23.06.2014 Views

Pharmacologic treatment of acute renal failure in sepsis - SASSiT

Pharmacologic treatment of acute renal failure in sepsis - SASSiT

Pharmacologic treatment of acute renal failure in sepsis - SASSiT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Pharmacologic</strong> <strong>treatment</strong> <strong>of</strong> <strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> <strong>sepsis</strong><br />

An S. De Vriese a and Marc Bourgeois b<br />

The pathophysiology <strong>of</strong> <strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> <strong>sepsis</strong> is complex<br />

and <strong>in</strong>cludes <strong>in</strong>tra<strong>renal</strong> vasoconstriction, <strong>in</strong>filtration <strong>of</strong><br />

<strong>in</strong>flammatory cells <strong>in</strong> the <strong>renal</strong> parenchyma, <strong>in</strong>traglomerular<br />

thrombosis, and obstruction <strong>of</strong> tubuli with necrotic cells and<br />

debris. Attempts to <strong>in</strong>terfere pharmacologically with these<br />

dysfunctional pathways, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>hibition <strong>of</strong> <strong>in</strong>flammatory<br />

mediators, improvement <strong>of</strong> <strong>renal</strong> hemodynamics by amplify<strong>in</strong>g<br />

vasodilator mechanisms and block<strong>in</strong>g vasoconstrictor<br />

mechanisms, and adm<strong>in</strong>istration <strong>of</strong> growth factors to<br />

accelerate <strong>renal</strong> recovery, have yielded disappo<strong>in</strong>t<strong>in</strong>g results <strong>in</strong><br />

cl<strong>in</strong>ical trials. Interruption <strong>of</strong> leukocyte recruitment is a potential<br />

promis<strong>in</strong>g approach <strong>in</strong> the <strong>treatment</strong> <strong>of</strong> septic <strong>acute</strong> <strong>renal</strong><br />

<strong>failure</strong>, but no data <strong>in</strong> humans are presently available. Activated<br />

prote<strong>in</strong> C and steroid replacement therapy have been shown<br />

to reduce mortality <strong>in</strong> patients with <strong>sepsis</strong> and are now<br />

accepted adjunctive <strong>treatment</strong> options for <strong>sepsis</strong> <strong>in</strong> general.<br />

Keywords<br />

Acute <strong>renal</strong> <strong>failure</strong>, <strong>sepsis</strong><br />

Curr Op<strong>in</strong> Crit Care 9:474–480. © 2003 Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s.<br />

a Renal Unit and b Department <strong>of</strong> Critical Care Medic<strong>in</strong>e, AZ S<strong>in</strong>t-Jan AV, Brugge,<br />

Belgium<br />

Correspondence to An De Vriese, Renal Unit, AZ S<strong>in</strong>t-Jan AV, Ruddershove, 10<br />

B-8000, Brugge, Belgium<br />

Tel: +32 50452202; fax: +32 50452299; e-mail: an.devriese@azbrugge.be<br />

Current Op<strong>in</strong>ion <strong>in</strong> Critical Care 2003, 9:474–480<br />

Abbreviations<br />

ANP atrial natriuretic peptide<br />

ARF <strong>acute</strong> <strong>renal</strong> <strong>failure</strong><br />

ET endothel<strong>in</strong><br />

GFR glomerular filtration rate<br />

IGF <strong>in</strong>sul<strong>in</strong>-like growth factor<br />

iNOS <strong>in</strong>ducible nitric oxide synthase<br />

L-NAME N-nitro-L-arg<strong>in</strong><strong>in</strong>e methyl ester<br />

NOS nitric oxide synthase<br />

PAF platelet-activat<strong>in</strong>g factor<br />

RBF <strong>renal</strong> blood flow<br />

TFPI tissue factor pathway <strong>in</strong>hibitor<br />

TNF tumor necrosis factor<br />

© 2003 Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s<br />

1070-5295<br />

474<br />

Introduction<br />

The development <strong>of</strong> <strong>acute</strong> <strong>renal</strong> <strong>failure</strong> (ARF) is common<br />

<strong>in</strong> patients with <strong>sepsis</strong> and carries an om<strong>in</strong>ous prognosis.<br />

Sepsis is a complex cl<strong>in</strong>ical syndrome characterized<br />

by widespread activation <strong>of</strong> the <strong>in</strong>flammatory,<br />

coagulation, and fibr<strong>in</strong>olytic cascades. As <strong>sepsis</strong> persists,<br />

an anti-<strong>in</strong>flammatory response is mounted, result<strong>in</strong>g <strong>in</strong><br />

immune paralysis [1]. A broad array <strong>of</strong> humoral mediators<br />

are released <strong>in</strong> the systemic circulation, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>flammatory<br />

and anti-<strong>in</strong>flammatory cytok<strong>in</strong>es, lipid mediators<br />

such as platelet-activat<strong>in</strong>g factor (PAF) and arachidonic<br />

acid metabolites, endothel<strong>in</strong> (ET)-1, and complement<br />

components [1]. Systemic hypotension, result<strong>in</strong>g <strong>in</strong> <strong>renal</strong><br />

hypoperfusion and hypoxia, is a contribut<strong>in</strong>g factor—but<br />

certa<strong>in</strong>ly not the sole factor—<strong>in</strong> septic ARF. Intra<strong>renal</strong><br />

vasoconstriction, caused by an imbalance between vasodilatory<br />

and vasoconstrictive substances, results <strong>in</strong> a decl<strong>in</strong>e<br />

<strong>in</strong> <strong>renal</strong> blood flow (RBF) and abnormalities <strong>in</strong><br />

<strong>in</strong>tra<strong>renal</strong> blood flow distribution that predom<strong>in</strong>antly affect<br />

the outer medulla. Inflammatory cells <strong>in</strong>filtrate the<br />

kidney, caus<strong>in</strong>g local damage by release <strong>of</strong> superoxidederived<br />

free radicals and lysosomal enzymes and further<br />

production <strong>of</strong> <strong>in</strong>flammatory cytok<strong>in</strong>es. Leukocyteendothelial<br />

<strong>in</strong>teractions result <strong>in</strong> physical congestion <strong>of</strong><br />

the medullary vasculature and a further decreased regional<br />

blood flow. Dysfunction <strong>of</strong> the coagulation and<br />

fibr<strong>in</strong>olytic cascades contributes to <strong>in</strong>traglomerular<br />

thrombosis. Tubular <strong>in</strong>jury leads to cell detachment with<br />

tubular obstruction and backleak. Recovery from ARF<br />

requires clearance <strong>of</strong> necrotic tubular cells and debris<br />

and regeneration and repair <strong>of</strong> the nonfatally <strong>in</strong>jured<br />

cells.<br />

This article discusses attempts to <strong>in</strong>terfere pharmacologically<br />

with each <strong>of</strong> these dysfunctional pathways to<br />

improve the course <strong>of</strong> septic ARF, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>hibition<br />

<strong>of</strong> <strong>in</strong>flammatory mediators, improvement <strong>of</strong> <strong>renal</strong> hemodynamics<br />

by amplify<strong>in</strong>g vasodilator mechanisms and<br />

block<strong>in</strong>g vasoconstrictor mechanisms, <strong>in</strong>terruption <strong>of</strong><br />

leukocyte <strong>in</strong>filtration, <strong>in</strong>hibition <strong>of</strong> the coagulation cascade,<br />

and adm<strong>in</strong>istration <strong>of</strong> growth factors to accelerate<br />

<strong>renal</strong> recovery. The discussion <strong>of</strong> supportive <strong>treatment</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g fluid management, use <strong>of</strong> vasopressors and diuretics,<br />

and dialytic <strong>treatment</strong>, falls beyond the scope<br />

and space limitations <strong>of</strong> this article but has recently been<br />

discussed elsewhere [2].<br />

Antitumor necrosis factor- therapy<br />

Antibodies aga<strong>in</strong>st tumor necrosis factor (TNF) protect<br />

aga<strong>in</strong>st morbidity and mortality from both Gram-positive<br />

and Gram-negative <strong>sepsis</strong> <strong>in</strong> diverse animal models [3].


