14.06.2014 Views

Unit 2- Measurements, Math, and the Mole

Unit 2- Measurements, Math, and the Mole

Unit 2- Measurements, Math, and the Mole

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Unit</strong> 2- <strong>Measurements</strong>, <strong>Math</strong>,<br />

<strong>and</strong> <strong>the</strong> <strong>Mole</strong><br />

“No human endeavor can be called<br />

science if it cannot be demonstrated<br />

ma<strong>the</strong>matically”<br />

- Leonardo Da Vinci<br />

Modified from sciencegeek.net


Nature of Measurement<br />

Measurement - quantitative observation<br />

consisting of 2 parts<br />

Part 1 - number<br />

Part 2 - scale (unit)<br />

Examples:<br />

20 grams<br />

6.63 x 10 -34 Joule seconds


Significant Figures


Measuring <strong>and</strong> Significant Figures<br />

Significant figures = indicate precision in a measurement.<br />

How to: record all digits in a measurement that are known<br />

with certainty on <strong>the</strong> device plus one final digit, which is<br />

an estimation.<br />

Ruler<br />

<strong>Unit</strong>s are in Centimeters (<strong>the</strong> arrow is <strong>the</strong> end of <strong>the</strong> object)<br />

2.83 cm<br />

Known (because of markings on<br />

<strong>the</strong> ruler)<br />

Estimated (you must include)


Ex. 1<br />

Practice- What are <strong>the</strong> best<br />

measurements?<br />

Ex. 2<br />

6<br />

a. 3 cm<br />

b. 3.0 cm<br />

c. 3.00 cm<br />

Answer: 3.0 cm<br />

a. 5.29 mL<br />

b. 5.290 mL<br />

5<br />

Answer: 5.29 mL


Thermometer<br />

Measuring Practice<br />

graduated cylinder<br />

Answer: 21.7 °C<br />

Answer: 30.0 mL


Rules for identifying Significant<br />

Figures<br />

#1= Non-zero integers always count<br />

as significant figures.<br />

ex: 3456 has 4 sig figs<br />

ex: 300<br />

has 1 sig fig<br />

Zeros (placeholders vs. Accuracy)<br />

#2 =s<strong>and</strong>wiched zeros always count as<br />

significant figures.<br />

ex: 16.07 has 4 sig figs.


Rules for Counting Significant<br />

Zeros<br />

Figures - Details<br />

#3- Leading zeros NEVER count as<br />

significant figures (<strong>the</strong>y are<br />

placeholders).<br />

Ex:<br />

0.0486 has 3 sig figs.


Rules for Counting Significant<br />

Figures - Details<br />

Zeros<br />

#4= Trailing zeros are significant<br />

only if <strong>the</strong> number contains a<br />

decimal point.<br />

Ex: 9.300 has 4 sig figs.<br />

Ex: 2000 has 1 sig fig (no decimal)<br />

Ex: 2000. has 4 sig figs (decimal)<br />

Ex: 0.02020 has 4 sig figs (decimal)


Sig Fig Practice #1<br />

How many significant figures in each of <strong>the</strong> following?<br />

1.0070 m 5 sig figs<br />

17.00 kg 4 sig figs<br />

100,890 L 5 sig figs<br />

3.29 x 10 3 s 3 sig figs<br />

0.0054 cm 2 sig figs<br />

320 cm 2 sig figs


Multiplying & Dividing with Sig Figs<br />

Multiplication <strong>and</strong> Division: # sig figs in <strong>the</strong><br />

result equals <strong>the</strong> number in <strong>the</strong> least precise<br />

measurement used in <strong>the</strong> calculation.<br />

Ex: 6.38 x 2.0 =<br />

12.76 13 (2 sig figs)<br />

Ex 2: 570 ÷ 2.5 =<br />

228 230 (2 sig Figs)


Sig Fig Practice #2<br />

Calculation Calculator says: Answer<br />

3.24 m x 7.0 m 22.68 m 2 23 m 2<br />

100.0 g ÷ 23.7 cm 3 4.219409283 g/cm 3 4.22 g/cm 3<br />

0.02 cm x 2.371 cm 0.04742 cm 2 0.05 cm 2<br />

710 m ÷ 3.0 s 236.6666667 m/s 240 m/s<br />

1818.2 lb x 3.23 ft 5872.786 lb·ft 5870 lb·ft<br />

1.030 g ÷ 2.87 mL 0.35888 g/mL 0.359 g/mL


Adding <strong>and</strong> Subtracting with Sig<br />

Figs (fyi only…don’t need to know)<br />

Addition <strong>and</strong> Subtraction: The number<br />

of decimal places in <strong>the</strong> result equals <strong>the</strong><br />

number of decimal places in <strong>the</strong> least<br />

precise measurement.<br />

6.8 + 11.934 =<br />

18.734 18.7 (3 sig figs)


