Lock-in Amplifiers
Lock-in Amplifiers
Lock-in Amplifiers
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
INTEGRATED LOCK-IN<br />
AMPLIFIER<br />
by<br />
MEILI LO, B.S.E.<br />
A THESIS<br />
IN<br />
ELECTRICAL ENGINEERING<br />
Submitted to the Graduate Faculty<br />
of Texas Tech University <strong>in</strong><br />
Partial Fulfillment of<br />
the Requirements for<br />
the Degree of<br />
MASTER OF SCIENCE<br />
IN<br />
ELECTRICAL ENGINEERING<br />
Approved<br />
May, 1996
T<br />
I '^'A\^<br />
Kio.M-l<br />
CONTENTS<br />
b./r<br />
r ^<br />
LIST OF FIGURES<br />
CHAPTER<br />
iv<br />
1. INTRODUCTION 1<br />
2. BASIC THEORY OF LOCK-IN AMPLIFIERS 3<br />
2.1 Basic concepts of lock-<strong>in</strong> recovery 3<br />
2.2 Basic lock-<strong>in</strong> amplifiers 4<br />
2.2.1 The signal channel 4<br />
2.2.2 The multiplier detector 5<br />
2.2.3 The reference channel 7<br />
2.3 Noise rejection 9<br />
2.4 The implementation of a lock-<strong>in</strong> amplifier 11<br />
3. THE DETAILED CIRCUIT BEHAVIOR OF LOCK-IN AMPLIFIER 14<br />
3.1 OP amplifier 14<br />
3.1.1 The differential <strong>in</strong>put amplifier stage 16<br />
3.1.2 Output stage 18<br />
3.2 Active resistor 18<br />
3.3 Instrumentation amplifier 19<br />
3.4 Switched capacitor filter 20<br />
3.5 Phase shifl;er 26<br />
3.6 Multiplier 27<br />
4. SIMULATIONS AND ANALYSIS 31<br />
4.1 The result analysis of OP amphfier 31<br />
4.2 The simulation result of <strong>in</strong>strumentation amplifier 35<br />
4.3 The switched capacitor filters 35<br />
4.4 The multiplier 36<br />
4.5 The simulation results of the whole system 36<br />
5. SUMMARY 59<br />
REFERENCES 63<br />
11
APPENDIX<br />
A. THE OPERATION OF THE OP AMPS 64<br />
B. THE BASIC CONCEPT OF THE ACTIVE RESISTORS 69<br />
C. THE FORMULA REDUCTION OF THE INSTRUMENTATION<br />
AMPLIFIER 72<br />
D. THE SUBCIRCUITS OF THE LOCK-IN AMPLIFIER 74<br />
E. OUTPUT PLOTS 83<br />
111
LIST OF FIGURES<br />
2.1 A general experiment system of lock-<strong>in</strong> amplifier 4<br />
2.2 A basic lock-<strong>in</strong> amplifier 5<br />
2.3 Synchronous detector 6<br />
2.4 The implementation of lock-<strong>in</strong> amplifier 12<br />
3.1 The block diagram of an op-amp 14<br />
3.2 The schematic of the lock-<strong>in</strong> amplifier 17<br />
3.3 The simple transistor astive resistor 21<br />
3.4 The active resistor 21<br />
3.5 The implementation of Figure 3.4 22<br />
3.6 The <strong>in</strong>strumentation amplifier implementation by three op-amp 23<br />
3.7 Parallel switched capacitor realization of a cont<strong>in</strong>uous resistor 24<br />
3.8 The equivalent circuit of the cont<strong>in</strong>uous resistor 24<br />
3.9 Clock waveforms for the switched capacitor 24<br />
3.10 A basic Wien bridge phase shifl:er 29<br />
3.11 The basic circuit of four-quadrant Gilbert multiplier cell 30<br />
4.1 The parameter of MOSIS CMOS 2-|.im N-wdl process 32<br />
4.2 Open-loop mode with offset compensation 33<br />
4.3 A method of measur<strong>in</strong>g open-loop characteristics with dc bias stability 33<br />
4.4 The measurement result of open-loop ga<strong>in</strong> marg<strong>in</strong> by us<strong>in</strong>g the circuit<br />
of Figure 4.3 38<br />
IV
4.5 The measurement result of the open-loop ga<strong>in</strong> and phase 39<br />
4.6 Op-amp with only common-mode <strong>in</strong>put voltage 40<br />
4.7 Op-amp with differential-mode <strong>in</strong>put 40<br />
4.8 The simulation result of CMRR 41<br />
4.9 CMRR of <strong>in</strong>strumentation amplifier 42<br />
4.10 The result analysis of <strong>in</strong>strumentation amplifier 43<br />
4.11 The frequency and noise response of bandpass filter 44<br />
4.12 The output response of <strong>in</strong>put signal frequency at lOK Hz 45<br />
4.13 The bandpass filter output response of <strong>in</strong>put signal frequency at<br />
lOOKHzand IKHz 46<br />
4.14 The fi"equencyand noise response of lowpass filter 47<br />
4.15 The lowpass filter output response of <strong>in</strong>put signal frequency at IK Hz 48<br />
4.16 The lowpass filter output response of <strong>in</strong>put signal frequency at lOK Hz 49<br />
4.17 The output response of multiplier 50<br />
4.18 The DC transfer characteristics of multiplier 51<br />
4.19 Ac characteristics of multiplier 52<br />
4.20 An <strong>in</strong>put signal and its amplitude modulation 53<br />
4.21 The wideband noise 54<br />
4.22 The recovery signal of Figure 4.21 by the lock-<strong>in</strong> amplifier 55<br />
4.23 A <strong>in</strong>put signal with high noise (SNR =1:10) 56<br />
4.24 The recovery signal of Figure 4.23 57<br />
4.25 A recovery signal of a wide band noise but high SNR (SNR =1:1) 58
5.1 Block diagram of an extended lock-<strong>in</strong> amplifier 61<br />
5.2 The two-phase lock-<strong>in</strong> amplifier 62<br />
A.l Equivalent circuit of Ro 65<br />
A.2 Equivalent circuit of Figure A.1 66<br />
A. 3 The small signal model of folded cascode amplifier 67<br />
A.4 The equivalent output resistance circuit of folded cascode amplifier 67<br />
B. 1 The different l<strong>in</strong>ear ranges of active resistance under different Vc 70<br />
B.2 The simulation result of Figure D.6 71<br />
D. 1 Instrumentation amplifier 75<br />
D.2 Bandpass filter 76<br />
D.3 Phase shifter 77<br />
D.4 Multiplier 78<br />
D.5 Lowpass filter 79<br />
D.6 Active resistance 80<br />
D.7 OP amplifier with push-pull as output buffer 81<br />
D.8 OP amplifier with source follower as output buffer 82<br />
E. 1 The measure result of the dc feedback 84<br />
E.2 The open-loop transfer curve and output sw<strong>in</strong>g limits 85<br />
E.3 The simulation method of slew rate and sett<strong>in</strong>g time 86<br />
E.4 Simulation result of slew rate and sett<strong>in</strong>g rate 87<br />
VI
CHAPTER 1<br />
INTRODUCTION<br />
When a signal is obscured by high levels of noise, signal recovery techniques are<br />
necessary to obta<strong>in</strong> a high quality signal, thus signal recovery <strong>in</strong>struments play an<br />
important role <strong>in</strong> modem technology. Of all the techniques that have been developed for<br />
signal recovery, methods based on a phase-sensitive detector and its modern counterpart,<br />
the lock-<strong>in</strong> amplifier, are by far the most widely applied <strong>in</strong> all fields of scientific research.<br />
A phase-sensitive detector is responsive to the amplitude of a signal, but is also<br />
sensitive to the phase difference between a signal and the derived reference. Phasesensitive<br />
detector-based systems can, therefore, be devised to measure variations <strong>in</strong> both<br />
the amplitude and phase of periodic signals <strong>in</strong> the presence of noise and <strong>in</strong>terference.<br />
Systems us<strong>in</strong>g phase-sensitive detectors are called lock-<strong>in</strong> systems, and the usual way of<br />
<strong>in</strong>troduc<strong>in</strong>g a phase-sensitive detector <strong>in</strong>to an experiment is to use a lock-<strong>in</strong> amplifier. A<br />
lock-<strong>in</strong> amplifier has come to mean an <strong>in</strong>strument that <strong>in</strong>corporates a phase-sensitive<br />
detector, which is supported by preamplifiers, post-detection amplifiers, and a<br />
comprehensive reference process<strong>in</strong>g section[l].<br />
The sensitivity of a lock-<strong>in</strong> amplifier makes it an exceptionally useful <strong>in</strong>strument for<br />
extract<strong>in</strong>g signals from noise, even when the noise and signal frequencies are close<br />
together. <strong>Lock</strong>-<strong>in</strong> amplifiers are widely used <strong>in</strong> situations <strong>in</strong>volv<strong>in</strong>g low signal-to-noise<br />
ratios. These situations frequently arise when mak<strong>in</strong>g accurate measurements, such as<br />
displacement, temperature, stress-stra<strong>in</strong> and many others.
<strong>Lock</strong>-<strong>in</strong> amplifiers are widely and usefully applied <strong>in</strong> all fields of scientific research<br />
to obta<strong>in</strong> of signals from noise. However, most lock-<strong>in</strong> amplifiers are build as an<br />
<strong>in</strong>strument or a board <strong>in</strong>stead of s<strong>in</strong>gle chip. The price of either an <strong>in</strong>strument or a circuit<br />
board is expensive. For a wide-band lock-<strong>in</strong> amplifier <strong>in</strong>strument, the price is around<br />
$4,000 or up. Furthermore, for the purposes of reduc<strong>in</strong>g the size of products and the<br />
extra noise caused by signal transmission, the development of <strong>in</strong>tegrated lock-<strong>in</strong> amplifiers<br />
becomes essential.<br />
In this thesis, an analog lock-<strong>in</strong> amplifier is developed. This lock-<strong>in</strong> amplifier<br />
consists of an <strong>in</strong>strumentation amplifier, OP amplifier, active resistor, switch capacitor<br />
filter, phase shifter, and multiplier.<br />
The fundamental theory of the lock-<strong>in</strong> amplifier will be discussed <strong>in</strong> Chapter 2.<br />
Also <strong>in</strong> that chapter, the pr<strong>in</strong>ciples of the "phase sensitive detector, the modulator, and the<br />
demodulator will be <strong>in</strong>troduced, as well as the lock-<strong>in</strong> amplifier. The circuit design of<br />
each part of the lock-<strong>in</strong> amplifier will be presented <strong>in</strong> detail <strong>in</strong> Chapter 3. All the results of<br />
this lock-<strong>in</strong> amplifier design will be shown <strong>in</strong> Chapter 4. F<strong>in</strong>ally <strong>in</strong> Chapter 5, conclusions<br />
about this design are drawn, and some recommendations are given for further research.
