21.06.2014 Views

Lock-in Amplifiers

Lock-in Amplifiers

Lock-in Amplifiers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INTEGRATED LOCK-IN<br />

AMPLIFIER<br />

by<br />

MEILI LO, B.S.E.<br />

A THESIS<br />

IN<br />

ELECTRICAL ENGINEERING<br />

Submitted to the Graduate Faculty<br />

of Texas Tech University <strong>in</strong><br />

Partial Fulfillment of<br />

the Requirements for<br />

the Degree of<br />

MASTER OF SCIENCE<br />

IN<br />

ELECTRICAL ENGINEERING<br />

Approved<br />

May, 1996


T<br />

I '^'A\^<br />

Kio.M-l<br />

CONTENTS<br />

b./r<br />

r ^<br />

LIST OF FIGURES<br />

CHAPTER<br />

iv<br />

1. INTRODUCTION 1<br />

2. BASIC THEORY OF LOCK-IN AMPLIFIERS 3<br />

2.1 Basic concepts of lock-<strong>in</strong> recovery 3<br />

2.2 Basic lock-<strong>in</strong> amplifiers 4<br />

2.2.1 The signal channel 4<br />

2.2.2 The multiplier detector 5<br />

2.2.3 The reference channel 7<br />

2.3 Noise rejection 9<br />

2.4 The implementation of a lock-<strong>in</strong> amplifier 11<br />

3. THE DETAILED CIRCUIT BEHAVIOR OF LOCK-IN AMPLIFIER 14<br />

3.1 OP amplifier 14<br />

3.1.1 The differential <strong>in</strong>put amplifier stage 16<br />

3.1.2 Output stage 18<br />

3.2 Active resistor 18<br />

3.3 Instrumentation amplifier 19<br />

3.4 Switched capacitor filter 20<br />

3.5 Phase shifl;er 26<br />

3.6 Multiplier 27<br />

4. SIMULATIONS AND ANALYSIS 31<br />

4.1 The result analysis of OP amphfier 31<br />

4.2 The simulation result of <strong>in</strong>strumentation amplifier 35<br />

4.3 The switched capacitor filters 35<br />

4.4 The multiplier 36<br />

4.5 The simulation results of the whole system 36<br />

5. SUMMARY 59<br />

REFERENCES 63<br />

11


APPENDIX<br />

A. THE OPERATION OF THE OP AMPS 64<br />

B. THE BASIC CONCEPT OF THE ACTIVE RESISTORS 69<br />

C. THE FORMULA REDUCTION OF THE INSTRUMENTATION<br />

AMPLIFIER 72<br />

D. THE SUBCIRCUITS OF THE LOCK-IN AMPLIFIER 74<br />

E. OUTPUT PLOTS 83<br />

111


LIST OF FIGURES<br />

2.1 A general experiment system of lock-<strong>in</strong> amplifier 4<br />

2.2 A basic lock-<strong>in</strong> amplifier 5<br />

2.3 Synchronous detector 6<br />

2.4 The implementation of lock-<strong>in</strong> amplifier 12<br />

3.1 The block diagram of an op-amp 14<br />

3.2 The schematic of the lock-<strong>in</strong> amplifier 17<br />

3.3 The simple transistor astive resistor 21<br />

3.4 The active resistor 21<br />

3.5 The implementation of Figure 3.4 22<br />

3.6 The <strong>in</strong>strumentation amplifier implementation by three op-amp 23<br />

3.7 Parallel switched capacitor realization of a cont<strong>in</strong>uous resistor 24<br />

3.8 The equivalent circuit of the cont<strong>in</strong>uous resistor 24<br />

3.9 Clock waveforms for the switched capacitor 24<br />

3.10 A basic Wien bridge phase shifl:er 29<br />

3.11 The basic circuit of four-quadrant Gilbert multiplier cell 30<br />

4.1 The parameter of MOSIS CMOS 2-|.im N-wdl process 32<br />

4.2 Open-loop mode with offset compensation 33<br />

4.3 A method of measur<strong>in</strong>g open-loop characteristics with dc bias stability 33<br />

4.4 The measurement result of open-loop ga<strong>in</strong> marg<strong>in</strong> by us<strong>in</strong>g the circuit<br />

of Figure 4.3 38<br />

IV


4.5 The measurement result of the open-loop ga<strong>in</strong> and phase 39<br />

4.6 Op-amp with only common-mode <strong>in</strong>put voltage 40<br />

4.7 Op-amp with differential-mode <strong>in</strong>put 40<br />

4.8 The simulation result of CMRR 41<br />

4.9 CMRR of <strong>in</strong>strumentation amplifier 42<br />

4.10 The result analysis of <strong>in</strong>strumentation amplifier 43<br />

4.11 The frequency and noise response of bandpass filter 44<br />

4.12 The output response of <strong>in</strong>put signal frequency at lOK Hz 45<br />

4.13 The bandpass filter output response of <strong>in</strong>put signal frequency at<br />

lOOKHzand IKHz 46<br />

4.14 The fi"equencyand noise response of lowpass filter 47<br />

4.15 The lowpass filter output response of <strong>in</strong>put signal frequency at IK Hz 48<br />

4.16 The lowpass filter output response of <strong>in</strong>put signal frequency at lOK Hz 49<br />

4.17 The output response of multiplier 50<br />

4.18 The DC transfer characteristics of multiplier 51<br />

4.19 Ac characteristics of multiplier 52<br />

4.20 An <strong>in</strong>put signal and its amplitude modulation 53<br />

4.21 The wideband noise 54<br />

4.22 The recovery signal of Figure 4.21 by the lock-<strong>in</strong> amplifier 55<br />

4.23 A <strong>in</strong>put signal with high noise (SNR =1:10) 56<br />

4.24 The recovery signal of Figure 4.23 57<br />

4.25 A recovery signal of a wide band noise but high SNR (SNR =1:1) 58


5.1 Block diagram of an extended lock-<strong>in</strong> amplifier 61<br />

5.2 The two-phase lock-<strong>in</strong> amplifier 62<br />

A.l Equivalent circuit of Ro 65<br />

A.2 Equivalent circuit of Figure A.1 66<br />

A. 3 The small signal model of folded cascode amplifier 67<br />

A.4 The equivalent output resistance circuit of folded cascode amplifier 67<br />

B. 1 The different l<strong>in</strong>ear ranges of active resistance under different Vc 70<br />

B.2 The simulation result of Figure D.6 71<br />

D. 1 Instrumentation amplifier 75<br />

D.2 Bandpass filter 76<br />

D.3 Phase shifter 77<br />

D.4 Multiplier 78<br />

D.5 Lowpass filter 79<br />

D.6 Active resistance 80<br />

D.7 OP amplifier with push-pull as output buffer 81<br />

D.8 OP amplifier with source follower as output buffer 82<br />

E. 1 The measure result of the dc feedback 84<br />

E.2 The open-loop transfer curve and output sw<strong>in</strong>g limits 85<br />

E.3 The simulation method of slew rate and sett<strong>in</strong>g time 86<br />

E.4 Simulation result of slew rate and sett<strong>in</strong>g rate 87<br />

VI


CHAPTER 1<br />

INTRODUCTION<br />

When a signal is obscured by high levels of noise, signal recovery techniques are<br />

necessary to obta<strong>in</strong> a high quality signal, thus signal recovery <strong>in</strong>struments play an<br />

important role <strong>in</strong> modem technology. Of all the techniques that have been developed for<br />

signal recovery, methods based on a phase-sensitive detector and its modern counterpart,<br />

the lock-<strong>in</strong> amplifier, are by far the most widely applied <strong>in</strong> all fields of scientific research.<br />

A phase-sensitive detector is responsive to the amplitude of a signal, but is also<br />

sensitive to the phase difference between a signal and the derived reference. Phasesensitive<br />

detector-based systems can, therefore, be devised to measure variations <strong>in</strong> both<br />

the amplitude and phase of periodic signals <strong>in</strong> the presence of noise and <strong>in</strong>terference.<br />

Systems us<strong>in</strong>g phase-sensitive detectors are called lock-<strong>in</strong> systems, and the usual way of<br />

<strong>in</strong>troduc<strong>in</strong>g a phase-sensitive detector <strong>in</strong>to an experiment is to use a lock-<strong>in</strong> amplifier. A<br />

lock-<strong>in</strong> amplifier has come to mean an <strong>in</strong>strument that <strong>in</strong>corporates a phase-sensitive<br />

detector, which is supported by preamplifiers, post-detection amplifiers, and a<br />

comprehensive reference process<strong>in</strong>g section[l].<br />

The sensitivity of a lock-<strong>in</strong> amplifier makes it an exceptionally useful <strong>in</strong>strument for<br />

extract<strong>in</strong>g signals from noise, even when the noise and signal frequencies are close<br />

together. <strong>Lock</strong>-<strong>in</strong> amplifiers are widely used <strong>in</strong> situations <strong>in</strong>volv<strong>in</strong>g low signal-to-noise<br />

ratios. These situations frequently arise when mak<strong>in</strong>g accurate measurements, such as<br />

displacement, temperature, stress-stra<strong>in</strong> and many others.


<strong>Lock</strong>-<strong>in</strong> amplifiers are widely and usefully applied <strong>in</strong> all fields of scientific research<br />

to obta<strong>in</strong> of signals from noise. However, most lock-<strong>in</strong> amplifiers are build as an<br />

<strong>in</strong>strument or a board <strong>in</strong>stead of s<strong>in</strong>gle chip. The price of either an <strong>in</strong>strument or a circuit<br />

board is expensive. For a wide-band lock-<strong>in</strong> amplifier <strong>in</strong>strument, the price is around<br />

$4,000 or up. Furthermore, for the purposes of reduc<strong>in</strong>g the size of products and the<br />

extra noise caused by signal transmission, the development of <strong>in</strong>tegrated lock-<strong>in</strong> amplifiers<br />

becomes essential.<br />

In this thesis, an analog lock-<strong>in</strong> amplifier is developed. This lock-<strong>in</strong> amplifier<br />

consists of an <strong>in</strong>strumentation amplifier, OP amplifier, active resistor, switch capacitor<br />

filter, phase shifter, and multiplier.<br />

The fundamental theory of the lock-<strong>in</strong> amplifier will be discussed <strong>in</strong> Chapter 2.<br />

Also <strong>in</strong> that chapter, the pr<strong>in</strong>ciples of the "phase sensitive detector, the modulator, and the<br />

demodulator will be <strong>in</strong>troduced, as well as the lock-<strong>in</strong> amplifier. The circuit design of<br />

each part of the lock-<strong>in</strong> amplifier will be presented <strong>in</strong> detail <strong>in</strong> Chapter 3. All the results of<br />

this lock-<strong>in</strong> amplifier design will be shown <strong>in</strong> Chapter 4. F<strong>in</strong>ally <strong>in</strong> Chapter 5, conclusions<br />

about this design are drawn, and some recommendations are given for further research.