<strong>Pharmacologic</strong> <strong>treatment</strong> <strong>of</strong> <strong>renal</strong> <strong>failure</strong> De Vriese and Bourgeois 475<br />

Specifically for the kidney, passive immunization to<br />

TNF- prevented <strong>renal</strong> cortical damage dur<strong>in</strong>g endotoxemia<br />

<strong>in</strong> rhesus monkeys [4]. In mice, both a TNFsoluble<br />

receptor [5] and a targeted deletion <strong>of</strong> TNF<br />

receptor-1 [6•] conferred protection aga<strong>in</strong>st lipopolysaccharide-<strong>in</strong>duced<br />

<strong>renal</strong> <strong>failure</strong>. In patients with septic<br />

shock, elevated levels <strong>of</strong> soluble TNF receptors are <strong>in</strong>dependent<br />

predictors for the development <strong>of</strong> ARF and<br />

death [7]. However, more than 10 large phase III trials<br />

with neutraliz<strong>in</strong>g monoclonal anti–TNF- antibodies<br />

and soluble TNF receptor fusion prote<strong>in</strong>s failed to show<br />

survival benefits <strong>in</strong> patients with <strong>sepsis</strong> [3]. The monoclonal<br />

anti–TNF- antibody afelimomab conferred a<br />

6.9% absolute and 14.3% relative reduction <strong>in</strong> riskadjusted<br />

mortality <strong>in</strong> septic patients with <strong>in</strong>terleuk<strong>in</strong>-6<br />

concentrations <strong>of</strong> more than 1000 pg/mL [8]. In another<br />

study, however, afelimomabimparted only a small and<br />

nonsignificant survival benefit <strong>in</strong> a similar patient population<br />

[9].<br />

In conclusion, despite the apparent success <strong>of</strong> anti-TNF<br />

therapies <strong>in</strong> animal models with prevention <strong>of</strong> both mortality<br />

and <strong>renal</strong> <strong>failure</strong>, these strategies have yielded disappo<strong>in</strong>t<strong>in</strong>g<br />

results <strong>in</strong> humans.<br />

Inhibition <strong>of</strong> platelet-activat<strong>in</strong>g factor<br />

Serum and ur<strong>in</strong>ary concentrations <strong>of</strong> PAF are elevated <strong>in</strong><br />

patients with <strong>sepsis</strong> and correlate with the severity <strong>of</strong><br />

ARF [10]. Intra<strong>renal</strong> <strong>in</strong>fusion <strong>of</strong> PAF <strong>in</strong> the rat results <strong>in</strong><br />

<strong>renal</strong> vasoconstriction and a fall <strong>in</strong> glomerular filtration<br />

rate (GFR) [11,12]. Several structurally unrelated PAF<br />

antagonists prevented the adverse <strong>renal</strong> hemodynamic<br />

effects <strong>of</strong> endotoxemia <strong>in</strong> the rat [11,12]. In patients with<br />

septic shock, the adm<strong>in</strong>istration <strong>of</strong> a PAF antagonist reduced<br />

the need for dialysis but not mortality rates [13].<br />

Other studies similarly failed to demonstrate a reduction<br />

<strong>in</strong> mortality with a PAF antagonist [14,15]. Serum levels<br />

<strong>of</strong> PAF acetylhydrolase, an enzyme that <strong>in</strong>activates PAF,<br />

are deficient <strong>in</strong> <strong>sepsis</strong> [16•]. Whereas a relatively small<br />

trial <strong>in</strong> 127 patients with severe <strong>sepsis</strong> reported a lower<br />

28-day mortality <strong>in</strong> those treated with recomb<strong>in</strong>ant PAF<br />

acetylhydrolase [17], a much larger trial with the same<br />

molecule was discont<strong>in</strong>ued prematurely after an <strong>in</strong>terim<br />

analysis <strong>in</strong> more than 1250 patients failed to demonstrate<br />

an improved mortality [16•].<br />

In conclusion, although experimental studies are encourag<strong>in</strong>g,<br />

the value <strong>of</strong> PAF antagonism <strong>in</strong> humans is marg<strong>in</strong>al<br />

at best.<br />

Steroids<br />

An <strong>in</strong>crease <strong>in</strong> tissue corticosteroid levels dur<strong>in</strong>g <strong>acute</strong><br />

illness is an important protective response. Subnormal<br />

ad<strong>renal</strong> corticosteroid production dur<strong>in</strong>g <strong>acute</strong> severe illness<br />

has been termed functional ad<strong>renal</strong> <strong>in</strong>sufficiency to<br />

reflect the notion that hypoad<strong>renal</strong>ism can occur without<br />

obvious structural defects [18]. Recognition <strong>of</strong> ad<strong>renal</strong><br />

<strong>in</strong>sufficiency <strong>in</strong> patients <strong>in</strong> the ICU is problematic. Cl<strong>in</strong>ical<br />

diagnostic clues <strong>in</strong>clude hemodynamic <strong>in</strong>stability despite<br />

adequate fluid resuscitation and ongo<strong>in</strong>g evidence<br />

<strong>of</strong> <strong>in</strong>flammation without an obvious source and not respond<strong>in</strong>g<br />

to empirical <strong>treatment</strong>. At least among patients<br />

<strong>in</strong> septic shock [19], cortisol levels below 15 µg/dL or<br />

between 15 and 34 µg/dL and a poor response to corticotrop<strong>in</strong><br />

(9 µg/dL) appear to identify patients with corticosteroid<br />

<strong>in</strong>sufficiency who will benefit from corticosteroid<br />

<strong>treatment</strong>. Cortisol levels greater than 34 µg/dL<br />

are unlikely to be correlated with ad<strong>renal</strong> <strong>in</strong>sufficiency.<br />

Several studies have exam<strong>in</strong>ed the use <strong>of</strong> corticosteroid<br />

therapy <strong>in</strong> <strong>sepsis</strong>. Short-term <strong>treatment</strong> <strong>of</strong> heterogeneous<br />

groups <strong>of</strong> patients with supraphysiologic doses <strong>of</strong> glucocorticoids<br />

(eg, 30 mg/kg/d methylprednisolone) conveys<br />

no benefit and may be harmful [20]. <strong>Pharmacologic</strong> glucocorticoid<br />

<strong>treatment</strong> (2 mg/kg/d methylprednisolone)<br />

does, however, reduce mortality among patients with unresolv<strong>in</strong>g<br />

<strong>acute</strong> respiratory syndrome [21,22], and early<br />

<strong>treatment</strong> with dexamethasone may improve the outcome<br />

<strong>in</strong> bacterial men<strong>in</strong>gitis [23,24]. Several randomized<br />

trials <strong>of</strong> low-dose hydrocortisone replacement therapy<br />

have shown improvements <strong>in</strong> hemodynamics and the<br />

need for vasopressor therapy [25–28]. In the largest <strong>of</strong><br />

these, <strong>in</strong>clud<strong>in</strong>g 300 patients [27••], 50 mg hydrocortisone<br />

every 6 hours and 50 µg fludrocortisone once daily<br />

for 7 days significantly reduced mortality without <strong>in</strong>creas<strong>in</strong>g<br />

adverse events. Whether m<strong>in</strong>eralocorticoid replacement<br />

accounted for any <strong>of</strong> the beneficial effects is<br />

unclear. Treatment should be <strong>in</strong>itiated at the time <strong>of</strong><br />

diagnostic test<strong>in</strong>g and should be stopped if the results do<br />

not <strong>in</strong>dicate the presence <strong>of</strong> ad<strong>renal</strong> <strong>in</strong>sufficiency. Further<br />

studies are needed to clarify specific situations <strong>in</strong><br />

which replacement is beneficial and to determ<strong>in</strong>e the<br />

optimal dose and optimal duration <strong>of</strong> therapy [18]. Corticus,<br />

an ongo<strong>in</strong>g European trial <strong>of</strong> hydrocortisone <strong>in</strong> patients<br />

with septic shock, should help answer these important<br />

questions.<br />

Inhibition <strong>of</strong> nitric oxide synthase<br />

In the kidney, endothelial nitric oxide synthase (NOS)<br />

plays a pivotal role <strong>in</strong> vascular relaxation, <strong>in</strong>hibition <strong>of</strong><br />

leukocyte adhesion, and platelet aggregation. Ischemic<br />

kidneys are characterized by an impaired release <strong>of</strong> nitric<br />

oxide produced by endothelial NOS [29]. On the other<br />

hand, lipopolysaccharide and <strong>in</strong>flammatory cytok<strong>in</strong>es<br />

upregulate <strong>in</strong>ducible NOS (iNOS) expression <strong>in</strong> the kidney<br />

[30]. As a result <strong>of</strong> these oppos<strong>in</strong>g alterations <strong>in</strong> NOS<br />

expression, studies us<strong>in</strong>g nonselective NOS <strong>in</strong>hibitors<br />

have yielded contradictory results. N-nitro-L-arg<strong>in</strong><strong>in</strong>e<br />

methyl ester (L-NAME) prevented hypoxic cellular<br />

damage <strong>in</strong> isolated proximal tubules [31]. In contrast<br />

with the protective effects <strong>in</strong> isolated <strong>renal</strong> tubules, L-<br />

NAME resulted <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> prote<strong>in</strong>uria, a decl<strong>in</strong>e <strong>in</strong><br />