CHAPTER 2<br />
BASIC THEORY OF LOCK-IN AMPLIFIERS<br />
2.1 Basic concepts of lock-<strong>in</strong> recovery<br />
<strong>Lock</strong>-<strong>in</strong> amplifiers are characterized by a wide dynamic range which gives the<br />
ability to measure signals that are accompanied by relatively high levels of noise and<br />
<strong>in</strong>terference. The lock-<strong>in</strong> amplifier is an exceptionally useful <strong>in</strong>strument for extract<strong>in</strong>g<br />
signals from high levels of noise, even when the noise and signal frequency are very close<br />
to the same value.<br />
The heart of the lock-<strong>in</strong> amplifier is a phase-sensitive detector. A phase-sensitive<br />
detector gives preferential treatment to the desired signal based on <strong>in</strong>formation about the<br />
signal's phase. However, a bandpass filter also makes a large contribution to the<br />
reduction of unwanted signals and to signal recovery.<br />
In typical applications, the desired signal is chopped or otherwise amplitude<br />
modulated at a much higher frequency. The signal recovery application of lock-<strong>in</strong><br />
amplifiers usually <strong>in</strong>volves the measurement of an amplitude variation and, to a lesser<br />
extent, phase variation of a periodic signal. <strong>Lock</strong>-<strong>in</strong> amplifiers are most commonly used<br />
with slowly vary<strong>in</strong>g signals. Time scales for signal variation are commonly on the order<br />
of seconds or longer[2].<br />
A general experimental system for a lock-<strong>in</strong> amplifier is shown <strong>in</strong> Figure 2.1. The<br />
system can be electrical, mechanical, optical, biological, or some comb<strong>in</strong>ation of such<br />
systems[l].
excitation<br />
response signal sensor Modulated signal<br />
noise<br />
<strong>Lock</strong>-<strong>in</strong><br />
Amplifier<br />
response signal<br />
(demodulated)<br />
Figure 2.1: A general experiment system of lock-<strong>in</strong> amplifier<br />
2.2 Basic lock-<strong>in</strong> amplifiers<br />
The lock-<strong>in</strong> amplifier is an extremely important and powerful measur<strong>in</strong>g tool. It not<br />
only can demodulate the modulated signal but also recover an <strong>in</strong>put signal disappeared <strong>in</strong><br />
the high noise. The block diagram of a basic lock-<strong>in</strong> amplifier is shown <strong>in</strong> Figure 2.2.<br />
2.2.1 The signal channel<br />
As shown <strong>in</strong> Figure 2.2, lock-<strong>in</strong> amplifiers are usually provided with an optional<br />
range of preamplifiers. The objective here is not only to enhance the ga<strong>in</strong>, but also to<br />
provide an optimum noise match to the signal source. In this way, the noise, whose<br />
frequency is close to the signal frequency, is not enhanced at the expense of the signal<br />
because of an excessive noise contribution from the amplifier. Frequently, lock-<strong>in</strong><br />
amplifiers are also provided with an array of filters for this purpose. If a substantial<br />
fraction of the noise and <strong>in</strong>terference is not elim<strong>in</strong>ated <strong>in</strong> this way, then the amplifier could
e driven <strong>in</strong>to saturation at an undesirably low ga<strong>in</strong> factor. The result<strong>in</strong>g distortion would<br />
degrade system performance seriously[7]. .<br />
A sharp bandpass filter is frequently used to improve noise immunity. This can be<br />
done because frequencies other than that of the carrier and its sideband are filtered out<br />
with the bandpass fiher. Thus, the SNR can be enhanced before the demodulator.<br />
Multiplier detector<br />
<strong>in</strong>put" filter •*" low-pass filter rt~^ out<br />
preamp<br />
time constant<br />
signal channel<br />
sensitivity<br />
reference <strong>in</strong>put<br />
reference channel<br />
Figure 2.2: A basic lock-<strong>in</strong> amplifier<br />
2.2.2 The multiplier detector (synchronous detector)<br />
The synchronous detector <strong>in</strong>cludes, at least, a multiplier and a lowpass filter. The<br />
objective of the detector is to offer a wide dynamic range to maximize signal recovery
capability. For practical reasons, the multiplier of many commercial products is driven by<br />
a squarewave switch<strong>in</strong>g waveform, <strong>in</strong>stead of a s<strong>in</strong>usoid wave.<br />
The low-pass filter serves several functions. First, it elim<strong>in</strong>ates the secondharmonic<br />
signal that is produced by the multiplier. The filter also <strong>in</strong>tegrates some of the<br />
random noise that ends up <strong>in</strong> the output of the multiplier.<br />
The simple block diagram of a synchronous detector is shown <strong>in</strong> Figure. 2.3. The<br />
only unwanted components which can give rise to spurious output are those which<br />
orig<strong>in</strong>ate <strong>in</strong> the immediate vic<strong>in</strong>ity of the reference frequency, conf<strong>in</strong>ed to the transmission<br />
'w<strong>in</strong>dows' def<strong>in</strong>ed by the characteristics of the low-pass filter[l][2][7].<br />
s(0 + n(/)<br />
I<br />
output<br />
r(0 >( X ) • low-pass filter ; • Voit)<br />
mit) \<br />
Figure 2.3: Synchronous detector<br />
The synchronous detector derives its name from the reference carrier signal used<br />
to demodulate the modulated carrier. As the diagram <strong>in</strong> Figure 2.3 shows, the operation of<br />
a synchronous detector can be summarized by the follow<strong>in</strong>g mathematical relationships.<br />
From Figure 2.3, the <strong>in</strong>put signal can be def<strong>in</strong>ed <strong>in</strong> terms of amplitude Vs, central
fi"equency/^, and phase (ps expressed as Equation (2.1). Also, a reference signal r(/) can be<br />
def<strong>in</strong>ed with amplitude V;., central frequency/., and phase (j)r as express <strong>in</strong> Equation (2.2).<br />
s(/) = Vscos [ 2;/,/ +^,] (2.1)<br />
rit) -^Y,COSi 27lfrt+(/>r) (2.2)<br />
mit) = (l/2)VsVr { cos [ 2n(f,^fr)<br />
t)+ ^.^ A<br />
+ cos[2K(f,-fr)t^(l>,-(!>,]}. (2.3)<br />
Where mit) is the output signal after the multiplier.<br />
Assume fs=fr, s^ (j>r, and the cut-off frequency of lowpass filter is less than/, then<br />
after lowpass filter<strong>in</strong>g. Equation (2.3) can be express as:<br />
Vo= KVsV.cos [ 2n( frfr) t + ^.- ^. ]<br />
= KVsV,. (2.4)<br />
where K is def<strong>in</strong>ed as a constant scaled by the factor of lowpass filter and multiplier.<br />
Equation (2.4) reveals that if r ovfs^fr, the output voltage will be reduced. To<br />
prevent los<strong>in</strong>g ga<strong>in</strong>, a phase shifter is needed to assure that the phase of the reference and<br />
signal channel are the same. Furthermore, the reference signal fi"equency,/., should be<br />
chosen as the same as the modulat<strong>in</strong>g signal,/.<br />
2.2.3 The reference channel<br />
The phase-sensitive detector requires a reference channel which supplies the<br />
precise modulat<strong>in</strong>g waveform required for the signal detector. The reference signal is<br />
normally a s<strong>in</strong>usoidal wave or a square wave. The discussion <strong>in</strong> section 2.2.2 assumes that<br />
7
the reference channel supplies an ideal s<strong>in</strong>usoidal wave. Sometimes the multiplier is a<br />
square wave. The square wave form can be expressed as:<br />
rit) = 4/71 { cos i2nfrt + Or) - 1/3 cos [3 (2;?/;/ +0,)]<br />
+ l/5cos[5(2;//+0,)]-.. } (2.5)<br />
at frequency/.<br />
Then,<br />
mit) = i l/2Vs/7r) { cos (2;r(/ +fs)t+ 0r)<br />
-(1/3) cos [67rifr + fs)t+0r]<br />
+ ( 1/5 ) cos [10;r(/ + f,) t + 0^)] - .. ]. (2.6)<br />
If the bandpass filter is operated <strong>in</strong> a narrow-band mode to strongly attenuate any<br />
<strong>in</strong>put signal at higher harmonics, then the result is the same as the s<strong>in</strong>usoidal reference <strong>in</strong><br />
the section 2.2.2. If the narrow-band filter does not provide enough attenuation, the<br />
phase sensitive detector will also have a phase-sensitive d.c. output <strong>in</strong> response to the<br />
signal at other harmonic frequencies and possibly cause some measurement ambiguities.<br />
To suppress the effect of the harmonic response, a tuned filter can be applied directly to<br />
the phase-sensitive detector [1][7].<br />
Furthermore, the phase-shift controller is necessary because the <strong>in</strong>put and<br />
8
eference signal are always out of phase when they reach the multiplier. The phase-shift<br />
controller is usually provided with a cont<strong>in</strong>uously variable adjustment.<br />
2.3 Noise rejection<br />
As the diagram <strong>in</strong> Figure 2.3 shows, the response of a synchronous detector to an<br />
amplitude-modulated signal at modulat<strong>in</strong>g fi-equency/o (oo = 2;/) with random noise after<br />
the signal channel can be written as:<br />
v,«(0 = msit)cos(iiot + nit) (2.7)<br />
where wXO is def<strong>in</strong>ed as a <strong>in</strong>put signal before modulation and «(/) is def<strong>in</strong>ed as a noise<br />
signal. S<strong>in</strong>ce the noise spectrum is centered on the signal frequency/o and band-limited by<br />
the band-pass filter, the noise signal can be written, <strong>in</strong> terms of random modulations, Rit)<br />
and ^0. that vary very slowly <strong>in</strong> comparison with coscDot, as:<br />
nit) = Rit) cos [ CDot + (p(t)]<br />
= «,(/)coscoo/ - «^(/)s<strong>in</strong>coo/. (2.8)<br />
where n,it) = Rit) cos^/) ( def<strong>in</strong>ed as <strong>in</strong>-phase noise ) and «(/) (def<strong>in</strong>ed as<br />
quadrature noise).<br />
The <strong>in</strong>put voltage to the synchronous detector becomes:<br />
v,niO = [ f^XO + «(0 ] coscoo/ - «g(Os<strong>in</strong>coo/. (2.9)<br />
If a reference voltage v/?(/) = F^cosOo/ is <strong>in</strong>troduced to the system, then the multiplication<br />
products can be given as:
..(Ov,(o = ;". '^\-:{:> .('\ 1 r<br />
y J _<br />
- (<br />
\ •<br />
^r /:,,f/)5'n2o:o^<br />
2. - - -. ti<br />
io'.v--^ai3 ii':e: f a-i- -<br />
- \.. L .. l_/ • ^ntj Ci:<br />
th- c!.:i:-.::<br />
f;') = i i/<br />
- 7 ^<br />
a. -; .l_ :-'~5 cf me:.::-:cj?.:^ v^Ivie.: cf/;:XO '^-<br />
'^c-r'^:^(:)/"r:v:.<br />
.'><br />
^c'2.12) sh.<br />
-1 -i-i..<br />
,'' 1 •. "3 ,1 • • ^<br />
w ' - -. ^ A _ 'v.. . i v.. >_i L.' W > C • '» : Iw . C. * .<br />
ne mr'.:.<br />
• . . . , *<br />
'Ny.., '"^ [ ;rr;':^cos^cc -C / .:-^^"\ =<br />
; 7?r(t;//r(0j. \ - • • - ^<br />
Hence, ±e s* "1 i _ r •". _ " ~" • . - i 11, I vy<br />
;r is:<br />
•".' 1 _ ^ .<br />
.i"..! t•^:; 5igna.-:c-nc:r:c :•:. •nr'):-ovec.<br />
Wlien i^2 ^''^ ^?i ( '•-'hi:^ Bj is th^ baad\vi'i:2 c-" :he 21LC" and E: is the ba'idwidth<br />
ihe i'ou: nci;-: }, tn^: n:c:j:i~:qi.:ar^> vai'.ii cf rhe noisa fcK: vx-<strong>in</strong>q Ihc lo'. '-ra,^s aiti;: en:: b
NO = 2WNB^. (2.15)<br />
where W^ is def<strong>in</strong>ed as the spectral density of the bandpass filter. The output signal-tonoise<br />
ratio SNRo and <strong>in</strong>put signal-to-noise ratio SNRjcm be written as:<br />
SNRo = m,\t) I 2 WMBO (2.16)<br />
and<br />
SNRj = m\t) I 2WMBJ. (2.17)<br />
Therefore, the signal-to-noise improvement factor becomes:<br />
SNR^ I SNRi = Bj I Bo. (2.18)<br />
If the <strong>in</strong>put noise is band limited around the signal fi"equency,it is necessary to<br />
provide noise filters centered on the signal frequency to ensure a high SNR before<br />
detection[2][8].<br />
2.4 The implementation of a lock-<strong>in</strong> amplifier<br />
The basic block diagram of the lock-<strong>in</strong> amplifier implemented <strong>in</strong> this paper is<br />
shown <strong>in</strong> Figure 2.4[9].<br />
The design and implementation specification is described as follows.<br />
1. The <strong>in</strong>strumentation amplifier.<br />
To reduce possible common mode noise, a differential <strong>in</strong>strumentation amplifier is<br />
used as the pre-amplifier. The differential ga<strong>in</strong> of the pre-amplifier is 30.<br />
11
unbalance<br />
signal <strong>in</strong><br />
<strong>in</strong>strumentation<br />
ampUtude<br />
ha\ar\ce.