CHAPTER 2<br />

BASIC THEORY OF LOCK-IN AMPLIFIERS<br />

2.1 Basic concepts of lock-<strong>in</strong> recovery<br />

<strong>Lock</strong>-<strong>in</strong> amplifiers are characterized by a wide dynamic range which gives the<br />

ability to measure signals that are accompanied by relatively high levels of noise and<br />

<strong>in</strong>terference. The lock-<strong>in</strong> amplifier is an exceptionally useful <strong>in</strong>strument for extract<strong>in</strong>g<br />

signals from high levels of noise, even when the noise and signal frequency are very close<br />

to the same value.<br />

The heart of the lock-<strong>in</strong> amplifier is a phase-sensitive detector. A phase-sensitive<br />

detector gives preferential treatment to the desired signal based on <strong>in</strong>formation about the<br />

signal's phase. However, a bandpass filter also makes a large contribution to the<br />

reduction of unwanted signals and to signal recovery.<br />

In typical applications, the desired signal is chopped or otherwise amplitude<br />

modulated at a much higher frequency. The signal recovery application of lock-<strong>in</strong><br />

amplifiers usually <strong>in</strong>volves the measurement of an amplitude variation and, to a lesser<br />

extent, phase variation of a periodic signal. <strong>Lock</strong>-<strong>in</strong> amplifiers are most commonly used<br />

with slowly vary<strong>in</strong>g signals. Time scales for signal variation are commonly on the order<br />

of seconds or longer[2].<br />

A general experimental system for a lock-<strong>in</strong> amplifier is shown <strong>in</strong> Figure 2.1. The<br />

system can be electrical, mechanical, optical, biological, or some comb<strong>in</strong>ation of such<br />

systems[l].


excitation<br />

response signal sensor Modulated signal<br />

noise<br />

<strong>Lock</strong>-<strong>in</strong><br />

Amplifier<br />

response signal<br />

(demodulated)<br />

Figure 2.1: A general experiment system of lock-<strong>in</strong> amplifier<br />

2.2 Basic lock-<strong>in</strong> amplifiers<br />

The lock-<strong>in</strong> amplifier is an extremely important and powerful measur<strong>in</strong>g tool. It not<br />

only can demodulate the modulated signal but also recover an <strong>in</strong>put signal disappeared <strong>in</strong><br />

the high noise. The block diagram of a basic lock-<strong>in</strong> amplifier is shown <strong>in</strong> Figure 2.2.<br />

2.2.1 The signal channel<br />

As shown <strong>in</strong> Figure 2.2, lock-<strong>in</strong> amplifiers are usually provided with an optional<br />

range of preamplifiers. The objective here is not only to enhance the ga<strong>in</strong>, but also to<br />

provide an optimum noise match to the signal source. In this way, the noise, whose<br />

frequency is close to the signal frequency, is not enhanced at the expense of the signal<br />

because of an excessive noise contribution from the amplifier. Frequently, lock-<strong>in</strong><br />

amplifiers are also provided with an array of filters for this purpose. If a substantial<br />

fraction of the noise and <strong>in</strong>terference is not elim<strong>in</strong>ated <strong>in</strong> this way, then the amplifier could


e driven <strong>in</strong>to saturation at an undesirably low ga<strong>in</strong> factor. The result<strong>in</strong>g distortion would<br />

degrade system performance seriously[7]. .<br />

A sharp bandpass filter is frequently used to improve noise immunity. This can be<br />

done because frequencies other than that of the carrier and its sideband are filtered out<br />

with the bandpass fiher. Thus, the SNR can be enhanced before the demodulator.<br />

Multiplier detector<br />

<strong>in</strong>put" filter •*" low-pass filter rt~^ out<br />

preamp<br />

time constant<br />

signal channel<br />

sensitivity<br />

reference <strong>in</strong>put<br />

reference channel<br />

Figure 2.2: A basic lock-<strong>in</strong> amplifier<br />

2.2.2 The multiplier detector (synchronous detector)<br />

The synchronous detector <strong>in</strong>cludes, at least, a multiplier and a lowpass filter. The<br />

objective of the detector is to offer a wide dynamic range to maximize signal recovery


capability. For practical reasons, the multiplier of many commercial products is driven by<br />

a squarewave switch<strong>in</strong>g waveform, <strong>in</strong>stead of a s<strong>in</strong>usoid wave.<br />

The low-pass filter serves several functions. First, it elim<strong>in</strong>ates the secondharmonic<br />

signal that is produced by the multiplier. The filter also <strong>in</strong>tegrates some of the<br />

random noise that ends up <strong>in</strong> the output of the multiplier.<br />

The simple block diagram of a synchronous detector is shown <strong>in</strong> Figure. 2.3. The<br />

only unwanted components which can give rise to spurious output are those which<br />

orig<strong>in</strong>ate <strong>in</strong> the immediate vic<strong>in</strong>ity of the reference frequency, conf<strong>in</strong>ed to the transmission<br />

'w<strong>in</strong>dows' def<strong>in</strong>ed by the characteristics of the low-pass filter[l][2][7].<br />

s(0 + n(/)<br />

I<br />

output<br />

r(0 >( X ) • low-pass filter ; • Voit)<br />

mit) \<br />

Figure 2.3: Synchronous detector<br />

The synchronous detector derives its name from the reference carrier signal used<br />

to demodulate the modulated carrier. As the diagram <strong>in</strong> Figure 2.3 shows, the operation of<br />

a synchronous detector can be summarized by the follow<strong>in</strong>g mathematical relationships.<br />

From Figure 2.3, the <strong>in</strong>put signal can be def<strong>in</strong>ed <strong>in</strong> terms of amplitude Vs, central


fi"equency/^, and phase (ps expressed as Equation (2.1). Also, a reference signal r(/) can be<br />

def<strong>in</strong>ed with amplitude V;., central frequency/., and phase (j)r as express <strong>in</strong> Equation (2.2).<br />

s(/) = Vscos [ 2;/,/ +^,] (2.1)<br />

rit) -^Y,COSi 27lfrt+(/>r) (2.2)<br />

mit) = (l/2)VsVr { cos [ 2n(f,^fr)<br />

t)+ ^.^ A<br />

+ cos[2K(f,-fr)t^(l>,-(!>,]}. (2.3)<br />

Where mit) is the output signal after the multiplier.<br />

Assume fs=fr, s^ (j>r, and the cut-off frequency of lowpass filter is less than/, then<br />

after lowpass filter<strong>in</strong>g. Equation (2.3) can be express as:<br />

Vo= KVsV.cos [ 2n( frfr) t + ^.- ^. ]<br />

= KVsV,. (2.4)<br />

where K is def<strong>in</strong>ed as a constant scaled by the factor of lowpass filter and multiplier.<br />

Equation (2.4) reveals that if r ovfs^fr, the output voltage will be reduced. To<br />

prevent los<strong>in</strong>g ga<strong>in</strong>, a phase shifter is needed to assure that the phase of the reference and<br />

signal channel are the same. Furthermore, the reference signal fi"equency,/., should be<br />

chosen as the same as the modulat<strong>in</strong>g signal,/.<br />

2.2.3 The reference channel<br />

The phase-sensitive detector requires a reference channel which supplies the<br />

precise modulat<strong>in</strong>g waveform required for the signal detector. The reference signal is<br />

normally a s<strong>in</strong>usoidal wave or a square wave. The discussion <strong>in</strong> section 2.2.2 assumes that<br />

7


the reference channel supplies an ideal s<strong>in</strong>usoidal wave. Sometimes the multiplier is a<br />

square wave. The square wave form can be expressed as:<br />

rit) = 4/71 { cos i2nfrt + Or) - 1/3 cos [3 (2;?/;/ +0,)]<br />

+ l/5cos[5(2;//+0,)]-.. } (2.5)<br />

at frequency/.<br />

Then,<br />

mit) = i l/2Vs/7r) { cos (2;r(/ +fs)t+ 0r)<br />

-(1/3) cos [67rifr + fs)t+0r]<br />

+ ( 1/5 ) cos [10;r(/ + f,) t + 0^)] - .. ]. (2.6)<br />

If the bandpass filter is operated <strong>in</strong> a narrow-band mode to strongly attenuate any<br />

<strong>in</strong>put signal at higher harmonics, then the result is the same as the s<strong>in</strong>usoidal reference <strong>in</strong><br />

the section 2.2.2. If the narrow-band filter does not provide enough attenuation, the<br />

phase sensitive detector will also have a phase-sensitive d.c. output <strong>in</strong> response to the<br />

signal at other harmonic frequencies and possibly cause some measurement ambiguities.<br />

To suppress the effect of the harmonic response, a tuned filter can be applied directly to<br />

the phase-sensitive detector [1][7].<br />

Furthermore, the phase-shift controller is necessary because the <strong>in</strong>put and<br />

8


eference signal are always out of phase when they reach the multiplier. The phase-shift<br />

controller is usually provided with a cont<strong>in</strong>uously variable adjustment.<br />

2.3 Noise rejection<br />

As the diagram <strong>in</strong> Figure 2.3 shows, the response of a synchronous detector to an<br />

amplitude-modulated signal at modulat<strong>in</strong>g fi-equency/o (oo = 2;/) with random noise after<br />

the signal channel can be written as:<br />

v,«(0 = msit)cos(iiot + nit) (2.7)<br />

where wXO is def<strong>in</strong>ed as a <strong>in</strong>put signal before modulation and «(/) is def<strong>in</strong>ed as a noise<br />

signal. S<strong>in</strong>ce the noise spectrum is centered on the signal frequency/o and band-limited by<br />

the band-pass filter, the noise signal can be written, <strong>in</strong> terms of random modulations, Rit)<br />

and ^0. that vary very slowly <strong>in</strong> comparison with coscDot, as:<br />

nit) = Rit) cos [ CDot + (p(t)]<br />

= «,(/)coscoo/ - «^(/)s<strong>in</strong>coo/. (2.8)<br />

where n,it) = Rit) cos^/) ( def<strong>in</strong>ed as <strong>in</strong>-phase noise ) and «(/) (def<strong>in</strong>ed as<br />

quadrature noise).<br />

The <strong>in</strong>put voltage to the synchronous detector becomes:<br />

v,niO = [ f^XO + «(0 ] coscoo/ - «g(Os<strong>in</strong>coo/. (2.9)<br />

If a reference voltage v/?(/) = F^cosOo/ is <strong>in</strong>troduced to the system, then the multiplication<br />

products can be given as:


..(Ov,(o = ;". '^\-:{:> .('\ 1 r<br />

y J _<br />

- (<br />

\ •<br />

^r /:,,f/)5'n2o:o^<br />

2. - - -. ti<br />

io'.v--^ai3 ii':e: f a-i- -<br />

- \.. L .. l_/ • ^ntj Ci:<br />

th- c!.:i:-.::<br />

f;') = i i/<br />

- 7 ^<br />

a. -; .l_ :-'~5 cf me:.::-:cj?.:^ v^Ivie.: cf/;:XO '^-<br />

'^c-r'^:^(:)/"r:v:.<br />

.'><br />

^c'2.12) sh.<br />

-1 -i-i..<br />

,'' 1 •. "3 ,1 • • ^<br />

w ' - -. ^ A _ 'v.. . i v.. >_i L.' W > C • '» : Iw . C. * .<br />

ne mr'.:.<br />

• . . . , *<br />

'Ny.., '"^ [ ;rr;':^cos^cc -C / .:-^^"\ =<br />

; 7?r(t;//r(0j. \ - • • - ^<br />

Hence, ±e s* "1 i _ r •". _ " ~" • . - i 11, I vy<br />

;r is:<br />

•".' 1 _ ^ .<br />

.i"..! t•^:; 5igna.-:c-nc:r:c :•:. •nr'):-ovec.<br />

Wlien i^2 ^''^ ^?i ( '•-'hi:^ Bj is th^ baad\vi'i:2 c-" :he 21LC" and E: is the ba'idwidth<br />

ihe i'ou: nci;-: }, tn^: n:c:j:i~:qi.:ar^> vai'.ii cf rhe noisa fcK: vx-<strong>in</strong>q Ihc lo'. '-ra,^s aiti;: en:: b


NO = 2WNB^. (2.15)<br />

where W^ is def<strong>in</strong>ed as the spectral density of the bandpass filter. The output signal-tonoise<br />

ratio SNRo and <strong>in</strong>put signal-to-noise ratio SNRjcm be written as:<br />

SNRo = m,\t) I 2 WMBO (2.16)<br />

and<br />

SNRj = m\t) I 2WMBJ. (2.17)<br />

Therefore, the signal-to-noise improvement factor becomes:<br />

SNR^ I SNRi = Bj I Bo. (2.18)<br />

If the <strong>in</strong>put noise is band limited around the signal fi"equency,it is necessary to<br />

provide noise filters centered on the signal frequency to ensure a high SNR before<br />

detection[2][8].<br />

2.4 The implementation of a lock-<strong>in</strong> amplifier<br />

The basic block diagram of the lock-<strong>in</strong> amplifier implemented <strong>in</strong> this paper is<br />

shown <strong>in</strong> Figure 2.4[9].<br />

The design and implementation specification is described as follows.<br />

1. The <strong>in</strong>strumentation amplifier.<br />

To reduce possible common mode noise, a differential <strong>in</strong>strumentation amplifier is<br />

used as the pre-amplifier. The differential ga<strong>in</strong> of the pre-amplifier is 30.<br />

11


unbalance<br />

signal <strong>in</strong><br />

<strong>in</strong>strumentation<br />

ampUtude<br />

ha\ar\ce.


