


Trade & Industry<br />

NEWS<br />

HärtereiKongress Cologne,<br />

October 22nd - 24th, <strong>2014</strong><br />

Visit us <strong>in</strong> H<strong>all</strong> 4.1!<br />

AICHELIN Group: Booth E-060<br />

NOXMAT: Booth G-061<br />

Toge<strong>the</strong>r one step ahead.<br />

www.aichel<strong>in</strong>.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

13


NEWS<br />

Trade & Industry<br />

Siemens to modernize Çemtaş bar roll<strong>in</strong>g mill <strong>in</strong> Turkey<br />

Çelik Mak<strong>in</strong>a Sanayi ve Ticaret A.Ş.<br />

(Çemtaş), a Turkish steel producer, has<br />

awarded Siemens Metals Technologies an<br />

order to modernize its bar roll<strong>in</strong>g mill <strong>in</strong> Bursa.<br />

The roll<strong>in</strong>g mill will be equipped with a new<br />

revers<strong>in</strong>g slid<strong>in</strong>g rough<strong>in</strong>g stand and a new<br />

<strong>in</strong>termediate tra<strong>in</strong>. The exist<strong>in</strong>g f<strong>in</strong>ish<strong>in</strong>g mill<br />

will also be brought up to <strong>the</strong> state-of-<strong>the</strong>-art.<br />

The new equipment will enable Çemtaş to<br />

fur<strong>the</strong>r improve its product quality, especi<strong>all</strong>y<br />

<strong>in</strong> respect of mechanical properties, met<strong>all</strong>urgical<br />

structure and <strong>the</strong> surface quality of<br />

<strong>the</strong> rolled bars. The plant will have a new<br />

automation system, <strong>in</strong>clud<strong>in</strong>g process models<br />

and mechatronic packages. This will give<br />

<strong>the</strong> bar roll<strong>in</strong>g mill an end-to-end automation<br />

solution, which will <strong>in</strong>crease productivity<br />

and reduce downtimes for ma<strong>in</strong>tenance. The<br />

modernized roll<strong>in</strong>g mill is scheduled to come<br />

<strong>in</strong>to operation at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of 2015.<br />

After completion of modernization, <strong>the</strong><br />

roll<strong>in</strong>g mill at Çemtaş’ Bursa location will produce<br />

bars with diameters rang<strong>in</strong>g from 15<br />

to 80 mm, and can be converted to handle<br />

diameters up to 120 mm if required. It will also<br />

be able to produce flat bars with thicknesses<br />

rang<strong>in</strong>g from 5.5 to 62 mm and widths from<br />

46 to 140 mm.<br />

For <strong>the</strong> bar roll<strong>in</strong>g mill, Siemens will<br />

supply a revers<strong>in</strong>g slid<strong>in</strong>g rough<strong>in</strong>g stand<br />

which will be able to roll billets up to a size<br />

of 200 mm. This will <strong>all</strong>ow a higher reduction<br />

ratio, result<strong>in</strong>g <strong>in</strong> better mechanical<br />

properties and an optimized met<strong>all</strong>urgical<br />

structure.<br />

Siemens will also supply <strong>the</strong> cont<strong>in</strong>uous<br />

<strong>in</strong>termediate mill, compris<strong>in</strong>g six Red-R<strong>in</strong>g<br />

roll<strong>in</strong>g stands <strong>in</strong> an HV arrangement. Provision<br />

for <strong>in</strong>l<strong>in</strong>e controlled cool<strong>in</strong>g section is<br />

foreseen <strong>in</strong> order to give Çemtaş <strong>the</strong> future<br />

opportunity to roll with a precise and cont<strong>in</strong>uous<br />

control of <strong>the</strong> met<strong>all</strong>urgical gra<strong>in</strong> size.<br />

As part of <strong>the</strong> project, Siemens will also modernize<br />

<strong>the</strong> exist<strong>in</strong>g f<strong>in</strong>ish<strong>in</strong>g mill by <strong>in</strong>st<strong>all</strong><strong>in</strong>g<br />

new automation and process equipment and<br />

<strong>the</strong> company will also supervise <strong>the</strong> <strong>in</strong>st<strong>all</strong>ation<br />

and commission<strong>in</strong>g, and provide <strong>the</strong><br />

staff tra<strong>in</strong><strong>in</strong>g.<br />

Norsk Hydro agrees to sell alum<strong>in</strong>ium casthouse <strong>in</strong> Hannover<br />

Hydro has entered <strong>in</strong>to a b<strong>in</strong>d<strong>in</strong>g agreement<br />

to sell its special <strong>all</strong>oy alum<strong>in</strong>ium<br />

casthouse <strong>in</strong> Hannover to IQ Industrial<br />

Hold<strong>in</strong>g S.à r.l. (Luxembourg), a private<br />

<strong>in</strong>dustrial hold<strong>in</strong>g group with operations<br />

across Europe. The Hannover casthouse<br />

is focused on special alum<strong>in</strong>ium <strong>all</strong>oys,<br />

ma<strong>in</strong>ly hard <strong>all</strong>oys for <strong>the</strong> aerospace <strong>in</strong>dustry.<br />

Through <strong>the</strong> agreement, IQ Industrial<br />

Hold<strong>in</strong>g will acquire 100 % of <strong>the</strong> shares <strong>in</strong><br />

Hydro Giesserei Hannover GmbH. The Hannover<br />

casthouse was taken over by Hydro<br />

through <strong>the</strong> acquisition of VAW alum<strong>in</strong>ium<br />

AG <strong>in</strong> 2002 and is considered non-core<br />

bus<strong>in</strong>ess. The casthouse supplies its hard<br />

<strong>all</strong>oy products ma<strong>in</strong>ly to a customer located<br />

w<strong>all</strong>-to-w<strong>all</strong>. The Hannover casthouse<br />

has around 30 employees and produced<br />

approximately 12,000 t of alum<strong>in</strong>ium products<br />

<strong>in</strong> 2013. The transaction is expected to<br />

close dur<strong>in</strong>g <strong>the</strong> second quarter of <strong>2014</strong>.<br />

StrikoWestofen Asia opens new company premises<br />

Recently <strong>the</strong> new company premises of<br />

<strong>the</strong> StrikoWestofen Group were <strong>in</strong>augurated<br />

at Taicang <strong>in</strong> Ch<strong>in</strong>a. The ceremony took<br />

place <strong>in</strong> <strong>the</strong> presence of lead<strong>in</strong>g politicians,<br />

bus<strong>in</strong>ess figures and experts. It became necessary<br />

to make <strong>the</strong> move and expand <strong>the</strong><br />

capacities after sales <strong>in</strong> <strong>the</strong> Ch<strong>in</strong>ese markets<br />

<strong>in</strong>creased by around 300 % dur<strong>in</strong>g a period<br />

of 18 months. Ra<strong>in</strong>er Erdmann, General Manager<br />

of StrikoWestofen <strong>in</strong> Asia, expla<strong>in</strong>ed<br />

that an <strong>in</strong>creased environmental awareness<br />

<strong>in</strong> Ch<strong>in</strong>a and <strong>the</strong> efficiency of <strong>the</strong> melt<strong>in</strong>g<br />

and dos<strong>in</strong>g systems are <strong>the</strong> keys to aboveaverage<br />

growth.<br />

The necessary capacities to serve <strong>the</strong><br />

<strong>in</strong>creas<strong>in</strong>g Asian market are provided by new<br />

company premises at Taicang, approx. 50 km<br />

to <strong>the</strong> northwest of Shanghai. It <strong>in</strong>cludes<br />

modern production facilities and provides<br />

plenty of space for <strong>the</strong> staff, which has now<br />

grown to 75 employees.<br />

In <strong>the</strong> course of <strong>the</strong> <strong>in</strong>auguration ceremony,<br />

Zhu Wan Li, Director of Taicang Economy<br />

Development, described <strong>the</strong> furnace technologies<br />

of StrikoWestofen as an important<br />

contribution to reduce <strong>the</strong> <strong>in</strong>dustrial<br />

impact on <strong>the</strong> environment. More than 350<br />

guests from <strong>all</strong> over <strong>the</strong> globe were present<br />

– <strong>in</strong>clud<strong>in</strong>g government representatives of<br />

<strong>the</strong> prov<strong>in</strong>ce of Jiangsu, <strong>the</strong> Deputy Consul<br />

General at <strong>the</strong> German Consulate General<br />

and members of <strong>the</strong> German Chamber of<br />

Commerce <strong>in</strong> Ch<strong>in</strong>a and <strong>the</strong> Ch<strong>in</strong>ese Die<br />

Cast Association.<br />

The boom is show<strong>in</strong>g no signs of end<strong>in</strong>g<br />

at present: outside of Ch<strong>in</strong>a, too, StrikoWestofen<br />

has been able to access important key<br />

markets <strong>in</strong> Asia and extend its dealer network<br />

over <strong>the</strong> last few years. Thus, Erdmann<br />

expla<strong>in</strong>ed that <strong>the</strong> new company location <strong>in</strong><br />

Taicang is virtu<strong>all</strong>y <strong>the</strong> new production and<br />

logistics centre for <strong>the</strong> Asian markets.<br />

14 heat process<strong>in</strong>g 2-<strong>2014</strong>


Trade & Industry<br />

NEWS<br />

ArcelorMittal <strong>in</strong>vests <strong>in</strong> Brazil automotive steels<br />

ArcelorMittal is <strong>in</strong>vest<strong>in</strong>g around<br />

$ 15 million <strong>in</strong> <strong>the</strong> production of<br />

advanced high strength steel at its Vega do<br />

Sul flat steel roll<strong>in</strong>g mill <strong>in</strong> <strong>the</strong> state of Santa<br />

Catar<strong>in</strong>a <strong>in</strong> sou<strong>the</strong>rn Brazil. The plant’s exist<strong>in</strong>g<br />

production l<strong>in</strong>es will be equipped to<br />

produce Usibor ® , a press-hardened boron<br />

steel with an alum<strong>in</strong>ium-silicon coat<strong>in</strong>g<br />

used ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> automotive <strong>in</strong>dustry.<br />

Us<strong>in</strong>g this material <strong>all</strong>ows manufacturers to<br />

create lighter, safer and more environment<strong>all</strong>y<br />

friendly vehicles at an affordable cost.<br />

With a strength of 1,500 MPa after hotstamp<strong>in</strong>g,<br />

Usibor ® is one of <strong>the</strong> most resistant<br />

steels used <strong>in</strong> automotive applications,<br />

used ma<strong>in</strong>ly for <strong>the</strong> production of structural<br />

parts <strong>in</strong>clud<strong>in</strong>g A-pillars, B-pillars, frontal<br />

and rear bumpers, various types of rails,<br />

and <strong>the</strong> tunnel floor.<br />

The special steel has been imported<br />

from ArcelorMittal plants <strong>in</strong> Europe <strong>in</strong>to<br />

Brazil s<strong>in</strong>ce 2012; production <strong>in</strong> ArcelorMittal<br />

Vega do Sul is due to start <strong>in</strong> <strong>the</strong> second<br />

quarter of 2015. Hot rolled coils will cont<strong>in</strong>ue<br />

to be produced at ArcelorMittal Tubarão<br />

<strong>in</strong> Espírito Santo, Brazil, and <strong>the</strong> patented<br />

alum<strong>in</strong>ium-silicon coat<strong>in</strong>g will be applied<br />

at ArcelorMittal Vega do Sul.<br />

The $ 15 million <strong>in</strong>vestment is <strong>in</strong> l<strong>in</strong>e<br />

with <strong>the</strong> Brazilian government’s Inovar-<br />

Auto stimulus programme, which seeks<br />

to encourage auto makers to <strong>in</strong>vest <strong>in</strong> <strong>the</strong><br />

Brazilian automotive <strong>in</strong>dustry and to produce<br />

more efficient, safer, and technologyadvanced<br />

vehicles.<br />

The <strong>in</strong>vestment confirms ArcelorMittal’s<br />

commitment to Brazil as a key market and<br />

to <strong>the</strong> automotive <strong>in</strong>dustry as a key franchise.<br />

ArcelorMittal is work<strong>in</strong>g closely with<br />

carmakers <strong>in</strong> Brazil and around <strong>the</strong> world<br />

to help <strong>the</strong>m address <strong>the</strong>ir technological<br />

and geographical ch<strong>all</strong>enges.<br />

This <strong>in</strong>cludes mak<strong>in</strong>g sure that <strong>the</strong> company's<br />

lightweight products are available<br />

glob<strong>all</strong>y; and cont<strong>in</strong>u<strong>in</strong>g to develop products<br />

and solutions to make cars lighter and<br />

more fuel-efficient at an affordable cost,<br />

without compromis<strong>in</strong>g safety.<br />

www.burkert.com<br />

All <strong>in</strong>clusive!<br />

What you see here is <strong>the</strong> essence of universality.<br />

Perfect for whenever you require a direct-act<strong>in</strong>g<br />

2/2-way solenoid valve. It’s <strong>the</strong> one valve you can use<br />

for each and every occasion. Built for both neutral<br />

and slightly aggressive media – powerful enough to<br />

work with dry gases or steam. Three design elements<br />

ensure you get maximum performance: its highest<br />

flow rates, its long service life and its top reliability.<br />

All of which come standard. And it’s no problem at <strong>all</strong><br />

if your process<strong>in</strong>g environment demands additional<br />

features – from more pressure and a different supply<br />

voltage, to an Ex version. Simply universal: our<br />

solenoid valve 6027.<br />

We make ideas flow.<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

Solenoid Valves | Process & Control Valves | Pneumatics & Process Interfaces | Sensors | Transmitters & Controllers | MicroFluidics | Mass Flow Controllers | Solenoid Control Valves<br />

15


NEWS<br />

Trade & Industry<br />

Seco/Warwick <strong>in</strong>creases production capability of roller<br />

hearth furnace system<br />

Seco/Warwick has partnered with<br />

West<strong>in</strong>ghouse Electric Company LLC<br />

Western Zirconium Plant, to <strong>in</strong>crease <strong>the</strong><br />

production capability of <strong>the</strong>ir Ogden, Utah<br />

facility. The Western Zirconium plant produces<br />

zirconium,<br />

hafnium and zircaloy<br />

for commercial<br />

nuclear power<br />

plant and o<strong>the</strong>r<br />

<strong>in</strong>dustrial applications.<br />

Prior to purchas<strong>in</strong>g<br />

new<br />

equipment, West<strong>in</strong>ghouse<br />

used a<br />

roller hearth, hot<br />

mill and shear for<br />

hot roll<strong>in</strong>g zirconium<br />

slabs, plates<br />

and sheets to various<br />

thicknesses for<br />

fur<strong>the</strong>r process<strong>in</strong>g <strong>in</strong>to f<strong>in</strong>al zirconium flat<br />

products. The purpose of <strong>the</strong> new project<br />

was to <strong>in</strong>crease <strong>the</strong> production capability<br />

for heat<strong>in</strong>g, reheat<strong>in</strong>g and air anneal<strong>in</strong>g of<br />

hot rolled materials. The equipment control<br />

system and material handl<strong>in</strong>g systems<br />

provided a level of automation to ma<strong>in</strong>ta<strong>in</strong><br />

production with little human <strong>in</strong>tervention.<br />

The furnace has <strong>the</strong> capacity to process<br />

slabs and plates of various sizes when heated<br />

and equalized at specific temperatures.<br />

The furnace uses specific technology that<br />

ensures even heat<strong>in</strong>g across <strong>the</strong> load and<br />

limits warp<strong>in</strong>g. Seco/Warwick custom eng<strong>in</strong>eered<br />

a system to <strong>in</strong>crease production and<br />

reduce cycle time that meets NFPA specifications<br />

70, 79 and 86 and a temperature<br />

uniformity requirement of +/- 15 °C. The<br />

maximum furnace temperature is 850 °C.<br />

The scope of supply <strong>in</strong>cluded a jib crane,<br />

load<strong>in</strong>g table, oscillat<strong>in</strong>g roller hearth furnace<br />

with electrical resistive heat<strong>in</strong>g elements,<br />

exit table <strong>in</strong>corporat<strong>in</strong>g a cross<br />

transfer conveyor system, return conveyor,<br />

1,600 amp motor control centre, 360 KW<br />

SCR, PLC and HMI panels with 6 operator<br />

systems.<br />

Alcoa signs long-term supply agreement with<br />

Spirit AeroSystems for alum<strong>in</strong>ium sheet<br />

Alcoa, one of <strong>the</strong> global leaders <strong>in</strong><br />

aerospace sheet and plate products,<br />

announced that it has signed a long-term<br />

agreement to supply alum<strong>in</strong>ium sheet to<br />

Spirit AeroSystems, Inc. <strong>in</strong> a contract valued<br />

at approximately $ 290 million over<br />

five years. Alcoa <strong>in</strong>creased its <strong>2014</strong> global<br />

aerospace growth expectation by one<br />

percentage po<strong>in</strong>t from 8 to 9 %, on strong<br />

demand for both large commercial aircraft<br />

and regional jets and cont<strong>in</strong>ued growth <strong>in</strong><br />

<strong>the</strong> bus<strong>in</strong>ess jet market.<br />

Alcoa produces lightweight met<strong>all</strong>ic<br />

solutions for <strong>the</strong> aerospace <strong>in</strong>dustry that<br />

deliver strength, aerodynamic efficiencies,<br />

and corrosion resistance, said Mark Vrablec,<br />

President, Global Aerospace, Transportation<br />

and Industrial Rolled Products at Alcoa. The<br />

new multi-year contract with Spirit deepens<br />

<strong>the</strong> collaborative relationships and enables<br />

<strong>the</strong> company to cont<strong>in</strong>ue to grow <strong>in</strong><br />

this important market.<br />

Spirit is one of <strong>the</strong> largest designers and<br />

manufacturers of aerostructures for commercial,<br />

military, bus<strong>in</strong>ess and regional jets<br />

<strong>in</strong> <strong>the</strong> world.<br />

Alcoa will provide Spirit with alum<strong>in</strong>ium<br />

sheet products for fuselage sk<strong>in</strong>s from its<br />

Davenport (Iowa) facility, which houses <strong>the</strong><br />

world’s largest and most advanced alum<strong>in</strong>ium<br />

roll<strong>in</strong>g mill. The company’s aerospace<br />

bus<strong>in</strong>ess, which had revenues tot<strong>all</strong><strong>in</strong>g<br />

$ 4 billion <strong>in</strong> 2013, holds lead<strong>in</strong>g market<br />

positions <strong>in</strong> aerospace forg<strong>in</strong>gs, extrusions,<br />

jet eng<strong>in</strong>e airfoils and fasten<strong>in</strong>g systems<br />

produced by its downstream bus<strong>in</strong>ess,<br />

Eng<strong>in</strong>eered Products and Solutions (EPS),<br />

and aerospace sheet and plate produced<br />

by its midstream bus<strong>in</strong>ess, Global Rolled<br />

Products (GRP).<br />

16 heat process<strong>in</strong>g 2-<strong>2014</strong>


Trade & Industry<br />

NEWS<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

17


NEWS<br />

Trade & Industry<br />

Ambrell <strong>in</strong>duction heat<strong>in</strong>g system purchased for pipe<br />

bend<strong>in</strong>g process<br />

Ambrell, an Ameri<strong>the</strong>rm Co.,<br />

Scottsville, N.Y., has sold an Ekoheat<br />

125 kW/10 kHz <strong>in</strong>duction heat<strong>in</strong>g<br />

system to a manufacturer of pressure<br />

control products for <strong>the</strong> oil <strong>in</strong>dustry.<br />

The application <strong>in</strong>volves heat<strong>in</strong>g a narrow<br />

band around a large steel pipe to<br />

1,000 °C. Air and water quenches are<br />

typic<strong>all</strong>y used before and after heat<strong>in</strong>g<br />

to ensure bend<strong>in</strong>g only <strong>in</strong> <strong>the</strong><br />

heated zone. Once <strong>the</strong> temperature<br />

Andritz to supply new hot-dip galvaniz<strong>in</strong>g<br />

plant to Yieh Phui Technomaterial<br />

Andritz Metals, a subsidiary of <strong>the</strong><br />

<strong>in</strong>ternational technology Group<br />

Andritz and one of <strong>the</strong> lead<strong>in</strong>g global<br />

suppliers of complete l<strong>in</strong>es for <strong>the</strong> production<br />

and process<strong>in</strong>g of sta<strong>in</strong>less steel,<br />

has received an order from Yieh Phui<br />

Technomaterial, a steel produc<strong>in</strong>g company<br />

from Ch<strong>in</strong>a. Andritz is to supply a<br />

hot-dip galvaniz<strong>in</strong>g l<strong>in</strong>e with an annual<br />

capacity of 400,000 t. The new l<strong>in</strong>e is<br />

designed to produce high-strength steel<br />

grades for <strong>the</strong> automobile <strong>in</strong>dustry. Startup<br />

of <strong>the</strong> production l<strong>in</strong>e is scheduled for<br />

<strong>the</strong> second quarter of 2016.<br />

is achieved, pressure can be applied by a<br />

bend<strong>in</strong>g arm to bend pipe <strong>in</strong>to shape.<br />

Ambrell has expertise with numerous<br />

tube and pipe applications. Cur<strong>in</strong>g tube<br />

and pipe coat<strong>in</strong>gs, pre- and post-weld<br />

heat<strong>in</strong>g, drill pipe heat treatment, and<br />

preheat<strong>in</strong>g drill bits for <strong>in</strong>sert braz<strong>in</strong>g are<br />

some of <strong>the</strong> popular <strong>in</strong>duction applications.<br />

Induction is often favoured because<br />

it provides rapid, controllable, non-contact,<br />

energy efficient heat.<br />

The Andritz Metals scope of supply<br />

comprises <strong>the</strong> complete hot-dip galvaniz<strong>in</strong>g<br />

plant, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> mechanical and<br />

electrical equipment, as well as <strong>the</strong> entire<br />

process part. Yieh Phui Technomaterial is<br />

one of <strong>the</strong> world’s lead<strong>in</strong>g galvanized steel<br />

producers.<br />

Oerlikon Leybold Vacuum moves to its new logistics centre<br />

Oerlikon Leybold Vacuum, one of <strong>the</strong><br />

largest high-tech vendors for vacuum<br />

pumps and systems has moved <strong>in</strong>to<br />

its new, modern lean logistics centre at <strong>the</strong><br />

Cologne site. Designed by plann<strong>in</strong>g company<br />

Dr. Schönheit + Partner, <strong>the</strong> build<strong>in</strong>g<br />

was erected by construction company<br />

Gün<strong>the</strong>r GmbH & Co. KG from Netphen,<br />

Germany. This new build<strong>in</strong>g is <strong>the</strong> logistics<br />

hub supply<strong>in</strong>g production facilities with<br />

goods and controll<strong>in</strong>g <strong>in</strong>ternational goods<br />

flows from Oerlikon Leybold Vacuum to<br />

customers and worldwide subsidiaries.<br />

Logic<strong>all</strong>y placed at <strong>the</strong> centre of <strong>the</strong> surround<strong>in</strong>g<br />

production facilities, this new build<strong>in</strong>g<br />

offers some technical novelties cutt<strong>in</strong>g<br />

<strong>the</strong> length of <strong>in</strong>ternal pathways and <strong>the</strong> warehous<strong>in</strong>g<br />

time for <strong>in</strong>com<strong>in</strong>g materials <strong>the</strong>reby<br />

also reduc<strong>in</strong>g <strong>the</strong> door-to-door time of <strong>the</strong><br />

products. With<strong>in</strong> a construction period of<br />

just under one year, 13,000 t of concrete and<br />

570 t of re<strong>in</strong>forc<strong>in</strong>g steel were used creat<strong>in</strong>g<br />

an enclosed space of 59,000 m 3 .<br />

The three-storey build<strong>in</strong>g comprises a<br />

basement with technical plant room and<br />

spr<strong>in</strong>kler tank. Located on <strong>the</strong> ground floor<br />

is <strong>the</strong> entire warehouse with automatic<br />

sm<strong>all</strong>-parts warehouse, narrow-aisle warehouse,<br />

and large p<strong>all</strong>et warehouse as well<br />

as functional areas like foyer with wait<strong>in</strong>g<br />

area, and areas for pick<strong>in</strong>g and provision<strong>in</strong>g<br />

with different build<strong>in</strong>g heights. The adm<strong>in</strong>istration<br />

is accommodated on <strong>the</strong> top floor<br />

with a floor space of over 450 m 2 .<br />

The erection of <strong>the</strong> build<strong>in</strong>g <strong>in</strong>cluded<br />

a peculiarity: <strong>the</strong> former riverbed of <strong>the</strong><br />

Rh<strong>in</strong>e had left <strong>in</strong> this area sandy soil so that<br />

<strong>the</strong> soil conditions required thorough and<br />

diligent preparations for <strong>the</strong> foundations.<br />

Moreover, old foundations and basements<br />

were found <strong>in</strong> this area which now had<br />

to be bypassed by pile foundations and<br />

which had to be prepared for accommodat<strong>in</strong>g<br />

<strong>the</strong> construction of <strong>the</strong> build<strong>in</strong>g<br />

itself and <strong>the</strong> floor slab. 228 large drilled<br />

piles were driven up to 17 m deep <strong>in</strong>to<br />

<strong>the</strong> soil and are now carry<strong>in</strong>g <strong>the</strong> build<strong>in</strong>g<br />

and <strong>the</strong> new 70 cm thick floor slab<br />

which is now bear<strong>in</strong>g <strong>the</strong> load of <strong>the</strong> 16 m<br />

high storage racks. In order to ensure high<br />

turnover speeds of <strong>the</strong> forklifts <strong>in</strong> <strong>the</strong> narrow-aisle<br />

warehouse, <strong>the</strong> flatness of <strong>the</strong><br />

floor slab had to meet exception<strong>all</strong>y high<br />

requirements.<br />

18 heat process<strong>in</strong>g 2-<strong>2014</strong>


Outotec acquires premium coated titanium<br />

anode bus<strong>in</strong>ess<br />

Outotec has acquired <strong>the</strong> bus<strong>in</strong>ess and IPRs<br />

of Republic Alternative Technologies Inc.,<br />

a premium coated titanium anode eng<strong>in</strong>eer<strong>in</strong>g<br />

and fabrication company based <strong>in</strong> Cleveland,<br />

Ohio, USA. The acquisition complements<br />

Outotec’s offer<strong>in</strong>gs for susta<strong>in</strong>able electrow<strong>in</strong>n<strong>in</strong>g<br />

plants and supports <strong>the</strong> company’s<br />

strategy to grow its service bus<strong>in</strong>ess through<br />

provid<strong>in</strong>g life-cycle solutions to <strong>the</strong> customers.<br />

The acquisition price is not disclosed.<br />

Republic Alternative Technologies is <strong>the</strong> world’s<br />

first producer of <strong>in</strong>novative mixed metal oxide<br />

coated titanium anodes, which are used as an alternative<br />

to conventional lead anodes <strong>in</strong> electrow<strong>in</strong>n<strong>in</strong>g<br />

operations to produce copper, z<strong>in</strong>c and o<strong>the</strong>r<br />

metals. Thanks to low cell voltage, <strong>the</strong>se coated<br />

titanium anodes consume 7 to 15 % less energy<br />

than conventional lead anodes. They are currently<br />

used <strong>in</strong> <strong>in</strong>dustrial copper electrow<strong>in</strong>n<strong>in</strong>g plants <strong>in</strong><br />

Audi commissions Ecomelt furnaces from<br />

Hertwich Eng<strong>in</strong>eer<strong>in</strong>g<br />

Automobile manufacturer Audi has successfully<br />

commissioned two Ecomelt melt<strong>in</strong>g<br />

furnaces from Hertwich Eng<strong>in</strong>eer<strong>in</strong>g, Austria. The<br />

two Ecomelt PR-50 furnaces supply <strong>the</strong> newly<br />

constructed die-cast<strong>in</strong>g l<strong>in</strong>e <strong>in</strong> Münchsmünster,<br />

Germany, with liquid metal. Audi decided <strong>in</strong><br />

Arizona, New Mexico and South America. Republic<br />

Alternative Technologies has 18 employees<br />

and its sales <strong>in</strong> 2013 were approximately € 9 million.<br />

Outotec plans to commercialize <strong>the</strong> application<br />

of coated titanium anodes also <strong>in</strong> z<strong>in</strong>c and<br />

nickel electrow<strong>in</strong>n<strong>in</strong>g processes and believes<br />

that <strong>the</strong> bus<strong>in</strong>ess has substantial growth potential<br />

worldwide.<br />

Accord<strong>in</strong>g to Outotec’s CEO Pertti Korhonen<br />

<strong>the</strong> premium anodes of Republic Alternative<br />

Technologies fit seamlessly with Outotec’s electrow<strong>in</strong>n<strong>in</strong>g<br />

technology and service offer<strong>in</strong>gs. By<br />

comb<strong>in</strong><strong>in</strong>g <strong>the</strong> expertise of Republic Alternative<br />

Technologies and Outotec <strong>the</strong> companies can<br />

offer <strong>the</strong>ir wide customer base comprehensive<br />

life cycle solutions. There are good opportunities<br />

to multiply <strong>the</strong> bus<strong>in</strong>ess volume of <strong>the</strong> coated<br />

titanium anodes <strong>in</strong> copper process<strong>in</strong>g and commercialize<br />

applications to o<strong>the</strong>r metals.<br />

favour of <strong>the</strong> Ecomelt technology from Hertwich<br />

Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> order to meet <strong>the</strong> high demands<br />

on <strong>the</strong> melt<strong>in</strong>g of sm<strong>all</strong>-sized scrap.<br />

The melt<strong>in</strong>g furnaces from Hertwich Eng<strong>in</strong>eer<strong>in</strong>g<br />

stand for a particularly cost-effective<br />

melt<strong>in</strong>g process. The energy consumption<br />

is low – thanks also to <strong>the</strong> automation technology.<br />

The high-performance heat<strong>in</strong>g system<br />

thoroughly preheats <strong>the</strong> charge before melt<strong>in</strong>g,<br />

result<strong>in</strong>g <strong>in</strong> low metal losses with good<br />

metal quality. The two melt<strong>in</strong>g furnaces at<br />

Audi produce 100 t of liquid metal per day.<br />

The Hertwich Eng<strong>in</strong>eer<strong>in</strong>g scope of supply also<br />

<strong>in</strong>cludes a multi-conta<strong>in</strong>er charg<strong>in</strong>g system,<br />

crucibles, melt<strong>in</strong>g tanks and a crucible charg<strong>in</strong>g<br />

and treatment station.<br />

State-of-<strong>the</strong>-art.<br />

Also <strong>in</strong>terested <strong>in</strong> re<strong>all</strong>y fast, rugged, light, accurate, customised<br />

and <strong>in</strong>expensive <strong>in</strong>frared <strong>the</strong>rmometers and cameras for non-contact<br />

measurements between -50°C to +3000°C? Visit<br />

www.optris.co.uk<br />

There’s no two ways <strong>about</strong> it:<br />

our flexible <strong>in</strong>frared cameras provide<br />

simple, trouble-free connection to<br />

tablets via USB.<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

Innovative Infrared<br />

19<br />

Technology


NEWS<br />

Trade & Industry<br />

HMT ordered a newly developed extrusion press from<br />

SMS Meer<br />

For its plant <strong>in</strong> Hettstedt, Germany, HMT<br />

Höfer Met<strong>all</strong> Technik has ordered an<br />

extrusion press type HybrEx25, from SMS<br />

Meer. HMT is <strong>the</strong> first company to opt for<br />

<strong>the</strong> newly developed HybrEx extrusion<br />

press. The mach<strong>in</strong>e considerably reduces<br />

energy consumption and <strong>in</strong>creases productivity<br />

by up to 20 %. In this way, <strong>the</strong><br />

HybrEx25 satisfies <strong>the</strong> preconditions for <strong>the</strong><br />

“ecoplants” label.<br />

The HybrEx 25 belongs to a new extrusion<br />

press generation equipped with an<br />

<strong>in</strong>novative drive concept. Due to <strong>the</strong> new<br />

concept, <strong>the</strong> oil tank volume was reduced<br />

from 10,000 l to 1,000 l. The amount of gases<br />

trapped <strong>in</strong> oil dim<strong>in</strong>ishes from 10 % down<br />

to 1 %, achiev<strong>in</strong>g a substanti<strong>all</strong>y longer oil<br />

life. The risk of cavitation occurr<strong>in</strong>g on <strong>the</strong><br />

valves is considerably reduced. Ano<strong>the</strong>r new<br />

feature is <strong>the</strong> patented <strong>in</strong>side fill<strong>in</strong>g valve by<br />

which travel<strong>in</strong>g speeds of <strong>the</strong> ma<strong>in</strong> cyl<strong>in</strong>der<br />

of up to 1,000 mm/s are made possible.<br />

Modifications to <strong>the</strong> electric drive technology<br />

addition<strong>all</strong>y improve <strong>the</strong> energy<br />

balance. HybrEx is equipped with <strong>the</strong><br />

proven <strong>in</strong>telligent “Power on command”<br />

motor control system. It only drives those<br />

units which are required for <strong>the</strong> respective<br />

process cycle. In conjunction with us<strong>in</strong>g<br />

<strong>in</strong>ternal gear pumps <strong>the</strong> drive power for<br />

each pump unit is reduced by 45 %.<br />

Despite <strong>the</strong> reduced drive power, a nonproductive<br />

time <strong>in</strong>clud<strong>in</strong>g lift<strong>in</strong>g stroke of<br />

less than 12 s can be realized. In this way,<br />

<strong>the</strong> mach<strong>in</strong>e from SMS Meer <strong>in</strong>creases<br />

plant productivity significantly, i.e. 1 s less of<br />

non-productive time corresponds to an up<br />

to 100 t greater annual production output.<br />

With <strong>the</strong> platen concept, profiles can be<br />

extruded with new tolerance dimensions. A<br />

thrust plate with a depth equivalent to <strong>the</strong><br />

platen makes sure that <strong>the</strong> relative deflection<br />

<strong>in</strong> <strong>the</strong> area of <strong>the</strong> tool pack is reduced<br />

to zero. The revised Cadex version “Cadex<br />

Integrated” ensures an optimal extrusion<br />

press process and <strong>in</strong>creases productivity.<br />

Soon <strong>the</strong> new press will be offici<strong>all</strong>y<br />

handed over to <strong>the</strong> customer at <strong>the</strong> Witten<br />

location of SMS Meer. Commission<strong>in</strong>g <strong>in</strong> Hettstedt<br />

is scheduled for <strong>the</strong> third quarter of<br />

<strong>2014</strong>.<br />

Siemens and Mitsubishi Heavy Industries form jo<strong>in</strong>t<br />

venture for metals <strong>in</strong>dustry<br />

Siemens and Mitsubishi Heavy Industries<br />

(MHI) want to cooperate <strong>in</strong> <strong>the</strong> field of<br />

met<strong>all</strong>urgical <strong>in</strong>dustry and are form<strong>in</strong>g a<br />

glob<strong>all</strong>y operat<strong>in</strong>g complete provider for<br />

plants, products and services for <strong>the</strong> iron,<br />

steel and alum<strong>in</strong>ium <strong>in</strong>dustry. Respond<strong>in</strong>g<br />

to <strong>the</strong> ch<strong>all</strong>eng<strong>in</strong>g market environment and<br />

high price pressure, two strong partners<br />

are bundl<strong>in</strong>g <strong>the</strong>ir <strong>in</strong>dividual strengths and<br />

establish<strong>in</strong>g a powerful and glob<strong>all</strong>y well<br />

positioned jo<strong>in</strong>t venture. An agreement to<br />

this effect has just been signed. Accord<strong>in</strong>g<br />

to <strong>the</strong> agreement, MHI will hold a 51 % and<br />

Siemens a 49 % stake <strong>in</strong> <strong>the</strong> jo<strong>in</strong>t venture.<br />

Subject to approval of <strong>the</strong> relevant authorities,<br />

<strong>the</strong> jo<strong>in</strong>t venture will start operations<br />

<strong>in</strong> January 2015.<br />

Both partners are contribut<strong>in</strong>g <strong>the</strong>ir<br />

met<strong>all</strong>urgical <strong>in</strong>dustry activities to <strong>the</strong><br />

jo<strong>in</strong>t venture. The new jo<strong>in</strong>t venture will<br />

<strong>in</strong>tegrate Mitsubishi-Hitachi Metals Mach<strong>in</strong>ery,<br />

Inc. (MH) – an MHI consolidated group<br />

company with equity participation by<br />

Hitachi, Ltd. and IHI Corporation.<br />

The new jo<strong>in</strong>t venture with approximately<br />

9,000 employees will focus<br />

fully on bus<strong>in</strong>ess with iron, steel and<br />

alum<strong>in</strong>ium-produc<strong>in</strong>g <strong>in</strong>dustry. The company’s<br />

structures are lean and tailored to<br />

global market requirements and <strong>the</strong> <strong>in</strong>ternational<br />

competitive environment. The<br />

bundl<strong>in</strong>g of competencies will result <strong>in</strong> a<br />

powerful jo<strong>in</strong>t venture that is better able to<br />

compensate for market fluctuations.<br />

The company’s headquarters will be<br />

located <strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom. The jo<strong>in</strong>t<br />

venture <strong>in</strong>cludes supply agreements for<br />

Siemens’ Industry Automation and Drive<br />

Technologies Divisions. Draw<strong>in</strong>g on <strong>the</strong><br />

centers of competence of Siemens Metals<br />

Technologies <strong>in</strong> Central Europe and those<br />

of MHI, <strong>the</strong> new jo<strong>in</strong>t venture has a solid<br />

set-up. The portfolios of <strong>the</strong> two partners<br />

ide<strong>all</strong>y complement one ano<strong>the</strong>r. While <strong>the</strong><br />

technology strengths of Siemens Metals<br />

Technologies lie <strong>in</strong> particular <strong>in</strong> iron and<br />

steel production, cast<strong>in</strong>g, automation,<br />

environmental technologies and lifecycle<br />

services, MHI’s technology competence is<br />

primarily focused on hot and cold roll<strong>in</strong>g,<br />

process<strong>in</strong>g as well as production expertise.<br />

By comb<strong>in</strong><strong>in</strong>g both portfolios, <strong>the</strong> jo<strong>in</strong>t<br />

venture can offer its customers <strong>the</strong> entire<br />

value cha<strong>in</strong> <strong>in</strong> iron, steel and alum<strong>in</strong>ium<br />

production, from technologies for process<strong>in</strong>g<br />

raw materials to surface f<strong>in</strong>ish<strong>in</strong>g at <strong>the</strong><br />

end of <strong>the</strong> production process.<br />

20 heat process<strong>in</strong>g 2-<strong>2014</strong>


Events<br />

NEWS<br />

Alum<strong>in</strong>ium <strong>2014</strong> – 10 th World Trade Fair & Conference<br />

The ALUMINIUM World Fair is prepar<strong>in</strong>g<br />

for its 10th edition, to be held <strong>in</strong> Düsseldorf<br />

from 7 to 9 October. Seven months<br />

before <strong>the</strong> world’s largest <strong>in</strong>dustry meet<strong>in</strong>g<br />

place is due to open, almost 700 <strong>in</strong>ternational<br />

exhibitors have registered for participation,<br />

and more than 80 percent of <strong>the</strong><br />

<strong>exhibition</strong> space has already been booked.<br />

Trade fair organiser Reed Exhibitions is optimistic<br />

and expects to cont<strong>in</strong>ue <strong>the</strong> success<br />

of previous years with ALUMINIUM <strong>2014</strong>.<br />

It just keeps grow<strong>in</strong>g and grow<strong>in</strong>g.<br />

When it moved from <strong>the</strong> Ruhr to <strong>the</strong> Rh<strong>in</strong>e<br />

two years ago, <strong>the</strong> trade fair experienced<br />

quite a boost. And <strong>the</strong> signs po<strong>in</strong>t to fur<strong>the</strong>r<br />

growth yet aga<strong>in</strong> for ALUMINIUM <strong>2014</strong>, even<br />

if this will be slightly more moderate than<br />

at its Düsseldorf debut. Reed Exhibitions<br />

currently expects a five percent <strong>in</strong>crease <strong>in</strong><br />

<strong>exhibition</strong> space, as well as higher exhibitor<br />

and visitor numbers. More than 950 exhibitors<br />

are expected for <strong>the</strong> 10th edition of<br />

ALUMINIUM – two years ago, that number<br />

was 907 companies from 51 countries.<br />

Already, H<strong>all</strong>s 9 to 12 of <strong>the</strong> Düsseldorf<br />

Exhibition Centre are almost fully booked. As<br />

a result, <strong>the</strong> reserve space orig<strong>in</strong><strong>all</strong>y set aside<br />

<strong>in</strong> <strong>the</strong> four h<strong>all</strong>s, which are organised along<br />

<strong>the</strong>me l<strong>in</strong>es, has already been occupied.<br />

Therefore, a better gross-to-net ratio is <strong>the</strong><br />

aim <strong>in</strong> <strong>all</strong>ocat<strong>in</strong>g space <strong>in</strong> H<strong>all</strong> 13, which will<br />

have a higher stand density and house both<br />

<strong>the</strong> “Surface” and <strong>the</strong> “Metalwork<strong>in</strong>g and<br />

Process<strong>in</strong>g” segments under a s<strong>in</strong>gle roof.<br />

As <strong>the</strong> <strong>in</strong>stitutional patron of <strong>the</strong> trade fair,<br />

<strong>the</strong> GDA – <strong>the</strong> German Confederation of<br />

<strong>the</strong> Alum<strong>in</strong>ium Industry will once aga<strong>in</strong><br />

organise <strong>the</strong> ALUMINIUM <strong>2014</strong> Confer-<br />

ence which accompanies<br />

<strong>the</strong> trade fair.<br />

Industry experts<br />

will give an<br />

overview of<br />

<strong>the</strong> future<br />

prospects of<br />

alum<strong>in</strong>ium <strong>in</strong><br />

a wide range of<br />

application markets<br />

from 7 to 9 October <strong>in</strong><br />

<strong>the</strong> CCD Ost. The programme features a<br />

total of five sessions, on a range of subjects<br />

<strong>in</strong>clud<strong>in</strong>g, among, o<strong>the</strong>rs Automotive and<br />

Markets. The c<strong>all</strong> for papers started at <strong>the</strong><br />

end of February. The conference language<br />

is English.<br />

For fur<strong>the</strong>r <strong>in</strong>formation please visit:<br />

www.alum<strong>in</strong>ium-messe.com<br />

SPECIAL IN<br />

THIS ISSUE<br />

pages 33 to 62<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

21


NEWS<br />

Events<br />

DIARY<br />

9-11 July<br />

14-16 Aug.<br />

27-29 Aug.<br />

2-9 Sep.<br />

11-13 Sep.<br />

16-19 Sep.<br />

6-8 Oct.<br />

16-20 Sep.<br />

17-19 Sep.<br />

24-25 Sep.<br />

24-27 Sep.<br />

29 Sep. -<br />

3 Oct.<br />

30 Sep. -<br />

1 Oct.<br />

7-9 Oct.<br />

22-24 Oct.<br />

Alum<strong>in</strong>ium Ch<strong>in</strong>a <strong>2014</strong><br />

<strong>in</strong> Shanghai, Ch<strong>in</strong>a<br />

www.alum<strong>in</strong>iumch<strong>in</strong>a.com<br />

INASAL <strong>2014</strong><br />

<strong>in</strong> Jakarta, Indonesia<br />

www.<strong>in</strong>a-sal.com<br />

ENTECH <strong>2014</strong><br />

<strong>in</strong> Busan, South Korea<br />

www.entechkorea.net<br />

METAVAK<br />

<strong>in</strong> Hardenberg, Ne<strong>the</strong>rlands<br />

www.evenementenhal.nl/hardenberg<br />

Ankiros / Annofer / Turkcast<br />

<strong>in</strong> Istanbul, Turkey<br />

www.hmankiros.com<br />

Metalurgia <strong>2014</strong><br />

<strong>in</strong> Jo<strong>in</strong>ville, Brazil<br />

www.metalurgia.com.br<br />

Furnaces North America<br />

In Nashville (TN), United States<br />

www.furnacesnorthamerica.com<br />

AMB <strong>2014</strong><br />

<strong>in</strong> Stuttgart, Germany<br />

www.messe-stuttgart.de/amb<br />

KazMet <strong>2014</strong><br />

<strong>in</strong> Almaty, Kazakhstan<br />

www.kazmet.iteca.kz<br />

57 th International Colloquium on Refractories<br />

<strong>in</strong> Aachen, Germany<br />

www.feuerfest-kolloquium.de<br />

wire + Tube Ch<strong>in</strong>a<br />

<strong>in</strong> Shanghai, Ch<strong>in</strong>a<br />

www.wirech<strong>in</strong>a.net<br />

www.tubech<strong>in</strong>a.net<br />

IMT / Automation / Weld<strong>in</strong>g<br />

<strong>in</strong> Brno, Czech Republic<br />

www.bvv.cz<br />

CWIEME<br />

<strong>in</strong> Chicago (IL), United States<br />

www.coilw<strong>in</strong>d<strong>in</strong>gexpo.com<br />

Alum<strong>in</strong>ium <strong>2014</strong><br />

<strong>in</strong> Düsseldorf, Germany<br />

www.alum<strong>in</strong>ium-messe.com<br />

70 th Heat Treatment Congress<br />

<strong>in</strong> Cologne, Germany<br />

www.hk-awt.de<br />

Hannover Messe<br />

showcases <strong>the</strong><br />

“Factory of <strong>the</strong> Future”<br />

As Hannover Messe <strong>2014</strong> drew to a close exhibitors<br />

and organizers were able to look back<br />

on ano<strong>the</strong>r successful event. This year one of <strong>the</strong><br />

world’s lead<strong>in</strong>g <strong>in</strong>dustrial tradeshows, which took<br />

place from 7 to 11 April, addressed <strong>the</strong> key issue of<br />

<strong>the</strong> future of <strong>in</strong>dustry by present<strong>in</strong>g <strong>the</strong> solutions<br />

needed for tomorrow’s <strong>in</strong>telligent factories.<br />

Staged under <strong>the</strong> keynote <strong>the</strong>me of “Integrated<br />

Industry – Next Steps”, <strong>the</strong> trade fair focused on<br />

<strong>in</strong>telligent, self-organiz<strong>in</strong>g factories and <strong>the</strong> transformation<br />

of energy systems. A total of over 180,000<br />

visitors from more than 100 different nations came<br />

to Hannover to explore <strong>the</strong> future of <strong>in</strong>dustry and<br />

<strong>in</strong>vest <strong>in</strong> <strong>the</strong> latest factory and energy technology<br />

on show by some 5,000 exhibitors. This year’s Hannover<br />

Messe Partner Country was <strong>the</strong> Ne<strong>the</strong>rlands.<br />

Many components which will be of crucial<br />

importance for <strong>the</strong> new <strong>in</strong>dustrial manufactur<strong>in</strong>g<br />

environment were on display at <strong>the</strong> tradeshow<br />

– which also showcased market-ready solutions<br />

and products address<strong>in</strong>g <strong>the</strong> key ch<strong>all</strong>enges of<br />

standardization and IT security. A large number of<br />

demo <strong>in</strong>st<strong>all</strong>ations gave visitors a first-hand view<br />

of products mov<strong>in</strong>g through <strong>the</strong> various stages of<br />

production without any human <strong>in</strong>tervention until<br />

<strong>in</strong>dividual process<strong>in</strong>g at <strong>the</strong> very end. Data security<br />

was ano<strong>the</strong>r core issue at <strong>the</strong> fair.<br />

The focus of attention <strong>in</strong> <strong>the</strong> “energy h<strong>all</strong>s” was<br />

on <strong>the</strong> transformation of energy systems. Future<br />

growth <strong>in</strong> <strong>the</strong> use of renewable forms of energy,<br />

decentralized energy supply systems and <strong>in</strong>telligent<br />

distribution systems were high on <strong>the</strong> agenda.<br />

Exhibitors presented technologies and solutions for<br />

<strong>the</strong> ongo<strong>in</strong>g energy transition, with displays lend<strong>in</strong>g<br />

firm shape to <strong>the</strong> energy systems of <strong>the</strong> future.<br />

The show’s major <strong>in</strong>ternational draw<strong>in</strong>g power<br />

was evident <strong>in</strong> <strong>the</strong> fact that more than one <strong>in</strong><br />

every four visitors came from abroad, ma<strong>in</strong>ly from<br />

<strong>the</strong> European Union (57 %) as well as from South,<br />

East and Central Asia (20 %). In terms of <strong>in</strong>dividual<br />

countries of visitor orig<strong>in</strong>, <strong>the</strong> Ne<strong>the</strong>rlands – as<br />

this year’s Partner Country – took first place, followed<br />

by Ch<strong>in</strong>a <strong>in</strong> second.<br />

The next Hannover Messe will be staged from<br />

13 to 17 April 2015. For fur<strong>the</strong>r <strong>in</strong>formation please<br />

visit: www.hannovermesse.com<br />

22 heat process<strong>in</strong>g 2-<strong>2014</strong>


Events<br />

NEWS<br />

Strong toge<strong>the</strong>r for future markets: wire & Tube <strong>2014</strong><br />

The more than 2,500 <strong>in</strong>ternational exhibitors<br />

from <strong>the</strong> wire, cable and tube<br />

<strong>in</strong>dustries can look back on five successful<br />

trade fair days from 7 to 11 April <strong>2014</strong>.<br />

Inspired by <strong>the</strong> upsw<strong>in</strong>g of <strong>the</strong> steel market,<br />

<strong>the</strong> exhibit<strong>in</strong>g companies presented <strong>the</strong>ir<br />

product <strong>in</strong>novations at <strong>the</strong> Düsseldorf Exhibition<br />

Centre dur<strong>in</strong>g <strong>the</strong> two lead<strong>in</strong>g trade<br />

fairs, wire and Tube <strong>2014</strong>.<br />

Accord<strong>in</strong>g to Joachim Schäfer, Manag<strong>in</strong>g<br />

Director accountable for <strong>the</strong> fairs at Messe<br />

Düsseldorf, <strong>the</strong> trade fairs took recorded<br />

exhibitor growth as well as a significant<br />

<strong>in</strong>crease <strong>in</strong> booked <strong>exhibition</strong> space.<br />

Networked worldwide and glob<strong>all</strong>y active,<br />

<strong>the</strong> exhibitors presented <strong>the</strong>mselves to <strong>the</strong><br />

72,000 trade visitors that travelled to <strong>the</strong> <strong>exhibition</strong><br />

h<strong>all</strong>s on <strong>the</strong> Rh<strong>in</strong>e from 104 different<br />

countries. They came to learn <strong>about</strong> <strong>the</strong> latest<br />

mach<strong>in</strong>es, equipment and products for <strong>the</strong><br />

wire, cable and tube process<strong>in</strong>g<br />

<strong>in</strong>dustries at <strong>the</strong> no. 1 <strong>in</strong>ternational<br />

trade fairs, wire – International<br />

Wire and Cable Trade Fair<br />

and Tube – International Tube<br />

Trade Fair.<br />

International contacts, lots<br />

of conversations, healthy buy<strong>in</strong>g<br />

<strong>in</strong>terest and actual closes,<br />

as well as <strong>the</strong> anticipation of<br />

<strong>in</strong>terest<strong>in</strong>g post-event bus<strong>in</strong>ess,<br />

characterised <strong>the</strong> mood at wire<br />

and Tube.<br />

The steel and NE metal <strong>in</strong>dustry has<br />

long been considered to be a reliable<br />

early <strong>in</strong>dicator for <strong>all</strong> o<strong>the</strong>r <strong>in</strong>dustries. The<br />

entire economy benefits when this market<br />

is strong.<br />

In total, <strong>about</strong> 98 % of <strong>the</strong> exhibitors<br />

gave top scores for <strong>the</strong> way <strong>the</strong> two trade<br />

Welcome to Furnaces North America <strong>2014</strong><br />

The Metal Treat<strong>in</strong>g Institute and its Media<br />

Partner, Industrial Heat<strong>in</strong>g Magaz<strong>in</strong>e<br />

organize <strong>the</strong> Furnaces North America (FNA)<br />

that be<strong>in</strong>g hosted <strong>in</strong> Nashville, Tennessee on<br />

6 to 8 October <strong>2014</strong>. The trade fair will be full<br />

of technical <strong>in</strong>formation, trends, bus<strong>in</strong>ess<br />

and network<strong>in</strong>g opportunities. FNA <strong>2014</strong> is<br />

a worldwide event with heat treaters and<br />

suppliers com<strong>in</strong>g from over 30 states and<br />

over 15 countries to experience amaz<strong>in</strong>g<br />

two days.<br />

FNA <strong>2014</strong> will be <strong>the</strong> largest heat treat<br />

show of <strong>the</strong> year offer<strong>in</strong>g more than 30<br />

technical sessions with <strong>the</strong> <strong>in</strong>formation to<br />

energize your bus<strong>in</strong>ess, two day trade show<br />

to network with over 150 top suppliers to see<br />

<strong>the</strong> latest trends and technology and 2-high<br />

energy network<strong>in</strong>g events for attendees to<br />

fairs went. The companies exhibit<strong>in</strong>g at<br />

both fairs occupied a total of more than<br />

108,000 m 2 of net <strong>exhibition</strong> space.<br />

wire and Tube once aga<strong>in</strong> take place<br />

simultaneously from 4 to 8 April 2016 <strong>in</strong><br />

Düsseldorf. For fur<strong>the</strong>r <strong>in</strong>formation please<br />

visit: www.wire.de and www.Tube.de<br />

tap <strong>in</strong>to <strong>the</strong> best m<strong>in</strong>ds <strong>in</strong> heat treat<strong>in</strong>g.<br />

Participants have <strong>the</strong> possibility to<br />

exchange <strong>in</strong>formation with people who<br />

are experienc<strong>in</strong>g <strong>the</strong> same ch<strong>all</strong>enges and<br />

successes. Attend<strong>in</strong>g FNA helps to create<br />

new ideas and energize companies back<br />

to record productivity.<br />

For fur<strong>the</strong>r <strong>in</strong>formation please visit:<br />

www.furnacesnorthamerica.com<br />

CIHTE <strong>2014</strong> will be held <strong>in</strong> Shanghai<br />

Ch<strong>in</strong>a International Heat Treatment<br />

Exhibition (CIHTE) is held <strong>in</strong> Beij<strong>in</strong>g<br />

and Shanghai alternatively. To follow <strong>the</strong><br />

<strong>in</strong>dustry develop<strong>in</strong>g trend, CIHTE <strong>2014</strong> will<br />

be held from 14 to 16 October at Shanghai<br />

New International Expo Centre.<br />

Founded <strong>in</strong> 2004, CIHTE treads on <strong>the</strong><br />

heel of market development, adheres to <strong>the</strong><br />

pr<strong>in</strong>ciple of resource shar<strong>in</strong>g, w<strong>in</strong>-w<strong>in</strong> benefit.<br />