<strong>in</strong> the l<strong>in</strong>ear range, a ga<strong>in</strong> controller is also needed.<br />
4. The multiplier.<br />
The ma<strong>in</strong> purpose of the multiplier is to demodulate the <strong>in</strong>put signal from the<br />
carrier. The l<strong>in</strong>ear range of the <strong>in</strong>put signal of the multiplier should be ma<strong>in</strong>ta<strong>in</strong>ed higher<br />
than IV to be efficient. The frequency response range of the multiplier should be higher<br />
than 20k Hz.<br />
The lock-<strong>in</strong> amplifier is used to detect a low frequency signal which is modulated<br />
to a higher frequency. Even the modulated frequency is very noisy. However, if the<br />
orig<strong>in</strong>al signal has added low fi-equencynoise before modulation, the lock-<strong>in</strong> amplifier can<br />
substantially reduce that noise. When the noise frequency is very close to the modulat<strong>in</strong>g<br />
signal, a lock-<strong>in</strong> amplifier still can improve the signal-to-noise ratio (as shown <strong>in</strong> section<br />
2.4), but the signal recovery ability is decided by the bandwidth of bandpass filter.<br />
Therefore, optimiz<strong>in</strong>g the filters and modulat<strong>in</strong>g frequency becomes essential.<br />
13
CHAPTER 3<br />
LOCK-IN AMPLIFIER DESIGN<br />
The ma<strong>in</strong> blocks of the lock-<strong>in</strong> amplifier are an <strong>in</strong>strument amplifier, a band-pass<br />
filter, a phase shifter, a multiplier, and a lowpass filter. The block diagram of the lock-<strong>in</strong><br />
amplifier is shown <strong>in</strong> Figure 2.4. The complete schematic of the circuit is shown <strong>in</strong> Figure<br />
3.2. The detailed subcircuits for this lock-<strong>in</strong> amplifier are shown <strong>in</strong> Figures D. 1 to D.8 <strong>in</strong><br />
Appendix D. The actual component values along with significant voltage specifications<br />
and signal levels are discussed <strong>in</strong> this chapter.<br />
3.1 Op amplifier<br />
An op amp is one of the most important parts of the lock-<strong>in</strong> amplifier s<strong>in</strong>ce it is<br />
used <strong>in</strong> eveiy part of the lock-<strong>in</strong> amplifier. An ideal op amp has <strong>in</strong>f<strong>in</strong>ite ga<strong>in</strong>, <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>ear<br />
range, zero offset voltage, high common mode rejection ratio ( CMRR ), <strong>in</strong>f<strong>in</strong>ite <strong>in</strong>put<br />
impedance and zero output impedance. Unfortunately, the ideal op amp does not exist.<br />
The follow<strong>in</strong>g block diagram illustrates the operation of a practical op-amp.<br />
v^<br />
V...<br />
Differential <strong>in</strong>put<br />
amplifier<br />
Level shift<br />
Differential -to-s<strong>in</strong>gle-ended<br />
Ga<strong>in</strong> stage<br />
Output buffer stage<br />
Figure 3.1: The block diagram of an op-amp<br />
14
The circuit fijnctions that lead to near-ideal overall performance are:<br />
• Level shift<strong>in</strong>g.<br />
• Differential -to -s<strong>in</strong>gle -ended conversion.<br />
• Added Ga<strong>in</strong>.<br />
• Output buffer stage.<br />
Level shift<strong>in</strong>g is needed to compensate for the dc voltage change occurr<strong>in</strong>g <strong>in</strong> the<br />
<strong>in</strong>put stage and thus to obta<strong>in</strong> the appropriate dc bias for the follow<strong>in</strong>g stages. In some<br />
circuits, the <strong>in</strong>put stage has a differential output that is converted to a s<strong>in</strong>gle-ended output<br />
for the subsequent stage. Usually the ga<strong>in</strong> provided by the <strong>in</strong>put stage is not enough to<br />
meet the specifications. Under this condition, an additional ga<strong>in</strong> stage is needed.<br />
The output buffer stage provides a low output impedance and a large output<br />
current to drive the load of the op amp. Normally, it does not improve the voltage ga<strong>in</strong>.<br />
Usually if the op amp is an <strong>in</strong>ternal component of a switched capacitor filter, the output<br />
load is a small capacitor, and the output buffer stage is not required to provide a very large<br />
current or very low output impedance. However, if the op amp is the filter output, it may<br />
need to drive a large capacitor or a small resistiv-e load. In this case, the output buffer<br />
should be designed with a low output resistance for driv<strong>in</strong>g a big capacitor or to provide a<br />
large current for a small resistive load. The major considerations for an op-amp design are<br />
frequency response, <strong>in</strong>put/output sw<strong>in</strong>g, ga<strong>in</strong>, CMRR, and load driv<strong>in</strong>g capability.<br />
S<strong>in</strong>ce the largest capacitor <strong>in</strong> the switched capacitor filter of the lock-<strong>in</strong> amplifier is<br />
100 pf, a source follower is <strong>in</strong>cluded at the output of the op amp. This source follower is<br />
only used <strong>in</strong> the switched capacitor filters to drive the large <strong>in</strong>ternal capacitors.<br />
15
The circuit diagram of operational amplifiers used <strong>in</strong> the lock-<strong>in</strong> amplifier are<br />
shown <strong>in</strong> Figures D.7 and D.8. The difference between these two circuits is that the<br />
circuit <strong>in</strong> Figure D.8 is used <strong>in</strong> the switched capacitor filters has an additional source<br />
follower with a buffered output stage to drive the heavy load. The detailed circuit design<br />
of the op amps is discussed <strong>in</strong> the follow<strong>in</strong>g sections.<br />
3.1.1 The differential <strong>in</strong>put amplifier stage<br />
In Figure D.7, Ml to MIO form a folded cascode amplifier, which <strong>in</strong>cludes a<br />
differential <strong>in</strong>put amplifier stage and a differential-to-s<strong>in</strong>gle-ended conversion stage. The<br />
key po<strong>in</strong>t of this circuit design is that the current of M5 should be greater than either Ml<br />
or M3 s<strong>in</strong>ce M5 provides the current for both Ml and M3. The same reason<strong>in</strong>g is applied<br />
to M6. The basic operation and formulas are shown <strong>in</strong> Appendix A.<br />
The advantages of this circuit are:<br />
• It does not need level shift<strong>in</strong>g to shift the dc voltage.<br />
• It is a high ga<strong>in</strong> output circuit.<br />
• It reduces the non-dom<strong>in</strong>ant pole s<strong>in</strong>ce it does not need level shift<strong>in</strong>g.<br />
It is particularly suitable for achiev<strong>in</strong>g wide and stable closed loop bandwidths with large<br />
capacity loads, such as required <strong>in</strong> high-frequency switch capacitor filters.<br />
The disadvantage of this circuit is the reduced output voltage sw<strong>in</strong>g of the<br />
cascoded devices. The Mbl to Mb6 circuit was designed to improve the output voltage<br />
sw<strong>in</strong>g.<br />
16
i?5<br />
II! >^<br />
<br />
bQfldDQSS fler<br />
^ m<br />
foffii&rdef<br />
I<br />
0<br />
R1 CI<br />
^<br />
Ik<br />
R3C3<br />
i- -t—M<br />
„ , II 1 I<br />
4—4-<br />
^/l?,^ ''H^'<br />
,1 (I<br />
Vo<br />
< I<br />
Vo<br />
T<br />
lOffMSS f'llltr<br />
9P<br />
KM><br />
Figure 3.2: The schematic of the lock-<strong>in</strong> amplifier<br />
17
3.1.2 Output stage<br />
A class AB push-pull output stage is used <strong>in</strong> the circuit. The primary advantage of<br />
this output stage is that the maximum sourc<strong>in</strong>g/s<strong>in</strong>k<strong>in</strong>g current is not limited by the bias<br />
current, although the small signal output resistance is high. The detailed operation and<br />
formulas are shown Appendix A.<br />
The major disadvantage of this output stage is that the output resistance is <strong>in</strong> the<br />
order of kD. For driv<strong>in</strong>g big capacitor, a low resistance output buffer stage is needed.<br />
There are several different methods for design<strong>in</strong>g a low resistance output stage, such as a<br />
source follower output stage (shown <strong>in</strong> Figure D.8) or negative feedback with error<br />
amplifiers. Error amplifiers can provide a better l<strong>in</strong>ear range than source followers, but<br />
they <strong>in</strong>crease the circuit size and reduce the fi-equencyresponse. Two large resistors can<br />
be used <strong>in</strong> place of the error amplifiers to assure a good l<strong>in</strong>ear range. However, this is not<br />
a good implementation for VLSI design. Hence, a source follower is added to the output<br />
buffer <strong>in</strong> this circuit [5] [6].<br />
3.2 Active resistor<br />
A large number of resistors are used <strong>in</strong> the lock-<strong>in</strong> amplifier. There are several<br />
ways to design resistors <strong>in</strong> VLSI such as active resistors, diffusion resistors, polysilicon<br />
resistors, and switched capacitor active resistors. Switched capacitor circuits are usually<br />
applied with RC time constants and <strong>in</strong> dynamic circuits. For high impedance and gross<br />
values of resistive components, either diffusion or polysilicon resistors are usually used.<br />
Usually an active load is used <strong>in</strong> place of a resistor <strong>in</strong> VLSI design. However, the range of<br />
18
the l<strong>in</strong>ear region is the limit<strong>in</strong>g factor for accurate and symmetry circuits. In this case,<br />
simple transistor active resistors are not used due to their small l<strong>in</strong>ear range.<br />
Another way to design an active resistor is shown <strong>in</strong> Figure 3.4. The<br />