<strong>in</strong> the l<strong>in</strong>ear range, a ga<strong>in</strong> controller is also needed.<br />

4. The multiplier.<br />

The ma<strong>in</strong> purpose of the multiplier is to demodulate the <strong>in</strong>put signal from the<br />

carrier. The l<strong>in</strong>ear range of the <strong>in</strong>put signal of the multiplier should be ma<strong>in</strong>ta<strong>in</strong>ed higher<br />

than IV to be efficient. The frequency response range of the multiplier should be higher<br />

than 20k Hz.<br />

The lock-<strong>in</strong> amplifier is used to detect a low frequency signal which is modulated<br />

to a higher frequency. Even the modulated frequency is very noisy. However, if the<br />

orig<strong>in</strong>al signal has added low fi-equencynoise before modulation, the lock-<strong>in</strong> amplifier can<br />

substantially reduce that noise. When the noise frequency is very close to the modulat<strong>in</strong>g<br />

signal, a lock-<strong>in</strong> amplifier still can improve the signal-to-noise ratio (as shown <strong>in</strong> section<br />

2.4), but the signal recovery ability is decided by the bandwidth of bandpass filter.<br />

Therefore, optimiz<strong>in</strong>g the filters and modulat<strong>in</strong>g frequency becomes essential.<br />

13


CHAPTER 3<br />

LOCK-IN AMPLIFIER DESIGN<br />

The ma<strong>in</strong> blocks of the lock-<strong>in</strong> amplifier are an <strong>in</strong>strument amplifier, a band-pass<br />

filter, a phase shifter, a multiplier, and a lowpass filter. The block diagram of the lock-<strong>in</strong><br />

amplifier is shown <strong>in</strong> Figure 2.4. The complete schematic of the circuit is shown <strong>in</strong> Figure<br />

3.2. The detailed subcircuits for this lock-<strong>in</strong> amplifier are shown <strong>in</strong> Figures D. 1 to D.8 <strong>in</strong><br />

Appendix D. The actual component values along with significant voltage specifications<br />

and signal levels are discussed <strong>in</strong> this chapter.<br />

3.1 Op amplifier<br />

An op amp is one of the most important parts of the lock-<strong>in</strong> amplifier s<strong>in</strong>ce it is<br />

used <strong>in</strong> eveiy part of the lock-<strong>in</strong> amplifier. An ideal op amp has <strong>in</strong>f<strong>in</strong>ite ga<strong>in</strong>, <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>ear<br />

range, zero offset voltage, high common mode rejection ratio ( CMRR ), <strong>in</strong>f<strong>in</strong>ite <strong>in</strong>put<br />

impedance and zero output impedance. Unfortunately, the ideal op amp does not exist.<br />

The follow<strong>in</strong>g block diagram illustrates the operation of a practical op-amp.<br />

v^<br />

V...<br />

Differential <strong>in</strong>put<br />

amplifier<br />

Level shift<br />

Differential -to-s<strong>in</strong>gle-ended<br />

Ga<strong>in</strong> stage<br />

Output buffer stage<br />

Figure 3.1: The block diagram of an op-amp<br />

14


The circuit fijnctions that lead to near-ideal overall performance are:<br />

• Level shift<strong>in</strong>g.<br />

• Differential -to -s<strong>in</strong>gle -ended conversion.<br />

• Added Ga<strong>in</strong>.<br />

• Output buffer stage.<br />

Level shift<strong>in</strong>g is needed to compensate for the dc voltage change occurr<strong>in</strong>g <strong>in</strong> the<br />

<strong>in</strong>put stage and thus to obta<strong>in</strong> the appropriate dc bias for the follow<strong>in</strong>g stages. In some<br />

circuits, the <strong>in</strong>put stage has a differential output that is converted to a s<strong>in</strong>gle-ended output<br />

for the subsequent stage. Usually the ga<strong>in</strong> provided by the <strong>in</strong>put stage is not enough to<br />

meet the specifications. Under this condition, an additional ga<strong>in</strong> stage is needed.<br />

The output buffer stage provides a low output impedance and a large output<br />

current to drive the load of the op amp. Normally, it does not improve the voltage ga<strong>in</strong>.<br />

Usually if the op amp is an <strong>in</strong>ternal component of a switched capacitor filter, the output<br />

load is a small capacitor, and the output buffer stage is not required to provide a very large<br />

current or very low output impedance. However, if the op amp is the filter output, it may<br />

need to drive a large capacitor or a small resistiv-e load. In this case, the output buffer<br />

should be designed with a low output resistance for driv<strong>in</strong>g a big capacitor or to provide a<br />

large current for a small resistive load. The major considerations for an op-amp design are<br />

frequency response, <strong>in</strong>put/output sw<strong>in</strong>g, ga<strong>in</strong>, CMRR, and load driv<strong>in</strong>g capability.<br />

S<strong>in</strong>ce the largest capacitor <strong>in</strong> the switched capacitor filter of the lock-<strong>in</strong> amplifier is<br />

100 pf, a source follower is <strong>in</strong>cluded at the output of the op amp. This source follower is<br />

only used <strong>in</strong> the switched capacitor filters to drive the large <strong>in</strong>ternal capacitors.<br />

15


The circuit diagram of operational amplifiers used <strong>in</strong> the lock-<strong>in</strong> amplifier are<br />

shown <strong>in</strong> Figures D.7 and D.8. The difference between these two circuits is that the<br />

circuit <strong>in</strong> Figure D.8 is used <strong>in</strong> the switched capacitor filters has an additional source<br />

follower with a buffered output stage to drive the heavy load. The detailed circuit design<br />

of the op amps is discussed <strong>in</strong> the follow<strong>in</strong>g sections.<br />

3.1.1 The differential <strong>in</strong>put amplifier stage<br />

In Figure D.7, Ml to MIO form a folded cascode amplifier, which <strong>in</strong>cludes a<br />

differential <strong>in</strong>put amplifier stage and a differential-to-s<strong>in</strong>gle-ended conversion stage. The<br />

key po<strong>in</strong>t of this circuit design is that the current of M5 should be greater than either Ml<br />

or M3 s<strong>in</strong>ce M5 provides the current for both Ml and M3. The same reason<strong>in</strong>g is applied<br />

to M6. The basic operation and formulas are shown <strong>in</strong> Appendix A.<br />

The advantages of this circuit are:<br />

• It does not need level shift<strong>in</strong>g to shift the dc voltage.<br />

• It is a high ga<strong>in</strong> output circuit.<br />

• It reduces the non-dom<strong>in</strong>ant pole s<strong>in</strong>ce it does not need level shift<strong>in</strong>g.<br />

It is particularly suitable for achiev<strong>in</strong>g wide and stable closed loop bandwidths with large<br />

capacity loads, such as required <strong>in</strong> high-frequency switch capacitor filters.<br />

The disadvantage of this circuit is the reduced output voltage sw<strong>in</strong>g of the<br />

cascoded devices. The Mbl to Mb6 circuit was designed to improve the output voltage<br />

sw<strong>in</strong>g.<br />

16


i?5<br />

II! >^<br />

<br />

bQfldDQSS fler<br />

^ m<br />

foffii&rdef<br />

I<br />

0<br />

R1 CI<br />

^<br />

Ik<br />

R3C3<br />

i- -t—M<br />

„ , II 1 I<br />

4—4-<br />

^/l?,^ ''H^'<br />

,1 (I<br />

Vo<br />

< I<br />

Vo<br />

T<br />

lOffMSS f'llltr<br />

9P<br />

KM><br />

Figure 3.2: The schematic of the lock-<strong>in</strong> amplifier<br />

17


3.1.2 Output stage<br />

A class AB push-pull output stage is used <strong>in</strong> the circuit. The primary advantage of<br />

this output stage is that the maximum sourc<strong>in</strong>g/s<strong>in</strong>k<strong>in</strong>g current is not limited by the bias<br />

current, although the small signal output resistance is high. The detailed operation and<br />

formulas are shown Appendix A.<br />

The major disadvantage of this output stage is that the output resistance is <strong>in</strong> the<br />

order of kD. For driv<strong>in</strong>g big capacitor, a low resistance output buffer stage is needed.<br />

There are several different methods for design<strong>in</strong>g a low resistance output stage, such as a<br />

source follower output stage (shown <strong>in</strong> Figure D.8) or negative feedback with error<br />

amplifiers. Error amplifiers can provide a better l<strong>in</strong>ear range than source followers, but<br />

they <strong>in</strong>crease the circuit size and reduce the fi-equencyresponse. Two large resistors can<br />

be used <strong>in</strong> place of the error amplifiers to assure a good l<strong>in</strong>ear range. However, this is not<br />

a good implementation for VLSI design. Hence, a source follower is added to the output<br />

buffer <strong>in</strong> this circuit [5] [6].<br />

3.2 Active resistor<br />

A large number of resistors are used <strong>in</strong> the lock-<strong>in</strong> amplifier. There are several<br />

ways to design resistors <strong>in</strong> VLSI such as active resistors, diffusion resistors, polysilicon<br />

resistors, and switched capacitor active resistors. Switched capacitor circuits are usually<br />

applied with RC time constants and <strong>in</strong> dynamic circuits. For high impedance and gross<br />

values of resistive components, either diffusion or polysilicon resistors are usually used.<br />

Usually an active load is used <strong>in</strong> place of a resistor <strong>in</strong> VLSI design. However, the range of<br />

18


the l<strong>in</strong>ear region is the limit<strong>in</strong>g factor for accurate and symmetry circuits. In this case,<br />

simple transistor active resistors are not used due to their small l<strong>in</strong>ear range.<br />

Another way to design an active resistor is shown <strong>in</strong> Figure 3.4. The<br />

implementation of Figure 3.4 is shown as Figure 3.5. The basic concept of the active<br />

resistor is shown <strong>in</strong> Appendix B. From Appendix B, the voltage size of the l<strong>in</strong>ear range is<br />

limited as: V < ( Vc - VT ). This shows that the higher voltage value of Vc, the larger the<br />

voltage size of the l<strong>in</strong>ear range is. The measured data from the circuit of Figure 3.5 is<br />

shown <strong>in</strong> Figure B. I. The data shows that it is hard to obta<strong>in</strong> the desired l<strong>in</strong>ear region<br />

with a ± 5V power supply design.<br />

Therefore, another method is used to improve the l<strong>in</strong>ear range as shown <strong>in</strong><br />

Figure D.6. The additional p- mode transistors, M7 and M8, are added to compensate for<br />

the nonl<strong>in</strong>ear range of the n-mode transistors M3 and M4. It is not difficult to obta<strong>in</strong> the<br />

resistive l<strong>in</strong>ear range by simply adjust<strong>in</strong>g the W/L ratio. The simulation result of Figure<br />

D.6 is shown <strong>in</strong> Figure B.2.<br />

3.3 Instrumentation amplifier<br />

The ma<strong>in</strong> application of an <strong>in</strong>strumentation amplifier is to measure small<br />

differential output voltage from a sensor under the presence of strong common-mode<br />

<strong>in</strong>put vohages. The three op amps shown <strong>in</strong> Figure 3.6 make up an <strong>in</strong>strumentation<br />

amplifier. The deduction of the Vo is shown <strong>in</strong> Appendix C. The ga<strong>in</strong> of the<br />

<strong>in</strong>strumentation amplifier is shown as:<br />

Ao = Vo/(V2-Vi)= {l+(2R2/Ri)}(R4/R3). (3.1)<br />

19


The advantages of this <strong>in</strong>strumentation amplifier <strong>in</strong>cludes high <strong>in</strong>put impedance and<br />

high CMRR. Plus, it is easy to adjust the output ga<strong>in</strong> by simply chang<strong>in</strong>g resistance Rl<br />

without chang<strong>in</strong>g the bridge resistances. The implementation of a VLSI design <strong>in</strong> this<br />

circuit necessitates the use of the active resistor shown <strong>in</strong> Figure D.6 to replace all<br />

resistances. For the sake of symmetry, the l<strong>in</strong>ear and symmetric character of the active<br />

resistor is an important issue <strong>in</strong> the design of the VLSI devices[5][6].<br />