<strong>renal</strong> function, and a marked fibr<strong>in</strong> deposition and glomerular<br />

thrombosis dur<strong>in</strong>g endotoxemia [32] and exacerbated<br />

preglomerular vasoconstriction dur<strong>in</strong>g Escherichia


476 Renal system<br />

coli bacteremia <strong>in</strong> the rat [33]. In ov<strong>in</strong>e Pseudomonas aerug<strong>in</strong>osa<br />

<strong>sepsis</strong>, L omega-mono-methyl-arg<strong>in</strong><strong>in</strong>e <strong>in</strong>creased<br />

blood pressure and systemic vascular resistance<br />

and decreased cardiac output, whereas RBF rema<strong>in</strong>ed<br />

unchanged [34]. N-methyl-L-arg<strong>in</strong><strong>in</strong>e fully reversed the<br />

decrease <strong>in</strong> blood pressure and partially reversed the decrease<br />

<strong>in</strong> RBF occurr<strong>in</strong>g <strong>in</strong> dogs after lipopolysaccharide<br />

<strong>in</strong>fusion [35]. Although results with selective iNOS <strong>in</strong>hibitors<br />

were anticipated to be less ambiguous, discrepant<br />

f<strong>in</strong>d<strong>in</strong>gs have also been reported. The selective<br />

iNOS <strong>in</strong>hibitor S-methyl-isothiourea prevented hypotension<br />

through systemic vasoconstriction and ma<strong>in</strong>ta<strong>in</strong>ed<br />

cardiac output, and reduced the signs <strong>of</strong> <strong>renal</strong><br />

dysfunction <strong>in</strong> rats challenged with lipopolysaccharide<br />

[36]. In contrast, the degree <strong>of</strong> <strong>renal</strong> <strong>failure</strong> after lipopolysaccharide<br />

<strong>in</strong>fusion was similar <strong>in</strong> iNOS knockout<br />

mice compared with wild-type mice [5]. In a hyperdynamic<br />

porc<strong>in</strong>e model <strong>of</strong> <strong>sepsis</strong>, L-NAME reduced GFR<br />

and <strong>in</strong>creased sodium excretion and <strong>renal</strong> oxygen extraction,<br />

whereas S-methyl-isothiourea did not affect GFR<br />

[37]. Several small and uncontrolled cl<strong>in</strong>ical studies demonstrated<br />

that short-term nonselective NOS <strong>in</strong>hibition<br />

<strong>in</strong>creased both blood pressure and systemic vascular resistance<br />

and decreased cardiac output <strong>in</strong> patients with<br />

septic shock [38–40]. However, beneficial effects on <strong>renal</strong><br />

function were not reported. A randomized, placebocontrolled<br />

trial with L omega-mono-methyl-arg<strong>in</strong><strong>in</strong>e was<br />

discont<strong>in</strong>ued early because <strong>of</strong> an <strong>in</strong>creased mortality <strong>in</strong><br />

the treated group.<br />

In conclusion, the ubiquitous nature and the pleiotropic<br />

effects <strong>of</strong> the nitric oxide system and its complex alterations<br />

<strong>in</strong> <strong>sepsis</strong> and ARF likely expla<strong>in</strong> why nonselective<br />

NOS <strong>in</strong>hibitors and selective iNOS <strong>in</strong>hibitors fail to<br />

show straightforward laudable effects.<br />

Endothel<strong>in</strong> antagonism<br />

In humans with <strong>sepsis</strong>, plasma ET-1 levels are markedly<br />

elevated and correlate with morbidity and mortality [41].<br />

Pre<strong>treatment</strong> with a nonselective ET receptorantagonist,<br />

block<strong>in</strong>g both ET A and ET B receptors, did<br />

not improve hypotension but <strong>in</strong>creased RBF, creat<strong>in</strong><strong>in</strong>e<br />

clearance, and diuresis <strong>in</strong> can<strong>in</strong>e endotoxemia [42]. Another<br />

nonselective ET receptor-antagonist <strong>in</strong>duced a significant<br />

fall <strong>in</strong> blood pressure but prevented the reduction<br />

<strong>in</strong> RBF and GFR dur<strong>in</strong>g endotoxic shock <strong>in</strong><br />

neonatal piglets [43]. Further, an anti–ET-1 antibody<br />

improved <strong>renal</strong> function after endotox<strong>in</strong> <strong>in</strong>jection <strong>in</strong><br />

rats [44]. In contrast, <strong>renal</strong> hemodynamics were unaffected<br />

by a nonselective ET receptor-antagonist <strong>in</strong> porc<strong>in</strong>e<br />

endotoxic shock [45] and by a selective ET A receptor-antagonist<br />

<strong>in</strong> conscious rats subjected to lipopolysaccharide<br />

<strong>in</strong>fusion [46]. So far, no studies with ET receptor-antagonists<br />

have been performed <strong>in</strong> patients with<br />

<strong>sepsis</strong>.<br />

Natriuretic peptides<br />

Exogenous adm<strong>in</strong>istration <strong>of</strong> atrial natriuretic peptide<br />

(ANP) <strong>in</strong>creased RBF, GFR, and diuresis and improved<br />

<strong>renal</strong> pathologic changes <strong>in</strong> different experimental models<br />

<strong>of</strong> ischemic ARF [47]. Urodilat<strong>in</strong>, which is synthesized<br />

<strong>in</strong> the <strong>renal</strong> tubular cells by differential process<strong>in</strong>g<br />

from the same precursor as ANP, <strong>in</strong>duced a fall <strong>in</strong> blood<br />

pressure but <strong>in</strong>creased GFR, diuresis, and natriuresis <strong>in</strong><br />

lipopolysaccharide-<strong>in</strong>duced ARF <strong>in</strong> the rat [48]. In contrast,<br />

ANP did not affect these parameters <strong>in</strong> a similar<br />

model <strong>of</strong> endotoxemia <strong>in</strong> the rat [49]. In an open-label<br />

study <strong>of</strong> 53 patients with ARF, ANP resulted <strong>in</strong> a transient<br />

<strong>in</strong>crease <strong>in</strong> creat<strong>in</strong><strong>in</strong>e clearance and a decreased<br />

need for dialysis [50]. In contrast, <strong>in</strong> a randomized, placebo-controlled<br />

trial <strong>in</strong>clud<strong>in</strong>g 504 critically ill patients<br />

with ARF (31% with <strong>sepsis</strong>), the synthetic ANP anaritide<br />

did not improve the overall rate <strong>of</strong> dialysis-free survival<br />

[47]. In 222 oliguric ARF patients (35% with <strong>sepsis</strong>),<br />

anaritide conferred a nonsignificant trend toward improved<br />

14-day and 21-day dialysis-free survival, but 60-<br />

day mortality rates were similar to those with placebo<br />

[51]. In two randomized, placebo-controlled trials <strong>in</strong> critically<br />

ill patients with ARF, urodilat<strong>in</strong> did not improve<br />

<strong>renal</strong> function or reduce the need for <strong>renal</strong> replacement<br />

therapy [52,53].<br />

In conclusion, there is no conv<strong>in</strong>c<strong>in</strong>g evidence to support<br />

the use <strong>of</strong> natriuretic peptides as adjunctive <strong>treatment</strong> <strong>in</strong><br />

ARF.<br />

Inhibition <strong>of</strong> leukocyte adhesion<br />

The recruitment <strong>of</strong> circulat<strong>in</strong>g leukocytes <strong>in</strong>to a tissue is<br />

directed by specific adhesive <strong>in</strong>teractions between the<br />

leukocyte and the vascular endothelium. Select<strong>in</strong>s (Lselect<strong>in</strong>,<br />

P-select<strong>in</strong>, and E-select<strong>in</strong>) and their carbohydrate-conta<strong>in</strong><strong>in</strong>g<br />

ligands mediate the <strong>in</strong>itial contact between<br />

the leukocyte and the endothelium. Firm<br />

adherence and transendothelial migration are mediated<br />

by <strong>in</strong>teractions between <strong>in</strong>tegr<strong>in</strong>s on the leukocyte surface<br />

(eg, CD11a, CD11b) and their immunoglobul<strong>in</strong>-like<br />

receptors on the endothelium (eg, ICAM-1). Dur<strong>in</strong>g <strong>sepsis</strong>,<br />

leukocytes are known to <strong>in</strong>filtrate the kidneys and<br />

contribute to <strong>renal</strong> dysfunction. Leukocytes release reactive<br />

oxygen species and enzymes, which may directly<br />

<strong>in</strong>jure cells. The production <strong>of</strong> cytok<strong>in</strong>es attracts additional<br />

<strong>in</strong>flammatory cells and upregulates adhesion molecules,<br />

creat<strong>in</strong>g a cycle <strong>of</strong> <strong>in</strong>jury. Release <strong>of</strong> vasoconstrictor<br />

arachidonic acid metabolites and physical congestion<br />

<strong>of</strong> medullary capillaries contribute to persistent hypoxia.<br />