implementation of Figure 3.4 is shown as Figure 3.5. The basic concept of the active<br />
resistor is shown <strong>in</strong> Appendix B. From Appendix B, the voltage size of the l<strong>in</strong>ear range is<br />
limited as: V < ( Vc - VT ). This shows that the higher voltage value of Vc, the larger the<br />
voltage size of the l<strong>in</strong>ear range is. The measured data from the circuit of Figure 3.5 is<br />
shown <strong>in</strong> Figure B. I. The data shows that it is hard to obta<strong>in</strong> the desired l<strong>in</strong>ear region<br />
with a ± 5V power supply design.<br />
Therefore, another method is used to improve the l<strong>in</strong>ear range as shown <strong>in</strong><br />
Figure D.6. The additional p- mode transistors, M7 and M8, are added to compensate for<br />
the nonl<strong>in</strong>ear range of the n-mode transistors M3 and M4. It is not difficult to obta<strong>in</strong> the<br />
resistive l<strong>in</strong>ear range by simply adjust<strong>in</strong>g the W/L ratio. The simulation result of Figure<br />
D.6 is shown <strong>in</strong> Figure B.2.<br />
3.3 Instrumentation amplifier<br />
The ma<strong>in</strong> application of an <strong>in</strong>strumentation amplifier is to measure small<br />
differential output voltage from a sensor under the presence of strong common-mode<br />
<strong>in</strong>put vohages. The three op amps shown <strong>in</strong> Figure 3.6 make up an <strong>in</strong>strumentation<br />
amplifier. The deduction of the Vo is shown <strong>in</strong> Appendix C. The ga<strong>in</strong> of the<br />
<strong>in</strong>strumentation amplifier is shown as:<br />
Ao = Vo/(V2-Vi)= {l+(2R2/Ri)}(R4/R3). (3.1)<br />
19
The advantages of this <strong>in</strong>strumentation amplifier <strong>in</strong>cludes high <strong>in</strong>put impedance and<br />
high CMRR. Plus, it is easy to adjust the output ga<strong>in</strong> by simply chang<strong>in</strong>g resistance Rl<br />
without chang<strong>in</strong>g the bridge resistances. The implementation of a VLSI design <strong>in</strong> this<br />
circuit necessitates the use of the active resistor shown <strong>in</strong> Figure D.6 to replace all<br />
resistances. For the sake of symmetry, the l<strong>in</strong>ear and symmetric character of the active<br />
resistor is an important issue <strong>in</strong> the design of the VLSI devices[5][6].<br />
3.4 Switched capacitor filter<br />
S<strong>in</strong>ce resistors are difficult to use <strong>in</strong> a VLSI circuit, switched capacitors are used <strong>in</strong><br />
the design of active filters. The parallel switched capacitor realization of a cont<strong>in</strong>uous<br />
resistor is shown <strong>in</strong> Figure 3.7.<br />
The transistors which act like switches, are controlled by the clock. The charge,<br />
which flows <strong>in</strong>to Ci at clock period 1 , is equal to<br />
Q(to+T/2) = CV. (3.2)<br />
The charge at the clock period 2 equals<br />
Q (to + T ) = CV2 - CVi = C ( V2 - Vi ). (3.3)<br />
After the second clock pulse of the clock 1, Ci will be recharged to<br />
Q(to + 3T /2 ) = CVi - CV2 = C ( Vi - V2 ). (3.4)<br />
From Equations 3.3 and 3.4, the resistance of the parallel switched capacitor resistor can<br />
be def<strong>in</strong>ed as<br />
R = (V,-V2)/I, = (V2-V,)/l2. (3.5)<br />
20
— <<br />
-(•<br />
- * •<br />
ModN'<br />
l(—1<br />
t<br />
^<br />
'1—1<br />
1<br />
<<br />
WodD'<br />
^<br />
Figure 3.5: The implementation of Figure 3.4.<br />
22
Figure 3.6: The <strong>in</strong>strumentation amplifier implementation by three op-amp
n<br />
Ciccn<br />
T<br />
Ml<br />
Clocl«r2<br />
i<br />
W2<br />
12<br />
o<br />
VI<br />
ir<br />
CI<br />
V2<br />
6<br />
'<br />
Figure 3.7: Parallel switched capacitor realization of a cont<strong>in</strong>uous resistor<br />
R<br />
6^ 6"<br />
Figure 3.8: The equivalent circuit of the cont<strong>in</strong>uous resistor<br />
clock.<br />
i clock 2<br />
•^t-to<br />
111 T 3T/2 2T 5/2T 37<br />
t-to<br />
Figure 3.9: Clock waveforms for the switched capacitor.<br />
24
S<strong>in</strong>ce I = dq/dt, it is easy to get<br />
(Vi-V2)/li(aver) = T/C. (3.6)<br />
So<br />
R= (T / C) = Tc /C = 1/ if, C). (3.7)<br />
The ma<strong>in</strong> purpose of the switched capacitor is to reduce the size of the IC and to<br />
obta<strong>in</strong> RC time constants. The advantages of the switched capacitor realization of<br />
resistors can be observed by compar<strong>in</strong>g the RC product of a resistor designated as Ri and<br />
a capacitor designated as C2. It can be assumed that the product of Ri and C2 forms the<br />
time constant ,1, given as<br />
x = RiC2. (3.8)<br />
Then the accuracy of x as a function of Ri and C2 can be expressed as:<br />
di / T = ( dRi / Rl) + ( dC2 / C2). (3.9)<br />
Assum<strong>in</strong>g that Ri is replaced by a parallel switched capacitor equivalent, equation 3.8<br />
becomes<br />
x = (l/f;)*(C2/Ci) = TcC2/Ci (3.10)<br />
Then the accuracy of x can be expressed as<br />
dx / X = dT, / Tc -^ dC2 / C2 - dCi / Ci. (3.11)<br />
Therefore , it is easy to see that if the clock is perfectly accurate, equation 3.11 will<br />
become<br />
dx/x = dC2/C2-dCi/C,. (3.12)<br />
Because the two capacitor Ci and C2 are buih close together us<strong>in</strong>g the same technology,<br />
the model of Equafion 3.12 should provide greater accuracy than Equation 3.9.<br />
25
Therefore, the bandpass filter and lowpass filter are designed as switched capacitor filters<br />
and are shown <strong>in</strong> Figures D.2 and D.5.<br />
The fihers used <strong>in</strong> this system are 4'*' order butterworth bandpass and lowpass<br />
filters. The central frequency for the band-pass fiher is 10 kHz, the bandwidth is 5.0 kHz<br />
and the Q is 2.0. The cut off frequency of the low-pass filter is about 1 kHz. S<strong>in</strong>ce the<br />
switch<strong>in</strong>g frequency fc should be much faster than the frequency of the <strong>in</strong>put signal and the<br />
pulse period should be large enough for the charge time of the switched capacitors, the<br />
switch<strong>in</strong>g frequency of fc = 1 MHz is chosen, and the time period of the pulse is<br />
0.3ps[3][4].<br />
The 160kQ-100pf comb<strong>in</strong>ation determ<strong>in</strong>es the central frequency of the bandpass<br />
fiher. Accord<strong>in</strong>g to Equation (3.6) a 6.25pf capacitor is chosen to make the equivalent<br />
value of the switch capacitor resistor equal to 160k. For the same reason, the 1 MQ and<br />
Ipf comb<strong>in</strong>ation determ<strong>in</strong>e the cut-off frequency of the lowpass filter as Ik Hz. The Ipf<br />
capacitor is selected to make the equivalent value of the switch capacitor resistor equal to<br />
IMQ.<br />
3.5 Phase shifter<br />
When the <strong>in</strong>put signal reaches the multiplier, it will not match the phase of the<br />
reference signal. To prevent the loss of ga<strong>in</strong> <strong>in</strong> the system, the phase relationship should<br />
be kept when both signals reach the synchronous demodulator. The phase shifter with ga<strong>in</strong><br />
adjustment as shown <strong>in</strong> Figure D.3 is applied to correct the phase and to make the<br />
26
eference signal the same phase as the <strong>in</strong>put signal. A basic Wien bridge phase shifter is<br />
used and is shown <strong>in</strong> Figure 3.10. From Figure 3.10 the loop ga<strong>in</strong> can be expressed as<br />
L(co) = [R2(l+R4/R3)]<br />
X { Ri+R2+R2(C2/Ci) +j [ C0R1R2C2 - (l/coCi) ] y' (3.13)<br />
from equation (3.13), the shifted angle 0 can be express as<br />
e = tan^ [ - (C0R1R2C2 - 1/coCi) / (Rl + R2 + R2C2/C1). (3.14)<br />
By adjust<strong>in</strong>g the values of R and C, the phase and ga<strong>in</strong> can be changed. After the signal<br />
channel, the <strong>in</strong>put signal is 126° ahead of the orig<strong>in</strong>al signal. The circuit shown <strong>in</strong> Figure<br />
3.10 can not correct the phase that much. Therefore the circuit shown <strong>in</strong> Figure D.3 is<br />
used (the detailed component values are marked). To prevent the op amps from be<strong>in</strong>g<br />
driv<strong>in</strong>g to saturation and improve the signal ga<strong>in</strong>, the variable resistor R6 is used. This<br />
keeps the signal <strong>in</strong> the maximum <strong>in</strong>put voltage range of the muhiplier, ensur<strong>in</strong>g that the<br />
multiplier works <strong>in</strong> the l<strong>in</strong>ear range.<br />
3.6 MultipHer<br />
The four-quadrant Gilbert multiplier cell is used as a demodulator. The basic<br />
circuit of the four-quadrant Gilbert multipUer cell is shown <strong>in</strong> Figure 3.11. The complete<br />
implementation is shown <strong>in</strong> Figure D.4. The transistors Mvl to Mv4 are used to convert<br />
the output currents to voltage and to improve the ga<strong>in</strong> and l<strong>in</strong>ear range of the Gilbert<br />
multiplier cell. The op-amp is used to convert the two-ended outputs to a s<strong>in</strong>gle-ended<br />
output and to <strong>in</strong>crease the ga<strong>in</strong> of multiplier. An analysis of the circuit yields :<br />
Vout = K„V,V2 (3.15)<br />
27
where K„ is related to R,, Ry, R^ and !«[5].<br />
The multiplier and the low-pass filterare comb<strong>in</strong>ed as a synchronous detector, the heart of<br />
a lock-<strong>in</strong> amplifier.<br />
28
R3<br />
R4<br />
'0<br />
OP<br />
11<br />
^<br />
Rl<br />
CI<br />
—WV * * II * 1—1—^<br />
V-<br />
V4<br />
M<br />
^CouT--<br />
R2<br />
•C2<br />
f <<br />
{. (<br />
*0 ^0<br />
Figure 3.10 A basic Wien bridge phase shifter<br />
29
Figure 3.11: The basic circuit of four-quadrant Gilbert muhiplier cell<br />