3.4 Switched capacitor filter<br />

S<strong>in</strong>ce resistors are difficult to use <strong>in</strong> a VLSI circuit, switched capacitors are used <strong>in</strong><br />

the design of active filters. The parallel switched capacitor realization of a cont<strong>in</strong>uous<br />

resistor is shown <strong>in</strong> Figure 3.7.<br />

The transistors which act like switches, are controlled by the clock. The charge,<br />

which flows <strong>in</strong>to Ci at clock period 1 , is equal to<br />

Q(to+T/2) = CV. (3.2)<br />

The charge at the clock period 2 equals<br />

Q (to + T ) = CV2 - CVi = C ( V2 - Vi ). (3.3)<br />

After the second clock pulse of the clock 1, Ci will be recharged to<br />

Q(to + 3T /2 ) = CVi - CV2 = C ( Vi - V2 ). (3.4)<br />

From Equations 3.3 and 3.4, the resistance of the parallel switched capacitor resistor can<br />

be def<strong>in</strong>ed as<br />

R = (V,-V2)/I, = (V2-V,)/l2. (3.5)<br />

20


— <<br />

-(•<br />

- * •<br />

ModN'<br />

l(—1<br />

t<br />

^<br />

'1—1<br />

1<br />

<<br />

WodD'<br />

^<br />


Figure 3.5: The implementation of Figure 3.4.<br />

22


Figure 3.6: The <strong>in</strong>strumentation amplifier implementation by three op-amp


n<br />

Ciccn<br />

T<br />

Ml<br />

Clocl«r2<br />

i<br />

W2<br />

12<br />

o<br />

VI<br />

ir<br />

CI<br />

V2<br />

6<br />

'<br />

Figure 3.7: Parallel switched capacitor realization of a cont<strong>in</strong>uous resistor<br />

R<br />

6^ 6"<br />

Figure 3.8: The equivalent circuit of the cont<strong>in</strong>uous resistor<br />

clock.<br />

i clock 2<br />

•^t-to<br />

111 T 3T/2 2T 5/2T 37<br />

t-to<br />

Figure 3.9: Clock waveforms for the switched capacitor.<br />

24


S<strong>in</strong>ce I = dq/dt, it is easy to get<br />

(Vi-V2)/li(aver) = T/C. (3.6)<br />

So<br />

R= (T / C) = Tc /C = 1/ if, C). (3.7)<br />

The ma<strong>in</strong> purpose of the switched capacitor is to reduce the size of the IC and to<br />

obta<strong>in</strong> RC time constants. The advantages of the switched capacitor realization of<br />

resistors can be observed by compar<strong>in</strong>g the RC product of a resistor designated as Ri and<br />

a capacitor designated as C2. It can be assumed that the product of Ri and C2 forms the<br />

time constant ,1, given as<br />

x = RiC2. (3.8)<br />

Then the accuracy of x as a function of Ri and C2 can be expressed as:<br />

di / T = ( dRi / Rl) + ( dC2 / C2). (3.9)<br />

Assum<strong>in</strong>g that Ri is replaced by a parallel switched capacitor equivalent, equation 3.8<br />

becomes<br />

x = (l/f;)*(C2/Ci) = TcC2/Ci (3.10)<br />

Then the accuracy of x can be expressed as<br />

dx / X = dT, / Tc -^ dC2 / C2 - dCi / Ci. (3.11)<br />

Therefore , it is easy to see that if the clock is perfectly accurate, equation 3.11 will<br />

become<br />

dx/x = dC2/C2-dCi/C,. (3.12)<br />

Because the two capacitor Ci and C2 are buih close together us<strong>in</strong>g the same technology,<br />

the model of Equafion 3.12 should provide greater accuracy than Equation 3.9.<br />

25


Therefore, the bandpass filter and lowpass filter are designed as switched capacitor filters<br />

and are shown <strong>in</strong> Figures D.2 and D.5.<br />

The fihers used <strong>in</strong> this system are 4'*' order butterworth bandpass and lowpass<br />

filters. The central frequency for the band-pass fiher is 10 kHz, the bandwidth is 5.0 kHz<br />

and the Q is 2.0. The cut off frequency of the low-pass filter is about 1 kHz. S<strong>in</strong>ce the<br />

switch<strong>in</strong>g frequency fc should be much faster than the frequency of the <strong>in</strong>put signal and the<br />

pulse period should be large enough for the charge time of the switched capacitors, the<br />

switch<strong>in</strong>g frequency of fc = 1 MHz is chosen, and the time period of the pulse is<br />

0.3ps[3][4].<br />

The 160kQ-100pf comb<strong>in</strong>ation determ<strong>in</strong>es the central frequency of the bandpass<br />

fiher. Accord<strong>in</strong>g to Equation (3.6) a 6.25pf capacitor is chosen to make the equivalent<br />

value of the switch capacitor resistor equal to 160k. For the same reason, the 1 MQ and<br />

Ipf comb<strong>in</strong>ation determ<strong>in</strong>e the cut-off frequency of the lowpass filter as Ik Hz. The Ipf<br />

capacitor is selected to make the equivalent value of the switch capacitor resistor equal to<br />

IMQ.<br />

3.5 Phase shifter<br />

When the <strong>in</strong>put signal reaches the multiplier, it will not match the phase of the<br />

reference signal. To prevent the loss of ga<strong>in</strong> <strong>in</strong> the system, the phase relationship should<br />

be kept when both signals reach the synchronous demodulator. The phase shifter with ga<strong>in</strong><br />

adjustment as shown <strong>in</strong> Figure D.3 is applied to correct the phase and to make the<br />

26


eference signal the same phase as the <strong>in</strong>put signal. A basic Wien bridge phase shifter is<br />

used and is shown <strong>in</strong> Figure 3.10. From Figure 3.10 the loop ga<strong>in</strong> can be expressed as<br />

L(co) = [R2(l+R4/R3)]<br />

X { Ri+R2+R2(C2/Ci) +j [ C0R1R2C2 - (l/coCi) ] y' (3.13)<br />

from equation (3.13), the shifted angle 0 can be express as<br />

e = tan^ [ - (C0R1R2C2 - 1/coCi) / (Rl + R2 + R2C2/C1). (3.14)<br />

By adjust<strong>in</strong>g the values of R and C, the phase and ga<strong>in</strong> can be changed. After the signal<br />

channel, the <strong>in</strong>put signal is 126° ahead of the orig<strong>in</strong>al signal. The circuit shown <strong>in</strong> Figure<br />

3.10 can not correct the phase that much. Therefore the circuit shown <strong>in</strong> Figure D.3 is<br />

used (the detailed component values are marked). To prevent the op amps from be<strong>in</strong>g<br />

driv<strong>in</strong>g to saturation and improve the signal ga<strong>in</strong>, the variable resistor R6 is used. This<br />

keeps the signal <strong>in</strong> the maximum <strong>in</strong>put voltage range of the muhiplier, ensur<strong>in</strong>g that the<br />

multiplier works <strong>in</strong> the l<strong>in</strong>ear range.<br />

3.6 MultipHer<br />

The four-quadrant Gilbert multiplier cell is used as a demodulator. The basic<br />

circuit of the four-quadrant Gilbert multipUer cell is shown <strong>in</strong> Figure 3.11. The complete<br />

implementation is shown <strong>in</strong> Figure D.4. The transistors Mvl to Mv4 are used to convert<br />

the output currents to voltage and to improve the ga<strong>in</strong> and l<strong>in</strong>ear range of the Gilbert<br />

multiplier cell. The op-amp is used to convert the two-ended outputs to a s<strong>in</strong>gle-ended<br />

output and to <strong>in</strong>crease the ga<strong>in</strong> of multiplier. An analysis of the circuit yields :<br />

Vout = K„V,V2 (3.15)<br />

27


where K„ is related to R,, Ry, R^ and !«[5].<br />

The multiplier and the low-pass filterare comb<strong>in</strong>ed as a synchronous detector, the heart of<br />

a lock-<strong>in</strong> amplifier.<br />

28


R3<br />

R4<br />

'0<br />

OP<br />

11<br />

^<br />

Rl<br />

CI<br />

—WV * * II * 1—1—^<br />

V-<br />

V4<br />

M<br />

^CouT--<br />

R2<br />

•C2<br />

f <<br />

{. (<br />

*0 ^0<br />

Figure 3.10 A basic Wien bridge phase shifter<br />

29


Figure 3.11: The basic circuit of four-quadrant Gilbert muhiplier cell<br />

30


CHAPTER 4<br />

SIMULATIONS AND ANALYSIS<br />

The prototype circuit was simulated by us<strong>in</strong>g the model of MOSIS CMOS 2-\im<br />

n-well process. The parameters are shown <strong>in</strong> Figure 4.1. The block diagram of the total<br />

circuit is shown <strong>in</strong> Chapter 2, and the total circuit is discussed <strong>in</strong> Chapter 3.<br />

The simulation results will be discussed part-by-part follow<strong>in</strong>g the diagram shown<br />

<strong>in</strong> Figure 2.4. The resuhs of the op-amp which is used throughout the circuits will be<br />

measured first.<br />

4.1 Simulation resuhs of OP amplifier<br />

One of the most important characteristics of an op amp's performance is its<br />

operation <strong>in</strong> the open-loop mode. However, due to the high differential ga<strong>in</strong> of the op<br />

amp, it is difficuh to measure an op amp <strong>in</strong> the open-loop mode, and it is also difficult to<br />

simulate an op amp <strong>in</strong> open-loop. There are two methods shown <strong>in</strong> Figure 4.2 to simulate<br />

the open-loop ga<strong>in</strong>. Apply<strong>in</strong>g the approach <strong>in</strong> Figure 4.2 to measure the open-loop ga<strong>in</strong> is<br />

only practical for simulation. The resuh of the open-loop ga<strong>in</strong> by us<strong>in</strong>g the circuit of<br />

Figure 4.2 is shown <strong>in</strong> Figure 4.4. The circuit shown <strong>in</strong> Figure 4.3 is a better way to<br />

measure the open-loop ga<strong>in</strong>. This method works well for both simulation and physical<br />

measurement. In the configuration shown <strong>in</strong> Figure 4.3, the reciprocal RC time constant<br />

should be set about 10 to 100 times less than the anticipated dom<strong>in</strong>ant pole of the<br />

31


.MODEL ModNNMOS LEVEL=2 PHI=0.700000 TOX=4.2400E-08 XJ=0.200000U<br />

TPG=1<br />

+ VTO=0.8184 DELTA=4.0370E-K)0 LD=3.4300E-07 KP=4.5103E-05<br />

+ UO=553.8 UEXP=1.2310E-01 UCRIT=9.6810E+04 RSH=1.4910E-01<br />

+ GAMMA=0.5799NSUB=6.7190E+15 NFS=1.0890E+11 VMAX=5.9760E+04<br />

+ LAMBDA=3.3160E-02 LAMBDA=3.3160E-02 CGDO=4.1902E-10<br />

+ CGSO=4.1902E-10 CGBO=3.4911E-10 CJ=1.2010E-04 MJ=0.6285<br />

+ CJSW=4.7113E-10 MJSW=0.3275 PB=0.800000<br />

* Weff = Wdrawn - Deha_W<br />

* The suggested Delta_W is 1.5426E-08<br />

.MODEL ModP PMOS LEVEL=2 PHI=0.700000 TOX=4.2400E-08 XJ=0.200000U<br />

TPG=-1<br />

+ VTO=-0.9477 DELTA=4.6250E+00 LD=3.6240E-07 KP=1.6761E-05 '<br />

+ UO=205.8 UEXP=2.8980E-01 UCRIT=8.3070E+04 RSH=1.1050E-01<br />

+ GAMMA=0.6899NSUB=9.5090E+15 NFS=1.1000E+11 VMAX=9.9990E+05<br />

+ LAMBDA=4.6050E-02 LAMBDA=4.6050E-02 CGDO=4.4272E-10<br />

+ CGSO=4.4272E-10 CGBO=3.9342E-10 CJ=3.0933E-04 MJ=0.6176<br />

+ CJSW=2.8778E-10 MJSW=0.4045 PB=0.800000<br />

* Weff = Wdrawn - Delta_W<br />

* The suggested Deha_W is -3.0100E-07<br />

Figure 4.1: The parameter of MOSIS CMOS 2-\im N-well process<br />

32


Vdci<br />

Via<br />

Vout<br />

yof5F<br />

Vss<br />

^ 0<br />

^o<br />

o<br />

Figure 4.2: Open-loop mode with offset compensation<br />

Figure 4.3: A method of measur<strong>in</strong>g open-loop characteristics with dc<br />

bias stability<br />

33


op amp. Under these conditions, the op amp has total dc feedback, which stabilizes the<br />

bias. The dc value of Vout will be exactly the same as the dc value of V^. This result is<br />

shown <strong>in</strong> Figure E. 1.<br />

The true open-loop frequency response characteristics will not be observed until<br />

the frequency reaches approximately 10 times that of 1/RC. Above this frequency, the<br />

ratio of Vout to V^ is essentially the open-loop ga<strong>in</strong> of the op amp. The resuh of the openloop<br />

ga<strong>in</strong> by us<strong>in</strong>g the circuit of Figure 4.3 is shown <strong>in</strong> Figure 4.5. Also from the<br />

measurement resuhs shown <strong>in</strong> Figure 4.4 and Figure 4.5, it is found that the open-loop<br />

ga<strong>in</strong> is about 80 dB. The open-loop transfer curve, output sw<strong>in</strong>g limits, phase marg<strong>in</strong>,<br />

dom<strong>in</strong>ant pole, and unity-ga<strong>in</strong> bandwidth can be simulated or measured by the open-loop<br />

configuration. If the phase at o = GB (unit ga<strong>in</strong> bandwidth) is larger than -180°, then the<br />

system will be stable. It is also known that the larger the phase marg<strong>in</strong>, the more stable<br />

the circuit becomes. Usually at least a 45° marg<strong>in</strong> is required. Figure 4.5 shows that the<br />

phase marg<strong>in</strong> is about 45 °. Figure 4.4 shows that the dom<strong>in</strong>ant pole is around 600 Hz<br />

while the unity-ga<strong>in</strong> bandwidth is around 6M Hz. For a central frequency at 10k Hz, the<br />

frequency doma<strong>in</strong> fits the requirements. The open-loop transfer curve and output sw<strong>in</strong>g<br />

limits are shown <strong>in</strong> Figure E.2. All of the above simulation resuhs are simulated with<br />