Metrics


Commonly Used (SI) Metric <strong>Unit</strong>s<br />

Quantity Name Abbreviation<br />

Mass Gram g<br />

Length meter m<br />

Temperature Kelvin or Celsius K or °C<br />

Volume Liters or centimeter 3 L or cm 3<br />

Density Grams per centimeter 3 g/ cm 3<br />

Amount of<br />

Substance<br />

mole<br />

mol<br />

3 countries don’t use metrics: Burma,<br />

Liberia, <strong>and</strong> <strong>the</strong> USA


A List of <strong>the</strong> Metric Prefixes<br />

Multiplier<br />

Prefix Symbol Numerical Exponential<br />

yotta Y 1,000,000,000,000,000,000,000,000 10 24<br />

zetta Z 1,000,000,000,000,000,000,000 10 21<br />

exa E 1,000,000,000,000,000,000 10 18<br />

peta P 1,000,000,000,000,000 10 15<br />

tera T 1,000,000,000,000 10 12<br />

giga G 1,000,000,000 10 9<br />

mega M 1,000,000 10 6<br />

kilo k 1,000 10 3<br />

hecto h 100 10 2<br />

deca da 10 10 1<br />

no prefix means:<br />

deci d 0.1 10¯1<br />

centi c 0.01 10¯2<br />

milli m 0.001 10¯3<br />

micro µ 0.000001 10¯6<br />

nano n 0.000000001 10¯9<br />

pico p 0.000000000001 10¯12<br />

femto f 0.000000000000001 10¯15<br />

atto a 0.000000000000000001 10¯18<br />

zepto z 0.000000000000000000001 10¯21<br />

yocto y 0.000000000000000000000001 10¯24


Scientific Notation


Scientific Notation… why??<br />

In science, we deal with some very<br />

LARGE numbers:<br />

1 mole = 602000000000000000000000<br />

In science, we deal with some very<br />

SMALL numbers:<br />

Mass of an electron =<br />

0.000000000000000000000000000000091 kg


Imagine <strong>the</strong> difficulty of calculating<br />

<strong>the</strong> mass of 1 mole of electrons!<br />

0.000000000000000000000000000000091 kg<br />

x 602000000000000000000000<br />

???????????????????????????????????


How to Write in Scientific Notation<br />

A method of representing very large or<br />

very small numbers in <strong>the</strong> form:<br />

M x 10 n<br />

‣M is a number between 1 <strong>and</strong> 10 (can<br />

be a decimal too)<br />

‣ n is an integer<br />

Ex: 6.3 x 10 3


2 500 000 000<br />

9<br />

8<br />

7<br />

.<br />

Step #1: Insert an understood decimal point<br />

Step #2: Decide where <strong>the</strong> decimal must end<br />

up so that one number is to its left<br />

Step #3: Count how many places you bounce<br />

<strong>the</strong> decimal point<br />

Step #4: Re-write in <strong>the</strong> form M x 10 n<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1


2.5 x 10 9<br />

The exponent is <strong>the</strong><br />

number of places we<br />

moved <strong>the</strong> decimal.


0.0000579<br />

1 2 3 4 5<br />

Step #2: Decide where <strong>the</strong> decimal must end<br />

up so that one number is to its left<br />

Step #3: Count how many places you bounce<br />

<strong>the</strong> decimal point<br />

Step #4: Re-write in <strong>the</strong> form M x 10 n


5.79 x 10 -5<br />

The exponent is negative<br />

because <strong>the</strong> number we<br />

started with was less<br />

than 1.