30
CHAPTER 4<br />
SIMULATIONS AND ANALYSIS<br />
The prototype circuit was simulated by us<strong>in</strong>g the model of MOSIS CMOS 2-\im<br />
n-well process. The parameters are shown <strong>in</strong> Figure 4.1. The block diagram of the total<br />
circuit is shown <strong>in</strong> Chapter 2, and the total circuit is discussed <strong>in</strong> Chapter 3.<br />
The simulation results will be discussed part-by-part follow<strong>in</strong>g the diagram shown<br />
<strong>in</strong> Figure 2.4. The resuhs of the op-amp which is used throughout the circuits will be<br />
measured first.<br />
4.1 Simulation resuhs of OP amplifier<br />
One of the most important characteristics of an op amp's performance is its<br />
operation <strong>in</strong> the open-loop mode. However, due to the high differential ga<strong>in</strong> of the op<br />
amp, it is difficuh to measure an op amp <strong>in</strong> the open-loop mode, and it is also difficult to<br />
simulate an op amp <strong>in</strong> open-loop. There are two methods shown <strong>in</strong> Figure 4.2 to simulate<br />
the open-loop ga<strong>in</strong>. Apply<strong>in</strong>g the approach <strong>in</strong> Figure 4.2 to measure the open-loop ga<strong>in</strong> is<br />
only practical for simulation. The resuh of the open-loop ga<strong>in</strong> by us<strong>in</strong>g the circuit of<br />
Figure 4.2 is shown <strong>in</strong> Figure 4.4. The circuit shown <strong>in</strong> Figure 4.3 is a better way to<br />
measure the open-loop ga<strong>in</strong>. This method works well for both simulation and physical<br />
measurement. In the configuration shown <strong>in</strong> Figure 4.3, the reciprocal RC time constant<br />
should be set about 10 to 100 times less than the anticipated dom<strong>in</strong>ant pole of the<br />
31
.MODEL ModNNMOS LEVEL=2 PHI=0.700000 TOX=4.2400E-08 XJ=0.200000U<br />
TPG=1<br />
+ VTO=0.8184 DELTA=4.0370E-K)0 LD=3.4300E-07 KP=4.5103E-05<br />
+ UO=553.8 UEXP=1.2310E-01 UCRIT=9.6810E+04 RSH=1.4910E-01<br />
+ GAMMA=0.5799NSUB=6.7190E+15 NFS=1.0890E+11 VMAX=5.9760E+04<br />
+ LAMBDA=3.3160E-02 LAMBDA=3.3160E-02 CGDO=4.1902E-10<br />
+ CGSO=4.1902E-10 CGBO=3.4911E-10 CJ=1.2010E-04 MJ=0.6285<br />
+ CJSW=4.7113E-10 MJSW=0.3275 PB=0.800000<br />
* Weff = Wdrawn - Deha_W<br />
* The suggested Delta_W is 1.5426E-08<br />
.MODEL ModP PMOS LEVEL=2 PHI=0.700000 TOX=4.2400E-08 XJ=0.200000U<br />
TPG=-1<br />
+ VTO=-0.9477 DELTA=4.6250E+00 LD=3.6240E-07 KP=1.6761E-05 '<br />
+ UO=205.8 UEXP=2.8980E-01 UCRIT=8.3070E+04 RSH=1.1050E-01<br />
+ GAMMA=0.6899NSUB=9.5090E+15 NFS=1.1000E+11 VMAX=9.9990E+05<br />
+ LAMBDA=4.6050E-02 LAMBDA=4.6050E-02 CGDO=4.4272E-10<br />
+ CGSO=4.4272E-10 CGBO=3.9342E-10 CJ=3.0933E-04 MJ=0.6176<br />
+ CJSW=2.8778E-10 MJSW=0.4045 PB=0.800000<br />
* Weff = Wdrawn - Delta_W<br />
* The suggested Deha_W is -3.0100E-07<br />
Figure 4.1: The parameter of MOSIS CMOS 2-\im N-well process<br />
32
Vdci<br />
Via<br />
Vout<br />
yof5F<br />
Vss<br />
^ 0<br />
^o<br />
o<br />
Figure 4.2: Open-loop mode with offset compensation<br />
Figure 4.3: A method of measur<strong>in</strong>g open-loop characteristics with dc<br />
bias stability<br />
33
op amp. Under these conditions, the op amp has total dc feedback, which stabilizes the<br />
bias. The dc value of Vout will be exactly the same as the dc value of V^. This result is<br />
shown <strong>in</strong> Figure E. 1.<br />
The true open-loop frequency response characteristics will not be observed until<br />
the frequency reaches approximately 10 times that of 1/RC. Above this frequency, the<br />
ratio of Vout to V^ is essentially the open-loop ga<strong>in</strong> of the op amp. The resuh of the openloop<br />
ga<strong>in</strong> by us<strong>in</strong>g the circuit of Figure 4.3 is shown <strong>in</strong> Figure 4.5. Also from the<br />
measurement resuhs shown <strong>in</strong> Figure 4.4 and Figure 4.5, it is found that the open-loop<br />
ga<strong>in</strong> is about 80 dB. The open-loop transfer curve, output sw<strong>in</strong>g limits, phase marg<strong>in</strong>,<br />
dom<strong>in</strong>ant pole, and unity-ga<strong>in</strong> bandwidth can be simulated or measured by the open-loop<br />
configuration. If the phase at o = GB (unit ga<strong>in</strong> bandwidth) is larger than -180°, then the<br />
system will be stable. It is also known that the larger the phase marg<strong>in</strong>, the more stable<br />
the circuit becomes. Usually at least a 45° marg<strong>in</strong> is required. Figure 4.5 shows that the<br />
phase marg<strong>in</strong> is about 45 °. Figure 4.4 shows that the dom<strong>in</strong>ant pole is around 600 Hz<br />
while the unity-ga<strong>in</strong> bandwidth is around 6M Hz. For a central frequency at 10k Hz, the<br />
frequency doma<strong>in</strong> fits the requirements. The open-loop transfer curve and output sw<strong>in</strong>g<br />
limits are shown <strong>in</strong> Figure E.2. All of the above simulation resuhs are simulated with<br />
RL=lknandCL=10pf<br />
Accord<strong>in</strong>g to the def<strong>in</strong>ition of CMRR, the common mode rejection can be<br />
measured by the circuit shown <strong>in</strong> Figures 4.6 and 4.7. The resuh of CMRR is about 74 dB<br />
which is shown <strong>in</strong> Figure 4.8.<br />
34
As shown <strong>in</strong> Figure E.4, the approximate slew rate of the op amp is about +SR =<br />
6V/ps and -SR = 7V/ps. Also the settl<strong>in</strong>g time of the ris<strong>in</strong>g edge is about 1.28ps and<br />
1.68ps for the fall<strong>in</strong>g edge. The test method for measur<strong>in</strong>g slew rate is shown <strong>in</strong> Figure<br />
E.3. The load capacitor is 30 pf<br />
4.2 The simulation resuh of <strong>in</strong>strumentation amplifier<br />
To test the <strong>in</strong>strumentation amphfier, the most important measurement is CMRR.<br />
Figure 4.9 shows that the CMRR of the mstrumentation amplifier is about 120 dB. Also<br />
Figure 4.10 shows that the ga<strong>in</strong> of the <strong>in</strong>strumentation amphfier is about 30, while the<br />
frequency fits the requirements, and the output signal has good symmetric characters.<br />
4.3 The switched capacitor filters<br />
There are two switched capacitor fihers <strong>in</strong> the lock-<strong>in</strong> amplifier. One is a bandpass<br />
iker whose central frequency is 10 kHz. The other is a lowpass filter whose cut-off<br />
frequency is Ik Hz. The sampl<strong>in</strong>g frequencyof the switch capacitor, f^ is 1 MHz.<br />
The simulation results of bandpass fiher are shown from Figure 4.11 to Figure<br />
4.13. The simulation results show that the central frequency of the bandpass filter is about<br />
12 kHz and the bandwidth at 3 dB is about 5.2 kHz. The Q of the bandpass fiher is about<br />
2.3.<br />
The simulation results of the lowpass filter are shown <strong>in</strong> Figure 4.14 to Figure<br />
4.16. The results show that the 3 dB po<strong>in</strong>t of the lowpass fiher is around Ik Hz, and high
SNR also occurs. Figure 4.9 shows that the phase of the <strong>in</strong>put signal is shifted.<br />
Therefore, the phase correction before the muhiplier is needed.<br />
4.4. The muhiplier<br />
From Figures 4.14 to 4.15, the Unear range of muhipher is found between -2V and<br />
+2V, and the output vohage is Vout ~ 2 V^i V<strong>in</strong>2. Also the bandwidth of the muhiplier is<br />
about 50 kHz as shown <strong>in</strong> Figure 4.16.<br />
4.5 The simulation resuhs of the whole system<br />
After test<strong>in</strong>g the system part-by-part, it is apparent that the operation of every part<br />
of the system meets the requirement. Therefore, an <strong>in</strong>put with a noise signal is set up to<br />
test the whole system. Figure 4.17(a) shows the <strong>in</strong>put signal, and Figure 4.17(b) shows<br />
the amplitude modulation of the <strong>in</strong>put signal. The wideband noise is shown <strong>in</strong> Figure 4.18.<br />
After the lowpass filter of the lock-<strong>in</strong> amplifier, the noise is suppressed. The signal-tonoise<br />
ratio (SNR) <strong>in</strong> the system is 1:6. This result is shown <strong>in</strong> Figure 4.19. The<br />
comparison of the results between Figure 4.17(a) and Figure 4.19 reveals that the signal is<br />
recovered. However, the signal after the lock-<strong>in</strong> amplifier is <strong>in</strong>verted.<br />
Figure 4.20 shows a really high noise example (SNR=1:10). In Figure 4.20 the<br />
signal <strong>in</strong>deed disappears <strong>in</strong> the noise. Figure 4.21 shows that the result is the same as <strong>in</strong><br />
the SNR = 1:6 case. Figure 4.22 shows that <strong>in</strong> case of the SNR = 1:1, the signal is<br />
completely recovered.<br />
36
The simulated resuhs of the whole system reveal that the lock-<strong>in</strong> amplifier obta<strong>in</strong>s<br />
an excellent quality.<br />
37
n • ,m.<br />
' C:\LIS2T\TEST\T0LG1.SCH<br />
Pace/Time run: 12/18/95 01:31:52<br />
(A) Open-loop Characceriscics<br />
100<br />
Temperacure: 27.0<br />
.i<br />
50-!<br />
(685.7 47,82.76'^.)<br />
\<br />
\<br />
\<br />
v<br />
H85-747.-29.413)<br />
-50-1<br />
\<br />
•100-"<br />
\<br />
-ISO--<br />
(7'^0009M,-17<br />
v<br />
•200 + T<br />
lOmHz 1.0H2 100Hz_ lOKH:<br />
[-V;20'iogl0( V(OP.Vouc)/ V(V<strong>in</strong>) ) LllVP(OP.Vouc)<br />
Frequency<br />
---r<br />
1.0MH2<br />
i<br />
100MH2<br />
M: (8.0370, -378.503m) A2 : (10.000m. 33.965) DIFF (A) : ( 3 . 0270,-84 . 343 )<br />
Dace: December 18, 1995 Page 1 Time: 01:37:39<br />
Figure 4.4: The measurement resuh of open-loop ga<strong>in</strong><br />
marg<strong>in</strong> by us<strong>in</strong>g the cu"cuh of Figure 4 3<br />
38