RL=lknandCL=10pf<br />

Accord<strong>in</strong>g to the def<strong>in</strong>ition of CMRR, the common mode rejection can be<br />

measured by the circuit shown <strong>in</strong> Figures 4.6 and 4.7. The resuh of CMRR is about 74 dB<br />

which is shown <strong>in</strong> Figure 4.8.<br />

34


As shown <strong>in</strong> Figure E.4, the approximate slew rate of the op amp is about +SR =<br />

6V/ps and -SR = 7V/ps. Also the settl<strong>in</strong>g time of the ris<strong>in</strong>g edge is about 1.28ps and<br />

1.68ps for the fall<strong>in</strong>g edge. The test method for measur<strong>in</strong>g slew rate is shown <strong>in</strong> Figure<br />

E.3. The load capacitor is 30 pf<br />

4.2 The simulation resuh of <strong>in</strong>strumentation amplifier<br />

To test the <strong>in</strong>strumentation amphfier, the most important measurement is CMRR.<br />

Figure 4.9 shows that the CMRR of the mstrumentation amplifier is about 120 dB. Also<br />

Figure 4.10 shows that the ga<strong>in</strong> of the <strong>in</strong>strumentation amphfier is about 30, while the<br />

frequency fits the requirements, and the output signal has good symmetric characters.<br />

4.3 The switched capacitor filters<br />

There are two switched capacitor fihers <strong>in</strong> the lock-<strong>in</strong> amplifier. One is a bandpass<br />

iker whose central frequency is 10 kHz. The other is a lowpass filter whose cut-off<br />

frequency is Ik Hz. The sampl<strong>in</strong>g frequencyof the switch capacitor, f^ is 1 MHz.<br />

The simulation results of bandpass fiher are shown from Figure 4.11 to Figure<br />

4.13. The simulation results show that the central frequency of the bandpass filter is about<br />

12 kHz and the bandwidth at 3 dB is about 5.2 kHz. The Q of the bandpass fiher is about<br />

2.3.<br />

The simulation results of the lowpass filter are shown <strong>in</strong> Figure 4.14 to Figure<br />

4.16. The results show that the 3 dB po<strong>in</strong>t of the lowpass fiher is around Ik Hz, and high


SNR also occurs. Figure 4.9 shows that the phase of the <strong>in</strong>put signal is shifted.<br />

Therefore, the phase correction before the muhiplier is needed.<br />

4.4. The muhiplier<br />

From Figures 4.14 to 4.15, the Unear range of muhipher is found between -2V and<br />

+2V, and the output vohage is Vout ~ 2 V^i V<strong>in</strong>2. Also the bandwidth of the muhiplier is<br />

about 50 kHz as shown <strong>in</strong> Figure 4.16.<br />

4.5 The simulation resuhs of the whole system<br />

After test<strong>in</strong>g the system part-by-part, it is apparent that the operation of every part<br />

of the system meets the requirement. Therefore, an <strong>in</strong>put with a noise signal is set up to<br />

test the whole system. Figure 4.17(a) shows the <strong>in</strong>put signal, and Figure 4.17(b) shows<br />

the amplitude modulation of the <strong>in</strong>put signal. The wideband noise is shown <strong>in</strong> Figure 4.18.<br />

After the lowpass filter of the lock-<strong>in</strong> amplifier, the noise is suppressed. The signal-tonoise<br />

ratio (SNR) <strong>in</strong> the system is 1:6. This result is shown <strong>in</strong> Figure 4.19. The<br />

comparison of the results between Figure 4.17(a) and Figure 4.19 reveals that the signal is<br />

recovered. However, the signal after the lock-<strong>in</strong> amplifier is <strong>in</strong>verted.<br />

Figure 4.20 shows a really high noise example (SNR=1:10). In Figure 4.20 the<br />

signal <strong>in</strong>deed disappears <strong>in</strong> the noise. Figure 4.21 shows that the result is the same as <strong>in</strong><br />

the SNR = 1:6 case. Figure 4.22 shows that <strong>in</strong> case of the SNR = 1:1, the signal is<br />

completely recovered.<br />

36


The simulated resuhs of the whole system reveal that the lock-<strong>in</strong> amplifier obta<strong>in</strong>s<br />

an excellent quality.<br />

37


n • ,m.<br />

' C:\LIS2T\TEST\T0LG1.SCH<br />

Pace/Time run: 12/18/95 01:31:52<br />

(A) Open-loop Characceriscics<br />

100<br />

Temperacure: 27.0<br />

.i<br />

50-!<br />

(685.7 47,82.76'^.)<br />

\<br />

\<br />

\<br />

v<br />

H85-747.-29.413)<br />

-50-1<br />

\<br />

•100-"<br />

\<br />

-ISO--<br />

(7'^0009M,-17<br />

v<br />

•200 + T<br />

lOmHz 1.0H2 100Hz_ lOKH:<br />

[-V;20'iogl0( V(OP.Vouc)/ V(V<strong>in</strong>) ) LllVP(OP.Vouc)<br />

Frequency<br />

---r<br />

1.0MH2<br />

i<br />

100MH2<br />

M: (8.0370, -378.503m) A2 : (10.000m. 33.965) DIFF (A) : ( 3 . 0270,-84 . 343 )<br />

Dace: December 18, 1995 Page 1 Time: 01:37:39<br />

Figure 4.4: The measurement resuh of open-loop ga<strong>in</strong><br />

marg<strong>in</strong> by us<strong>in</strong>g the cu"cuh of Figure 4 3<br />

38


• C:\LIS2T\TEST\TOLG.SCH<br />

Daca/Ttme run: 12/16/95 18:45:31<br />

100<br />

(A) Open-loop ga<strong>in</strong> wich dc bias<br />

scabilicy<br />

Temperacure: 27.0<br />

80 -<br />

T<br />

.^t<br />

60<br />

/ i \<br />

40<br />

20<br />

-2 0 -t-- r r -"-- r i<br />

l.OmHz l.OHz l.OKHz 1.OMHz 1.OGHz<br />

GT|20'ioglO{ V(HBl.Vouc)/ V(V<strong>in</strong>))<br />

Frequency<br />

J<br />

Al: (11.856K.33.246) A2: (1.0000m, -199•134u) DIFF(A) : (11.a56K.93.246) |<br />

Dace: December 16. ITTS Page 1 Time: 18:43:03<br />

Figure 4.5: The measurement result of the open-loop ga<strong>in</strong> and phase<br />

39


Figure 4.6: Op-amp with only common-mode <strong>in</strong>put vohage<br />

OP<br />

IV<strong>in</strong>_,cl<br />

t<br />

° i<br />

CJ<br />

JT<br />

vad<br />

V- H'^^-v^<br />

YP"'^^^^<br />

^^^--^11<br />

> Vcc<br />

*^, A<br />

^^ ^p<br />

Vd<br />

o<br />

Figure 4.7: Op-amp with differential-mode <strong>in</strong>put<br />

40


n^r^/Ti , ' C:\LIS2T\TEST\TCMRR.SCH<br />

Pace/Time run: 12/18/95 03:07:43 Temperacure: 27.0<br />

(A) Test oe CMRR<br />

-1.515V--<br />

I<br />

1<br />

i<br />

/<br />

/<br />

y<br />

-1.520V-^ J-<br />

^::..V(vd)<br />

jOJuV ---- —<br />

280uV<br />

o V(vc)<br />

75.2-7 •<br />

74.8-j<br />

74.4<br />

\<br />

I<br />

(478.^4u,74.J83)<br />

I /<br />

I /<br />

1/<br />

I'<br />

'<br />

SEL».<br />

74.0-f- --•<br />

.J.<br />

0_s 0.2ms 0.4ms 0.6ms<br />

L2.|20*logl0( V(0P2.VouC)/ V(OPl.Vouc))<br />

Time<br />

1<br />

0.8ms<br />

{<br />

1.0ms<br />

Al: (478.014u,74.383) A2:(0.000.-1.5194) DIFF(A) : (478.014u.75.903 )<br />

Dace: December 18, 1995 Page 1 Time: UJ:09:3 3<br />

Figure 4.8: The simulation resuh of CMRR<br />

41


,^^^,„.<br />

• C:\LIS2T\TEST\TCMRR.SCH<br />

Dace/Time run: 12/18/95 04:18:17 Temperacure: 27.0<br />

(A) CMRR oJ <strong>in</strong>scrumemcacion ampliCier<br />

113.0<br />

112.5T<br />

(1.1944u,112.067)<br />

CMRR<br />

112.0<br />

111.5-i ;<br />

I . '<br />

111.0+ r r--<br />

Os 2us 4us 6us<br />

- 20'iogl0( V(OP2.U7.Vouc)/ V(0P1.U7.Vouc))<br />

Time<br />

-- T - - - • {<br />

Dace: December 13, 1995 Page 1 Time: 04:33:32<br />

8us<br />

lOus<br />

Figure 4.9: CMRR of <strong>in</strong>strumentation amplifier<br />

42


...J<br />

...J<br />

''^i >•* t X a/'i.«^»» o» < 3 a t * X<br />

i /<br />

i<br />

i<br />

; **'; V ( \ri.r»»<br />

i<br />

i<br />

K<br />

L\<br />

o *<br />

dive<br />

\ \<br />

\<br />

\ \<br />

•%<br />

\<br />

\<br />

/<br />

/<br />

• /<br />

/<br />

/<br />

1 ^<br />

/ .<br />

/ .<br />

/<br />

/<br />

/<br />

* /<br />

• \ :<br />

\ \-<br />

• \<br />

/<br />

• \<br />

s<br />

X o Oua<br />

(<br />

o ><br />

T r * n w X « n e<br />

• O • NX.X«znrNTK«TVTX «(. . SCM<br />

o £ Xn « c x*\jirT«*r\c «k e X ort<br />

.X i. \....<br />

( X-T 4 . » X>^ U . 3 . 0 S 0 3 ) /<br />

.' \ • /<br />

. / . . \ . . / .<br />

/ \ /<br />

/ - \ /<br />

/ • \ /<br />

> V'.**''! 0 3 . ( 0 . 0 3 0 . 0 . a DO) D Z K K t O ) t ( 3 3 * * . * 3 0 \ u . — 3.1. 3 » 7 ><br />

:='-.c7 — I^<br />

An^»xxex«r<br />

. ' 1 \<br />

1 *<br />

/ - 1 \<br />

•' • 1 \<br />

\- 1 /<br />

• \ 1 /<br />

. ( Va • .laaau. -i .xo>-r<br />

3 O O ^ *<br />

Figure 4.10: The resuh analysis of <strong>in</strong>strumentation amplifier<br />