This year, <strong>the</strong> <strong>exhibition</strong> area is expected to<br />

be larger than previous ones. The <strong>exhibition</strong><br />

content covers <strong>the</strong> whole <strong>in</strong>dustry cha<strong>in</strong>,<br />

while it focuses on a comb<strong>in</strong>ation of up and<br />

down stream <strong>in</strong>dustrial cha<strong>in</strong> to create a<br />

cooperative pattern of project development,<br />

product sales, and technical service, and fur<strong>the</strong>r<br />

promotes <strong>in</strong>ternational trade exchange<br />

and cooperation. CIHTE <strong>2014</strong> is tightly coupled<br />

develop<strong>in</strong>g <strong>the</strong> track of Ch<strong>in</strong>a’s heat<br />

treatment <strong>in</strong>dustry, accords with develop<strong>in</strong>g<br />

requirements of Ch<strong>in</strong>a and <strong>in</strong>ternational market,<br />

becomes one of <strong>the</strong> best bus<strong>in</strong>ess communication<br />

platforms for suppliers and professional<br />

visitors to grasp <strong>in</strong>dustry develop<strong>in</strong>g<br />

direction and know market news. In previous<br />

<strong>exhibition</strong>s, many famous <strong>in</strong>ternational heat<br />

treatment brands one after ano<strong>the</strong>r displayed<br />

<strong>the</strong>ir <strong>in</strong>novative products and showed <strong>the</strong>ir<br />

enterprise advantages, which makes CIHTE<br />

becom<strong>in</strong>g an important <strong>exhibition</strong> that cannot<br />

be missed.<br />

For fur<strong>the</strong>r <strong>in</strong>formation please visit:<br />

www.cihtexpo.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

23


NEWS<br />

Events<br />

Materialica <strong>2014</strong>: Lightweight design and <strong>in</strong>novative materials<br />

From 21 to 23 October <strong>2014</strong> <strong>the</strong> 17 th<br />

International Trade Fair Materialica<br />

takes place at <strong>the</strong> Munich Trade Fair Center.<br />

Aga<strong>in</strong> this year Materialica focuses on <strong>the</strong><br />

future topic “Lightweight Design for New<br />

Mobility!” and presents material trends and<br />

<strong>in</strong>novative material design <strong>in</strong> <strong>the</strong> fields of<br />

“Lightweight Design”, “Materials for Batteries”,<br />

“Surface Technology” and “Test<strong>in</strong>g” for<br />

<strong>the</strong> expand<strong>in</strong>g sectors mobility and energy.<br />

Thus, <strong>in</strong> terms of visitors <strong>the</strong> trade fair<br />

is primarily <strong>in</strong>terest<strong>in</strong>g for professionals <strong>in</strong><br />

<strong>the</strong> <strong>in</strong>dustrial sectors of automotive, <strong>in</strong>frastructure,<br />

energy, robotics, eng<strong>in</strong>eer<strong>in</strong>g<br />

as well as sports- and consumer-goods.<br />

Although some of <strong>the</strong>se sectors do not<br />

directly deal with New Mobility, <strong>the</strong>y <strong>all</strong><br />

enormously benefit from <strong>the</strong> know-how<br />

transfer of this future topic.<br />

A fixed event at <strong>the</strong> trade fair over <strong>the</strong><br />

past twelve years is <strong>the</strong> grant<strong>in</strong>g of <strong>the</strong><br />

Materialica Design + Technology Award<br />

which tradition<strong>all</strong>y takes place <strong>in</strong> <strong>the</strong> early<br />

even<strong>in</strong>g of <strong>the</strong> first <strong>exhibition</strong> day. This<br />

year <strong>the</strong> reputable design prize will be<br />

awarded <strong>in</strong> <strong>the</strong> four categories “Material”,<br />

“Product”, “Surface Technology” and “CO 2<br />

Efficiency” as well as <strong>in</strong> <strong>the</strong> special category<br />

“Student”.<br />

The <strong>in</strong>tention<strong>all</strong>y close ties to <strong>the</strong> successful<br />

partner trade fair eCarTec – International<br />

Trade Fair for Electric- & Hybrid-<br />

Mobility, which takes place simultaneously<br />

to Materialica – creates a successful connection<br />

between <strong>in</strong>novative material applications<br />

and electric mobility.<br />

For fur<strong>the</strong>r <strong>in</strong>formation please visit:<br />

www.materialica.com<br />

The first Central Eastern European Heat Treatment<br />

Forum took place <strong>in</strong> Poland<br />

The premium meet<strong>in</strong>g organized<br />

by <strong>the</strong> Global Heat Treatment<br />

Network which took place on 8 to 10<br />

April <strong>2014</strong> <strong>in</strong> Wroclaw (Poland) with<br />

top speakers from <strong>the</strong> ma<strong>in</strong> global<br />

players <strong>in</strong> <strong>the</strong> heat treat<strong>in</strong>g world has<br />

already been recognized as <strong>the</strong> best<br />

access to Eastern European customers.<br />

More than 200 registered participants<br />

attended <strong>the</strong> lectures and technical<br />

sessions and <strong>the</strong>re were more than 30<br />

exhibitors.<br />

A number of <strong>the</strong> largest commercial<br />

heat treaters <strong>in</strong> <strong>the</strong> world such as Bodycote,<br />

Hanomag, VacAero and Hauck<br />

were present. Also Polish Institutes &<br />

Universities were present. Customers<br />

came from sectors such as automotive,<br />

energy, heavy <strong>in</strong>dustry and aerospace.<br />

Furnace makers <strong>in</strong>cluded AFC<br />

Holcroft, ALD, ALD-Dynatech, AMP,<br />

ECM, Ipsen, IVA, KGO, Remix, Rohde,<br />

Rübig, Schmetz, Schwammberger,<br />

Seco/Warwick, Sys<strong>the</strong>rms, Tenova,<br />

Nitrex and <strong>in</strong>dustry suppliers such as<br />

Burgdorf, EuroFluid, Avion, SSI, Foka<br />

Eng<strong>in</strong>eer<strong>in</strong>g, United Process Controls,<br />

GTD, Lohmann, Schunk, Kronmeyer,<br />

Ahotec, Herakles, Eclipse, Guen<strong>the</strong>r,<br />

Stange, Graphite Materials and German<br />

pr<strong>in</strong>t<strong>in</strong>g house Vulkan Verlag.<br />

Dur<strong>in</strong>g this event Michel J. Korw<strong>in</strong><br />

was <strong>in</strong>ducted <strong>in</strong>to <strong>the</strong> Heat Treatment<br />

Forum H<strong>all</strong> of Excellence. This award<br />

will honour achievements of people<br />

of <strong>the</strong> heat treatment <strong>in</strong>dustry with<br />

<strong>the</strong> title “Member of <strong>the</strong> Heat Treatment<br />

Forum H<strong>all</strong> of Excellence”. Korw<strong>in</strong><br />

(owner of Nitrex Metal Inc. and<br />

United Process Controls) became <strong>the</strong><br />

first member, for his very successful<br />

<strong>in</strong>dustrial implementation of <strong>the</strong><br />

controlled gas nitrid<strong>in</strong>g idea Nitreg.<br />

His technology leadership has been<br />

proven for years <strong>in</strong> hundreds of <strong>in</strong>st<strong>all</strong>ations<br />

worldwide. Dur<strong>in</strong>g this event<br />

also <strong>the</strong> Polish heat treatment association<br />

has been formed, <strong>the</strong> Polish Heat<br />

Treatment Forum (PHTF).<br />

For fur<strong>the</strong>r <strong>in</strong>formation please visit:<br />

www.heat-treatment-forum.pl<br />

24 heat process<strong>in</strong>g 2-<strong>2014</strong>


Events<br />

NEWS<br />

6th All Indian Exhibition<br />

& Conference for <strong>the</strong><br />

Tube and Pipe Industries<br />

www.tube-<strong>in</strong>dia.com<br />

28 – 30 October <strong>2014</strong><br />

5th International Exhibition<br />

& Conference on Met<strong>all</strong>urgical<br />

Technology, Material Handl<strong>in</strong>g<br />

and Services<br />

www.met<strong>all</strong>urgy-<strong>in</strong>dia.com<br />

Bombay Convention & Exhibition Centre, Mumbai, India<br />

Held <strong>in</strong> conjunction with:<br />

WELDING<br />

CUTTING<br />

&<br />

Messe Düsseldorf GmbH<br />

P.O. Box 10 10 06 _ 40001 Düsseldorf _ Germany<br />

Phone +49 (0) 2 11/45 60-77 62 _ Fax +49 (0) 2 11/45 60-77 40<br />

SchreiberG@messe-duesseldorf.de<br />

www.messe-duesseldorf.de


NEWS<br />

Events<br />

Three new <strong>the</strong>me pavilions at Alum<strong>in</strong>ium Ch<strong>in</strong>a <strong>2014</strong><br />

The event organizer Reed Exhibitions<br />

announced that this year Alum<strong>in</strong>ium<br />

Ch<strong>in</strong>a <strong>2014</strong> will be bolstered by <strong>the</strong> <strong>in</strong>troduction<br />

of three value-enhanc<strong>in</strong>g pavilions.<br />

The Surface Treatment Pavilion, <strong>the</strong> Furnaces<br />

& Heat Treatment Equipment Pavilion and<br />

<strong>the</strong> Extrusion Alum<strong>in</strong>ium Product Pavilion<br />

are a direct response to customer feedback<br />

ga<strong>the</strong>red after Alum<strong>in</strong>ium Ch<strong>in</strong>a 2013. This<br />

year’s show will be held from 9 to 11 July at<br />

<strong>the</strong> Shanghai New International Expo Centre<br />

(SNIEC), with a crisp new layout that <strong>all</strong>ows<br />

visitors to explore <strong>the</strong> show site by focus<strong>in</strong>g<br />

on categories of most <strong>in</strong>terest to <strong>the</strong>m.<br />

Alum<strong>in</strong>ium Ch<strong>in</strong>a is one of Asia‘s top trad<strong>in</strong>g,<br />

sourc<strong>in</strong>g, network<strong>in</strong>g and brand<strong>in</strong>g platforms<br />

for <strong>the</strong> complete alum<strong>in</strong>ium <strong>in</strong>dustry<br />

cha<strong>in</strong>. It features lead<strong>in</strong>g <strong>in</strong>dustry figures,<br />

cutt<strong>in</strong>g edge technologies and advanced<br />

applications. The event engages <strong>the</strong> global<br />

Alum<strong>in</strong>ium community with new customized<br />

matchmak<strong>in</strong>g programs that l<strong>in</strong>k high-<strong>in</strong>tent<br />

buyers with lead<strong>in</strong>g suppliers. This year, over<br />

500 <strong>in</strong>ternational exhibitors from 30 countries<br />

will showcase <strong>the</strong>ir newest solutions across<br />

an <strong>exhibition</strong> area of 35,000 m 2 . They will<br />

represent <strong>the</strong> entire alum<strong>in</strong>ium production<br />

cha<strong>in</strong> – from alum<strong>in</strong>ium raw materials, semif<strong>in</strong>ished<br />

and f<strong>in</strong>ished products, to production<br />

and process<strong>in</strong>g mach<strong>in</strong>ery and accessories.<br />

The exhibitors will <strong>in</strong>teract with 16,000 qualified<br />

professionals and buyers from Ch<strong>in</strong>a, Asia<br />

and glob<strong>all</strong>y emerg<strong>in</strong>g markets.<br />

Alum<strong>in</strong>ium downstream process<strong>in</strong>g is<br />

central to this year’s <strong>exhibition</strong>. Surface treatment<br />

and extrusion process<strong>in</strong>g are key to<br />

downstream production. Purchas<strong>in</strong>g decision<br />

makers from established alum<strong>in</strong>ium manufacturers<br />

<strong>in</strong> Ch<strong>in</strong>a and Asia area will be onsite<br />

to seek suppliers who offer technologies and<br />

equipment to fulfill <strong>the</strong>se needs.<br />

Pollution reduction and energy conservation<br />

are two more <strong>the</strong>mes for this year’s show,<br />

<strong>in</strong> light of current environmental concerns.<br />

New technology used <strong>in</strong> furnaces and heat<br />

will be sure to be popular among alum<strong>in</strong>ium<br />

manufacturers.<br />

For fur<strong>the</strong>r <strong>in</strong>formation please visit:<br />

www.alum<strong>in</strong>iumch<strong>in</strong>a.com<br />

14 th E-world energy & water achieved a record number of<br />

participants<br />

Even larger and even more <strong>in</strong>ternational:<br />

E-world energy & water is cont<strong>in</strong>u<strong>in</strong>g its<br />

success story <strong>in</strong> <strong>2014</strong> too. The 14 th edition<br />

of <strong>the</strong> premier European fair <strong>in</strong> <strong>the</strong> energy<br />

and water <strong>in</strong>dustries, which took place from<br />

11 to 13 February, registered a new record<br />

number of participants with regard to <strong>the</strong><br />

exhibitors and <strong>the</strong> visitors. 620 exhibitors<br />

from 25 nations showed <strong>the</strong>ir products and<br />

services at Messe Essen (<strong>in</strong> 2013: 610 exhibitors<br />

from 22 countries) – <strong>in</strong>clud<strong>in</strong>g numerous<br />

global players such as E.ON, RWE, EnBW,<br />

Vattenf<strong>all</strong>, Siemens and Telekom. Major <strong>in</strong>ternational<br />

companies <strong>in</strong> <strong>the</strong> sector like ASX<br />

Energy from Australia, TAQA Energy from<br />

Abu Dhabi or OPC Foundation from <strong>the</strong> USA<br />

were <strong>in</strong>volved for <strong>the</strong> first time. 23,500 visitors<br />

travelled from over 70 countries <strong>in</strong> order<br />

to obta<strong>in</strong> <strong>in</strong>formation <strong>about</strong> <strong>the</strong> future of<br />

<strong>the</strong> European energy supply at <strong>the</strong> <strong>in</strong>ternational<br />

meet<strong>in</strong>g place of <strong>the</strong> sector.<br />

E-world <strong>2014</strong> focused on <strong>the</strong> energy<br />

turnaround. The presented exhibits<br />

<strong>in</strong>cluded <strong>in</strong>novations for <strong>the</strong> production<br />

and storage of renewable energies as well<br />

as technologies for <strong>the</strong> more efficient<br />

generation and utilisation of energy. The<br />

<strong>exhibition</strong> section featur<strong>in</strong>g “Smart Energy”,<br />

<strong>the</strong> <strong>in</strong>novation motor <strong>in</strong> <strong>the</strong> sector, grew<br />

considerably once aga<strong>in</strong>. Over 80 companies<br />

showed <strong>the</strong>ir solutions for <strong>in</strong>telligently<br />

controllable grids (smart grids) and meters<br />

(smart meter<strong>in</strong>g), networked house technology,<br />

energy storage and energy data<br />

management – a plus of 14 %.<br />

Moreover, not only <strong>in</strong>ternational participants<br />

but also a large number of guests of<br />

honour from politics, from <strong>the</strong> diplomatic<br />

corps and from <strong>the</strong> economic field as well<br />

as municipal representatives and around<br />

400 journalists came to <strong>the</strong> comprehensive<br />

support<strong>in</strong>g programmes; over 2,500<br />

specialists took part <strong>in</strong> <strong>the</strong> congress. The<br />

proportion of trade visitors was 99 % (<strong>in</strong><br />

2013: 98.5 %). The next E-world will take<br />

place from 10 to 12 February 2015.<br />

For fur<strong>the</strong>r <strong>in</strong>formation please visit:<br />

www.e-world-essen.com<br />

26 heat process<strong>in</strong>g 2-<strong>2014</strong>


Personal<br />

NEWS<br />

Mark Hemsath appo<strong>in</strong>ted <strong>the</strong>rmal group<br />

general manager of Seco/Warwick<br />

Mark Hemsath (photo) has been<br />

appo<strong>in</strong>ted Thermal Group General<br />

Manager for North America with Seco/Warwick<br />

Corp. <strong>in</strong> Meadville, PA, USA. In this role,<br />

Hemsath will direct <strong>the</strong> sales, design and<br />

production for traditional heat treat and<br />

atmosphere furnaces. In addition, Hemsath<br />

will cont<strong>in</strong>ue to be <strong>the</strong> sales po<strong>in</strong>t of<br />

contact for <strong>the</strong> sou<strong>the</strong>astern United States.<br />

Hemsath br<strong>in</strong>gs over 25 years of experience<br />

<strong>in</strong> <strong>in</strong>dustrial furnace Sales and<br />

Design to Seco/Warwick as owner/President<br />

of MH Thermal, Hemsath Corp., and<br />

Lee Wilson and Thermotech Industries (<strong>all</strong><br />

furnaces related). He has worked as a Bus<strong>in</strong>ess<br />

Manager for Indugas, Inc. (a furnace<br />

design company), Bus<strong>in</strong>ess Development<br />

Manager for Lewco, Inc. (Conveyors and<br />

Ovens), and VP/CFO of Lumberjack Mordam<br />

Music Group.<br />

Hemsath earned his B.Sc. <strong>in</strong> Bus<strong>in</strong>ess<br />

Adm<strong>in</strong>istration at Miami University and MBA<br />

with a concentration <strong>in</strong> F<strong>in</strong>ance and Project<br />

Management from <strong>the</strong> University of Toledo.<br />

Re<strong>in</strong>hold Schneider is new president<br />

of <strong>the</strong> IFHTSE<br />

Dr. Re<strong>in</strong>hold Schneider (photo) recently<br />

became President of <strong>the</strong> IFHTSE. He<br />

is <strong>the</strong> first Austrian president <strong>in</strong> <strong>the</strong> over<br />

forty-year history of <strong>the</strong> federation. The<br />

election of Dr. Schneider underl<strong>in</strong>es also<br />

<strong>the</strong> importance of Austrian companies such<br />

as Aichel<strong>in</strong>, Böhler, Ebern, Rübig and voestalp<strong>in</strong>e,<br />

which have an excellent worldwide<br />

reputation as suppliers of heat treatment<br />

systems and special steels.<br />

Dr. Schneider was head of <strong>the</strong> research<br />

department of <strong>the</strong> special steel specialist Böhler<br />

and is chair<strong>in</strong>g <strong>the</strong> committee for heat treatment<br />

of <strong>the</strong> Austrian Society for Met<strong>all</strong>urgy and<br />

Materials (ASMET) s<strong>in</strong>ce almost 15 years.<br />

At <strong>the</strong> Faculty of Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> Wels<br />

he built up <strong>the</strong> department for materials<br />

eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> <strong>the</strong> degree course Metals<br />

and Plastics Eng<strong>in</strong>eer<strong>in</strong>g and is <strong>in</strong>volved <strong>in</strong><br />

many research projects <strong>in</strong> local <strong>in</strong>dustry. He<br />

is known worldwide as<br />

an Invited Lecturer or<br />

guest professor. In future<br />

he will be devot<strong>in</strong>g himself<br />

more to research, development<br />

and <strong>in</strong>novation<br />

and will be <strong>the</strong><br />

first ‘research<br />

professor’ at<br />

<strong>the</strong> university.<br />

Photo credits: FH OÖ<br />

Burkhard Dahmen new spokesperson<br />

of <strong>the</strong> SMS group<br />

Dr. Joachim Schönbeck,<br />

longstand<strong>in</strong>g<br />

CEO of SMS<br />

Meer GmbH and<br />

s<strong>in</strong>ce July 1, 2013<br />

Spokesman of<br />

<strong>the</strong> Manag<strong>in</strong>g<br />

Board of SMS<br />

Hold<strong>in</strong>g GmbH, left <strong>the</strong> SMS group on<br />

March 31, <strong>2014</strong>.<br />

His successor as Spokesman of <strong>the</strong><br />

Board of Management of SMS Hold<strong>in</strong>g<br />

GmbH is Burkhard Dahmen, Chairman of<br />

<strong>the</strong> Manag<strong>in</strong>g Board of SMS Siemag AG.<br />

Marcel Fasswald, longstand<strong>in</strong>g Manag<strong>in</strong>g<br />

Director of SMS India, has been appo<strong>in</strong>ted<br />

a fur<strong>the</strong>r Member of <strong>the</strong> Manag<strong>in</strong>g Board<br />

of SMS Meer GmbH.<br />

The Supervisory Board of SMS Hold<strong>in</strong>g<br />

GmbH thanks Dr. Schönbeck for his<br />

successful work and commitment to <strong>the</strong><br />

SMS group and for his many years of loyal<br />

cooperation. He will cont<strong>in</strong>ue to support<br />

<strong>the</strong> company <strong>in</strong> a consult<strong>in</strong>g role.<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

27


NEWS<br />

Personal<br />

Siemens names future management team<br />

As part of its realignment, Siemens AG<br />

has named its future management<br />

team. The Supervisory Board of<br />

Siemens AG has appo<strong>in</strong>ted<br />

Lisa Davis – who is currently<br />

Executive Vice President<br />

Strategy, Portfolio and<br />

Alternative Energies at<br />

Royal Dutch Shell – to <strong>the</strong><br />

Manag<strong>in</strong>g Board, effective<br />

August 1, <strong>2014</strong>. Lisa<br />

Davis (photo) will be<br />

responsible on <strong>the</strong><br />

Manag<strong>in</strong>g Board<br />

for <strong>the</strong> Power<br />

and Gas Division,<br />

<strong>the</strong> W<strong>in</strong>d Power<br />

and Renewables<br />

Division, <strong>the</strong><br />

Power Generation<br />

Services<br />

Division. She will be based <strong>in</strong> <strong>the</strong> United<br />

States. Michael Süß is resign<strong>in</strong>g from <strong>the</strong><br />

Manag<strong>in</strong>g Board with immediate effect, for<br />

personal reasons and by mutual consent.<br />

He will cont<strong>in</strong>ue to be available to Siemens’<br />

President and CEO <strong>in</strong> a consultative capacity.<br />

Until Lisa Davis assumes her position,<br />

<strong>the</strong> Energy Sector will be headed by Randy<br />

Zwirn on an act<strong>in</strong>g basis and represented<br />

on <strong>the</strong> Manag<strong>in</strong>g Board by Klaus Helmrich.<br />

A number of fur<strong>the</strong>r changes <strong>in</strong> bus<strong>in</strong>ess<br />

responsibilities on <strong>the</strong> Manag<strong>in</strong>g Board will<br />

take effect on October 1, <strong>2014</strong>. Klaus Helmrich<br />

and Siegfried Russwurm will exchange<br />

<strong>the</strong>ir current responsibilities: Siegfried Russwurm<br />

will be <strong>the</strong> company’s new Chief<br />

Technology Officer and Labor Director.<br />

Klaus Helmrich will be responsible for <strong>the</strong><br />

Digital Factory Division, <strong>the</strong> Process Industries<br />

and Drives Division. Roland Busch will<br />

have responsibility for <strong>the</strong> Build<strong>in</strong>g Technologies<br />

Division and <strong>the</strong> newly formed<br />

Mobility and Energy Management Divisions.<br />

At <strong>the</strong> Division level, <strong>the</strong> future Power and<br />

Gas Division will <strong>in</strong>clude, among o<strong>the</strong>r segments,<br />

Siemens’ portfolio for large gas and<br />

steam turb<strong>in</strong>es, compressors and gas turb<strong>in</strong>es<br />

for distributed power generation. The Division<br />

will be headed by Roland Fischer, currently<br />

CEO of <strong>the</strong> Power Generation Division.<br />

The Process Industries and Drives Division<br />

will build on a solid market position<br />

<strong>in</strong> <strong>the</strong> growth field of process <strong>in</strong>dustries.<br />

The Division will offer products, systems,<br />

applications and solutions for <strong>in</strong>tegrated<br />

drive technologies and systems. Here, Siemens<br />

expects growth impulses by focus<strong>in</strong>g<br />

on boom<strong>in</strong>g core <strong>in</strong>dustries like oil and<br />

gas, food and beverages, chemicals and<br />

pharmaceuticals. Division CEO will be Peter<br />

Herweck, who currently is responsible for<br />

<strong>the</strong> process <strong>in</strong>dustries project at Siemens.<br />

28 heat process<strong>in</strong>g 2-<strong>2014</strong>


INTEC Eng<strong>in</strong>eer<strong>in</strong>g<br />

provides professional eng<strong>in</strong>eer<strong>in</strong>g<br />

service for <strong>the</strong> secondary<br />

alum<strong>in</strong>ium <strong>in</strong>dustry start<strong>in</strong>g from<br />

feasibility studies trough basic<br />

eng<strong>in</strong>eer<strong>in</strong>g an detail eng<strong>in</strong>eer<strong>in</strong>g<br />

and project management. This also<br />

<strong>in</strong>cludes <strong>the</strong> supply of technology<br />

and process know-how as well as<br />

<strong>the</strong> development for new<br />

processes.<br />

The professional service provided<br />

by INTEC ensures a conclusive<br />

eng<strong>in</strong>eer<strong>in</strong>g and plann<strong>in</strong>g phase<br />

with <strong>the</strong> result of not only m<strong>in</strong>imized<br />

<strong>in</strong>vestment costs but also avoid<strong>in</strong>g<br />

critical <strong>in</strong>terfaces between<br />

equipment and plant sections.<br />

INTEC Solutions<br />

supplies proprietary equipment<br />

compris<strong>in</strong>g of tiltable rotary drum<br />

furnaces, hearth furnaces, charg<strong>in</strong>g<br />

systems, chip dry<strong>in</strong>g systems as<br />

well as o<strong>the</strong>r tailor made equipment<br />

for <strong>the</strong> secondary alum<strong>in</strong>ium<br />

<strong>in</strong>dustry.<br />

In co-operation with o<strong>the</strong>r<br />

companies INTEC supplies <strong>all</strong><br />

o<strong>the</strong>r equipment as used <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>dustry such as <strong>in</strong>got cast<strong>in</strong>g l<strong>in</strong>es<br />

with stacker, waste gas scrubb<strong>in</strong>g<br />

plants and auxiliary equipment.<br />

Forstweg 7<br />

D-52382 Niederzier<br />

Tel.: +49 (0) 2428 / 94 44-0<br />

Fax: +49 (0) 2428 / 9444-48<br />

eMail: <strong>in</strong>fo@<strong>in</strong>tec-solutions.de<br />

www.<strong>in</strong>tec-solutions.de<br />

INTEC Services<br />

provides professional service for<br />

erection and commission<strong>in</strong>g and<br />

plant ma<strong>in</strong>tenance, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

development of ma<strong>in</strong>tenance<br />

systems. One section is operation<br />

assistance by provid<strong>in</strong>g experts<br />

with along service report <strong>in</strong><br />

<strong>the</strong>ir field.<br />

This service enables <strong>the</strong> customer<br />

to up-date <strong>the</strong> methods of an<br />

exist<strong>in</strong>g plant or to efficiently use<br />

<strong>the</strong> modern technology.<br />

INTEC’s experience <strong>in</strong> plant<br />

operation forms an excellent<br />

assistance dur<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g of<br />

personal, starz-up and commercial<br />

operation of a secondary alum<strong>in</strong>ium<br />

plant.<br />

Anzeige_Intec_168x235.<strong>in</strong>dd 1 16.09.13 13:15<br />

2 nd Edition<br />

Media<br />

NEWS<br />

The History of Harden<strong>in</strong>g<br />

The present needs <strong>the</strong> past to shape<br />

<strong>the</strong> future. As <strong>in</strong> many areas of life,<br />

heat treatments used <strong>in</strong> <strong>the</strong> past have<br />

to be studied to understand <strong>the</strong> present.<br />

The result<strong>in</strong>g conclusions can be used<br />

to shape <strong>the</strong> future. But how did heat<br />

treatment develop <strong>in</strong>to a key branch of<br />

<strong>the</strong> economy <strong>in</strong> spite of its <strong>in</strong>itial <strong>in</strong>adequacies?<br />

This question is <strong>the</strong> subject of<br />

this book, written by Professor Emeritus<br />

Dr.-Ing. Hans Berns and published by<br />

Härterei Gerster AG. It beg<strong>in</strong>s with <strong>the</strong><br />

production of sponge iron <strong>in</strong> a bloomery<br />

hearth dur<strong>in</strong>g <strong>the</strong> pre-Christian era and<br />

its subsequent carburisation as an essential<br />

requirement for harden<strong>in</strong>g. Dur<strong>in</strong>g<br />

<strong>the</strong> Modern Period, <strong>in</strong> contrast, <strong>the</strong> high<br />

carbon content of <strong>the</strong> crude iron had to<br />

be pa<strong>in</strong>stak<strong>in</strong>gly reduced to a level that<br />

<strong>all</strong>owed forg<strong>in</strong>g and harden<strong>in</strong>g. The <strong>in</strong>vention<br />

of mild steel <strong>in</strong> 1856 brought <strong>all</strong>oyed<br />

steels that could be hardened with thicker<br />

cross-sections, thus lay<strong>in</strong>g <strong>the</strong> foundations<br />

for modern harden<strong>in</strong>g techniques.<br />

The author, Prof. Emeritus Dr.-Ing. Hans<br />

Berns, born 1935, completed his study of<br />

ferrous met<strong>all</strong>urgy and <strong>the</strong>n worked <strong>in</strong> <strong>the</strong><br />

sta<strong>in</strong>less steel <strong>in</strong>dustry from 1959 to 1979.<br />

He received a doctorate <strong>in</strong> 1964 from <strong>the</strong><br />

Technische Hochschule Aachen and his<br />

habilitation <strong>in</strong> 1974 from <strong>the</strong> Technische<br />

Universität Berl<strong>in</strong>. From 1979 to 2000, he<br />

held <strong>the</strong> Chair of Materials Technology at<br />

<strong>the</strong> Ruhr-Universität Bochum.<br />

INFO<br />

by Hans Berns<br />

Härterei Gerster AG (ed.)<br />

72 pages, hardcover<br />

€ 29.00<br />

ISBN: 978-3-033-03889-9<br />

www.gerster.ch<br />

Handbook of Alum<strong>in</strong>ium Recycl<strong>in</strong>g<br />

The Handbook has proven to be helpful<br />

to plant designers and operators for eng<strong>in</strong>eer<strong>in</strong>g<br />

and production of alum<strong>in</strong>ium recycl<strong>in</strong>g<br />

plants. The book deals with alum<strong>in</strong>ium<br />

as material and its recovery from bauxite,<br />

<strong>the</strong> various process steps and procedures,<br />

melt<strong>in</strong>g and cast<strong>in</strong>g plants, metal treatment<br />

facilities, provisions and equipment for environmental<br />

control and workforce safety, cold<br />

and hot recycl<strong>in</strong>g of alum<strong>in</strong>ium <strong>in</strong>clud<strong>in</strong>g<br />

scrap preparation and remelt<strong>in</strong>g, operation<br />

and plant management. Due to more and<br />

more str<strong>in</strong>gent regulations for environmental<br />

control and fuel efficiency as well as quality<br />

requirements sections <strong>about</strong> salt slag recycl<strong>in</strong>g,<br />

oxy-fuel heat<strong>in</strong>g and heat treatment<br />

processes are now <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> new<br />

edition. The reader is thus provided with a<br />

detailed overview of <strong>the</strong> technology of alum<strong>in</strong>ium<br />

recycl<strong>in</strong>g.<br />

INFO<br />

by Christoph Schmitz<br />

2 nd edition <strong>2014</strong><br />

538 pages, hardcover<br />

€ 130.00<br />

<strong>the</strong> difference<br />

that quality means<br />

ISBN: 978-3-8027-2970-6<br />

www.vulkan-verlag.de<br />

Handbook of Alum<strong>in</strong>ium Recycl<strong>in</strong>g 2 nd Edition<br />

Christoph Schmitz<br />

Christoph Schmitz<br />

Handbook of<br />

Alum<strong>in</strong>ium Recycl<strong>in</strong>g<br />

MEDIA FILES<br />

INCLUDED<br />

Mechanical Preparation | Met<strong>all</strong>urgical Process<strong>in</strong>g | Heat Treatment<br />

DIN Handbooks 404 /1 + /2 –<br />

Iron and steel<br />

Because of <strong>the</strong> large number of important<br />

new and revised standards, <strong>the</strong><br />

previous DIN Handbook 404 has been split<br />

<strong>in</strong>to two parts and reorganized. DIN Handbook<br />

404-1 covers mechanical eng<strong>in</strong>eer<strong>in</strong>g<br />

standards steel used for general and<br />

specific applications and conta<strong>in</strong>s 39 DIN<br />

EN and DIN EN ISO Standards, 17 of which<br />

are <strong>in</strong>cluded for <strong>the</strong> first time, or as revised<br />

editions. DIN Handbook 404-2 conta<strong>in</strong>s<br />

mechanical eng<strong>in</strong>eer<strong>in</strong>g standards for steel<br />

tubes, tool-mak<strong>in</strong>g and open-die forg<strong>in</strong>gs.<br />

DIN Handbook 404-2 also <strong>in</strong>cludes standards<br />

deal<strong>in</strong>g with cast<strong>in</strong>g steels and sta<strong>in</strong>less<br />

steels. The Handbooks were developed<br />

for iron and steel <strong>in</strong>dustry and mechanical<br />

eng<strong>in</strong>eers. Both Handbooks are available<br />

as a package at a special price.<br />

INFO<br />

by DIN German<br />

Institute for<br />

Standardization<br />

1 st edition 2013<br />

1248 pages, paperback<br />

€ 240.00<br />

ISBN: 978-3-410-24243-7<br />

www.beuth.de<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

29


CECOF-CORNER<br />

News from <strong>the</strong> European Committee of Industrial Furnace<br />

and Heat<strong>in</strong>g Equipment Associations<br />

RCF/ASW – Risk Management Option Assessment<br />

Refractory Ceramic Fibres (RCF), better described as Alum<strong>in</strong>o-<br />

Silicate Wools (ASW) are used to produce high temperature<br />

<strong>in</strong>sulation products for <strong>in</strong>dustrial applications, typic<strong>all</strong>y above<br />

800 °C. They comprise alum<strong>in</strong>o silicate and zirconia alum<strong>in</strong>o silicate<br />

refractory fibres (fur<strong>the</strong>r referred to as RCF). A typical example<br />

for <strong>the</strong> end use of <strong>the</strong>se products is <strong>the</strong> <strong>in</strong>sulation of <strong>the</strong>rmal<br />

processes <strong>in</strong> various key <strong>in</strong>dustry sectors such as metal production<br />

and heat treatment, ceramics, glass, cement, chemical process<strong>in</strong>g<br />

and power generation.<br />

The follow<strong>in</strong>g position paper was agreed upon by CECOF, ECFIA<br />

and additional 12 associations and sent out to EU commission <strong>in</strong><br />

March <strong>2014</strong>.<br />

WHICH RISK NEEDS TO BE MANAGED?<br />

RCF has been classified by <strong>the</strong> EU as a potential human carc<strong>in</strong>ogen<br />

based on <strong>the</strong> results of animal experiments follow<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>ciple<br />

of precaution. Chronic exposure to elevated concentrations of<br />

respirable RCF dust is suspected to cause lung disease <strong>in</strong>clud<strong>in</strong>g<br />

fibrosis and cancer. 1 RCF is an <strong>in</strong>organic material and isn’t soluble<br />

<strong>in</strong> water; hence it doesn’t have any detrimental effect on <strong>the</strong><br />

1 It is worth not<strong>in</strong>g here that this “assumed risk” is based on <strong>the</strong> hazard classification<br />

ra<strong>the</strong>r than observed human health effects – <strong>the</strong>re has been no known case of<br />

occupational disease associated with RCF exposure after more than 60 years of use.<br />

environment (i.e. soil or water pollution once put to landfill after<br />

its service life).<br />

The potential risk associated with RCF is limited to occupational<br />

situations dur<strong>in</strong>g active handl<strong>in</strong>g of RCF products, when respirable<br />

fibrous dust can be released and <strong>in</strong>haled by workers. Hence <strong>the</strong><br />

over<strong>all</strong> objective of risk management measures is to reduce associated<br />

workplace risks through <strong>the</strong> elim<strong>in</strong>ation or reduction of workplace<br />

exposures. RCF products are part of <strong>the</strong> <strong>in</strong>dustrial equipment<br />

<strong>in</strong> a wide number of high temperature <strong>in</strong>dustries, <strong>the</strong>y are not<br />

found <strong>in</strong> <strong>the</strong> f<strong>in</strong>al products which are produced <strong>in</strong> <strong>the</strong>se <strong>in</strong>dustries.<br />

Throughout <strong>the</strong>ir lifecycle <strong>the</strong>re is no consumer exposure.<br />

WHY WILL AUTHORISATION UNDER REACH<br />

(ANNEX XIV) FAIL TO MANAGE THE RISK?<br />

The authorisation process under <strong>the</strong> REACH regulation is designed<br />

to control risks to <strong>the</strong> environment and human health via <strong>the</strong> substitution<br />

of substances of very high concern (SVHC). SVHC may only<br />

be used if no technic<strong>all</strong>y and economic<strong>all</strong>y feasible substitute is<br />

available, if <strong>the</strong> use takes place under controlled conditions or if <strong>the</strong><br />

benefit of cont<strong>in</strong>ued use outweighs <strong>the</strong> rema<strong>in</strong><strong>in</strong>g risks.<br />

As communicated by various <strong>in</strong>dustrial user sectors <strong>in</strong> <strong>the</strong> public<br />

consultation process dur<strong>in</strong>g <strong>the</strong> prioritisation of RCF <strong>in</strong> June 2013,<br />

<strong>the</strong>re are no feasible substitutes available for various high tempera-<br />

30 heat process<strong>in</strong>g 2-<strong>2014</strong>


CECOF-CORNER<br />

ture processes. Substitution has already taken place where possible<br />

start<strong>in</strong>g even before classification <strong>in</strong> 1997; however RCF products<br />

can’t be replaced <strong>in</strong> <strong>the</strong> technic<strong>all</strong>y demand<strong>in</strong>g rema<strong>in</strong><strong>in</strong>g applications.<br />

The authorisation requirement will <strong>the</strong>refore not lead to an<br />

elim<strong>in</strong>ation of RCF products via substitution.<br />

The authorisation process fails to cover <strong>the</strong> imports of RCF based<br />

articles. In terms of workplace controls, <strong>the</strong> authorisation process<br />

can by def<strong>in</strong>ition only regulate <strong>the</strong> “substance use” stage. The vast<br />

majority of RCF is however converted <strong>in</strong>to “articles” (often by <strong>the</strong><br />

primary manufacturers <strong>in</strong> semi-closed processes) before it is placed<br />

on <strong>the</strong> market. These articles are also imported from outside <strong>the</strong> EU.<br />

Authorisation might have an impact on <strong>the</strong> “substance to article”<br />

conversion process <strong>in</strong>side <strong>the</strong> EU (affect<strong>in</strong>g EU based RCF manufacturers),<br />

but it cannot regulate manufactur<strong>in</strong>g outside <strong>the</strong> EU nor<br />

does it regulate <strong>the</strong> import of RCF articles from non EU countries.<br />

Unlike many o<strong>the</strong>r chemical processes, where <strong>the</strong> substances are<br />

no longer present once converted <strong>in</strong> an article, RCF based articles<br />

can still release fibrous dust dur<strong>in</strong>g fur<strong>the</strong>r manipulation, <strong>in</strong>st<strong>all</strong>ation,<br />

ma<strong>in</strong>tenance and at <strong>the</strong> removal stage. F<strong>in</strong><strong>all</strong>y authorisation<br />

of <strong>the</strong> “substance” RCF under REACH fails to manage <strong>the</strong> associated<br />

workplace risk – especi<strong>all</strong>y <strong>in</strong> <strong>the</strong> case of imported articles.<br />

WHAT ARE THE OTHER DOWNSIDES RELATED<br />

TO THE INCLUSION RCF IN ANNEX XIV?<br />

Authorisation is a disproportionate burden on EU-based <strong>in</strong>dustry<br />

as it can be bypassed by non-EU competitors. It might lead to<br />

<strong>the</strong> re-location of RCF manufactur<strong>in</strong>g and conversion processes<br />

to regions outside <strong>the</strong> EU, along with <strong>the</strong> loss of employment,<br />

revenue and know-how.<br />

RCF products are used for <strong>the</strong> purpose of heat management<br />

<strong>in</strong> <strong>in</strong>dustrial process equipment such as complex and highly customised<br />

<strong>in</strong>dustrial furnaces, often represent<strong>in</strong>g long term, multimillion<br />

Euro <strong>in</strong>vestments – <strong>the</strong> uncerta<strong>in</strong>ties associated with <strong>the</strong><br />

authorisation process (<strong>in</strong>cl. regular reviews) will have a negative<br />

impact on <strong>in</strong>vestment plann<strong>in</strong>g.<br />

Ano<strong>the</strong>r potential downside is related to <strong>the</strong> “black list” effect<br />

associated with <strong>the</strong> <strong>in</strong>clusion of a substance on <strong>the</strong> authorisation<br />

list. Some users might choose to use less efficient “false substitutes”,<br />

jeopardis<strong>in</strong>g <strong>the</strong>ir energy efficiency at <strong>the</strong> cost of <strong>in</strong>creased<br />

greenhouse gas emissions and long term global competitiveness.<br />

This is clearly at odds with o<strong>the</strong>r EU policy objectives.<br />

ARE THERE ALTERNATIVE, MORE SUITABLE<br />

RISK MANAGEMENT OPTIONS?<br />

It is worth not<strong>in</strong>g that RCF is already regulated under applicable<br />

EU law. The <strong>in</strong>clusion of RCF <strong>in</strong> Annex I (Index Nr. 650-017-00-8) of<br />

<strong>the</strong> Dangerous Substances Directive <strong>in</strong> 1997 triggered a number of<br />

regulatory requirements, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> substitution requirement and<br />

labell<strong>in</strong>g obligations. The applicable Carc<strong>in</strong>ogen Directive fur<strong>the</strong>r<br />

specifies a “hierarchy of controls” approach which needs to be followed<br />

when us<strong>in</strong>g <strong>the</strong> material <strong>in</strong> <strong>in</strong>dustrial and professional sett<strong>in</strong>gs.<br />

Additional regulatory risk management options under REACH<br />

<strong>in</strong>clude <strong>the</strong> <strong>in</strong>strument of restrictions which might be used as an<br />

alternative to authorisation. In fact, a restriction already applies to RCF<br />

<strong>in</strong> that it must not be sold to <strong>the</strong> general public to avoid uncontrolled<br />

consumer exposure. Fur<strong>the</strong>r restriction will deprive <strong>the</strong> European<br />

market of necessary products without improv<strong>in</strong>g <strong>the</strong> workers’ health.<br />

The most direct risk management option is via <strong>the</strong> def<strong>in</strong>ition of an<br />

EU-wide workplace exposure limit as part of <strong>the</strong> Carc<strong>in</strong>ogen Directive<br />

(CMD). While national standards are <strong>in</strong> place <strong>in</strong> most Member States,<br />

fur<strong>the</strong>r harmonisation and improved workplace risk management<br />

could be achieved by <strong>the</strong> implementation of a b<strong>in</strong>d<strong>in</strong>g occupational<br />

exposure limit value (BOELV). This approach overcomes <strong>the</strong> limitations<br />

of <strong>the</strong> authorisation process as it is designed to control exposures to<br />

RCF dust dur<strong>in</strong>g <strong>in</strong>dustrial and professional use – <strong>in</strong>dependent of <strong>the</strong><br />

substance/article status. It would hence control <strong>the</strong> risk associated<br />

with RCF dust release throughout <strong>the</strong> entire product life cycle and<br />

<strong>in</strong>dependent from <strong>the</strong> product orig<strong>in</strong>.<br />

As stated above, <strong>the</strong> over<strong>all</strong> objective of fur<strong>the</strong>r regulation is to<br />

reduce workplace risks. This objective, along with o<strong>the</strong>r important<br />

REACH targets such as <strong>the</strong> EU market function<strong>in</strong>g effectively and <strong>the</strong><br />

substitution with economic<strong>all</strong>y and technic<strong>all</strong>y viable alternatives is<br />

<strong>in</strong>cluded <strong>in</strong> Article 55 REACH. The adequacy of regulatory options<br />

should be checked aga<strong>in</strong>st <strong>the</strong>se objectives, <strong>in</strong>clud<strong>in</strong>g some additional<br />

aspects to assess <strong>the</strong>ir effectiveness and efficiency.<br />

CONCLUSION<br />

Based on <strong>the</strong> discussion above, <strong>the</strong> <strong>in</strong>troduction of a BOELV under<br />

<strong>the</strong> exist<strong>in</strong>g framework of <strong>the</strong> Carc<strong>in</strong>ogens and Mutagens Directive<br />

(CMD) appears to be much more efficient and effective to<br />

achieve <strong>the</strong> over<strong>all</strong> objective of improved risk management via<br />

harmonized workplace controls.<br />

Fur<strong>the</strong>r details can be found at www.cecof.org<br />

AUTHOR:<br />

Dr. Franz Beneke<br />

VDMA Thermo Process Technology<br />

www.cecof.org<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

31


4<br />

ALUMINIUM <strong>2014</strong><br />

7 – 9 Oct <strong>2014</strong> | Messe Düsseldorf<br />

10th World Trade Fair & Conference<br />

www.alum<strong>in</strong>ium-messe.com<br />

Organised by<br />

Partners


GENERAL INFORMATION<br />

Alum<strong>in</strong>ium <strong>2014</strong> world trade<br />

fair cont<strong>in</strong>ues to grow<br />

The Alum<strong>in</strong>ium world fair is prepar<strong>in</strong>g for its 10 th edition,<br />

to be held <strong>in</strong> Düsseldorf from 7 to 9 October. Five<br />

months before <strong>the</strong> world’s largest <strong>in</strong>dustry meet<strong>in</strong>g place<br />

is due to open, almost 700 <strong>in</strong>ternational exhibitors have<br />

registered for participation, and more than 90 % of <strong>the</strong> <strong>exhibition</strong><br />

space has already been booked. Trade fair organiser<br />

Reed Exhibitions is optimistic and expects to cont<strong>in</strong>ue <strong>the</strong><br />

success of previous years with Alum<strong>in</strong>ium <strong>2014</strong>.<br />

<strong>2014</strong> is already shap<strong>in</strong>g up to be a good year for alum<strong>in</strong>ium<br />

– not least because of <strong>the</strong> recovery be<strong>in</strong>g seen <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>ternational sales markets. One of <strong>the</strong> highlights of <strong>the</strong><br />

year is set to be <strong>the</strong> <strong>in</strong>dustry get-toge<strong>the</strong>r <strong>in</strong> Düsseldorf.<br />

At Alum<strong>in</strong>ium <strong>2014</strong> alum<strong>in</strong>ium producers and converters<br />

meet with suppliers of technologies and equipment for<br />

production, fur<strong>the</strong>r process<strong>in</strong>g and f<strong>in</strong>ish<strong>in</strong>g. With <strong>the</strong> support<br />

of GDA – <strong>the</strong> German Confederation of <strong>the</strong> Alum<strong>in</strong>ium<br />

Industry and EAA, <strong>the</strong> European Alum<strong>in</strong>ium Association, <strong>the</strong><br />

trade fair shows <strong>the</strong> full performance spectrum: from <strong>the</strong><br />

production of <strong>the</strong> base material through to its process<strong>in</strong>g<br />

and <strong>the</strong> f<strong>in</strong>ished product.<br />

The <strong>exhibition</strong> just keeps grow<strong>in</strong>g and grow<strong>in</strong>g. When<br />

it moved from <strong>the</strong> Ruhr to <strong>the</strong> Rh<strong>in</strong>e two years ago, <strong>the</strong><br />

trade fair experienced quite a boost. And <strong>the</strong> signs po<strong>in</strong>t<br />

to fur<strong>the</strong>r growth yet aga<strong>in</strong> for Alum<strong>in</strong>ium <strong>2014</strong>, even if<br />

this will be slightly more moderate than at its Düsseldorf<br />

debut. Reed Exhibitions currently expects a 5 % <strong>in</strong>crease<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

P 1<br />

CARAVAN CENTER<br />

Rhe<strong>in</strong>bad<br />

OVERVIEW HALL PLAN<br />

ALUMINIUM <strong>2014</strong><br />

Motorway A44<br />

0,5 km<br />

ESPRIT<br />

arena<br />

8 a<br />

8 b<br />

Arena-Str. r.<br />

P 7<br />

COMPOSITES<br />

EUROPE<br />

COMPOSITES<br />

EUROPE<br />

Tramstation<br />

U<br />

78<br />

Hotel<br />

U-Bahnhof/<br />

Tram Station<br />

ESPRIT arena/<br />

Messe Nord<br />

e<br />

Logistics Center<br />

Trade Fair Entrance Gate 1<br />

6 1<br />

7 a 7 0-2<br />

5<br />

9<br />

Primary<br />

Production &<br />

Suppliers<br />

10<br />

Foundries, Heat<br />

Treatment &<br />

Suppliers,<br />

Recycl<strong>in</strong>g<br />

11<br />

Products &<br />

Suppliers<br />

12<br />

Products &<br />

Suppliers<br />

13<br />

Surface,<br />

F<strong>in</strong>ish<strong>in</strong>g,<br />

Metal<br />

Work<strong>in</strong>g,<br />

Weld<strong>in</strong>g,<br />

Jo<strong>in</strong><strong>in</strong>g &<br />

Suppliers<br />

4<br />

U<br />

79<br />

To<br />

ll,<br />

Forwarders<br />

4<br />

3<br />

CCD<br />

Stadth<strong>all</strong>e<br />

2<br />

1<br />

CCD Pavilion<br />

16<br />

P 4<br />

15<br />

14<br />

East Entrance<br />

CCD Ost<br />

Congress<br />

Center<br />

Düsseldorf<br />

CCD Süd<br />

Congress<br />

Center<br />

Düsseldorf<br />

P 5<br />

South<br />

U<br />

78/79<br />

Rhe<strong>in</strong><br />

P 3<br />

Nordpark<br />

Löbbecke Museum<br />

+ Aquazoo<br />

City Center 4 km<br />

2-2012 heat process<strong>in</strong>g<br />

33


GENERAL INFORMATION<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

<strong>in</strong> <strong>exhibition</strong> space, as well as higher exhibitor and visitor<br />

numbers. More than 950 exhibitors are expected for <strong>the</strong><br />

10 th edition of Alum<strong>in</strong>ium – two years ago, that number<br />

was 907 companies from 51 countries.<br />

Already, H<strong>all</strong>s 9 to 12 of <strong>the</strong> Düsseldorf Exhibition Centre<br />

are almost fully booked. As a result, <strong>the</strong> reserve space<br />

orig<strong>in</strong><strong>all</strong>y set aside <strong>in</strong> <strong>the</strong> four h<strong>all</strong>s, which are organised<br />

along <strong>the</strong>me l<strong>in</strong>es, has already been occupied. Therefore,<br />

a better gross-to-net ratio is <strong>the</strong> aim <strong>in</strong> <strong>all</strong>ocat<strong>in</strong>g space <strong>in</strong><br />

H<strong>all</strong> 13, which will have a higher stand density and house<br />

both <strong>the</strong> “Surface” and <strong>the</strong> “Metalwork<strong>in</strong>g and Process<strong>in</strong>g”<br />

segments under a s<strong>in</strong>gle roof.<br />

Alum<strong>in</strong>ium also creates focal po<strong>in</strong>ts and provides special<br />

po<strong>in</strong>ts of <strong>in</strong>terest for visitors with its <strong>the</strong>me pavilions.<br />

COMPETENCE CENTRE SURFACE<br />

TECHNOLOGY<br />

The central po<strong>in</strong>t of contact on <strong>the</strong> topic of surface treatment<br />

will be <strong>the</strong> Competence Centre Surface Technology <strong>in</strong><br />

H<strong>all</strong> 13. 25 exhibitors will show <strong>the</strong>ir technologies for coat<strong>in</strong>g,<br />

polish<strong>in</strong>g, varnish<strong>in</strong>g or anodis<strong>in</strong>g of Alum<strong>in</strong>ium. Fur<strong>the</strong>r<br />

topics are <strong>the</strong> corrosion protection, measurement, test<strong>in</strong>g<br />

and analys<strong>in</strong>g. The Competence Centre Surface Technology<br />

is supported by <strong>the</strong> Association for Surface Ref<strong>in</strong>ement of<br />

Alum<strong>in</strong>ium (VOA) and by <strong>the</strong> GSB International, <strong>the</strong> Quality<br />

Association for piecework coat<strong>in</strong>g of components.<br />

FOUNDRY PAVILION<br />

“Everyth<strong>in</strong>g from <strong>the</strong> same mould” is <strong>the</strong> motto for <strong>the</strong><br />

Foundry Pavilion <strong>in</strong> H<strong>all</strong> 10 where exhibitors from <strong>the</strong> fields<br />

of sand, gravity and pressure die cast<strong>in</strong>g are presented.<br />

The jo<strong>in</strong>t stand is supported by <strong>the</strong> BDGuss, <strong>the</strong> German<br />

Foundry Association.<br />

jo<strong>in</strong><strong>in</strong>g, cutt<strong>in</strong>g and coat<strong>in</strong>g alum<strong>in</strong>ium. Technologies for<br />

alum<strong>in</strong>ium weld<strong>in</strong>g, glu<strong>in</strong>g, solder<strong>in</strong>g, jo<strong>in</strong><strong>in</strong>g or cutt<strong>in</strong>g<br />

can also be found here.<br />

PREMIERE: RECYCLING PAVILION<br />

Susta<strong>in</strong>ability, climate protection and resource efficiency are<br />

at <strong>the</strong> focus of <strong>the</strong> new Recycl<strong>in</strong>g Pavilion. This jo<strong>in</strong>t stand<br />

<strong>in</strong> H<strong>all</strong> 9 targets providers and players <strong>in</strong> <strong>the</strong> alum<strong>in</strong>iumrecycl<strong>in</strong>g<br />

<strong>in</strong>dustry such as scrap dealers, manufacturers<br />

of sort<strong>in</strong>g, shredder, briquett<strong>in</strong>g and re-melt<strong>in</strong>g systems.<br />

ALUMINIUM <strong>2014</strong> CONFERENCE<br />

As <strong>the</strong> <strong>in</strong>stitutional patron of <strong>the</strong> trade fair, <strong>the</strong> GDA – <strong>the</strong><br />

German Confederation of <strong>the</strong> Alum<strong>in</strong>ium Industry will once<br />

aga<strong>in</strong> organise <strong>the</strong> Alum<strong>in</strong>ium <strong>2014</strong> Conference which<br />

accompanies <strong>the</strong> trade fair. Industry experts will give an<br />

overview of <strong>the</strong> future prospects of alum<strong>in</strong>ium <strong>in</strong> a wide<br />

range of application markets from 7 to 9 October <strong>in</strong> <strong>the</strong><br />

CCD Ost. The programme features a total of five sessions,<br />

on a range of subjects <strong>in</strong>clud<strong>in</strong>g, among o<strong>the</strong>rs Automotive<br />

and Markets. The conference language is English.<br />

LIGHTWEIGHT SUMMIT: ALUMINIUM AND<br />

COMPOSITES EUROPE<br />

Composites Europe will aga<strong>in</strong> be held <strong>in</strong> Düsseldorf at <strong>the</strong><br />

same dates as alum<strong>in</strong>ium. At <strong>the</strong> European Trade Fair for<br />

Composite Materials, more than 400 exhibitors will present<br />

trends <strong>in</strong> <strong>the</strong> field of re<strong>in</strong>forced plastics. With a total of<br />

1,300 exhibitors, <strong>the</strong> two events transform <strong>the</strong> Düsseldorf<br />