• C:\LIS2T\TEST\TOLG.SCH<br />
Daca/Ttme run: 12/16/95 18:45:31<br />
100<br />
(A) Open-loop ga<strong>in</strong> wich dc bias<br />
scabilicy<br />
Temperacure: 27.0<br />
80 -<br />
T<br />
.^t<br />
60<br />
/ i \<br />
40<br />
20<br />
-2 0 -t-- r r -"-- r i<br />
l.OmHz l.OHz l.OKHz 1.OMHz 1.OGHz<br />
GT|20'ioglO{ V(HBl.Vouc)/ V(V<strong>in</strong>))<br />
Frequency<br />
J<br />
Al: (11.856K.33.246) A2: (1.0000m, -199•134u) DIFF(A) : (11.a56K.93.246) |<br />
Dace: December 16. ITTS Page 1 Time: 18:43:03<br />
Figure 4.5: The measurement result of the open-loop ga<strong>in</strong> and phase<br />
39
Figure 4.6: Op-amp with only common-mode <strong>in</strong>put vohage<br />
OP<br />
IV<strong>in</strong>_,cl<br />
t<br />
° i<br />
CJ<br />
JT<br />
vad<br />
V- H'^^-v^<br />
YP"'^^^^<br />
^^^--^11<br />
> Vcc<br />
*^, A<br />
^^ ^p<br />
Vd<br />
o<br />
Figure 4.7: Op-amp with differential-mode <strong>in</strong>put<br />
40
n^r^/Ti , ' C:\LIS2T\TEST\TCMRR.SCH<br />
Pace/Time run: 12/18/95 03:07:43 Temperacure: 27.0<br />
(A) Test oe CMRR<br />
-1.515V--<br />
I<br />
1<br />
i<br />
/<br />
/<br />
y<br />
-1.520V-^ J-<br />
^::..V(vd)<br />
jOJuV ---- —<br />
280uV<br />
o V(vc)<br />
75.2-7 •<br />
74.8-j<br />
74.4<br />
\<br />
I<br />
(478.^4u,74.J83)<br />
I /<br />
I /<br />
1/<br />
I'<br />
'<br />
SEL».<br />
74.0-f- --•<br />
.J.<br />
0_s 0.2ms 0.4ms 0.6ms<br />
L2.|20*logl0( V(0P2.VouC)/ V(OPl.Vouc))<br />
Time<br />
1<br />
0.8ms<br />
{<br />
1.0ms<br />
Al: (478.014u,74.383) A2:(0.000.-1.5194) DIFF(A) : (478.014u.75.903 )<br />
Dace: December 18, 1995 Page 1 Time: UJ:09:3 3<br />
Figure 4.8: The simulation resuh of CMRR<br />
41
,^^^,„.<br />
• C:\LIS2T\TEST\TCMRR.SCH<br />
Dace/Time run: 12/18/95 04:18:17 Temperacure: 27.0<br />
(A) CMRR oJ <strong>in</strong>scrumemcacion ampliCier<br />
113.0<br />
112.5T<br />
(1.1944u,112.067)<br />
CMRR<br />
112.0<br />
111.5-i ;<br />
I . '<br />
111.0+ r r--<br />
Os 2us 4us 6us<br />
- 20'iogl0( V(OP2.U7.Vouc)/ V(0P1.U7.Vouc))<br />
Time<br />
-- T - - - • {<br />
Dace: December 13, 1995 Page 1 Time: 04:33:32<br />
8us<br />
lOus<br />
Figure 4.9: CMRR of <strong>in</strong>strumentation amplifier<br />
42
...J<br />
...J<br />
''^i >•* t X a/'i.«^»» o» < 3 a t * X<br />
i /<br />
i<br />
i<br />
; **'; V ( \ri.r»»<br />
i<br />
i<br />
K<br />
L\<br />
o *<br />
dive<br />
\ \<br />
\<br />
\ \<br />
•%<br />
\<br />
\<br />
/<br />
/<br />
• /<br />
/<br />
/<br />
1 ^<br />
/ .<br />
/ .<br />
/<br />
/<br />
/<br />
* /<br />
• \ :<br />
\ \-<br />
• \<br />
/<br />
• \<br />
s<br />
X o Oua<br />
(<br />
o ><br />
T r * n w X « n e<br />
• O • NX.X«znrNTK«TVTX «(. . SCM<br />
o £ Xn « c x*\jirT«*r\c «k e X ort<br />
.X i. \....<br />
( X-T 4 . » X>^ U . 3 . 0 S 0 3 ) /<br />
.' \ • /<br />
. / . . \ . . / .<br />
/ \ /<br />
/ - \ /<br />
/ • \ /<br />
> V'.**''! 0 3 . ( 0 . 0 3 0 . 0 . a DO) D Z K K t O ) t ( 3 3 * * . * 3 0 \ u . — 3.1. 3 » 7 ><br />
:='-.c7 — I^<br />
An^»xxex«r<br />
. ' 1 \<br />
1 *<br />
/ - 1 \<br />
•' • 1 \<br />
\- 1 /<br />
• \ 1 /<br />
. ( Va • .laaau. -i .xo>-r<br />
3 O O ^ *<br />
Figure 4.10: The resuh analysis of <strong>in</strong>strumentation amplifier<br />
43
Dace/Time run: 12/18/95 07:39:26<br />
C:\LISZT\BF\BF1.SCH<br />
(C) The General frequency and SNR analysis<br />
1.0<br />
« V(ONOISE)/ V(INOISE)<br />
lOOnV-<br />
/ I<br />
1...J..<br />
.y\<br />
OV-^-<br />
3 V(ONOISE)<br />
lOKV-<br />
:> V(INOISE)<br />
l.O-r<br />
I ', , (|15 J30iJC^Z2.-fi.4^)_<br />
SEL>>i<br />
0-H<br />
10H2<br />
100H2<br />
[][|V.(vouc)/ V(v<strong>in</strong>l)<br />
1.0KH2<br />
Frequency<br />
/I<br />
.-.-4...<br />
10KH2<br />
CI:(9.363K,638•563m) C2: (10.023,1.061 Op) DIFF(C) : (9.353K,6 38.563m)<br />
Dace: December 18, 1995 Page 1<br />
Figure 4.11:<br />
The frequency and noise response of bandpass filter<br />
44
_,^^,_.<br />
• C:\LISZT\BF\BF.SCH<br />
Pace/Time run: 12/19/95 10:30:10 Temperacure: 27.0<br />
(A) The oucpuc response for <strong>in</strong>puc s<strong>in</strong>al is lOJcHz<br />
l.OV<br />
'i I<br />
0.5V-;' i.<br />
/':<br />
ill<br />
( ii<br />
m.<br />
uw<br />
M li<br />
°^K^i il \\ i\ \\ i<br />
-0.5V-<br />
; \^ :<br />
: I<br />
1 ;<br />
Wll<br />
: i •<br />
( :<br />
i i<br />
f;<br />
i / ;<br />
i I !<br />
11<br />
SEL»;<br />
;'<br />
-l.OV-I- ^ 1: •<br />
= V(v<strong>in</strong>l)<br />
2.0V-r-<br />
» V(vouc)<br />
; I<br />
1 ;<br />
i ':<br />
I<br />
nil<br />
i i.<br />
?11<br />
m<br />
i-i i :•<br />
.' I : • •<br />
;•<br />
ii! :<br />
i I<br />
m<br />
f ' i i<br />
II \<br />
m /Hi<br />
Ml ;•<br />
(4<br />
I i<br />
1 i<br />
I i<br />
.i I<br />
-!(<br />
\u y u i.<br />
I :<br />
if<br />
: f<br />
\ i i<br />
I I I<br />
; / \<br />
\ i i<br />
i / :<br />
(ill<br />
Ul =.<br />
Mil<br />
I -, I<br />
i\\<br />
H<br />
1<br />
i I ;<br />
i l l I<br />
hf I<br />
1 !/ i<br />
Of<br />
.-.V<br />
\':<br />
i.M i.<br />
i 1<br />
W i<br />
: i<br />
I<br />
\ : I ><br />
jU ?<br />
! : I -J<br />
i \i i:<br />
J i'<br />
; .. I<br />
', J I<br />
. - . v . J<br />
1. Ov -, ,^^ . A. . / \. • M. . / \. . / \. . / \.<br />
i<br />
Wliwi\<strong>in</strong>\miri\ir!\<br />
' v^v;<br />
V/ • •= p/ •.• i fv7 .•l': fv/ \i f\7 .1' h' • V k/ ••••V- f'/ '• v fv/ • -v<br />
-l.OV-"<br />
-2.0V-I- r--- --r<br />
Os 0.2ms 0.4ms 0.6ms<br />
5 V(voucl) • V(vouc2) • V(vouc3) .. V{vouc)<br />
Time<br />
T --T T •<br />
^<br />
0.3ms<br />
1.0ms<br />
Dace: December 19, 1995 Page 1 Time: 10:50:08<br />
Figure 4.12: The output response of <strong>in</strong>put signal frequency at 10k Hz<br />
45
» / T i. w «<br />
L . OV<br />
.^<br />
7C<br />
^ * / a a / » 3 O 7 • O 3 . 9 7<br />
;\<br />
LT\MO«X«S mv N » ^ . aOM<br />
I A> t<br />
B» . OA.-r<br />
• ^»>>yw^ m^^» «<br />
Tx"<br />
a "y . o<br />
o . sv -;. J.<br />
•i :<br />
• 1 1<br />
-O . Sv ..<br />
i f<br />
\ (<br />
• f .<br />
•<br />
\ .' '<br />
'. /<br />
• • >^ ( >^ xn X )<br />
A 0,vt^^ ...— . — - . . « . ...<br />
1 I<br />
\ :'<br />
1 /<br />
I ,*<br />
t .<br />
; ! \ i<br />
•. (<br />
u J ir._. •>;<br />
i J<br />
i (<br />
/. I .'<br />
ov .* --<br />
\<br />
/ :<br />
/ \<br />
\<br />
/ \<br />
a O r^'^ -^ — — — - — - — — — • _ . » ^ _ _ « _ _ — _ . _ « . « _ » . . . _ . . ^ - — - . » - « _ - . - • • _ _ _ ,<br />
0 « aOu,« AOw»a « ©"U"* X O 0\A«<br />
»•'•'*'••«- a a , .L » » 3 n« • OT.X3
' C:\LISZT\LF\LF.SCH<br />
Dace/Time run: 12/18/95 09:07:58<br />
(A) The oucpuc frequency response of lowpass filcer<br />
2.0--<br />
5 V(CNOISE)/ V(INOISE)<br />
40mV-.<br />
OV-•<br />
5 V(INOISE)<br />
20nV-<br />
OV-<br />
" V(ONOISE)<br />
2.0V-.<br />
SEL»<br />
QV + -<br />
10H2<br />
•:• V(VOUC)<br />
100H2<br />
(987.428,1.01"&»-<br />
l.OKHz<br />
Frequency<br />
lOKH;<br />
Dace: December 18, 1995 Page 1<br />
Figure 4.14: The frequency and noise response of lowpass filter<br />
47
Dace/Time run: 12/18/95 09:34:32<br />
• C:\LISZT\LF\LF.SCH<br />
(A)<br />
The oucpuc<br />
response<br />
of<br />
<strong>in</strong>puc<br />
frequency<br />
ac l)cH2<br />
' / \<br />
1 * ^<br />
1 t \<br />
t \<br />
' *.<br />
1 ' ^<br />
/ 1<br />
/ \<br />
If \<br />
ov-f . . \<br />
1 1<br />
= V(v<strong>in</strong>l)<br />
• /<br />
/<br />
• /<br />
• /<br />
i<br />
1<br />
\ , f<br />
t<br />
\ (<br />
» .' *<br />
* *<br />
1<br />
» /<br />
• /<br />
1 ,'<br />
* f a<br />
\ :<br />
\<br />
\ . /<br />
• •> . • f<br />
\ /<br />
"•<br />
> 1<br />
1 ,<br />
> <<br />
\..A<br />
/••<br />
\<br />
\<br />
\<br />
\<br />
\<br />
(1.5837m,873.•633m)<br />
y<br />
•<br />
; /<br />
/<br />
ov-| '•<br />
\<br />
\<br />
t<br />
\<br />
%<br />
V<br />
«<br />
t<br />
\<br />
\ , /<br />
\ /<br />
\ /<br />
/ . . \.<br />
/<br />
/<br />
/<br />
/<br />
/<br />
/<br />
. / .<br />
. . . ^ ' • \<br />
(2.9937m ,'-1.0947)<br />
\<br />
N. ' •''<br />
SEL»;<br />
.Os<br />
:: V(VOUC)<br />
1.0ms<br />
2.0ms<br />
Time<br />
3.0ms<br />
Dace: December 18, 1995 Page 1<br />
Figure 4.15: The lowpass fiher output response of <strong>in</strong>put signal frequency at<br />
Ik Hz<br />
48
n • ,'»<br />
' C:\LISZT\M0SIS\LF\TLF1 SCH<br />
Pace/Time run: 01/16/96 12:18:49 ^^r M L H .bCM Temperacure: 27.0<br />
(A) TLFl.DAT<br />
l.OV.<br />
0.5V-;;<br />
••<br />
( :<br />
:' i<br />
I I<br />
I :<br />
I<br />
! i<br />
I i<br />
i<br />
i<br />
i<br />
I .<br />
; I<br />
/1<br />
I \<br />
I i<br />
! i<br />
i !<br />
OV<br />
! i<br />
f<br />
i<br />
I<br />
i<br />
il-<br />
-O.SV--<br />
' I !<br />
SEL>>i<br />
-l.OV-^<br />
•> v(v<strong>in</strong>l: + )<br />
40mV-<br />
1 i'<br />
; i<br />
i i<br />
• I<br />
I i.<br />
.: j.<br />
i :<br />
: i'<br />
I i.<br />
'• t<br />
i (<br />
! I<br />
I<br />
I<br />
i I- 1 i:<br />
I<br />
1 : .<br />
'•<br />
1<br />
1 .<br />
. '<br />
1 : -<br />
. ^- - - . .<br />
: i<br />
\ j<br />
I<br />
-^*— . -<br />
I<br />
• : *<br />
: ; 1<br />
\ i;<br />
: * 1<br />
I . 1<br />
\!:<br />
_ .i'_ J<br />
,r"*^^_<br />
OV -y.JW***'^<br />
\<br />
•40mV.<br />
\<br />
-80mV-<br />
\<br />
\<br />
\<br />
•120mV + 1<br />
Os<br />
0.2ms<br />
e V(Vouc)<br />
0.4ms<br />
Time<br />
- - -I<br />
0 .6ms<br />
., ,<br />
0.8ms 1.0ms<br />
Dace: Januar/ 16, 1996 Page 1 Ti.me: 12:26:5:<br />
Figure 4.16: The lowpass fiher output response of <strong>in</strong>put signal frequency at 10k Hz<br />
49
0« c » /TX>^»<br />
»-v^». xa^aa^»^ o« . ?^ >^f *^'^^x°"^gvxui.TN MOUT . act.<br />
X.OV-; ., .<br />
' tt sA^ ^ • a T . o<br />
>~\ ^-;. , ---<br />
/ N 7" "/^\ -:<br />
SSI.....:<br />
- X . o\r -«<br />
X . oyy — — -,*—<br />
VivlT."!"" '*" ~ \..'.<br />
'/"<br />
' X . OV<br />
3 . o\r<br />
.v^.<br />
•.<br />
^<br />
'A -,'><br />
r \<br />
•'•%<br />
X . OV ..<br />
1 »<br />
ovr -*.^ V.<br />
O m<br />
" V(Vouc)<br />
V -^ ^ VI.<br />
3 OOui<br />
o«c«i o—... :<br />
• X . OV - ^\..c -.<br />
- V Ivxn)<br />
x.