43


Dace/Time run: 12/18/95 07:39:26<br />

C:\LISZT\BF\BF1.SCH<br />

(C) The General frequency and SNR analysis<br />

1.0<br />

« V(ONOISE)/ V(INOISE)<br />

lOOnV-<br />

/ I<br />

1...J..<br />

.y\<br />

OV-^-<br />

3 V(ONOISE)<br />

lOKV-<br />

:> V(INOISE)<br />

l.O-r<br />

I ', , (|15 J30iJC^Z2.-fi.4^)_<br />

SEL>>i<br />

0-H<br />

10H2<br />

100H2<br />

[][|V.(vouc)/ V(v<strong>in</strong>l)<br />

1.0KH2<br />

Frequency<br />

/I<br />

.-.-4...<br />

10KH2<br />

CI:(9.363K,638•563m) C2: (10.023,1.061 Op) DIFF(C) : (9.353K,6 38.563m)<br />

Dace: December 18, 1995 Page 1<br />

Figure 4.11:<br />

The frequency and noise response of bandpass filter<br />

44


_,^^,_.<br />

• C:\LISZT\BF\BF.SCH<br />

Pace/Time run: 12/19/95 10:30:10 Temperacure: 27.0<br />

(A) The oucpuc response for <strong>in</strong>puc s<strong>in</strong>al is lOJcHz<br />

l.OV<br />

'i I<br />

0.5V-;' i.<br />

/':<br />

ill<br />

( ii<br />

m.<br />

uw<br />

M li<br />

°^K^i il \\ i\ \\ i<br />

-0.5V-<br />

; \^ :<br />

: I<br />

1 ;<br />

Wll<br />

: i •<br />

( :<br />

i i<br />

f;<br />

i / ;<br />

i I !<br />

11<br />

SEL»;<br />

;'<br />

-l.OV-I- ^ 1: •<br />

= V(v<strong>in</strong>l)<br />

2.0V-r-<br />

» V(vouc)<br />

; I<br />

1 ;<br />

i ':<br />

I<br />

nil<br />

i i.<br />

?11<br />

m<br />

i-i i :•<br />

.' I : • •<br />

;•<br />

ii! :<br />

i I<br />

m<br />

f ' i i<br />

II \<br />

m /Hi<br />

Ml ;•<br />

(4<br />

I i<br />

1 i<br />

I i<br />

.i I<br />

-!(<br />

\u y u i.<br />

I :<br />

if<br />

: f<br />

\ i i<br />

I I I<br />

; / \<br />

\ i i<br />

i / :<br />

(ill<br />

Ul =.<br />

Mil<br />

I -, I<br />

i\\<br />

H<br />

1<br />

i I ;<br />

i l l I<br />

hf I<br />

1 !/ i<br />

Of<br />

.-.V<br />

\':<br />

i.M i.<br />

i 1<br />

W i<br />

: i<br />

I<br />

\ : I ><br />

jU ?<br />

! : I -J<br />

i \i i:<br />

J i'<br />

; .. I<br />

', J I<br />

. - . v . J<br />

1. Ov -, ,^^ . A. . / \. • M. . / \. . / \. . / \.<br />

i<br />

Wliwi\<strong>in</strong>\miri\ir!\<br />

' v^v;<br />

V/ • •= p/ •.• i fv7 .•l': fv/ \i f\7 .1' h' • V k/ ••••V- f'/ '• v fv/ • -v<br />

-l.OV-"<br />

-2.0V-I- r--- --r<br />

Os 0.2ms 0.4ms 0.6ms<br />

5 V(voucl) • V(vouc2) • V(vouc3) .. V{vouc)<br />

Time<br />

T --T T •<br />

^<br />

0.3ms<br />

1.0ms<br />

Dace: December 19, 1995 Page 1 Time: 10:50:08<br />

Figure 4.12: The output response of <strong>in</strong>put signal frequency at 10k Hz<br />

45


» / T i. w «<br />

L . OV<br />

.^<br />

7C<br />

^ * / a a / » 3 O 7 • O 3 . 9 7<br />

;\<br />

LT\MO«X«S mv N » ^ . aOM<br />

I A> t<br />

B» . OA.-r<br />

• ^»>>yw^ m^^» «<br />

Tx"<br />

a "y . o<br />

o . sv -;. J.<br />

•i :<br />

• 1 1<br />

-O . Sv ..<br />

i f<br />

\ (<br />

• f .<br />

•<br />

\ .' '<br />

'. /<br />

• • >^ ( >^ xn X )<br />

A 0,vt^^ ...— . — - . . « . ...<br />

1 I<br />

\ :'<br />

1 /<br />

I ,*<br />

t .<br />

; ! \ i<br />

•. (<br />

u J ir._. •>;<br />

i J<br />

i (<br />

/. I .'<br />

ov .* --<br />

\<br />

/ :<br />

/ \<br />

\<br />

/ \<br />

a O r^'^ -^ — — — - — - — — — • _ . » ^ _ _ « _ _ — _ . _ « . « _ » . . . _ . . ^ - — - . » - « _ - . - • • _ _ _ ,<br />

0 « aOu,« AOw»a « ©"U"* X O 0\A«<br />

»•'•'*'••«- a a , .L » » 3 n« • OT.X3


' C:\LISZT\LF\LF.SCH<br />

Dace/Time run: 12/18/95 09:07:58<br />

(A) The oucpuc frequency response of lowpass filcer<br />

2.0--<br />

5 V(CNOISE)/ V(INOISE)<br />

40mV-.<br />

OV-•<br />

5 V(INOISE)<br />

20nV-<br />

OV-<br />

" V(ONOISE)<br />

2.0V-.<br />

SEL»<br />

QV + -<br />

10H2<br />

•:• V(VOUC)<br />

100H2<br />

(987.428,1.01"&»-<br />

l.OKHz<br />

Frequency<br />

lOKH;<br />

Dace: December 18, 1995 Page 1<br />

Figure 4.14: The frequency and noise response of lowpass filter<br />

47


Dace/Time run: 12/18/95 09:34:32<br />

• C:\LISZT\LF\LF.SCH<br />

(A)<br />

The oucpuc<br />

response<br />

of<br />

<strong>in</strong>puc<br />

frequency<br />

ac l)cH2<br />

' / \<br />

1 * ^<br />

1 t \<br />

t \<br />

' *.<br />

1 ' ^<br />

/ 1<br />

/ \<br />

If \<br />

ov-f . . \<br />

1 1<br />

= V(v<strong>in</strong>l)<br />

• /<br />

/<br />

• /<br />

• /<br />

i<br />

1<br />

\ , f<br />

t<br />

\ (<br />

» .' *<br />

* *<br />

1<br />

» /<br />

• /<br />

1 ,'<br />

* f a<br />

\ :<br />

\<br />

\ . /<br />

• •> . • f<br />

\ /<br />

"•<br />

> 1<br />

1 ,<br />

> <<br />

\..A<br />

/••<br />

\<br />

\<br />

\<br />

\<br />

\<br />

(1.5837m,873.•633m)<br />

y<br />

•<br />

; /<br />

/<br />

ov-| '•<br />

\<br />

\<br />

t<br />

\<br />

%<br />

V<br />

«<br />

t<br />

\<br />

\ , /<br />

\ /<br />

\ /<br />

/ . . \.<br />

/<br />

/<br />

/<br />

/<br />

/<br />

/<br />

. / .<br />

. . . ^ ' • \<br />

(2.9937m ,'-1.0947)<br />

\<br />

N. ' •''<br />

SEL»;<br />

.Os<br />

:: V(VOUC)<br />

1.0ms<br />

2.0ms<br />

Time<br />

3.0ms<br />

Dace: December 18, 1995 Page 1<br />

Figure 4.15: The lowpass fiher output response of <strong>in</strong>put signal frequency at<br />

Ik Hz<br />

48


n • ,'»<br />

' C:\LISZT\M0SIS\LF\TLF1 SCH<br />

Pace/Time run: 01/16/96 12:18:49 ^^r M L H .bCM Temperacure: 27.0<br />

(A) TLFl.DAT<br />

l.OV.<br />

0.5V-;;<br />

••<br />

( :<br />

:' i<br />

I I<br />

I :<br />

I<br />

! i<br />

I i<br />

i<br />

i<br />

i<br />

I .<br />

; I<br />

/1<br />

I \<br />

I i<br />

! i<br />

i !<br />

OV<br />

! i<br />

f<br />

i<br />

I<br />

i<br />

il-<br />

-O.SV--<br />

' I !<br />

SEL>>i<br />

-l.OV-^<br />

•> v(v<strong>in</strong>l: + )<br />

40mV-<br />

1 i'<br />

; i<br />

i i<br />

• I<br />

I i.<br />

.: j.<br />

i :<br />

: i'<br />

I i.<br />

'• t<br />

i (<br />

! I<br />

I<br />

I<br />

i I- 1 i:<br />

I<br />

1 : .<br />

'•<br />

1<br />

1 .<br />

. '<br />

1 : -<br />

. ^- - - . .<br />

: i<br />

\ j<br />

I<br />

-^*— . -<br />

I<br />

• : *<br />

: ; 1<br />

\ i;<br />

: * 1<br />

I . 1<br />

\!:<br />

_ .i'_ J<br />

,r"*^^_<br />

OV -y.JW***'^<br />

\<br />

•40mV.<br />

\<br />

-80mV-<br />

\<br />

\<br />

\<br />

•120mV + 1<br />

Os<br />

0.2ms<br />

e V(Vouc)<br />

0.4ms<br />

Time<br />

- - -I<br />

0 .6ms<br />

., ,<br />

0.8ms 1.0ms<br />

Dace: Januar/ 16, 1996 Page 1 Ti.me: 12:26:5:<br />

Figure 4.16: The lowpass fiher output response of <strong>in</strong>put signal frequency at 10k Hz<br />

49


0« c » /TX>^»<br />

»-v^». xa^aa^»^ o« . ?^ >^f *^'^^x°"^gvxui.TN MOUT . act.<br />

X.OV-; ., .<br />

' tt sA^ ^ • a T . o<br />

>~\ ^-;. , ---<br />

/ N 7" "/^\ -:<br />

SSI.....:<br />

- X . o\r -«<br />

X . oyy — — -,*—<br />

VivlT."!"" '*" ~ \..'.<br />

'/"<br />

' X . OV<br />

3 . o\r<br />

.v^.<br />

•.<br />

^<br />

'A -,'><br />

r \<br />

•'•%<br />

X . OV ..<br />

1 »<br />

ovr -*.^ V.<br />

O m<br />

" V(Vouc)<br />

V -^ ^ VI.<br />

3 OOui<br />

o«c«i o—... :<br />

• X . OV - ^\..c -.<br />

- V Ivxn)<br />

x.


Pace/Time run: 12/18/95 10:16:07<br />

• C:\LISZT\MULT\MULT.SCH<br />

(A) DC cransfer characceriscics of<br />

5.0V T-<br />

mulciplier<br />

• \<br />

/<br />

\<br />

\<br />

\<br />

\<br />

/<br />

/<br />

\<br />

X<br />

\<br />

OV<br />

\ \<br />

w /.<br />

. / \<br />

/ \<br />

/ \<br />

/ . \<br />

\<br />

\<br />

/<br />

/<br />

-5.0V + -«---<br />

-6..0V<br />

-4.0V<br />

: : • » : . * V(VOUC)<br />

-2.0V<br />

OV<br />

V V8<br />

2.0V<br />

DaCe: December 18, 1995<br />

Page 1<br />

Figure 4.18: The DC transfer characteristics of multiplier<br />

51


n^ra/Tf,^ «, * C:\LISZT\MOSIS\MULT\MULT.SCH<br />

Dace/Time run: 01/16/96 10:14:10<br />

Temperacure: 27.0<br />

SEL»<br />

0-<br />

•> V(Vouc)/(V(V<strong>in</strong>)'V(Vref) )<br />

2. OV -cm<br />

1.5V-,<br />

l.OV-<br />

0.5V<br />

OV-f-<br />

10H2<br />

•^ V(VOUC)<br />

1.0KH2<br />

Frequency<br />

100KH2<br />

10MH2<br />

Dace: January 16, 1996 Page 1 Time: 10:16:44<br />

Figure 4.19: Ac characteristics of multiplier<br />

52


c<br />

J2<br />

3<br />

O<br />

E<br />

Urn<br />

"a.<br />

E<br />

ea<br />

-a<br />

c<br />

13<br />

c<br />

cp<br />

'v5<br />

"3<br />

Q.<br />

c<br />

<<br />

o<br />

fN<br />

'^'<br />

(U<br />

u><br />

3<br />

SO<br />

c<br />

><br />

><br />

><br />

£<br />

><br />

o<br />

53


*o<br />

c<br />

-a<br />

c<br />

E<br />

<br />

><br />

e<br />

o<br />

><br />

o<br />

u<br />

10<br />

o<br />

CO<br />

54


£<br />

I<br />

(J<br />

S,<br />

tz<br />

c<br />

><br />

o<br />

k.<br />

3<br />

CO<br />

iZ<br />

55


CO<br />

S<br />

o<br />

CM<br />

ca<br />

B<br />

vo<br />

ca<br />

e<br />

(N<br />

a<br />

B<br />

u<br />

u<br />

3<br />

0<br />

a<br />

><br />

f-<br />

><br />

a<br />

o<br />

o<br />

><br />

o<br />

A<br />

A<br />

•J<br />

u<br />

CO<br />

CO<br />

o<br />

><br />

c<br />

o<br />

a:<br />

z.<br />

00<br />

'o<br />

c<br />

CO<br />

IS<br />

c<br />

"3<br />

c<br />

CN<br />

'^'<br />


m<br />

<br />

o<br />

-"^<br />

U<br />

3<br />

CO<br />

57


c/o<br />

CO<br />

3<br />

*o<br />

c<br />

-o<br />

c<br />

cd<br />

U<br />

no<br />

ed<br />

cd<br />

C<br />

CO<br />

•55<br />

><br />

o<br />

CN<br />

u.<br />

3<br />

CO<br />

IZ<br />

58


CHAPTER 5<br />

SUMMARY<br />

From the previous descussion, h is seen that every part of this system works well<br />

and meets the requirement. The advantages of this <strong>in</strong>tegrated lock-<strong>in</strong> amphfier are: the<br />