Practice: Convert <strong>the</strong> following<br />

into or out of scientific notation.<br />

1. 6, 000, 000, 000<br />

2. 0. 000 000 006<br />

3. 6 x 10 8<br />

4. 5, 234, 000<br />

5. 0. 00120<br />

6. 7.49 x 10 - 4<br />

7. 80, 080, 100,<br />

000<br />

1. 6 x 10 9<br />

2. 6 x 10 - 9<br />

3. 600, 000, 000<br />

4. 5.234 x 10 6<br />

5. 1.20 x 10 - 3<br />

6. 0.000749<br />

7. 8.00801 x 10 10


PERFORMING<br />

CALCULATIONS<br />

IN SCIENTIFIC<br />

NOTATION


Multiplying<br />

EX: (4 x 10 6 )<br />

X (3 x 10 5 )<br />

12 x 10 11<br />

Multiply <strong>the</strong> M factors<br />

toge<strong>the</strong>r <strong>and</strong> <strong>the</strong><br />

exponents are added<br />

toge<strong>the</strong>r.<br />

Change to correct Scientific<br />

notation format: 1.2 x 10 12<br />

Best answer with Sig Figs : 1 x 10 12


Practice Problem<br />

(8 x 10 6 m)<br />

X (3 x 10 4 m)<br />

Answer: 24 x 10 10 m 2<br />

correct.<br />

… but it’s not quite<br />

M must be a number between 1-10, right now<br />

it’s 24. So, you must make 24 into 2.4 <strong>and</strong><br />

move <strong>the</strong> decimal one more place.<br />

Best answer: 2.4 x 10 11 m 2


Dividing<br />

EX: (4 x 10 6 )<br />

÷ (2 x 10 5 )<br />

2 x 10 1<br />

Divide <strong>the</strong> M factors<br />

toge<strong>the</strong>r <strong>and</strong> <strong>the</strong> exponents<br />

are subtracted from each<br />

o<strong>the</strong>r.


Practice Problem<br />

(8 x 10 6 g)<br />

÷ (2 x 10 4 mL)<br />

4 x 10 2 g/mL


Ano<strong>the</strong>r way of seeing it written<br />

Multiply top <strong>and</strong> divide by bottom<br />

6 X 10 8 m x 2 x 10 3 m<br />

3 X 10 4 s<br />

= 12 X 10 11 m 2<br />

3 X 10 4 s = 4 x 10 7 m 2 / s


How to use your calculator with<br />

Scientific Notation<br />

1. Practice (6.0 x 10 5 ) x (4.0 x 10 3 ) on your<br />

calculator<br />

2. Punch <strong>the</strong> number (<strong>the</strong> digit number) into<br />

your calculator.<br />

3. Push <strong>the</strong> EE or EXP button. Do NOT type<br />

in x10 or use <strong>the</strong> 10 x buttons!!<br />

4. Enter <strong>the</strong> exponent number. Use <strong>the</strong> +/-<br />

button to change its sign.<br />

Answer= 2.4 x 10 9<br />

(some calculators will show this for <strong>the</strong> answer:<br />

2.4 9 -you have to know it is 2.4 x 10 9 )


Practice with Calculator<br />

(5.23 X10 6 )<br />

X (7.1 x 10 -2 )<br />

3.7133 x 10 5 , but<br />

3.7133 x 10 5 , but <strong>the</strong>re<br />

are 2 sig figs<br />

<strong>the</strong>re are 2 sig figs<br />

Best answer: 3.7 x 10 5


Adding <strong>and</strong> Subtracting with<br />

Scientific Notation<br />

(FYI ONLY… don’t really use Chem.)


(4 x 10 6 )<br />

+ (3 x 10 6 )<br />

7 x 10 6<br />

IF <strong>the</strong> exponents are<br />

<strong>the</strong> same, we simply<br />

add or subtract <strong>the</strong><br />

numbers in front <strong>and</strong><br />

bring <strong>the</strong> exponent<br />

down unchanged.


(4 x 10 6 )<br />

+ (3 x 10 5 )<br />

If <strong>the</strong> exponents<br />

are NOT <strong>the</strong><br />

same, we must<br />

move a decimal<br />

to make <strong>the</strong>m<br />

<strong>the</strong> same.


4.00 x 10 6<br />

+4.30<br />

.30 x 10 6<br />

YES!<br />

x 10 6


A Problem for you…<br />

Scientific Notation<br />

(2.37 x 10 -6 )<br />

+ (3.48 x 10 -4 )


Solution…<br />

0.0237 x 10 -4<br />

+ 3.48 x 10 -4<br />

3.5037 x 10 -4


Calculating Density


Mass = amount of matter<br />

something contains<br />

Weight Vs. Mass<br />

» Doesn’t change in outer<br />

space<br />

Weight = measurement of <strong>the</strong><br />

pull of gravity on an<br />

object.<br />

» Changes in outer space.