Pace/Time run: 12/18/95 10:16:07<br />
• C:\LISZT\MULT\MULT.SCH<br />
(A) DC cransfer characceriscics of<br />
5.0V T-<br />
mulciplier<br />
• \<br />
/<br />
\<br />
\<br />
\<br />
\<br />
/<br />
/<br />
\<br />
X<br />
\<br />
OV<br />
\ \<br />
w /.<br />
. / \<br />
/ \<br />
/ \<br />
/ . \<br />
\<br />
\<br />
/<br />
/<br />
-5.0V + -«---<br />
-6..0V<br />
-4.0V<br />
: : • » : . * V(VOUC)<br />
-2.0V<br />
OV<br />
V V8<br />
2.0V<br />
DaCe: December 18, 1995<br />
Page 1<br />
Figure 4.18: The DC transfer characteristics of multiplier<br />
51
n^ra/Tf,^ «, * C:\LISZT\MOSIS\MULT\MULT.SCH<br />
Dace/Time run: 01/16/96 10:14:10<br />
Temperacure: 27.0<br />
SEL»<br />
0-<br />
•> V(Vouc)/(V(V<strong>in</strong>)'V(Vref) )<br />
2. OV -cm<br />
1.5V-,<br />
l.OV-<br />
0.5V<br />
OV-f-<br />
10H2<br />
•^ V(VOUC)<br />
1.0KH2<br />
Frequency<br />
100KH2<br />
10MH2<br />
Dace: January 16, 1996 Page 1 Time: 10:16:44<br />
Figure 4.19: Ac characteristics of multiplier<br />
52
c<br />
J2<br />
3<br />
O<br />
E<br />
Urn<br />
"a.<br />
E<br />
ea<br />
-a<br />
c<br />
13<br />
c<br />
cp<br />
'v5<br />
"3<br />
Q.<br />
c<br />
<<br />
o<br />
fN<br />
'^'<br />
(U<br />
u><br />
3<br />
SO<br />
c<br />
><br />
><br />
><br />
£<br />
><br />
o<br />
53
*o<br />
c<br />
-a<br />
c<br />
E<br />
<br />
><br />
e<br />
o<br />
><br />
o<br />
u<br />
10<br />
o<br />
CO<br />
54
£<br />
I<br />
(J<br />
S,<br />
tz<br />
c<br />
><br />
o<br />
k.<br />
3<br />
CO<br />
iZ<br />
55
CO<br />
S<br />
o<br />
CM<br />
ca<br />
B<br />
vo<br />
ca<br />
e<br />
(N<br />
a<br />
B<br />
u<br />
u<br />
3<br />
0<br />
a<br />
><br />
f-<br />
><br />
a<br />
o<br />
o<br />
><br />
o<br />
A<br />
A<br />
•J<br />
u<br />
CO<br />
CO<br />
o<br />
><br />
c<br />
o<br />
a:<br />
z.<br />
00<br />
'o<br />
c<br />
CO<br />
IS<br />
c<br />
"3<br />
c<br />
CN<br />
'^'<br />
m<br />
<br />
o<br />
-"^<br />
U<br />
3<br />
CO<br />
57
c/o<br />
CO<br />
3<br />
*o<br />
c<br />
-o<br />
c<br />
cd<br />
U<br />
no<br />
ed<br />
cd<br />
C<br />
CO<br />
•55<br />
><br />
o<br />
CN<br />
u.<br />
3<br />
CO<br />
IZ<br />
58
CHAPTER 5<br />
SUMMARY<br />
From the previous descussion, h is seen that every part of this system works well<br />
and meets the requirement. The advantages of this <strong>in</strong>tegrated lock-<strong>in</strong> amphfier are: the<br />
<strong>in</strong>strumentation amplifier has high <strong>in</strong>put impedance and high CMRR, and the output signal<br />
has good symmetric characteristics because the active resistor can provide a l<strong>in</strong>ear range<br />
of about 3V; the muhipher works m the high hnear range from -2V to +2V. The<br />
simulation resuhs of the whole system show that this lock-<strong>in</strong> amplifier can obtam the high<br />
performance even with the SNR =1:10.<br />
For most commercial types, a fiih lock-<strong>in</strong> amplifier would <strong>in</strong>clude: (1) a tuned<br />
amplifier, called the signal amphfier, which is comb<strong>in</strong>ed with ga<strong>in</strong> adjustable amplifiers and<br />
variable filters; (2) a phase shifter to br<strong>in</strong>g the reference signal (i.e., the modulation) <strong>in</strong>to<br />
the optimum phase relation with the signal; (3) an <strong>in</strong>ternal voltage controlled oscillator;<br />
(4) a synchronous detector which is comb<strong>in</strong>ed with a muhipher and a lowpass filter with<br />
adjustable time constant. On comparison to some commercial products, the lock-<strong>in</strong> system<br />
<strong>in</strong> this thesis is an implementation of a basic type of the lock-<strong>in</strong> amplifier which is<br />
designed for fitt<strong>in</strong>g certa<strong>in</strong> requirements.<br />
To be of any practically commercial type, a lock-<strong>in</strong> amplifier must be able to give a<br />
fiih-scale response to a synchronous signal and yet be able to accommodate residual noise<br />
fluctuation due to noise transmitted by the low-pass filter. Figure 5.1 shows an extended<br />
59
version of the one shown <strong>in</strong> Figure 2.3 which can improve the basic type of lock-<strong>in</strong><br />
amplifier.<br />
For practical reasons, a square wave is used as the reference of the multiplier.<br />
Therefore, a two-phase lock-m amphfier as shown <strong>in</strong> Figure 5.2 is used to suppress<br />
harmonic responses, but the behavior of the output signal is similar to the results produced<br />
when multiplied by a s<strong>in</strong>ewave.<br />
Due to it's senshivity, the lock-<strong>in</strong> amplifier has been used widely for retriev<strong>in</strong>g<br />
signals from noise <strong>in</strong> the modem technology. Today, VLSI technology has been<br />
develop<strong>in</strong>g rapidly, hs participation <strong>in</strong> the lock-<strong>in</strong> amphfier design can extend the<br />
application of lock-<strong>in</strong> amplifiers, especially m the communication and image process<strong>in</strong>g<br />
fields.<br />
60
signal<br />
<strong>in</strong>put<br />
> -<br />
decade<br />
multiplier<br />
y<br />
••<br />
option<br />
filter<br />
»<br />
sensitivity<br />
band-pass<br />
filter<br />
1<br />
y<br />
1:2:5<br />
multiplier -<br />
^N. simal<br />
v^top.s.d<br />
signal<br />
phase-sensitive<br />
detector <strong>in</strong>puts<br />
output<br />
reference<br />
reference •<br />
<strong>in</strong>put<br />
logger<br />
evt<br />
<strong>in</strong>t<br />
2f<br />
O 90°. 180°<br />
270°<br />
squarewave<br />
generator<br />
reference<br />
to p.s.d.<br />
<strong>in</strong>ternal ^ \<br />
oscillator V._x^<br />
777<br />
oscillator<br />
output<br />
2f<br />
variable<br />
phase<br />
quadrants<br />
The reference channel <strong>in</strong>corporates an optional <strong>in</strong>ternal oscillator and a<br />
frequency double to permit phase-sensitive detection at twice the applied<br />
reference frequenc>'<br />
Figure 5.1; Block diagram of an extended lock-<strong>in</strong> amplifier<br />
61
signal<br />
<strong>in</strong>put<br />
signal channel<br />
REFERENCES<br />
[1] M. L. Meade, <strong>Lock</strong>-<strong>in</strong> <strong>Amplifiers</strong>: Pr<strong>in</strong>ciples and Applications, Peter Peregr<strong>in</strong>us Ltd<br />
London, UK 1983. • s .<br />
[2] Richard Wolfson, 'The lock-<strong>in</strong> amplifier: A student experiment,'Mm. J. Phys., Vol<br />
59, No. 6, June 1991.<br />
[3] Philhp E. Allen, Edgar Sanchez-S<strong>in</strong>encio, Switched Capacitor Circuits, Van<br />
Nostrand Re<strong>in</strong>hold Company, New York.<br />
[4] P. V. Ananda Mohan, V. Ramachandran, M. N. S. Swamy, Switched Capacitor<br />
Filters - Theory, analysis and design. Prentice Hall, UK 1995.<br />
[5] Randall L. Geiger, Phihip E. Allen, Noel R. Strader, VTSI Design Techniques For<br />
Analog and Digital Circuits, McGraw-Hill, New York 1990.<br />
[6] Mohammed Ismail, Terri Fiez, Analog VLSI Signal atid Information Process<strong>in</strong>g,<br />
McGraw-Hill, New York 1994.<br />
[7] John H. Scofield, 'Trequency-doma<strong>in</strong> description of a lock-<strong>in</strong> ampIifier,'M/w. J.<br />
Am. J. Phys., Vol. 62, No. 2, February 1994.<br />
[8] Andreas Mandehs, "Signal-to-noise ratio <strong>in</strong> lock-<strong>in</strong> amplifier synchronous detection:<br />
A generalized communications systems approach with apphcations to frequency,time,<br />
and hybrid (rate w<strong>in</strong>dow) photothermal measurements," Rev. Scl. Instrum., Vol. 65,<br />
No.ll, November 1994.<br />
[9] Murah Kittappa, "Variable capachive transducer", M.S. Thesis, Electrical<br />
Eng<strong>in</strong>eer<strong>in</strong>g, Texas Tech U., December, 1992.<br />
63
APPENDIX A<br />
THE OPERATION OF THE OP-AMPS<br />
A.l Introduction<br />
The op-amps which are used <strong>in</strong> this lock-<strong>in</strong> amplifier can be separated <strong>in</strong>to two<br />
parts: a differential mput amplifier stage and a output stage.<br />
The differential <strong>in</strong>put amplifier stage shown <strong>in</strong> Chapter 3 is called a folded cascode<br />
amplifier, which <strong>in</strong>cludes a differential <strong>in</strong>put amplifier stage and a differential-to-s<strong>in</strong>gle<br />
ended conversion stage. The output stage is called a class AB push-pull output stage.<br />
The advantages and disadvantages of the circuits have been mentioned <strong>in</strong> Chapter 3. The<br />
basic operation of the differential <strong>in</strong>put amplifier stage will be discussed m A-2, and the<br />
basic operation of the class AB push puU output stage wiU be discussed <strong>in</strong> A-3.<br />
A.2 The basic operation of folded cascode amplifiers<br />
In Figure D.7, the dc current lo, <strong>in</strong> Ml 1, is the source of Ml and M2. S<strong>in</strong>ce the<br />
gate vohage of Ml 1 is a fixed bias, it operates as a simple current source. The matched<br />
sources, M5 and M6, provide current l' to node A and node B, hence M3 and M4 will<br />
carry equal currents<br />
I = r-IJ2.<br />
(A.l)<br />
A differential <strong>in</strong>put vohage AV<strong>in</strong>- = AVi„ / 2, apphed to the gates of Ml and M2, will offset<br />
their dra<strong>in</strong> current to tgmiAV/ 2. S<strong>in</strong>ce the current I' of M5 and M6 rema<strong>in</strong>s constant, I<br />
of M3 and M4 will change by ±AIo. The mirror ( M7 to MIO ) current changes <strong>in</strong> M7 to<br />
64
M9 and M8 to MIO. Hence, the output vohage <strong>in</strong>crement is g„„RoAV^ where Ro is the<br />
output impedance of the node at Vo, and M7 and M9 are work<strong>in</strong>g as the current s<strong>in</strong>k<br />
shown <strong>in</strong> Figure A. 1.<br />
Figure A. 1: Equivalent circuit of Ro<br />
This circuk ( Figure A.1) can be modeled by a small-signal circuit of Figure A.2.<br />
Correspond<strong>in</strong>gly, the output impedance can be written as:<br />
Ro = AV / AI = rds [1+ ( &n+gmb+gds)R) = rds(l+gjl)<br />
(A.2)<br />
If R is replaced by a transistor M2, then<br />
Ro = AV / AI = rdsl [1+ ( gml +gmbl+gdsl)rds2) = rdsl(l+gn,irds2).<br />
(A.3)<br />
65
gmVgs<br />
G mbs^'bs<br />
© © rds SH*"<br />
-f •-<br />
V<br />
R<br />
Figure A.2: Equivalent circuit of Figure A. 1<br />
From the smah signal model of a folded cascode circuit, as shown <strong>in</strong> Figure A.3,<br />