Exhibition Centre <strong>in</strong>to one of <strong>the</strong> world’s largest lightweight<br />

construction forums. For trade fair visitors, pass<strong>in</strong>g from<br />

one fair to <strong>the</strong> o<strong>the</strong>r will be simplified: The Alum<strong>in</strong>ium<br />

admission ticket is valid for both fairs.<br />

PRIMARY PAVILION<br />

H<strong>all</strong> 9 is where <strong>the</strong> alum<strong>in</strong>ium-produc<strong>in</strong>g <strong>in</strong>dustry is presented.<br />

The Primary Pavilion here focuses on technologies<br />

for alum<strong>in</strong>a and alum<strong>in</strong>ium manufactur<strong>in</strong>g, <strong>the</strong> equipment<br />

for alum<strong>in</strong>a transport as well as electrolysis technologies<br />

for anode production.<br />

WELDING AND JOINING PAVILION<br />

The jo<strong>in</strong>t stand <strong>in</strong> H<strong>all</strong> 14 is dedicated to metal work<strong>in</strong>g and<br />

process<strong>in</strong>g as well as <strong>the</strong> weld<strong>in</strong>g and jo<strong>in</strong><strong>in</strong>g of alum<strong>in</strong>ium.<br />

In focus are plant, mach<strong>in</strong>ery, equipment and auxiliaries for<br />

www.alum<strong>in</strong>ium-messe.com<br />

Visit heat process<strong>in</strong>g <strong>in</strong> H<strong>all</strong> 10 / Booth F54<br />

34<br />

heat process<strong>in</strong>g 2-<strong>2014</strong>


BASIC DATA<br />

Alum<strong>in</strong>ium <strong>2014</strong> -<br />

LOCATION<br />

Messe Düsseldorf, Germany<br />

Exhibition Center Düsseldorf<br />

H<strong>all</strong>s 9-14<br />

Stockumer Kirchstraße 61<br />

40474 Düsseldorf<br />

Ma<strong>in</strong> Entrances: North and East<br />

Side Entrance: North-East<br />

OPENING HOURS<br />

7 - 9 October <strong>2014</strong> – 09:00 am - 06:00 pm<br />

EXPECTED NUMBER OF EXHIBITORS IN <strong>2014</strong><br />

1,000<br />

EXPECTED NUMBER OF VISITORS IN <strong>2014</strong><br />

25,000<br />

10 th World Trade Fair & Conference<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Primary Pavilion<br />

Equipment and technology for primary production<br />

Weld<strong>in</strong>g & Jo<strong>in</strong><strong>in</strong>g Pavilion<br />

Comb<strong>in</strong><strong>in</strong>g with alum<strong>in</strong>ium<br />

Magnesium Area<br />

Integrative area for delivery and development of <strong>the</strong><br />

material magnesium<br />

Recycl<strong>in</strong>g Pavilion<br />

Susta<strong>in</strong>ability through climate protection and resource<br />

e ffi c i e n c y<br />

There will also be <strong>the</strong> opportunity to exhibit <strong>in</strong>dividu<strong>all</strong>y<br />

<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g areas:<br />

Recycl<strong>in</strong>g Area<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

EXHIBITION SPACE IN <strong>2014</strong><br />

75,000 m 2 <strong>exhibition</strong> space<br />

EXHIBITION SUBJECTS<br />

Alum<strong>in</strong>ium trade fair <strong>in</strong> Germany provides an overview of<br />

<strong>the</strong> entire alum<strong>in</strong>ium <strong>in</strong>dustry. It is <strong>the</strong> <strong>in</strong>ternational meet<strong>in</strong>g<br />

place for suppliers of raw material, semi-f<strong>in</strong>ished and f<strong>in</strong>ished<br />

products, surface treatment and producers of mach<strong>in</strong>ery,<br />

plant and equipment for alum<strong>in</strong>ium process<strong>in</strong>g and manufactur<strong>in</strong>g.<br />

Light-metals trade, consultancy and expert op<strong>in</strong>ions.<br />

Around 25,000 <strong>in</strong>ternational trade visitors look for new<br />

solutions and technologies, not only from producers of <strong>the</strong><br />

raw material but also processors, ref<strong>in</strong>ers, suppliers for <strong>the</strong><br />

automotive or build<strong>in</strong>g <strong>in</strong>dustry e.g. producers of sections,<br />

suppliers of <strong>the</strong> latest technologies for e.g. extrusion, heat<br />

treatment, cast<strong>in</strong>g, saw<strong>in</strong>g or surface ref<strong>in</strong>ement. Selected<br />

<strong>the</strong>mes will be presented <strong>in</strong> several pavilions:<br />

■<br />

■<br />

Foundry Pavilion<br />

All <strong>about</strong> cast<strong>in</strong>g - Product solutions <strong>in</strong> Alum<strong>in</strong>ium<br />

Competence Centre Surface Technology<br />

Design meets functionality – Surface treatment of<br />

alum<strong>in</strong>ium<br />

■<br />

■<br />

Trade Area<br />

Visitor target groups<br />

• Alum<strong>in</strong>ium produc<strong>in</strong>g and process<strong>in</strong>g <strong>in</strong>dustry<br />

• Metal work<strong>in</strong>g and process<strong>in</strong>g <strong>in</strong>dustry <strong>in</strong>clud<strong>in</strong>g<br />

surface treatment<br />

• Automotive (cars, commercial vehicles)<br />

• Transport (railway, ship and aircraft build<strong>in</strong>g)<br />

• Eng<strong>in</strong>eer<strong>in</strong>g<br />

• Electrics and electronics<br />

• Build<strong>in</strong>g and construction<br />

• Packag<strong>in</strong>g and consumer durables<br />

PROGRAMME<br />

• Alum<strong>in</strong>ium <strong>2014</strong> Conference<br />

• European Alum<strong>in</strong>ium Award <strong>2014</strong><br />

• Research Forum<br />

• Young <strong>in</strong>novative companies<br />

ORGANISER<br />

Reed Exhibitions Deutschland GmbH<br />

Völkl<strong>in</strong>ger Straße 4<br />

40219 Düsseldorf, Germany<br />

Tel.: +49 (0)211/ 90 191-202 / -225<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

35


INTERVIEW<br />

“The use of alum<strong>in</strong>ium around<br />

<strong>the</strong> globe is grow<strong>in</strong>g steadily”<br />

Michael Köhler, Event Director of Alum<strong>in</strong>ium, talks <strong>about</strong> <strong>the</strong> upcom<strong>in</strong>g Alum<strong>in</strong>ium<br />

trade fair <strong>in</strong> Düsseldorf.<br />

Mr. Köhler, Alum<strong>in</strong>ium <strong>in</strong> October is <strong>the</strong> highlight of <strong>the</strong><br />

year for <strong>the</strong> <strong>in</strong>ternational alum<strong>in</strong>ium <strong>in</strong>dustry. Will<br />

<strong>2014</strong> be a good year for alum<strong>in</strong>ium?<br />

Köhler: <strong>2014</strong> will def<strong>in</strong>itely be a good year for alum<strong>in</strong>ium:<br />

International markets have recovered; <strong>the</strong> use of alum<strong>in</strong>ium<br />

around <strong>the</strong> globe is grow<strong>in</strong>g steadily. Demand cont<strong>in</strong>ues<br />

to rise unabate dly, especi<strong>all</strong>y <strong>in</strong> transport sectors such as<br />

automotive manufactur<strong>in</strong>g, aircraft construction and local<br />

transit systems. But <strong>the</strong> construction and packag<strong>in</strong>g sectors<br />

are also see<strong>in</strong>g excellent growth rates and cont<strong>in</strong>ue<br />

to hold enormous potential. Plus, <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry<br />

has been able to <strong>in</strong>crease its competiveness <strong>in</strong> recent years<br />

thanks to new products, <strong>in</strong>clud<strong>in</strong>g new, high-strength<br />

<strong>all</strong>oys and coat<strong>in</strong>gs, and more-efficient process<strong>in</strong>g techniques.<br />

That’s someth<strong>in</strong>g that will be reflected very clearly<br />

at Alum<strong>in</strong>ium.<br />

How are trade fair preparations go<strong>in</strong>g?<br />

Köhler: We’re very satisfied with preparations and with book<strong>in</strong>gs<br />

to date: 90 % of <strong>the</strong> <strong>exhibition</strong> space has been booked<br />

already; H<strong>all</strong>s 9 to 12 are almost completely sold out. On <strong>the</strong><br />

heels of <strong>the</strong> successful move from Essen to Düsseldorf two<br />

years ago, <strong>all</strong> signs are still po<strong>in</strong>t<strong>in</strong>g to growth for <strong>the</strong> 10 th<br />

edition of Alum<strong>in</strong>ium. The decision <strong>in</strong> favour of Düsseldorf<br />

was a forward-look<strong>in</strong>g move for <strong>the</strong> development of trade<br />

fair. In Düsseldorf we’ll be able to cont<strong>in</strong>ue to raise <strong>the</strong> bar<br />

on quality and grow <strong>in</strong> structured ways <strong>in</strong> <strong>2014</strong> – even if it’ll<br />

be a bit more moderately than two years ago.<br />

At past trade fairs, you’ve been able to put <strong>the</strong> spotlight<br />

on an ever chang<strong>in</strong>g array of topics through special<br />

areas and focal <strong>the</strong>mes. What do you have <strong>in</strong> store<br />

for visitors this year?<br />

Köhler: The Theme Pavilions such as <strong>the</strong> Foundry, Primary,<br />

Weld<strong>in</strong>g and Jo<strong>in</strong><strong>in</strong>g Pavilions and <strong>the</strong> Competence Centre<br />

Surface Technology will once aga<strong>in</strong> be important dest<strong>in</strong>ations<br />

for visitors. The <strong>in</strong>augural edition of <strong>the</strong> Recycl<strong>in</strong>g Pavilion<br />

will put centre stage topics critical for <strong>the</strong> future of <strong>the</strong><br />

alum<strong>in</strong>ium <strong>in</strong>dustry: susta<strong>in</strong>ability, climate protection and<br />

resource efficiency. Moreover, we’re plann<strong>in</strong>g two special<br />

shows focussed on <strong>the</strong> “Automotive” and “Build<strong>in</strong>g” <strong>the</strong>mes.<br />

These “Innovation Areas” will feature exhibitors present<strong>in</strong>g<br />

hands-on displays of new ideas and high-tech products.<br />

Accompany<strong>in</strong>g <strong>the</strong> trade fair will once aga<strong>in</strong> be <strong>the</strong><br />

“Alum<strong>in</strong>ium <strong>2014</strong> Conference,” which is organised by us <strong>in</strong><br />

cooperation with <strong>the</strong> German alum<strong>in</strong>ium association GDA,<br />

<strong>the</strong> conceptual sponsor of <strong>the</strong> trade fair. The central focus<br />

<strong>the</strong>re will be on <strong>in</strong>novations and new technologies as well<br />

as on future markets for <strong>the</strong> material alum<strong>in</strong>ium.<br />

Thank you for this <strong>in</strong>terview.<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

"The decision <strong>in</strong> favour of<br />

Düsseldorf was a forwardlook<strong>in</strong>g<br />

move."<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

37


PRODUCT PREVIEW<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Custom eng<strong>in</strong>eered alum<strong>in</strong>ium furnaces<br />

Seco/Warwick Alum<strong>in</strong>ium Furnaces<br />

are custom eng<strong>in</strong>eered<br />

with control and material handl<strong>in</strong>g<br />

systems offered <strong>in</strong> configurations to<br />

suit every type of production environment.<br />

These systems are <strong>in</strong> operation<br />

worldwide by primary and secondary<br />

alum<strong>in</strong>ium producers as well as <strong>in</strong> aerospace,<br />

aircraft, automotive, forge and<br />

fastener manufactur<strong>in</strong>g. The company<br />

manufactures:<br />

■ Alum<strong>in</strong>ium anneal<strong>in</strong>g, homogeniz<strong>in</strong>g<br />

and preheat furnaces<br />

for <strong>the</strong> primary production of<br />

sheet, plate, foil and extruded<br />

products <strong>in</strong> roll<strong>in</strong>g and draw<strong>in</strong>g<br />

mills.<br />

■ Reverb melt<strong>in</strong>g and hold<strong>in</strong>g<br />

systems are used for melt<strong>in</strong>g<br />

sows, solids and scraps along with<br />

<strong>all</strong>oy<strong>in</strong>g <strong>the</strong> molten metal before<br />

cast<strong>in</strong>g <strong>in</strong>to usable forms.<br />

■ Solution heat treat and ag<strong>in</strong>g<br />

furnace systems are designed for<br />

solution heat treatment, solution<br />

anneal<strong>in</strong>g, precipitation harden<strong>in</strong>g,<br />

artificial ag<strong>in</strong>g, age harden<strong>in</strong>g and<br />

preheat processes for alum<strong>in</strong>um<br />

cast<strong>in</strong>gs, forg<strong>in</strong>gs, extrusions and<br />

plate.<br />

Seco/Warwick is a customer focused<br />

global company, with facilities <strong>in</strong> <strong>the</strong><br />

USA, Europe, India, Ch<strong>in</strong>a and Brazil,<br />

deliver<strong>in</strong>g heat transfer equipment<br />

and services with exceptional quality<br />

and value. The company has proven<br />

for over 100 years its commitment to<br />

high quality products that provides<br />

a superior performance to <strong>the</strong> customers.<br />

The company has its own R&D<br />

division equipped with a met<strong>all</strong>ography<br />

laboratory and works <strong>in</strong> cooperation<br />

with different academic centres.<br />

Seco/Warwick Europe Sp. z o.o.<br />

www.secowarwick.com<br />

H<strong>all</strong> 10 / Booth D16<br />

Burner control unit with extensive control<br />

and safety functions<br />

Elster Kromschröder <strong>in</strong>tegrates a<br />

wide range of control and safety<br />

functions <strong>in</strong> <strong>the</strong> smart burner control<br />

unit BCU 570 while tak<strong>in</strong>g <strong>in</strong>to account<br />

current safety requirements. The new<br />

control unit has been developed for<br />

s<strong>in</strong>gle/forced draught burner applications<br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>dustrial and commercial<br />

sectors. Modulat<strong>in</strong>g controlled burners<br />

of unlimited capacity can be monitored<br />

<strong>in</strong> cont<strong>in</strong>uous operation.<br />

Burner control unit BCU 570 controls<br />

burner start-up and monitors<br />

ongo<strong>in</strong>g operation of <strong>the</strong> burner.<br />

Thanks to <strong>the</strong> flexible programm<strong>in</strong>g,<br />

applications with directly ignited<br />

burners and comb<strong>in</strong>ations of burners<br />

with <strong>in</strong>tegrated pilot burners can<br />

be implemented. Gas valves can be<br />

checked for tightness us<strong>in</strong>g <strong>the</strong> valve<br />

prov<strong>in</strong>g system.<br />

The pla<strong>in</strong>-text display OCU 500<br />

can be comb<strong>in</strong>ed with <strong>the</strong> burner<br />

control unit and ensures easy operation<br />

as well as provid<strong>in</strong>g convenient<br />

commission<strong>in</strong>g support. The detailed<br />

visualization of <strong>all</strong> parameters and<br />

system status helps to maximize <strong>the</strong><br />

availability of <strong>the</strong> heat<strong>in</strong>g equipment.<br />

Thanks to <strong>the</strong> Prof<strong>in</strong>et <strong>in</strong>terface<br />

BCM 500, <strong>the</strong> burner control unit can<br />

be easily <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> process<br />

automation system. This opens up a<br />

wide range of process visualization<br />

possibilities. Extended visualization<br />

and diagnostics options for commission<strong>in</strong>g<br />

and ma<strong>in</strong>tenance work are<br />

available via <strong>the</strong> BCSoft programm<strong>in</strong>g<br />

software and <strong>the</strong> optical <strong>in</strong>terface on<br />

<strong>the</strong> burner control unit.<br />

The unit can be <strong>in</strong>st<strong>all</strong>ed <strong>in</strong> applications<br />

pursuant to EN 746-2 and EN 676.<br />

In <strong>the</strong> case of accord<strong>in</strong>gly certified<br />

sensors and actuators, safety functions<br />

up to SIL 3, correspond<strong>in</strong>g to<br />

Pl e, are possible.<br />

Elster GmbH<br />

www.kromschroeder.com<br />

H<strong>all</strong> 10 / Booth C14<br />

38 heat process<strong>in</strong>g 2-<strong>2014</strong>


PRODUCT PREVIEW<br />

Furnace technology for a number of different<br />

applications<br />

El<strong>in</strong>o Industrie-Ofenbau GmbH has<br />

been develop<strong>in</strong>g, design<strong>in</strong>g, and<br />

manufactur<strong>in</strong>g cont<strong>in</strong>uous plants for<br />

more than 50 years: roller conveyor<br />

and paternoster furnaces as well as<br />

cha<strong>in</strong> conveyor furnaces, to name<br />

but a few. To this day, more than 100<br />

plants for basic or very special requirements<br />

<strong>in</strong> <strong>the</strong> field of alum<strong>in</strong>ium processes,<br />

and 4,000 plants <strong>in</strong> o<strong>the</strong>r fields<br />

of application have been delivered<br />

world-wide.<br />

Cast components, e.g. cyl<strong>in</strong>der<br />

heads, eng<strong>in</strong>e bases, structural components<br />

as well as axle suspensions,<br />

are also heat treated as it is done with<br />

cold-formed alum<strong>in</strong>ium sections and<br />

mach<strong>in</strong>ed components. A very accurate<br />

temperature control dur<strong>in</strong>g artificial<br />

ag<strong>in</strong>g and solution anneal<strong>in</strong>g is absolutely<br />

vital. Quench<strong>in</strong>g processes after<br />

solution anneal<strong>in</strong>g are implemented<br />

us<strong>in</strong>g water, polymer or air depend<strong>in</strong>g<br />

on <strong>the</strong> customers’ requirements.<br />

El<strong>in</strong>o has long-term experience and<br />

can offer various designs for <strong>the</strong> processes<br />

under ambient air atmosphere<br />

and for special gas-tight designs with<br />

process gases, e.g. argon or nitrogen.<br />

The cont<strong>in</strong>uous furnaces made by<br />

El<strong>in</strong>o are fully technic<strong>all</strong>y developed,<br />

are sound and <strong>all</strong>ow long lifetimes.<br />

The company has always been focuss<strong>in</strong>g<br />

on <strong>the</strong> optimization of energy<br />

consumption. Depend<strong>in</strong>g on <strong>the</strong> process<br />

conditions, heat treatments of up<br />

to 1,000 °C can be carried out. Product<br />

specific <strong>in</strong>ternal fitt<strong>in</strong>gs <strong>in</strong> <strong>the</strong> process<br />

chamber give ample scope for new<br />

products.<br />

El<strong>in</strong>o Industrie-Ofenbau GmbH<br />

www.el<strong>in</strong>o.de<br />

H<strong>all</strong> 10 / Booth C30<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

ADVANCED SOLUTIONS FOR ALUMINIUM MARKET REQUIREMENTS<br />

C.so Unione Sovietica 612 <strong>in</strong>t. 20, 10135 Tor<strong>in</strong>o - Italy<br />

Phone +39 011 2633 111 - Fax +39 011 2633 552<br />

E-mail <strong>in</strong>fo.dfo@danieli.it - sales@dfo.danieli.it<br />

www.danielicentrocombustion.it<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

part of DANIELI Centro Combustion<br />

S.p.A.<br />

39


PRODUCT PREVIEW<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Ecomelt furnaces considerably reduce<br />

energy consumption<br />

Hertwich Eng<strong>in</strong>eer<strong>in</strong>g is active<br />

worldwide with design, supply,<br />

construction and commission<strong>in</strong>g<br />

of speciality mach<strong>in</strong>ery and equipment<br />

for <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry, <strong>in</strong><br />

particular for alum<strong>in</strong>ium casthouses.<br />

The product range comprises<br />

<strong>the</strong> follow<strong>in</strong>g technic<strong>all</strong>y<br />

advanced mach<strong>in</strong>ery and<br />

equipment: Cont<strong>in</strong>uous and<br />

batch homogeniz<strong>in</strong>g plants,<br />

saw<strong>in</strong>g plants, horizontal DC<br />

cast<strong>in</strong>g mach<strong>in</strong>es, ultrasonic<br />

<strong>in</strong>spection stations and melt<strong>in</strong>g<br />

equipment for alum<strong>in</strong>ium<br />

scrap.<br />

. Hertwich now covers <strong>all</strong><br />

grades of alum<strong>in</strong>ium scrap<br />

with its furnace range: S<strong>in</strong>gle<br />

chamber furnaces for clean srap, multi<br />

chamber furnaces for pa<strong>in</strong>ted and oily<br />

scrap, chips etc. and rotary tilt<strong>in</strong>g furnace<br />

for low grade scrap.<br />

The multichamber furnaces of<br />

<strong>the</strong> Ecomelt range are synonymous<br />

for lean energy consumption and<br />

m<strong>in</strong>imum metal loss, yet m<strong>in</strong>imum<br />

environmental impact. Organics<br />

attached to <strong>the</strong> charged scrap are<br />

gasified and <strong>the</strong>rm<strong>all</strong>y utilized, <strong>in</strong><br />

a generator combustion air is preheated<br />

and flue gasses are cooled<br />

rapidly <strong>in</strong> a regenerator. Melt<strong>in</strong>g is<br />

by submersion of preheated metal<br />

<strong>in</strong> a melt flow <strong>in</strong>duced by a liquid<br />

metal pump. Cont<strong>in</strong>uous melt rates<br />

are up to 12 t/h (240 t/day). Specific<br />

energy consumption as low as 370 to<br />

450 kWh/t are common.<br />

Hertwich Eng<strong>in</strong>eer<strong>in</strong>g<br />

www.hertwich.com<br />

H<strong>all</strong> 9 / Booth C20<br />

Controll<strong>in</strong>g high temperatures<br />

Extremely high temperatures and<br />

often extreme mechanical stresses<br />

too are encountered <strong>in</strong> many areas<br />

of <strong>the</strong> primary alum<strong>in</strong>ium production<br />

process. Insulation materials from<br />

Frenzelit are a particularly frequent<br />

choice where it gets especi<strong>all</strong>y hot,<br />

s<strong>in</strong>ce <strong>the</strong>y ensure that staff can stay<br />

cool. Because <strong>the</strong> efficiency, quality<br />

and temperature resistance of technical<br />

textiles from Frenzelit make <strong>the</strong>m<br />

<strong>the</strong> optimum solution for many different<br />

applications, as <strong>the</strong>y help to control<br />

<strong>the</strong> temperatures and m<strong>in</strong>imise<br />

<strong>the</strong> ma<strong>in</strong>tenance expense <strong>in</strong>curred<br />

as a result.<br />

isoGLAS® pillows seal off <strong>the</strong> furnace<br />

cover at <strong>the</strong> <strong>in</strong>take ports <strong>in</strong><br />

anode bak<strong>in</strong>g operations, for example,<br />

so that no air can enter where it<br />

is not required. And isoGLAS® start-up<br />

pillows cover <strong>the</strong> electrolytic cells dur<strong>in</strong>g<br />

<strong>in</strong>spection work.<br />

Ano<strong>the</strong>r example: where <strong>the</strong><br />

molten alum<strong>in</strong>ium is sucked out of <strong>the</strong><br />

electrolytic cell, punched components<br />

made from isoTHERM® HT woven fabric<br />

seal off <strong>the</strong> suction pipes, while<br />

novaTEX GOLD AL-Extra pack<strong>in</strong>gs seal<br />

off <strong>the</strong> crucible covers, guarantee<strong>in</strong>g a<br />

useful life that is up to five times longer<br />

than standard solutions.<br />

And where <strong>the</strong> molten alum<strong>in</strong>ium<br />

from <strong>the</strong> cast<strong>in</strong>g/smelt<strong>in</strong>g furnace is<br />

poured <strong>in</strong>to <strong>the</strong> distribution system,<br />

<strong>the</strong> flexible textile launder made<br />

from isoTHERM® AL-FLEX adapts to<br />

<strong>the</strong> movements of <strong>the</strong> furnace and<br />

makes sure that a reliable connection<br />

is ma<strong>in</strong>ta<strong>in</strong>ed throughout <strong>the</strong> process.<br />

The composite material consists on<br />

<strong>the</strong> <strong>in</strong>side and outside of isoTHERM®<br />

woven fabric that resists high temperatures<br />

of up to 900 °C, while it has<br />

isoTHERM® S needlemat <strong>in</strong> <strong>the</strong> middle,<br />

which resists temperatures of up to<br />

1,050 °C and even up to as much as<br />

1,100 °C for a short time. isoTHERM®<br />

800 tubular pack<strong>in</strong>gs for seal<strong>in</strong>g <strong>the</strong><br />

launder segments can, <strong>in</strong> addition,<br />

extend useful life by a factor of 15.<br />

Frenzelit Werke GmbH<br />

www.frenzelit.com<br />

H<strong>all</strong> 10 / Booth I51<br />

40 heat process<strong>in</strong>g 2-<strong>2014</strong>


PRODUCT PREVIEW<br />

Partner <strong>in</strong> hot-form<strong>in</strong>g of automotive body parts<br />

Heat treatment l<strong>in</strong>es made by<br />

Schwartz GmbH can be found<br />

<strong>in</strong> manufactur<strong>in</strong>g plants worldwide,<br />

wherever automotive body parts are<br />

heat-treated to boost <strong>the</strong>ir strength.<br />

The company’s furnace equipment<br />

is noted for its unsurpassed cost-efficiency,<br />

high availability and exceptional<br />

process reliability.<br />

Fast-paced growth <strong>in</strong> demands, e.g.,<br />

regard<strong>in</strong>g surface f<strong>in</strong>ish, vary<strong>in</strong>g hardness<br />

levels across <strong>the</strong> part, tailored<br />

blanks, and component lightweight<strong>in</strong>g<br />

is addressed via an ongo<strong>in</strong>g ref<strong>in</strong>ement<br />

of furnace systems. Diverse furnace<br />

designs are adopted, depend<strong>in</strong>g on<br />

requirements and local circumstances,<br />

and coord<strong>in</strong>ated <strong>in</strong> detail with <strong>the</strong> prospective<br />

user. In <strong>the</strong>se furnaces, <strong>the</strong><br />

parts can be heat-treated <strong>in</strong> a normal<br />

or controlled atmosphere or <strong>in</strong> dried air.<br />

Automation systems of proven safety<br />

and dependability ensure m<strong>in</strong>imum<br />

cycle times and high availability levels.<br />

In addition, Schwartz GmbH’s product<br />

range comprises harden<strong>in</strong>g l<strong>in</strong>es<br />

for steel forg<strong>in</strong>gs as well as solution<br />

anneal<strong>in</strong>g l<strong>in</strong>es with water quench for<br />

alum<strong>in</strong>ium cast<strong>in</strong>gs and forg<strong>in</strong>gs, profiles,<br />

tubes and bars <strong>in</strong>tended for use <strong>in</strong><br />

aerospace and automotive applications.<br />

Schwartz GmbH<br />

www.schwartz-wba.de<br />

H<strong>all</strong> 10 / Booth E30/08<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Improv<strong>in</strong>g your quality<br />

and cutt<strong>in</strong>g your costs<br />

Heat Treatment<br />

of Alum<strong>in</strong>ium components:<br />

n process<strong>in</strong>g of components<br />

and structural parts<br />

n <strong>in</strong>tegrated production l<strong>in</strong>es<br />

n several quench<strong>in</strong>g media<br />

n highly effective air quench<br />

n <strong>in</strong>tegrated automatic<br />

control system<br />

n process documentation<br />

AMS 2750<br />

n s<strong>in</strong>gle part documentation<br />

Benefits:<br />

n flexible heat treatment<br />

n flexible quench processes<br />

n less distortion of <strong>the</strong> parts<br />

n reliable process<strong>in</strong>g<br />

n fully automatic recipes<br />

Visit us:<br />

Alum<strong>in</strong>ium <strong>2014</strong> Alum<strong>in</strong>ium Ch<strong>in</strong>a<br />

Düsseldorf, Germany Shanghai, Ch<strong>in</strong>a<br />

October, 7-9 July, 9-11<br />

Stand 10G21 Stand 1B20<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

LOI Thermprocess GmbH - Tenova Metals Division<br />

Am Lichtbogen 29 - 45141 Essen / Germany<br />

Phone +49 (0)201 1891.1 - Fax +49 (0)201 1891.321<br />

loi@tenova.com - www.tenova.com<br />

41


The <strong>in</strong>ternational magaz<strong>in</strong>e<br />

for <strong>in</strong>dustrial furnaces,<br />

heat treatment plants<br />

and equipment<br />

The technical journal for <strong>the</strong> entire field of <strong>in</strong>dustrial furnace<br />

and heat treatment eng<strong>in</strong>eer<strong>in</strong>g, <strong>the</strong>rmal plants, systems<br />

and processes.<br />

The publication delivers comprehensive <strong>in</strong>formation,<br />

<strong>in</strong> full technical detail, on developments and solutions<br />

<strong>in</strong> <strong>the</strong>rmal process eng<strong>in</strong>eer<strong>in</strong>g for <strong>in</strong>dustrial applications.<br />

Select <strong>the</strong> subscription offer that you like:<br />

• pr<strong>in</strong>t<br />

• e-paper<br />

• pr<strong>in</strong>t + e-paper<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

heat process<strong>in</strong>g is published by Vulkan-Verlag GmbH, HFriedrich-Ebert-Straße 55, 45127 Essen, Germany<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 931 / 4170-494 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I want to read heat process<strong>in</strong>g regularly and subscribe to <strong>the</strong> technical trade journal<br />

for at least one year (4 issues)<br />

as a pr<strong>in</strong>ted magaz<strong>in</strong>e at <strong>the</strong> annual price<br />

of € 166.00 plus shipp<strong>in</strong>g (€ 12.00 with<strong>in</strong><br />

Germany / € 14.00 outside of Germany)<br />

as an e-paper magaz<strong>in</strong>e (s<strong>in</strong>gle user) at<br />

<strong>the</strong> annual price of € 166.00.<br />

as a pr<strong>in</strong>ted plus an e-paper magaz<strong>in</strong>e<br />

(s<strong>in</strong>gle user) at <strong>the</strong> annual price of € 227.80<br />

(Germany) / € 229.80 (outside of Germany).<br />

<strong>Special</strong> offer for students (proof of entitlement)<br />

as a pr<strong>in</strong>ted magaz<strong>in</strong>e at <strong>the</strong> annual price of<br />

€ 83.00 plus shipp<strong>in</strong>g (€ 12.00 with<strong>in</strong> Germany /<br />

€ 14.00 outside of Germany).<br />

as an e-paper magaz<strong>in</strong>e (s<strong>in</strong>gle user)<br />

at <strong>the</strong> annual price of € 83.00.<br />

as a pr<strong>in</strong>ted plus an e-paper magaz<strong>in</strong>e<br />

(s<strong>in</strong>gle user) at <strong>the</strong> annual price of € 119.90<br />

(Germany) / € 121.90 (outside of Germany).<br />

Company/Institution<br />

First name, surname of recipient (department or person)<br />

Street/P.O. Box, No.<br />

Country, postalcode, town<br />

Reply / Antwort<br />

<strong>Read</strong>ers’ Service heat process<strong>in</strong>g<br />

P.O. Box 91 61<br />

97091 Wurzburg<br />

GERMANY<br />

Phone<br />

E-Mail<br />

L<strong>in</strong>e of bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to <strong>Read</strong>ers’ Service heat process<strong>in</strong>g, P.O. Box 91 61, 97091 Wurzburg, Germany. After <strong>the</strong> first period <strong>the</strong> agreement can<br />

be term<strong>in</strong>ated <strong>in</strong> writ<strong>in</strong>g with 2 months notice to <strong>the</strong> end of each year. In order to accomplish your request and for communication<br />

purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

It is approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

This approval may be withdrawn at any time.<br />

✘<br />

Date, signature<br />

PA<strong>HEAT</strong><strong>2014</strong>


REPORTS<br />

Horizontal heat treatment<br />

l<strong>in</strong>e for plate and profile<br />

by Bernd Deimann, Günter Valder, Holger Warnecke<br />

Hot rolled alum<strong>in</strong>ium plates and extruded profiles from hardenable <strong>all</strong>oys like 2XXX, 6XXX and 7XXX for e.g. <strong>the</strong> aircraft<br />

<strong>in</strong>dustry require a two step harden<strong>in</strong>g process to reach <strong>the</strong> optimum mechanical properties and corrosion resistance.<br />

The design of advanced heat treatment l<strong>in</strong>es and <strong>the</strong> process requirements are described <strong>in</strong> this paper.<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

The <strong>in</strong>crease of aircraft production <strong>in</strong> <strong>the</strong> past decade<br />

and <strong>the</strong> prediction of fur<strong>the</strong>r <strong>in</strong>crease <strong>in</strong> <strong>the</strong> com<strong>in</strong>g<br />

years have led to a demand for heat treatment l<strong>in</strong>e<br />

for hot rolled plates and extrude profiles. These products<br />

from hardenable <strong>all</strong>oys like 2XXX, 6XXX and 7XXX require a<br />

two step harden<strong>in</strong>g process to reach optimum mechanical<br />

properties which are a comb<strong>in</strong>ation of highest mechanical<br />

strength plus sufficient elongation properties and excellent<br />

corrosion resistance.<br />

In 2013, Otto Junker was able to hand over three Horizontal<br />

Heat Treatment l<strong>in</strong>es (HHT) for plates to customers<br />

<strong>in</strong> Ch<strong>in</strong>a and <strong>the</strong> United States. The accord<strong>in</strong>g conception<br />

but for extruded profiles <strong>in</strong>stead of plates at present is<br />

preassembled <strong>in</strong> Otto Junker’s own workshop close to<br />

Shanghai. All HHT l<strong>in</strong>es are fully automated, equipped with<br />

easy-to-operate HMI-systems and connected to customers<br />

Level 3. Dur<strong>in</strong>g <strong>the</strong> entire process, from project evaluation<br />

to FAT, <strong>the</strong> experts are focussed to achieve highest energy<br />

efficiency levels, reliable and trouble-free operation with<br />

<strong>the</strong> aim to ensure perfect product quality on long terms.<br />

e.g. 475 °C for 7XXX <strong>all</strong>oys. The temperature homogeneity<br />

<strong>in</strong> <strong>the</strong> furnace air and <strong>in</strong> <strong>the</strong> plate is important to have<br />

homogenous material quality through <strong>the</strong> whole plate<br />

and is required to get an approval of an official certification<br />

body for aircraft production, e.g. NADCAP. After <strong>the</strong><br />

alum<strong>in</strong>ium has reached <strong>the</strong> target temperature it stays <strong>in</strong><br />

<strong>the</strong> furnace for an <strong>all</strong>oy depend<strong>in</strong>g hold<strong>in</strong>g time. Dur<strong>in</strong>g <strong>the</strong><br />

solution heat treatment precipitations of <strong>all</strong>oy<strong>in</strong>g elements<br />

like Cu, Fe, Mg… from <strong>the</strong> former process<strong>in</strong>g are dissolved<br />

and <strong>the</strong> non-Al elements are “solutioned” <strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium<br />

matrix. “Solutioned” means that <strong>the</strong> foreign <strong>all</strong>oy<strong>in</strong>g elements<br />

are dispersed <strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium matrix by diffusion<br />

and do not build agglomerations or precipitations at <strong>the</strong>se<br />

high temperatures. As <strong>the</strong> ma<strong>in</strong> harden<strong>in</strong>g mechanism<br />

for such <strong>all</strong>oys is precipitation harden<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> heat<br />

treatment <strong>the</strong> hardness of <strong>the</strong> plate drops to a m<strong>in</strong>imum.<br />

This status of equal distributed <strong>all</strong>oy<strong>in</strong>g elements and equal<br />

temperature distribution <strong>in</strong> <strong>the</strong> plate is <strong>the</strong> condition to go<br />

to <strong>the</strong> next step.<br />

PROCESS DESCRIPTION AND<br />

REQUIREMENTS (PLATES)<br />

Furnace load preparation<br />

HHT l<strong>in</strong>es transport <strong>the</strong> furnace load on rollers through <strong>the</strong><br />

process. The furnace part can be operated as batchwise or<br />

cont<strong>in</strong>uously. In both cases <strong>the</strong> plate furnace load has to<br />

be prepared on a load<strong>in</strong>g table of sufficient length. Typical<br />

lengths are 20 to 40 m for <strong>the</strong> load<strong>in</strong>g table and 60 to<br />

150 m for <strong>the</strong> complete l<strong>in</strong>e.<br />

Solution anneal<strong>in</strong>g<br />

The first process step is a solution anneal<strong>in</strong>g of <strong>the</strong> hot<br />

rolled plates. Gener<strong>all</strong>y <strong>the</strong> plates are heated from ambient<br />

temperature to a temperature range of 400 to 600 °C,<br />

Fig. 1: Transport rollers with r<strong>in</strong>gs on <strong>the</strong> unload<strong>in</strong>g table<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

43


REPORTS<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Fig. 2: Load<strong>in</strong>g table and furnace entry<br />

Quench<strong>in</strong>g<br />

The rapid cool<strong>in</strong>g of <strong>the</strong> plates from solution anneal<strong>in</strong>g<br />

temperature close to room temperature <strong>all</strong>ows to “freeze”<br />

<strong>the</strong> result of <strong>the</strong> solution anneal<strong>in</strong>g process. It is very important<br />

that this controlled rapid cool<strong>in</strong>g is fast enough to<br />

avoid that <strong>the</strong> <strong>all</strong>oy<strong>in</strong>g elements can group toge<strong>the</strong>r and<br />

build precipitations, which are not desired to appear <strong>in</strong><br />

this process step but later <strong>in</strong> cold harden<strong>in</strong>g at room temperature<br />

or artificial harden<strong>in</strong>g at elevated temperatures.<br />

The quench rate required <strong>in</strong> K/s is depend<strong>in</strong>g on <strong>the</strong> <strong>all</strong>oy<br />

group and on <strong>the</strong> plate thickness. It is norm<strong>all</strong>y def<strong>in</strong>ed <strong>in</strong><br />

a temperature range between e.g. 400 and 290 °C where<br />

undesired precipitations can appear if <strong>the</strong> cool<strong>in</strong>g is not fast<br />

enough. Cool<strong>in</strong>g rates could be just as an example 50 K/s<br />

for a 20 mm plate and 10 K/s for a 200 mm plate. The cool<strong>in</strong>g<br />

process is made by spray<strong>in</strong>g water through nozzles <strong>in</strong> a<br />

controlled way on both sides of <strong>the</strong> plate that is transported<br />

from <strong>the</strong> furnace to <strong>the</strong> directly adjected quench. Different<br />

water pressure patterns are used to equ<strong>all</strong>y cool down <strong>the</strong><br />

plate without creation of hot or cold spots which would<br />

lead to <strong>in</strong>ner stresses and a deformation of <strong>the</strong> plate. Process<br />

parameters like water volume, speed and distribution<br />

are used to achieve <strong>the</strong> desired rapid cool<strong>in</strong>g results. Air<br />

knives avoid that water can flow on <strong>the</strong> top of <strong>the</strong> plate<br />

backwards to <strong>the</strong> transport direction <strong>in</strong>to <strong>the</strong> furnace.<br />

Air knives at <strong>the</strong> end of <strong>the</strong> quench blow off water from<br />

<strong>the</strong> plate surface and help to achieve a dry plate leav<strong>in</strong>g<br />

<strong>the</strong> quench. These “dryers” are automatic<strong>all</strong>y adjusted <strong>in</strong><br />

air speed, angle and height <strong>in</strong> accordance with <strong>the</strong> plate<br />

dimensions <strong>in</strong> order to have <strong>the</strong>m on <strong>the</strong> unload<strong>in</strong>g table<br />

<strong>in</strong> perfect dry condition.<br />

Unload<strong>in</strong>g<br />

The cold and dry plates run out of <strong>the</strong> quench on an<br />

unload<strong>in</strong>g table from where <strong>the</strong>y can be lifted to <strong>the</strong> next<br />

process step which is stretch<strong>in</strong>g. The maximum temperature<br />

of <strong>the</strong> plate should not be higher than 50 °C to avoid<br />

that <strong>the</strong> cold harden<strong>in</strong>g process is accelerated.<br />

Product quality<br />

The electrical conductivity of <strong>the</strong> plate can be checked<br />

with non-destructive measurement equipment. The homogeneity<br />

of <strong>the</strong> conductivity through width and length of<br />

<strong>the</strong> plate is an <strong>in</strong>dication for <strong>the</strong> achieved results be<strong>in</strong>g<br />

produced <strong>in</strong> solution anneal<strong>in</strong>g and quench<strong>in</strong>g process.<br />

The deformation of <strong>the</strong> plates <strong>in</strong> longitud<strong>in</strong>al and <strong>in</strong> cross<br />

direction can be measured to demonstrate that <strong>the</strong> plates<br />

are with<strong>in</strong> <strong>the</strong> flatness tolerance for <strong>the</strong> next process step.<br />

Plates that have a concave longitud<strong>in</strong>al shape or crossbow<br />

are more difficult to br<strong>in</strong>g <strong>in</strong>to <strong>the</strong> correct shape <strong>in</strong> <strong>the</strong><br />

stretcher than convex shaped ones.<br />

Stretch<strong>in</strong>g<br />

Typic<strong>all</strong>y, after <strong>the</strong> quench<strong>in</strong>g process <strong>the</strong> plates are<br />

stretched to br<strong>in</strong>g <strong>the</strong>m <strong>in</strong>to <strong>the</strong> desired flatness tolerance<br />

and to prepare <strong>the</strong> next process step which is harden<strong>in</strong>g.<br />

The deformation by stretch<strong>in</strong>g br<strong>in</strong>gs <strong>in</strong> an elongation <strong>in</strong><br />

longitud<strong>in</strong>al direction and gives a slight stra<strong>in</strong> harden<strong>in</strong>g<br />

effect due to creation of dislocations.<br />

Cold harden<strong>in</strong>g<br />

There are two ways of harden<strong>in</strong>g: Cold harden<strong>in</strong>g at<br />

room temperature which takes place immediately after<br />

<strong>the</strong> quench<strong>in</strong>g process and ends depend<strong>in</strong>g on <strong>the</strong> <strong>all</strong>oy<br />

group after up to some days. Dur<strong>in</strong>g this time period <strong>the</strong><br />

<strong>all</strong>oy<strong>in</strong>g elements form precipitations that have a strong<br />

and rema<strong>in</strong><strong>in</strong>g harden<strong>in</strong>g effect.<br />

Artificial harden<strong>in</strong>g<br />

At <strong>in</strong>creased temperatures of e.g. 180 °C o<strong>the</strong>r modifications<br />

and distributions of precipitations can appear <strong>in</strong> <strong>the</strong><br />

different alum<strong>in</strong>ium <strong>all</strong>oy groups and higher strength can<br />

be reached. This process can be done by hold<strong>in</strong>g <strong>the</strong> plate<br />

at one temperature for a certa<strong>in</strong> <strong>all</strong>oy depend<strong>in</strong>g time or <strong>in</strong><br />

several temperature steps, where <strong>the</strong> temperature <strong>in</strong> <strong>the</strong><br />

second step is higher than <strong>in</strong> <strong>the</strong> first step. Here as well<br />

<strong>the</strong> temperature homogeneity and <strong>the</strong> heat-up speed are<br />

important, too. It needs to be emphasized that <strong>all</strong> plates at<br />

any po<strong>in</strong>t sh<strong>all</strong> reach <strong>the</strong> temperature set po<strong>in</strong>t at <strong>the</strong> same<br />

time <strong>in</strong> order to achieve a perfect hardness profile. Artificial<br />

harden<strong>in</strong>g can be performed <strong>in</strong> a separate chamber furnace<br />

or <strong>in</strong> <strong>the</strong> horizontal heat treatment l<strong>in</strong>e as well.<br />

DESIGN FEATURES<br />

Horizontal roller hearth heat treatment l<strong>in</strong>es for<br />

plates and profiles<br />

Otto Junker HHT l<strong>in</strong>es meet <strong>the</strong> tight aircraft <strong>in</strong>dustry standards,<br />

e.g. AMS 2750E, as well as <strong>the</strong> even tighter customer<br />

required temperature tolerances for solution anneal<strong>in</strong>g and<br />

have build <strong>in</strong> <strong>the</strong> water quench know-how that leads to<br />

flat plates with rapid but controlled cool<strong>in</strong>g, which is <strong>the</strong><br />

key factor for excellent material properties. This quench<strong>in</strong>g<br />

44 heat process<strong>in</strong>g 2-<strong>2014</strong>


REPORTS<br />

know-how <strong>in</strong>cludes <strong>the</strong> treatment of alum<strong>in</strong>ium profiles.<br />

Necessary quench<strong>in</strong>g parameters are available for a wide<br />

range of products, <strong>in</strong> case of new requirements <strong>the</strong>se are<br />

determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> R&D centre <strong>in</strong> <strong>the</strong> headquarter. Here, <strong>all</strong><br />

relevant quench<strong>in</strong>g systems like Hardquench, Softquench<br />

and Mistquench are <strong>in</strong>st<strong>all</strong>ed and operated <strong>in</strong> <strong>in</strong>dustrial<br />

scale.<br />

Transport system<br />

The alum<strong>in</strong>ium plates with dimensions of 2 mm up to<br />

406 mm <strong>in</strong> thickness, 800 mm up to 4,400 mm <strong>in</strong> width<br />

and length from a few meters up to 36 m need to be transported<br />

through <strong>the</strong> process without damag<strong>in</strong>g <strong>the</strong> bottom<br />

surface by e.g. dents or scratches. This is especi<strong>all</strong>y <strong>in</strong><br />

<strong>the</strong> hot part where <strong>the</strong> up to 30 t heavy plate is very soft<br />

an important side condition. Sometimes <strong>the</strong> plates have<br />

sharp edges from <strong>the</strong> cutt<strong>in</strong>g operation <strong>in</strong> <strong>the</strong> hot roll<strong>in</strong>g<br />

mill; ano<strong>the</strong>r ch<strong>all</strong>enge is <strong>the</strong> transport of deformed plates<br />

without damag<strong>in</strong>g <strong>the</strong> transport system. Therefore <strong>the</strong><br />

transport roller system has to be robust and wear resistant.<br />

Otto Junker uses for <strong>the</strong> load<strong>in</strong>g and unload<strong>in</strong>g table<br />

special temperature resistant r<strong>in</strong>gs that fit excellent for<br />

this purpose and that can be easily changed <strong>in</strong> case of<br />

a crash. Inside <strong>the</strong> furnace cast sta<strong>in</strong>less steel rollers with<br />

high density sta<strong>in</strong>less steel brushes on <strong>the</strong> circumference<br />

are used that are designed for long life as well as for safe<br />

and smooth transport of <strong>the</strong> soft, hot plates. Dur<strong>in</strong>g <strong>the</strong><br />

heat<strong>in</strong>g process <strong>the</strong> plates move slowly to avoid different<br />

temperature areas <strong>in</strong> touch with <strong>the</strong> brushed rollers. Fig. 1<br />

shows <strong>the</strong> special r<strong>in</strong>gs on <strong>the</strong> unload<strong>in</strong>g table. Fig. 2<br />

shows <strong>the</strong> load<strong>in</strong>g table and <strong>the</strong> entry of <strong>the</strong> furnace. A<br />

furnace load can consist of one or more plates arranged<br />

side by side and one beh<strong>in</strong>d <strong>the</strong> o<strong>the</strong>r. The transport system<br />

is designed that <strong>all</strong> rollers have <strong>the</strong> same circumference<br />

speed to avoid scratches. Light barriers are <strong>in</strong>st<strong>all</strong>ed on <strong>the</strong><br />

entry and exit table as well as <strong>in</strong> <strong>the</strong> furnace to manage<br />

several batches with<strong>in</strong> one furnace load. The bear<strong>in</strong>gs for<br />

<strong>the</strong> furnace rollers have special Otto Junker design that<br />

stands for extended lifetime.<br />

Heat<strong>in</strong>g system<br />

The furnace can be heated with gas or electricity, depend<strong>in</strong>g<br />

on <strong>the</strong> customer request. In case of gas heat<strong>in</strong>g an<br />

<strong>in</strong>direct heat<strong>in</strong>g is chosen to assure that <strong>the</strong>re is no reaction<br />

of <strong>the</strong> hot alum<strong>in</strong>ium surface with <strong>the</strong> combustions air. To<br />

have a good heat transfer from <strong>the</strong> double P shaped pipes<br />

to <strong>the</strong> furnace Otto Junker has developed toge<strong>the</strong>r with<br />

<strong>the</strong> Technical University of Aachen an optimized shape of<br />

<strong>the</strong> air flow <strong>in</strong>side <strong>the</strong> furnace that comb<strong>in</strong>es excellent high<br />

heat transfer rates to <strong>the</strong> plates with high and homogenous<br />

heat transport from <strong>the</strong> P shaped pipes. Fig. 3 shows a<br />

simulation result of this air flow optimization. By us<strong>in</strong>g<br />

recuperative gas burners a <strong>the</strong>rmal energy efficiency of<br />

> 80 % can be achieved. The furnaces are designed with<br />

special high convection air nozzles to reach both high and<br />

uniform heat-up rates over <strong>the</strong> total furnace length and<br />

width for <strong>in</strong>creased productivity and reduced energy consumption.<br />

<strong>Special</strong> impellers, placed on top of <strong>the</strong> furnace<br />

are mandatory for this purpose. The achieved temperature<br />

homogeneity is better than requested by AMS 2750E.<br />

The fast air cool<strong>in</strong>g procedure <strong>in</strong>side <strong>the</strong> furnace <strong>all</strong>ows<br />

to change <strong>in</strong> short time <strong>the</strong> anneal<strong>in</strong>g temperature for <strong>the</strong><br />

next batch. Cold air from <strong>the</strong> factory floor is blown <strong>in</strong>to<br />

Fig. 3: Simulation of air flow optimisation<br />

Fig. 4: Cool<strong>in</strong>g air pip<strong>in</strong>g system<br />

Fig. 5: Entry water knife<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

45


REPORTS<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Fig. 6: F<strong>in</strong>al cool<strong>in</strong>g nozzles<br />

<strong>the</strong> hot furnace. The up to 600 °C hot furnace atmosphere<br />

that exits <strong>the</strong> furnace is guided through <strong>in</strong>sulated ducts<br />

to an exhaust gas stack to avoid to blow hot air directly<br />

<strong>in</strong> <strong>the</strong> factory workshop, which could cause damages an<br />

e.g. <strong>the</strong> crane or light system. Fig. 4 shows <strong>the</strong> cool<strong>in</strong>g air<br />

pip<strong>in</strong>g system.<br />

Quench<br />

After leav<strong>in</strong>g <strong>the</strong> furnace <strong>the</strong> cool<strong>in</strong>g process with at least<br />

no pre-cool<strong>in</strong>g has to start. This is achieved by special<br />

design features such as air-knifes. First, <strong>the</strong>se air knives<br />

prevent water flow<strong>in</strong>g back towards <strong>the</strong> furnace, second<br />

by <strong>the</strong> design it is achieved that <strong>the</strong>re is only a very little<br />

distance between <strong>the</strong> furnace atmosphere and <strong>the</strong> water<br />

knife. A water knife, which gives <strong>the</strong> first contact between<br />

<strong>the</strong> plate and <strong>the</strong> cool<strong>in</strong>g medium is shown <strong>in</strong> Fig. 5.<br />

The water quench is designed to achieve a homogenous<br />

cool<strong>in</strong>g of <strong>the</strong> up to 600 °C hot plates to temperatures<br />

below typic<strong>all</strong>y 40 °C. Nozzles spray with high pressure<br />

water on both sides of <strong>the</strong> plates. This has to be done <strong>in</strong><br />

a controlled way to avoid a bend<strong>in</strong>g of <strong>the</strong> plates. The<br />

ch<strong>all</strong>enge is to overcome <strong>the</strong> formation of a water vapour<br />

cushion on <strong>the</strong> plates that reduces <strong>the</strong> heat transfer. Th<strong>in</strong><br />

plates require a softer treatment than thick plates, <strong>the</strong><br />

sett<strong>in</strong>gs can be def<strong>in</strong>ed for every <strong>all</strong>oy, plate dimension<br />

and anneal<strong>in</strong>g temperature. After <strong>the</strong> plates are cooled<br />

to below met<strong>all</strong>urgical relevant temperatures <strong>the</strong> f<strong>in</strong>al<br />

cool<strong>in</strong>g starts, view from <strong>in</strong>side see Fig. 6, pip<strong>in</strong>g outside<br />

see Fig. 7. A software tool to have <strong>the</strong> correct sett<strong>in</strong>gs<br />

right from start-up based on our experience is supplied.<br />

High pressure air knives on <strong>the</strong> quench exit blow away<br />

residual water drops.<br />

Fig. 7: Pip<strong>in</strong>g of <strong>the</strong> quench and unload<strong>in</strong>g table<br />

Unload<strong>in</strong>g table<br />

The test<strong>in</strong>g for exit temperature, electrical conductivity<br />

and flatness can be performed on <strong>the</strong> unload<strong>in</strong>g table.<br />

The roller design and <strong>the</strong> r<strong>in</strong>gs are similar to <strong>the</strong> load<strong>in</strong>g<br />

table. The unload<strong>in</strong>g table ends with a light barrier and a<br />

mechanical stopper to avoid that plates can exit <strong>the</strong> table<br />

<strong>in</strong> an uncontrolled way. A control panel <strong>all</strong>ows to drive <strong>the</strong><br />

plates <strong>in</strong> automatical or manual mode to <strong>the</strong> crane position,<br />

from where <strong>the</strong> plates and profiles can be lifted with<br />

vacuum lifters to <strong>the</strong> next process steps.<br />

AUTHORS<br />

Dipl.-Ing. Bernd Deimann<br />

Otto Junker GmbH<br />

Simmerath, Germany<br />

Tel.: +49 (0) 2473 / 601-241<br />

dei@otto-junker.de<br />

Dr.-Ing. Günter Valder<br />

Otto Junker GmbH<br />

Simmerath, Germany<br />

Tel.: +49 (0) 2473 / 601-328<br />

va@otto-junker.de<br />

Dr.-Ing. Holger Warnecke<br />

Otto Junker GmbH<br />

Simmerath, Germany<br />

Tel.: +49 (0) 2473 / 601-394<br />

wah@otto-junker.de<br />

Visit us at<br />

ALUMINIUM <strong>2014</strong><br />

Vulkan-Verlag<br />

H<strong>all</strong> 10 / Booth F54<br />

7 – 9 October <strong>2014</strong><br />

Messe Düsseldorf, Germany<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com