<strong>in</strong>strumentation amplifier has high <strong>in</strong>put impedance and high CMRR, and the output signal<br />

has good symmetric characteristics because the active resistor can provide a l<strong>in</strong>ear range<br />

of about 3V; the muhipher works m the high hnear range from -2V to +2V. The<br />

simulation resuhs of the whole system show that this lock-<strong>in</strong> amplifier can obtam the high<br />

performance even with the SNR =1:10.<br />

For most commercial types, a fiih lock-<strong>in</strong> amplifier would <strong>in</strong>clude: (1) a tuned<br />

amplifier, called the signal amphfier, which is comb<strong>in</strong>ed with ga<strong>in</strong> adjustable amplifiers and<br />

variable filters; (2) a phase shifter to br<strong>in</strong>g the reference signal (i.e., the modulation) <strong>in</strong>to<br />

the optimum phase relation with the signal; (3) an <strong>in</strong>ternal voltage controlled oscillator;<br />

(4) a synchronous detector which is comb<strong>in</strong>ed with a muhipher and a lowpass filter with<br />

adjustable time constant. On comparison to some commercial products, the lock-<strong>in</strong> system<br />

<strong>in</strong> this thesis is an implementation of a basic type of the lock-<strong>in</strong> amplifier which is<br />

designed for fitt<strong>in</strong>g certa<strong>in</strong> requirements.<br />

To be of any practically commercial type, a lock-<strong>in</strong> amplifier must be able to give a<br />

fiih-scale response to a synchronous signal and yet be able to accommodate residual noise<br />

fluctuation due to noise transmitted by the low-pass filter. Figure 5.1 shows an extended<br />

59


version of the one shown <strong>in</strong> Figure 2.3 which can improve the basic type of lock-<strong>in</strong><br />

amplifier.<br />

For practical reasons, a square wave is used as the reference of the multiplier.<br />

Therefore, a two-phase lock-m amphfier as shown <strong>in</strong> Figure 5.2 is used to suppress<br />

harmonic responses, but the behavior of the output signal is similar to the results produced<br />

when multiplied by a s<strong>in</strong>ewave.<br />

Due to it's senshivity, the lock-<strong>in</strong> amplifier has been used widely for retriev<strong>in</strong>g<br />

signals from noise <strong>in</strong> the modem technology. Today, VLSI technology has been<br />

develop<strong>in</strong>g rapidly, hs participation <strong>in</strong> the lock-<strong>in</strong> amphfier design can extend the<br />

application of lock-<strong>in</strong> amplifiers, especially m the communication and image process<strong>in</strong>g<br />

fields.<br />

60


signal<br />

<strong>in</strong>put<br />

> -<br />

decade<br />

multiplier<br />

y<br />

••<br />

option<br />

filter<br />

»<br />

sensitivity<br />

band-pass<br />

filter<br />

1<br />

y<br />

1:2:5<br />

multiplier -<br />

^N. simal<br />

v^top.s.d<br />

signal<br />

phase-sensitive<br />

detector <strong>in</strong>puts<br />

output<br />

reference<br />

reference •<br />

<strong>in</strong>put<br />

logger<br />

evt<br />

<strong>in</strong>t<br />

2f<br />

O 90°. 180°<br />

270°<br />

squarewave<br />

generator<br />

reference<br />

to p.s.d.<br />

<strong>in</strong>ternal ^ \<br />

oscillator V._x^<br />

777<br />

oscillator<br />

output<br />

2f<br />

variable<br />

phase<br />

quadrants<br />

The reference channel <strong>in</strong>corporates an optional <strong>in</strong>ternal oscillator and a<br />

frequency double to permit phase-sensitive detection at twice the applied<br />

reference frequenc>'<br />

Figure 5.1; Block diagram of an extended lock-<strong>in</strong> amplifier<br />

61


signal<br />

<strong>in</strong>put<br />

signal channel<br />


REFERENCES<br />

[1] M. L. Meade, <strong>Lock</strong>-<strong>in</strong> <strong>Amplifiers</strong>: Pr<strong>in</strong>ciples and Applications, Peter Peregr<strong>in</strong>us Ltd<br />

London, UK 1983. • s .<br />

[2] Richard Wolfson, 'The lock-<strong>in</strong> amplifier: A student experiment,'Mm. J. Phys., Vol<br />

59, No. 6, June 1991.<br />

[3] Philhp E. Allen, Edgar Sanchez-S<strong>in</strong>encio, Switched Capacitor Circuits, Van<br />

Nostrand Re<strong>in</strong>hold Company, New York.<br />

[4] P. V. Ananda Mohan, V. Ramachandran, M. N. S. Swamy, Switched Capacitor<br />

Filters - Theory, analysis and design. Prentice Hall, UK 1995.<br />

[5] Randall L. Geiger, Phihip E. Allen, Noel R. Strader, VTSI Design Techniques For<br />

Analog and Digital Circuits, McGraw-Hill, New York 1990.<br />

[6] Mohammed Ismail, Terri Fiez, Analog VLSI Signal atid Information Process<strong>in</strong>g,<br />

McGraw-Hill, New York 1994.<br />

[7] John H. Scofield, 'Trequency-doma<strong>in</strong> description of a lock-<strong>in</strong> ampIifier,'M/w. J.<br />

Am. J. Phys., Vol. 62, No. 2, February 1994.<br />

[8] Andreas Mandehs, "Signal-to-noise ratio <strong>in</strong> lock-<strong>in</strong> amplifier synchronous detection:<br />

A generalized communications systems approach with apphcations to frequency,time,<br />

and hybrid (rate w<strong>in</strong>dow) photothermal measurements," Rev. Scl. Instrum., Vol. 65,<br />

No.ll, November 1994.<br />

[9] Murah Kittappa, "Variable capachive transducer", M.S. Thesis, Electrical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Texas Tech U., December, 1992.<br />

63


APPENDIX A<br />

THE OPERATION OF THE OP-AMPS<br />

A.l Introduction<br />

The op-amps which are used <strong>in</strong> this lock-<strong>in</strong> amplifier can be separated <strong>in</strong>to two<br />

parts: a differential mput amplifier stage and a output stage.<br />

The differential <strong>in</strong>put amplifier stage shown <strong>in</strong> Chapter 3 is called a folded cascode<br />

amplifier, which <strong>in</strong>cludes a differential <strong>in</strong>put amplifier stage and a differential-to-s<strong>in</strong>gle<br />

ended conversion stage. The output stage is called a class AB push-pull output stage.<br />

The advantages and disadvantages of the circuits have been mentioned <strong>in</strong> Chapter 3. The<br />

basic operation of the differential <strong>in</strong>put amplifier stage will be discussed m A-2, and the<br />

basic operation of the class AB push puU output stage wiU be discussed <strong>in</strong> A-3.<br />

A.2 The basic operation of folded cascode amplifiers<br />

In Figure D.7, the dc current lo, <strong>in</strong> Ml 1, is the source of Ml and M2. S<strong>in</strong>ce the<br />

gate vohage of Ml 1 is a fixed bias, it operates as a simple current source. The matched<br />

sources, M5 and M6, provide current l' to node A and node B, hence M3 and M4 will<br />

carry equal currents<br />

I = r-IJ2.<br />

(A.l)<br />

A differential <strong>in</strong>put vohage AV<strong>in</strong>- = AVi„ / 2, apphed to the gates of Ml and M2, will offset<br />

their dra<strong>in</strong> current to tgmiAV/ 2. S<strong>in</strong>ce the current I' of M5 and M6 rema<strong>in</strong>s constant, I<br />

of M3 and M4 will change by ±AIo. The mirror ( M7 to MIO ) current changes <strong>in</strong> M7 to<br />

64


M9 and M8 to MIO. Hence, the output vohage <strong>in</strong>crement is g„„RoAV^ where Ro is the<br />

output impedance of the node at Vo, and M7 and M9 are work<strong>in</strong>g as the current s<strong>in</strong>k<br />

shown <strong>in</strong> Figure A. 1.<br />

Figure A. 1: Equivalent circuit of Ro<br />

This circuk ( Figure A.1) can be modeled by a small-signal circuit of Figure A.2.<br />

Correspond<strong>in</strong>gly, the output impedance can be written as:<br />

Ro = AV / AI = rds [1+ ( &n+gmb+gds)R) = rds(l+gjl)<br />

(A.2)<br />

If R is replaced by a transistor M2, then<br />

Ro = AV / AI = rdsl [1+ ( gml +gmbl+gdsl)rds2) = rdsl(l+gn,irds2).<br />

(A.3)<br />

65


gmVgs<br />

G mbs^'bs<br />

© © rds SH*"<br />

-f •-<br />

V<br />

R<br />

Figure A.2: Equivalent circuit of Figure A. 1<br />

From the smah signal model of a folded cascode circuit, as shown <strong>in</strong> Figure A.3,<br />

the open loop ga<strong>in</strong> Ao can be expressed as:<br />

Ao= Vo / Vid = gmir'out =<br />

gml gm8 ^dsS TdslO<br />

(A.4)<br />

where r'outwas given by the simplification of Ro.<br />

After comb<strong>in</strong><strong>in</strong>g elements <strong>in</strong> the small signal model of Figure A.4, the output<br />

resistance of the folded cascode circuit can be expressed as:<br />

rout= T'out II rds4 [l+(l+gm4 rds4)rd^rds4/(rds2+rds4}<br />

= ( gmsrdssrdsio ) II [(gm4 rd^)(rds2 II rds4)]- (A.5)<br />

From the expression of equation (A. 5), it is easy to f<strong>in</strong>d that the folded cascode circuit is a<br />

high output impedance circuit.<br />

The frequency performance of the CMOS folded cascode op amplifier can be<br />

simply expressed as<br />

66


VO(S)A^ID(S) = AoOi/ (S+coi) = GB / S+oi<br />

(A.6)<br />

where coi is the dommant pole of the chcuit is given by coi = 1 / RO«.CL.<br />

The operation of this output circuit, shown <strong>in</strong> Figure 3.8, is determ<strong>in</strong>ed by the bias<br />

vohage <strong>in</strong> the gates of Mo3 and Mo4, which decide the bias currents <strong>in</strong> the output devices<br />

Mo6 and Mo8. When the mput vohage Vi„ <strong>in</strong>creases, the current of Mol <strong>in</strong>creases, and<br />

Mo2 decreases. These devices mirror the output current so that the current of device<br />

Qm1('v1d/2')<br />

(t)<br />

1/Qm3<br />

Vos3<br />

(±)<br />

gm3vcs3 r'ln<br />

* *<br />

(t)<br />

timHv\6/7) 1 /qrri4<br />

rds4<br />

1 •-AMr-^<br />

i-i.<br />

V(3s4<br />

grrsJvgs.^<br />

5) I (D i'^^<br />

r'&ut<br />

Figure A.3: The small signal model of folded cascode amphfier<br />

rds4<br />

• '<br />

>'ds2 > •'ds6 Vqs-4<br />

qrn4vqs.4<br />

i-'OUi<br />

Vo<br />

l_±.<br />

Figure A.4: The equivalent output resistance circuh of folded cascode amplifier<br />