Upregulation <strong>of</strong> CD11bon neutrophils <strong>in</strong>dependently<br />

predicted the development <strong>of</strong> ARF after cardiopulmonary<br />

bypass [54]. Treatment <strong>of</strong> experimental animals<br />

with anti–ICAM-1 antibodies [55,56] or with antisense<br />

oligonucleotides for ICAM-1 [57] provided protection<br />

from ischemic ARF. ICAM-1 knockout mice appeared<br />

resistant to <strong>acute</strong> <strong>renal</strong> ischemic <strong>in</strong>jury [56]. Similarly,


<strong>Pharmacologic</strong> <strong>treatment</strong> <strong>of</strong> <strong>renal</strong> <strong>failure</strong> De Vriese and Bourgeois 477<br />

anti-CD11a and anti-CD11bantibodies decreased <strong>in</strong>jury<br />

after experimental <strong>renal</strong> ischemia <strong>in</strong> the rat [58]. Further,<br />

mice deficient for the Src family k<strong>in</strong>ases Hck and Fgr,<br />

required for <strong>in</strong>tegr<strong>in</strong> signal transduction, were resistant<br />

to the lethal effects <strong>of</strong> lipopolysaccharide <strong>in</strong>jection and<br />

had a marked reduction <strong>in</strong> <strong>renal</strong> damage [59]. Sialyl-<br />

Lewis X, a soluble ligand for select<strong>in</strong>s, and an anti–Pselect<strong>in</strong><br />

antibody attenuated <strong>renal</strong> dysfunction and histopathologic<br />

changes <strong>in</strong> lipopolysaccharide-<strong>in</strong>duced ARF<br />

<strong>in</strong> rabbits [60]. F<strong>in</strong>ally, E-select<strong>in</strong>, P-select<strong>in</strong>, and E/Pselect<strong>in</strong><br />

knockout mice were resistant to lethality and<br />

<strong>renal</strong> dysfunction dur<strong>in</strong>g septic peritonitis [61•]. No human<br />

trials with antibodies to leukocyte adhesion molecules<br />

are presently available. In an opposite l<strong>in</strong>e <strong>of</strong> reason<strong>in</strong>g,<br />

however, filgrastim (granulocyte colonystimulat<strong>in</strong>g<br />

factor) was adm<strong>in</strong>istered to patients with<br />

severe <strong>sepsis</strong> to enhance neutrophil production and function.<br />

Although the <strong>in</strong>tervention did not improve mortality,<br />

fortunately no adverse effects on end-organ function<br />

were observed [62].<br />

Inhibitors <strong>of</strong> coagulation<br />

Tissue factor pathway <strong>in</strong>hibitor<br />

Diffuse <strong>in</strong>travascular coagulation <strong>in</strong> <strong>sepsis</strong> is caused by<br />

tissue factor-mediated thromb<strong>in</strong> generation. Tissue factor<br />

forms a complex with factor VIIa, which cleaves factor<br />

IX and factor X, <strong>in</strong>itiat<strong>in</strong>g thromb<strong>in</strong> generation. Tissue<br />

factor is <strong>in</strong>hibited by a natural anticoagulant, tissue factor<br />

pathway <strong>in</strong>hibitor (TFPI). Specific blockade <strong>of</strong> the tissue<br />

factor–factor VIIa complex, with either TFPI or a<br />

site-<strong>in</strong>activated factor VIIa, prevented <strong>renal</strong> <strong>in</strong>jury dur<strong>in</strong>g<br />

E. coli <strong>sepsis</strong> <strong>in</strong> baboons. Fibr<strong>in</strong> deposition <strong>in</strong> glomeruli<br />

and tubuli, and vessels occluded by fibr<strong>in</strong> clots,<br />

were identified <strong>in</strong> control animals but were absent <strong>in</strong><br />

treated animals [63]. Similar results were obta<strong>in</strong>ed when<br />

the tissue factor pathway was blocked only after Gramnegative<br />

<strong>sepsis</strong> was well established [64•]. A phase II<br />

trial, compar<strong>in</strong>g placebo and recomb<strong>in</strong>ant TFPI <strong>in</strong> 210<br />

patients with severe <strong>sepsis</strong>, showed a trend toward mortality<br />

reduction <strong>in</strong> the recomb<strong>in</strong>ant TFPI-treated group<br />

[65]. However, a recently completed phase III trial failed<br />

to demonstrate a benefit <strong>of</strong> TFPI <strong>in</strong> patients with severe<br />

<strong>sepsis</strong> or septic shock [66••].<br />

Antithromb<strong>in</strong><br />

Antithromb<strong>in</strong> blocks several proteases <strong>in</strong>volved <strong>in</strong> coagulation,<br />

but its <strong>in</strong>hibitory effect is most powerful aga<strong>in</strong>st<br />

factor Xa and thromb<strong>in</strong>. Plasma levels <strong>of</strong> antithromb<strong>in</strong><br />

are usually markedly reduced <strong>in</strong> patients with <strong>sepsis</strong>, and<br />

this reduction is associated with an <strong>in</strong>creased mortality<br />

[67]. Melagatran, a low molecular weight thromb<strong>in</strong> <strong>in</strong>hibitor,<br />

protected aga<strong>in</strong>st <strong>renal</strong> dysfunction <strong>in</strong> a porc<strong>in</strong>e<br />

model <strong>of</strong> endotoxemia [68]. A meta-analysis aggregat<strong>in</strong>g<br />

data from 122 patients with <strong>sepsis</strong> supplemented with<br />

antithromb<strong>in</strong> reported a 22% nonsignificant decrease <strong>in</strong><br />

mortality <strong>in</strong> the treated patients [69]. However, <strong>in</strong> a<br />

double-bl<strong>in</strong>d, placebo-controlled, multicenter trial <strong>in</strong><br />

2314 patients with severe <strong>sepsis</strong> and septic shock, highdose<br />

antithromb<strong>in</strong> had no effect on 28-day mortality and<br />

was associated with an <strong>in</strong>creased risk <strong>of</strong> hemorrhage<br />

when coadm<strong>in</strong>istered with hepar<strong>in</strong> [67]. In a predef<strong>in</strong>ed<br />

subgroup <strong>of</strong> patients not receiv<strong>in</strong>g hepar<strong>in</strong>, there was a<br />

trend toward a reduced 28-day and 90-day mortality [67].<br />

Activated prote<strong>in</strong> C<br />

Prote<strong>in</strong> C is activated by the thromb<strong>in</strong>–thrombomodul<strong>in</strong><br />

complex on endothelial cells. Activated prote<strong>in</strong> C <strong>in</strong>hibits<br />

thromb<strong>in</strong> generation by <strong>in</strong>activat<strong>in</strong>g factor Va and factor<br />

VIIIa. Besides its effects on coagulation, activated<br />

prote<strong>in</strong> C has direct anti-<strong>in</strong>flammatory properties, <strong>in</strong>clud<strong>in</strong>g<br />

impairment <strong>of</strong> leukocyte adhesion to the endothelium<br />

by b<strong>in</strong>d<strong>in</strong>g select<strong>in</strong>s and <strong>in</strong>hibition <strong>of</strong> the production<br />

<strong>of</strong> <strong>in</strong>flammatory cytok<strong>in</strong>es by monocytes.<br />

Further, it stimulates the fibr<strong>in</strong>olytic response by <strong>in</strong>hibit<strong>in</strong>g<br />

plasm<strong>in</strong>ogen-activator <strong>in</strong>hibitor type 1 [70]. Reduced<br />

levels <strong>of</strong> prote<strong>in</strong> C are found <strong>in</strong> patients with<br />

<strong>sepsis</strong> and are associated with a fatal outcome [70]. The<br />

species specificity <strong>of</strong> activated prote<strong>in</strong> C has limited its<br />

test<strong>in</strong>g as a <strong>treatment</strong> for <strong>sepsis</strong> to studies <strong>in</strong> baboons. In<br />

these animals, adm<strong>in</strong>istration <strong>of</strong> activated prote<strong>in</strong> C prevented<br />

the procoagulant and lethal effects <strong>of</strong> Gramnegative<br />

<strong>sepsis</strong> [71]. In a randomized, multicenter trial<br />

conducted <strong>in</strong> 1690 patients with severe <strong>sepsis</strong>, recomb<strong>in</strong>ant<br />

human activated prote<strong>in</strong> C significantly reduced<br />

mortality [70]. Activated prote<strong>in</strong> C is currently the first<br />

biologic agent approved by the US Food and Drug Adm<strong>in</strong>istration<br />

for the <strong>treatment</strong> <strong>of</strong> <strong>sepsis</strong> [66••]. Because<br />

the benefit <strong>of</strong> activated prote<strong>in</strong> C consistently <strong>in</strong>creased<br />

with the risk <strong>of</strong> death, the Food and Drug Adm<strong>in</strong>istration<br />

has restricted its use to patients with an Acute Physiology<br />

and Chronic Health Evaluation score <strong>of</strong> 25 or more<br />

until further data are available [66••]. In Europe, activated<br />

prote<strong>in</strong> C will be approved for patients with severe<br />

<strong>sepsis</strong> and two or more fail<strong>in</strong>g organs. Activated prote<strong>in</strong><br />