REPORTS<br />

Energy sav<strong>in</strong>g by a<br />

modular control system for<br />

regenerative burners<br />

by Donald F. Whipple, Gün<strong>the</strong>r Reusch, Stefan Baur<br />

The demands on furnaces <strong>in</strong> alum<strong>in</strong>ium melt<strong>in</strong>g shops are very high. Possible low energy consumption, possible high<br />

melt<strong>in</strong>g capacity at lowest emissions, <strong>the</strong>se are <strong>the</strong> conditions which eng<strong>in</strong>eers have to take <strong>in</strong> account at design new<br />

furnaces and plann<strong>in</strong>g of rebuilds of exist<strong>in</strong>g furnaces. In <strong>the</strong> article <strong>the</strong> methods of energy sav<strong>in</strong>g and improvement<br />

of exist<strong>in</strong>g combustions systems especi<strong>all</strong>y by <strong>the</strong> applications of modular control system for regenerative burners are<br />

discussed<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

The common methods to <strong>in</strong>crease <strong>the</strong> furnace melt<strong>in</strong>g<br />

capacity and efficiency <strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry<br />

are <strong>the</strong> preheat of <strong>the</strong> combustion air and <strong>the</strong><br />

oxygen enrichment of <strong>the</strong> air. Two techniques are used<br />

to recover heat from <strong>the</strong> waste gases and transfer it to<br />

<strong>the</strong> <strong>in</strong>com<strong>in</strong>g combustion air stream: Recuperators and<br />

regenerators.<br />

AIR PRE<strong>HEAT</strong><br />

Recuperators are gas/gas heat exchangers which transfer<br />

heat through a membrane (pipes) directly from <strong>the</strong> hot combustion<br />

products to <strong>the</strong> cold air The heat transfer is a cont<strong>in</strong>uous<br />

process: Air preheat up to 650 °C can be achieved.<br />

For economic reasons (cost of recuperators and of<br />

proper pip<strong>in</strong>g) and to avoid high temperature corrosion,<br />

<strong>the</strong> air preheat of 450 °C is usu<strong>all</strong>y set. The application of<br />

recuperators <strong>in</strong> alum<strong>in</strong>ium melt<strong>in</strong>g furnace results <strong>in</strong> <strong>the</strong><br />

energy sav<strong>in</strong>gs of 20 to 25 % compared to <strong>the</strong> cold air<br />

combustion systems.<br />

Regenerators are chambers conta<strong>in</strong><strong>in</strong>g high temperature<br />

resistant ceramic material which acts as a heat store.<br />

They are <strong>in</strong>st<strong>all</strong>ed directly at <strong>the</strong> burners and are used<br />

alternately <strong>in</strong> pairs. Exhaust gases pass out through <strong>the</strong><br />

non-fir<strong>in</strong>g burner transferr<strong>in</strong>g <strong>the</strong>ir heat to <strong>the</strong> ceramic<br />

media <strong>in</strong> <strong>the</strong> regenerator. When <strong>the</strong> burners are switched<br />

over, <strong>the</strong> <strong>in</strong>com<strong>in</strong>g combustion air picks up heat from<br />

<strong>the</strong> ceramic media. The average air preheat is only 150 °C<br />

lower than <strong>the</strong> temperature of <strong>the</strong> waste gas to <strong>the</strong> regenerator<br />

which results <strong>in</strong> energy sav<strong>in</strong>gs-up to 25 % compared<br />

to recuperative systems and up to 45 % compared<br />

to cold air systems (Fig. 1).<br />

CONSTRUCTION<br />

A regenerative burner system always consists of at least two<br />

burners, each burner with a regenerator filled with ceramic<br />

material and equipped with two changeover dampers.<br />

Regenerator and burner are refractory <strong>in</strong>sulated due to <strong>the</strong><br />

high work<strong>in</strong>g temperature. The burner has an air-cooled<br />

fuel lance (Fig. 2). B<strong>all</strong>s, honeycombs or sponge material<br />

made of ceramics are used as regenerative media.<br />

Fig. 1: Energy sav<strong>in</strong>g with regenerative burner system<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

47


REPORTS<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Fig. 2: Regenerative burner pr<strong>in</strong>ciple<br />

The burner pairs can be connected directly with pipel<strong>in</strong>es.<br />

Today a pip<strong>in</strong>g via collect<strong>in</strong>g pipes and <strong>all</strong>ocation of<br />

<strong>the</strong> pairs by an electronic compound is state-of-<strong>the</strong>-art.<br />

This offers – depend<strong>in</strong>g on <strong>the</strong> application – better control<br />

possibilities and lower assembly costs.<br />

MODE OF OPERATION<br />

The objective of <strong>the</strong> system is to maximize <strong>the</strong> productivity<br />

of <strong>the</strong> system while m<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> utility cost (gas, electric,<br />

and compressed air) and m<strong>in</strong>imiz<strong>in</strong>g emissions. The heart<br />

of <strong>the</strong> system is <strong>the</strong> ultra low NO X 1150 series regenerative<br />

burners. In general, <strong>the</strong> fuel sav<strong>in</strong>gs over an ambient air<br />

system is 40 to 45 %. The system requires a combustion<br />

air blower and an exhauster capable of operat<strong>in</strong>g at 400 °F<br />

(200 °C). The addition of <strong>the</strong> exhauster can <strong>in</strong>crease <strong>the</strong><br />

total kW required to <strong>the</strong> system over an ambient air system.<br />

Careful selection and control of <strong>the</strong> two units can m<strong>in</strong>imize<br />

or elim<strong>in</strong>ate any operat<strong>in</strong>g cost penalty.<br />

Combustion air/exhaust pressure and volume requirements<br />

vary with <strong>the</strong> temperature of <strong>the</strong> system. When <strong>the</strong><br />

system is cold, much lower pressures are necessary while<br />

a little more volume may be beneficial for productivity.<br />

Controll<strong>in</strong>g <strong>the</strong> fans with VFDs to ma<strong>in</strong>ta<strong>in</strong> just <strong>the</strong> required<br />

performance necessary will provide energy sav<strong>in</strong>gs and<br />

improved system performance.<br />

In almost <strong>all</strong> alum<strong>in</strong>ium melter operations, <strong>the</strong> regenerator<br />

is subject to plugg<strong>in</strong>g due to particulate and flux carryover<br />

<strong>in</strong>to <strong>the</strong> media. The <strong>in</strong>crease <strong>in</strong> pressure requirement<br />

needs to be planned for to <strong>in</strong>sure adequate time between<br />

clean<strong>in</strong>g of <strong>the</strong> regenerator media. In alum<strong>in</strong>ium melters,<br />

air/exhaust pressure requirements vary with:<br />

■ Fir<strong>in</strong>g rate of <strong>the</strong> burner,<br />

■ Operat<strong>in</strong>g temperature,<br />

■ Level of plugg<strong>in</strong>g <strong>in</strong> <strong>the</strong> regenerator media.<br />

Mak<strong>in</strong>g use of VFDs to control <strong>the</strong> fan operation to ma<strong>in</strong>ta<strong>in</strong><br />

<strong>the</strong> pressure/volume required to what is necessary at <strong>the</strong><br />

Fig. 3: Schematic structure of a regenerative burner system<br />

time can produce significant sav<strong>in</strong>gs and improve control<br />

ability with<strong>in</strong> <strong>the</strong> system.<br />

Select<strong>in</strong>g <strong>the</strong> exhaust fan properly will save significantly<br />

<strong>in</strong> capital cost and operat<strong>in</strong>g cost. The siz<strong>in</strong>g for<br />

volume and pressure requirements is <strong>in</strong> <strong>the</strong> “hot” condition<br />

(400 °F/200 °C). The motor hp/kW should be based on <strong>the</strong><br />

hot condition. This is <strong>the</strong> normal operat<strong>in</strong>g condition. The<br />

VFD is <strong>the</strong>n used to ma<strong>in</strong>ta<strong>in</strong> optimal operation dur<strong>in</strong>g <strong>the</strong><br />

start up/out of normal conditions.<br />

Revers<strong>in</strong>g regenerative systems require air/exhaust/fuel<br />

cycl<strong>in</strong>g valves. In a standard system, <strong>the</strong>se valves are open/<br />

closed two position valves. The actual flow control valves<br />

are separate units. For <strong>the</strong> modular structure, <strong>the</strong> “cycle”<br />

valves are fitted with I/P, positioners and cycl<strong>in</strong>g solenoids.<br />

The flow control valves are elim<strong>in</strong>ated and <strong>the</strong> cycl<strong>in</strong>g/<br />

reversal valves become <strong>the</strong> flow control but <strong>in</strong> fact only<br />

trim valves (Fig. 3).<br />

Revers<strong>in</strong>g type regenerative systems offer advantages<br />

<strong>in</strong> circulation of hot gases to aid <strong>in</strong> convective heat transfer<br />

and uniformity. However, cycl<strong>in</strong>g every 40 to 50 seconds<br />

does offer control ch<strong>all</strong>enges as <strong>the</strong> system is upset on<br />

every reversal (Fig. 4).<br />

In alum<strong>in</strong>ium melters this can be fur<strong>the</strong>r aggravated by<br />

uneven regenerator plugg<strong>in</strong>g requir<strong>in</strong>g different pressures<br />

at different regenerators to ma<strong>in</strong>ta<strong>in</strong> fir<strong>in</strong>g rates. This effect<br />

is felt on <strong>the</strong> combustion air, exhaust furnace pressure and<br />

fuel/air ratio. Even <strong>in</strong> <strong>the</strong> best scenario, when a burner turns<br />

on, <strong>the</strong> pressure required for “x” flow decreases over <strong>the</strong><br />

40 to 50 second cycle fir<strong>in</strong>g time. The regenerator cools<br />

and resistance decreases, so air flow <strong>in</strong>creases and fuel/air<br />

ratio needs to adjust. An <strong>in</strong>crease <strong>in</strong> fir<strong>in</strong>g rate requires an<br />

<strong>in</strong>crease <strong>in</strong> exhaust. All this changes <strong>the</strong> furnace pressure.<br />

Ultimately <strong>all</strong> <strong>the</strong> valves start mov<strong>in</strong>g and when <strong>the</strong> next<br />

reversal happens, everyth<strong>in</strong>g changes aga<strong>in</strong>. This causes<br />

constant adjust<strong>in</strong>g and for periods of time, <strong>the</strong> system is<br />

less than optimal. Controll<strong>in</strong>g <strong>the</strong> upsets is necessary to<br />

ensure maximum efficiency.<br />

48 heat process<strong>in</strong>g 2-<strong>2014</strong>


REPORTS<br />

The modular system is designed to control <strong>all</strong> <strong>the</strong><br />

parameters with<strong>in</strong> acceptable “envelopes”. The goal is to<br />

m<strong>in</strong>imize valve “hunt<strong>in</strong>g” while controll<strong>in</strong>g each burner<br />

<strong>in</strong>dependently to avoid major control changes when<br />

switch<strong>in</strong>g from one burner to <strong>the</strong> o<strong>the</strong>r paired burner.<br />

The cycle valves at each burner are <strong>the</strong> flow control valves.<br />

Each burner is controlled <strong>in</strong>dependently, but <strong>the</strong> valves are<br />

only trim valves. The major control is by <strong>the</strong> VFDs controll<strong>in</strong>g<br />

<strong>the</strong> air and exhaust pressure.<br />

A fur<strong>the</strong>r element to caus<strong>in</strong>g control fluctuations is<br />

modulat<strong>in</strong>g temperature control. Typic<strong>all</strong>y a roof <strong>the</strong>rmocouple<br />

is used for control. This can be affected by load<br />

position<strong>in</strong>g and flame distribution. The system reacts on<br />

this and <strong>the</strong> system can react to “false” or sporadic <strong>in</strong>formation.<br />

This fur<strong>the</strong>r aggravates <strong>the</strong> ability of <strong>the</strong> system to<br />

operate with<strong>in</strong> acceptable “envelopes” of control and can<br />

hamper productivity and efficiency.<br />

The modular system is based on <strong>the</strong> auxiliary flue gas<br />

temperature with <strong>the</strong> roof temperature as a limit only to<br />

protect <strong>the</strong> roof. Revers<strong>in</strong>g regenerative systems are based<br />

on 80 % of <strong>the</strong> products of combustion pulled through <strong>the</strong><br />

regenerators and 20 % exit<strong>in</strong>g through <strong>the</strong> auxiliary flue.<br />

The system is designed to ensure this optimum split <strong>in</strong> flue<br />

gas (POC) exit<strong>in</strong>g <strong>the</strong> furnace.<br />

The temperature control system looks at <strong>the</strong> auxiliary<br />

flue gas temperature and sets a fir<strong>in</strong>g rate for <strong>the</strong> burners.<br />

The fir<strong>in</strong>g rate is <strong>in</strong>dexed up and down <strong>in</strong> set steps based<br />

on <strong>the</strong> flue gas temperature. The actual adjustment is made<br />

by adjust<strong>in</strong>g <strong>the</strong> VFDs on <strong>the</strong> combustion air and exhauster.<br />

The exhauster is calibrated to <strong>the</strong> combustion air. At “x”<br />

combustion air, <strong>the</strong> exhauster should be at “y”. With <strong>the</strong><br />

l<strong>in</strong>e pressures set cycle valves <strong>the</strong>n act as trim valves. So<br />

each burner is controlled <strong>in</strong>dependently.<br />

The cycle/control valve adjusts for <strong>the</strong> burner to ma<strong>in</strong>ta<strong>in</strong><br />

fir<strong>in</strong>g rate or an exhaust rate to ensure reach<strong>in</strong>g <strong>the</strong><br />

400 °F (200 °C) temperature with<strong>in</strong> <strong>the</strong> 40 to 50 seconds<br />

cycl<strong>in</strong>g envelope.<br />

Exhaust control is based on reach<strong>in</strong>g 400 °F (200 °C)<br />

with<strong>in</strong> a 40 to 50 second envelope. As long as this is<br />

achieved, <strong>the</strong> exhaust cycle/control valve stays at a fixed<br />

position. The combustion air valve is set to meet <strong>the</strong><br />

required <strong>in</strong>put.<br />

No adjustment to <strong>the</strong> VFD is made based on one cycle.<br />

It takes multiple cycles for an adjustment to occur. The<br />

system memorizes where it was at last cycle and returns to<br />

<strong>the</strong>se positions. If <strong>the</strong> beds plug up and are cleaned, <strong>the</strong>n<br />

<strong>the</strong>re is a selector that resets <strong>the</strong> memory to <strong>the</strong> orig<strong>in</strong>al<br />

set up to start a new campaign.<br />

BURNERS<br />

In general terms, regenerative burner systems can operate<br />

at higher furnace temperatures and efficiencies than<br />

recuperative combustion systems. In spite of <strong>the</strong> fact that<br />

<strong>the</strong> system is more complex and carries higher capital cost,<br />

<strong>the</strong> regenerative burner systems are now an established<br />

combustion technology <strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry and <strong>the</strong><br />

most new furnaces are equipped with such burners. The<br />

burner has a ceramic air nozzle and an air cooled gas nozzle,<br />

which is <strong>in</strong>sulated with high temperature refractory. This<br />

type of burners has been successfully applied <strong>in</strong> numerous<br />

alum<strong>in</strong>ium works <strong>all</strong> over <strong>the</strong> world. The burner stability<br />

and a proper flame configuration is ma<strong>in</strong>ta<strong>in</strong>ed over wide<br />

range of air preheat temperatures and turn down ratios.<br />

The ceramic nozzle system protects <strong>the</strong> <strong>in</strong>side of <strong>the</strong> burner<br />

from furnace radiation and from alum<strong>in</strong>ium splashes. The<br />

air nozzle material is resistant aga<strong>in</strong>st mechanical impacts<br />

and has long life time even at frequent clean<strong>in</strong>g from <strong>the</strong><br />

clogg<strong>in</strong>g material. Atypical burner unit consists of burner<br />

with regenerator and switch<strong>in</strong>g valves for fuel, combustion<br />

air and for <strong>the</strong> waste gas (Fig. 5).<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Fig. 4: Regenerative burner <strong>in</strong> an alum<strong>in</strong>ium<br />

melt<strong>in</strong>g furnace<br />

Fig. 5: Compact regenerative burner unit with<br />

switch<strong>in</strong>g valves (Bloom Eng<strong>in</strong>eer<strong>in</strong>g)<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

49


REPORTS<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

SPECIFIC ENERGY CONSUMPTION<br />

The specific energy consumption of alum<strong>in</strong>ium melt<strong>in</strong>g<br />

furnaces with regenerative burners is 550 to 630 kWh/t.<br />

It depends of several factors such as furnaces size, charge<br />

content, charg<strong>in</strong>g practice, cycle end metal temperature,<br />

<strong>the</strong> general status of <strong>the</strong> furnace, water cool<strong>in</strong>g and tightness<br />

of <strong>the</strong> furnace door. The retrofits of exist<strong>in</strong>g furnaces<br />

can result <strong>in</strong> energy sav<strong>in</strong>g, which could be higher than<br />

estimated only by higher air preheat because of <strong>the</strong> new<br />

efficient control system.<br />

A big advantage of <strong>the</strong> modular control system is <strong>the</strong><br />

additional sav<strong>in</strong>g of electrical energy and <strong>the</strong> stability of<br />

<strong>the</strong> efficiency dur<strong>in</strong>g a chang<strong>in</strong>g cycle of <strong>the</strong> regenerators.<br />

Due to <strong>the</strong> flexibility of <strong>the</strong> system <strong>the</strong> burner system runs<br />

most of <strong>the</strong> time at optimal conditions.<br />

MAINTENANCE<br />

Experiences of <strong>the</strong> successful operation of many furnaces<br />

with regenerative burner systems show that <strong>the</strong> ma<strong>in</strong>tenance<br />

costs stay <strong>in</strong> l<strong>in</strong>e with a well def<strong>in</strong>ed budget and are<br />

comparable with conventional systems:<br />

■ Gas solenoid valves do not cause any problems.<br />

■ The air and exhaust changeover dampers with pneumatic<br />

drives are checked periodic<strong>all</strong>y once a year, <strong>the</strong><br />

abrasion is very low.<br />

■ Fans for combustion air and suction require standard<br />

ma<strong>in</strong>tenance.<br />

■ Measur<strong>in</strong>g and control systems for regenerative burners<br />

with SPS and visual display systems do not cause many<br />

problems. They supply <strong>the</strong> operator with important<br />

<strong>in</strong>formation <strong>about</strong> <strong>the</strong> status of <strong>the</strong> system which facilitates<br />

<strong>the</strong> ma<strong>in</strong>tenance of <strong>the</strong> total regenerative heat<strong>in</strong>g<br />

system significantly.<br />

■ The clean<strong>in</strong>g frequency of regenerators depends very<br />

much from <strong>the</strong> used raw material. Clean charge material<br />

only needs a clean<strong>in</strong>g at <strong>in</strong>tervals of 8 to 12 months. At<br />

extreme cases, e. g. at melt<strong>in</strong>g of contam<strong>in</strong>ated scrap<br />

metal <strong>in</strong> alum<strong>in</strong>ium melt<strong>in</strong>g furnaces this period can<br />

be reduced to 6 to 12 weeks (Fig. 6).<br />

■ The ma<strong>in</strong>tenance of regenerators can be significantly<br />

facilitated by use of regenerators with <strong>the</strong> Bloom quick<br />

disconnect<strong>in</strong>g feature. Regenerators and burners are<br />

featured with a special gasket system that <strong>all</strong>ows quick<br />

separation and connection of regenerator and burner<br />

(Fig. 7).<br />

Fig. 6: Burner with regenerator below <strong>the</strong> burners with a<br />

special quick disconnect<strong>in</strong>g design<br />

CONCLUSION<br />

Rebuild and new construction of furnace systems with<br />

regenerative burner systems lead to procedural advantages<br />

and a significant sav<strong>in</strong>g potential at energy and emission<br />

costs is to be expected (energy tax).<br />

For <strong>the</strong> future, <strong>the</strong> payback period of <strong>the</strong> systems will<br />

reduce dramatic<strong>all</strong>y due to sav<strong>in</strong>gs of up to 25 % compared<br />

to Systems with one central recuperator, and up to 45 %<br />

compared to cold air systems and <strong>the</strong> hereby also reduced<br />

quantity of CO 2 emissions.<br />

The regenerative burner technology is fully developed.<br />

The Bloom experiences of long-time operation at different<br />

furnace types show that reservations by reason of a possibly<br />

higher ma<strong>in</strong>tenance effort are without any reason.<br />

Today, regenerative burner systems are state-of-<strong>the</strong>-art<br />

and a proven <strong>in</strong>strument for reduc<strong>in</strong>g energy costs and<br />

<strong>the</strong> emission taxes to be expected. An exist<strong>in</strong>g regenerative<br />

burner system will work more efficiently by us<strong>in</strong>g <strong>the</strong><br />

modular control system. Additional energy sav<strong>in</strong>g and<br />

higher melt<strong>in</strong>g rate are achievable.<br />

Fig. 7: Burner with regenerator above <strong>the</strong> burners with a special<br />

quick disconnect<strong>in</strong>g design<br />

50<br />

heat process<strong>in</strong>g 2-<strong>2014</strong>


REPORTS<br />

LITERATURE<br />

[1] Whipple, D.F.: Direct charged melters, Bloom Eng<strong>in</strong>eer<strong>in</strong>g<br />

Publication, 2004<br />

[2] Whipple, D.F.: “Modular control systems for alum<strong>in</strong>ium<br />

melter”, Bloom Eng<strong>in</strong>eer<strong>in</strong>g Publication, 2011<br />

[3] Domagala, J.; Rixen, K.: ”Regenerative burner technology for<br />

alum<strong>in</strong>ium melt<strong>in</strong>g furnace”, Vortrag, Thermprocess 2004<br />

[4] North American Co.: “Combustion Handbook”<br />

[5] Teufert, J.; Domagala, J.: “Regenerative burner systems for<br />

batch furnaces“, Heat Process<strong>in</strong>g, 2/2010<br />

[6] Teufert, J.; Baur, S.: ”Regenerative burners for reduction of<br />

energy consumption and emissions” Heat Process<strong>in</strong>g 9/2011<br />

[7] Reusch, G.; Domagala, J.: ”Efficient combustion systems for<br />

alum<strong>in</strong>ium <strong>in</strong>dustry”, Heat Process<strong>in</strong>g 2/2012<br />

AUTHORS<br />

Donald F. Whipple<br />

Bloom Eng<strong>in</strong>eer<strong>in</strong>g (Europa) GmbH<br />

Düsseldorf, Germany<br />

Tel.: +49 (0) 211 / 500 91-0<br />

dwhipple@bloomeng.com<br />

Gün<strong>the</strong>r Reusch<br />

Bloom Eng<strong>in</strong>eer<strong>in</strong>g (Europa) GmbH<br />

Düsseldorf, Germany<br />

Tel.: +49 (0) 211 / 500 91-0<br />

g.reusch@bloomeng.de<br />

Stefan Baur<br />

Bloom Eng<strong>in</strong>eer<strong>in</strong>g (Europa) GmbH<br />

Düsseldorf, Germany<br />

Tel.: +49 (0) 211 / 500 91-33<br />

s.baur@bloomeng.de<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

For a Clean Future. BLOOM ENGINEERING.<br />

Regenerative Burners<br />

100 - 10.000 kW<br />

Energy Sav<strong>in</strong>g<br />

Emission Reduction<br />

Quality Results<br />

Cost Reduction<br />

1150 ULTRA 3 LOW NOx<br />

REGENERATIVE BURNER<br />

ULTRA 3 LOW NOx<br />

SMALL CAPACITY<br />

REGENERATIVE BURNER<br />

BLOOM ENGINEERING<br />

(EUROPA) GMBH<br />

Phone: +49(0)211 500 91-0<br />

<strong>in</strong>fo@bloomeng.de<br />

www.bloomeng.de


Handbook of<br />

Refractory Materials<br />

www.vulkan-verlag.de<br />

Order now!<br />

Design | Properties | Test<strong>in</strong>gs<br />

This new edition of <strong>the</strong> Handbook of Refractory Materials has been completely<br />

revised, expanded and appears <strong>in</strong> a compact format.<br />

<strong>Read</strong>ers obta<strong>in</strong> an extensive and detailed overview focus<strong>in</strong>g on design,<br />

properties, calculations, term<strong>in</strong>ology and test<strong>in</strong>g of refractory materials<br />

thus provid<strong>in</strong>g important <strong>in</strong>formation for your daily work. The appendix<br />

was supplemented by follow<strong>in</strong>g suggestions of readers. Consequently,<br />

<strong>the</strong> handbook‘s usability was enhanced even fur<strong>the</strong>r. With <strong>the</strong> great<br />

amount of <strong>in</strong>formation this compact book is a necessity for professional<br />

work<strong>in</strong>g <strong>in</strong> <strong>the</strong> refractory material or <strong>the</strong>rmal process sectors. The e-book<br />

offers even more flexibility while travell<strong>in</strong>g.<br />

Editors: G. Routschka / H. Wuthnow<br />

4 th edition 2012, 344 pages, with additional <strong>in</strong>formation and e-book<br />

on DVD, hardcover<br />

ISBN: 978-3-8027-3162-4<br />

Price: € 100,-<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I place a firm order for <strong>the</strong> technical book. Please send me<br />

— copies of <strong>the</strong> Handbook of Refractory Materials plus DVD ROM.<br />

4 th edition 2012 (ISBN: 978-3-8027-3162-4)<br />

at <strong>the</strong> price of € 100,- (plus postage and pack<strong>in</strong>g extra)<br />

Company/<strong>in</strong>stitution<br />

First name and surname of recipient<br />

Street/P.O. Box, No.<br />

Country, Postcode, Town<br />

Reply / Antwort<br />

Vulkan-Verlag GmbH<br />

Versandbuchhandlung<br />

Postfach 10 39 62<br />

45039 Essen<br />

GERMANY<br />

Phone<br />

E-mail<br />

L<strong>in</strong>e of bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to Vulkan Verlag GmbH, Versandbuchhandlung, Postfach 10 39 62, 45039 Essen, Germany.<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

It is approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

This approval may be withdrawn at any time.<br />

✘<br />

Date, signature<br />

PAHBRM<strong>2014</strong>


REPORTS<br />

Studies for optimization of<br />

an alum<strong>in</strong>ium melt<strong>in</strong>g furnace<br />

by Thomas Wittenschläger, Dom<strong>in</strong>ik Degen, Volker Uhlig, Dimos<strong>the</strong>nis Trimis,<br />

Tim Reimann, Uwe Richter, Klaus Eigenfeld, Zahra Mohammadifard,<br />

Bernd-Arno Behrens, Tobias Vieregge, Sven-Olaf Sauke<br />

The effort to develop a new type of <strong>in</strong>dustrial furnace can be reduced by facilitated numerical simulation tools. This<br />

article describes numerical studies of <strong>the</strong> flow and temperature distributions <strong>in</strong> an alum<strong>in</strong>ium melt<strong>in</strong>g furnace. The aim<br />

of <strong>the</strong> studies is <strong>in</strong>creas<strong>in</strong>g efficiency of <strong>the</strong> furnace by reduc<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g time of <strong>the</strong> <strong>in</strong>serted material. After validat<strong>in</strong>g<br />

<strong>the</strong> numerical model, <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> level of liquid alum<strong>in</strong>ium on <strong>the</strong> temperature of <strong>the</strong> flue gas was studied.<br />

Fur<strong>the</strong>r simulations were carried out to check <strong>the</strong> <strong>in</strong>fluence of a rotation of <strong>the</strong> burner on <strong>the</strong> temperature distribution<br />

on <strong>the</strong> melt<strong>in</strong>g bridge.<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

The charged material is molten discont<strong>in</strong>uously <strong>in</strong><br />

melt<strong>in</strong>g furnaces for alum<strong>in</strong>ium. The melt<strong>in</strong>g procedure<br />

is f<strong>in</strong>ished when <strong>all</strong> solid material on <strong>the</strong> melt<strong>in</strong>g<br />

bridge is molten. This po<strong>in</strong>t <strong>in</strong> time cannot be predicted<br />

precisely due to a random distribution of <strong>the</strong> solid material<br />

<strong>in</strong> <strong>the</strong> melt<strong>in</strong>g chamber. Usu<strong>all</strong>y <strong>the</strong> operator checks <strong>the</strong><br />

total melt<strong>in</strong>g visu<strong>all</strong>y by open<strong>in</strong>g <strong>the</strong> furnace door. The efficiency<br />

of <strong>the</strong>se furnaces could be <strong>in</strong>creased significantly by<br />

an automated check for complete melt<strong>in</strong>g and a direct<strong>in</strong>g<br />

of <strong>the</strong> burner flame on <strong>the</strong> rema<strong>in</strong><strong>in</strong>g solid. The operators<br />

could be disburdened. Studies on <strong>the</strong>se questions were<br />

performed by means of numerical simulation.<br />

Numerical simulations are well suited to assist <strong>in</strong> <strong>the</strong><br />

design and optimization of alum<strong>in</strong>ium melt<strong>in</strong>g furnaces<br />

because novel furnace concepts and modifications can be<br />

explored more quickly and cheaply than by conventional<br />

experimental approaches. Fur<strong>the</strong>rmore, <strong>the</strong> numerical<br />

models have reached a maturity where solutions accurate<br />

enough for eng<strong>in</strong>eer<strong>in</strong>g purposes can be expected. In <strong>the</strong><br />

presented work significant parts of <strong>the</strong> development work<br />

were supported by numerical simulation.<br />

The paths of <strong>the</strong> stream l<strong>in</strong>es of <strong>the</strong> flue gas leav<strong>in</strong>g <strong>the</strong><br />

burner were simulated numeric<strong>all</strong>y. It is determ<strong>in</strong>ed which<br />

part of <strong>the</strong> furnace chamber is reached directly by <strong>the</strong><br />

burner flame. The axis of <strong>the</strong> burner was tilted vertic<strong>all</strong>y and<br />

horizont<strong>all</strong>y <strong>in</strong> <strong>the</strong> simulation. This opens <strong>the</strong> opportunity<br />

of <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> area on <strong>the</strong> melt<strong>in</strong>g bridge which can be<br />

reached directly by <strong>the</strong> flame. The necessary tilt<strong>in</strong>g angles<br />

were derived by <strong>the</strong>se simulations. These positions of <strong>the</strong><br />

burners (melt<strong>in</strong>g chamber, bath chamber) and <strong>the</strong> required<br />

power were also calculated from <strong>the</strong> simulation results.<br />

The work accomplished until now has focused on validat<strong>in</strong>g<br />

<strong>the</strong> numerical model and <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence<br />

of <strong>the</strong> burner angle on <strong>the</strong> melt<strong>in</strong>g time of an alum<strong>in</strong>ium<br />

block. As an extra side project, <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> bath<br />

volume on <strong>the</strong> outlet temperature and <strong>the</strong> melt<strong>in</strong>g time<br />

of an alum<strong>in</strong>ium block has been <strong>in</strong>vestigated.<br />

GEOMETRY, MESHING AND NUMERIC<br />

MODEL<br />

The furnace geometry used <strong>in</strong> <strong>the</strong> project corresponds<br />

to <strong>the</strong> shaft melt<strong>in</strong>g furnace for alum<strong>in</strong>ium with a melt<strong>in</strong>g<br />

capacity of 300 kg/h located <strong>in</strong> <strong>the</strong> Foundry Institute<br />

at <strong>the</strong> Technische Universtität Bergakademie Freiberg.<br />

The <strong>in</strong>st<strong>all</strong>ed burner has a power of 230 kW and can be<br />

operated <strong>in</strong> full or partial load. This choice of geometry<br />

was made so that <strong>the</strong> applied numerical model could be<br />

validated aga<strong>in</strong>st experimental results. A picture of <strong>the</strong><br />

geometry is shown <strong>in</strong> Fig. 1.<br />

The meshes used <strong>in</strong> this study were generated us<strong>in</strong>g<br />

<strong>the</strong> commercial mesh<strong>in</strong>g software ICEM. It <strong>all</strong>ows a rapid<br />

creation of meshes by automatic<strong>all</strong>y generat<strong>in</strong>g meshes<br />

based on sett<strong>in</strong>gs specified by <strong>the</strong> user. In this project, <strong>the</strong><br />

appropriate sett<strong>in</strong>gs were determ<strong>in</strong>ed by conduct<strong>in</strong>g a<br />

grid <strong>in</strong>dependence study on an empty furnace, this means<br />

a furnace without an alum<strong>in</strong>ium block or a bath volume<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

53


REPORTS<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Fig. 1: Cross section of <strong>the</strong> furnace<br />

<strong>in</strong>side, and <strong>the</strong>n apply<strong>in</strong>g those same sett<strong>in</strong>gs to <strong>the</strong> o<strong>the</strong>r<br />

cases. All <strong>the</strong> meshes share <strong>the</strong> follow<strong>in</strong>g components:<br />

■ unstructured tetrahedral mesh of approximately<br />

650,000 elements<br />

■ prism layer near <strong>the</strong> w<strong>all</strong>s to capture <strong>the</strong> stronger gradients<br />

located <strong>the</strong>re<br />

■ hexahedral cores <strong>in</strong> <strong>the</strong> <strong>in</strong>terior of <strong>the</strong> fluid region.<br />

A cross section of a mesh on an empty furnace is shown <strong>in</strong><br />

Fig. 2. The o<strong>the</strong>r studied meshes look similar.<br />

The solutions were obta<strong>in</strong>ed with <strong>the</strong> aid of <strong>the</strong> commercial<br />

fluid and heat transfer solver ANSYS CFX. In order to<br />

simulate a burner, a well-established method for <strong>the</strong> calculation<br />

of burner streaml<strong>in</strong>es was used: <strong>the</strong> calculation of a free<br />

jet of exhaust gas [1]. An energy source term was set <strong>in</strong> <strong>the</strong><br />

burner canal and a specified mass flow rate transferred <strong>the</strong><br />

energy <strong>in</strong>to <strong>the</strong> furnace. The turbulent flow was modeled<br />

with <strong>the</strong> k-ω SST turbulence model with w<strong>all</strong> functions while<br />

<strong>the</strong> P1 radiation model was employed to model <strong>the</strong> radiation.<br />

Properties for <strong>the</strong> furnace material were taken from data<br />

sheets provided by <strong>the</strong> furnace manufacturer. Correlations<br />

found <strong>in</strong> <strong>the</strong> literature [2] and such provided by <strong>the</strong> software<br />

[3] were used to model <strong>the</strong> properties of <strong>the</strong> gases. The fluid<br />

medium was provided as exhaust gas from <strong>the</strong> combustion<br />

of natural gas and was used for every simulation. Properties<br />

for alum<strong>in</strong>ium were taken from literature [4].<br />

VALIDATION OF THE NUMERIC MODEL<br />

The numerical model was validated by conduct<strong>in</strong>g a study<br />

on <strong>the</strong> empty furnace <strong>in</strong> <strong>the</strong> steady-state warm hold<strong>in</strong>g<br />

operation and compar<strong>in</strong>g it to experimental results. The<br />

experimental furnace was heated up until it reached its operat<strong>in</strong>g<br />

temperature. In this operat<strong>in</strong>g regime, <strong>the</strong> furnace<br />

attempts to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> temperature at a specific po<strong>in</strong>t by<br />

periodic<strong>all</strong>y turn<strong>in</strong>g <strong>the</strong> burner on and off. A burner with a<br />

performance of 46 kW is able to ma<strong>in</strong>ta<strong>in</strong> a temperature of<br />

700 °C <strong>in</strong> <strong>the</strong> bath chamber by burn<strong>in</strong>g for <strong>about</strong> 90 seconds<br />

Y<br />

Z<br />

X<br />

Y<br />

Z<br />

X<br />

Fig. 2: Cross section of <strong>the</strong> mesh <strong>in</strong> <strong>the</strong> empty furnace (left), enlarged region<br />

to show <strong>the</strong> prism layer (right)<br />

and rema<strong>in</strong><strong>in</strong>g off for circa 114 seconds although <strong>the</strong> actual<br />

duration is slightly different from cycle to cycle.<br />

The gas temperature <strong>in</strong> <strong>the</strong> furnace was measured at<br />

12 po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> melt<strong>in</strong>g area us<strong>in</strong>g <strong>the</strong>rmocouples. The<br />

locations of <strong>the</strong> <strong>the</strong>rmocouples are shown <strong>in</strong> Fig. 3. The<br />

experiment was modeled with a stationary simulation.<br />

It was assumed that <strong>the</strong> simulation would be useful for<br />

analys<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g region. There is some question as<br />

to how to compare <strong>the</strong> values generated from a stationary<br />

simulation with those of <strong>the</strong> unsteady experiment. To get<br />

around this problem, <strong>the</strong> measured temperatures were<br />

averaged over time to obta<strong>in</strong> one read<strong>in</strong>g per measurement<br />

temperature. In <strong>the</strong> same way <strong>the</strong> burner output was<br />

time averaged to get an output of 20.9 kW and applied to<br />

<strong>the</strong> simulation. A comparison of <strong>the</strong> simulation and <strong>the</strong><br />

experiment is shown <strong>in</strong> Table 1.<br />

The table shows that <strong>the</strong> difference is slight between <strong>the</strong><br />

simulation and <strong>the</strong> experiment. For each po<strong>in</strong>t, <strong>the</strong> relative<br />

difference of <strong>the</strong> temperature lies under 5 %. This is acceptable<br />

for eng<strong>in</strong>eer<strong>in</strong>g purposes so validation of <strong>the</strong> model<br />

can be assumed.<br />

Additional confidence that <strong>the</strong> mesh is of <strong>the</strong> appropriate<br />

f<strong>in</strong>eness is provided by a grid <strong>in</strong>dependence study. This<br />

study was done by start<strong>in</strong>g with a mesh and ref<strong>in</strong><strong>in</strong>g it to<br />

six meshes. After that <strong>the</strong> meshes were used to simulate<br />

an empty furnace with a burner performance of maximum<br />

output (230 kW). It was found that <strong>the</strong> temperatures across<br />

<strong>the</strong> meshes for a measurement place provided little difference<br />

and <strong>the</strong> mesh with 650,000 was chosen. This mesh<br />

provides a sufficient accuracy for ma<strong>in</strong>ta<strong>in</strong>able comput<strong>in</strong>g<br />

time. The study is depicted <strong>in</strong> Fig. 4.<br />

STUDY OF THE INFLUENCE OF THE BATH<br />

VOLUME<br />

In this study, <strong>the</strong> dependence of <strong>the</strong> melt<strong>in</strong>g time of an<br />

alum<strong>in</strong>ium block on <strong>the</strong> volume of alum<strong>in</strong>ium <strong>in</strong> <strong>the</strong> bath<br />

was explored. The temperature at <strong>the</strong> outlet was <strong>the</strong> most<br />

Y<br />

Z<br />

X<br />

54 heat process<strong>in</strong>g 2-<strong>2014</strong>


REPORTS<br />

<strong>in</strong>terest<strong>in</strong>g parameter. This is a side study of <strong>the</strong> project and<br />

is used to evaluate <strong>the</strong> energy efficiency of <strong>the</strong> furnace and<br />

to calculate subsequently solutions for us<strong>in</strong>g <strong>the</strong> flue gas<br />

enthalpy. Data was ga<strong>the</strong>red for 8 levels of bath volume and<br />

<strong>the</strong> empty bath. The volumes can be observed <strong>in</strong> Fig. 5.<br />

Simulations were performed <strong>in</strong> two steps. In <strong>the</strong> first step, a<br />

stationary simulation for each bath volume was performed<br />

at a burner performance of 20.9 kW with <strong>the</strong> alum<strong>in</strong>ium<br />

block covered by adiabatic w<strong>all</strong>s. So <strong>the</strong> alum<strong>in</strong>ium block is<br />

not heated. Once stationary simulation completed, <strong>the</strong> adiabatic<br />

w<strong>all</strong>s of <strong>the</strong> alum<strong>in</strong>ium block were removed and <strong>the</strong><br />

velocity and temperature distributions from <strong>the</strong> stationary<br />

case were used as <strong>the</strong> <strong>in</strong>itial conditions for a subsequent<br />

transient simulation with a burner power of 230 kW.<br />

It was assumed that melt<strong>in</strong>g started when a po<strong>in</strong>t <strong>in</strong> <strong>the</strong><br />

alum<strong>in</strong>ium block reached <strong>the</strong> melt<strong>in</strong>g temperature of pure<br />

alum<strong>in</strong>ium. This temperature was set to 665 °C. Norm<strong>all</strong>y, <strong>the</strong><br />

melt<strong>in</strong>g temperature is 660 °C. But to <strong>in</strong>crease <strong>the</strong> quality of<br />

<strong>the</strong> simulation of <strong>the</strong> melt<strong>in</strong>g procedure, <strong>the</strong> melt<strong>in</strong>g enthalpy<br />

was <strong>in</strong>cluded by calculat<strong>in</strong>g a modified specific heat for<br />

<strong>the</strong> alum<strong>in</strong>ium block. The altered specific heat had <strong>the</strong> normal<br />

temperature dependence of alum<strong>in</strong>ium until it reached<br />

5 degrees below <strong>the</strong> melt<strong>in</strong>g temperature. Once it reached<br />

this, <strong>the</strong> dependence of <strong>the</strong> specific heat on <strong>the</strong> temperature<br />

became a Gauss curve where <strong>the</strong> melt<strong>in</strong>g enthalpy of<br />

alum<strong>in</strong>ium was <strong>the</strong> <strong>in</strong>tegral under <strong>the</strong> curve. When it went<br />

over 665 °C, <strong>the</strong> specific heat fell back to normal.<br />

The data from <strong>the</strong> simulations reveal that <strong>the</strong> effect of<br />

<strong>the</strong> bath volume on <strong>the</strong> melt<strong>in</strong>g time of <strong>the</strong> alum<strong>in</strong>ium<br />

block and <strong>the</strong> outlet temperature is sm<strong>all</strong>. Fig. 6 depicts<br />

Table 1: Data from <strong>the</strong> validation study apply<strong>in</strong>g equal<br />

heat<strong>in</strong>g power<br />

Measur<strong>in</strong>g<br />

Position<br />

Measur<strong>in</strong>g Simulation Deviation<br />

T / K T / K %<br />

ME1 1174.4 1175.1 0.06<br />

ME2 1207.1 1175.1 2.66<br />

ME3 1162.6 1184.6 1.90<br />

ME4 1180.8 1185.2 0.38<br />

ME5 1143.9 1171.2 2.38<br />

ME6 1151.0 1173.5 1.95<br />

ME7 1094.8 1144.7 4.56<br />

ME8 1103.3 1144.8 3.75<br />

ME9 1174.0 1126.2 4.07<br />

ME10 1170.6 1126.2 3.79<br />

ME11 1171.3 1125.8 3.88<br />

ME12 - 1125.9 -<br />

<strong>the</strong> effect of <strong>the</strong> bath volume on <strong>the</strong> melt<strong>in</strong>g time. Melt<strong>in</strong>g<br />

beg<strong>in</strong>s at <strong>the</strong> k<strong>in</strong>k <strong>in</strong> <strong>the</strong> curve. The melt<strong>in</strong>g time for <strong>the</strong><br />

o<strong>the</strong>r heights is shown <strong>in</strong> <strong>the</strong> accompany<strong>in</strong>g table. The<br />

outlet temperature data is presented <strong>in</strong> Fig. 7.<br />

STUDY OF THE INCLINATION ANGLE OF<br />

THE BURNER<br />

In <strong>the</strong> current operation of most alum<strong>in</strong>ium melt<strong>in</strong>g furnaces,<br />

a burner is stationary and po<strong>in</strong>ts <strong>in</strong> one direction.<br />

It is assumed that rotat<strong>in</strong>g <strong>the</strong> burner dur<strong>in</strong>g melt<strong>in</strong>g<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Fig. 3: Cross section of <strong>the</strong> furnace show<strong>in</strong>g <strong>the</strong> positions of <strong>the</strong> <strong>the</strong>rmocouples (left), rotated for sake of example<br />

(right); <strong>the</strong> <strong>the</strong>rmocouples are positioned symmetric<strong>all</strong>y on <strong>the</strong> left (blue colour) and right (red colour) side<br />

w<strong>all</strong> of <strong>the</strong> melt<strong>in</strong>g chamber measur<strong>in</strong>g <strong>the</strong> gas temperature <strong>in</strong> <strong>the</strong> chamber<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

55


REPORTS<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

2100<br />

2050<br />

T / K 2000<br />

1950<br />

1900<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Thermocouple nr.<br />

Fig. 4: Data from <strong>the</strong> grid <strong>in</strong>dependency study<br />

Fig. 5: Cross section show<strong>in</strong>g <strong>the</strong> different levels<br />

of <strong>the</strong> bath volume<br />

T / K<br />

1200<br />

1050<br />

900<br />

750<br />

600<br />

450<br />

H8<br />

H7<br />

H6<br />

H5<br />

H4<br />

H3<br />

H2<br />

H1<br />

H0<br />

300<br />

0 600 1200 1800 2400<br />

t / s<br />

Mesh 1<br />

Mesh 2<br />

Mesh 3<br />

Mesh 4<br />

Mesh 5<br />

Mesh 6<br />

Fig. 6: Temperature of <strong>the</strong> alum<strong>in</strong>ium block and<br />

<strong>the</strong> correspond<strong>in</strong>g melt<strong>in</strong>g time for <strong>the</strong> bath<br />

height H0 (empty bath chamber)<br />

Y<br />

Z<br />

X<br />

Mesh Elements<br />

1 410501<br />

2 628236<br />

3 797849<br />

4 843084<br />

5 890776<br />

6 1476097<br />

Level Height /m<br />

H0 0.0000<br />

H1 0.0525<br />

H2 0.1050<br />

H3 0.1575<br />

H4 0.2100<br />

H5 0.2625<br />

H6 0.3150<br />

H7 0.3675<br />

H8 0.4200<br />

Level t /s<br />

H0 2531<br />

H1 2519<br />

H2 2526<br />

H3 2510<br />

H4 2518<br />

H5 2542<br />

H6 2507<br />

H7 2509<br />

H8 2478<br />

operation and selective po<strong>in</strong>t<strong>in</strong>g at rema<strong>in</strong><strong>in</strong>g<br />

alum<strong>in</strong>ium on <strong>the</strong> melt<strong>in</strong>g bridge can decrease<br />

<strong>the</strong> melt<strong>in</strong>g time of <strong>the</strong> alum<strong>in</strong>ium block. To<br />

f<strong>in</strong>d out <strong>the</strong> effect of <strong>the</strong> burner angle on <strong>the</strong><br />

distribution of <strong>the</strong> temperature, simulations<br />

were done where <strong>the</strong> burner angle was turned<br />

us<strong>in</strong>g burner <strong>in</strong> <strong>the</strong> melt<strong>in</strong>g function fir<strong>in</strong>g <strong>in</strong><br />

an empty furnace. The study was performed<br />

by establish<strong>in</strong>g an operation zone <strong>in</strong> <strong>the</strong> form<br />

of an ellipse along which <strong>the</strong> burner could<br />

be rotated. Simulations were <strong>the</strong>n performed<br />

for 12 po<strong>in</strong>ts on <strong>the</strong> ellipse, aga<strong>in</strong> each po<strong>in</strong>t<br />

represent<strong>in</strong>g a direction <strong>the</strong> burner was po<strong>in</strong>t<strong>in</strong>g<br />

<strong>in</strong>. A maximum burner performance was<br />

employed. Each simulation was started by<br />

us<strong>in</strong>g <strong>the</strong> temperature distribution calculated<br />

from a stationary simulation of <strong>the</strong> furnace<br />

with <strong>the</strong> burner po<strong>in</strong>t<strong>in</strong>g <strong>in</strong>to <strong>the</strong> standard or<br />

unrotated position. The simulation was <strong>the</strong>n<br />

performed for 600 seconds of simulation time.<br />

The positions along <strong>the</strong> ellipse on which <strong>the</strong><br />

burner po<strong>in</strong>ted are displayed <strong>in</strong> Fig. 8. It was<br />

monitored how <strong>the</strong> temperature distribution<br />

on <strong>the</strong> melt<strong>in</strong>g bridge changes for <strong>the</strong> different<br />

positions. A series of 40 po<strong>in</strong>ts were set on<br />

a plane 5 mm above <strong>the</strong> melt<strong>in</strong>g bridge and<br />

<strong>the</strong> po<strong>in</strong>t with <strong>the</strong> highest temperature was<br />

determ<strong>in</strong>ed. In this manner, <strong>the</strong> shift<strong>in</strong>g of <strong>the</strong><br />

temperature field could be evaluated.<br />

Fig. 9 placed on page 58 shows <strong>the</strong> temperature<br />

distribution at <strong>the</strong> 40 po<strong>in</strong>ts for 5 burner<br />

angles. It can be seen that <strong>the</strong> temperature<br />

distribution is shift<strong>in</strong>g as <strong>the</strong> burner is rotated.<br />

If <strong>the</strong> burner is po<strong>in</strong>t<strong>in</strong>g downwards (P8-P12),<br />

a relatively high <strong>in</strong>crease <strong>in</strong> temperature compared<br />

to <strong>the</strong> unrotated burner (P0) is shown.<br />

As <strong>the</strong> burner is rotated so that it is po<strong>in</strong>t<strong>in</strong>g<br />

above its unrotated state (P2-P6) a low <strong>in</strong>crease<br />

<strong>in</strong> <strong>the</strong> temperature is observed. In conclusion,<br />

a performance <strong>in</strong>crease is reached when <strong>the</strong><br />

burner is po<strong>in</strong>t<strong>in</strong>g down but only little performance<br />

change is registered when <strong>the</strong> burner<br />

is po<strong>in</strong>ted up. Follow<strong>in</strong>g a significant difference<br />

<strong>in</strong> <strong>the</strong> required melt<strong>in</strong>g times can be expected<br />

depend<strong>in</strong>g on <strong>the</strong> position of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

solids. A remark should be made that <strong>the</strong> data<br />

conta<strong>in</strong>s <strong>the</strong> temperature at <strong>the</strong> end of <strong>the</strong><br />

simulation. The relatively high temperatures<br />

shown are due to <strong>the</strong> burner operation with<br />

<strong>the</strong> maximum power of 230 kW assum<strong>in</strong>g an<br />

empty furnace. In a real melt<strong>in</strong>g process <strong>the</strong><br />

temperature above <strong>the</strong> melt<strong>in</strong>g bridge at <strong>the</strong><br />

end of <strong>the</strong> melt<strong>in</strong>g operation will be lower.<br />

56 heat process<strong>in</strong>g 2-<strong>2014</strong>


REPORTS<br />

OUTLOOK<br />

The results of <strong>the</strong> numerical simulation show to which<br />

extent a change <strong>in</strong> <strong>the</strong> direction of <strong>the</strong> burner axis enables<br />

to imp<strong>in</strong>ge with <strong>the</strong> flame on <strong>the</strong> solid residuals on <strong>the</strong><br />

melt<strong>in</strong>g bridge of <strong>the</strong> furnace. By this an <strong>in</strong>crease <strong>in</strong> melt<strong>in</strong>g<br />

capacity seems possible. The solid residuals on <strong>the</strong> melt<strong>in</strong>g<br />

bridge sh<strong>all</strong> be detected by an optical system. The results of<br />

an image <strong>in</strong>terpretation algorithm sh<strong>all</strong> be used for controll<strong>in</strong>g<br />

<strong>the</strong> burner and its direction. Follow<strong>in</strong>g an automatic<br />

controlled melt<strong>in</strong>g procedure can be implemented. Aim<br />

of <strong>the</strong> development is <strong>the</strong> reduction of melt<strong>in</strong>g time and<br />

<strong>the</strong> improvement of energy efficiency.<br />

ACKNOWLEDGEMENT<br />

The authors would like to thank<br />

to <strong>the</strong> Federal M<strong>in</strong>istry for Economic<br />

Affairs and Energy for <strong>the</strong><br />

f<strong>in</strong>ancial support of <strong>the</strong> project<br />

“Energieeffizienzsteigerung und Schmelzprozessoptimierung<br />

durch die sensorische Erfassung des Schmelzgutes und des<br />

Schmelzbereiches bei Alum<strong>in</strong>iumschmelzöfen“.<br />

1410<br />

1390<br />

1370<br />

1350<br />

T / K 1330<br />

1310<br />

1290<br />

1270<br />

H0<br />

H1<br />

H2<br />

H3<br />

H4<br />

H5<br />

H6<br />

H7<br />

1250<br />

0 600 1200 1800 2400 3000 3600 4200 4800 5400 H8<br />

t / s<br />

Fig. 7: Outlet temperature of <strong>the</strong> flue gas for different bath heights<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

LITERATURE<br />

[1] Wünn<strong>in</strong>g, G.: Handbuch der Brennertechnik für Industrieöfen.<br />

Essen: Vulkan-Verlag, 2007<br />

[2] Kowaczck, J.; Kurth, K.; Schubert, H.: Tabellenbuch für die<br />

Gastechnik, DvfG, Leipzig 1974<br />

[3] Ansys, Inc.: Ansys CFX-Solver Theory Guide: Version 13.0, Englisch<br />

[4] Kammer, C.: Alum<strong>in</strong>ium Taschenbuch 1, Alum<strong>in</strong>ium-Verlag, 2009<br />

P1<br />

P0<br />

P5<br />

P9<br />

Z<br />

Y<br />

X<br />

AUTHORS<br />

Thomas Wittenschläger<br />

formerly TU Bergakademie Freiberg<br />

Institut für Wärmetechnik und Thermodynamik<br />

Freiberg, Germany<br />

Fig. 8: Position of <strong>the</strong> center of <strong>the</strong> burner nozzle (P0) aga<strong>in</strong>st<br />

positions for simulation along an ellipse result<strong>in</strong>g from<br />

different rotation angles of <strong>the</strong> burner<br />

Dom<strong>in</strong>ik Degen<br />

formerly TU Bergakademie Freiberg<br />

Institut für Wärmetechnik und Thermodynamik<br />

Freiberg, Germany<br />

Tim Reimann<br />

formerly TU Bergakademie Freiberg<br />

Gießerei<strong>in</strong>stitut<br />

Freiberg, Germany<br />

Dr. Volker Uhlig<br />

TU Bergakademie Freiberg<br />

Institut für Wärmetechnik und Thermodynamik<br />

Freiberg, Germany, Tel.: +49 (0) 3731 / 39 2177<br />

volker.uhlig@iwtt.tu-freiberg.de<br />

Dr. Uwe Richter<br />

TU Bergakademie Freiberg<br />

Gießerei<strong>in</strong>stitut<br />

Freiberg, Germany, Tel.: +49 (0) 3731 / 39 2868<br />

uwe.richter@gi.tu-freiberg.de<br />

Prof. Dr. Dimos<strong>the</strong>nis Trimis<br />

TU Bergakademie Freiberg<br />

Institut für Wärmetechnik und Thermodynamik<br />

Freiberg, Germany, Tel.: +49 (0) 3731 / 39 3941<br />

trimis@iwtt.tu-freiberg.de<br />

Prof. Dr. i. R. Klaus Eigenfeld<br />

formerly TU Bergakademie Freiberg<br />

Gießerei<strong>in</strong>stitut<br />

Freiberg, Germany<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

57


ALUMINIUM <strong>2014</strong> – SPECIAL<br />

REPORTS<br />

Fig. 9: Contour plots show<strong>in</strong>g <strong>the</strong> temperature distribution 5 mm above <strong>the</strong> melt<strong>in</strong>g bridge (see Fig. 8) for five burner<br />

angles; <strong>the</strong> burner is positioned on <strong>the</strong> right hand side, see right bottom image<br />