67


Mo8 <strong>in</strong>creases which provides the s<strong>in</strong>k<strong>in</strong>g capability for the output current. For the same<br />

reasons, when V<strong>in</strong> decreases, Mo6 wiU source the output current. The output signal sw<strong>in</strong>g<br />

is limited to with<strong>in</strong> a VT value of Vdd and Vss.<br />

The bandwidth is given as<br />

oi = co-3dB = ( gout+ GL) / ( COUI+CL) - 1 / ( RLCL ).<br />

(A-7)<br />

68


APPENDIX B<br />

THE BASIC CONCEPT OF THE ACTIVE RESISTORS<br />

Bl Introduction<br />

The ma<strong>in</strong> function of an active resistor is to improve the valid voltage range of the<br />

hnear region. The follow<strong>in</strong>g section shows the analysis of a basic active resistor, the<br />

results of the basic active resistor and the improved active resistor used <strong>in</strong> this thesis.<br />

From Figure 3.3, h is easy to obta<strong>in</strong>:<br />

B.2 The basic deduction<br />

IDI = Kx( Wi / Li ) [ ( VGSI - VTI ) VDSI - ( V'DSI / 2 ) ]<br />

= Kx( Wi/Li) [ ( VDSI + Vc- VTI ) VDSI- ( V'DSI / 2 ) ]<br />

= KN(WI/LI)[(V'DSI/2) + (VC-VTI) VDSI] (B.l)<br />

and<br />

ID2 = KN- ( W2 / L2 ) [ ( VGS2 - VT2 ) VDS2 " ( V'DS2 / 2 ) ]<br />

= K'N ( W2 / L2) [ (VC - VT2 ) VDS2 - ( V'DS2 / 2 ) ] (B.2)<br />

S<strong>in</strong>ce VDSI = VDS2 = V, so<br />

I = IDI + ID2 = 2K NW / L ( VC - VT ) VDS<br />

(B.3)<br />

and<br />

r, = 5VDs/ei=l/[2KN.(W/L)(Vc-VT)] (B4)<br />

Because VDS should be less than Vos - VTIO ensure that the transistors are work<strong>in</strong>g <strong>in</strong> the<br />

ohmic region,<br />

69


V


Date/Time run: 01/l6/c,fi .^,^._^\^^-^^^^^'^\^0SlS\R\7P..SCH<br />

(A) V-I<br />

200UA-,<br />

remperature: 27.0<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

• \<br />

\<br />

\<br />

OA.<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

\<br />

lOOuA-<br />

-lOOuA-<br />

\<br />

\<br />

\<br />

-200aA-l<br />

-2.0V<br />

I(V)<br />

-l.OV<br />

-o.ov<br />

V V<br />

l.OV<br />

\<br />

\<br />

^,<br />

2.0V<br />

Date: January 16, 1996<br />

Page 1 .me: 11:24:42<br />

Figure B.2 The simulation resuh of Figure D.6.<br />

71


APPENDIX C<br />

THE FORMULA REDUCTION OF THE INSTRUMENTATION AMPLIFIER<br />

C.l Introduction<br />

The <strong>in</strong>strumentation amphfier provides the high mput impedance and the high<br />

common rejection necessary for the lock-<strong>in</strong> amphfier. A popular 3 op-amp configuration<br />

is used <strong>in</strong> this circuh. The analysis of the circmt is shown m the follow<strong>in</strong>g section.<br />

C.2 The output voltage of the <strong>in</strong>strumentation amplifier<br />

From Figure 3.5, h is obta<strong>in</strong>ed as follow<strong>in</strong>g:<br />

node a:<br />

(Vc-Vb)/R2 + (Va-Vb)/Rl = 0,<br />

Vb(l/Ri + l/R2) = (Vc/R2) + (V3/Ri)<br />

(C.l)<br />

node b:<br />

(Vb-Vd)/R2 + (Vb-Va)/Ri = 0,<br />

Vb(l/Ri + 1/R2) = ( Va/Ri) + (Vd/R2)<br />

(C.2)<br />

node c:<br />

(Vc-Vf)/R3 + (Vc-Va)/R2 = 0,<br />

Vc(l/R2+1/R3) = ( Va/R2) + (Vf/R3)<br />

(C.3)<br />

node e:<br />

Ve /R4 + (Ve-Vd)/R3 = 0,<br />

Ve(l/R3+1/R4)= Vd/R3<br />

(^^^<br />

72


node f<br />

(Vf-Vo)/R4 + (Vf-V,)/R3 = 0,<br />

Vf(l/R3+l/IU) = ( Vo/R4) + (Ve/R3)<br />

(C.5)<br />

S<strong>in</strong>ce the ga<strong>in</strong>s of the op amplifiers are very high, Vb = V2, V, = Vi, Vc = Vf can be<br />

assumed. Therefore, from node f, Vf is shown as<br />

Vf={R3/(R3+R4)}Vo+{R4/(R3+R4)} Vc = Ve,<br />

(C.6)<br />

and from node e, Ve is shown as<br />

Ve={R4/(R3 + R4)}Vd.<br />

(C.7)<br />

Equation C.8 can be obta<strong>in</strong>ed by equat<strong>in</strong>g two expressions equations. C.6 and C.7,<br />

Vd= (R3/R4)Vo + Vc.<br />

(C.8)<br />

By putt<strong>in</strong>g equation. C.8 <strong>in</strong> node b, equation C.9 is obta<strong>in</strong>ed.<br />

Ve={(Rl+R2)/Rl}V2-(R2/Rl)(Vi-R3/R4)Vo.<br />

(C.9)<br />

From node a:<br />

Vc={(Ri + R2)/Ri}Vi-(R2/Ri)V2.<br />

(CIO)<br />

F<strong>in</strong>ally, equation C.l 1 is shown below.<br />

Vo= {l+(2R2/Rl)}(R4/R3)(V2-Vi).<br />

(C.ll)<br />

73


APPENDIX D<br />

THE SUBCIRCUITS OF THE LOCK-IN AMPLIFIER<br />

74


<br />

<br />

Figure D. 1: Instrumentation amplifier<br />

75


* m<br />

u<br />

CO<br />

•o<br />

c<br />

02<br />

Q<br />


Figure D.3: Phase shifter<br />

77


3<br />

d<br />

78


- ao a.<br />

z<br />

^tr-<br />

3r><br />

-Ai^<br />

ao<br />

c«<br />

o<br />

2 -<br />

O<br />

3<br />

.-^dr<br />

3Q .<br />

IN •'<br />

Ml«»^<br />

-^l=^-^^<br />

a<br />

: ^<br />

o<br />

3<br />

Q<br />

IZ<br />

2 " T '<br />

_J \^<br />

" g • 1^—I<br />

o<br />

2 - •-ilf^^<br />

^^r-<br />

2 o ><br />

o<br />

L^<br />

a<br />

o<br />

1<br />

-—\r^<br />

3^<br />

a?<br />

5^<br />

3 ^<br />

••-*-•—^


Y3<br />

MsdP<br />

^MP<br />

M>dr<br />

IVfisI<br />

IVb^<br />

Biaj'fi<br />

i—Hi^<br />

Ml<br />

Mirir<br />

Rr>-<br />

M><br />

Ml|_<br />

^<br />

i«s


iQ—"<br />

3<br />

JD<br />

3<br />

O.<br />

"3<br />

o<br />

c/]<br />

cd<br />

3<br />

I<br />

j=<br />

c/)<br />

3<br />

0.<br />

k.<br />

O<br />

Q<br />

3<br />

ao<br />

IZ<br />

81


liT4.<br />

"cnir<br />

23.<br />

o _ t *<br />

* 1 3<br />

juO-^^tu<br />

117 IT<br />

.32 3 T*T ~<br />

3<br />

£<br />

itr<br />

« i<br />

4- '<br />

\ D • ^ ar-i<br />

« I a<br />

s<br />

%<br />

o<br />

a<br />

' 13<br />

%<br />

o<br />

a<br />

-^ -0<br />

lir<br />

JfL<br />

-lii<br />

I<br />

a<br />

JTU.<br />

JQ^"<br />

3<br />

3<br />

O<br />

a<br />

b><br />

o<br />

o<br />

3<br />

O<br />

C/5<br />

•n r?<br />

E<br />

C


APPENDIX E<br />

OUTPUT PLOTS<br />

83


• C:\LISZT\TEST\TOLG.SCH<br />

Dace/Time run: 12/16/95 18:42:41<br />

1.6mV<br />

(A) The dc feedback<br />

Temperature: 27.0<br />

1.2mV<br />

0.8mV<br />

1.00004mV^<br />

l.OOOOOmV-S<br />

SEL»<br />

0.4mV<br />

n V(V<strong>in</strong>)<br />

1.00008mV-r-<br />

0.99996mV-<br />

0.99 992mV + T---<br />

Os<br />

100ms<br />

n V(HBl.Vouc)<br />

— -1 —<br />

200ms 300ms 400ms<br />

Time<br />

H<br />

500ms<br />

Dace: December 16, 1995<br />

Page 1 .me: 18:45:13<br />

Figure E. 1: The measure result od the dc feedback<br />

84


Date/Time run: 12/18/95 02:2'o:V9^^'^^'^^'^^^'^^^^^-^^"<br />

Temperacure: 27.0<br />

(A) The open-loop cransfer<br />

6.OV-r-------:..r. .....'. ^ ^^^^^ ^"^ °"^P"^ sw<strong>in</strong>g limices<br />

4.0V-i<br />

(15.p00m.4.5686)<br />

2.0V-;<br />

OV<br />

(0.000,57.152u)<br />

i/<br />

f'<br />

«che open-loop<br />

I<br />

cansfer curve<br />

•2.0V-.<br />

-4.0V-I<br />

I<br />

(-15.S00m,-4.8224)<br />

•6.0V-f<br />

-5.0V<br />

[£|V(OP.VOUC)<br />

I<br />

OV<br />

V V<strong>in</strong><br />

^<br />

5.0V<br />

M: (-20.OOOm,-4.8328) A2 : (1 • 965C , 4 . 6823 ) DIFF1.^) : (-1. 9850,-9 . 515;<br />

Dace: December 18, 1955 Page 1 Time: 02:25:38<br />

Figure E.2: The open-loop transfer curve and output sw<strong>in</strong>g limits<br />

85


Figure E.3: The simulation method of slew rate and sett<strong>in</strong>g time<br />

86


* C:\LISZT\NOP\TEST\TSL.SCH<br />

Dace/Time run: 12/18/95 03:22:49 Temperacure: 27.0<br />

2 . OV - •<br />

(A) Slew race c<strong>in</strong>d secc<strong>in</strong>g<br />

cime<br />

OV<br />

-2.0V-'-<br />

= V{V<strong>in</strong>)<br />

(6.2833U,2.0056)<br />

2. OV T.<br />

I'.<br />

/'X.<br />

l.OV-<br />

-l.OV-<br />

4.0V-<br />

.-SR<br />

1 ;<br />

OV-<br />

• \<br />

(1.6833 u,-2.0076)<br />

-2 . OV-• ; , 1 •'y'sr-r .<br />

+ SR<br />

(5.0379U,-1-9532)<br />

-^!<br />

Secc<strong>in</strong>g<br />

time<br />

SEL».<br />

-4.0V-t-<br />

--•--<br />

Os<br />

2us<br />

5 V(C4:2)<br />

Dace: December 18, 1995<br />

4us<br />

Page 1<br />

6us<br />

Time<br />

— r -<br />

8us<br />

lOus<br />

^<br />

12us<br />

Time: 03:41:45<br />

Figure E.4: Simulation result of slew rate and settmg rate<br />

87


PERMISSION TO COPY<br />

In present<strong>in</strong>g this thesis <strong>in</strong> partial fulfillment of the<br />

requirements for a master's degree at Texas Tech University or<br />

Texas Tech University Health Sciences Center. I agree that the Library<br />

and my major department shall make it freely available for research<br />

purposes.<br />

Permission to copy this thesis for scholarly purposes may<br />

be granted by the Director of the Library or my major professor.<br />

It<br />

is understood that any copy<strong>in</strong>g or publication of this thesis for<br />

f<strong>in</strong>ancial ga<strong>in</strong> shall not be allowed without my further written<br />

permission and that any user may be liable for copyright <strong>in</strong>fr<strong>in</strong>gement.<br />

Agree<br />

(Permission is granted.)<br />

^le.:L Co A^-_i £\ c^G<br />

student's Signature<br />

Date<br />

Disagree<br />

(Permission is not granted.)<br />

Student's Signature<br />

Date

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!