Density= Mass / Volume<br />

• How much “stuff” per unit<br />

volume<br />

•The density of a substance is unique <strong>and</strong> never<br />

changes regardless of it’s size or shape.<br />

Ex: Gold’s density = 19.3 g/ mL<br />

(same for <strong>the</strong> ring & gold bar)


• Is a physical property<br />

that is unique to each<br />

material<br />

• Can be used to identify<br />

a substance<br />

Density<br />

Density of ice= .92g/cm 3


Can find by:<br />

Volume- amount of space an object<br />

occupies<br />

1) Using a ruler<br />

• only if it’s a certain shape<br />

(ex: cube)<br />

• Measured in : cm 3<br />

2) Water displacement<br />

• Use for odd shaped objects<br />

• Measure in: mL<br />

*1 cm 3 = 1 mL (volume is <strong>the</strong><br />

same regardless of which<br />

way you measure it)


Ex: Muscle is more dense than fat<br />

Muscle density= 1.06 g/ml<br />

Fat density= 0.9 g/ml<br />

This is why<br />

people who<br />

start<br />

exercising<br />

don’t always<br />

lose weight,<br />

but clo<strong>the</strong>s<br />

fit<br />

differently


Dimensional Analysis


Sample Problems to Solve<br />

A) How many seconds has a 16 year old been<br />

alive?<br />

B) How many liters of water will Kate consume in<br />

1 year? Kate drinks 8 glasses of water in 1 day<br />

& 1 glass = 300 mL. There are 1000 mL in 1<br />

L.


The <strong>Math</strong> behind Dimensional Analysis<br />

6 zooms<br />

x<br />

4 zetas<br />

3 zooms<br />

=<br />

6 x 4 Zetas<br />

3<br />

=<br />

24 Zetas<br />

3<br />

= 8 Zetas<br />

•This is <strong>the</strong> level of math you will need to know in this unit.<br />

•You would cancel out everything on <strong>the</strong> top <strong>and</strong> bottom<br />

that are <strong>the</strong> same (including words).<br />

• In <strong>the</strong> end, multiply everything on <strong>the</strong> top <strong>and</strong> divide it by<br />

everything that has been multiplied on <strong>the</strong> bottom.


Dimensional Analysis<br />

• It is a method to solve conversion type problems<br />

• Uses Conversion Factors (relate 2 things to each o<strong>the</strong>r)<br />

• These are ei<strong>the</strong>r given to you or assumed to be known<br />

– Ex: 4 laps = 1 mile (<strong>the</strong>y are equal to each o<strong>the</strong>r)<br />