Zahra Mohammadifard<br />

Leibniz Universität Hannover<br />

Institut für Umformtechnik und Umformmasch<strong>in</strong>en<br />

Garbsen, Germany, Tel.: +49 (0) 511 / 762 4106<br />

mohammadifard@ifum.uni-hannover.de<br />

Prof. Dr. Bernd-Arno Behrens<br />

Leibniz Universität Hannover<br />

Institut für Umformtechnik und Umformmasch<strong>in</strong>en<br />

Garbsen, Germany, Tel.: +49 (0) 511 / 762 2164<br />

behrens@ifum.uni-hannover.de<br />

Tobias Vieregge<br />

formerly Leibniz Universität Hannover<br />

Institut für Umformtechnik und Umformmasch<strong>in</strong>en<br />

Garbsen, Germany<br />

vieregge@ifum.uni-hannover.de<br />

Sven-Olaf Sauke<br />

Sauke.Semrau GmbH<br />

Garbsen, Germany, Tel.: +49 (0) 511 / 762 18205<br />

sosauke@saukesemrau.de<br />

58 heat process<strong>in</strong>g 2-<strong>2014</strong>


REPORTS<br />

Process control of alum<strong>in</strong>ium<br />

sheet coil anneal<strong>in</strong>g<br />

by Łukasz Piechowicz, Damian Siemiatowski<br />

This paper presents <strong>the</strong> general pr<strong>in</strong>ciples of auto-regulation and control for <strong>the</strong> process of alum<strong>in</strong>ium coil anneal<strong>in</strong>g<br />

<strong>in</strong> Seco/Warwick Vortex® Jet Heat<strong>in</strong>g furnaces us<strong>in</strong>g <strong>the</strong> SeCoil on-l<strong>in</strong>e simulator of <strong>the</strong> <strong>the</strong>rmal process. The simulator<br />

is designed to determ<strong>in</strong>e <strong>the</strong> characteristic temperatures <strong>in</strong> an alum<strong>in</strong>ium coil section dur<strong>in</strong>g <strong>the</strong> anneal<strong>in</strong>g process.<br />

Simulation data is transmitted on-l<strong>in</strong>e to <strong>the</strong> digital controller, which is used for automatic regulation. The goal of <strong>the</strong>rmal<br />

modell<strong>in</strong>g <strong>in</strong> <strong>the</strong> auto-regulation and control system is not only to improve <strong>the</strong> functional properties of <strong>the</strong> furnace, but<br />

to reduce energy consumption and improve <strong>the</strong> quality of <strong>the</strong> f<strong>in</strong>ished product.<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

To meet <strong>the</strong> grow<strong>in</strong>g customer demand, <strong>in</strong>dustrial<br />

furnace manufacturers are forced to cont<strong>in</strong>u<strong>all</strong>y<br />

improve traditional methods of heat treatment. The<br />

important areas of <strong>in</strong>novation <strong>in</strong>clude, among o<strong>the</strong>rs, a<br />

number of technological issues, such as those related to<br />

development of a model to predict <strong>the</strong> structures and<br />

properties of materials after heat treatment and issues<br />

directly related to reduction of energy consumption. The<br />

required characteristics of heat treated material produced<br />

with <strong>the</strong> least possible energy outlay can be achieved us<strong>in</strong>g<br />

efficient systems of automatic regulation and control aided<br />

by ma<strong>the</strong>matical modell<strong>in</strong>g of physical phenomena. The<br />

start<strong>in</strong>g po<strong>in</strong>t for optimization of <strong>the</strong> heat treatment process,<br />

both <strong>in</strong> terms of properties of <strong>the</strong> treated material,<br />

as well as <strong>in</strong> terms of energy consumption, is knowledge<br />

of <strong>the</strong> <strong>the</strong>rmal phenomena occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> furnace and<br />

<strong>in</strong>side <strong>the</strong> load. Results of regularly conducted statistical<br />

surveys of recipients and providers of widely understood<br />

metal heat treatment processes, published by ASM (American<br />

Society for Metals) [1], <strong>in</strong>dicate, among o<strong>the</strong>r th<strong>in</strong>gs,<br />

<strong>the</strong> need to develop issues such as:<br />

■ A database for heat treatment processes, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>rmal<br />

and mechanical properties of materials,<br />

■ <strong>the</strong> possibility of shorten<strong>in</strong>g <strong>the</strong> duration of heat treatment<br />

processes,<br />

■ a better temperature control system for heat treatment<br />

furnaces (various sensors and technology),<br />

■ sensors measur<strong>in</strong>g gas flow <strong>in</strong> <strong>the</strong> furnace.<br />

An example of a technological process where <strong>the</strong>re is a<br />

need to explore <strong>all</strong> <strong>the</strong>se issues is recryst<strong>all</strong>isation anneal<strong>in</strong>g,<br />

which is an <strong>in</strong>tegral part of produc<strong>in</strong>g strips and sheets<br />

of alum<strong>in</strong>ium manufactured <strong>in</strong> <strong>the</strong> process of cold roll<strong>in</strong>g.<br />

This process is carried out <strong>in</strong> chamber furnaces based on<br />

“Mass Flow” technology (mass flow of atmosphere) or “Jet<br />

Heat<strong>in</strong>g” (blow<strong>in</strong>g of atmosphere through high velocity<br />

nozzles), where<strong>in</strong> <strong>the</strong> sheet is <strong>in</strong>serted <strong>in</strong>to <strong>the</strong> furnace<br />

chamber <strong>in</strong> <strong>the</strong> form of tightly wrapped coils, weigh<strong>in</strong>g<br />

from a few to many tons. Anneal<strong>in</strong>g of coiled alum<strong>in</strong>ium<br />

sheet is a long process and consists of three basic stages:<br />

heat<strong>in</strong>g, soak<strong>in</strong>g (hold<strong>in</strong>g), and cool<strong>in</strong>g. Therefore, <strong>the</strong> aim<br />

is to optimize <strong>the</strong> process of anneal<strong>in</strong>g, <strong>in</strong> order to shorten<br />

<strong>the</strong> cycle time to <strong>the</strong> greatest extent possible, while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> desired properties <strong>in</strong> <strong>the</strong> entire load. To this<br />

end, a coil anneal<strong>in</strong>g process control system us<strong>in</strong>g an onl<strong>in</strong>e<br />

simulator of <strong>the</strong> heat<strong>in</strong>g process was developed for<br />

<strong>in</strong>st<strong>all</strong>ation on Seco/Warwick Vortex® Jet Heat<strong>in</strong>g furnaces.<br />

Fig. 1 presents a diagram of <strong>the</strong> jet heat<strong>in</strong>g furnace, toge<strong>the</strong>r<br />

with a general outl<strong>in</strong>e of <strong>the</strong> automatic regulation and control<br />

method. In this furnace, <strong>the</strong> roof mounted fans move<br />

<strong>the</strong> furnace atmosphere from <strong>the</strong> work<strong>in</strong>g chamber <strong>in</strong>to two<br />

ducts which end <strong>in</strong> nozzle plenums. The nozzle plenums<br />

accelerate <strong>the</strong> atmosphere and deliver heat to <strong>the</strong> coiled<br />

alum<strong>in</strong>ium sheet which is placed between <strong>the</strong> nozzle plenums<br />

on ei<strong>the</strong>r side. The nozzle arrangement used <strong>in</strong> <strong>the</strong><br />

system produces a series of “rotational air flows” – Vortex®.<br />

The nozzle arrangement consists of groups of four circular<br />

nozzles (pipes) located close to each o<strong>the</strong>r, where<strong>in</strong> each is<br />

<strong>in</strong>cl<strong>in</strong>ed at an appropriate angle. Adequate configuration of<br />

<strong>the</strong> nozzles provides a swirl<strong>in</strong>g flow of gas. The Vortex® nozzle<br />

system comb<strong>in</strong>es <strong>the</strong> advantages of highly-convective<br />

technology “Jet Heat<strong>in</strong>g” (<strong>the</strong> gas stream imp<strong>in</strong>g<strong>in</strong>g on <strong>the</strong><br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

59


REPORTS<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

Fig. 1: Cross-section of furnace with high convection<br />

nozzle system – Vortex®<br />

side area of <strong>the</strong> coil), and “Mass Flow” technology to reduce<br />

caus<strong>in</strong>g local burn<strong>in</strong>g on <strong>the</strong> load surface [2].<br />

CONTROL OVER THE ANNEALING PROCESS<br />

For each <strong>all</strong>oy, or group of <strong>all</strong>oys, a recipe for heat<strong>in</strong>g can<br />

be def<strong>in</strong>ed, accord<strong>in</strong>g to which <strong>the</strong> technological process<br />

will be implemented. To def<strong>in</strong>e <strong>the</strong> heat<strong>in</strong>g procedure, one<br />

should take <strong>in</strong>to account several important parameters<br />

(Fig. 2), such as:<br />

■ heat<strong>in</strong>g ramp (WSP) – <strong>the</strong> set rate of temperature rise<br />

<strong>in</strong> <strong>the</strong> heat<strong>in</strong>g chamber of <strong>the</strong> furnace,<br />

■ f<strong>in</strong>al target temperature of <strong>the</strong> batch (t SP ), which at <strong>the</strong><br />

same time is <strong>the</strong> set po<strong>in</strong>t temperature,<br />

■ <strong>in</strong>crease <strong>in</strong> temperature is def<strong>in</strong>ed as <strong>the</strong> difference<br />

between <strong>the</strong> maximum temperature of <strong>the</strong> heat<strong>in</strong>g<br />

chamber (gas) and <strong>the</strong> f<strong>in</strong>al target temperature of <strong>the</strong><br />

batch (t head = t g, max - t SP ),<br />

■ hold time (τ´3) measured from <strong>the</strong> moment of <strong>in</strong>dicat<strong>in</strong>g<br />

<strong>the</strong> target temperature by a batch <strong>the</strong>rmocouple t SP with<br />

<strong>the</strong> predeterm<strong>in</strong>ed tolerance of error (most often ± 5 K).<br />

From a technological po<strong>in</strong>t of view, <strong>the</strong> most important<br />

parameters are <strong>the</strong> f<strong>in</strong>al target batch temperature, and <strong>the</strong><br />

hold<strong>in</strong>g time. These parameters strictly def<strong>in</strong>e <strong>the</strong> technology<br />

of recryst<strong>all</strong>isation anneal<strong>in</strong>g and must be strictly<br />

met. From an economic po<strong>in</strong>t of view, <strong>the</strong> most important<br />

parameter is <strong>the</strong> total process time, which directly affects<br />

<strong>the</strong> performance and energy consumption. Analyz<strong>in</strong>g <strong>the</strong><br />

diagram presented <strong>in</strong> Fig. 2, one can state that m<strong>in</strong>imiz<strong>in</strong>g<br />

<strong>the</strong> over<strong>all</strong> process time can be achieved by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

value of two basic parameters, such as heat<strong>in</strong>g ramp and<br />

heat<strong>in</strong>g temperature. This carries some limitations, namely<br />

as a result of exceed<strong>in</strong>g a reasonable rate of temperature<br />

<strong>in</strong>crease, an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> total energy consumption<br />

may occur due to excessive consumption of power at <strong>the</strong><br />

<strong>in</strong>itial phase of <strong>the</strong> process. In turn, exceed<strong>in</strong>g a certa<strong>in</strong><br />

Fig. 2: Def<strong>in</strong><strong>in</strong>g <strong>the</strong> gas temperature curve <strong>in</strong> SeCoil Simulator<br />

60 heat process<strong>in</strong>g 2-<strong>2014</strong>


REPORTS<br />

critical value of temperature may lead to a temporary or<br />

long-term overheat<strong>in</strong>g of <strong>the</strong> batch (above <strong>the</strong> target temperature).<br />

In short, it is desirable that <strong>the</strong> heat<strong>in</strong>g is carried<br />

out as quickly as possible, while prevent<strong>in</strong>g overheat<strong>in</strong>g<br />

of <strong>the</strong> batch and ensur<strong>in</strong>g m<strong>in</strong>imum fuel consumption<br />

(natural gas).<br />

The task of <strong>the</strong> SeCoil automatic regulation and control<br />

system (after def<strong>in</strong><strong>in</strong>g such parameters as WSP, t sp , t head<br />

and τ´3) is keep<strong>in</strong>g, for <strong>the</strong> longest possible period of time,<br />

an adequate temperature <strong>in</strong> <strong>the</strong> heat<strong>in</strong>g chamber of <strong>the</strong><br />

furnace and <strong>the</strong>n (after reach<strong>in</strong>g <strong>the</strong> temperature <strong>in</strong> <strong>the</strong><br />

load t d - start temperature ratio) reduc<strong>in</strong>g <strong>the</strong> temperature<br />

of gas accord<strong>in</strong>g to clearly def<strong>in</strong>ed dependencies<br />

(Fig. 3). Due to <strong>the</strong> procedure applied, a shorter process<br />

time can be achieved without <strong>the</strong> risk of overheat<strong>in</strong>g <strong>the</strong><br />

load. However, proper operation of <strong>the</strong> system requires<br />

precise control of <strong>the</strong> load temperature, which despite<br />

appearances is not an easy task. In <strong>the</strong> classical control<br />

system, <strong>the</strong> temperature is measured with a batch <strong>the</strong>rmocouple<br />

that is “hammered” at <strong>the</strong> wraps of <strong>the</strong> coil at<br />

a depth of approximately 60 mm. The presented method<br />

of temperature measurement is often burdened with an<br />

error due to “ventilation” of <strong>the</strong> measurement po<strong>in</strong>t. As a<br />

result of this phenomenon <strong>the</strong> temperature measurement<br />

is disturbed by <strong>the</strong> stream of flow<strong>in</strong>g gas. Ano<strong>the</strong>r adverse<br />

effect of such temperature measurement is destroy<strong>in</strong>g <strong>the</strong><br />

edges of <strong>the</strong> sheet, not to mention <strong>the</strong> <strong>in</strong>conveniences<br />

related to placement and removal of <strong>the</strong> batch <strong>the</strong>rmocouple.<br />

These <strong>in</strong>conveniences can be elim<strong>in</strong>ated by us<strong>in</strong>g<br />

a ma<strong>the</strong>matical model <strong>in</strong> <strong>the</strong> process of controll<strong>in</strong>g <strong>the</strong><br />

<strong>the</strong>rmal process. The fundamentals of <strong>the</strong> ma<strong>the</strong>matical<br />

model that constitute an essential part of <strong>the</strong> automatic<br />

regulation and control system for <strong>the</strong> anneal<strong>in</strong>g process<br />

of alum<strong>in</strong>ium sheet coils <strong>in</strong> <strong>the</strong> described furnaces are<br />

shown <strong>in</strong> [3].<br />

CONTROL SYSTEM USING THE<br />

ON-LINE SIMULATOR<br />

A description of <strong>the</strong> control system us<strong>in</strong>g <strong>the</strong> SeCoil on-l<strong>in</strong>e<br />

simulator is presented <strong>in</strong> <strong>the</strong> po<strong>in</strong>ts below.<br />

1. A recipe for <strong>the</strong> anneal<strong>in</strong>g process must be entered<br />

<strong>in</strong>to <strong>the</strong> InTouch software. One must def<strong>in</strong>e some<br />

basic parameters, such as:<br />

- temperature,<br />

- heat<strong>in</strong>g ramp,<br />

- hold time.<br />

2. In <strong>the</strong> “Edit Detail” w<strong>in</strong>dow of <strong>the</strong> InTouch software<br />

one must def<strong>in</strong>e parameters such as: <strong>the</strong> outer and<br />

<strong>the</strong> <strong>in</strong>ner diameter of <strong>the</strong> coil, <strong>the</strong> width of <strong>the</strong> coil,<br />

and <strong>the</strong> thickness of <strong>the</strong> alum<strong>in</strong>ium sheet (Fig. 4).<br />

3. After enter<strong>in</strong>g <strong>the</strong> data, <strong>the</strong> prepared recipe is uploaded<br />

to <strong>the</strong> controller and <strong>the</strong> option for <strong>the</strong> process to<br />

be controlled by <strong>the</strong> SeCoil programme is selected.<br />

Fig. 3: Temperature control by Ratio Control System<br />

(example)<br />

4. The data that have been previously <strong>in</strong>troduced <strong>in</strong><br />

InTouch software are automatic<strong>all</strong>y copied to <strong>the</strong><br />

SeCoil programme. Based on <strong>the</strong> <strong>in</strong>put data and<br />

parameters read <strong>in</strong> real time (on-l<strong>in</strong>e) <strong>the</strong> programme<br />

determ<strong>in</strong>es <strong>the</strong> temperature curve of <strong>the</strong> batch at<br />

user-def<strong>in</strong>ed po<strong>in</strong>ts.<br />

CONCLUSION<br />

The follow<strong>in</strong>g advantages of automatic regulation and<br />

control of coils anneal<strong>in</strong>g process, us<strong>in</strong>g <strong>the</strong> SeCoil on-l<strong>in</strong>e<br />

simulation of <strong>the</strong> anneal<strong>in</strong>g process can be listed:<br />

■ No need for <strong>the</strong> use of batch <strong>the</strong>rmocouple,<br />

■ elim<strong>in</strong>ation of <strong>the</strong> drawbacks associated with <strong>the</strong> use of<br />

batch <strong>the</strong>rmocouple (“ventilation” of measur<strong>in</strong>g po<strong>in</strong>ts,<br />

destroy<strong>in</strong>g <strong>the</strong> edges of <strong>the</strong> sheet),<br />

■ knowledge of <strong>the</strong> temperature field <strong>in</strong> <strong>the</strong> cross section<br />

of <strong>the</strong> batch, at any time of <strong>the</strong> process,<br />

■ potential to reduce energy consumption,<br />

■ potential to improve <strong>the</strong> quality of <strong>the</strong> f<strong>in</strong>ished product.<br />

The SeCoil programme is equipped with an open database,<br />

where one can def<strong>in</strong>e <strong>the</strong> <strong>the</strong>rmo-physical properties of<br />

<strong>the</strong> <strong>all</strong>oy as a function of temperature. These data can often<br />

be obta<strong>in</strong>ed only through experimentation. Therefore <strong>the</strong>re<br />

is a need for conduct<strong>in</strong>g research <strong>in</strong> this area.<br />

A similar control system based on an on-l<strong>in</strong>e simulator<br />

could be developed for o<strong>the</strong>r furnaces for heat treatment<br />

of metals, <strong>in</strong>clud<strong>in</strong>g furnaces designed for homogenization<br />

of alum<strong>in</strong>ium cast<strong>in</strong>g <strong>all</strong>oys.<br />

ALUMINIUM <strong>2014</strong> – SPECIAL<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

61


ALUMINIUM <strong>2014</strong> – SPECIAL<br />

REPORTS<br />

Fig. 4: W<strong>in</strong>dow “Edit Detail” <strong>in</strong> <strong>the</strong> program InTouch<br />

LITERATURE<br />

[1] Raport ASM – Heat Treat<strong>in</strong>g Society: The ASM Heat Treat<strong>in</strong>g<br />

Society 1996 Research & Development Plan. Cleveland. 1995<br />

[2] Talerzak, J. Kramer C.: High Convection Vortex® Flow –<br />

Improved Performance <strong>in</strong> Coil Anneal<strong>in</strong>g. http://www.secow-<br />

arwick.com/assets/Documents/Articles/Alum<strong>in</strong>ium/HIGH-<br />

CONVECTION-VORTEXTM-FLOW-IMPROVED-PERFOR-<br />

MANCE-IN-COIL-ANNEALING-AP.pdf<br />

[3] Piechowicz, Ł.; Raszewski, M.; Siemiatowski D.: Model<br />

matematyczny procesów cieplnych na podstawie <strong>in</strong>stalacji<br />

Vortex® Jet Heat<strong>in</strong>g do wyżarzania blachy alum<strong>in</strong>iowej w<br />

kręgach [Ma<strong>the</strong>matical model of <strong>the</strong>rmal processes on <strong>the</strong><br />

basis of Vortex® Jet Heat<strong>in</strong>g <strong>in</strong>st<strong>all</strong>ation for anneal<strong>in</strong>g alum<strong>in</strong>ium<br />

sheet <strong>in</strong> coils]. Piece przemysłowe & kotły, nr 9/10,<br />

2012 [Industrial furnaces & boilers, No. 9/10, 2012]<br />

AUTHORS<br />

Łukasz Piechowicz<br />

Seco/Warwick Europe Sp. z o.o.<br />

Świebodz<strong>in</strong>, Poland<br />

Tel.: +48 (0) 68 4145 142<br />

lukasz.piechowicz@secowarwick.com<br />

Damian Siemiatowski<br />

Seco/Warwick Europe Sp. z o.o.<br />

Świebodz<strong>in</strong>, Poland<br />

Tel.: +48 (0) 68 3819 433<br />

damian.siemiatowski@secowarwick.com<br />

Visit us at<br />

ALUMINIUM <strong>2014</strong><br />

7 – 9 October <strong>2014</strong><br />

Messe Düsseldorf, Germany<br />

Vulkan-Verlag<br />

H<strong>all</strong> 10 / Booth F54<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

62 heat process<strong>in</strong>g 2-<strong>2014</strong>


Heat Treatment<br />

REPORTS<br />

Improved efficiency by vacuum<br />

s<strong>in</strong>ter<strong>in</strong>g and low pressure<br />

carburiz<strong>in</strong>g of PM components<br />

by Hubert Mul<strong>in</strong>, Yves Giraud, Jean-Jacques S<strong>in</strong>ce, Mats Larsson<br />

Heat treatment process of Powder Metal materials like Astaloy, requires four steps (De-wax<strong>in</strong>g – HT S<strong>in</strong>ter<strong>in</strong>g –<br />

Carburiz<strong>in</strong>g – Surface Harden<strong>in</strong>g), usu<strong>all</strong>y achieved <strong>in</strong> dedicated atmospheric furnaces for s<strong>in</strong>ter<strong>in</strong>g and heat treat<br />

respectively, lead<strong>in</strong>g to <strong>in</strong>termediate handl<strong>in</strong>g operations and repeated heat<strong>in</strong>g and cool<strong>in</strong>g cycles. Chromium <strong>all</strong>oys <strong>in</strong><br />

particular are difficult to heat treat because chromium oxides easily form, which has a negative impact on mechanical<br />

properties. This paper presents <strong>the</strong> concept of <strong>the</strong> multipurpose batch vacuum furnace, able to realize <strong>all</strong> <strong>the</strong>se steps<br />

<strong>in</strong> one unique cycle. The multiple benefits brought by this technology are summarized regard<strong>in</strong>g <strong>the</strong> quality aspect<br />

and cost sav<strong>in</strong>g, like vacuum <strong>in</strong>tegrity along <strong>the</strong> entire cycle avoid<strong>in</strong>g oxidation, no limitation on s<strong>in</strong>ter<strong>in</strong>g temperature,<br />

repeatability of <strong>the</strong> process, gas quench flexibility, energy sav<strong>in</strong>g (no re-heat<strong>in</strong>g), cost sav<strong>in</strong>gs and environmental benefits.<br />

The ma<strong>in</strong> goal is to use this technology to manufacture high load transmission gears <strong>in</strong> PM materials.<br />

Today, <strong>the</strong> usual way to manufacture PM parts like<br />

gears is divided <strong>in</strong>to several steps. When <strong>the</strong> gear is<br />

shaped by die compaction, four heat treatment stages<br />

must be carried out <strong>in</strong> order to acquire <strong>all</strong> <strong>the</strong> required<br />

properties. These four stages are De-wax<strong>in</strong>g, S<strong>in</strong>ter<strong>in</strong>g,<br />

Carburiz<strong>in</strong>g treatment, and Quench<strong>in</strong>g. Most of <strong>the</strong> time,<br />

de-wax<strong>in</strong>g and s<strong>in</strong>ter<strong>in</strong>g are performed <strong>in</strong> cont<strong>in</strong>uous belt<br />

or walk<strong>in</strong>g beam furnaces. The first operation, de-wax<strong>in</strong>g,<br />

is <strong>in</strong>tended to remove <strong>the</strong> lubricants. This is a critical step<br />

because if removal of <strong>the</strong> lubricant is <strong>in</strong>complete, defects<br />

like contam<strong>in</strong>ation, blister<strong>in</strong>g etc. might arise. Belt or walk<strong>in</strong>g<br />

beam furnaces are able to s<strong>in</strong>ter directly after de-wax<strong>in</strong>g <strong>in</strong><br />

a s<strong>in</strong>gle run which presents an advantage compared to <strong>the</strong><br />

use of two dedicated furnaces. After s<strong>in</strong>ter<strong>in</strong>g, <strong>the</strong> Carburiz<strong>in</strong>g<br />

treatment for tailored case hardened profile gives <strong>the</strong><br />

f<strong>in</strong>al properties required and is gener<strong>all</strong>y followed by Harden<strong>in</strong>g,<br />

us<strong>in</strong>g Oil quench or High Pressure Gas Quench<strong>in</strong>g<br />

(HPGQ). Typic<strong>all</strong>y <strong>the</strong> conventional carburiz<strong>in</strong>g treatment is<br />

carried out <strong>in</strong> batch type furnaces. This requires <strong>in</strong>termediate<br />

handl<strong>in</strong>g between S<strong>in</strong>ter<strong>in</strong>g and Carburiz<strong>in</strong>g, post<br />

wash<strong>in</strong>g and dry<strong>in</strong>g operations after oil quench<strong>in</strong>g. This<br />

article will present <strong>the</strong> concept of a multipurpose furnace,<br />

which can perform <strong>the</strong> four successive steps (De-wax<strong>in</strong>g,<br />

S<strong>in</strong>ter<strong>in</strong>g, Low pressure Carburiz<strong>in</strong>g and Quench<strong>in</strong>g) <strong>in</strong> one<br />

cont<strong>in</strong>uous cycle. The discussion will focus on benefits of<br />

this furnace and associated cycles, and compare <strong>the</strong> traditional<br />

method of s<strong>in</strong>ter<strong>in</strong>g and carburiz<strong>in</strong>g to this concept.<br />

EXPERIMENTAL DETAILS<br />

Trials have been carried out with an <strong>in</strong>dustrial furnace<br />

(Fig. 1), owned by Höganäs AB and designed and manufactured<br />

by ECM Technologies. The furnace comprises<br />

two chambers, one heat<strong>in</strong>g cell and one gas quench<strong>in</strong>g<br />

cell, separated by an <strong>in</strong>termediate leak tight and <strong>in</strong>sulated<br />

door. The front chamber is used as an airlock to load and<br />

unload <strong>the</strong> charge and also as high pressure gas quench<strong>in</strong>g<br />

unit for harden<strong>in</strong>g <strong>the</strong> parts. The second chamber c<strong>all</strong>ed<br />

a “heat<strong>in</strong>g cell” is <strong>the</strong> furnace itself where parts are heated<br />

and carburized. It is always ma<strong>in</strong>ta<strong>in</strong>ed under low pressure<br />

(1 to 20 mbar) with back fill of protective atmosphere. Each<br />

chamber is equipped with <strong>in</strong>dependent vacuum circuits<br />

and can be operated <strong>in</strong>dependently. The vacuum circuits<br />

are designed to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> correct partial pressure <strong>in</strong>side<br />

<strong>the</strong> heat<strong>in</strong>g chamber and are equipped with a wax trap<br />

to collect <strong>the</strong> lubricant dur<strong>in</strong>g <strong>the</strong> de-wax<strong>in</strong>g cycle. One<br />

<strong>in</strong>ternal device transfers <strong>the</strong> load back and forth between<br />

<strong>the</strong> two chambers. A service door facilitates <strong>the</strong> access to<br />

<strong>the</strong> heat<strong>in</strong>g chamber for periodic temperature mapp<strong>in</strong>g<br />

<strong>in</strong>strumentation or ma<strong>in</strong>tenance. Fig. 2 displays <strong>the</strong> complete<br />

treatment cycle <strong>in</strong> <strong>the</strong> multipurpose furnace.<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

63


REPORTS<br />

Heat Treatment<br />

adjusted depend<strong>in</strong>g on <strong>the</strong> desired case depth. After f<strong>in</strong>al<br />

diffusion, <strong>the</strong> load is transferred back to <strong>the</strong> front chamber,<br />

and is quenched with Nitrogen gas (up to 20 bars). Met<strong>all</strong>urgical<br />

transformation occurs dur<strong>in</strong>g <strong>the</strong> rapid cool<strong>in</strong>g and<br />

enhances <strong>the</strong> mechanical properties of <strong>the</strong> parts.<br />

For example, a 300 kg load conta<strong>in</strong><strong>in</strong>g sm<strong>all</strong> spur gears<br />

has been carburized at 965 °C dur<strong>in</strong>g 74 m<strong>in</strong> and <strong>the</strong> effective<br />

case depth at 550 HV obta<strong>in</strong>ed is 0.6 mm (Fig. 3).<br />

DISCUSSION<br />

For each step, <strong>the</strong> new concept is compared to <strong>the</strong> traditionnal<br />

way to manufacture PM parts.<br />

Fig. 1: Multipurpose vacuum furnace <strong>in</strong>st<strong>all</strong>ed <strong>in</strong> Höganäs<br />

pilot plant<br />

The de-wax<strong>in</strong>g step is performed at around 650 °C under<br />

low pressure. At this temperature, <strong>the</strong> lubricant evaporates<br />

and is be<strong>in</strong>g pumped out by <strong>the</strong> vacuum circuit, it is entirely<br />

removed from <strong>the</strong> parts and collected <strong>in</strong> <strong>the</strong> wax trap. Then,<br />

<strong>the</strong> temperature is <strong>in</strong>creased to reach <strong>the</strong> desired s<strong>in</strong>ter<strong>in</strong>g<br />

temperature (up to 1,250 °C). At this stage, met<strong>all</strong>ic bonds<br />

between particles are formed. After s<strong>in</strong>ter<strong>in</strong>g is completed,<br />

temperature is decreased to reach <strong>the</strong> desired carburiz<strong>in</strong>g<br />

temperature (900 to 1,000 °C). Then follows <strong>the</strong> patented<br />

Infracarb process, where <strong>the</strong> Low Pressure Carburiz<strong>in</strong>g cycle<br />

with alternat<strong>in</strong>g <strong>in</strong>jections of acetylene and nitrogen is<br />

carried out. The number of <strong>in</strong>jections and cycle time is<br />

De-wax<strong>in</strong>g<br />

When <strong>the</strong> parts reach a temperature above 400 °C, lubricants<br />

used dur<strong>in</strong>g die compaction evaporate. Typical<br />

lubricants, such as Amide wax, are tot<strong>all</strong>y decomposed<br />

between 400 and 500 °C. In <strong>the</strong> pre-heat<strong>in</strong>g zone of belt<br />

type furnaces, lubricant vapors are mixed with protective<br />

atmosphere and burnt as exhaust. With conventional<br />

belt furnaces, <strong>the</strong> dewax<strong>in</strong>g time and <strong>the</strong> s<strong>in</strong>ter<strong>in</strong>g time<br />

are l<strong>in</strong>ked and def<strong>in</strong>ed by <strong>the</strong> belt’s length and <strong>the</strong> belt’s<br />

speed.<br />

In multipurpose furnace, partial pressure of nitrogen<br />

(1 to 20 mbar) preserves <strong>the</strong> parts from oxidation. The<br />

vaporized lubricant is condensed and collected <strong>in</strong> a trap<br />

<strong>in</strong> <strong>the</strong> vacuum circuit. The dewax<strong>in</strong>g time can be <strong>in</strong>creased<br />

or decreased easily accord<strong>in</strong>g to <strong>the</strong> load’s weight. The<br />

trap reduces <strong>the</strong> rejects <strong>in</strong> <strong>the</strong> atmosphere and keeps <strong>the</strong><br />

vacuum circuit clean. Vacuum is also well known to be<br />

an efficient way to dewax <strong>the</strong> part. Delubrication under<br />

vacuum is thus beneficial to <strong>the</strong> dewax<strong>in</strong>g rate.<br />

Fig. 2: Complete Treatment cycle for PM parts<br />

64 heat process<strong>in</strong>g 2-<strong>2014</strong>


Heat Treatment<br />

REPORTS<br />

a) b)<br />

Fig. 3 a/b: Part etched with Nital 2 % and Hardness profile<br />

S<strong>in</strong>ter<strong>in</strong>g<br />

Many parameters are crucial dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g, especi<strong>all</strong>y,<br />

<strong>the</strong> time and temperature of s<strong>in</strong>ter<strong>in</strong>g, <strong>the</strong> heat<strong>in</strong>g rate,<br />

and also <strong>the</strong> design of <strong>the</strong> fixtures, <strong>the</strong> arrangement of <strong>the</strong><br />

parts on <strong>the</strong> trays etc.<br />

S<strong>in</strong>ter<strong>in</strong>g temperature (around 1,200 °C) is <strong>about</strong> <strong>the</strong><br />

maximum limit to be used <strong>in</strong> traditional furnaces, and reach<strong>in</strong>g<br />

it impacts <strong>the</strong> lifetime of <strong>the</strong> heat<strong>in</strong>g elements (radiant<br />

tube). In vacuum furnaces, <strong>the</strong> lack of oxygen permits <strong>the</strong><br />

use of graphite rods as heat<strong>in</strong>g elements. Graphite rods are<br />

very stable mechanic<strong>all</strong>y (no bend<strong>in</strong>g with temperature) and<br />

<strong>the</strong> lifetime is not <strong>in</strong>fluenced by <strong>the</strong> work<strong>in</strong>g temperature.<br />

PM compacts, especi<strong>all</strong>y chromium <strong>all</strong>oys, are prone<br />

to oxidation and precise control of atmosphere quality is<br />

required. Due to <strong>the</strong> open pore system, PM compacts are<br />

more prone to oxidation than wrought steel. Residual oxidation<br />

can <strong>in</strong>troduce defects dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g. A cont<strong>in</strong>uous<br />

furnace uses a reduc<strong>in</strong>g gas like hydrogen to protect <strong>the</strong><br />

parts, which is not necessary under vacuum. All <strong>the</strong> o<strong>the</strong>r<br />

parameters (heat<strong>in</strong>g rate, s<strong>in</strong>ter<strong>in</strong>g time, etc.) can be easily<br />

adjusted to obta<strong>in</strong> <strong>the</strong> best s<strong>in</strong>ter<strong>in</strong>g process.<br />

Carburiz<strong>in</strong>g<br />

The absence of handl<strong>in</strong>g between operations <strong>in</strong> <strong>the</strong> multipurpose<br />

furnace guarantees that <strong>the</strong> parts will not be<br />

affected by contam<strong>in</strong>ation or damaged between s<strong>in</strong>ter<strong>in</strong>g<br />

and heat treatment.<br />

Frequently, batch furnaces are used for carburiz<strong>in</strong>g PM<br />

parts. Carbon enrichment is controlled by O 2 sensors or<br />

CO/CO 2 ratio.<br />

In <strong>the</strong> new furnace, <strong>the</strong> carburiz<strong>in</strong>g phase is completely<br />

controlled by “Infracarb”, <strong>the</strong> patented LPC process with<br />

acetylene gas. The case depth and <strong>the</strong> carbon profile are<br />

simulated and adapted for porous materials. Low Pressure<br />

Carburiz<strong>in</strong>g processes can be achieved at any temperature<br />

up to 1,050 °C. The carbon enrichment and <strong>the</strong> diffusion<br />

time can be controlled separately to achieve <strong>the</strong> required<br />

microstructure. The cycle is shortened and <strong>the</strong> diffusion is<br />

faster than <strong>in</strong> an atmospheric carburiz<strong>in</strong>g furnace. Moreover,<br />

<strong>the</strong>re is no <strong>in</strong>ternal oxidation of <strong>the</strong> parts. The amount<br />

of carburiz<strong>in</strong>g gas <strong>in</strong>jected <strong>in</strong> <strong>the</strong> chamber is optimized to<br />

ensure that every part is correctly carburized. Injection is<br />

done by short boosts <strong>in</strong> order to m<strong>in</strong>imize <strong>the</strong> formation<br />

of gas constituent, which leads to volatile organic components<br />

and atmospheric rejects are reduced.<br />

Quench<strong>in</strong>g<br />

The high pressure gas quench <strong>all</strong>ows a range of appropriate<br />

cool<strong>in</strong>g speeds (from 1 to 10 °C/sec) to be reached.<br />

Fig. 4 shows <strong>the</strong> pr<strong>in</strong>ciple of <strong>the</strong> gas quench chamber. Cold<br />

nitrogen gas is pushed down through <strong>the</strong> load, cool<strong>in</strong>g<br />

it, and transfers <strong>the</strong> heat to <strong>the</strong> water when pass<strong>in</strong>g <strong>the</strong><br />

heat exchanger. Gas quench<strong>in</strong>g permits high flexibility and<br />

more repeatable results than oil quench<strong>in</strong>g, because <strong>the</strong>re<br />

is no boil<strong>in</strong>g or vapor formation around <strong>the</strong> parts. With a<br />

gas quench, <strong>the</strong> pressure and also <strong>the</strong> turb<strong>in</strong>e’s speed can<br />

be programmed for each cycle <strong>in</strong> order to adjust <strong>the</strong> cool<strong>in</strong>g<br />

rate for every type of load so m<strong>in</strong>imiz<strong>in</strong>g distortion of<br />

<strong>the</strong> parts. The parts exit <strong>the</strong> furnace clean and a wash<strong>in</strong>g<br />

operation is not necessary.<br />

PROCESS COST ESTIMATION<br />

For typical production of 300 kg net/hour, a modular<br />

vacuum <strong>in</strong>st<strong>all</strong>ation with multi heat<strong>in</strong>g cells is required<br />

(Fig. 5). Based on an eng<strong>in</strong>eer<strong>in</strong>g cost estimate, <strong>the</strong> cost of<br />

s<strong>in</strong>ter<strong>in</strong>g and heat treatment of parts is <strong>about</strong> 0.5 €/kg. The<br />

precise cost depends on <strong>the</strong> geometry and hardenability<br />

of different k<strong>in</strong>d of parts.<br />

The ma<strong>in</strong> sav<strong>in</strong>g factor comes from <strong>the</strong> fact that carburiz<strong>in</strong>g<br />

and gas quench steps are carried out <strong>in</strong> situ <strong>in</strong> <strong>the</strong><br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

65


REPORTS<br />

Heat Treatment<br />

Fig. 4: Pr<strong>in</strong>ciple of gas quench chamber<br />

Fig. 5: Modular s<strong>in</strong>ter<strong>in</strong>g multi cells l<strong>in</strong>e type ICBP<br />

de-wax<strong>in</strong>g /s<strong>in</strong>ter<strong>in</strong>g equipment. The ma<strong>in</strong>tenance cost per<br />

year for an ICBP type furnace is around 4 % of <strong>the</strong> <strong>in</strong>vestment<br />

cost or lower. The high modularity and restricted<br />

footpr<strong>in</strong>t of <strong>the</strong> furnace is also an advantage.<br />

The global energy balance cost is positive aga<strong>in</strong>st <strong>the</strong><br />

conventional furnace because <strong>the</strong>re is no multiple cool down<br />

and reheat<strong>in</strong>g of <strong>the</strong> parts for each step of <strong>the</strong> process. The<br />

modularity of <strong>the</strong> heat treatment <strong>in</strong>st<strong>all</strong>ation <strong>all</strong>ows for fur<strong>the</strong>r<br />

production extension by <strong>the</strong> simple addition of heat<strong>in</strong>g cells<br />

on <strong>the</strong> ma<strong>in</strong> frame without <strong>in</strong>vestment on a second l<strong>in</strong>e.<br />

CONCLUSION<br />

Studies have been carried out <strong>in</strong> partnership with Höganäs<br />

AB on different <strong>all</strong>oys <strong>in</strong>clud<strong>in</strong>g Chromium <strong>all</strong>oys. Positive<br />

results have been achieved on:<br />

■ Control of case profiles.<br />

■ Control of core hardness with base carbon content and<br />

cool<strong>in</strong>g speed variation.<br />

Low Pressure Carburiz<strong>in</strong>g has been proven very suitable for<br />

control of process parameters without oxidation.<br />

The multipurpose furnace potenti<strong>all</strong>y offers an improvement<br />

at every stage of <strong>the</strong> PM production process: It will<br />

be <strong>the</strong> tool for fur<strong>the</strong>r optimization to improve mechanical<br />

properties like fatigue strength; distortion reduction, and<br />

validation of <strong>the</strong> whole process for <strong>the</strong> production of high<br />

performance PM gears.<br />

LITERATURE<br />

[1] U. S. Patent No. 6,065,964, dated 23 May 2000<br />

AUTHORS<br />

Hubert Mul<strong>in</strong><br />

ECM Technologies<br />

Grenoble, France<br />

Tel.: +33 (0) 476 49 65 60<br />

h.mul<strong>in</strong>@ecmtech.fr<br />

Jean-Jacques S<strong>in</strong>ce<br />

ECM Technologies<br />

Grenoble, France<br />

Tel.: +33 (0) 476 49 65 60<br />

jj.s<strong>in</strong>ce@ecmtech.fr<br />

Yves Giraud<br />

ECM Technologies<br />

Grenoble, France<br />

Tel.: +33 (0) 476 49 65 60<br />

y.giraud@ecmtech.fr<br />

Mats Larsson<br />

Höganäs AB<br />

Höganäs, Sweden<br />

Tel.: + 46 (0) 42 338000<br />

mats.larsson@hoganas.com<br />

66 heat process<strong>in</strong>g 2-<strong>2014</strong>


Induction Technology<br />

REPORTS<br />

Advantages of <strong>in</strong>duction<br />

reheat<strong>in</strong>g <strong>in</strong> <strong>in</strong>tegrated m<strong>in</strong>imills<br />

by Klaus von Eynatten, Markus Langejürgen, Dirk M. Schibisch<br />

The basic idea of a m<strong>in</strong>imill is <strong>the</strong> production and process<strong>in</strong>g of steel for long products <strong>in</strong> an <strong>in</strong>tegrated factory. The hot<br />

billets from <strong>the</strong> caster are fed through an <strong>in</strong>duction heat<strong>in</strong>g system directly <strong>in</strong>to <strong>the</strong> roll<strong>in</strong>g mill. The <strong>in</strong>duction system<br />

detects <strong>the</strong> billet’s <strong>in</strong>com<strong>in</strong>g temperature and equalizes <strong>the</strong> surface and core temperatures on demand, <strong>in</strong> order to<br />

provide an optimum roll<strong>in</strong>g temperature. Important to notice with regard to <strong>the</strong> susta<strong>in</strong>ability is <strong>the</strong> fact that no fossil<br />

fuel combustion furnace is needed. This setup <strong>all</strong>ows for significant energy and cost sav<strong>in</strong>gs and causes less emission.<br />

The article describes <strong>the</strong> energetic and economic advantages of <strong>in</strong>duction systems <strong>in</strong>tegrated <strong>in</strong> M<strong>in</strong>imills and, as an<br />

example, refers to a proven solution at Tung Ho Steel <strong>in</strong> Taiwan.<br />

In conventional m<strong>in</strong>imills <strong>the</strong> cast billets are fed ei<strong>the</strong>r hot<br />

or cold from <strong>the</strong> cont<strong>in</strong>uous caster <strong>in</strong>to a combustion furnace<br />

<strong>the</strong>n brought to roll<strong>in</strong>g temperature before be<strong>in</strong>g<br />

conveyed to <strong>the</strong> roll<strong>in</strong>g mill. For many years this process<br />

was <strong>the</strong> global standard, however it did have several disadvantages.<br />

First, <strong>the</strong> <strong>the</strong>rmal energy conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> billet<br />

is elim<strong>in</strong>ated when <strong>the</strong> billet cools down after <strong>the</strong> cast<strong>in</strong>g<br />

process and <strong>the</strong>n needs to be restored <strong>in</strong> <strong>the</strong> combustion<br />

furnace, which costs both time and money. Secondly, scale<br />

formed on <strong>the</strong> billet surface dur<strong>in</strong>g conventional heat<strong>in</strong>g<br />

processes results <strong>in</strong> a loss of output. Fur<strong>the</strong>rmore, <strong>the</strong> condition<br />

of <strong>the</strong> scale leads to low roll service lives <strong>in</strong> <strong>the</strong> mill,<br />

while considerable quantities of offgas are emitted <strong>in</strong>to <strong>the</strong><br />

environment from <strong>the</strong> combustion furnace.<br />

Driven by <strong>the</strong> cut-throat competition among steel producers<br />

as well as new <strong>in</strong>dustry regulations and environmental<br />

laws with emission limits, three companies <strong>in</strong> <strong>the</strong> SMS<br />

group - SMS Concast, SMS Elo<strong>the</strong>rm and SMS Meer, have<br />

jo<strong>in</strong>tly developed <strong>the</strong> <strong>in</strong>novative CMT technology, which<br />

compensates for <strong>the</strong> disadvantages described and offers<br />

steel producers a means of ga<strong>in</strong><strong>in</strong>g a competitive edge.<br />

A key feature of CMT technology (Cont<strong>in</strong>uous Mill<br />

Technology) is <strong>the</strong> replacement of <strong>the</strong> conventional gas- or<br />

oil-fired furnace with an <strong>in</strong>duction plant positioned directly<br />

<strong>in</strong>l<strong>in</strong>e between <strong>the</strong> cont<strong>in</strong>uous caster and roll<strong>in</strong>g l<strong>in</strong>e. Here<br />

<strong>the</strong> heat stored <strong>in</strong> <strong>the</strong> billet from <strong>the</strong> cast<strong>in</strong>g process is used<br />

for <strong>the</strong> direct roll<strong>in</strong>g process, and <strong>the</strong> temperature is merely<br />

equalised over <strong>the</strong> length and cross-section and adapted<br />

to <strong>the</strong> optimum roll<strong>in</strong>g temperature. Over<strong>all</strong>, <strong>the</strong>refore, far<br />

less energy is consumed here, compared to <strong>the</strong> traditional<br />

method, than would be <strong>the</strong> case if <strong>the</strong> entire billet had to<br />

be re-heated from room temperature or any o<strong>the</strong>r <strong>in</strong>termediate<br />

temperature to <strong>the</strong> optimum roll<strong>in</strong>g temperature<br />

at <strong>the</strong> <strong>in</strong>let section of <strong>the</strong> first roll stand (Fig. 1).<br />

Depend<strong>in</strong>g on <strong>the</strong> planned annual production, CMT<br />

m<strong>in</strong>imills are used at vary<strong>in</strong>g capacities <strong>in</strong> terms of cast<strong>in</strong>g,<br />

heat<strong>in</strong>g and roll<strong>in</strong>g output (Table 1).<br />

HIGH COST EFFICIENCY<br />

The major benefits of this <strong>in</strong>novative m<strong>in</strong>imill configuration<br />

with <strong>in</strong>tegrated <strong>in</strong>duction technology above <strong>all</strong> <strong>in</strong>clude:<br />

■■<br />

Lower <strong>in</strong>vestment costs<br />

- Reduced over<strong>all</strong> plant size means sm<strong>all</strong>er production<br />

bays are possible<br />

- Induction plant does not require foundations or pits<br />

- Less <strong>in</strong>frastructure for supply and discharge of fossil<br />

combustion fuels (e.g. gas, heavy oil)<br />

- No billet storage<br />

- Far less handl<strong>in</strong>g technology such as roller conveyors,<br />

cranes, etc.<br />

■■<br />

Lower operat<strong>in</strong>g costs<br />

- In most cases lower primary energy costs for operat<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>duction plant<br />

- Higher output with <strong>the</strong> low-scale <strong>in</strong>duction heat<strong>in</strong>g<br />

method<br />

- Higher output with fewer crop cuts or short bars<br />

- Lower handl<strong>in</strong>g and logistics costs as <strong>the</strong> billets do not<br />

require <strong>in</strong>termediate storage and additional transportation<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

67


REPORTS<br />

Induction Technology<br />

Fig. 1: Arrangement of a CMT TM m<strong>in</strong>imill compared to <strong>the</strong> traditional<br />

layout (source: SMS Concast)<br />

The lower <strong>in</strong>vestment costs are primarily achieved by<br />

dispens<strong>in</strong>g with a conventional combustion furnace and<br />

reduc<strong>in</strong>g <strong>the</strong> logistics associated with billet production,<br />

e.g. storage facilities or crane tracks, as well as <strong>the</strong> reduced<br />

requirements with regard to space and accord<strong>in</strong>gly to warehouse<br />

stock.<br />

The reduced operat<strong>in</strong>g costs can ma<strong>in</strong>ly be attributed<br />

to <strong>the</strong> energy sav<strong>in</strong>gs from lower primary energy costs<br />

and higher output; this is covered <strong>in</strong> more detail later on.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> capital stock is reduced by elim<strong>in</strong>at<strong>in</strong>g<br />

<strong>the</strong> billet store. Additional sav<strong>in</strong>gs can be made as a result<br />

of a reduction <strong>in</strong> <strong>the</strong> ma<strong>in</strong>tenance work which would be<br />

required on a conventional reheat<strong>in</strong>g furnace, and by reduc<strong>in</strong>g<br />

manpower requirements for operat<strong>in</strong>g personnel.<br />

USING RESIDUAL <strong>HEAT</strong> TO SAVE ENERGY<br />

Traditional m<strong>in</strong>imill operation is usu<strong>all</strong>y broken down as<br />

follows: 30 % of <strong>the</strong> billets are fed cold <strong>in</strong>to a conventional<br />

combustion furnace from <strong>the</strong> billet store before <strong>the</strong> roll<strong>in</strong>g<br />

Table 1: Overview of various m<strong>in</strong>imill layouts depend<strong>in</strong>g on annual production<br />

CMT TM core data CMT TM 1 CMT TM 2 CMT TM 3+<br />

Annual capacity [1,000 t/y] 100 - 350 350 - 700 500 - 1,000+<br />

L<strong>in</strong>e productivity [t/h] 15 - 50 50 - 100 85 - 140+<br />

Steel grades<br />

Structural steel and high-grade steel<br />

(carbon steel)<br />

Cast<strong>in</strong>g radius [m] 7.0 - 10.25<br />

Cast cross-section [mm] 100 - 150<br />

Billet length [m] “endless” 12 - 16<br />

Temperature homogenisation<br />

Induction heat<strong>in</strong>g with<br />

various output capacities<br />

1 - 2 units 2 - 4 units variable<br />

Number of roll stands<br />

variable<br />

Number of cast<strong>in</strong>g strands 1 2 variable<br />

process, 70 % are conveyed directly out of <strong>the</strong> cont<strong>in</strong>uous<br />

caster and through this furnace with residual heat. The specific<br />

energy consumption depends on <strong>the</strong> required roll<strong>in</strong>g<br />

temperature and type of furnace (pusher, roller hearth,<br />

walk<strong>in</strong>g beam furnace), which <strong>in</strong> turn depends on <strong>the</strong> productivity<br />

of <strong>the</strong> roll<strong>in</strong>g plant. With this type of production<br />

programme (30/70) and an entry temperature of 1,000 °C<br />

at roll stand 1, around 155–160 kWh/t of specific energy<br />

consumption can be taken as a general guidel<strong>in</strong>e value.<br />

With CMT m<strong>in</strong>imills <strong>the</strong> picture is different: here<br />

100 % of <strong>the</strong> cast billets are fed directly – with no rerout<strong>in</strong>g<br />

<strong>in</strong>volved – through <strong>the</strong> <strong>in</strong>duction furnace to <strong>the</strong> roll<strong>in</strong>g<br />

l<strong>in</strong>e. The design of <strong>the</strong> <strong>in</strong>duction plant substanti<strong>all</strong>y<br />

depends on <strong>the</strong> workshop layout, i.e. <strong>the</strong> distance from<br />

<strong>the</strong> cont<strong>in</strong>uous caster to <strong>the</strong> first roll stand, <strong>the</strong> required<br />

roll<strong>in</strong>g temperature and <strong>the</strong> relevant rates of production<br />

of both <strong>the</strong> cont<strong>in</strong>uous caster and roll<strong>in</strong>g l<strong>in</strong>e.<br />

In CMT m<strong>in</strong>imills that are optim<strong>all</strong>y laid out and feature<br />

cast<strong>in</strong>g strand <strong>in</strong>sulation to prevent heat losses and<br />

a compact cont<strong>in</strong>uous caster/roll<strong>in</strong>g l<strong>in</strong>e set-up, <strong>the</strong> specific<br />

energy consumption for heat<strong>in</strong>g a billet to 1,000 °C is<br />

between 20 and 25 kWh/t. This equates to a reduction by<br />

a factor of 7 (Table 2).<br />

Any decision <strong>in</strong> favour of <strong>the</strong> <strong>in</strong>novative CMT m<strong>in</strong>imill<br />

technology with <strong>in</strong>tegrated <strong>in</strong>duction heat<strong>in</strong>g system is<br />

essenti<strong>all</strong>y based on <strong>the</strong> primary energy costs for fossil fuels<br />

(gas, heavy oil) or electric power, as well as <strong>the</strong>ir regional<br />

availability <strong>in</strong> each case.<br />

The benefits of modern CMT m<strong>in</strong>imills with <strong>in</strong>tegrated<br />

<strong>in</strong>duction reheat<strong>in</strong>g prevail significantly <strong>in</strong> cases where<br />

fossil fuel costs are far greater than electricity costs. The<br />

follow<strong>in</strong>g applies as a rule of thumb: The benefits of <strong>the</strong><br />

CMT m<strong>in</strong>imill concept with <strong>in</strong>duction furnace can be<br />

fully brought to bear if <strong>the</strong> electricity/natural gas cost ratio<br />

is lower than 0.75. And this<br />

only takes <strong>the</strong> energy costs<br />

<strong>in</strong>to consideration. Look<strong>in</strong>g<br />

at o<strong>the</strong>r advantages such<br />

as output, low <strong>in</strong>vestment<br />

and space requirements or<br />

fewer operat<strong>in</strong>g personnel,<br />

to name just a few, this ratio<br />

<strong>in</strong>creases even fur<strong>the</strong>r, with<br />

<strong>the</strong> result that <strong>the</strong> number<br />

of plant operators able to<br />

benefit from <strong>in</strong>ductionassisted<br />

CMT technology<br />

over <strong>the</strong> long term also cont<strong>in</strong>ues<br />

to rise.<br />

Fig. 2 shows <strong>the</strong> <strong>in</strong>dustry<br />

prices for natural gas<br />

and electricity <strong>in</strong> Germany<br />

(<strong>in</strong> 2013) and <strong>the</strong> sav<strong>in</strong>gs<br />

68 heat process<strong>in</strong>g 2-<strong>2014</strong>


Induction Technology<br />

REPORTS<br />

that plant owners can achieve if <strong>the</strong>y use an <strong>in</strong>ductionassisted<br />

CMT m<strong>in</strong>imill and direct roll<strong>in</strong>g <strong>in</strong>stead of a conventional<br />

m<strong>in</strong>imill with combustion technology. It is clear<br />

that even with exist<strong>in</strong>g m<strong>in</strong>imills <strong>the</strong> break-even po<strong>in</strong>t<br />

for <strong>the</strong> <strong>in</strong>tegration of <strong>in</strong>duction heat<strong>in</strong>g is very quickly<br />

reached through <strong>the</strong> primary energy sav<strong>in</strong>gs alone. If o<strong>the</strong>r<br />

factors, such as those as described above, are <strong>in</strong>cluded<br />

<strong>in</strong> <strong>the</strong> cost-efficiency analysis, <strong>the</strong>n a decision <strong>in</strong> favour<br />

of an <strong>in</strong>duction-assisted CMT m<strong>in</strong>imill becomes <strong>all</strong> <strong>the</strong><br />

more obvious.<br />

HIGHER OUTPUT WITH NEGLIGIBLE<br />

SCALE<br />

With <strong>the</strong> conventional reheat<strong>in</strong>g process <strong>the</strong> cast billet is<br />

fed ei<strong>the</strong>r cold or with some residual heat <strong>in</strong>to <strong>the</strong> fossil<br />

fuel-fired furnace. The formation of scale, which depends<br />

on <strong>the</strong> time factor as well as a few material-related variables,<br />