C also decreased <strong>in</strong>terleuk<strong>in</strong>-6 levels, a f<strong>in</strong>d<strong>in</strong>g consistent<br />

with its known anti-<strong>in</strong>flammatory activity [70]. Because<br />

there exists an <strong>in</strong>tense and complex crosstalk between<br />

the pro<strong>in</strong>flammatory, coagulation, and fibr<strong>in</strong>olytic<br />

networks, the success <strong>of</strong> activated prote<strong>in</strong> C may h<strong>in</strong>ge<br />

on its comb<strong>in</strong>ed effects on coagulation, fibr<strong>in</strong>olysis, and<br />

<strong>in</strong>flammation rather than its anticoagulant action alone.<br />

Growth factors<br />

Regeneration <strong>of</strong> tubular cells requires the participation<br />

<strong>of</strong> growth factors. In rat models <strong>of</strong> <strong>renal</strong> ischemia, exogenous<br />

adm<strong>in</strong>istration <strong>of</strong> epidermal growth factor [72] and<br />

<strong>in</strong>sul<strong>in</strong>-like growth factor I (IGF-I) [73,74] buttressed<br />

the recovery <strong>of</strong> <strong>renal</strong> function and reduced mortality. In<br />

addition, IGF-I is a downstream mediator <strong>of</strong> growth hormone<br />

and has potent anabolic effects. IGF-I reduced<br />

prote<strong>in</strong> catabolism and stimulated prote<strong>in</strong> synthesis <strong>in</strong><br />

skeletal muscle <strong>of</strong> rats with ARF [73]. In contrast with<br />

the beneficial effects <strong>in</strong> rat models, epidermal growth<br />

factor failed to affect <strong>renal</strong> ischemic <strong>in</strong>jury <strong>in</strong> the pig, a


478 Renal system<br />

model <strong>of</strong> ARF that more closely resembles the human<br />

condition [75]. In fact, animals treated with epidermal<br />

growth factor had higher serum creat<strong>in</strong><strong>in</strong>e levels than the<br />

control group [75]. In a multicenter, randomized, placebo-controlled<br />

trial, IGF-I did not reduce time to <strong>renal</strong><br />

recovery or mortality rates <strong>in</strong> 72 critically ill patients with<br />

ARF [76]. Anuric patients who received IGF-I even<br />

tended to have slower rates <strong>of</strong> improvement <strong>in</strong> ur<strong>in</strong>e<br />

output and <strong>in</strong> GFR than placebo-treated subjects, h<strong>in</strong>t<strong>in</strong>g<br />

at potential adverse effects <strong>of</strong> IGF-I. In 54 patients<br />

undergo<strong>in</strong>g supra<strong>renal</strong> aorta or <strong>renal</strong> artery surgery, no<br />

differences <strong>in</strong> serum creat<strong>in</strong><strong>in</strong>e at time <strong>of</strong> discharge,<br />

length <strong>of</strong> ICU and hospital stay, or <strong>in</strong>cidence <strong>of</strong> dialysis<br />

and death were observed between IGF-I and placebotreated<br />

subjects, although a smaller proportion <strong>of</strong> the<br />

former group had a postoperative decl<strong>in</strong>e <strong>in</strong> <strong>renal</strong> function<br />

[77]. Several small and uncontrolled studies reported<br />

that growth hormone adm<strong>in</strong>istration to critically<br />

ill patients with <strong>sepsis</strong> resulted <strong>in</strong> an improvement <strong>of</strong><br />

nitrogen balance commensurate with an <strong>in</strong>crease <strong>in</strong><br />

IGF-I levels [78]. A randomized, placebo-controlled trial<br />

<strong>in</strong>volv<strong>in</strong>g 247 patients <strong>in</strong> the ICU revealed, however,<br />

that high-dose growth hormone therapy is associated<br />

with <strong>in</strong>creased morbidity and mortality [78].<br />

In conclusion, despite ample evidence that growth factors<br />

accelerate <strong>renal</strong> recovery <strong>in</strong> experimental ARF <strong>in</strong> the<br />

rat, a study <strong>in</strong> a large animal model more representative<br />

<strong>of</strong> human ARF and several cl<strong>in</strong>ical studies <strong>in</strong> critically ill<br />

patients demonstrate no beneficial or even detrimental<br />

effects.<br />

Conclusion<br />

Several decades <strong>of</strong> research efforts have been successful<br />

<strong>in</strong> unravel<strong>in</strong>g the complex pathophysiology <strong>of</strong> <strong>sepsis</strong> and<br />

ARF and have resulted <strong>in</strong> the development <strong>of</strong> different<br />

pharmacologic <strong>in</strong>terventions that are very effective <strong>in</strong><br />

experimental models. With the exception <strong>of</strong> low-dose<br />

corticosteroids and activated prote<strong>in</strong> C (APC), which are<br />

now accepted supportive <strong>treatment</strong> options for <strong>sepsis</strong> <strong>in</strong><br />

general, the cl<strong>in</strong>ical application <strong>of</strong> these therapies has<br />

bitterly failed and has consumed precious resources. Although<br />

multiple explanations have been advocated, the<br />

most important is perhaps the dynamic nature <strong>of</strong> <strong>sepsis</strong><br />

and ARF. The relative role <strong>of</strong> the different mediators<br />

varies with time; consequently, therapeutic strategies<br />

that are appropriate early <strong>in</strong> the disease process may lose<br />

their efficacy later. Future studies should be directed at<br />

elucidat<strong>in</strong>g which patients need enhancement or <strong>in</strong>hibition<br />

<strong>of</strong> immune response, depend<strong>in</strong>g on genetic polymorphisms,<br />

the duration <strong>of</strong> disease, and the characteristics<br />

<strong>of</strong> the particular pathogen. In the meantime, clear<br />

guidel<strong>in</strong>es on basic therapeutic attitudes <strong>in</strong> the management<br />

<strong>of</strong> ARF, such as the optimal fluid resuscitation<br />

regimen, use <strong>of</strong> diuretics, dose <strong>of</strong> dialysis, and tim<strong>in</strong>g <strong>of</strong><br />

<strong>in</strong>itiation <strong>of</strong> dialysis, have not been developed. These<br />

issues equally deserve our attention.<br />

References and recommended read<strong>in</strong>g<br />

Papers <strong>of</strong> particular <strong>in</strong>terest, published with<strong>in</strong> the annual period <strong>of</strong> review,<br />

have been highlighted as:<br />

• Of special <strong>in</strong>terest<br />

•• Of outstand<strong>in</strong>g <strong>in</strong>terest<br />

1 Cohen J: The immunopathogenesis <strong>of</strong> <strong>sepsis</strong>. Nature 2002, 420:885–891.<br />

2 De Vriese AS: Prevention and <strong>treatment</strong> <strong>of</strong> <strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> <strong>sepsis</strong>. J Am<br />

Soc Nephrol 2003, 14:792–805.<br />

3 Re<strong>in</strong>hart K, Karzai W: Anti-tumor necrosis factor therapy <strong>in</strong> <strong>sepsis</strong>: updateon<br />

cl<strong>in</strong>ical trials and lessons learned. Crit Care Med 2001, 29(suppl<br />

7):S121–S125.<br />

4 Fiedler VB, Lo<strong>of</strong> I, Sander E, et al.: Monoclonal antibody to tumor necrosis<br />

factor-alpha prevents lethal endotox<strong>in</strong> <strong>sepsis</strong> <strong>in</strong> adult rhesus monkeys. J Lab<br />

Cl<strong>in</strong> Med 1992, 120:574–588.<br />

5 Knotek M, Rogachev B, Wang W, et al.: Endotoxemic <strong>renal</strong> <strong>failure</strong> <strong>in</strong> mice:<br />

role <strong>of</strong> tumor necrosis factor <strong>in</strong>dependent <strong>of</strong> <strong>in</strong>ducible nitric oxide synthase.<br />

Kidney Int 2001, 59:2243–2249.<br />

6 Cunn<strong>in</strong>gham PN, Dyanov HM, Park P, et al.: Acute <strong>renal</strong> <strong>failure</strong> <strong>in</strong> endotoxemia<br />

• is caused by TNF act<strong>in</strong>g directly on TNF receptor-1 <strong>in</strong> kidney. J Immunol<br />