Can also be written as a fraction:<br />

4 Laps<br />

1 mile = Or 1 mile • Can be written in<br />

1<br />

4 laps ei<strong>the</strong>r direction<br />

When solving problems use this method:<br />

GIVEN X CONVERSION FACTOR = Find


Sample Dimensional Analysis Problem<br />

Ex: Convert 15 cm into meters<br />

Given x conversion factor = Find<br />

Ex: 15 cm x 1 meter =<br />

100 cm<br />

.15 meter


Dimensional Analysis<br />

Sample Problem #2<br />

•You're throwing a pizza party for 15 people.<br />

•each person might eat 4 slices.<br />

•each pizza will cost you $14.78<br />

•1 pizza will be cut into 12 slices.<br />

•How much is <strong>the</strong> pizza going to cost you?<br />

Starting x conversion factors<br />

= find<br />

15 people 4 slices 1 pizza 14.78 dollars<br />

1 person 12 slices 1 pizza<br />

=<br />

$73.90<br />

$ 74<br />

dollars


Good use of D.A. - performed by a<br />

senior planning a trip<br />

A group of friends are going to Disneyl<strong>and</strong> for<br />

graduation. Driver wants to know how much to<br />

charge his friends <strong>the</strong> trip to cover his gas costs?<br />

It’s 876.8 miles round trip.<br />

-Car gets 18 miles/ gallon<br />

$ 4.30/ 1 gallon gas<br />

-6 people


DIMENSIONAL ANALYSIS REVIEW<br />

If an amoeba needs to eat 4 cyanobytes to be full.<br />

How many amoebas can you feed if you have 6.0<br />

cyanobytes?<br />

6 cyanobytes 1 amoeba = 1.5 amoebas<br />

4 cyanobytes


DIMENSIONAL ANALYSIS REVIEW<br />

If you have 3 drimples, how many blobs could you<br />

make if it takes 1 drimple to make 4 clomps <strong>and</strong><br />

6 clomps to make a blob?<br />

3 drimples 4 clomps 1 blob = 2 blobs<br />

1 drimple 6 clomps


DIMENSIONAL ANALYSIS REVIEW<br />

If you have 8.0 grams of a substance, how many<br />

moles would you have if 1 mole has a mass of 32<br />

grams?<br />

8.0 grams 1 mole = 0.25 moles<br />

32 grams


DIMENSIONAL ANALYSIS REVIEW<br />

If 3 amoebas need 5 x 10 -2 meters 2 of living space.<br />

How many amoebas can you have if you have a<br />

petri dish that is 20. x 10 -2 meters 2 ?<br />

20. x 10 -2 m 2 3 ameobas = 12 amoebas<br />

5 x 10 -2 m 2


DIMENSIONAL ANALYSIS REVIEW<br />

If you have 10. grams of a substance, how many<br />

atoms would you have if 1 mole has a mass of 40<br />

grams <strong>and</strong> 1 mole contains 6 x 10 23 atoms?<br />

10. g 1 mol 6 x 10 23 atoms = 1.5 x 1023 atoms<br />

40 g 1 mol


DIMENSIONAL ANALYSIS REVIEW<br />

What would be <strong>the</strong> mass of 1.5 x 10 23 molecules, if<br />

6 x 10 23 molecules equals 1 mole <strong>and</strong> 1 mole is 80<br />

grams?


DIMENSIONAL ANALYSIS REVIEW<br />

How many moles are in 116 grams of magnesium<br />

hydroxide, Mg(OH) 2 ?


DIMENSIONAL ANALYSIS REVIEW<br />

How many atoms are in 44 grams of boron?


The <strong>Mole</strong><br />

naked mole rat


What is <strong>the</strong> <strong>Mole</strong>?<br />

It’s an amount, like a dozen (1 dozen = 12)<br />

1 mole = 6.02 x 10 23 particles<br />

(a.k.a. Avogadro’s Number)<br />

Amedeo<br />

Avogadro<br />

‣Experiments are performed with moles of atoms<br />

(not individual atoms).<br />

‣A mole is defined as: amount of a substance<br />

that contains as many particles as <strong>the</strong>re are atoms<br />

in 12 g or Carbon-12.


Using <strong>the</strong> “mole” by weighing<br />

Ex: a scientist wants 1 mole of Na <strong>and</strong> 1 mole of Cl<br />

to make NaCl.<br />

Is he or she going to count out 6.02 x 10 23 Na <strong>and</strong> Cl<br />

atoms? NO WAY!<br />

Chemists can "count" atoms or molecules by knowing<br />

how much 1 mole of every substance weighs…<br />

The molar mass! It’s on <strong>the</strong> periodic table


How big is Avogadro’s #?<br />

• An Avogadro's number of soft drink cans would<br />

cover <strong>the</strong> surface of <strong>the</strong> earth to a depth of over<br />

200 miles.<br />

• If you spread Avogadro's number of unpopped<br />

popcorn kernels across <strong>the</strong> USA, <strong>the</strong> entire<br />

country would be covered in popcorn to a depth of<br />

over 9 miles.<br />

• If we were able to count atoms at <strong>the</strong> rate of 10<br />

million per second, it would take about 2 billion<br />

years to count <strong>the</strong> atoms in one mole.


Molar Mass<br />

Atomic mass<br />

Mass of 1 atom<br />

of C= 12.01 amu<br />

Molar Mass<br />

Mass of 1 mole of C atoms (6.02 x 10 23 atoms)<br />

12.01 g/ mol<br />

Here’s How do we know?<br />

It weighs 12.01 grams on a balance


Practice with <strong>the</strong> <strong>Mole</strong> Concept<br />

1<br />

H<br />

1.01<br />

8<br />

O<br />

16.00<br />

1. What weighs more, a mole of Hydrogen or<br />

a mole of Oxygen? Oxygen (16.00 grams /mole)<br />

(Because a Hydrogen atom weighs more than<br />

an Oxygen atom) Note: only units change<br />

2. Which has more atoms, a mole of Oxygen or<br />

a mole of Hydrogen? Both have 6.02x 10<br />

23<br />

atoms<br />

3. What’s <strong>the</strong> molar mass of H 2 O? 18.02 g/ mol (see demo)<br />

4. Mass of 1 molecule of H 2 O? = 18.02 amu


The <strong>Mole</strong> vs. a Dozen<br />

1 dozen cookies = 12 cookies<br />

1 mole of cookies = 6.02 X 10 23 cookies<br />

1 dozen cars = 12 cars<br />

1 mole of cars = 6.02 X 10 23 cars<br />

1 dozen Al atoms = 12 Al atoms<br />

1 mole of Al atoms = 6.02 X 10 23 atoms<br />

Note that <strong>the</strong> NUMBER is always <strong>the</strong> same, but <strong>the</strong> MASS is<br />

very different!<br />

<strong>Mole</strong> is abbreviated mol (gee, that’s a lot quicker to write,<br />

huh?)