<strong>in</strong>creases above a temperature of around 900 °C.<br />

In o<strong>the</strong>r words: <strong>the</strong> longer a billet is held <strong>in</strong> <strong>the</strong> reheat<strong>in</strong>g<br />

furnace above 900 °C, <strong>in</strong> order for it to be "heated through",<br />

and <strong>the</strong> higher <strong>the</strong> furnace outgo<strong>in</strong>g temperature is, <strong>the</strong><br />

more primary scale is formed. Today´s modern combustion<br />

furnaces with optimal temperature adjustment and combustion<br />

air regulation <strong>in</strong> <strong>the</strong> hold<strong>in</strong>g zone are capable of<br />

achiev<strong>in</strong>g values of around 0.6 % scale loss.<br />

In CMT m<strong>in</strong>imills <strong>the</strong> billets are brought directly to<br />

roll<strong>in</strong>g temperature <strong>in</strong> <strong>in</strong>duction heat<strong>in</strong>g systems at very<br />

high heat<strong>in</strong>g rates. At less than 60 seconds <strong>the</strong> hold<strong>in</strong>g<br />

time with<strong>in</strong> <strong>the</strong> critical temperature range above 900 °C<br />

is very short, with <strong>the</strong> result that virtu<strong>all</strong>y no scale is able<br />

to form. Compared to an atmosphere furnace, <strong>the</strong> level<br />

of scale formation with <strong>in</strong>duction heat<strong>in</strong>g is, at around<br />

0.02 %, lower by a factor of 30 and <strong>the</strong>refore negligible.<br />

This results <strong>in</strong> a higher metal yield of approx. 0.6 % which,<br />

given <strong>the</strong> high production volumes, very quickly adds<br />

up <strong>in</strong> terms of cost efficiency (Fig. 3). By comparison<br />

with conventional m<strong>in</strong>imills this <strong>in</strong>creased output can<br />

be viewed as "cost-free“ production. In m<strong>in</strong>imills with an<br />

annual production volume of 800,000 t, <strong>the</strong> economic<br />

effect from <strong>the</strong> higher material output alone amounts to<br />

almost € 2.2 million each year.<br />

Table 2: Specific energy consumption for different production layouts<br />

Production capacity<br />

CMT TM m<strong>in</strong>imill<br />

with <strong>in</strong>duction<br />

100 % direct roll<strong>in</strong>g<br />

Moreover, fur<strong>the</strong>r benefits can be ga<strong>in</strong>ed from <strong>the</strong> lowscale<br />

billet surfaces <strong>in</strong> <strong>the</strong> subsequent roll<strong>in</strong>g process. The<br />

brittle-hard scale has an abrasive effect and results <strong>in</strong> <strong>the</strong><br />

rolls becom<strong>in</strong>g worn. Low-scale surfaces follow<strong>in</strong>g <strong>in</strong>duction<br />

heat<strong>in</strong>g mean <strong>the</strong> service life of <strong>the</strong> rolls <strong>in</strong>creases<br />

significantly.<br />

LONG-TERM OVERALL SAVINGS<br />

The over<strong>all</strong> cost reductions are thus <strong>the</strong> result of various<br />

<strong>in</strong>dividual cost reductions such as energy costs, <strong>in</strong>creased<br />

output thanks to <strong>the</strong> higher metal yield as well as o<strong>the</strong>r<br />

factors. In <strong>the</strong> example of Germany given above, sav<strong>in</strong>gs<br />

of around € 5 million per year or € 6.25 per ton of structural<br />

steel produced for a steel mill with 800,000 t/a output<br />

can be made from <strong>the</strong> po<strong>in</strong>t of view of energy costs and<br />

material yield alone. What‘s clear, <strong>the</strong>refore, is that an <strong>in</strong>vestment<br />

<strong>in</strong> state-of-<strong>the</strong>-art CMT m<strong>in</strong>imill technology very<br />

quickly pays for itself.<br />

The follow<strong>in</strong>g table shows <strong>the</strong> long-term sav<strong>in</strong>gs offered<br />

by a CMT m<strong>in</strong>imill with <strong>in</strong>tegrated <strong>in</strong>duction technology<br />

compared to a conventional l<strong>in</strong>e with gas furnace<br />

based on an <strong>in</strong>ternational comparison (Table 3). It should<br />

be noted here that <strong>the</strong> price and availability of gas are<br />

heavily dependent on <strong>the</strong> regional situation with regard to<br />

production. In cases where gas is not available, expensive<br />

heavy oil supplied by road tanker is usu<strong>all</strong>y used as fuel.<br />

This means additional costs which fur<strong>the</strong>r promote <strong>the</strong> use<br />

of <strong>in</strong>duction technology.<br />

Conventional m<strong>in</strong>imill<br />

with combustion furnance<br />

(30 % cold + 70 % warm)<br />

Specific energy consumption<br />

20 – 25 kWh/t ~155 – 160 kWh/t<br />

300,000 t/a 6,750 MW/ a 47,250 MW/a<br />

500,000 t/a 11,250 MW/a 78,750 MW/a<br />

800,000 t/a 18,000 MW/a 126,000 MW/a<br />

Fig. 2: Energy sav<strong>in</strong>gs based on various production figures<br />

<strong>in</strong> Germany (source: SMS Concast)<br />

Fig. 3: Annual production <strong>in</strong>crease us<strong>in</strong>g low-scale <strong>in</strong>duction<br />

technology <strong>in</strong> a CMT m<strong>in</strong>imill (source: SMS Concast)<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

69


REPORTS<br />

Induction Technology<br />

Table 3: Long-term economic benefit of a CMT m<strong>in</strong>imill with <strong>in</strong>tegrated <strong>in</strong>duction heat<strong>in</strong>g system compared to conventional<br />

facilities with a gas furnace. (source: Platts, SBB Steel Prices, Dec. 2013 [1 € = 1.3 $])<br />

Country<br />

Energy <strong>in</strong>put<br />

(cost/ unit)<br />

∆<br />

Energy<br />

∆ Output<br />

(Primary scale only)<br />

Over<strong>all</strong> cost<br />

sav<strong>in</strong>g<br />

Electricity<br />

Natural<br />

gas<br />

Sales price of<br />

structural steel<br />

[€/kWh] [€/Nm 3 ] [€/t] [€/t] [€/t] [€/t]<br />

Brazil 0.11 0.40 845 -4.4 -5.1 -9.5<br />

Ch<strong>in</strong>a 0.04 0.22 400 -2.9 -2.4 -5.3<br />

Germany 0.06 0.28 515 -3.5 -3.1 -6.6<br />

India 0.08 0.37 510 -4.4 -3.1 -7.5<br />

Russia 0.04 0.05 400 +0.2 -2.3 -2.1<br />

Middle East 0.03 0.05 510 -0.2 -3.1 -3.3<br />

East Asia 0.07 0.30 430 -4.8 -2.6 -7.4<br />

USA 0.05 0.10 545 -0.6 -3.3 -3.9<br />

If one br<strong>in</strong>gs toge<strong>the</strong>r <strong>the</strong> various <strong>in</strong>dividual benefits <strong>in</strong><br />

terms of energy costs and material output, <strong>the</strong>n <strong>the</strong> picture<br />

ga<strong>in</strong>ed is quite clear: In <strong>all</strong> major <strong>in</strong>dustrialised countries<br />

with significant steel production and process<strong>in</strong>g <strong>in</strong>dustries<br />

<strong>the</strong> superiority of <strong>the</strong> CMT m<strong>in</strong>imill concept is pla<strong>in</strong> to<br />

see. Even <strong>in</strong> countries with a high availability of natural gas<br />

resources and correspond<strong>in</strong>gly low gas prices, a m<strong>in</strong>imill<br />

equipped with <strong>in</strong>duction technology pays off through<br />

<strong>in</strong>creased material output (Fig. 4).<br />

Up to now attention was paid only to <strong>the</strong> monetary<br />

aspects associated with <strong>the</strong> use of <strong>in</strong>duction technology<br />

<strong>in</strong> m<strong>in</strong>imills. In addition to this, however, aspects relat<strong>in</strong>g<br />

to ecological susta<strong>in</strong>ability, which may well be of greater<br />

importance <strong>in</strong> future, should be taken <strong>in</strong>to consideration.<br />

Fig. 4: Preferred concepts for reheat<strong>in</strong>g systems <strong>in</strong> m<strong>in</strong>imills, depend<strong>in</strong>g on energy costs and<br />

primary output by <strong>in</strong>ternational comparison (source: SMS Concast)<br />

ECO-FRIENDLY PRODUCTION<br />

Traditional m<strong>in</strong>imills featur<strong>in</strong>g conventional furnace technology<br />

for reheat<strong>in</strong>g billets use ei<strong>the</strong>r natural gas or heavy<br />

oil as fuel. When look<strong>in</strong>g at <strong>the</strong> general environmental<br />

impact, it is not just <strong>the</strong> combustion process alone that<br />

needs to be considered but <strong>the</strong> upstream manufactur<strong>in</strong>g,<br />

transportation and storage processes, too.<br />

The burn<strong>in</strong>g of fossil fuels produces greenhouse gases<br />

such as CO 2 , NO X and SO X . These gaseous substances are<br />

emitted <strong>in</strong>to <strong>the</strong> atmosphere dur<strong>in</strong>g <strong>the</strong> burn<strong>in</strong>g process,<br />

thus contribut<strong>in</strong>g to <strong>the</strong> greenhouse effect by absorb<strong>in</strong>g<br />

some of <strong>the</strong> <strong>in</strong>frared radiation given off from <strong>the</strong> ground<br />

which would o<strong>the</strong>rwise escape <strong>in</strong>to space. This <strong>in</strong>terference<br />

with <strong>the</strong> natural equilibrium which makes life on Earth possible<br />

<strong>in</strong> <strong>the</strong> first place ultimately<br />

leads – through anthropogenic<br />

causes such as, for example, <strong>the</strong><br />

combustion of gas and heavy oil<br />

for reheat<strong>in</strong>g billets – to global<br />

warm<strong>in</strong>g and <strong>all</strong> its known consequences.<br />

Fur<strong>the</strong>rmore, carbon dioxide<br />

as well as sulphur and nitrogen<br />

oxides are considered some of<br />

<strong>the</strong> ma<strong>in</strong> causes of what we c<strong>all</strong><br />

acid ra<strong>in</strong>, and <strong>the</strong> effects <strong>the</strong>reof<br />

on our ecosystem are well<br />

known.<br />

The use of heat<strong>in</strong>g technology<br />

that m<strong>in</strong>imises <strong>the</strong> negative<br />

impact on <strong>the</strong> environment<br />

can help improve <strong>the</strong> situation.<br />

By us<strong>in</strong>g <strong>in</strong>duction technology<br />

70 heat process<strong>in</strong>g 2-<strong>2014</strong>


Induction Technology<br />

REPORTS<br />

<strong>in</strong>stead of conventional combustion furnaces, direct<br />

emissions of CO 2 , NO X and SO X when heat<strong>in</strong>g <strong>the</strong> billets<br />

before <strong>the</strong> roll<strong>in</strong>g process are completely elim<strong>in</strong>ated <strong>in</strong><br />

a CMT m<strong>in</strong>imill. Fig. 5 shows that with a conventional<br />

m<strong>in</strong>imill featur<strong>in</strong>g combustion technology and an annual<br />

production of 800,000 t, for example, 53,000 t of CO 2 and<br />

73 t of NO X would be produced; us<strong>in</strong>g an <strong>in</strong>duction system<br />

elim<strong>in</strong>ates this (Fig. 5).<br />

In summary <strong>the</strong> CMT m<strong>in</strong>imill can be classed as a typical<br />

"ecoplant“ thanks to <strong>the</strong> <strong>in</strong>tegrated <strong>in</strong>duction technology.<br />

"Ecoplants“ is <strong>the</strong> term given to susta<strong>in</strong>able solutions from<br />

SMS Meer which also offer plant owners economic benefits<br />

at <strong>the</strong> same time. This takes account of <strong>the</strong> fact that susta<strong>in</strong>ability<br />

has become a significant bus<strong>in</strong>ess growth factor<br />

– for both economic and ecological reasons. Economic<br />

because sav<strong>in</strong>g energy and raw material reduces costs,<br />

and ecological because protect<strong>in</strong>g resources is becom<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>gly important. Ecoplants solutions do both.<br />

RE<strong>HEAT</strong>ING USING THE INDUCTION<br />

PROCESS<br />

Before we look at <strong>the</strong> design and implementation of an<br />

<strong>in</strong>duction system which is <strong>in</strong>tegrated <strong>in</strong> a CMT m<strong>in</strong>imill,<br />

a brief explanation should be given of <strong>the</strong> technology<br />

<strong>in</strong>volved.<br />

As already expla<strong>in</strong>ed <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g sections, a key<br />

feature of <strong>the</strong> <strong>in</strong>duction technology used <strong>in</strong> a CMT m<strong>in</strong>imill<br />

is <strong>the</strong> very rapid and <strong>the</strong>refore low-scale heat<strong>in</strong>g it<br />

offers, as well as <strong>the</strong> fact that fossil fuels and <strong>the</strong> result<strong>in</strong>g<br />

emissions are completely elim<strong>in</strong>ated.<br />

Induction heat<strong>in</strong>g is a non-contact type of heat<strong>in</strong>g<br />

whereby <strong>the</strong> heat is generated directly <strong>in</strong> <strong>the</strong> workpiece.<br />

The billet to be heated is encompassed by a coil, through<br />

which current flows, <strong>the</strong>reby creat<strong>in</strong>g a magnetic flux <strong>in</strong><br />

<strong>the</strong> workpiece.<br />

This magnetic flux, <strong>in</strong> turn, produces an eddy current <strong>in</strong><br />

<strong>the</strong> billet surface, which generates heat due to <strong>the</strong> specific<br />

resistance of <strong>the</strong> material. This enables <strong>the</strong> temperature<br />

<strong>in</strong> <strong>the</strong> billet to rise us<strong>in</strong>g a current flow <strong>in</strong> a non-contact<br />

manner. Depend<strong>in</strong>g on <strong>the</strong> capacity and frequency of <strong>the</strong><br />

current, it is possible to <strong>in</strong>fluence <strong>the</strong> temperature <strong>in</strong> <strong>the</strong><br />

workpiece very precisely (Fig. 6).<br />

Due to <strong>the</strong> geometry of <strong>the</strong> billet longitud<strong>in</strong>al-field heat<strong>in</strong>g<br />

is used <strong>in</strong> CMT m<strong>in</strong>imills. Here <strong>the</strong> workpiece is fully<br />

encompassed by <strong>the</strong> coil. The result<strong>in</strong>g eddy currents run<br />

along <strong>the</strong> billet’s surface at <strong>the</strong> current penetration depth.<br />

The simple design of <strong>the</strong> longitud<strong>in</strong>al-field <strong>in</strong>ductors makes<br />

<strong>the</strong>m very robust and capable of be<strong>in</strong>g <strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong><br />

roll<strong>in</strong>g mill process.<br />

The high power density values that can be achieved can<br />

be used to full advantage <strong>in</strong> m<strong>in</strong>imills, <strong>the</strong>reby enabl<strong>in</strong>g<br />

compact heat<strong>in</strong>g systems with high <strong>the</strong>rmal efficiency<br />

levels to be <strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong> process<strong>in</strong>g l<strong>in</strong>es. As <strong>the</strong><br />

Fig. 5: CMT technology with <strong>in</strong>tegrated <strong>in</strong>duction heat<strong>in</strong>g reduces<br />

greenhouse gas emissions (source: SMS Concast)<br />

Fig. 6: The pr<strong>in</strong>ciple of <strong>in</strong>duction heat<strong>in</strong>g<br />

(source: SMS Elo<strong>the</strong>rm)<br />

follow<strong>in</strong>g example of Tung Ho Steel <strong>in</strong> Taiwan shows, a<br />

total output capacity of 8,700 kW has been <strong>in</strong>st<strong>all</strong>ed over<br />

a length of approx. 8 m. This output capacity is sufficient,<br />

for example, for a temperature rise of more than 200 K at a<br />

production rate of 100 metric tons/h. This effectively compensates<br />

for temperature level fluctuations <strong>in</strong> <strong>the</strong> upstream<br />

processes and ensures constant conditions at <strong>the</strong> <strong>in</strong>let section<br />

of <strong>the</strong> roll<strong>in</strong>g mill. This means no equalis<strong>in</strong>g through<br />

<strong>the</strong> roll<strong>in</strong>g mill is required, plus any spares or reserves <strong>in</strong><br />

terms of <strong>the</strong> layout and design as well as <strong>in</strong>creased wear<br />

and tear are avoided.<br />

Fig. 7 shows <strong>the</strong> options available us<strong>in</strong>g two randomly<br />

selected, typical examples. With both dimensions, 100 mm<br />

and 195 mm square section, <strong>the</strong> temperature at <strong>the</strong> mill<br />

entry can be ma<strong>in</strong>ta<strong>in</strong>ed at a constant level. An alteration<br />

of <strong>the</strong> production speed of between 3 m/m<strong>in</strong> and 9 m/<br />

m<strong>in</strong> has been taken <strong>in</strong>to account here.<br />

As <strong>the</strong> <strong>the</strong>rmal conditions at <strong>the</strong> roll<strong>in</strong>g mill entry are<br />

be<strong>in</strong>g stabilised, <strong>the</strong> temperature over <strong>the</strong> cross-sectional<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

71


REPORTS<br />

Induction Technology<br />

Fig. 7: Typical temperature curves with <strong>the</strong> <strong>in</strong>duction heat<strong>in</strong>g of<br />

square material with dimensions of 100 mm and 195 mm<br />

at a convey<strong>in</strong>g speed of 3 m/m<strong>in</strong> and 9 m/m<strong>in</strong><br />

(source: SMS Elo<strong>the</strong>rm)<br />

Fig. 8: Example of a typical temperature profile for a 160 mm square<br />

section on enter<strong>in</strong>g <strong>the</strong> <strong>in</strong>duction unit from <strong>the</strong> cont<strong>in</strong>uous<br />

caster [1], follow<strong>in</strong>g <strong>in</strong>duction heat<strong>in</strong>g [2] and at <strong>the</strong> roll<strong>in</strong>g<br />

mill entry [3] (source: SMS Elo<strong>the</strong>rm)<br />

Fig. 9: Integration of an SMS Elo<strong>the</strong>rm EloHeat <strong>in</strong>duction heat<strong>in</strong>g<br />

plant between an SMS Concast cont<strong>in</strong>uous caster and an<br />

SMS Meer roll<strong>in</strong>g mill (source: SMS Concast)<br />

area of <strong>the</strong> material is homogenised. As shown <strong>in</strong> Fig. 8,<br />

<strong>the</strong> result is a temperature profile dur<strong>in</strong>g transportation<br />

from <strong>the</strong> cast<strong>in</strong>g mach<strong>in</strong>e to <strong>the</strong> roll<strong>in</strong>g mill whereby <strong>the</strong><br />

surface is 173 K colder than <strong>the</strong> centre. This situation is<br />

often referred to as a natural temperature profile. This<br />

temperature profile changes due to <strong>the</strong> rapid heat<strong>in</strong>g<br />

process <strong>in</strong> <strong>the</strong> <strong>in</strong>duction heat<strong>in</strong>g system, such that <strong>the</strong><br />

highest temperatures occur on <strong>the</strong> surface. This is caused<br />

by <strong>the</strong> typical power density distribution of <strong>in</strong>duction<br />

heat<strong>in</strong>g. However a crucial factor here is <strong>the</strong> fact that,<br />

on enter<strong>in</strong>g <strong>the</strong> roll<strong>in</strong>g mill, <strong>the</strong> temperature differences<br />

over <strong>the</strong> cross-section can be reduced by around 30 %<br />

compared to natural cool<strong>in</strong>g. Billets with a homogeneous<br />

temperature distribution can be more easily formed and<br />

<strong>the</strong>refore ensure a stable roll<strong>in</strong>g process. S<strong>in</strong>ce less roll<strong>in</strong>g<br />

force is required for form<strong>in</strong>g billets with higher absolute<br />

and relative heat, <strong>the</strong>re is also less roll wear and <strong>the</strong> rolls<br />

last longer.<br />

EXAMPLE OF APPLICATION: TUNG HO<br />

STEEL, TAIWAN<br />

As an emerg<strong>in</strong>g economic power, Taiwan is faced with<br />

huge ch<strong>all</strong>enges. Oil and gas have to be imported. So<br />

energy costs are correspond<strong>in</strong>gly high. Therefore, Tung<br />

Ho Steel decided to <strong>in</strong>st<strong>all</strong> a CMT m<strong>in</strong>imill – with a high<br />

production capacity and low energy consumption and<br />

reduced emission values thanks to <strong>the</strong> <strong>in</strong>tegrated <strong>in</strong>duction<br />

technology – <strong>in</strong> its works near Taipei.<br />

What‘s more, this m<strong>in</strong>imill is a sh<strong>in</strong><strong>in</strong>g example of how<br />

a heavy oil-fired combustion furnace can be replaced by<br />

a compact yet powerful <strong>in</strong>duction heat<strong>in</strong>g system, thus<br />

result<strong>in</strong>g <strong>in</strong> susta<strong>in</strong>able and measurable ecological and<br />

economic success. As <strong>the</strong>re was no natural gas available<br />

at <strong>the</strong> site, heavy oil would have had to be used. Us<strong>in</strong>g<br />

<strong>in</strong>duction heat<strong>in</strong>g technology meant that Tung Ho Steel<br />

was able not only to save almost 20 €/t of rolled steel but<br />

reduce its emissions <strong>in</strong> particular. This workshop at Tung<br />

Ho is <strong>the</strong>refore now capable of reduc<strong>in</strong>g its emissions by<br />

around 72,000 tpa CO 2 , 410 tpa SO 2 and 225 tpa NO X – year<br />

<strong>in</strong>, year out.<br />

The steel mill is equipped with a 120 t electric arc furnace<br />

(EAF), a ladle furnace and a caster with 5 strands. At a<br />

production rate of 40-45 t/h per cast<strong>in</strong>g strand, this results<br />

<strong>in</strong> an annual capacity of around 1.2 million t of cast billets.<br />

The attached roll<strong>in</strong>g mill produces around 800,000 t of<br />

rolled structural steel every year.<br />

The <strong>in</strong>duction heat<strong>in</strong>g system was <strong>in</strong>tegrated <strong>in</strong>l<strong>in</strong>e<br />

between <strong>the</strong> cast<strong>in</strong>g mach<strong>in</strong>e and roll<strong>in</strong>g mill (Fig. 9 and<br />

Fig. 10).<br />

The <strong>in</strong>duction plant comprises 3 <strong>in</strong>dividu<strong>all</strong>y controllable<br />

modules with two <strong>in</strong>duction coils each (Fig. 11).<br />

With an over<strong>all</strong> length of around 8 metres <strong>the</strong> plant has<br />

an <strong>in</strong>st<strong>all</strong>ed capacity of 8.7 MW. This ensures both a tem-<br />

72 heat process<strong>in</strong>g 2-<strong>2014</strong>


Induction Technology<br />

REPORTS<br />

Fig. 10: SMS Elo<strong>the</strong>rm EloHeat – <strong>in</strong>duction heat<strong>in</strong>g plant<br />

with 6 <strong>in</strong>duction coils at Tung Ho Steel <strong>in</strong> Taiwan<br />

(source: SMS Elo<strong>the</strong>rm)<br />

Fig. 11: Billet before reheat<strong>in</strong>g at <strong>the</strong> <strong>in</strong>let of <strong>the</strong> Elo<strong>the</strong>rm<br />

EloHeat system at Tung Ho Steel <strong>in</strong> Taiwan<br />

(source: SMS Elo<strong>the</strong>rm)<br />

perature rise of up to 150 K and a consistent temperature<br />

distribution of <strong>the</strong> billets between <strong>the</strong> cont<strong>in</strong>uous caster<br />

and roll<strong>in</strong>g mill. So on <strong>the</strong> one hand high process speeds<br />

of 140 t/h can be atta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> roll<strong>in</strong>g mill, while on <strong>the</strong><br />

o<strong>the</strong>r hand optimal roll<strong>in</strong>g processes can be conducted<br />

with only m<strong>in</strong>imal wear.<br />

For this <strong>the</strong> <strong>in</strong>duction heat<strong>in</strong>g plant is equipped with<br />

state-of-<strong>the</strong>-art IGBT converters, which <strong>the</strong>mselves feature<br />

transistors and can <strong>the</strong>refore be flexibly adapted to <strong>the</strong><br />

respective heat<strong>in</strong>g process and help to achieve a high level<br />

of over<strong>all</strong> plant availability.<br />

Fig. 12 shows <strong>the</strong> calculated temperature profile<br />

between <strong>the</strong> cast<strong>in</strong>g mach<strong>in</strong>e and <strong>the</strong> entry section of<br />

<strong>the</strong> roll<strong>in</strong>g mill at Tung Ho Steel. The green curve shows<br />

<strong>the</strong> temperature of <strong>the</strong> surface, <strong>the</strong> first third of which is<br />

<strong>in</strong>fluenced by <strong>the</strong> secondary cool<strong>in</strong>g and contact with <strong>the</strong><br />

support rolls. Follow<strong>in</strong>g complete solidification upstream<br />

of <strong>the</strong> cutt<strong>in</strong>g torch position, <strong>the</strong> material goes through an<br />

even cool<strong>in</strong>g-down phase, whereby any losses are m<strong>in</strong>imised<br />

by radiation protection measures.<br />

The <strong>in</strong>duction heat<strong>in</strong>g section is identified by a red<br />

circle <strong>in</strong> Fig. 12 and shown <strong>in</strong> detail <strong>in</strong> Fig. 13. This is where<br />

adjustments and stabilisation of <strong>the</strong> <strong>the</strong>rmal conditions<br />

for optimum roll<strong>in</strong>g process preparation take place. The<br />

penetration depth at a frequency of 300 Hz is ~ 30 mm,<br />

ensur<strong>in</strong>g near-surface heat<strong>in</strong>g can be achieved. The colder<br />

temperature at <strong>the</strong> core is equalised by means of heat<br />

conduction around 5 m after <strong>the</strong> billet exits <strong>the</strong> last <strong>in</strong>duction<br />

coil, <strong>in</strong> order that a homogeneous temperature can<br />

be achieved over <strong>the</strong> billet cross-section for <strong>the</strong> purpose<br />

of <strong>the</strong> roll<strong>in</strong>g process.<br />

CONCLUSION<br />

The demands be<strong>in</strong>g made by plant owners for flexible steel<br />

production <strong>in</strong> terms of <strong>the</strong> production volumes, <strong>the</strong> discussions<br />

currently be<strong>in</strong>g held with regard to low-emission<br />

production methods as well as <strong>the</strong> regional and limited<br />

availability of fossil fuels have been translated <strong>in</strong>to <strong>in</strong>novative<br />

production concepts by manufacturers of plant and<br />

equipment for steel and roll<strong>in</strong>g mill technology.<br />

One result is CMT m<strong>in</strong>imill technology with <strong>in</strong>tegrated<br />

<strong>in</strong>duction technology for energy-efficient reheat<strong>in</strong>g. As<br />

well as a variety of <strong>in</strong>novative solutions <strong>in</strong> <strong>the</strong> steel and<br />

Fig. 12: Temperature profile of <strong>the</strong> billet with a cross-section of<br />

150 mm at Tung Ho Steel <strong>in</strong> Taiwan<br />

(source: SMS Concast)<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

73


REPORTS<br />

Induction Technology<br />

In future higher costs for CO 2 certificates will fur<strong>the</strong>r<br />

<strong>in</strong>crease <strong>the</strong> pressure on production costs for steel products.<br />

Plant owners would be well advised to bear <strong>in</strong> m<strong>in</strong>d<br />

<strong>the</strong> economic advantages that can be atta<strong>in</strong>ed with energy-efficient<br />

<strong>in</strong>duction technology, both on an <strong>in</strong>dividual<br />

level and <strong>in</strong> terms of <strong>the</strong> total costs of a m<strong>in</strong>imill over its<br />

lifetime. The CMT m<strong>in</strong>imill concept offers manufacturers<br />

of rolled products a variety of solutions here, especi<strong>all</strong>y as<br />

any <strong>in</strong>vestment <strong>in</strong> most cases quickly pays for itself, even<br />

with revamps of exist<strong>in</strong>g l<strong>in</strong>es.<br />

Fig. 13: Illustration of a temperature <strong>in</strong>crease through <strong>the</strong> six<br />

<strong>in</strong>duction coils and core temperature homogenisation by<br />

means of heat conduction (source: SMS Concast)<br />

AUTHORS<br />

Dr. Klaus von Eynatten<br />

SMS Concast Italia S.p.A.<br />

Ud<strong>in</strong>e, Italy<br />

Tel.: +39 (0) 432 / 654600<br />

klaus.eynatten@sms-concast.ch<br />

roll<strong>in</strong>g mill sections of <strong>the</strong>se m<strong>in</strong>imills, special mention<br />

should be made at this po<strong>in</strong>t of <strong>the</strong> benefits of <strong>in</strong>tegrated<br />

<strong>in</strong>duction technology: <strong>in</strong>dividual, rapid atta<strong>in</strong>ment of <strong>the</strong><br />

optimum roll<strong>in</strong>g temperature despite variable <strong>in</strong>com<strong>in</strong>g<br />

temperatures, no energy consumption dur<strong>in</strong>g downtimes<br />

and stoppages, <strong>in</strong>creased metal yield with low-scale heat<strong>in</strong>g<br />

and above <strong>all</strong> no direct emissions – <strong>the</strong>se are <strong>the</strong> means<br />

with which plant owners can secure <strong>the</strong>ir competitive edge<br />

on <strong>the</strong> <strong>in</strong>ternational stage.<br />

Dr. Markus Langejürgen<br />

SMS Elo<strong>the</strong>rm GmbH<br />

Remscheid, Germany<br />

Tel.: +49 (0) 2191 / 891-218<br />

m.langejuergen@sms-elo<strong>the</strong>rm.com<br />

Dipl.-Wirtsch.-Ing. Dirk M. Schibisch<br />

SMS Elo<strong>the</strong>rm GmbH<br />

Remscheid, Germany<br />

Tel.: +49 (0) 2191 / 891-300<br />

d.schibisch@sms-elo<strong>the</strong>rm.com<br />

Visit us at<br />

ALUMINIUM <strong>2014</strong><br />

7 – 9 October <strong>2014</strong><br />

Messe Düsseldorf, Germany<br />

Vulkan-Verlag<br />

H<strong>all</strong> 10 / Booth F54<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

74 heat process<strong>in</strong>g 2-<strong>2014</strong>


Burner & Combustion<br />

REPORTS<br />

Research centre for comb<strong>in</strong>ed<br />

optimum burner and furnace<br />

chamber design<br />

by Enrico Mozzi<br />

New generation patented burners match<strong>in</strong>g <strong>the</strong> best available technology and performances us<strong>in</strong>g flame and flameless<br />

combustion have been designed by Danieli Centro Combustion to accomplish <strong>in</strong>creas<strong>in</strong>gly demand<strong>in</strong>g targets <strong>in</strong> several<br />

applications and respond to customer requirements. These technologies <strong>in</strong>clude flame or flameless combustion and have<br />

been developed for central energy recovery mode (<strong>in</strong> waste gas extraction) or local recovery mode (recuperative – regenerative)<br />

to offer customers a wide array of solutions. Systems are tested <strong>in</strong> <strong>the</strong> laboratory and fired with fuels requested by<br />

<strong>the</strong> customer before <strong>in</strong>st<strong>all</strong>ation at <strong>the</strong> plant. An important aspect <strong>in</strong> <strong>the</strong> design of modern and efficient <strong>in</strong>dustrial furnaces<br />

is a correctly designed combustion process which comb<strong>in</strong>es many technical choices and offers considerable advantages<br />

<strong>in</strong> furnace optimization.<br />

Required furnace performances have become more<br />

ch<strong>all</strong>eng<strong>in</strong>g over <strong>the</strong> last ten years especi<strong>all</strong>y <strong>in</strong> <strong>the</strong><br />

provision of <strong>in</strong>dustrial furnaces for steel and alum<strong>in</strong>um<br />

reheat<strong>in</strong>g and heat treat<strong>in</strong>g. Capital expenditures<br />

(CAPEX) rema<strong>in</strong> important, however operat<strong>in</strong>g expenses<br />

(OPEX) are also critical where decisions on new <strong>in</strong>vestments<br />

are made and <strong>in</strong> particular when consider<strong>in</strong>g escalat<strong>in</strong>g<br />

energy expenditures. The need to reduce energy consumption<br />

is also closely associated with <strong>in</strong>creas<strong>in</strong>gly str<strong>in</strong>gent<br />

pollution restrictions applied worldwide.<br />

Focus by steel producers is now on plant energy management<br />

and reduc<strong>in</strong>g <strong>the</strong> purchase of fuel, promot<strong>in</strong>g<br />

residual gas recycl<strong>in</strong>g (produced <strong>in</strong> <strong>the</strong> reduc<strong>in</strong>g and melt<strong>in</strong>g<br />

processes) especi<strong>all</strong>y where large reheat<strong>in</strong>g furnaces are<br />

concerned. Additional demands are <strong>the</strong>refore <strong>the</strong> potential<br />

to burn a larger selection of fuels with important reductions<br />

<strong>in</strong> <strong>the</strong>rmal NO X emissions. Global players <strong>in</strong> <strong>in</strong>dustrial<br />

furnace supply need to design and apply <strong>the</strong> Best Available<br />

Technologies (BAT) to plants and constantly improve<br />

know-how and performance of its nucleus: combustion<br />

technique and control.<br />

COOPERATION WITH ITALIAN<br />

UNIVERSITIES<br />

Some of <strong>the</strong> ch<strong>all</strong>eng<strong>in</strong>g targets mentioned above may be<br />

effectively <strong>in</strong>corporated <strong>in</strong>to equipment through <strong>the</strong>oretical<br />

and practical research. Powerful <strong>the</strong>rmo-fluid dynamic<br />

modell<strong>in</strong>g simulators are required to perform complete<br />

analyses us<strong>in</strong>g a step-by-step approach and provide <strong>the</strong>oretical<br />

results <strong>in</strong> a reasonable time frame.<br />

Each model requires specific know-how <strong>in</strong> DCC’S combustion<br />

k<strong>in</strong>etics and <strong>the</strong> University’s specific expertise <strong>in</strong><br />

<strong>the</strong> model<strong>in</strong>g simulator system.<br />

Danieli Centro Combustion established collaboration<br />

with one of <strong>the</strong> most important universities <strong>in</strong> Italy proficient<br />

<strong>in</strong> this specific field <strong>in</strong> 2004 and commenced <strong>the</strong>oretical<br />

R&D. Politecnico di Milano was founded <strong>in</strong> 1863 and<br />

possesses over 150 years of experience and history work<strong>in</strong>g<br />

alongside <strong>in</strong>dustries <strong>in</strong> <strong>the</strong> North of Italy.<br />

Cooperation was extended to <strong>in</strong>clude Università degli<br />

studi di Genova – Energy Department: a key Italian university<br />

located <strong>in</strong> Genoa, a city <strong>in</strong> nor<strong>the</strong>rn Italy and Centre<br />

of Excellence for major Italian Public Companies over <strong>the</strong><br />

last century.<br />

Research Approach<br />

Combustion is a comb<strong>in</strong>ation of oxygen and fuel which<br />

results <strong>in</strong> heat release. Typic<strong>all</strong>y carbon, hydrogen (and<br />

sometimes sulphur) react with oxygen as follows:<br />

■■<br />

■■<br />

carbon + oxygen ➝ carbon dioxide + heat<br />

hydrogen + oxygen ➝ water vapour + heat<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

75


REPORTS<br />

Burner & Combustion<br />

Perfect combustion is achieved through mix<strong>in</strong>g precise<br />

quantities of fuel and oxygen avoid<strong>in</strong>g surplus: although<br />

excess oxygen does not take part <strong>in</strong> <strong>the</strong> process it affects<br />

<strong>the</strong> flame pattern mak<strong>in</strong>g it appear shorter and clearer. The<br />

flame also tends to be longer when <strong>the</strong>re is excess fuel.<br />

Burn<strong>in</strong>g conditions can <strong>the</strong>refore be classified as ei<strong>the</strong>r<br />

oxidiz<strong>in</strong>g (excess air è excess oxygen) or reduc<strong>in</strong>g (excess<br />

fuel); different flame patterns can be identified accord<strong>in</strong>g<br />

to conditions. Oxygen gener<strong>all</strong>y comes from air which<br />

conta<strong>in</strong>s 79 % nitrogen: <strong>the</strong>refore <strong>in</strong>ject<strong>in</strong>g <strong>the</strong> required<br />

amount of oxygen to burn <strong>the</strong> fuel (stoichiometric – oxidiz<strong>in</strong>g<br />

– reduc<strong>in</strong>g conditions) also requires a massive <strong>in</strong>jection<br />

of nitrogen. Nitrogen is not <strong>in</strong>volved <strong>in</strong> <strong>the</strong> combustion<br />

reaction but it absorbs part of <strong>the</strong> heat. This helps to control<br />

flame temperature and depend<strong>in</strong>g on <strong>the</strong> different<br />

temperature spots <strong>in</strong> <strong>the</strong> flame it also reacts loc<strong>all</strong>y form<strong>in</strong>g<br />

various dioxides (Thermal NO X ) which are released <strong>in</strong>to <strong>the</strong><br />

atmosphere toge<strong>the</strong>r with combustion products.<br />

Major concepts <strong>in</strong>volved <strong>in</strong> <strong>the</strong> combustion process are:<br />

■■<br />

Proper fuel/air mix<strong>in</strong>g (stoichiometric – oxidiz<strong>in</strong>g –<br />

reduc<strong>in</strong>g conditions)<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

Chemical (exo<strong>the</strong>rmic) reaction of each major component<br />

(carbon; hydrogen; sulphur)<br />

Water vapour heat absorption (phenomenon generat<strong>in</strong>g<br />

<strong>the</strong> difference between Gross & Net fuel heat<strong>in</strong>g values)<br />

Chemical reaction of additional components present<br />

(nitrogen and o<strong>the</strong>r elements found <strong>in</strong> <strong>the</strong> compound)<br />

Heat<strong>in</strong>g transmission via <strong>the</strong>rmal convection phenomena<br />

controlled by:<br />

Qc= h* (Ts – Ta) where Qc is <strong>in</strong> KW/m 2 ; h = convection<br />

coefficient; Ts = surface temperature; Ta = ambient<br />

temperature<br />

Heat<strong>in</strong>g transmission via <strong>the</strong>rmal radiation phenomena<br />

controlled by:<br />

Qr = S1,2*б (T1^4 – T2^4) where Qr is <strong>in</strong> KW/m 2 ;<br />

б =Stefan Boltzmann constant; T1 = absolute surface 1<br />

temperature K; T2 = absolute surface 2 temperature K.<br />

This law applied to a combustion gas environment<br />

becomes:<br />

Qg =є *б (Tg^4 – Ts^4) where є = gas emissivity<br />

(depend<strong>in</strong>g on gas composition and geometry);<br />

б = Stefan Boltzmann constant;<br />

Tg^4 = produced (by reaction) waste gas temperature<br />

- Ts^4 = heated stock surface temperature<br />

Basic design of equipment may commence after detailed<br />

analysis of combustion concepts are applied to a specific<br />

project to determ<strong>in</strong>e <strong>the</strong> follow<strong>in</strong>g parameters:<br />

■■<br />

■■<br />

Flame pattern: consider<strong>in</strong>g flame characteristics and<br />

specific behaviour;<br />

Staged combustion: combustion is progressively<br />

achieved with different air <strong>in</strong>jection phases (usu<strong>all</strong>y<br />

referred to as primary air and secondary air);<br />

■■<br />

■■<br />

Air and gas momentum def<strong>in</strong><strong>in</strong>g <strong>the</strong> convection pattern<br />

and <strong>the</strong> k<strong>in</strong>etic characteristics of <strong>the</strong> flow enter<strong>in</strong>g <strong>the</strong><br />

furnace atmosphere;<br />

NO X formation favoured by oxygen; high flame temperature;<br />

residence time <strong>in</strong> <strong>the</strong> reaction area; nitrogen<br />

(both <strong>in</strong> <strong>the</strong> air and <strong>in</strong> <strong>the</strong> fuel itself).<br />

All <strong>the</strong>se concepts are important and many parameters<br />

connected to <strong>the</strong>m affect combustion chemical reaction<br />

k<strong>in</strong>etics and <strong>the</strong>refore also <strong>the</strong> f<strong>in</strong>al results. Consequently,<br />

<strong>the</strong>oretical research <strong>in</strong> terms of fluid-dynamic simulation<br />

is essential for <strong>the</strong> analysis and prediction of each of <strong>the</strong><br />

phenomena <strong>in</strong>volved <strong>in</strong> <strong>the</strong> reaction process. The simulation<br />

process starts by def<strong>in</strong><strong>in</strong>g <strong>the</strong> appropriate type of<br />

burner; <strong>the</strong> number of burners <strong>in</strong> <strong>the</strong> furnace and concludes<br />

when <strong>the</strong> entire furnace is modelled to <strong>the</strong> best<br />

perform<strong>in</strong>g design and accord<strong>in</strong>g to its f<strong>in</strong>al use.<br />

NEW R&D CENTRE AT UNIVERSITÀ DEGLI<br />

STUDI DI GENOVA – ENERGY DEPARTMENT<br />

K<strong>in</strong>etics is crucial to <strong>the</strong> design of burner flame characteristics<br />

(flame pattern), predict<strong>in</strong>g <strong>the</strong>oretical combustion and<br />

controll<strong>in</strong>g and respect<strong>in</strong>g noxious waste limits. Observation<br />

of actual results and <strong>the</strong> furnace-burner compound are<br />

even more critical. The only way to verify this <strong>the</strong>ory and<br />

consistently correct predictions is by us<strong>in</strong>g practical R&D.<br />

The flame pattern (and correlated emissions) for a furnace<br />

supplier is not simply a geometrical requirement but it is<br />

mandatory for <strong>the</strong> furnace to reach required performances<br />

<strong>in</strong> terms of chamber temperature uniformity; high, uniform<br />

heat exchange via radiation; improved heat exchange via<br />

convection (where open flame heat<strong>in</strong>g and heat treat<strong>in</strong>g is<br />

concerned); efficiency and o<strong>the</strong>r significant aspects <strong>in</strong>fluenc<strong>in</strong>g<br />

furnace design. Therefore, even <strong>the</strong> test<strong>in</strong>g facility<br />

must have <strong>the</strong> required characteristics to replicate different<br />

<strong>in</strong>dustrial burner runn<strong>in</strong>g operations.<br />

Danieli Centro Combustion has <strong>in</strong>st<strong>all</strong>ed a proprietary<br />

R&D facility to test burners and reproduce <strong>the</strong> behaviour<br />

expected <strong>in</strong> new furnaces. Inst<strong>all</strong>ation of this R&D facility<br />

is fundamental to Danieli Centro Combustion’s method<br />

of practice and promotes synergy between <strong>the</strong>ory and<br />

practical R&D.<br />

The new R&D Center has been completely re-designed <strong>in</strong><br />

order to encompass new ch<strong>all</strong>eng<strong>in</strong>g requirements by endusers<br />

through <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> range of burners that may be<br />

tested: this <strong>all</strong>ows burner test<strong>in</strong>g specific<strong>all</strong>y for heat treat<strong>in</strong>g<br />

applications. The requirement stems from <strong>the</strong> acquisition<br />

of Danieli Olivotto Ferrè by Danieli Centro Combustion <strong>in</strong><br />

June 2012. This new centre of expertise with offices located<br />

<strong>in</strong> Tur<strong>in</strong> has more than 60 years experience <strong>in</strong> <strong>the</strong> supply of<br />

special furnaces to <strong>the</strong> heat treatment market.<br />

Two test furnaces (Fig. 1a and 1b) entirely equipped for<br />

various <strong>in</strong>dustrial burner operations (from 30 to 3,500 kW)<br />

76 heat process<strong>in</strong>g 2-<strong>2014</strong>


Burner & Combustion<br />

REPORTS<br />

privilege <strong>the</strong> study of any k<strong>in</strong>d of burner application for<br />

heat<strong>in</strong>g and heat treat<strong>in</strong>g and <strong>all</strong>ow to:<br />

■■<br />

Reproduce flame patterns and emissions to verify <strong>the</strong>oretical<br />

predictions,<br />

■■<br />

Test a variety of fuel types and compositions consistent<br />

with <strong>the</strong> customer’s requirements.<br />

An <strong>in</strong>dustrial simulator represents <strong>the</strong> plant and is fully<br />

equipped with <strong>all</strong> auxiliaries, sensors, <strong>in</strong>strumentation, monitor<strong>in</strong>g<br />

and record<strong>in</strong>g systems and suitably sized for test<strong>in</strong>g any<br />

k<strong>in</strong>d of burner <strong>in</strong>clud<strong>in</strong>g any additional components such as:<br />

radiant tube (U-P-W-double P); s<strong>in</strong>gle recuperator (recuperative<br />

burners); regenerator (regenerative burners); flame detection<br />

components; automatic shut-off and controll<strong>in</strong>g valves.<br />

FROM THEORY TO INDUSTRIAL<br />

SIMULATION<br />

Each facility is equipped with several systems to simultaneously<br />

monitor <strong>the</strong> function of <strong>the</strong> burner be<strong>in</strong>g tested<br />

and specific<strong>all</strong>y:<br />

■■<br />

Feed<strong>in</strong>g flows (fuel; oxygen or combustion air; atomiz<strong>in</strong>g<br />

air if requested; cool<strong>in</strong>g water for sensors and<br />

o<strong>the</strong>r cooled elements used to simulate <strong>the</strong> heated<br />

feedstock),<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

Waste gas composition <strong>in</strong> different combustion chamber<br />

locations (several <strong>in</strong>takes distributed throughout<br />

<strong>the</strong> chamber: up to four) (*),<br />

Waste gas composition along <strong>the</strong> extraction system<br />

(one measur<strong>in</strong>g po<strong>in</strong>t at <strong>the</strong> exit before <strong>the</strong> centralized<br />

recuperator – one downstream recuperator – one at<br />

<strong>the</strong> stack base) (*),<br />

Temperatures reached <strong>in</strong> different locations of <strong>the</strong><br />

combustion chamber (thirteen different temperatures<br />

can be measured simultaneously, longitud<strong>in</strong><strong>all</strong>y<br />

to <strong>the</strong> flame, plus 4 different temperatures are<br />

measured to monitor average furnace chamber temperature<br />

(**),<br />

Visible flame shape (TV monitor with record<strong>in</strong>g facility),<br />

Flame stability (TV monitor with record<strong>in</strong>g facility),<br />

Emissions generated dur<strong>in</strong>g chemical reactions (usu<strong>all</strong>y<br />

when waste gas exits <strong>the</strong> furnace),<br />

Burner efficiency (<strong>the</strong>rmal balance calculation obta<strong>in</strong>ed<br />

by measur<strong>in</strong>g <strong>all</strong> <strong>the</strong> energy that enters and exits <strong>the</strong><br />

combustion chamber).<br />

(*) Extractive gas analysis measurement systems are used<br />

<strong>in</strong> <strong>the</strong> research centre to detect NO X , NO, NO 2 , O 2 , CO,<br />

SO 2 , both <strong>in</strong>side <strong>the</strong> furnace and <strong>in</strong> <strong>the</strong> waste gas duct.<br />

(**) A LDV (Laser Doppler Velocimeter) and PIV (Particle<br />

Image Velocimeter) analyze <strong>the</strong>rmal and motion distribution<br />

patterns throughout <strong>the</strong> flame; <strong>the</strong>se patterns<br />

play an important role <strong>in</strong> understand<strong>in</strong>g <strong>the</strong> combustion<br />

mechanism when us<strong>in</strong>g different types of fuels.<br />

Furnaces are equipped with passive and active (sm<strong>all</strong> furnace)<br />

recuperators to preheat combustion air: <strong>the</strong>refore<br />

test<strong>in</strong>g can be performed with ei<strong>the</strong>r cold or preheated<br />

air at selected temperatures.<br />

The nucleus of <strong>the</strong> plant’s control system is a PLC (Programmable<br />

Logic Controller). A large data logg<strong>in</strong>g and<br />

storage system is <strong>in</strong>cluded to record <strong>all</strong> data com<strong>in</strong>g from<br />

each experimental operation and available as historical<br />

trends and graphs.<br />

TARGETS ACCOMPLISHED IN RE-<strong>HEAT</strong>ING<br />

APPLICATIONS<br />

Correct burner design <strong>in</strong> a reheat<strong>in</strong>g furnace m<strong>in</strong>imizes <strong>the</strong><br />

quantity of excess air <strong>in</strong>volved <strong>in</strong> <strong>the</strong> stoichiometric ratio<br />

required to optimize fuel/air mix<strong>in</strong>g and completely burn<br />

<strong>the</strong> fuel. Less free oxygen <strong>in</strong> <strong>the</strong> furnace atmosphere means<br />

a reduction <strong>in</strong> scale formation from <strong>the</strong> heated stock dur<strong>in</strong>g<br />

<strong>the</strong> heat<strong>in</strong>g process (provided <strong>the</strong> furnace is properly<br />

sealed) and lower energy consumption.<br />

a)<br />

b)<br />

Fig. 1: Test furnaces; a) Furnace No. 1; b) Furnace No. 2<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

77


REPORTS<br />

Burner & Combustion<br />

Burners today must operate with reduced flame peak<br />

temperatures for optimum furnace chamber uniformity<br />

and m<strong>in</strong>imum NO X formation. High temperature and long<br />

residence time of combustion products <strong>in</strong> <strong>the</strong> flame area<br />

generate an oxidization process produc<strong>in</strong>g <strong>the</strong>rmal NO X .<br />

One technical approach to reduce Thermal NO X is staged<br />

combustion: air is <strong>in</strong>jected <strong>in</strong>to several different locations<br />

to obta<strong>in</strong> an expanded chemical reaction.<br />

Danieli Centro Combustion based its new burner Series<br />

MAB (Multi Air Burner) on this pr<strong>in</strong>ciple (Fig. 2). MAB is<br />

composed of:<br />

■■<br />

■■<br />

A primary combustion area rich <strong>in</strong> fuel – reduc<strong>in</strong>g area.<br />

A secondary combustion area rich <strong>in</strong> air – oxidiz<strong>in</strong>g area.<br />

Fuel and primary air <strong>in</strong>jection speeds are optimized to generate<br />

primary partial combustion and promote recirculation<br />

of large amounts of waste gas <strong>in</strong>side <strong>the</strong> furnace chamber.<br />

The chemical reaction <strong>the</strong>n takes place <strong>in</strong> <strong>the</strong> furnace chamber,<br />

where secondary air <strong>in</strong>jection completes <strong>the</strong> combustion<br />

and re-circulated waste gas is conveyed to dilute flame<br />

temperature peaks: NO X reduction results are excellent.<br />

MAB is a complete new series of DCC proprietary<br />

burners which offer optimum flame patterns and great<br />

flame stability <strong>in</strong> a wide range of work<strong>in</strong>g conditions,<br />

sizes available range from extra sm<strong>all</strong> (200,000 kcal/h) to<br />

large (4,500,000 kcal/h). These burners may be used to<br />

burn various <strong>in</strong>dustrial fuel gases start<strong>in</strong>g from <strong>the</strong> lowest<br />

(1,500 kcal/Nm 3 ) to <strong>the</strong> highest (25,000 kcal/Nm 3 ) gas<br />

heat<strong>in</strong>g value. Flame length can be tailored to <strong>the</strong> required<br />

furnace application. Danieli Centro Combustion fur<strong>the</strong>r<br />

improved <strong>the</strong> MAB concept by generat<strong>in</strong>g a second series<br />

of burners: MAB Flameless TM (Fig. 3).<br />

MAB Flameless TM works on demand <strong>in</strong> flame mode or<br />

flameless mode (above <strong>the</strong> fuel’s self-ignition temperature)<br />

fur<strong>the</strong>r promot<strong>in</strong>g furnace chamber temperature uniformity<br />

and decreas<strong>in</strong>g temperature peaks and <strong>the</strong> generation of<br />

<strong>the</strong>rmal NO X . It comb<strong>in</strong>es a staged combustion technique<br />

(dur<strong>in</strong>g flame mode) and a volumetric combustion technique<br />

(dur<strong>in</strong>g flameless mode). MAB Flameless TM is patented.<br />

Temperatures recorded for flame patterns of <strong>the</strong> two<br />

new series of burners (MAB and MAB Flameless TM ) dur<strong>in</strong>g<br />

test<strong>in</strong>g are illustrated <strong>in</strong> Fig. 4. The different NO X emissions<br />

dur<strong>in</strong>g flame mode and flameless mode are shown <strong>in</strong><br />

Fig. 5. Pictures of <strong>the</strong> MAB burner dur<strong>in</strong>g <strong>the</strong> different<br />

modes can be seen <strong>in</strong> Fig. 6a and 6b.<br />

Comparative test<strong>in</strong>g was performed us<strong>in</strong>g:<br />

■■<br />

■■<br />

The same test furnace.<br />

Identical <strong>in</strong>strumentation, location and furnace operation.<br />

ACCOMPLISHED TARGETS IN <strong>HEAT</strong><br />

TREATING APPLICATIONS<br />

Staged and flameless combustion approaches were applied<br />

to sm<strong>all</strong>er burners used for batch reheat<strong>in</strong>g and heat treat<strong>in</strong>g<br />

furnaces with open-flame combustion. TFB SIK TM (Treatment<br />

Furnace Burner Silicon Carbide) Ultra low NO X is a<br />

new series of Danieli Centro Combustion burners developed<br />

specific<strong>all</strong>y for this market and designed to reduce<br />

NO X pollution and <strong>the</strong> environmental impact of furnace<br />

waste gas emissions while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g high flame stability<br />

<strong>in</strong> <strong>all</strong> operat<strong>in</strong>g conditions. This type of burner is particularly<br />

recommended for applications where <strong>the</strong> feedstock<br />

requires high convection heat<strong>in</strong>g with excellent chamber<br />

temperature uniformity. The TFB SIK TM (Fig. 7) series is a<br />

low <strong>the</strong>rmal <strong>in</strong>put burner (from less than 80,000 kcal/h to<br />

500,000 kcal/h) us<strong>in</strong>g air stag<strong>in</strong>g technology.<br />

Ultra Low NO X emissions are obta<strong>in</strong>ed by multi-air stag<strong>in</strong>g<br />

combustion to reduce flame temperature peaks responsible<br />

for generat<strong>in</strong>g <strong>the</strong>rmal NO X . The first combustion is<br />