the open loop ga<strong>in</strong> Ao can be expressed as:<br />
Ao= Vo / Vid = gmir'out =<br />
gml gm8 ^dsS TdslO<br />
(A.4)<br />
where r'outwas given by the simplification of Ro.<br />
After comb<strong>in</strong><strong>in</strong>g elements <strong>in</strong> the small signal model of Figure A.4, the output<br />
resistance of the folded cascode circuit can be expressed as:<br />
rout= T'out II rds4 [l+(l+gm4 rds4)rd^rds4/(rds2+rds4}<br />
= ( gmsrdssrdsio ) II [(gm4 rd^)(rds2 II rds4)]- (A.5)<br />
From the expression of equation (A. 5), it is easy to f<strong>in</strong>d that the folded cascode circuit is a<br />
high output impedance circuit.<br />
The frequency performance of the CMOS folded cascode op amplifier can be<br />
simply expressed as<br />
66
VO(S)A^ID(S) = AoOi/ (S+coi) = GB / S+oi<br />
(A.6)<br />
where coi is the dommant pole of the chcuit is given by coi = 1 / RO«.CL.<br />
The operation of this output circuit, shown <strong>in</strong> Figure 3.8, is determ<strong>in</strong>ed by the bias<br />
vohage <strong>in</strong> the gates of Mo3 and Mo4, which decide the bias currents <strong>in</strong> the output devices<br />
Mo6 and Mo8. When the mput vohage Vi„ <strong>in</strong>creases, the current of Mol <strong>in</strong>creases, and<br />
Mo2 decreases. These devices mirror the output current so that the current of device<br />
Qm1('v1d/2')<br />
(t)<br />
1/Qm3<br />
Vos3<br />
(±)<br />
gm3vcs3 r'ln<br />
* *<br />
(t)<br />
timHv\6/7) 1 /qrri4<br />
rds4<br />
1 •-AMr-^<br />
i-i.<br />
V(3s4<br />
grrsJvgs.^<br />
5) I (D i'^^<br />
r'&ut<br />
Figure A.3: The small signal model of folded cascode amphfier<br />
rds4<br />
• '<br />
>'ds2 > •'ds6 Vqs-4<br />
qrn4vqs.4<br />
i-'OUi<br />
Vo<br />
l_±.<br />
Figure A.4: The equivalent output resistance circuh of folded cascode amplifier<br />
67
Mo8 <strong>in</strong>creases which provides the s<strong>in</strong>k<strong>in</strong>g capability for the output current. For the same<br />
reasons, when V<strong>in</strong> decreases, Mo6 wiU source the output current. The output signal sw<strong>in</strong>g<br />
is limited to with<strong>in</strong> a VT value of Vdd and Vss.<br />
The bandwidth is given as<br />
oi = co-3dB = ( gout+ GL) / ( COUI+CL) - 1 / ( RLCL ).<br />
(A-7)<br />
68
APPENDIX B<br />
THE BASIC CONCEPT OF THE ACTIVE RESISTORS<br />
Bl Introduction<br />
The ma<strong>in</strong> function of an active resistor is to improve the valid voltage range of the<br />
hnear region. The follow<strong>in</strong>g section shows the analysis of a basic active resistor, the<br />
results of the basic active resistor and the improved active resistor used <strong>in</strong> this thesis.<br />
From Figure 3.3, h is easy to obta<strong>in</strong>:<br />
B.2 The basic deduction<br />
IDI = Kx( Wi / Li ) [ ( VGSI - VTI ) VDSI - ( V'DSI / 2 ) ]<br />
= Kx( Wi/Li) [ ( VDSI + Vc- VTI ) VDSI- ( V'DSI / 2 ) ]<br />
= KN(WI/LI)[(V'DSI/2) + (VC-VTI) VDSI] (B.l)<br />
and<br />
ID2 = KN- ( W2 / L2 ) [ ( VGS2 - VT2 ) VDS2 " ( V'DS2 / 2 ) ]<br />
= K'N ( W2 / L2) [ (VC - VT2 ) VDS2 - ( V'DS2 / 2 ) ] (B.2)<br />
S<strong>in</strong>ce VDSI = VDS2 = V, so<br />
I = IDI + ID2 = 2K NW / L ( VC - VT ) VDS<br />
(B.3)<br />
and<br />
r, = 5VDs/ei=l/[2KN.(W/L)(Vc-VT)] (B4)<br />
Because VDS should be less than Vos - VTIO ensure that the transistors are work<strong>in</strong>g <strong>in</strong> the<br />
ohmic region,<br />
69
V
Date/Time run: 01/l6/c,fi .^,^._^\^^-^^^^^'^\^0SlS\R\7P..SCH<br />
(A) V-I<br />
200UA-,<br />
remperature: 27.0<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
• \<br />
\<br />
\<br />
OA.<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
\<br />
lOOuA-<br />
-lOOuA-<br />
\<br />
\<br />
\<br />
-200aA-l<br />
-2.0V<br />
I(V)<br />
-l.OV<br />
-o.ov<br />
V V<br />
l.OV<br />
\<br />
\<br />
^,<br />
2.0V<br />
Date: January 16, 1996<br />
Page 1 .me: 11:24:42<br />
Figure B.2 The simulation resuh of Figure D.6.<br />
71
APPENDIX C<br />
THE FORMULA REDUCTION OF THE INSTRUMENTATION AMPLIFIER<br />
C.l Introduction<br />
The <strong>in</strong>strumentation amphfier provides the high mput impedance and the high<br />
common rejection necessary for the lock-<strong>in</strong> amphfier. A popular 3 op-amp configuration<br />
is used <strong>in</strong> this circuh. The analysis of the circmt is shown m the follow<strong>in</strong>g section.<br />
C.2 The output voltage of the <strong>in</strong>strumentation amplifier<br />
From Figure 3.5, h is obta<strong>in</strong>ed as follow<strong>in</strong>g:<br />
node a:<br />
(Vc-Vb)/R2 + (Va-Vb)/Rl = 0,<br />
Vb(l/Ri + l/R2) = (Vc/R2) + (V3/Ri)<br />
(C.l)<br />
node b:<br />
(Vb-Vd)/R2 + (Vb-Va)/Ri = 0,<br />
Vb(l/Ri + 1/R2) = ( Va/Ri) + (Vd/R2)<br />
(C.2)<br />
node c:<br />
(Vc-Vf)/R3 + (Vc-Va)/R2 = 0,<br />
Vc(l/R2+1/R3) = ( Va/R2) + (Vf/R3)<br />
(C.3)<br />
node e:<br />
Ve /R4 + (Ve-Vd)/R3 = 0,<br />
Ve(l/R3+1/R4)= Vd/R3<br />
(^^^<br />
72
node f<br />
(Vf-Vo)/R4 + (Vf-V,)/R3 = 0,<br />
Vf(l/R3+l/IU) = ( Vo/R4) + (Ve/R3)<br />
(C.5)<br />
S<strong>in</strong>ce the ga<strong>in</strong>s of the op amplifiers are very high, Vb = V2, V, = Vi, Vc = Vf can be<br />
assumed. Therefore, from node f, Vf is shown as<br />
Vf={R3/(R3+R4)}Vo+{R4/(R3+R4)} Vc = Ve,<br />
(C.6)<br />
and from node e, Ve is shown as<br />
Ve={R4/(R3 + R4)}Vd.<br />
(C.7)<br />
Equation C.8 can be obta<strong>in</strong>ed by equat<strong>in</strong>g two expressions equations. C.6 and C.7,<br />
Vd= (R3/R4)Vo + Vc.<br />
(C.8)<br />
By putt<strong>in</strong>g equation. C.8 <strong>in</strong> node b, equation C.9 is obta<strong>in</strong>ed.<br />
Ve={(Rl+R2)/Rl}V2-(R2/Rl)(Vi-R3/R4)Vo.<br />
(C.9)<br />
From node a:<br />
Vc={(Ri + R2)/Ri}Vi-(R2/Ri)V2.<br />
(CIO)<br />
F<strong>in</strong>ally, equation C.l 1 is shown below.<br />
Vo= {l+(2R2/Rl)}(R4/R3)(V2-Vi).<br />
(C.ll)<br />
73
APPENDIX D<br />
THE SUBCIRCUITS OF THE LOCK-IN AMPLIFIER<br />
74
<br />
<br />
Figure D. 1: Instrumentation amplifier<br />
75
* m<br />
u<br />
CO<br />
•o<br />
c<br />
02<br />
Q<br />
Figure D.3: Phase shifter<br />
77
3<br />
d<br />
78
- ao a.<br />
z<br />
^tr-<br />
3r><br />
-Ai^<br />
ao<br />
c«<br />
o<br />
2 -<br />
O<br />
3<br />
.-^dr<br />
3Q .<br />
IN •'<br />
Ml«»^<br />
-^l=^-^^<br />
a<br />
: ^<br />
o<br />
3<br />
Q<br />
IZ<br />
2 " T '<br />
_J \^<br />
" g • 1^—I<br />
o<br />
2 - •-ilf^^<br />
^^r-<br />
2 o ><br />
o<br />
L^<br />
a<br />
o<br />
1<br />
-—\r^<br />
3^<br />
a?<br />
5^<br />
3 ^<br />
••-*-•—^
Y3<br />
MsdP<br />
^MP<br />
M>dr<br />
IVfisI<br />
IVb^<br />
Biaj'fi<br />
i—Hi^<br />
Ml<br />
Mirir<br />
Rr>-<br />
M><br />
Ml|_<br />
^<br />
i«s
iQ—"<br />
3<br />
JD<br />
3<br />
O.<br />
"3<br />
o<br />
c/]<br />
cd<br />
3<br />
I<br />
j=<br />
c/)<br />
3<br />
0.<br />
k.<br />
O<br />
Q<br />
3<br />
ao<br />
IZ<br />
81
liT4.<br />
"cnir<br />
23.<br />
o _ t *<br />
* 1 3<br />
juO-^^tu<br />
117 IT<br />
.32 3 T*T ~<br />
3<br />
£<br />
itr<br />
« i<br />
4- '<br />
\ D • ^ ar-i<br />
« I a<br />
s<br />
%<br />
o<br />
a<br />
' 13<br />
%<br />
o<br />
a<br />
-^ -0<br />
lir<br />
JfL<br />
-lii<br />
I<br />
a<br />
JTU.<br />
JQ^"<br />
3<br />
3<br />
O<br />
a<br />
b><br />
o<br />
o<br />
3<br />
O<br />
C/5<br />
•n r?<br />
E<br />
C
APPENDIX E<br />
OUTPUT PLOTS<br />
83
• C:\LISZT\TEST\TOLG.SCH<br />
Dace/Time run: 12/16/95 18:42:41<br />
1.6mV<br />
(A) The dc feedback<br />
Temperature: 27.0<br />
1.2mV<br />
0.8mV<br />
1.00004mV^<br />
l.OOOOOmV-S<br />
SEL»<br />
0.4mV<br />
n V(V<strong>in</strong>)<br />
1.00008mV-r-<br />
0.99996mV-<br />
0.99 992mV + T---<br />
Os<br />
100ms<br />
n V(HBl.Vouc)<br />
— -1 —<br />
200ms 300ms 400ms<br />
Time<br />
H<br />
500ms<br />
Dace: December 16, 1995<br />
Page 1 .me: 18:45:13<br />
Figure E. 1: The measure result od the dc feedback<br />
84
Date/Time run: 12/18/95 02:2'o:V9^^'^^'^^'^^^'^^^^^-^^"<br />
Temperacure: 27.0<br />
(A) The open-loop cransfer<br />
6.OV-r-------:..r. .....'. ^ ^^^^^ ^"^ °"^P"^ sw<strong>in</strong>g limices<br />
4.0V-i<br />
(15.p00m.4.5686)<br />
2.0V-;<br />
OV<br />
(0.000,57.152u)<br />
i/<br />
f'<br />
«che open-loop<br />
I<br />
cansfer curve<br />
•2.0V-.<br />
-4.0V-I<br />
I<br />
(-15.S00m,-4.8224)<br />
•6.0V-f<br />
-5.0V<br />
[£|V(OP.VOUC)<br />
I<br />
OV<br />
V V<strong>in</strong><br />
^<br />
5.0V<br />
M: (-20.OOOm,-4.8328) A2 : (1 • 965C , 4 . 6823 ) DIFF1.^) : (-1. 9850,-9 . 515;<br />
Dace: December 18, 1955 Page 1 Time: 02:25:38<br />
Figure E.2: The open-loop transfer curve and output sw<strong>in</strong>g limits<br />
85
Figure E.3: The simulation method of slew rate and sett<strong>in</strong>g time<br />
86
* C:\LISZT\NOP\TEST\TSL.SCH<br />
Dace/Time run: 12/18/95 03:22:49 Temperacure: 27.0<br />
2 . OV - •<br />
(A) Slew race c<strong>in</strong>d secc<strong>in</strong>g<br />
cime<br />
OV<br />
-2.0V-'-<br />
= V{V<strong>in</strong>)<br />
(6.2833U,2.0056)<br />
2. OV T.<br />
I'.<br />
/'X.<br />
l.OV-<br />
-l.OV-<br />
4.0V-<br />
.-SR<br />
1 ;<br />
OV-<br />
• \<br />
(1.6833 u,-2.0076)<br />
-2 . OV-• ; , 1 •'y'sr-r .<br />
+ SR<br />
(5.0379U,-1-9532)<br />
-^!<br />
Secc<strong>in</strong>g<br />
time<br />
SEL».<br />
-4.0V-t-<br />
--•--<br />
Os<br />
2us<br />
5 V(C4:2)<br />
Dace: December 18, 1995<br />
4us<br />
Page 1<br />
6us<br />
Time<br />
— r -<br />
8us<br />
lOus<br />
^<br />
12us<br />
Time: 03:41:45<br />
Figure E.4: Simulation result of slew rate and settmg rate<br />
87
PERMISSION TO COPY<br />
In present<strong>in</strong>g this thesis <strong>in</strong> partial fulfillment of the<br />
requirements for a master's degree at Texas Tech University or<br />
Texas Tech University Health Sciences Center. I agree that the Library<br />
and my major department shall make it freely available for research<br />
purposes.<br />
Permission to copy this thesis for scholarly purposes may<br />
be granted by the Director of the Library or my major professor.<br />
It<br />
is understood that any copy<strong>in</strong>g or publication of this thesis for<br />
f<strong>in</strong>ancial ga<strong>in</strong> shall not be allowed without my further written<br />
permission and that any user may be liable for copyright <strong>in</strong>fr<strong>in</strong>gement.<br />
Agree<br />
(Permission is granted.)<br />
^le.:L Co A^-_i £\ c^G<br />
student's Signature<br />
Date<br />
Disagree<br />
(Permission is not granted.)<br />
Student's Signature<br />
Date