Using <strong>the</strong> <strong>Mole</strong> in Chemistry


The <strong>Mole</strong>- a conversion factor<br />

**1 mole = 6.02 x 10 23 particles **<br />

1 mole<br />

6.02 x 10 23 particles**<br />

OR<br />

6.02 x 10 23 particles**<br />

1 mole<br />

**Particles = atoms or molecules **


Molar Mass- a conversion factor<br />

Since 6.02 X 10 23 is impossible to count, chemists know <strong>the</strong> mass of a<br />

mole (<strong>the</strong> molar mass)<br />

1 mole<br />

x grams<br />

OR<br />

X grams<br />

1 mole<br />

use periodic table to determine <strong>the</strong> mass because every substance is different.<br />

Ex: Write <strong>the</strong> molar mass of Ca as a conversion factor<br />

40.08 grams<br />

1 mole Ca<br />

Or<br />

1 mole Ca<br />

40.08 grams<br />

**Can also be written 40.08 g/ mol**


Molar mass of Compounds<br />

Ex: Write <strong>the</strong> molar mass of H 2 O as a conversion factor<br />

Ex : H 2 O = 18.02 grams<br />

(you need to add)<br />

2 Hydrogen’s : (1.01) 2 = 2.02<br />

1 Oxygen: (16.00) 1 = 16.00<br />

= 18.02 g<br />

Molar mass of H 2 O=<br />

1 mole<br />

18.02 g


“<strong>Mole</strong> Map” for Calculations<br />

use molar mass use Avogadro’s number<br />

Grams <strong>Mole</strong>s particles<br />

g/ mol<br />

1 mol/ 6.02 x 10 23<br />

(use <strong>the</strong> periodic table)<br />

Everything must go through <strong>Mole</strong>s!!!


Converting <strong>Mole</strong>s <strong>and</strong> Atoms<br />

What is <strong>the</strong> # of moles of S in 1.8 x 10 24 S atoms?<br />

GIVEN X<br />

CONVERSION FACTOR = Find**<br />

1.8 X 10 24 Atoms x 1 mole<br />

6.02 X 10 23 Atoms<br />

= # of <strong>Mole</strong>s<br />

= 1.8 X 10 24 mole<br />

6.02 X 10 23 = 3.0 mole


Converting <strong>Mole</strong>s <strong>and</strong> Grams<br />

How many grams of Al are in 3.00 moles of Al?<br />

You will need:<br />

1. Molar mass of Al … 1 mole Al = 27.00 g Al<br />

2. Conversion factors for Al<br />

27.00g Al or 1 mol Al<br />

1 mol Al 27.00 g Al<br />

3. GIVEN X CONVERSION FACTOR= Find<br />

3.00 moles Al x 27.00 g Al<br />

1 mole Al<br />

= 81.00 g Al


Sample of Atoms/<strong>Mole</strong>cules <strong>and</strong><br />

Grams<br />

How many atoms of Cu are present in 35.4 g of<br />

Cu?<br />

35.4 g Cu 1 mol Cu 6.02 X 10 23 atoms Cu<br />

63.5 g Cu 1 mol Cu<br />

= 3.4 X 10 23 atoms Cu


Dimensional Analysis Fun…<br />

from Lewis Caroll’s Through <strong>the</strong> looking Glass<br />

If <strong>the</strong>re are 5 frumious B<strong>and</strong>ersnatches,<br />

how many Jabberwocks are <strong>the</strong>re?<br />

There are 20 tumtum trees in <strong>the</strong> tulgey wood.<br />

In each tulgey wood is one frumious B<strong>and</strong>ersnatch.<br />

There are 5 slithy toves in 2 borogoves.<br />

There are 2 mome raths per Jabberwock.<br />

There are 2 Jubjub birds in 200 tumtum trees.<br />

There are 200 mome raths in each borogove.<br />

There are 5 Jubjub birds per slithy tove.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!