Fig. 2: MAB burner concept<br />

Fig. 3: MAB Flameless TM burner<br />

78 heat process<strong>in</strong>g 2-<strong>2014</strong>


Burner & Combustion<br />

REPORTS<br />

MAB Flame temperature pattern <strong>in</strong> flame mode compared with flameless mode<br />

performed <strong>in</strong> sub-stoichiometric ratio<br />

(<strong>in</strong>side <strong>the</strong> silicon carbide cone) and <strong>the</strong><br />

gas produced is <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> furnace<br />

chamber at high speed (jet burner) where<br />

it is mixed with secondary combustion air<br />

to complete <strong>the</strong> chemical reaction: aga<strong>in</strong><br />

lower flame temperature is assured by a<br />

massive volume of waste gas recirculation<br />

<strong>in</strong>side <strong>the</strong> furnace chamber that also<br />

promotes convection heat exchange. The<br />

NO X emissions reached at different temperatures<br />

are shown <strong>in</strong> Fig. 8. The special<br />

double-flame cone is made of Si-Si-C.<br />

Major targets <strong>in</strong> <strong>the</strong> heat treat<strong>in</strong>g market<br />

also <strong>in</strong>clude reductions <strong>in</strong> fuel consumption<br />

while still guarantee<strong>in</strong>g m<strong>in</strong>imum<br />

effects of pollutants. Staged and flameless<br />

burners comb<strong>in</strong>ed with self-recuperative<br />

or regenerative solutions are frequently<br />

used to reach this target. Fur<strong>the</strong>r requirements<br />

by clients for improved efficiency<br />

encouraged Danieli Centro Combustion<br />

to implement a second generation burner<br />

dedicated entirely to heat treatment,<br />

where energy recovery is higher than with<br />

traditional solutions.<br />

The new TFB-REK series (Treatment Furnace<br />

Burner- Recuperative) was developed<br />

for both radiant tube (<strong>in</strong>direct heat<strong>in</strong>g)<br />

and free-flame. The series is composed<br />

of different sized burners with nom<strong>in</strong>al<br />

capacities rang<strong>in</strong>g from 30 kW to 350 kW.<br />

When us<strong>in</strong>g this particular burner<br />

application one burner simultaneously<br />

<strong>in</strong>jects fresh waste gas from combustion<br />

while suck<strong>in</strong>g lower temperature<br />

waste gas from <strong>the</strong> furnace chamber. A<br />

counter-current preheats combustion.<br />

TFB REK is <strong>the</strong> recuperative version of<br />

TFB SIK TM burners emitt<strong>in</strong>g approximately<br />

<strong>the</strong> same volume of NO X . Two different<br />

versions (one equipped with a met<strong>all</strong>ic<br />

recuperator and one with Si-Si-C Silicon<br />

Carbide recuperator) are available and<br />

may be used with low (700 to 1,000 °C)<br />

or high (1,250 °C) furnace temperatures<br />

respectively. TFB REK is able to operate <strong>in</strong><br />

both flame and flameless mode. TFB REK<br />

is a patented series.<br />

Radiant tube self-recuperative burners<br />

(available from 80 kW for P-tubes to 160 kW<br />

for 2P-tubes) are norm<strong>all</strong>y designed to<br />

achieve a long and stable flame pattern<br />

Temperature °C<br />

1300<br />

1280<br />

1260<br />

1240<br />

1220<br />

1200<br />

1180<br />

1160<br />

1140<br />

1120<br />

1<br />

t = 25°C<br />

2<br />

Distance along <strong>the</strong> flame<br />

3<br />

Fig. 5: NO x emission level performed; combustion air preheated 500 °C; 3 % O 2<br />

<strong>in</strong> waste gases; natural gas<br />

a) b)<br />

4<br />

5<br />

Fig. 6: a) MAB <strong>in</strong> flame mode; b) MAB <strong>in</strong> flameless mode<br />

6<br />

t = 36°C<br />

Flameless mode<br />

Flameless mode<br />

Flame mode<br />

Flame mode<br />

Fig. 4: Comparison of <strong>the</strong> temperatures recorded of <strong>the</strong> two series of burners<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

79


REPORTS<br />

Burner & Combustion<br />

uniformity along <strong>the</strong> entire tube surface (Fig. 10): <strong>the</strong> difference<br />

between <strong>the</strong> hottest and coldest po<strong>in</strong>ts of tube<br />

ends is less than 40 °C and less than 30 °C on <strong>the</strong> central<br />

leg. Pre-heated air with temperatures between 650 °C<br />

and 680 °C corresponds to reduced fuel consumption<br />

when compared to burners with a plug-<strong>in</strong> recuperator<br />

or cold air burners.<br />

Fig. 7: TFB-SIK <br />

with extremely high waste gas recirculation <strong>in</strong>side <strong>the</strong><br />

tube and important reductions <strong>in</strong> hot spots. Radiant tube<br />

temperature uniformity (and uniform heat<strong>in</strong>g effect of<br />

<strong>the</strong> tube <strong>in</strong>side <strong>the</strong> furnace chamber) (Fig. 9) is radic<strong>all</strong>y<br />

improved. Both radiant tube <strong>the</strong>rmal stress and NO X production<br />

due to lower flame temperature peaks are also<br />

reduced. F<strong>in</strong>al tests demonstrate excellent temperature<br />

THERMAL EFFICIENCY OF BURNERS FOR<br />

RADIANT TUBES<br />

For free-flame applications burners are able to function<br />

<strong>in</strong> flame and flameless mode with <strong>the</strong> same efficiency;<br />

when 85-90 % of waste gases are sucked from <strong>the</strong> burner<br />

efficiency is approximately 73-75 %. At 1,150 °C and <strong>in</strong><br />

flame mode NO X emissions are 350 mg/Nm 3 with 5 % O 2 .<br />

In flameless mode and with preheated air temperature<br />

at 800 °C NO X emissions are reduced to 65 mg/Nm 3<br />

with 5 % O 2 .<br />

RECENT EXPERIENCE AND FEEDBACK<br />

Table 1 illustrates a variety of DCC and DFO furnaces<br />

commissioned over <strong>the</strong> past few years and cover<strong>in</strong>g an<br />

array of products. Important results obta<strong>in</strong>ed compared<br />

to <strong>the</strong> guaranteed values are evident. This is only a partial<br />

representation of efforts by Danieli Centro Combustion<br />

and Danieli Olivotto Ferrè to improve <strong>the</strong> quality of<br />

<strong>the</strong> entire product range. A study targeted at <strong>in</strong>creas<strong>in</strong>g<br />

equipment reliability and simplify<strong>in</strong>g and optimiz<strong>in</strong>g design<br />

Table 1: List of different furnaces commissioned over <strong>the</strong> past years<br />

Furnace Type As-sold Parameters Achieved and Tested<br />

Energy consumption for 122 t charged:<br />

Homogeniz<strong>in</strong>g and re-heat<strong>in</strong>g pit furnace<br />

for alum<strong>in</strong>um slabs<br />

Temperature uniformity: ±5 °C<br />

225 kWh/t<br />

252 kWh/t<br />

Temperature uniformity: ±7 °C<br />

Alum<strong>in</strong>um coils heat treatment furnace<br />

Boogie hearth furnace for re-heat<strong>in</strong>g,<br />

austenitization and temper<strong>in</strong>g of special<br />

steel cyl<strong>in</strong>ders<br />

350 t/h Walk<strong>in</strong>g beam furnace for steel<br />

slab reheat<strong>in</strong>g<br />

130 t/h Walk<strong>in</strong>g beam furnace for big<br />

round steel blooms<br />

Harden<strong>in</strong>g and Temper<strong>in</strong>g Walk<strong>in</strong>g<br />

Beam furnaces for API pipe heat treatment<br />

up to 122 pieces/h<br />

Energy consumption for 50 t charged:<br />

200 kWh/t<br />

Temperature uniformity: ±5 °C<br />

Energy consumption for 600 t of charge:<br />

450 kWh/t<br />

Temperature uniformity: ±10 °C<br />

Energy consumption with reference slab:<br />

285 kcal/kg<br />

Temp. Uniformity ±10 °C<br />

Scale Loss 0.7 %<br />

NO X 200 mg/ Nm 3 burn<strong>in</strong>g Coke Gas<br />

Energy consumption with reference bloom:<br />

312 kcal/kg<br />

Temp. Uniformity ±7 °C<br />

Scale Loss 0.8 %<br />

NO X 250 mg/ Nm 3 burn<strong>in</strong>g Natural Gas<br />

Energy consumption and temperature uniformity<br />

runn<strong>in</strong>g reference pipe at max. rate and<br />

Harden<strong>in</strong>g discharg<strong>in</strong>g 890 °C – Temper<strong>in</strong>g<br />

discharg<strong>in</strong>g 665 °C<br />

192 kWh/t<br />

Temperature uniformity: ±4 °C<br />

432 kWh/t<br />

Temperature uniformity: ±8 °C<br />

270,3 kcal/kg<br />

Temperature uniformity: ±9 °C<br />

Scale loss 0,6 %<br />

NO X 160 mg/Nm 3<br />

258,1 kcal/kg<br />

Temperature uniformity: ±5 °C<br />

Scale loss 0.62 %<br />

NO X 90 mg/Nm 3<br />

220.2 kWh/t (149,2 kWh/t)<br />

Temperature uniformity: ±5 °C (±3 °C)<br />

80 heat process<strong>in</strong>g 2-<strong>2014</strong>


Burner & Combustion<br />

REPORTS<br />

(conta<strong>in</strong><strong>in</strong>g OPEX and easy ma<strong>in</strong>tenance) is<br />

performed consistently to offer customers<br />

long-term advantages and improved product<br />

quality.<br />

FUTURE CHALLENGES<br />

Promis<strong>in</strong>g results achieved so far <strong>in</strong> improv<strong>in</strong>g<br />

<strong>the</strong> design of combustion systems (reach<strong>in</strong>g<br />

best performances and optimum equipment<br />

flexibility) clearly identify that <strong>the</strong>oretical<br />

studies <strong>in</strong>clud<strong>in</strong>g practical test<strong>in</strong>g need to be<br />

applied to each and every furnace sold. A sufficiently<br />

wide range of 3D modelled furnace<br />

types and an extended range of modelled<br />

burners <strong>all</strong>ow for a more rapid simulation<br />

of new plants performable with<strong>in</strong> <strong>the</strong> timeframe<br />

of actual projects.<br />

Danieli Centro Combustion is now near<br />

to accurately simulat<strong>in</strong>g every burner-furnace<br />

chamber comb<strong>in</strong>ation, on-l<strong>in</strong>e design<br />

demonstrates that this is <strong>the</strong> best available<br />

proposal. Burner technology may also be<br />

improved through studies with complete<br />

models simulat<strong>in</strong>g jo<strong>in</strong>t burner-furnace<br />

chamber operations us<strong>in</strong>g <strong>the</strong> products to<br />

be heated or heat treated. This will <strong>all</strong>ow <strong>the</strong><br />

team to <strong>in</strong>vestigate f<strong>in</strong>al performances and<br />

test different design solutions and <strong>the</strong>refore<br />

obta<strong>in</strong> extremely reliable results.<br />

NOx [mg/Nm<br />

200<br />

150<br />

800 °C<br />

100<br />

50<br />

0<br />

0 200 400 600<br />

Combustion Air Temperature [°C]<br />

Fig. 8: NO X emissions at different furnace temperatures<br />

Fig. 9: Radiant tube surface temperature uniformity<br />

AUTHOR<br />

Dr.-Ing. Enrico Mozzi<br />

Danieli Centro Combustion<br />

S.p.A.<br />

Genoa, Italy<br />

Tel.: +39 010 5341 701<br />

e.mozzi@danieli.it<br />

Temperature [°c]<br />

1030<br />

1020<br />

1010<br />

1000<br />

990<br />

980<br />

970<br />

960<br />

950<br />

940<br />

930<br />

920<br />

910<br />

900<br />

890<br />

880<br />

Fig. 10: Different radiant tube shape temperature distributions<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

81


ALUMINIUM<br />

CHINA <strong>2014</strong><br />

9-11 JULY, <strong>2014</strong><br />

Shanghai New Int'l Expo Centre<br />

◆ 500 Exhibitors<br />

◆ 35,000 m 2 Exhibition area<br />

◆ 16,000 Trade visitors & Delegates<br />

Organised by:<br />

Co-Organised by:<br />

Reed Exhibitions Deutschland Gmbh<br />

Beij<strong>in</strong>g Antaike Information Development Co., Ltd.<br />

Concurrently Held Shows:<br />

INDUSTRIAL MATERIALS<br />

SHANGHAI <strong>2014</strong>·MAGNESIUM<br />

Contact us:<br />

Tel: +86-10-5933 9392<br />

Email: alu@reedexpo.com.cn<br />

Supported by:<br />

Ch<strong>in</strong>a Nonferrous Metals Industry Association<br />

INDUSTRIAL MATERIALS<br />

SHANGHAI <strong>2014</strong>·COPPER<br />

www.alum<strong>in</strong>iumch<strong>in</strong>a.com


Edition 6<br />

PROFILE+<br />

This is where we focus <strong>in</strong> regular <strong>in</strong>tervals on <strong>the</strong> ma<strong>in</strong> <strong>in</strong>stitutions and organisations active<br />

<strong>in</strong> <strong>the</strong> field of <strong>the</strong>rmoprocess<strong>in</strong>g technology. This issue spotlights <strong>the</strong> International Alum<strong>in</strong>ium<br />

Institute (IAI).<br />

The International Alum<strong>in</strong>ium Institute (IAI)<br />

The 21 st century began with almost 7 billion<br />

people on <strong>the</strong> planet and global<br />

population is expected to reach 10 billion<br />

by 2050. The susta<strong>in</strong>ability ch<strong>all</strong>enge shared<br />

by <strong>all</strong> is to provide not only for <strong>the</strong>se people’s<br />

basic needs, but to meet expectations for an<br />

improv<strong>in</strong>g quality of life. Cruci<strong>all</strong>y, this socioeconomic<br />

progress must be achieved while<br />

ensur<strong>in</strong>g <strong>the</strong> environment rema<strong>in</strong>s ecologic<strong>all</strong>y<br />

and economic<strong>all</strong>y viable and able to<br />

meet <strong>the</strong> needs of future generations. The<br />

products of human <strong>in</strong>genuity, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

versatile metal alum<strong>in</strong>ium <strong>in</strong> its many applications,<br />

have a vital role to play <strong>in</strong> successfully<br />

address<strong>in</strong>g this susta<strong>in</strong>ability ch<strong>all</strong>enge.<br />

OBJECTIVES OF THE IAI<br />

By work<strong>in</strong>g cont<strong>in</strong>uously to m<strong>in</strong>imize its<br />

environmental impacts and maximize <strong>the</strong><br />

benefits that its products offer to <strong>the</strong> world,<br />

<strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry is committed to<br />

ensur<strong>in</strong>g that alum<strong>in</strong>ium is part of <strong>the</strong> solution<br />

for a susta<strong>in</strong>able future.<br />

Through <strong>the</strong> International Alum<strong>in</strong>ium<br />

Institute (IAI), <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry aims<br />

to foster a wider understand<strong>in</strong>g of its activities<br />

and to demonstrate both its responsibility<br />

<strong>in</strong> produc<strong>in</strong>g <strong>the</strong> metal and <strong>the</strong><br />

potential benefits to be realised through<br />

<strong>the</strong>ir use <strong>in</strong> susta<strong>in</strong>able applications and<br />

through recycl<strong>in</strong>g.<br />

The key objectives of <strong>the</strong> Institute are to:<br />

■ Increase demand for alum<strong>in</strong>ium products<br />

by build<strong>in</strong>g world-wide awareness of <strong>the</strong><br />

metal’s unique and valuable qualities.<br />

■ Provide <strong>the</strong> global forum for alum<strong>in</strong>ium<br />

producers to discuss matters of<br />

common <strong>in</strong>terest and concern, <strong>in</strong> cooperation<br />

with regional and national<br />

alum<strong>in</strong>ium associations.<br />

■ Identify issues of relevance to <strong>the</strong> susta<strong>in</strong>able<br />

production, use, recovery and<br />

recycl<strong>in</strong>g of alum<strong>in</strong>ium applications<br />

and to promote appropriate research<br />

<strong>in</strong> <strong>the</strong>se areas.<br />

■<br />

■<br />

■<br />

Encourage and assist cont<strong>in</strong>uous<br />

improvement <strong>in</strong> <strong>the</strong> healthy, safe and<br />

environment<strong>all</strong>y sound production of<br />

alum<strong>in</strong>ium.<br />

Collect, analyse and communicate statistical<br />

and o<strong>the</strong>r relevant <strong>in</strong>formation<br />

both with<strong>in</strong> <strong>the</strong> <strong>in</strong>dustry and to external<br />

audiences.<br />

Communicate <strong>the</strong> views and positions<br />

of <strong>the</strong> membership and of <strong>the</strong> wider<br />

alum<strong>in</strong>ium <strong>in</strong>dustry to <strong>in</strong>ternational<br />

agencies and o<strong>the</strong>r relevant parties.<br />

All alum<strong>in</strong>ium produc<strong>in</strong>g companies are<br />

eligible for IAI membership, which br<strong>in</strong>gs<br />

benefits <strong>in</strong>clud<strong>in</strong>g access to performance<br />

benchmark<strong>in</strong>g data and <strong>in</strong>dustry trend<br />

modell<strong>in</strong>g as well as <strong>the</strong> opportunity to<br />

lead and engage <strong>in</strong> global <strong>in</strong>dustry <strong>in</strong>itiatives<br />

on issues of common <strong>in</strong>terest.<br />

S<strong>in</strong>ce its <strong>in</strong>corporation <strong>in</strong> 1972, <strong>the</strong> work<br />

of <strong>the</strong> IAI has overseen by its Board of Directors,<br />

which meets twice a year, with each<br />

member company hav<strong>in</strong>g a representative<br />

at senior management level, usu<strong>all</strong>y Chairman<br />

or CEO.<br />

VALUE-ADDED CHAIN OF<br />

ALUMINIUM<br />

Demand for alum<strong>in</strong>ium cont<strong>in</strong>ues to<br />

grow at rates faster than global GDP. Alum<strong>in</strong>ium<br />

semis demand grew 3 % annu<strong>all</strong>y<br />

<strong>in</strong> <strong>the</strong> period 1990 to 2004 and accelerated<br />

to annual growth rate of 6 % <strong>in</strong> <strong>the</strong><br />

period 2005 to 2012. Estimates have <strong>the</strong><br />

growth cont<strong>in</strong>u<strong>in</strong>g this trajectory over<br />

<strong>the</strong> next three to five years, possibly ris<strong>in</strong>g<br />

to average over 7 % annu<strong>all</strong>y dur<strong>in</strong>g<br />

this period.<br />

Demand for primary alum<strong>in</strong>ium passed<br />

<strong>the</strong> 50 million t level <strong>in</strong> 2013 for <strong>the</strong> first<br />

time, a new milestone for <strong>the</strong> <strong>in</strong>dustry.<br />

This level of demand requires <strong>the</strong> <strong>in</strong>put<br />

of 100 million t of alum<strong>in</strong>a – and around<br />

300 million t of bauxite annu<strong>all</strong>y.<br />

Total alum<strong>in</strong>ium consumption is met<br />

from both primary (new) alum<strong>in</strong>ium metal<br />

production and <strong>the</strong> recycl<strong>in</strong>g of alum<strong>in</strong>ium<br />

(Fig. 1) from <strong>the</strong> recovery of metal at <strong>the</strong><br />

end of life of each use phase whe<strong>the</strong>r that be<br />

<strong>in</strong> a motor vehicles, build<strong>in</strong>gs, beverage cans<br />

or aircraft. The long life of alum<strong>in</strong>ium applications<br />

(over 70 % is used to produce products<br />

with a lifetime greater than ten years) along<br />

with <strong>in</strong>creas<strong>in</strong>g demand for such durable,<br />

light weight and energy sav<strong>in</strong>g products,<br />

mean that primary alum<strong>in</strong>ium will cont<strong>in</strong>ue<br />

to meet <strong>the</strong> majority of alum<strong>in</strong>ium demand<br />

to <strong>the</strong> middle of <strong>the</strong> 21 st century and beyond.<br />

High recycl<strong>in</strong>g rates at end of life mean such<br />

material and its valuable properties, after a<br />

long and useful life, will be recovered for use<br />

<strong>in</strong> ano<strong>the</strong>r application.<br />

Alum<strong>in</strong>ium is <strong>the</strong> most abundant metal<br />

<strong>in</strong> <strong>the</strong> earth’s crust. The alum<strong>in</strong>ium-conta<strong>in</strong><strong>in</strong>g<br />

bauxite ores gibbsite, böhmite and diaspore<br />

are <strong>the</strong> basic raw material for primary<br />

alum<strong>in</strong>ium production.<br />

Proven, economic<strong>all</strong>y viable reserves<br />

of bauxite are sufficient to supply at least<br />

ano<strong>the</strong>r 100 years at current demand. While<br />

demand for bauxite is expected to grow<br />

as demand for high quality alum<strong>in</strong>ium<br />

products <strong>in</strong>creases, new reserves will be<br />

discovered or become economic<strong>all</strong>y viable.<br />

A susta<strong>in</strong>able m<strong>in</strong><strong>in</strong>g operation ma<strong>in</strong>ta<strong>in</strong>s<br />

<strong>the</strong> natural capital of <strong>the</strong> area <strong>in</strong> which<br />

it is located through sound environmental<br />

management systems. Successful rehabilitation<br />

and environmental management<br />

ensures that bauxite m<strong>in</strong><strong>in</strong>g is a temporary<br />

land use that does not compromise o<strong>the</strong>r<br />

long term land uses.<br />

Specific rehabilitation processes are<br />

very much dependent on <strong>the</strong> m<strong>in</strong>e site<br />

and <strong>the</strong> ecological, social and geological<br />

conditions.<br />

Bauxite m<strong>in</strong><strong>in</strong>g operations (Fig. 2) aim<br />

to restore <strong>the</strong> pre-m<strong>in</strong><strong>in</strong>g environment and<br />

respective conditions; return<strong>in</strong>g <strong>the</strong> orig<strong>in</strong>al<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

83


PROFILE+ Edition 6<br />

Fig. 1: Scrap melt<strong>in</strong>g furnace<br />

Fig. 2: Bauxite operations <strong>in</strong> Brazil<br />

ecosystem as close as possible, <strong>in</strong> terms of<br />

structure, function and dynamics and creat<strong>in</strong>g<br />

a land-use to benefit <strong>the</strong> local community.<br />

Most operations rehabilitate used<br />

areas progressively as m<strong>in</strong>e pits are closed.<br />

Bauxite residue, a by-product of <strong>the</strong><br />

Bayer Process used to produce alum<strong>in</strong>a<br />

(alum<strong>in</strong>ium oxide) ma<strong>in</strong>ly for smelt<strong>in</strong>g <strong>in</strong>to<br />

alum<strong>in</strong>ium metal, is <strong>the</strong> largest by-product<br />

with<strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium sector. The <strong>in</strong>dustry<br />

is constantly work<strong>in</strong>g on new bauxite<br />

residue treatment methods to <strong>in</strong>crease <strong>the</strong><br />

removal of alkal<strong>in</strong>e fluids and salts – and<br />

improv<strong>in</strong>g <strong>the</strong> management of bauxite<br />

residue, which is held <strong>in</strong> bauxite residue<br />

disposal and storage areas.<br />

The type of disposal and storage<br />

employed by alum<strong>in</strong>a ref<strong>in</strong>eries varies<br />

across <strong>the</strong> world, depend<strong>in</strong>g on factors<br />

such as land availability, technology availability,<br />

climatic & geographic conditions,<br />

logistics and regulatory requirements.<br />

Companies are required to ensure that<br />

disposal and storage areas comply with <strong>the</strong><br />

respective environmental standards. Modern<br />

bauxite residue disposal and storage guidel<strong>in</strong>es<br />

will <strong>in</strong>clude both general and locationspecific<br />

design criteria such as soil conditions,<br />

earthquake risk, long term stability and management<br />

of storm events. Careful monitor<strong>in</strong>g<br />

ensures structural <strong>in</strong>tegrity is ma<strong>in</strong>ta<strong>in</strong>ed.<br />

The IAI has established a number of<br />

susta<strong>in</strong>ability objectives relat<strong>in</strong>g to bauxite<br />

residue and <strong>the</strong> <strong>in</strong>tegrity of <strong>all</strong> exist<strong>in</strong>g<br />

residue storage facilities, <strong>in</strong>clud<strong>in</strong>g closed/<br />

legacy sites to ensure adequate monitor<strong>in</strong>g,<br />

management and control processes<br />

to m<strong>in</strong>imise risks to <strong>the</strong> environment. The<br />

<strong>in</strong>dustry is committed, through collaborative<br />

and <strong>in</strong>dividual actions, to cont<strong>in</strong>ue<br />

research and development <strong>in</strong>to <strong>in</strong>novative<br />

<strong>in</strong>dustry-wide remediation, rehabilitation,<br />

re-use and benign storage options for<br />

bauxite residue – and to dissem<strong>in</strong>ate <strong>the</strong><br />

research results on a global basis.<br />

ENERGY CONSUMPTION IN<br />

ALUMINIUM PRODUCTION<br />

The high value of alum<strong>in</strong>ium products<br />

is a function of <strong>the</strong>ir unique properties<br />

and <strong>the</strong>se unique properties are realised<br />

through <strong>the</strong> <strong>in</strong>put of significant quantities<br />

of energy <strong>in</strong> <strong>the</strong> smelt<strong>in</strong>g process.<br />

All steps <strong>in</strong> <strong>the</strong> alum<strong>in</strong>ium production<br />

process, as with <strong>all</strong> <strong>in</strong>dustrial processes,<br />

consume energy: fuel is combusted to<br />

m<strong>in</strong>e, move and ref<strong>in</strong>e bauxite. Ref<strong>in</strong>eries<br />

may co-generated electricity for use or<br />

export <strong>in</strong> addition to produc<strong>in</strong>g <strong>the</strong> steam<br />

required for <strong>the</strong> Bayer process. Smelters<br />

combust fuel with<strong>in</strong> <strong>the</strong> facility to generate<br />

heat for anode bak<strong>in</strong>g, cast<strong>in</strong>g and support<strong>in</strong>g<br />

operations and semi fabrication<br />

and fabrication facilities require heat and<br />

pressure to form <strong>the</strong> metal. The energy<br />

required by <strong>the</strong>se processes, however, is<br />

relatively low compared to <strong>the</strong> electrical<br />

energy required by <strong>the</strong> reduction process:<br />

Recent years have seen <strong>the</strong> <strong>in</strong>dustry<br />

move towards new centres of production,<br />

<strong>in</strong> part driven by <strong>the</strong> growth of new centres<br />

of consumption (such as Ch<strong>in</strong>a), but<br />

also due to changes <strong>in</strong> availability of reliable,<br />

long term and economical sources of<br />

power. Energy-rich countries and regions<br />

that are look<strong>in</strong>g to diversify <strong>the</strong>ir economies<br />

or have stranded power (i.e. energy<br />

that is remote from consumer base), such<br />

as <strong>the</strong> GCC and Iceland are those which<br />

are see<strong>in</strong>g growth <strong>in</strong> alum<strong>in</strong>ium smelt<strong>in</strong>g<br />

capacity and which are, <strong>in</strong> effect, export<strong>in</strong>g<br />

<strong>the</strong>ir excess energy <strong>in</strong> <strong>the</strong> form of alum<strong>in</strong>ium<br />

or alum<strong>in</strong>ium products.<br />

The growth <strong>in</strong> smelt<strong>in</strong>g capacity worldwide,<br />

with new facilities tend<strong>in</strong>g to be <strong>the</strong><br />

most energy efficient, has seen reduction<br />

energy consumption per tonne of alum<strong>in</strong>ium<br />

f<strong>all</strong> by 10 % over <strong>the</strong> last 20 years.<br />

Due to <strong>the</strong> high power requirements<br />

of alum<strong>in</strong>ium smelters, <strong>the</strong> alum<strong>in</strong>ium<br />

and power generation sectors have a<br />

close developmental relationship. While<br />

new smelt<strong>in</strong>g capacity “follows” available<br />

energy, it also enables <strong>the</strong> development of<br />

power generation and distribution capacity<br />

<strong>in</strong> such areas, br<strong>in</strong>g<strong>in</strong>g reliable electrical<br />

energy to new areas, along with concurrent<br />

economic development, o<strong>the</strong>r <strong>in</strong>dustries<br />

and improved quality of life for residents.<br />

The fact that it does take a lot of energy<br />

to break <strong>the</strong> alum<strong>in</strong>ium oxygen bonds of<br />

alum<strong>in</strong>a (<strong>the</strong> same physical fact that gives<br />

alum<strong>in</strong>ium its unique qualities of durability,<br />

conductivity, strength and light<br />

weight); and that <strong>the</strong> grow<strong>in</strong>g markets for<br />

alum<strong>in</strong>ium products will need to be met<br />

through supply of primary metal mean that<br />

absolute decoupl<strong>in</strong>g of <strong>in</strong>dustrial (and economic)<br />

growth from environmental impact<br />

and resource use is not possible solely by<br />

process efficiency.<br />

84 heat process<strong>in</strong>g 2-<strong>2014</strong>


Edition 6<br />

PROFILE+<br />

The true measure of <strong>the</strong> alum<strong>in</strong>ium <strong>in</strong>dustry<br />

and its products to <strong>the</strong> improvement of<br />

human well-be<strong>in</strong>g, economic growth and<br />

<strong>the</strong> reduction <strong>in</strong> environmental impacts<br />

and resource use, should necessarily be<br />

seen <strong>in</strong> <strong>the</strong> light of its role as an enabler of<br />

such improvement. Thus <strong>the</strong> full lifecycle of<br />

alum<strong>in</strong>ium products, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> benefits<br />

<strong>the</strong>y br<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong>ir use, whe<strong>the</strong>r over<br />

long time periods as build<strong>in</strong>g applications or<br />

relatively short lifetimes as packag<strong>in</strong>g solutions,<br />

should be <strong>the</strong> focus of any analysis of<br />

<strong>the</strong>ir contribution to susta<strong>in</strong>ability.<br />

THE ALUMINIUM STORY<br />

The IAI has developed <strong>the</strong> “The Alum<strong>in</strong>ium<br />

Story” as a way to communicate <strong>the</strong> performance<br />

of <strong>the</strong> <strong>in</strong>dustry <strong>in</strong> improv<strong>in</strong>g its<br />

production processes and to demonstrate<br />

<strong>the</strong> benefits of alum<strong>in</strong>ium products <strong>in</strong> use<br />

and through recycl<strong>in</strong>g (Fig. 3). The Alum<strong>in</strong>ium<br />

Story suite of websites were realised by<br />

Interstruct a lead<strong>in</strong>g Berl<strong>in</strong>-based design<br />

agency, which has specialized <strong>in</strong> produc<strong>in</strong>g<br />

highly attractive and user-friendly web<br />

presentations for companies and <strong>in</strong>stitution<br />

primarily from <strong>the</strong> technology sector.<br />

The Alum<strong>in</strong>ium Story website itself is a<br />

portal webpage that provides easy access<br />

<strong>in</strong>to <strong>the</strong> world of alum<strong>in</strong>ium. It <strong>in</strong>cludes three<br />

dynamic animations that explore <strong>the</strong> key elements<br />

of <strong>the</strong> story: production and <strong>the</strong> <strong>in</strong>dustry’s<br />

performance <strong>in</strong> reduc<strong>in</strong>g its impacts;<br />

use of alum<strong>in</strong>ium products and <strong>the</strong> positive<br />

social, economic and environmental benefits<br />

<strong>the</strong>y have <strong>the</strong> potential to deliver; and <strong>the</strong><br />

value retention potential of recycl<strong>in</strong>g at end<br />

of life. The portal also l<strong>in</strong>ks to a number of<br />

sub-sites that go <strong>in</strong>to greater detail on <strong>the</strong>se<br />

elements:<br />

■■<br />

Alum<strong>in</strong>ium <strong>in</strong> Build<strong>in</strong>g<br />

■■<br />

Alum<strong>in</strong>ium <strong>in</strong> Transport<br />

■■<br />

Alum<strong>in</strong>ium <strong>in</strong> Packag<strong>in</strong>g<br />

■■<br />

Alum<strong>in</strong>ium Recycl<strong>in</strong>g<br />

(www.<strong>the</strong>alum<strong>in</strong>iumstory.com)<br />

The Campaign Sites<br />

The “Alum<strong>in</strong>ium Production” and “Bauxite<br />

& Alum<strong>in</strong>a” sites are dedicated to <strong>the</strong> topic<br />

of alum<strong>in</strong>ium production and process<strong>in</strong>g<br />

as well as <strong>the</strong> impacts and benefits to<br />

local communities. Three central processes<br />

(and respective technical procedures)<br />

are expla<strong>in</strong>ed step by step<br />

with <strong>the</strong> help of illustrations<br />

and short texts, along with<br />

detailed life cycle data.<br />

The site entitled “Alum<strong>in</strong>ium<br />

<strong>in</strong> Build<strong>in</strong>g” was<br />

conceived as a way of communicat<strong>in</strong>g<br />

<strong>the</strong> benefits<br />

of alum<strong>in</strong>ium build<strong>in</strong>g and<br />

construction applications<br />

to architects and specifiers,<br />

who might be unaware of<br />

<strong>the</strong> environmental and economic<br />

benefits that could<br />

be delivered through <strong>the</strong>ir<br />

build<strong>in</strong>gs by design<strong>in</strong>g with<br />

alum<strong>in</strong>ium, if <strong>the</strong>ir focus was solely on <strong>the</strong><br />

production impacts of <strong>the</strong> material relative<br />

to compet<strong>in</strong>g materials. It has a clear layout,<br />

high-quality images and a dynamic look &<br />

feel. The benefits of alum<strong>in</strong>ium as a build<strong>in</strong>g<br />

material are highlighted on <strong>the</strong> homepage,<br />

complemented by testimonials of glob<strong>all</strong>y<br />

renowned architects.<br />

Based on <strong>the</strong> design concept of <strong>the</strong> “Alum<strong>in</strong>ium<br />

<strong>in</strong> Build<strong>in</strong>g” website, “Alum<strong>in</strong>ium<br />

<strong>in</strong> Transport” features a highly <strong>in</strong>novative<br />

tool developed by Interstruct, based on IAI<br />

data and modell<strong>in</strong>g: The “Transport Light-<br />

Weight<strong>in</strong>g Model” enables users to <strong>in</strong>dividu<strong>all</strong>y<br />

calculate sav<strong>in</strong>gs <strong>in</strong> terms of energy<br />

and green house gas emissions result<strong>in</strong>g<br />

from <strong>the</strong> use of alum<strong>in</strong>ium <strong>in</strong> transport<br />

applications.<br />

Various forms of alum<strong>in</strong>ium packag<strong>in</strong>g<br />

are displayed with<strong>in</strong> a type of showroom<br />

on <strong>the</strong> start<strong>in</strong>g page of <strong>the</strong> “Alum<strong>in</strong>ium<br />

<strong>in</strong> Packag<strong>in</strong>g” campaign. Unlike <strong>the</strong> transport<br />

and build<strong>in</strong>g sites, <strong>the</strong> focus of packag<strong>in</strong>g<br />

is more on retailers and consumers<br />

than customers and thus it has a more<br />

“supermarket-shelf” look and feel. The<br />

role of alum<strong>in</strong>ium as a protective, lightweight<br />

barrier material is explored and<br />

lifecycle <strong>in</strong>formation heavily promoted;<br />

quantify<strong>in</strong>g <strong>the</strong> use phase benefits of<br />

alum<strong>in</strong>ium which, while hav<strong>in</strong>g a high<br />

environmental footpr<strong>in</strong>t per gram compared<br />

to o<strong>the</strong>r materials, has improved<br />

protection potential, lighter weight for<br />

transportation and high design potential.<br />

The recyclability and real world recycl<strong>in</strong>g<br />

rates for packag<strong>in</strong>g applications are also<br />

Fig. 3: The Alum<strong>in</strong>ium Story<br />

presented and broad <strong>in</strong>formation on<br />

<strong>the</strong> wide range of packag<strong>in</strong>g types that<br />

benefit from alum<strong>in</strong>ium use – <strong>in</strong>clud<strong>in</strong>g<br />

multi-material solutions.<br />

Built around <strong>the</strong> IAI’s mass flow model,<br />

<strong>the</strong> “Alum<strong>in</strong>ium Recycl<strong>in</strong>g” site demonstrates<br />

both <strong>the</strong> benefits and ch<strong>all</strong>enges to<br />

alum<strong>in</strong>ium recycl<strong>in</strong>g, explor<strong>in</strong>g specificities<br />

of collection schemes through regional case<br />

studies and deliver<strong>in</strong>g data on recycl<strong>in</strong>g rates<br />

per market segment. The limits of recycl<strong>in</strong>g<br />

to meet demand are also explored through<br />

an animated version of <strong>the</strong> mass flow model,<br />

illustrat<strong>in</strong>g <strong>the</strong> importance of product lifetimes<br />

and <strong>the</strong> fact that <strong>the</strong> majority of<br />

alum<strong>in</strong>ium produced is still do<strong>in</strong>g its work,<br />

locked <strong>in</strong> products currently <strong>in</strong> use until <strong>the</strong>y<br />

reach <strong>the</strong> end of <strong>the</strong>ir useful life, which can<br />

be 50 years or more. Clear <strong>in</strong>formation <strong>in</strong><br />

comb<strong>in</strong>ation with <strong>the</strong> elaborate “Mass Flow<br />

Model” animation communicate <strong>the</strong> complex<br />

flows of material <strong>in</strong> use and at end of<br />

life. All of <strong>the</strong> sites are currently presented <strong>in</strong><br />

English and Ch<strong>in</strong>ese, with French versions of<br />

<strong>the</strong> transport and build<strong>in</strong>g sites.<br />

Contact:<br />

Ron Knapp<br />

International Alum<strong>in</strong>ium Institute<br />

10 Charles II Street<br />

London<br />

SW1Y 4AA<br />

United K<strong>in</strong>gdom<br />

Tel.: +44 20 7389 3820<br />

ron.knapp@world-alum<strong>in</strong>ium.org<br />

www.world-alum<strong>in</strong>ium.org<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

85


Develop<strong>in</strong>g <strong>the</strong> Powder Met<strong>all</strong>urgy Future<br />

european powder<br />

met<strong>all</strong>urgy association<br />

Technical Programme<br />

Available Now<br />

INTERNATIONAL<br />

CONGRESS & EXHIBITION<br />

21 - 24 September <strong>2014</strong><br />

The Messezentrum Salzburg, Austria<br />

Download a copy of <strong>the</strong><br />

Technical Programme only at<br />

www.epma.com/pm<strong>2014</strong>


Edition 10<br />

FOCUS ON<br />

“We contemplate a strong<br />

growth <strong>in</strong> our photovoltaic<br />

sector <strong>in</strong> <strong>the</strong> future”<br />

Laurent Pelissier is CEO of <strong>the</strong> ECM Technologies Group. In this <strong>in</strong>terview with heat<br />

process<strong>in</strong>g he talks <strong>about</strong> <strong>the</strong> future of <strong>the</strong> energy <strong>in</strong>dustry and technological ch<strong>all</strong>enges,<br />

reveal<strong>in</strong>g his personal tip for upcom<strong>in</strong>g generations.<br />

<strong>Read</strong> <strong>all</strong><br />

<strong>in</strong>terviews onl<strong>in</strong>e<br />

Topic: The energy mix of <strong>the</strong> future: Are you prepared to<br />

risk a prediction?<br />

Pelissier: The prediction is for energy mix<strong>in</strong>g, <strong>in</strong> <strong>the</strong> future,<br />

photovoltaic energy will have an important place of between<br />

20 and 30 %.<br />

Europe <strong>in</strong> 2020: How will people‘s<br />

everyday life have changed as a<br />

result of changes <strong>in</strong> <strong>the</strong> energy <strong>in</strong>dustry?<br />

What fuel will <strong>the</strong>y use <strong>in</strong><br />

<strong>the</strong>ir cars? How will <strong>the</strong>y heat <strong>the</strong>ir<br />

homes? How will <strong>the</strong>y generate<br />

light? Risk a scenario!<br />

Pelissier: Self-production will make<br />

<strong>the</strong>m more and more autonomous thanks to solar panels<br />

and storage systems ei<strong>the</strong>r with hydrogen fuel cells, or with<br />

<strong>the</strong> help of batteries. Cars are becom<strong>in</strong>g more and more<br />

hybrid, electric or fuel cell.<br />

The sun, w<strong>in</strong>d, water, geo<strong>the</strong>rmics, etc.: Which regenerable<br />

energy source do you consider to have <strong>the</strong> greatest future?<br />

Pelissier: For me, <strong>the</strong> sun is one of <strong>the</strong> sources of <strong>the</strong> future<br />

as well as water for <strong>the</strong> production of hydrogen.<br />

Which of <strong>the</strong> currently emerg<strong>in</strong>g technologies would<br />

you <strong>in</strong>vest <strong>in</strong> today on that basis?<br />

Pelissier: We would be will<strong>in</strong>g to <strong>in</strong>vest <strong>in</strong> photovoltaic<br />

energy which we have already developed <strong>in</strong> ECM Technologies<br />

and <strong>the</strong> entire hydrogen sector.<br />

The energy turnaround: What changes will be necessary<br />

at <strong>the</strong> political (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> global political), <strong>the</strong> social<br />

and <strong>the</strong> ecological level to enable us to talk realistic<strong>all</strong>y of<br />

a “turnaround”?<br />

„Decisions on <strong>the</strong><br />

energy policy of each<br />

country should be<br />

taken collegi<strong>all</strong>y.“<br />

Pelissier: In my op<strong>in</strong>ion, <strong>the</strong> Government should stop its<br />

lobby<strong>in</strong>g on nuclear energy and energies of our time. On<br />

<strong>the</strong> o<strong>the</strong>r hand, decisions on <strong>the</strong> energy policy of each<br />

country should be taken collegi<strong>all</strong>y, with throughout government,<br />

because a decision for<br />

a nuclear center with wood charcoal<br />

factories for example, may<br />

affect neighbor<strong>in</strong>g countries as<br />

much as <strong>in</strong>vest<strong>in</strong>g countries.<br />

And your wishes for <strong>the</strong> federal<br />

government <strong>in</strong> this context?<br />

Pelissier: If we use renewable<br />

energy, we will have to review<br />

electricity distribution, because renewable energy could<br />

be produced closer to <strong>the</strong> consumer, which is not <strong>the</strong> case<br />

for nuclear energy.<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

87


FOCUS ON Edition 10<br />

RESUME<br />

Laurent Pelissier<br />

Education<br />

1990 – 1992 ESA (Ecole Supérieur des Affaires) –<br />

DESS CAAE Gestion d’Entreprise<br />

1985 – 1988 Ecole Catholique des Arts et Métiers –<br />

Diplôme d’<strong>in</strong>génieur ECAM<br />

1984 – 1985 Mathématiques Supérieures et Spéciales<br />

Career<br />

S<strong>in</strong>ce 2008 CEO of ECM Technologies Group<br />

1996 – 2008 CEO of ECM and various companies<br />

1994 – 1996 General Manager, ECM group<br />

1991 – 1994 Sales Manager, ECM group<br />

1988 – 1991 Product Eng<strong>in</strong>eer <strong>in</strong> charge of R&D,<br />

ECM group<br />

■ President of Industry Commission Grenoble CCI<br />

■ TENERRDIS and UDIMEC Adm<strong>in</strong>istrator<br />

■ December 2012: Trophee “Leader Croissance” Presences<br />

CCI Grenoble<br />

■ Manager of <strong>the</strong> year <strong>in</strong> 2003, "Grand Prix de l’Entrepreneur<br />

Prix Industrie Région Rhône-Alpes"<br />

Irrespective of <strong>the</strong> form of energy and <strong>the</strong> technology<br />

used, many consider <strong>the</strong> term “energy-efficiency” to be<br />

<strong>the</strong> key to <strong>the</strong> energy questions of <strong>the</strong> future. How do<br />

you view this subject? What do you consider to be <strong>the</strong><br />

most important development <strong>in</strong> this field <strong>in</strong> <strong>the</strong> heatprocess<strong>in</strong>g<br />

technology <strong>in</strong>dustry?<br />

Pelissier: We must clearly work on energy efficiency and<br />

on reduc<strong>in</strong>g consumption or on improv<strong>in</strong>g <strong>the</strong> efficiency<br />

of build<strong>in</strong>gs and transport.<br />

What role does your company currently play on <strong>the</strong> energy<br />

market?<br />

Pelissier: Today, we offer equipment for <strong>the</strong> nuclear and<br />

<strong>the</strong> photovoltaic <strong>in</strong>dustry as well as turnkey plants to manufacture<br />

solar panels.<br />

What role will your company be play<strong>in</strong>g on <strong>the</strong> energy<br />

market <strong>in</strong> twenty years time?<br />

Pelissier: We contemplate a strong growth <strong>in</strong> our photovoltaic<br />

sector <strong>in</strong> <strong>the</strong> future and we are also th<strong>in</strong>k<strong>in</strong>g of<br />

work<strong>in</strong>g more and more on fuel cells.<br />

What will be your company’s most important <strong>in</strong>novation<br />

or project?<br />

Pelissier: The most important projects <strong>in</strong> <strong>the</strong> company<br />

apart from <strong>in</strong>novations made <strong>in</strong> partnership with <strong>the</strong><br />

French Atomic Energy Commission (CEA) are very costly<br />

turnkey plant projects for different countries and a significant<br />

technology transfer.<br />

How does <strong>the</strong> expansion of <strong>the</strong> EU and globalization affect<br />

your company and its bus<strong>in</strong>ess?<br />

Pelissier: Our company has been export<strong>in</strong>g for many<br />

years and more than 90 % of our sales are <strong>in</strong> export, so<br />

EU enlargement and globalization are ra<strong>the</strong>r an opportunity<br />

for us.<br />

How important is a trade name or a brand for <strong>the</strong> success<br />

of products <strong>in</strong> <strong>the</strong> <strong>in</strong>dustrial sector?<br />

Pelissier: We work <strong>in</strong> B2B, we sell to <strong>in</strong>dustry, so our<br />

name is important <strong>in</strong> terms of quality of our products<br />

for sales.<br />

Have you been able to launch new developments, or<br />

able to pursue <strong>the</strong>m only after a delay, or at reduced<br />

speed, due to <strong>the</strong> lack of qualified personnel?<br />

Pelissier: We have never had a problem of qualified personnel<br />

to carry out our development.<br />

What would you like to change <strong>in</strong> your company?<br />

Pelissier: I do not want to change <strong>the</strong> company now, I<br />

hope that our bus<strong>in</strong>ess thrives on <strong>the</strong> different sectors,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> photovoltaic sector.<br />

88 heat process<strong>in</strong>g 2-<strong>2014</strong>


Edition 10<br />

FOCUS ON<br />

How important is expansion abroad for your company?<br />

Pelissier: Today, we have subsidiaries <strong>in</strong> <strong>the</strong> US, Ch<strong>in</strong>a, Kazakhstan,<br />

and India. We plan to create more <strong>in</strong> Brazil and Germany.<br />

So our development abroad is essential as we export<br />

90 % of our production.<br />

Is your company receptive to renewable energy?<br />

Pelissier: Yes, our company is highly sensitive and receptive<br />

to renewable energy as <strong>the</strong> photovoltaic sector is one of <strong>the</strong><br />

important areas of our development.<br />

Does your company already use renewable energy?<br />

Pelissier: Yes, we have <strong>in</strong>st<strong>all</strong>ed solar panels on our company’s<br />

build<strong>in</strong>g to partly cover our energy consumption.<br />

How receptive is your company to new technologies?<br />

Pelissier: Our bus<strong>in</strong>ess is based on two major aspects: export<br />

and R&D, so it is essential for us to heavily <strong>in</strong>vest <strong>in</strong> research<br />

and development both <strong>in</strong>tern<strong>all</strong>y and via partnership with<br />

schools and research centers such as <strong>the</strong> French Atomic Energy<br />

Commission (CEA).<br />

How much does your company spend on <strong>in</strong>vestments each<br />

year?<br />

Pelissier: Our company essenti<strong>all</strong>y <strong>in</strong>vests <strong>in</strong> research and<br />

development. We spend between 5 % and 10 % of our turnover<br />

<strong>in</strong> this area.<br />

How would you assess your deal<strong>in</strong>gs with employees?<br />

Pelissier: Relations with employees are good, and are based<br />

on mutual trust and <strong>in</strong>formation and decision shar<strong>in</strong>g.<br />

What moral values are of particular relevance for you?<br />

Pelissier: I believe that for a company which aims to make<br />

a profit and sell projects, we need to have an important set<br />

of work<strong>in</strong>g values.<br />

How do you manage to be sure of some time for yourself,<br />

and not always to be deal<strong>in</strong>g with <strong>in</strong>ternal and external<br />

ch<strong>all</strong>enges?<br />

Pelissier: It is important to have moments when <strong>the</strong> company<br />

is not at <strong>the</strong> heart of your activity. I manage to f<strong>in</strong>d time<br />

dur<strong>in</strong>g <strong>the</strong> day or dur<strong>in</strong>g <strong>the</strong> year when I can detach myself<br />

a little. However, I still reply to my emails and phone c<strong>all</strong>s.<br />

Do you, or did you, have any people whom you regard as<br />

examples to you?<br />

Pelissier: My fa<strong>the</strong>r is an example to me; he has been<br />

able to develop <strong>the</strong> bus<strong>in</strong>ess while preserv<strong>in</strong>g his personal<br />

life.<br />

How were you brought up and educated?<br />

Pelissier: I was brought up to respect o<strong>the</strong>rs, with goals<br />

of success and excellence and with a need to undertake.<br />

What is your motto for life?<br />

Pelissier: Look forward.<br />

In your op<strong>in</strong>ion, what was <strong>the</strong> most important <strong>in</strong>vention<br />

of <strong>the</strong> 20 th century?<br />

Pelissier: The Internet.<br />

What personal characteristics are most important to you?<br />

Pelissier: Capacity to listen.<br />

What is your own personal tip for<br />

<strong>the</strong> upcom<strong>in</strong>g generations?<br />

Pelissier: Be motivated and undertake new th<strong>in</strong>gs.<br />

What has shaped you <strong>in</strong> particular?<br />

Pelissier: My education.<br />

What can you absolutely not do<br />

without?<br />

Pelissier: I cannot work without<br />

<strong>the</strong> o<strong>the</strong>rs.<br />

What do you wish for <strong>the</strong><br />

world?<br />

Pelissier: I wish for it to be<br />

better and fair.<br />

Thank you for<br />

this <strong>in</strong>terview.<br />

„We must clearly work on<br />

energy efficiency and on<br />

reduc<strong>in</strong>g consumption.“<br />

2-<strong>2014</strong> heat process<strong>in</strong>g


Inductive Melt<strong>in</strong>g<br />

and Hold<strong>in</strong>g<br />

www.vulkan-verlag.de<br />

Fundamentals | Plants and Furnaces | Process Eng<strong>in</strong>eer<strong>in</strong>g<br />

The second, revised edition of this standard work for eng<strong>in</strong>eers, technicians<br />

and o<strong>the</strong>r practitioners work<strong>in</strong>g <strong>in</strong> melt<strong>in</strong>g shops and foundries is to<br />

appear <strong>in</strong> mid-2013. This new version of <strong>the</strong> title on <strong>in</strong>ductive melt<strong>in</strong>g and<br />

temperature ma<strong>in</strong>tenance orig<strong>in</strong><strong>all</strong>y published <strong>in</strong> 2009 is <strong>the</strong> result of <strong>the</strong><br />

great demand generated at that time, and <strong>in</strong>cludes coverage of <strong>the</strong> plantand<br />

process-eng<strong>in</strong>eer<strong>in</strong>g advances achieved dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terven<strong>in</strong>g four<br />

years. These relate, <strong>in</strong> particular, to <strong>the</strong> use of <strong>the</strong> <strong>in</strong>duction furnace <strong>in</strong><br />

electric-steel production, a field <strong>in</strong> which this environment<strong>all</strong>y and ma<strong>in</strong>sfriendly<br />

melt<strong>in</strong>g system has evolved <strong>in</strong>to a genu<strong>in</strong>e and advantageous<br />

alternative to <strong>the</strong> electric arc furnace. Characteristic of this is <strong>the</strong> recent<br />

<strong>in</strong>crease <strong>in</strong> <strong>in</strong>verter supply power from its maximum of 18 MW at <strong>the</strong><br />

time of publication of <strong>the</strong> first edition of <strong>the</strong> book to its present 42 MW<br />

to permit supply of 65 t crucible furnaces.<br />

Author: E. Dötsch<br />

2 nd edition 2013, 322 pages, with <strong>in</strong>teraktive e-book (onl<strong>in</strong>e reader access),<br />

hardcover<br />

ISBN: 978-3-8027-2386-5<br />

price: € 75,-<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I place a firm order for <strong>the</strong> technical book. Please send<br />

— copies of Inductive Melt<strong>in</strong>g and Hold<strong>in</strong>g 2nd edition 2013<br />

(ISBN: 978-3-8027-2386-5 ) at <strong>the</strong> price of € 75,- (plus postage and pack<strong>in</strong>g)<br />

Company/<strong>in</strong>stitution<br />

First name and surname of recipient<br />

Street/P.O. Box, No.<br />

Country, Postcode, Town<br />

Reply / Antwort<br />

Vulkan Verlag GmbH<br />

Versandbuchhandlung<br />

Postfach 10 39 62<br />

45039 Essen<br />

GERMANY<br />

Phone<br />

E-mail<br />

L<strong>in</strong>e of bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to Vulkan-Verlag GmbH, Versandbuchhandlung, Postfach 10 39 62, 45039 Essen, Germany.<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

It is approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

This approval may be withdrawn at any time.<br />

✘<br />

Date, signature<br />

PAIMAH<strong>2014</strong>


TECHNOLOGY IN PRACTICE<br />

Ga<strong>in</strong><strong>in</strong>g stability through a change <strong>in</strong> energy<br />

policies and attitudes<br />

The power consumption of a steelworks<br />

is comparable to that of a sm<strong>all</strong>-sized<br />

town. Thus, <strong>the</strong> participants on <strong>the</strong> steel<br />

<strong>in</strong>dustry market always operate right<br />

on <strong>the</strong> economic limit of endurance,<br />

and even <strong>the</strong> slightest rise <strong>in</strong> <strong>the</strong> cost of<br />

electricity may imply life-or-death consequences.<br />

On <strong>the</strong> hard-fought <strong>in</strong>ternational<br />

market, however, price <strong>in</strong>creases are not an<br />

option. Therefore, <strong>in</strong> order to withstand<br />

possible additional burdens and to be<br />

completely up-to-date as regards environmental<br />

technology, it is important to<br />

keep track of energy flows and to optimize<br />

energy costs with<strong>in</strong> <strong>the</strong> production process.<br />