2002, 168:5817–5823.<br />

Unravels the pathophysiologic role <strong>of</strong> TNF <strong>in</strong> septic ARF.<br />

7 Iglesias J, Marik PE, Lev<strong>in</strong>e JS, Norasept II Study Investigators: Elevated serum<br />

levels <strong>of</strong> the type I and type II receptors for tumor necrosis factor-alpha as<br />

predictive factors for ARF <strong>in</strong> patients with septic shock. Am J Kidney Dis<br />

2003, 41:62–75.<br />

8 Panacek E, Marshall J, Fischk<strong>of</strong>f S, et al., and MONARCS Study Group: Neutralization<br />

<strong>of</strong> TNF by a monoclonal antibody improves survival and reduces<br />

organ dysfunction <strong>in</strong> human <strong>sepsis</strong>: results <strong>of</strong> the MONARCS trial [abstract].<br />

Chest 2000, 118(suppl 4):88S.<br />

9 Re<strong>in</strong>hart K, Menges T, Gardlund B, et al.: Randomized, placebo-controlled<br />

trial <strong>of</strong> the anti-tumor necrosis factor antibody fragment afelimomab <strong>in</strong> hyper<strong>in</strong>flammatory<br />

response dur<strong>in</strong>g severe <strong>sepsis</strong>: the RAMSES Study. Crit Care<br />

Med 2001, 29:765–769.<br />

10 Mariano F, Guida G, Donati D, et al.: Production <strong>of</strong> platelet-activat<strong>in</strong>g factor <strong>in</strong><br />

patients with <strong>sepsis</strong>-associated <strong>acute</strong> <strong>renal</strong> <strong>failure</strong>. Nephrol Dial Transplant<br />

1999, 14:1150–1157.<br />

11 Wang J, Dunn MJ: Platelet-activat<strong>in</strong>g factor mediates endotox<strong>in</strong>-<strong>in</strong>duced<br />

<strong>acute</strong> <strong>renal</strong> <strong>in</strong>sufficiency <strong>in</strong> rats. Am J Physiol 1987, 253:F1283–F1289.<br />

12 Tol<strong>in</strong>s JP, Vercellotti GM, Wilkowske M, et al.: Role <strong>of</strong> platelet activat<strong>in</strong>g factor<br />

<strong>in</strong> endotoxemic <strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> the male rat. J Lab Cl<strong>in</strong> Med 1989,<br />

113:316–324.<br />

13 Poeze M, Froon AH, Ramsay G, et al.: Decreased organ <strong>failure</strong> <strong>in</strong> patients with<br />

severe SIRS and septic shock treated with the platelet-activat<strong>in</strong>g factor antagonist<br />

TCV-309: a prospective, multicenter, double-bl<strong>in</strong>d, randomized<br />

phase II trial. TCV-309 Septic Shock Study Group. Shock 2000, 14:421–<br />

428.<br />

14 V<strong>in</strong>cent JL, Spapen H, Bakker J, et al.: Phase II multicenter cl<strong>in</strong>ical study <strong>of</strong> the<br />

platelet-activat<strong>in</strong>g factor receptor antagonist BB-882 <strong>in</strong> the <strong>treatment</strong> <strong>of</strong> <strong>sepsis</strong>.<br />

Crit Care Med 2000, 28:638–642.<br />

15 Dha<strong>in</strong>aut JF, Tenaillon A, Hemmer M, et al.: Confirmatory platelet-activat<strong>in</strong>g<br />

factor receptor antagonist trial <strong>in</strong> patients with severe Gram-negative bacterial<br />

<strong>sepsis</strong>: a phase III, randomized, double-bl<strong>in</strong>d, placebo-controlled, multicenter<br />

trial. BN 52021 Sepsis Investigator Group. Crit Care Med 1998,<br />

26:1963–1971.<br />

16 Rab<strong>in</strong>ovici R: Platelet activat<strong>in</strong>g factor <strong>in</strong>hibition <strong>in</strong> <strong>sepsis</strong>: the end? Crit Care<br />

• Med 2003, 31:1861–1862.<br />

Critically reviews the trials on PAF <strong>in</strong>hibition <strong>in</strong> <strong>sepsis</strong>.<br />

17 Schuster DP, Metzler M, Opal S, et al., Pafase ARDS Prevention Study<br />

Group: Recomb<strong>in</strong>ant platelet-activat<strong>in</strong>g factor acetylhydrolase to prevent<br />

<strong>acute</strong> respiratory distress syndrome and mortality <strong>in</strong> severe <strong>sepsis</strong>: phase IIb,<br />

multicenter, randomized, placebo-controlled, cl<strong>in</strong>ical trial. Crit Care Med<br />

2003, 31:1612–1619.<br />

18 Cooper MS, Steward PM: Corticosteroid <strong>in</strong>sufficiency <strong>in</strong> <strong>acute</strong>ly ill patients. N<br />

Engl J Med 2003, 348:727–734.<br />

19 Annane D, Sebille V, Troche G, et al.: A3-level prognostic classification <strong>in</strong><br />

septic shock based on cortisol levels and cortisol response to corticotrop<strong>in</strong>.<br />

JAMA 2000, 283:1038–1045.<br />

20 Lamberts SWJ, Bru<strong>in</strong><strong>in</strong>g HA, de Jong FH: Corticosteroid therapy <strong>in</strong> severe<br />

illness. N Engl J Med 1997, 337:1285–1292.<br />

21 Meduri GU, Headley AS, Golden E, et al.: Effect <strong>of</strong> prolonged methylprednis-


<strong>Pharmacologic</strong> <strong>treatment</strong> <strong>of</strong> <strong>renal</strong> <strong>failure</strong> De Vriese and Bourgeois 479<br />

olone therapy <strong>in</strong> unresolv<strong>in</strong>g <strong>acute</strong> respiratory distress syndrome: a randomized<br />

controlled trial. JAMA 1998, 280:159–165.<br />

22 Meduri GU, Tolley EA, Chrousos GP, et al.: Prolonged methylprednisolone<br />

<strong>treatment</strong> suppresses systemic <strong>in</strong>flammation <strong>in</strong> patients with unresolv<strong>in</strong>g<br />

<strong>acute</strong> respiratory distress syndrome: evidence for <strong>in</strong>adequate endogenous<br />

glucocorticoid secretion and <strong>in</strong>flammation-<strong>in</strong>duced immune cell resistance to<br />

glucocorticoids. Am J Respir Crit Care Med 2002, 165:983–991.<br />

23 Lebel MH, Freij BJ, Syrogiannopoulos GA, et al.: Dexamethasone therapy for<br />

bacterial men<strong>in</strong>gitis: results <strong>of</strong> two double-bl<strong>in</strong>d, placebo-controlled trials. N<br />

Engl J Med 1988, 319:964–971.<br />

24 de Gans J, van de Beek D: Dexamethasone <strong>in</strong> adults with bacterial men<strong>in</strong>gitis.<br />

N Engl J Med 2002, 347:1549–1556.<br />

25 Bollaert PE, Charpentier C, Levy B, et al.: Reversal <strong>of</strong> late septic shock with<br />

supraphysiologic doses <strong>of</strong> hydrocortisone. Crit Care Med 1998, 26:645–<br />

650.<br />

26 Briegel J, Forst H, Haller M, et al.: Stress doses <strong>of</strong> hydrocortisone reverse<br />

hyperdynamic septic shock: a prospective, randomized, double-bl<strong>in</strong>d, s<strong>in</strong>glecenter<br />

study. Crit Care Med 1999, 27:723–732.<br />

27 Annane D, Sebille V, Charpentier C, et al.: Effect <strong>of</strong> <strong>treatment</strong> with low doses<br />

•• <strong>of</strong> hydrocortisone and fludrocortisone on mortality <strong>in</strong> patients with septic<br />

shock. JAMA 2002, 288:862–871.<br />

Large randomized, controlled trial demonstrat<strong>in</strong>g efficacy <strong>of</strong> steroid replacement<br />

therapy <strong>in</strong> <strong>sepsis</strong>.<br />

28 Keh D, Boehnke T, Weber-Cartens S, et al.: Immunologic and hemodynamic<br />

effects <strong>of</strong> “low-dose” hydrocortisone <strong>in</strong> septic shock: a double-bl<strong>in</strong>d, randomized,<br />

placebo-controlled, crossover study. Am J Respir Crit Care Med 2003,<br />

167:512–520.<br />

29 Conger J, Rob<strong>in</strong>ette J, Villar A, et al.: Increased nitric oxide synthase activity<br />

despite lack <strong>of</strong> response to endothelium-dependent vasodilators <strong>in</strong> postischemic<br />

<strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> rats. J Cl<strong>in</strong> Invest 1995, 96:631–638.<br />