A platform for this is provided by <strong>the</strong><br />

X-Pact® Energy Advisor software system<br />

from SMS Siemag.<br />

The <strong>in</strong>ternational steel <strong>in</strong>dustry is today<br />

fac<strong>in</strong>g <strong>the</strong> ch<strong>all</strong>enge of reconcil<strong>in</strong>g ever<br />

greater flexibility and productivity with<br />

environmental protection and susta<strong>in</strong>ability.<br />

One of <strong>the</strong> set aims here is to utilize<br />

resources advantageously while at <strong>the</strong><br />

same time reduc<strong>in</strong>g <strong>the</strong> CO 2 emissions. First<br />

and foremost, <strong>the</strong>re is <strong>the</strong> requirement to<br />

rema<strong>in</strong> competitive <strong>in</strong> this hard-fought<br />

environment. These objectives, however,<br />

are hampered by <strong>the</strong> energy costs. These<br />

costs represent a major proportion of <strong>the</strong><br />

total expenditures of steelworks.<br />

The steel <strong>in</strong>dustry thus has to bear a<br />

double burden: on <strong>the</strong> one hand <strong>the</strong> heavy<br />

weight of <strong>in</strong>ternational competition and,<br />

on <strong>the</strong> o<strong>the</strong>r, <strong>the</strong> upward trend <strong>in</strong> energy<br />

costs, represent<strong>in</strong>g yet ano<strong>the</strong>r handicap.<br />

To balance this out, a number of firms are<br />

<strong>in</strong>tend<strong>in</strong>g to take <strong>the</strong> plunge and move<br />

to o<strong>the</strong>r countries with a more favourable<br />

bus<strong>in</strong>ess environment, <strong>in</strong> keep<strong>in</strong>g with <strong>the</strong><br />

maxim “Steel is global”, s<strong>in</strong>ce price <strong>in</strong>creases<br />

cannot be passed on to customers <strong>in</strong> a situation<br />

of cutthroat competition.<br />

The steel <strong>in</strong>dustry is be<strong>in</strong>g weakened by<br />

precisely those economic burdens which<br />

go hand-<strong>in</strong>-hand with <strong>the</strong> “change <strong>in</strong><br />

energy policies and attitudes”. The paradox<br />

here is: Innovative steel grades and highly<br />

developed steel process<strong>in</strong>g technology are<br />

actu<strong>all</strong>y <strong>the</strong> driv<strong>in</strong>g forces of this “change”.<br />

It is only <strong>the</strong>se that enable <strong>the</strong> operat<strong>in</strong>g<br />

efficiency of <strong>the</strong>rmal power stations to be<br />

fur<strong>the</strong>r optimized, for example. Steel functions<br />

as a crucial material here.<br />

Various German steel giants, for<br />

<strong>in</strong>stance, are already th<strong>in</strong>k<strong>in</strong>g out loud<br />

<strong>about</strong> abandon<strong>in</strong>g Germany as an <strong>in</strong>dustrial<br />

location, <strong>in</strong> view of <strong>the</strong> ris<strong>in</strong>g energy<br />

costs caused by <strong>the</strong> levies imposed under<br />

<strong>the</strong> Renewable Energy Act and by <strong>the</strong> EU<br />

Emissions Trad<strong>in</strong>g Scheme. In spite of <strong>the</strong><br />

exceptions <strong>all</strong>owed for energy-<strong>in</strong>tensive<br />

<strong>in</strong>dustrial companies, <strong>the</strong> German Steel<br />

Federation estimates that <strong>the</strong> annual additional<br />

burden on German steelworks owners<br />

will be around € 1.5 million as from <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g of 2013.<br />

At <strong>the</strong> same time, <strong>the</strong> debate currently<br />

be<strong>in</strong>g restarted concern<strong>in</strong>g CO 2 emissions<br />

certificates trad<strong>in</strong>g and political stipulations<br />

such as <strong>the</strong> “Green Electricity Levy”<br />

are mak<strong>in</strong>g it more difficult for steelmakers<br />

located <strong>in</strong> Germany to operate with a<br />

profitable production process.<br />

The ris<strong>in</strong>g energy costs and <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

demand for flexibility <strong>in</strong> production are<br />

lead<strong>in</strong>g to a global reth<strong>in</strong>k <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry.<br />

The feel<strong>in</strong>g among owners of met<strong>all</strong>urgical<br />

production facilities is one of walk<strong>in</strong>g<br />

a tightrope, with energy and cost efficiency<br />

be<strong>in</strong>g <strong>the</strong> only way of assur<strong>in</strong>g firm<br />

ground underneath it. This efficiency can<br />

be achieved through energy data management<br />

systems such as Energy Advisor from<br />

SMS Siemag (Fig. 1). These systems <strong>all</strong>ow<br />

an over<strong>all</strong>, <strong>in</strong>tegrated exam<strong>in</strong>ation and<br />

assessment of energy flows. The evaluation<br />

and optimization of energy consumption<br />

make it possible not only to cut down<br />

costs but also to ensure quality. This gives<br />

steel producers a better chance to reduce<br />

energy costs ra<strong>the</strong>r than profits dur<strong>in</strong>g production<br />

and thus cont<strong>in</strong>ue to function <strong>in</strong> a<br />

competitive manner.<br />

ATTAINING PLANNING<br />

SECURITY<br />

An energy management system accord<strong>in</strong>g<br />

to ISO 50001 may have a compensatory<br />

effect and reduce <strong>the</strong> high cost<br />

pressure dur<strong>in</strong>g <strong>the</strong> production process.<br />

It <strong>all</strong>ows transparency with regard to<br />

energy flows and consumption dur<strong>in</strong>g<br />

<strong>the</strong> entire production process. Authoritative<br />

knowledge can thus be obta<strong>in</strong>ed,<br />

which helps to reduce energy costs and<br />

CO 2 emissions.<br />

Fig. 1: The energy and utilities data are <strong>in</strong>terl<strong>in</strong>ked with <strong>the</strong> production and status<br />

<strong>in</strong>formation and evaluated <strong>in</strong> <strong>the</strong> Energy Advisor<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

91


TECHNOLOGY IN PRACTICE<br />

Empirical values show <strong>the</strong> follow<strong>in</strong>g: If<br />

an EMIS system (Energy Monitor<strong>in</strong>g Information<br />

System) has been correctly <strong>in</strong>st<strong>all</strong>ed<br />

and <strong>the</strong> correspond<strong>in</strong>g measures have<br />

been taken, sav<strong>in</strong>gs of 5 to 20 % are typical,<br />

with 8 % be<strong>in</strong>g realistic. The payback time<br />

for <strong>the</strong>se systems is gener<strong>all</strong>y between one<br />

and two years (Jens Hundrieser and Oliver<br />

Seifert <strong>in</strong> Stahl und Eisen 129 (2009) No. 7).<br />

As a plantmaker active worldwide <strong>in</strong> <strong>the</strong><br />

field of met<strong>all</strong>urgical plant and roll<strong>in</strong>g mill<br />

technology, SMS Siemag makes available<br />

its Energy Advisor as a relevant energy datamanagement<br />

system which can do more<br />

than mere monitor<strong>in</strong>g. This is because <strong>the</strong><br />

<strong>in</strong>tegrated philosophy of SMS Siemag as a<br />

system supplier proves to be advantageous<br />

already dur<strong>in</strong>g <strong>the</strong> plann<strong>in</strong>g process for new,<br />

energy-efficient plants and <strong>the</strong>n f<strong>in</strong><strong>all</strong>y dur<strong>in</strong>g<br />

<strong>the</strong> subsequent implementation.<br />

For this it is necessary to have <strong>in</strong>terdiscipl<strong>in</strong>ary<br />

knowledge of <strong>the</strong> electrical and<br />

automation systems as well as of <strong>the</strong> process<br />

technology.<br />

With <strong>the</strong> implemented electrical and<br />

automation solutions, SMS Siemag can<br />

utilize <strong>the</strong> measur<strong>in</strong>g systems directly and<br />

without obstacles. The ability to make use<br />

of <strong>the</strong> sensors and actuators from SMS Siemag,<br />

<strong>in</strong>tegrated dur<strong>in</strong>g <strong>the</strong> erection of <strong>the</strong><br />

plant itself, means that potential sav<strong>in</strong>gs<br />

can be achieved s<strong>in</strong>ce <strong>the</strong>re is no need to<br />

provide any fur<strong>the</strong>r <strong>in</strong>terfaces. The Energy<br />

Advisor can be tailored directly to <strong>the</strong> customer’s<br />

plant follow<strong>in</strong>g an analysis, even if<br />

<strong>the</strong> plant has been supplied by o<strong>the</strong>r firms.<br />

Steelworks thus benefit from <strong>the</strong> competence<br />

of a plantmaker such as SMS<br />

Siemag, who is familiar with <strong>the</strong> systems,<br />

processes, <strong>in</strong>terfaces and procedures and<br />

thus creates <strong>the</strong> optimum conditions for<br />

establish<strong>in</strong>g a system of this type.<br />

THE ENERGY SITUATION AT A<br />

GLANCE<br />

The Energy Advisor is adapted <strong>in</strong>dividu<strong>all</strong>y<br />

to <strong>the</strong> respective plant and takes account<br />

of <strong>the</strong> particular production conditions.<br />

Besides electrical power, <strong>the</strong> system<br />

records o<strong>the</strong>r energy-related utilities,<br />

such as fuels, gases, compressed air, heat<br />

or water. This results <strong>in</strong> a holistic energy<br />

management. Automatic aggregation of<br />

<strong>the</strong> measured values <strong>all</strong>ows a clear and<br />

highly efficient representation of <strong>the</strong><br />

measured values, both for long periods<br />

of times and short <strong>in</strong>tervals, <strong>in</strong> such a way<br />

that <strong>all</strong> analyses can be made directly<br />

<strong>in</strong> <strong>the</strong> system. The energy efficiency of<br />

<strong>the</strong> plant is displayed to <strong>the</strong> operator <strong>in</strong><br />

screens by dial <strong>in</strong>dicators or traffic lights<br />

and an easy overview of <strong>the</strong> energy situation<br />

is provided <strong>in</strong> this form.<br />

The evaluation of <strong>the</strong> <strong>in</strong>st<strong>all</strong>ations us<strong>in</strong>g<br />

efficiency <strong>in</strong>dicators <strong>all</strong>ows comparison<br />

with values from previous periods or<br />

o<strong>the</strong>r areas. Different materials and types<br />

of energy can be compared, exam<strong>in</strong>ed and<br />

evaluated with<strong>in</strong> <strong>the</strong> process. Consumption<br />

data of <strong>the</strong> over<strong>all</strong> plant or <strong>in</strong>dividual plant<br />

sections is compiled <strong>in</strong> reports.<br />

Consumptions may be <strong>all</strong>ocated <strong>in</strong> total<br />

or proportion<strong>all</strong>y to <strong>the</strong> relevant cost centres<br />

for consumer-related cost-account<strong>in</strong>g.<br />

Controll<strong>in</strong>g of <strong>the</strong> energy consumptions<br />

can thus also be performed <strong>in</strong> <strong>the</strong> Energy<br />

Advisor.<br />

COMPUTATION OF CHARAC-<br />

TERISTIC LINES<br />

“The absolute energy consumption data<br />

are not sufficient for an assessment of <strong>the</strong><br />

energy situation <strong>in</strong> a steelworks. Characteristic<br />

l<strong>in</strong>es and coefficients must addition<strong>all</strong>y<br />

be specified <strong>in</strong> comb<strong>in</strong>ation with <strong>the</strong><br />

production conditions.<br />

Positive and negative limit values are<br />

able to be def<strong>in</strong>ed for coefficients, <strong>all</strong>ow<strong>in</strong>g<br />

<strong>the</strong> production process to be evaluated<br />

at a given moment”, expla<strong>in</strong>s Prof. Ingela<br />

Tietze from <strong>the</strong> Niederrhe<strong>in</strong> University of<br />

Applied Sciences. For example, <strong>the</strong> utilization<br />

of energy with a high calorific or electrical<br />

value and its effect with<strong>in</strong> <strong>the</strong> process<br />

are decisive.<br />

To satisfy <strong>the</strong>se requirements, <strong>the</strong><br />

type of product and its quantities are<br />

also recorded <strong>in</strong> <strong>the</strong> described energy<br />

data management system. This makes it<br />

possible to show a relationship between<br />

consumption and production and to<br />

express this by us<strong>in</strong>g coefficients. These<br />

values, calculated on <strong>the</strong> basis of various<br />

measured variables, enable comparisons<br />

to be made between different situations<br />

or plants.<br />

If coefficients depend on production<br />

data or production conditions which cannot,<br />

or must not, be <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong><br />

coefficient as quantities for calculation of<br />

it, <strong>the</strong>n use is made of characteristic l<strong>in</strong>es.<br />

A characteristic l<strong>in</strong>e takes account of <strong>the</strong><br />

fact that under certa<strong>in</strong> circumstances <strong>the</strong><br />

coefficients may assume differ<strong>in</strong>g values<br />

<strong>in</strong> <strong>the</strong> production process. For <strong>in</strong>stance,<br />

at high capacity utilization, lower energy<br />

consumption per ton of <strong>the</strong> product may<br />

be achieved than dur<strong>in</strong>g periods with low<br />

production rates.<br />

If <strong>the</strong> coefficient is plotted aga<strong>in</strong>st<br />

<strong>the</strong> <strong>in</strong>fluenc<strong>in</strong>g variable, it is possible to<br />

compare equivalent circumstances and to<br />

evaluate <strong>the</strong> various plant conditions <strong>in</strong> a<br />

mean<strong>in</strong>gful way.<br />

UTILIZATION IN METALLURGI-<br />

CAL PLANT TECHNOLOGY<br />

Coefficients and characteristic l<strong>in</strong>es can be<br />

illustrated by us<strong>in</strong>g <strong>the</strong> example of met<strong>all</strong>urgical<br />

plants (see Fig. 2 and Fig. 3). The<br />

required energy for melt<strong>in</strong>g a heat is put<br />

<strong>in</strong>to relation with <strong>the</strong> produced quantity.<br />

The result of this is <strong>the</strong> relative coefficient<br />

of specific consumption <strong>in</strong> kWh/t. Under<br />

equal production conditions, this value is<br />

of significance and <strong>all</strong>ows a quantitative<br />

comparison. If however <strong>the</strong> charge mix<br />

changes, for <strong>in</strong>stance, <strong>the</strong> typical specific<br />

consumption values differ accord<strong>in</strong>gly.<br />

These values can now be subsumed for a<br />

charge mix and plotted on <strong>the</strong> x-axis as a<br />

bunch. For each charge material mix, different<br />

limit values apply. To analyze <strong>the</strong> prevail<strong>in</strong>g<br />

situation, <strong>the</strong> current charge material<br />

mix is def<strong>in</strong>ed and <strong>the</strong> correspond<strong>in</strong>g<br />

limit values are used for <strong>the</strong> representation<br />

of <strong>the</strong> assessment.<br />

The yellow dot shown <strong>in</strong> Fig. 3 corresponds<br />

to an outlier which is just above <strong>the</strong><br />

desired limit and hence <strong>in</strong> <strong>the</strong> yellow dial<br />

<strong>in</strong>dicator range for <strong>the</strong> given charge mix.<br />

The same specific consumption would still<br />

have been with<strong>in</strong> reasonable limits <strong>in</strong> a<br />

case of only charg<strong>in</strong>g cold DRI, represented<br />

with <strong>the</strong> <strong>in</strong>dicator <strong>in</strong> <strong>the</strong> green dial <strong>in</strong>dicator<br />

field. It is evident here how important<br />

it is to also consider <strong>the</strong> production conditions<br />

<strong>in</strong> order to achieve a reliable evaluation<br />

of <strong>the</strong> energy situation.<br />

92 heat process<strong>in</strong>g 2-<strong>2014</strong>


TECHNOLOGY IN PRACTICE<br />

Apart from a transparent representation<br />

of energy consumption values, <strong>the</strong> system<br />

can be used to provide concrete recommendations<br />

to <strong>the</strong> operat<strong>in</strong>g staff on how<br />

to proceed to ensure an optimized operat<strong>in</strong>g<br />

practice <strong>in</strong> terms of energy. This is illustrated<br />

by <strong>the</strong> example of dedust<strong>in</strong>g. Dur<strong>in</strong>g<br />

<strong>the</strong> dedust<strong>in</strong>g process, <strong>the</strong> fans run at different<br />

speeds and correspond<strong>in</strong>gly vary<strong>in</strong>g<br />

energy consumption values <strong>in</strong> different<br />

process phases. If ventilation is not reduced<br />

dur<strong>in</strong>g tapp<strong>in</strong>g, a signal is displayed to <strong>the</strong><br />

operat<strong>in</strong>g staff that <strong>the</strong> energy consumption<br />

requires action. A recommendation is<br />

issued as to <strong>the</strong> fur<strong>the</strong>r control of <strong>the</strong> plant<br />

and any uncerta<strong>in</strong>ties of <strong>the</strong> operators are<br />

elim<strong>in</strong>ated. These process optimizations,<br />

which are technic<strong>all</strong>y unproblematic and<br />

only require low <strong>in</strong>vestment, lead to significant<br />

energy sav<strong>in</strong>gs.<br />

FUTURE PROSPECTS:<br />

FORECASTING PROCEDURE<br />

SMS Siemag is also currently develop<strong>in</strong>g a<br />

mode of procedure for mak<strong>in</strong>g forecasts.<br />

On <strong>the</strong> basis of <strong>the</strong> stored energy data<br />

already available, <strong>the</strong> production data<br />

and <strong>the</strong> future production schedule, use<br />

can be made of neuronal networks and<br />

o<strong>the</strong>r methods to create models which<br />

<strong>in</strong>terpret <strong>the</strong> energy data on a self-learn<strong>in</strong>g<br />

basis.<br />

These models enable <strong>the</strong> energy<br />

consumption to be depicted and to be<br />

predicted for <strong>the</strong> future. A reliable forecast<br />

of <strong>the</strong> energy requirement helps <strong>the</strong><br />

energy suppliers to react to <strong>the</strong> fluctuat<strong>in</strong>g<br />

energy market and to do justice to<br />

this by means of more favourable tariffs.<br />

Alternatively, <strong>the</strong> <strong>in</strong>formation obta<strong>in</strong>ed<br />

can be utilized for an <strong>in</strong>dividual procurement<br />

strategy and <strong>the</strong> electrical power<br />

can be purchased directly on <strong>the</strong> energy<br />

market.<br />

ECOPLANTS FOR SAVING<br />

ENERGY AND RESOURCES<br />

The Energy Advisor is a component of<br />

<strong>the</strong> SMS Siemag Ecoplants concept. The<br />

susta<strong>in</strong>ability solutions under <strong>the</strong> “Ecoplants”<br />

label are characterized by important<br />

reductions as regards raw material<br />

<strong>in</strong>put, energy, operat<strong>in</strong>g materials and<br />

Fig. 2: Example for determ<strong>in</strong><strong>in</strong>g a coefficient and correspond<strong>in</strong>g characteristic<br />

l<strong>in</strong>e for an electric arc furnace<br />

Fig. 3: Example for assess<strong>in</strong>g <strong>the</strong> energy situation, us<strong>in</strong>g <strong>the</strong> characteristic l<strong>in</strong>e<br />

emissions as well as <strong>the</strong> improvement of<br />

<strong>the</strong> recycl<strong>in</strong>g rate.<br />

To sum up: Fur<strong>the</strong>r need for action is<br />

be<strong>in</strong>g generated by <strong>the</strong> worldwide developments<br />

on <strong>the</strong> steel market and <strong>in</strong> <strong>the</strong><br />

energy balance relat<strong>in</strong>g to this. Thus, for<br />

example, <strong>the</strong> change <strong>in</strong> energy policies<br />

and attitudes signifies both an opportunity<br />

and a risk for <strong>the</strong> steel <strong>in</strong>dustry. On<br />

<strong>the</strong> one hand, it opens up new markets<br />

and fields of application for this significant<br />

material. On <strong>the</strong> o<strong>the</strong>r hand, it could also<br />

turn out to be a cost trap. Never<strong>the</strong>less,<br />

by means of energy sav<strong>in</strong>g concepts and<br />

<strong>the</strong> accompany<strong>in</strong>g systems, ecology and<br />

economy can be reconciled <strong>in</strong> a mean<strong>in</strong>gful<br />

manner.<br />

Author:<br />

Dr. Jesper Mellenth<strong>in</strong><br />

Contact:<br />

SMS Siemag AG<br />

Electrical and Automation Systems Division<br />

Wiesenstraße 30<br />

57271 Hilchenbach, Germany<br />

Tel.: +49 (0) 2733 / 29-5895<br />

automation@sms-siemag.com<br />

www.sms-siemag.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

93


TECHNOLOGY IN PRACTICE<br />

Induction harden<strong>in</strong>g –<br />

A quick guide to methods and coils<br />

There are two alternative methods of<br />

<strong>in</strong>duction harden<strong>in</strong>g: conventional<br />

“scann<strong>in</strong>g harden<strong>in</strong>g” and <strong>the</strong> less common<br />

“s<strong>in</strong>gle-shot harden<strong>in</strong>g”. This article<br />

looks at <strong>the</strong> <strong>in</strong>duction harden<strong>in</strong>g process<br />

and discusses <strong>the</strong>se options.<br />

It is sometimes <strong>the</strong> case that workpiece<br />

characteristics determ<strong>in</strong>e which method<br />

must be used. A long, large-diameter<br />

shaft, for <strong>in</strong>stance, requires scann<strong>in</strong>g, as<br />

<strong>the</strong> power needed for s<strong>in</strong>gle-shot harden<strong>in</strong>g<br />

would simply be excessive. Then <strong>the</strong>re<br />

are workpieces whose irregular shapes or<br />

complex geometries makes s<strong>in</strong>gle-shot<br />

harden<strong>in</strong>g <strong>the</strong> only viable alternative.<br />

SCANNING HARDENING<br />

Scann<strong>in</strong>g harden<strong>in</strong>g <strong>in</strong>volves relative<br />

movement between <strong>the</strong> workpiece and<br />

<strong>the</strong> <strong>in</strong>duction coil. Scann<strong>in</strong>g is divided <strong>in</strong>to<br />

vertical and horizontal harden<strong>in</strong>g. In <strong>the</strong><br />

former, <strong>the</strong> workpiece is held stationary <strong>in</strong><br />

a vertical position and a coil moves across<br />

its length (sometimes <strong>the</strong> coil is stationary<br />

and <strong>the</strong> workpiece moves), The coil<br />

moves at various speeds, but it is typic<strong>all</strong>y<br />

<strong>in</strong> <strong>the</strong> range of 5-25 mm/second. A major<br />

advantage with vertical scann<strong>in</strong>g is that<br />

<strong>the</strong> <strong>in</strong>duction coil is relatively easy to make,<br />

as it is norm<strong>all</strong>y a s<strong>in</strong>gle-turn, round r<strong>in</strong>g.<br />

Ano<strong>the</strong>r advantage with vertical scann<strong>in</strong>g<br />

is that <strong>the</strong> quench assembly is placed<br />

below <strong>the</strong> <strong>in</strong>duction coil. This means <strong>the</strong><br />

quench medium flows downward without<br />

<strong>in</strong>terfer<strong>in</strong>g with <strong>the</strong> heat<strong>in</strong>g. It is possible to<br />

control <strong>the</strong> depth of harden<strong>in</strong>g <strong>in</strong> different<br />

zones of <strong>the</strong> workpiece by adjust<strong>in</strong>g <strong>the</strong><br />

coil’s speed and <strong>the</strong> power fed <strong>in</strong>to it.<br />

With horizontal scann<strong>in</strong>g harden<strong>in</strong>g<br />

(Fig. 1), a horizont<strong>all</strong>y held workpiece is<br />

fed through a coil and quench. One benefit<br />

of horizontal scann<strong>in</strong>g is that it can reduce<br />

distortion. This is achieved by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> workpiece <strong>in</strong> a concentric position <strong>in</strong><br />

<strong>the</strong> coil and quench, as this results <strong>in</strong> symmetrical<br />

heat<strong>in</strong>g and quench<strong>in</strong>g. Ano<strong>the</strong>r<br />

benefit of horizontal scann<strong>in</strong>g is that it facilitates<br />

<strong>the</strong> harden<strong>in</strong>g of large workpieces. It<br />

is, for example, possible to harden tubes up<br />

to 6 m long with this method.<br />

SINGLE-SHOT HARDENING<br />

S<strong>in</strong>gle-shot harden<strong>in</strong>g means <strong>the</strong> complete<br />

harden<strong>in</strong>g zone is first heated and <strong>the</strong>n<br />

quenched. Such harden<strong>in</strong>g can be achieved<br />

with a multi-turn coil that encircles <strong>the</strong> entire<br />

harden<strong>in</strong>g zone. But for workpieces with<br />

rotational symmetry, a coil is typic<strong>all</strong>y used<br />

that follows <strong>the</strong> workpiece’s contour, comb<strong>in</strong>ed<br />

with rotation. Coils can be designed<br />

to “push extra heat” <strong>in</strong>to areas such as fillets<br />

on flanged shafts, where it is often difficult to<br />

obta<strong>in</strong> sufficient harden<strong>in</strong>g depth.<br />

The benefits of s<strong>in</strong>gle-shot harden<strong>in</strong>g<br />

<strong>in</strong>clude m<strong>in</strong>imized distortion and optimal<br />

results for workpieces with complex geometries<br />

and/or large diameter changes. The<br />

method’s relatively long heat<strong>in</strong>g times (compared<br />

to scann<strong>in</strong>g) also benefit <strong>the</strong> workpiece<br />

microstructure and residual stresses.<br />

But even if s<strong>in</strong>gle-shot’s heat<strong>in</strong>g time for each<br />

Fig. 1: Example of high-volume horizontal scann<strong>in</strong>g harden<strong>in</strong>g<br />

gra<strong>in</strong> is longer compared to scann<strong>in</strong>g, <strong>the</strong><br />

total heat<strong>in</strong>g time is shorter s<strong>in</strong>ce <strong>the</strong> entire<br />

heat<strong>in</strong>g zone is heated at <strong>the</strong> same time.<br />

S<strong>in</strong>gle-shot harden<strong>in</strong>g typic<strong>all</strong>y requires<br />

more power than scann<strong>in</strong>g. This extra<br />

power is needed to achieve <strong>the</strong> required<br />

temperature <strong>in</strong>crease <strong>in</strong> <strong>the</strong> complete<br />

harden<strong>in</strong>g zone. Moreover, <strong>the</strong> coils used<br />

<strong>in</strong> s<strong>in</strong>gle-shot harden<strong>in</strong>g are more complicated<br />

and expensive than those used<br />

<strong>in</strong> scann<strong>in</strong>g. And if <strong>the</strong> power demand<br />

changes somewhere on <strong>the</strong> workpiece,<br />

it will be necessary to physic<strong>all</strong>y modify<br />

<strong>the</strong> s<strong>in</strong>gle-shot coil. With scann<strong>in</strong>g, such<br />

changes can usu<strong>all</strong>y be handled by adjust<strong>in</strong>g<br />

<strong>the</strong> control program.<br />

NO TOIL, NO COIL<br />

Regardless of <strong>the</strong> <strong>in</strong>duction harden<strong>in</strong>g<br />

method used, <strong>the</strong> <strong>in</strong>ductor (coil) is a critical<br />

component. In fact, design<strong>in</strong>g and test<strong>in</strong>g<br />

coils is often <strong>the</strong> process with <strong>the</strong> longest<br />

lead time when devis<strong>in</strong>g an <strong>in</strong>duction<br />

heat<strong>in</strong>g solution. A key reason for this is <strong>the</strong><br />

94 heat process<strong>in</strong>g 2-<strong>2014</strong>


TECHNOLOGY IN PRACTICE<br />

MAGNETIC-FLUX CONCEN-<br />

TRATORS<br />

Magnetic-flux concentrators are ano<strong>the</strong>r<br />

aspect of an over<strong>all</strong> <strong>in</strong>duction solution that at<br />

first glance seems relatively straightforward.<br />

As <strong>the</strong> name suggests, <strong>the</strong> ma<strong>in</strong> function<br />

of such concentrators is to concentrate <strong>the</strong><br />

coil’s current <strong>in</strong> <strong>the</strong> area of <strong>the</strong> coil fac<strong>in</strong>g <strong>the</strong><br />

workpiece. Without a concentrator, <strong>the</strong> magnetic<br />

flux propagates around <strong>the</strong> coil <strong>in</strong> air – a<br />

medium with low magnetic permeability –<br />

sett<strong>in</strong>g up a magnetic field that draws part of<br />

<strong>the</strong> current away from <strong>the</strong> active zone fac<strong>in</strong>g<br />

<strong>the</strong> part. But when <strong>the</strong> return flux is conducted<br />

by a concentrator, <strong>the</strong> magnetic field can<br />

be restricted to precisely def<strong>in</strong>ed areas of <strong>the</strong><br />

workpiece, result<strong>in</strong>g <strong>in</strong> <strong>the</strong> localized harden<strong>in</strong>g<br />

zones characteristic of <strong>in</strong>duction heat<strong>in</strong>g.<br />

Many variables must be considered<br />

when mak<strong>in</strong>g flux concentrators: <strong>the</strong><br />

workpiece material, <strong>the</strong> coil’s shape and<br />

<strong>the</strong> application. Each <strong>in</strong>fluences <strong>the</strong> concentrator’s<br />

f<strong>in</strong>al design. Even decid<strong>in</strong>g what<br />

material to use for <strong>the</strong> concentrator can be<br />

a complicated task. Basic<strong>all</strong>y, concentrators<br />

are made from lam<strong>in</strong>ates or from pure ferrites<br />

and ferrite- or iron-based powders.<br />

Each concentrator material has its own<br />

drawbacks and advantages. Lam<strong>in</strong>ates<br />

have <strong>the</strong> highest flux densities and magnetic<br />

permeability, and <strong>the</strong>y are also less<br />

expensive as parts than iron- and ferritebased<br />

powders. Lam<strong>in</strong>ates must, however,<br />

be stamped to a few standardized sizes<br />

and are <strong>the</strong>refore less flexible. They are<br />

also labor-<strong>in</strong>tensive to mount. Pure ferrites<br />

can also offer outstand<strong>in</strong>g magnetic permeability.<br />

They suffer from low-saturation<br />

flux density, however, and <strong>the</strong>ir brittleness<br />

makes <strong>the</strong>m difficult to mach<strong>in</strong>e (diamondtipped<br />

cutters must be used). Iron powders<br />

are easy to shape and offer high flux<br />

densities. But great care must be taken to<br />

provide aga<strong>in</strong>st overheat<strong>in</strong>g because <strong>in</strong>ternal<br />

losses, toge<strong>the</strong>r with heat transfer from<br />

<strong>the</strong> heated part by radiation, may harm <strong>the</strong><br />

b<strong>in</strong>der of such powders due to <strong>the</strong> relatively<br />

low work<strong>in</strong>g temperature.<br />

Fig. 2: Example of a specialized <strong>in</strong>duction coil designed and built for <strong>the</strong> specific task<br />

of harden<strong>in</strong>g CV (constant-velocity) jo<strong>in</strong>ts<br />

fact that coils are task-specific. They must<br />

be designed to achieve specific results on<br />

specific materials under specific conditions.<br />

There are no (or at least <strong>the</strong>re shouldn’t be)<br />

off-<strong>the</strong>-shelf coil designs.<br />

Rigorous test<strong>in</strong>g of a coil’s design and<br />

construction is essential (Fig. 2). Too few<br />

people realize that coils are often <strong>the</strong> part<br />

most exposed to harsh operat<strong>in</strong>g conditions.<br />

Therefore, test<strong>in</strong>g and computer-aided<br />

simulation are sometimes needed to arrive<br />

at a design that is both safe and fatigueresistant.<br />

And, of course, it takes repeated<br />

test<strong>in</strong>g to achieve optimal part heat<strong>in</strong>g<br />

patterns. Noth<strong>in</strong>g can be taken for granted<br />

when design<strong>in</strong>g <strong>in</strong>duction coils. With very<br />

high power-density coils, for example, one<br />

even needs to determ<strong>in</strong>e <strong>the</strong> correct speed<br />

at which cool<strong>in</strong>g water should flow through<br />

<strong>the</strong> coil. Too low a speed will result <strong>in</strong> <strong>in</strong>sufficient<br />

<strong>the</strong>rmal transference. But even when<br />

<strong>the</strong> correct speed has been found, <strong>the</strong> coil<br />

designer must decide whe<strong>the</strong>r a booster<br />

pump is necessary <strong>in</strong> order to achieve and<br />

ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> desired water through-flow rate.<br />

A competent coil designer will also specify a<br />

purity level for <strong>the</strong> cool<strong>in</strong>g water <strong>in</strong> order to<br />

m<strong>in</strong>imize corrosion on <strong>the</strong> <strong>in</strong>side of <strong>the</strong> coil.<br />

So, someth<strong>in</strong>g as apparently straightforward<br />

as <strong>the</strong> coil’s water is <strong>in</strong> fact a complex matter<br />

demand<strong>in</strong>g technical competence and<br />

specialized equipment.<br />

CONCLUSION<br />

Of course, many o<strong>the</strong>r factors need to be<br />

considered when design<strong>in</strong>g <strong>in</strong>duction coils,<br />

not <strong>the</strong> least of which be<strong>in</strong>g its efficiency.<br />

Correct impedance match<strong>in</strong>g between <strong>the</strong><br />

coil and <strong>the</strong> power source, for <strong>in</strong>stance, is<br />

crucial <strong>in</strong> order to use <strong>the</strong> full power from<br />

<strong>the</strong> power source. Its reactive power need,<br />

which is norm<strong>all</strong>y several times that of <strong>the</strong><br />

requirement for active power, <strong>in</strong>fluences<br />

<strong>the</strong> frequency. It is also vital to select <strong>the</strong><br />

correct form of electrical <strong>in</strong>sulation for <strong>the</strong><br />

coil. Aga<strong>in</strong>, <strong>the</strong>se are complicated decisions<br />

<strong>in</strong>fluenced by several variables. As we have<br />

seen, a profession<strong>all</strong>y designed and fabricated<br />

<strong>in</strong>duction coil is an advanced, complex<br />

component. Unfortunately, too many<br />

<strong>in</strong>duction users persist <strong>in</strong> view<strong>in</strong>g coils<br />

as low-tech copper tubes. The results of<br />

this misconception are <strong>in</strong>correct and even<br />

dangerous coil designs; amateurish repairs;<br />

<strong>in</strong>sufficient or <strong>in</strong>correct ma<strong>in</strong>tenance; and,<br />

ultimately, process and equipment failures.<br />

Authors:<br />

Kristian Berggren, Leif Markegård<br />

Contact:<br />

EFD Induction GmbH<br />

Lehener Straße 91<br />

Postfach 426<br />

79004 Freiburg, Germany<br />

Tel.: +49 (0) 761 / 8851-0<br />

sales@de.efdgroup.net<br />

www.efd<strong>in</strong>duction.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

95


INDEX OF ADVERTISERS<br />

INDEX OF ADVERTISERS<br />

Company Page Company Page<br />

AICHELIN Hold<strong>in</strong>g GmbH, Mödl<strong>in</strong>g, Austria 13<br />

ALUMINIUM <strong>2014</strong>, Düsseldorf, Germany 32<br />

ALUMINIUM CHINA <strong>2014</strong>, Shanghai, People’s Republic of Ch<strong>in</strong>a 82<br />

ANKIROS/ANNOFER/TURKCAST <strong>2014</strong>, Istanbul, Turkey 17<br />

Bloom Eng<strong>in</strong>eer<strong>in</strong>g (Europa) GmbH, Düsseldorf, Germany 51<br />

Bürkert GmbH & Co. KG, Ingelf<strong>in</strong>gen, Germany 15<br />

Danieli Olivotto Ferrè, Tor<strong>in</strong>o, Italy 39<br />

Elster GmbH, Osnabrück, Germany 7<br />

EURO PM<strong>2014</strong>, Salzburg, Austria 86<br />

Heat Treatment <strong>2014</strong>, Moscow, Russia 21<br />

JASPER Gesellschaft für Energiewirtschaft und Kybernetik mbH,<br />

Geseke, Germany<br />

front cover<br />

LOI Thermprocess GmbH, Essen, Germany 41<br />

Optris GmbH, Berl<strong>in</strong>, Germany 19<br />

Schwartz GmbH, Simmerath, Germany 11<br />

SECO / Warwick Europe S.A., Swiebodz<strong>in</strong>, Poland <strong>in</strong>side front cover, 3<br />

SMS Elo<strong>the</strong>rm GmbH, Remscheid, Germany<br />

back cover<br />

Tube India International <strong>2014</strong>, Mumbai, India 25<br />

Bus<strong>in</strong>ess Directory 97 - 117<br />

International Magaz<strong>in</strong>e for Industrial Furnaces,<br />

Heat Treatment & Equipment<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

your contact to <strong>the</strong><br />

heat process<strong>in</strong>g team<br />

Manag<strong>in</strong>g Editor:<br />

Dipl.-Ing. Stephan Schalm<br />

Phone: +49 201 82002 12<br />

Fax: +49 201 82002 40<br />

E-Mail: s.schalm@vulkan-verlag.de<br />

Editorial Office:<br />

Annamaria Frömgen<br />

Phone: +49 201 82002 91<br />

Fax: +49 201 82002 40<br />

E-Mail: a.froemgen@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Sales:<br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Phone: +49 201 82002 24<br />

Fax: +49 201 82002 40<br />

E-Mail: b.schwarzer-hahn@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Adm<strong>in</strong>istration:<br />

Mart<strong>in</strong>a Mittermayer<br />

Phone: +49 89 203 5366 16<br />

Fax: +49 89 203 5366 66<br />

E-Mail: mittermayer@di-verlag.de<br />

Editor:<br />

Thomas Schneidew<strong>in</strong>d<br />

Phone: +49 201 82002 36<br />

Fax: +49 201 82002 40<br />

E-Mail: t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />

Editor (Tra<strong>in</strong>ee):<br />

Sabr<strong>in</strong>a F<strong>in</strong>ke<br />

Phone: +49 201 82002 15<br />

Fax: +49 201 82002 40<br />

E-Mail: s.f<strong>in</strong>ke@vulkan-verlag.de<br />

96 heat process<strong>in</strong>g 4-2013<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com


International Magaz<strong>in</strong>e for Industrial Furnaces<br />

Heat Treatment & Equipment<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

<strong>2014</strong><br />

Bus<strong>in</strong>ess Directory<br />

I. Furnaces and plants for <strong>in</strong>dustrial<br />

heat treatment processes ......................................................................................... 98<br />

II.<br />

Components, equipment, production<br />

and auxiliary materials ................................................................................................ 108<br />

III. Consult<strong>in</strong>g, design, service<br />

and eng<strong>in</strong>eer<strong>in</strong>g ............................................................................................................ 116<br />

IV. Trade associations, <strong>in</strong>stitutes,<br />

universities, organisations ......................................................................................... 117<br />

V. Exhibition organizers,<br />

tra<strong>in</strong><strong>in</strong>g and education .............................................................................................. 117<br />

Contact:<br />

Mrs. Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel.: +49 (0)201 / 82002-24<br />

Fax: +49 (0)201 / 82002-40<br />

E-mail: b.schwarzer-hahn@vulkan-verlag.de<br />

www.heatprocess<strong>in</strong>g-directory.com


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

<strong>the</strong>rmal production<br />

Melt<strong>in</strong>g, Pour<strong>in</strong>g, cast<strong>in</strong>g<br />

98 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

Heat<strong>in</strong>g<br />

Powder met<strong>all</strong>urgy<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

99


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

Heat<strong>in</strong>g<br />

100 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

Heat treatment<br />

More <strong>in</strong>formation available:<br />

www.heatprocess<strong>in</strong>g-directory.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

101


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

Heat treatment<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

102 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

More <strong>in</strong>formation available:<br />

www.heatprocess<strong>in</strong>g-directory.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

103


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

Heat treatment<br />

104 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

cool<strong>in</strong>g and Quench<strong>in</strong>g<br />

surface treatment<br />

Jo<strong>in</strong><strong>in</strong>g<br />

More <strong>in</strong>formation available:<br />

www.heatprocess<strong>in</strong>g-directory.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

105


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

Jo<strong>in</strong><strong>in</strong>g<br />

106 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

I. Furnaces and plants for <strong>in</strong>dustrial heat treatment processes<br />

recycl<strong>in</strong>g<br />

energy efficiency<br />

retrofit<br />

More <strong>in</strong>formation available:<br />

www.heatprocess<strong>in</strong>g-directory.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

107


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

II. Components, equipment, production and auxiliary materials<br />

Quench<strong>in</strong>g equipment<br />

Fitt<strong>in</strong>gs<br />

Burners<br />

transport equipment<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

108 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

II. Components, equipment, production and auxiliary materials<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

More <strong>in</strong>formation available:<br />

www.heatprocess<strong>in</strong>g-directory.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

109


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

II. Components, equipment, production and auxiliary materials<br />

Burners<br />

Burner equipment<br />

Burner applications<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

110 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

II. Components, equipment, production and auxiliary materials<br />

Harden<strong>in</strong>g accessories<br />

More <strong>in</strong>formation available:<br />

www.heatprocess<strong>in</strong>g-directory.com<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

111


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

II. Components, equipment, production and auxiliary materials<br />

resistance heat<strong>in</strong>g<br />

elements<br />

Forg<strong>in</strong>g accessories<br />

<strong>in</strong>ductors<br />

112 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

II. Components, equipment, production and auxiliary materials<br />

Measur<strong>in</strong>g and automation<br />

Gases<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

More <strong>in</strong>formation available:<br />

www.heatprocess<strong>in</strong>g-directory.com<br />

113


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

II. Components, equipment, production and auxiliary materials<br />

Measur<strong>in</strong>g and automation<br />

Power supply<br />

114 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

II. Components, equipment, production and auxiliary materials<br />

refractories<br />

HOTLINE Meet <strong>the</strong> team<br />

Manag<strong>in</strong>g Editor: Dipl.-Ing. Stephan Schalm +49(0)201/82002-12 s.schalm@vulkan-verlag.de<br />

Editorial Offi ce: Annamaria Frömgen +49(0)201/82002-91 a.froemgen@vulkan-verlag.de<br />

Editor: Thomas Schneidew<strong>in</strong>d +49(0)201/82002-36 t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />

Editor (Tra<strong>in</strong>ee): Sabr<strong>in</strong>a F<strong>in</strong>ke +49(0)201/82002-15 s.f<strong>in</strong>ke@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Sales: Bett<strong>in</strong>a Schwarzer-Hahn +49(0)201/82002-24 b.schwarzer-hahn@vulkan-verlag.de<br />

Subscription: Marcus Z epmeisel +49(0)931/4170-459 leserservice@vulkan-verlag.de<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

115


Bus<strong>in</strong>ess Directory 2-<strong>2014</strong><br />

III. Consult<strong>in</strong>g, design, service and eng<strong>in</strong>eer<strong>in</strong>g<br />

116 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> Bus<strong>in</strong>ess Directory<br />

IV. Trade associations, <strong>in</strong>stitutes, universities, organisations<br />

V. Exhibition organizers, tra<strong>in</strong><strong>in</strong>g and education<br />

2-<strong>2014</strong> heat process<strong>in</strong>g<br />

117


International Magaz<strong>in</strong>e for Industrial Furnaces,<br />

Heat Treatment & Equipment<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

BRAND NEW<br />

Already shopped<br />

Know-how today?<br />

The new web presence of hp<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

Vulkan-Verlag


COMPANIES PROFILE<br />

Trumpf Hütt<strong>in</strong>ger GmbH + Co. KG<br />

Trumpf Hütt<strong>in</strong>ger GmbH + Co. KG<br />

Contact:<br />

Dirk Künzig<br />

Head of Sales Europe<br />

Tel.: +49 (0) 761 / 8971-0<br />

dirk.kuenzig@de.trumpf.com<br />

COMPANY:<br />

Trumpf Hütt<strong>in</strong>ger GmbH + Co. KG<br />

Bötz<strong>in</strong>ger Str. 80<br />

79111 Freiburg<br />

Germany<br />

BOARD OF MANAGEMENT:<br />

Dr. Dieter Pausch<strong>in</strong>ger<br />

HISTORY:<br />

Trumpf Hütt<strong>in</strong>ger is a worldwide leader <strong>in</strong> <strong>in</strong>novative solutions to<br />

convert energy <strong>in</strong> power and distributes a vast selection of highpower<br />

direct current, mid-frequency and radiofrequency generators<br />

for plasma applications, <strong>in</strong>duction heat<strong>in</strong>g processes and CO 2<br />

laser excitation. Trumpf Hütt<strong>in</strong>ger is Europe’s largest manufacturer<br />

of power supplies for <strong>the</strong>se processes. With subsidiaries <strong>in</strong> Poland,<br />

Ch<strong>in</strong>a, <strong>the</strong> U.S. and Japan, Trumpf Hütt<strong>in</strong>ger offers a large sales and<br />

service network around <strong>the</strong> globe.<br />

GROUP:<br />

S<strong>in</strong>ce 1990 Trumpf Hütt<strong>in</strong>ger is part of <strong>the</strong> Trumpf Group. The<br />

company was founded <strong>in</strong> 1923 as a mechanical workshop. Ever<br />

s<strong>in</strong>ce, it has developed to one of <strong>the</strong> world’s lead<strong>in</strong>g companies<br />

<strong>in</strong> production.<br />

NUMBER OF STAFF:<br />

700<br />

PRODUCTS:<br />

The generators and associate products are produced <strong>in</strong> Germany<br />

and Poland.<br />

PRODUCT RANGE:<br />

Induction process<strong>in</strong>g plays a decisive role <strong>in</strong> high tech manufactur<strong>in</strong>g.<br />

Trumpf Hütt<strong>in</strong>ger’s <strong>in</strong>duction heat<strong>in</strong>g generators cover a wide<br />

range of applications <strong>in</strong> <strong>the</strong> high tech <strong>in</strong>dustry like float zone process<br />

for silicon wafer production, crystal grow<strong>in</strong>g such as sapphire<br />

glass, epitaxy for LED production and <strong>in</strong>ductively coupled plasma<br />

for surface treatment. This is <strong>in</strong> addition to traditional processes like<br />

harden<strong>in</strong>g, solder<strong>in</strong>g and melt<strong>in</strong>g.<br />

COMPETITIVE ADVANTAGES:<br />

Trumpf Hütt<strong>in</strong>ger also offers special services to its customers: test<br />

set-ups <strong>in</strong> <strong>the</strong> application lab, development and design of application-specific<br />

<strong>in</strong>ductor coils. At <strong>the</strong> core of <strong>all</strong> activities stands <strong>the</strong><br />

compre-hensive and <strong>in</strong>dividual support and advisory services for<br />

<strong>all</strong> clients, with <strong>the</strong> goal of creat<strong>in</strong>g long-last<strong>in</strong>g and productive<br />

partnerships.<br />

CERTIFICATION:<br />

Certification ISO 9001 s<strong>in</strong>ce 2008.<br />

SERVICE POTENTIALS:<br />

The structure of Trumpf Hütt<strong>in</strong>ger Service guarantees fast and<br />

qualified service. In different countries <strong>all</strong> over <strong>the</strong> world (Germany,<br />

Poland, Ch<strong>in</strong>a, Japan, Korea, Taiwan, United States) <strong>the</strong> company<br />

provides hotl<strong>in</strong>e support, field service, and certified repair centres<br />

are available. Beside <strong>the</strong> fast service repair program Trumpf Hütt<strong>in</strong>ger<br />

offers Service Contract programs, Application and repair<br />

tra<strong>in</strong><strong>in</strong>gs and ma<strong>in</strong>tenance and <strong>in</strong>st<strong>all</strong>ation support.<br />

INTERNET ADDRESS:<br />

www.trumpf-huett<strong>in</strong>ger.com<br />

120 heat process<strong>in</strong>g 2-<strong>2014</strong>


2-<strong>2014</strong> IMPRINT<br />

www.heatprocess<strong>in</strong>g-onl<strong>in</strong>e.com<br />

Volume 12 · Issue 2 · May <strong>2014</strong><br />

Official Publication<br />

Editors<br />

Advisory Board<br />

Publish<strong>in</strong>g House<br />

Manag<strong>in</strong>g Editor<br />

Editorial Office<br />

CECOF – European Committee of Industrial Furnace and Heat<strong>in</strong>g Equipment Associations<br />

H. Berger, AICHELIN Ges.m.b.H., Mödl<strong>in</strong>g, Prof. Dr.-Ing. A. von Starck, Appo<strong>in</strong>ted Professor for Electric Heat<strong>in</strong>g at RWTH<br />

Aachen, Dr. H. Stumpp, Chairman of <strong>the</strong> Association for Thermal Process Technology with<strong>in</strong> VDMA, CTO Tenova Iron &<br />

Steel Group<br />

Dr. H. Altena, Aichel<strong>in</strong> Ges.m.b.H., Prof. Dr.-Ing. E. Baake, Institute for Electro<strong>the</strong>rmal Processes, Leibniz University of<br />

Hanover, Dr.-Ing. F. Beneke, VDMA, Prof. Y. Bl<strong>in</strong>ov, St. Petersburg State Electrotechnical University “Leti“, Russia, René<br />

Branders, President of CECOF, Mike Debier, CECOF, Dr.-Ing. F. Kühn, LOI Thermprocess GmbH, Dipl.-Ing. W. Liere-Ne<strong>the</strong>ler,<br />

Elster GmbH, H. Lochner, EBNER Industrieofenbau GmbH, Prof. S. Lupi, University of Padova, Dept. of Electrical Eng., Italy,<br />

Prof. Dr.-Ing. H. Pfeifer, RWTH Aachen, Dipl.-Phys. M. R<strong>in</strong>k, Ipsen International GmbH, Dipl.-Ing. St. Schalm, Vulkan-Verlag<br />

GmbH, M.Sc. S. Segerberg, Heattec Värmebehandl<strong>in</strong>g AB, Sweden, Dr.-Ing. A. Seitzer, SMS Elo<strong>the</strong>rm GmbH, Dr.-Ing. P. Wendt,<br />

LOI Thermprocess GmbH, Dr.-Ing. J. G. Wünn<strong>in</strong>g, WS Wärmeprozesstechnik GmbH, Dr.-Ing. T. Würz, CECOF<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen, Germany<br />

P.O. Box 103962, 45039 Essen<br />

Manag<strong>in</strong>g Directors: Carsten Augsburger, Jürgen Franke<br />

Dipl.-Ing. Stephan Schalm, Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-12, Fax: + 49 201 820 02-40<br />

E-Mail: s.schalm@vulkan-verlag.de<br />

Annamaria Frömgen, Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-91, Fax: + 49 201 820 02-40<br />

E-Mail: a.froemgen@vulkan-verlag.de<br />

Editorial Department Thomas Schneidew<strong>in</strong>d, Vulkan-Verlag GmbH Sabr<strong>in</strong>a F<strong>in</strong>ke (Tra<strong>in</strong>ee), Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-36, Fax: + 49 201 820 02-40 Tel. + 49 201 820 02-15, Fax: + 49 201 820 02-40<br />

E-Mail: t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />

E-Mail: s.f<strong>in</strong>ke@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Sales<br />

Bett<strong>in</strong>a Schwarzer-Hahn, Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-24, Fax: + 49 201 820 02-40<br />

E-Mail: b.schwarzer-hahn@vulkan-verlag.de<br />

Advertis<strong>in</strong>g<br />

Mart<strong>in</strong>a Mittermayer, Vulkan-Verlag GmbH / DIV Deutscher Industrieverlag GmbH<br />

Adm<strong>in</strong>istration Tel. + 49 89 203 53 66-16, Fax: + 49 89 203 53 66-66<br />

E-Mail: mittermayer@di-verlag.de<br />

Layout<br />

Terms of subscription:<br />

Zahra Tabnak, Vulkan-Verlag GmbH<br />

heat process<strong>in</strong>g is published four times a year.<br />

Rates: Subscription Pr<strong>in</strong>t: € 184,-<br />

S<strong>in</strong>gle copy: € 52,50<br />

Subscription with access to onl<strong>in</strong>e archive: € 235,-<br />

Subscription ePaper: € 170,-<br />

Subscription ePaper & access to onl<strong>in</strong>e archive: € 221,-<br />

Subscription Pr<strong>in</strong>t & ePaper: € 235,-<br />

Subscription Pr<strong>in</strong>t & ePaper & access to onl<strong>in</strong>e archive: € 286,-<br />

Students: 50% reduction on normal subscription rate (proof of entitlement)<br />

Orders may be placed at any time. Please address directly to our customer service or your local book shop. Subscriptions<br />

cont<strong>in</strong>ue for ano<strong>the</strong>r year unless term<strong>in</strong>ated <strong>in</strong> writ<strong>in</strong>g 2 months prior to <strong>the</strong> end of each year.<br />

Subscriptions/<br />

Leserservice heat process<strong>in</strong>g . Postfach 91 61 . 97091 Würzburg<br />

S<strong>in</strong>gle Copy Sales Tel. +49 931 4170-459, Fax: +49 931 4170-494<br />

E-Mail: leserservice@vulkan-verlag.de<br />

Pr<strong>in</strong>ted by<br />

The magaz<strong>in</strong>e and <strong>all</strong> <strong>the</strong> contributions and illustrations conta<strong>in</strong>ed <strong>the</strong>re<strong>in</strong> are secured by copyright. With <strong>the</strong> exception<br />

of <strong>the</strong> leg<strong>all</strong>y permitted <strong>in</strong>stances, any utilisation without <strong>the</strong> express permission of <strong>the</strong> publisher will be punished at law.<br />

The op<strong>in</strong>ions conta<strong>in</strong>ed <strong>in</strong> signed articles do not necessarily reflect <strong>the</strong> op<strong>in</strong>ion of <strong>the</strong> publisher.<br />

Druckerei Chmielorz GmbH<br />

Ostr<strong>in</strong>g 13 · 65205 Wiesbaden-Nordenstadt<br />

© 2003 Vulkan-Verlag GmbH<br />

Friedrich-Ebert-Straße 55 · 45127 Essen (Germany)<br />

Tel. + 49 201 820 02-0, Fax + 49 201 820 02-40<br />

ISSN 1611-616X<br />

Mitglied der Informationsgeme<strong>in</strong>schaft zur<br />

Feststellung der Verbreitung von Werbeträgern e.V. (IVW)


INDUCTION SOLUTIONS.<br />

HARD TO BEAT!<br />

With <strong>the</strong>ir developments and system<br />

solutions SMS Elo<strong>the</strong>rm and <strong>the</strong> associated<br />

IAS have set new standards <strong>in</strong><br />

<strong>in</strong>duction technology for decades. The<br />

medium-sized <strong>in</strong>ternation<strong>all</strong>y operat<strong>in</strong>g<br />

companies are part of <strong>the</strong> SMS group.<br />

As technology leaders, SMS Elo<strong>the</strong>rm<br />

and IAS comb<strong>in</strong>e <strong>all</strong> competences when<br />

it comes to <strong>in</strong>duction.<br />

■ Induction heat<strong>in</strong>g of metals for<br />

forg<strong>in</strong>g, roll<strong>in</strong>g and extrud<strong>in</strong>g<br />

■ Induction harden<strong>in</strong>g and<br />

quench & temper<br />

■ Induction weld<strong>in</strong>g, anneal<strong>in</strong>g and<br />

special technology for tubes<br />

■ Cont<strong>in</strong>uous <strong>in</strong>duction strip heat<strong>in</strong>g<br />

■ Induction k<strong>in</strong>etics<br />

■ Induction melt<strong>in</strong>g<br />

■ Service worldwide<br />

www.ias-<strong>in</strong>duction.com<br />

www.sms-elo<strong>the</strong>rm.com<br />

Induction Harden<strong>in</strong>g<br />

Induction Heat<strong>in</strong>g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!