30 Morrissey JJ, McCracken R, Kaneto H, et al.: Location <strong>of</strong> an <strong>in</strong>ducible nitric<br />

oxide synthase mRNA <strong>in</strong> the normal kidney. Kidney Int 1994, 45:998–1005.<br />

31 Yu L, Gengaro PE, Niederberger M, et al.: Nitric oxide: a mediator <strong>in</strong> rat tubular<br />

hypoxia/reoxygenation <strong>in</strong>jury. Proc Natl Acad Sci USA1994,<br />

91:1691–1695.<br />

32 Shultz PJ, Raij L: Endogenously synthesized nitric oxide prevents endotox<strong>in</strong><strong>in</strong>duced<br />

glomerular thrombosis. J Cl<strong>in</strong> Invest 1992, 90:1718–1725.<br />

33 Spa<strong>in</strong> DA, Wilson MA, Garrison RN: Nitric oxide synthase <strong>in</strong>hibition exacerbates<br />

<strong>sepsis</strong>-<strong>in</strong>duced <strong>renal</strong> hypoperfusion. Surgery 1994, 116:322–330.<br />

34 Booke M, H<strong>in</strong>der F, McGuire R, et al.: Nitric oxide synthase <strong>in</strong>hibition versus<br />

norep<strong>in</strong>ephr<strong>in</strong>e <strong>in</strong> ov<strong>in</strong>e <strong>sepsis</strong>: effects on regional blood flow. Shock 1996,<br />

5:362–370.<br />

35 Doursout MF, Kilbourn RG, Hartley CJ, et al.: Effects <strong>of</strong> N-methyl-L-arg<strong>in</strong><strong>in</strong>e<br />

on cardiac and regional blood flow <strong>in</strong> a dog endotox<strong>in</strong> shock model. J Crit<br />

Care 2000, 15:22–29.<br />

36 Rosselet A, Feihl F, Markert M, et al.: Selective iNOS <strong>in</strong>hibition is superior to<br />

norep<strong>in</strong>ephr<strong>in</strong>e <strong>in</strong> the <strong>treatment</strong> <strong>of</strong> rat endotoxic shock. Am J Respir Crit Care<br />

Med 1998, 157:162–170.<br />

37 Cohen RI, Hassell AM, Marzouk K, et al.: Renal effects <strong>of</strong> nitric oxide <strong>in</strong> endotoxemia.<br />

Am J Respir Crit Care Med 2001, 164:1890–1895.<br />

38 Petros A, Lamb G, Leone A, et al.: Effects <strong>of</strong> a nitric oxide synthase <strong>in</strong>hibitor<br />

<strong>in</strong> humans with septic shock. Cardiovasc Res 1994, 28:34–39.<br />

39 Avontuur JA, Tute<strong>in</strong> Nolthenius RP, van Bodegom JW, et al.: Prolonged <strong>in</strong>hibition<br />

<strong>of</strong> nitric oxide synthesis <strong>in</strong> severe septic shock: a cl<strong>in</strong>ical study. Crit<br />

Care Med 1998, 26:660–667.<br />

40 Grover R, Zaccardelli D, Colice G, et al.: An open-label dose escalation study<br />

<strong>of</strong> the nitric oxide synthase <strong>in</strong>hibitor, N(G)-methyl-L-arg<strong>in</strong><strong>in</strong>e hydrochloride<br />

(546C88), <strong>in</strong> patients with septic shock. Glaxo Wellcome International Septic<br />

Shock Study Group. Crit Care Med 1999, 27:913–922.<br />

41 Weitzberg E, Lundberg JM, Rudehill A: Elevated plasma levels <strong>of</strong> endothel<strong>in</strong><br />

<strong>in</strong> patients with <strong>sepsis</strong> syndrome. Circ Shock 1991, 33:222–227.<br />

42 Mitaka C, Hirata Y, Yokoyama K, et al.: Improvement <strong>of</strong> <strong>renal</strong> dysfunction <strong>in</strong><br />

dogs with endotoxemia by a nonselective endothel<strong>in</strong> receptor antagonist. Crit<br />

Care Med 1999, 27:146–153.<br />

43 Ch<strong>in</strong> A, Radhakrishnan J, Fornell L, et al.: Effects <strong>of</strong> tezosentan, a dual endothel<strong>in</strong><br />

receptor antagonist, on the cardiovascular and <strong>renal</strong> systems <strong>of</strong> neonatal<br />

piglets dur<strong>in</strong>g endotoxic shock. J Pediatr Surg 2002, 37:482–487.<br />

44 Morise Z, Ueda M, Aiura K, et al.: Pathophysiologic role <strong>of</strong> endothel<strong>in</strong>-1 <strong>in</strong><br />

<strong>renal</strong> function <strong>in</strong> rats with endotox<strong>in</strong> shock. Surgery 1994, 115:199–204.<br />

45 Oldner A, Wanecek M, Go<strong>in</strong>y M, et al.: The endothel<strong>in</strong> receptor antagonist<br />

bosentan restores gut oxygen delivery and reverses <strong>in</strong>test<strong>in</strong>al mucosal acidosis<br />

<strong>in</strong> porc<strong>in</strong>e endotox<strong>in</strong> shock. Gut 1998, 42:696–702.<br />

46 Gard<strong>in</strong>er SM, March JE, Kemp PA, et al.: Effects <strong>of</strong> the novel selective endothel<strong>in</strong><br />

ET(A) receptor antagonist, SB 234551, on the cardiovascular responses<br />

to endotoxaemia <strong>in</strong> conscious rats. Br J Pharmacol 2001,<br />

133:1371–1377.<br />

47 Allgren RL, Marbury TC, Rahman SN, et al.: Anaritide <strong>in</strong> <strong>acute</strong> tubular necrosis.<br />

Auricul<strong>in</strong> Anaritide Acute Renal Failure Study Group. N Engl J Med 1997,<br />

336:828–834.<br />

48 Schramm L, Heidbreder E, Lukes M, et al.: Endotox<strong>in</strong>-<strong>in</strong>duced <strong>acute</strong> <strong>renal</strong><br />

<strong>failure</strong> <strong>in</strong> the rat: effects <strong>of</strong> urodilat<strong>in</strong> and diltiazem on <strong>renal</strong> function. Cl<strong>in</strong><br />

Nephrol 1996, 46:117–124.<br />

49 Hiki N, Mimura Y: Atrial natriuretic peptide has no potential to protect aga<strong>in</strong>st<br />

endotox<strong>in</strong>-<strong>in</strong>duced <strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> the absence <strong>of</strong> <strong>renal</strong> nerves. Endocr<br />

J 1998, 45:75–81.<br />

50 Rahman SN, Kim GE, Mathew AS, et al.: Effects <strong>of</strong> atrial natriuretic peptide <strong>in</strong><br />

cl<strong>in</strong>ical <strong>acute</strong> <strong>renal</strong> <strong>failure</strong>. Kidney Int 1994, 45:1731–1738.<br />

51 Lewis J, Salem MM, Chertow GM, et al.: Atrial natriuretic factor <strong>in</strong> oliguric<br />

<strong>acute</strong> <strong>renal</strong> <strong>failure</strong>. Anaritide Acute Renal Failure Study Group. Am J Kidney<br />

Dis 2000, 36:767–774.<br />

52 Herbert MK, G<strong>in</strong>zel S, Muhlschlegel S, et al.: Concomitant <strong>treatment</strong> with<br />

urodilat<strong>in</strong> (ularitide) does not improve <strong>renal</strong> function <strong>in</strong> patients with <strong>acute</strong><br />

<strong>renal</strong> <strong>failure</strong> after major abdom<strong>in</strong>al surgery—a randomized controlled trial.<br />

Wien Kl<strong>in</strong> Wochenschr 1999, 111:141–147.<br />

53 Meyer M, Pfarr E, Schirmer G, et al.: Therapeutic use <strong>of</strong> the natriuretic peptide<br />

ularitide <strong>in</strong> <strong>acute</strong> <strong>renal</strong> <strong>failure</strong>. Ren Fail 1999, 21:85–100.<br />

54 R<strong>in</strong>der CS, Fontes M, Mathew JP, et al., Multicenter Study <strong>of</strong> Perioperative<br />

Ischemia Research Group: Neutrophil CD11b upregulation dur<strong>in</strong>g cardiopulmonary<br />

bypass is associated with postoperative <strong>renal</strong> <strong>in</strong>jury. Ann Thorac Surg<br />

2003, 75:899–905.<br />

55 Kelly KJ, Williams WW Jr, Colv<strong>in</strong> RB, et al.: Antibody to <strong>in</strong>tercellular adhesion<br />

molecule 1 protects the kidney aga<strong>in</strong>st ischemic <strong>in</strong>jury. Proc Natl Acad Sci U<br />

S A 1994, 91:812–816.<br />

56 Kelly KJ, Williams WW Jr, Colv<strong>in</strong> RB, et al.: Intercellular adhesion molecule-<br />

1-deficient mice are protected aga<strong>in</strong>st ischemic <strong>renal</strong> <strong>in</strong>jury. J Cl<strong>in</strong> Invest<br />

1996, 97:1056–1063.<br />

57 Haller H, Dragun D, Miethke A, et al.: Antisense oligonucleotides for ICAM-1<br />

attenuate reperfusion <strong>in</strong>jury and <strong>renal</strong> <strong>failure</strong> <strong>in</strong> the rat. Kidney Int 1996,<br />

50:473–480.<br />

58 Rabb H, Mendiola CC, Dietz J, et al.: Role <strong>of</strong> CD11a and CD11b <strong>in</strong> ischemic<br />

<strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> rats. Am J Physiol 1994, 267:F1052–F1058.<br />

59 Lowell CA, Berton G: Resistance to endotoxic shock and reduced neutrophil<br />

migration <strong>in</strong> mice deficient for the Src-family k<strong>in</strong>ases Hck and Fgr. Proc Natl<br />

Acad Sci USA1998, 95:7580–7584.<br />

60 Hayashi H, Imanishi N, Ohnishi M, et al.: Sialyl Lewis X and anti-P-select<strong>in</strong><br />

antibody attenuate lipopolysaccharide-<strong>in</strong>duced <strong>acute</strong> <strong>renal</strong> <strong>failure</strong> <strong>in</strong> rabbits.<br />

Nephron 2001, 87:352–360.<br />

61 Matsukawa A, Lukacs NW, Hogaboam CM, et al.: Mice genetically lack<strong>in</strong>g<br />

• endothelial select<strong>in</strong>s are resistant to the lethality <strong>in</strong> septic peritonitis. Exp Mol<br />

Pathol 2002, 72:68–76.<br />

Demonstrates beneficial effects <strong>of</strong> <strong>in</strong>hibition <strong>of</strong> leukocyte recruitment on both <strong>renal</strong><br />

dysfunction and mortality <strong>in</strong> an experimental model <strong>of</strong> septic ARF.<br />

62 Root RK, Lodato RF, Patrick W, et al., Pneumonia Sepsis Study Group: Multicenter,<br />

double-bl<strong>in</strong>d, placebo-controlled study <strong>of</strong> the use <strong>of</strong> filgrastim <strong>in</strong> patients<br />

hospitalized with pneumonia and severe <strong>sepsis</strong>. Crit Care Med 2003,<br />

31:367–373.<br />

63 Welty-Wolf KE, Carraway MS, Miller DL, et al.: Coagulation blockade prevents<br />

<strong>sepsis</strong>-<strong>in</strong>duced respiratory and <strong>renal</strong> <strong>failure</strong> <strong>in</strong> baboons. Am J Respir<br />

Crit Care Med 2001, 164:1988–1996.<br />

64 Carraway MS, Welty-Wolf KE, Miller DL, et al.: Blockade <strong>of</strong> tissue factor:<br />

<strong>treatment</strong> for organ <strong>in</strong>jury <strong>in</strong> established <strong>sepsis</strong>. Am J Respir Crit Care Med<br />

2003, 167:1200–1209.<br />

Experimental evidence for the efficacy <strong>of</strong> late <strong>treatment</strong> with TFPI <strong>in</strong> <strong>sepsis</strong>.<br />

65 Healy DP: New and emerg<strong>in</strong>g therapies for <strong>sepsis</strong>. Ann Pharmacother 2002,<br />

36:648–654.<br />

66 Warren HS, Suffred<strong>in</strong>i AF, Eichacker PQ, et al.: Risks and benefits <strong>of</strong> activated<br />

prote<strong>in</strong> C <strong>treatment</strong> for severe <strong>sepsis</strong>. N Engl J Med 2002, 347:1027–<br />

••<br />

1030.<br />

Critical discussion <strong>of</strong> the value <strong>of</strong> APC <strong>treatment</strong> <strong>in</strong> <strong>sepsis</strong>.<br />

67 Warren BL, Eid A, S<strong>in</strong>ger P, et al., KyberSept Trial Study Group: Car<strong>in</strong>g for


480 Renal system<br />

the critically ill patient: high-dose antithromb<strong>in</strong> III <strong>in</strong> severe <strong>sepsis</strong>: a randomized<br />

controlled trial. JAMA 2001, 286:1869–1878.<br />

68 Eriksson M, Larsson A, Saldeen T, et al.: Melagatran, a low molecular weight<br />

thromb<strong>in</strong> <strong>in</strong>hibitor, counteracts endotox<strong>in</strong>-<strong>in</strong>duced haemodynamic and <strong>renal</strong><br />

dysfunctions <strong>in</strong> the pig. Thromb Haemost 1998, 80:1022–1026.<br />

69 Eisele B, Lamy M, Thijs LG, et al.: Antithromb<strong>in</strong> III <strong>in</strong> patients with severe<br />

<strong>sepsis</strong>: a randomized, placebo-controlled, double-bl<strong>in</strong>d multicenter trial plus a<br />

meta-analysis on all randomized, placebo-controlled, double-bl<strong>in</strong>d trials with<br />

antithromb<strong>in</strong> III <strong>in</strong> severe <strong>sepsis</strong>. Intensive Care Med 1998, 24:663–672.<br />

70 Bernard GR, V<strong>in</strong>cent JL, Laterre PF, et al., Recomb<strong>in</strong>ant Human Prote<strong>in</strong> C<br />

Worldwide Evaluation <strong>in</strong> Severe Sepsis (PROWESS) Study Group: Efficacy<br />

and safety <strong>of</strong> recomb<strong>in</strong>ant human activated prote<strong>in</strong> C for severe <strong>sepsis</strong>. N<br />

Engl J Med 2001, 344:699–709.<br />

71 Taylor FB Jr, Chang A, Esmon CT, et al.: Prote<strong>in</strong> C prevents the coagulopathic<br />

and lethal effects <strong>of</strong> Escherichia coli <strong>in</strong>fusion <strong>in</strong> the baboon. J Cl<strong>in</strong> Invest<br />

1987, 79:918–925.<br />

72 Humes HD, Ciesl<strong>in</strong>ski DA, Coimbra TM, et al.: Epidermal growth factor enhances<br />

<strong>renal</strong> tubule cell regeneration and repair and accelerates the recovery<br />

<strong>of</strong> <strong>renal</strong> function <strong>in</strong> postischemic <strong>acute</strong> <strong>renal</strong> <strong>failure</strong>. J Cl<strong>in</strong> Invest 1989,<br />

84:1757–1761.<br />

73 D<strong>in</strong>g H, Kopple JD, Cohen A, et al.: Recomb<strong>in</strong>ant human <strong>in</strong>sul<strong>in</strong>-like growth<br />

factor-I accelerates recovery and reduces catabolism <strong>in</strong> rats with ischemic<br />

<strong>acute</strong> <strong>renal</strong> <strong>failure</strong>. J Cl<strong>in</strong> Invest 1993, 91:2281–2287.<br />

74 Hirschberg R, D<strong>in</strong>g H: Mechanisms <strong>of</strong> <strong>in</strong>sul<strong>in</strong>-like growth factor-I-<strong>in</strong>duced accelerated<br />

recovery <strong>in</strong> experimental ischemic <strong>acute</strong> <strong>renal</strong> <strong>failure</strong>. M<strong>in</strong>er Electrolyte<br />

Metab 1998, 24:211–219.<br />

75 Killion D, Canfield C, Norman J, et al.: Exogenous epidermal growth factor<br />

fails to accelerate functional recovery <strong>in</strong> the autotransplanted ischemic pig<br />

kidney. J Urol 1993, 150:1551–1556.<br />

76 Hirschberg R, Kopple J, Lipsett P, et al.: Multicenter cl<strong>in</strong>ical trial <strong>of</strong> recomb<strong>in</strong>ant<br />

human <strong>in</strong>sul<strong>in</strong>-like growth factor I <strong>in</strong> patients with <strong>acute</strong> <strong>renal</strong> <strong>failure</strong>.<br />

Kidney Int 1999, 55:2423–2432.<br />

77 Frankl<strong>in</strong> SC, Moulton M, Sicard GA, et al.: Insul<strong>in</strong>-like growth factor I preserves<br />

<strong>renal</strong> function postoperatively. Am J Physiol 1997, 272:F257–F259.<br />

78 Takala J, Ruokonen E, Webster NR, et al.: Increased mortality associated with<br />

growth hormone <strong>treatment</strong> <strong>in</strong> critically ill adults. N Engl J Med 1999,<br />

341:785–792.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!