11.07.2014 Views

The seasonal burden of Dimethyl sulphide-derived aerosols in the ...

The seasonal burden of Dimethyl sulphide-derived aerosols in the ...

The seasonal burden of Dimethyl sulphide-derived aerosols in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>seasonal</strong> <strong>burden</strong> <strong>of</strong><br />

<strong>Dimethyl</strong> <strong>sulphide</strong>-<strong>derived</strong> <strong>aerosols</strong><br />

<strong>in</strong> <strong>the</strong> Arctic<br />

and <strong>the</strong> impact on global warm<strong>in</strong>g<br />

Bo Qu 1 *, Albert Gabric 2 , Patricia Matrai 3 and T. Hirst 4<br />

1. Lecturer, Nantong University, Science Faculty, Ch<strong>in</strong>a;<br />

2. Associate Pr<strong>of</strong>essor, School <strong>of</strong> Australian Environmental Studies, Griffith University, Australia;<br />

3. Pr<strong>in</strong>cipal Scientist, Bigelow laboratory for Ocean Sciences, USA;<br />

4. Pr<strong>in</strong>cipal Scientist, CSIRO atmospheric Research, Australia


Global climate changes have led to remarkable environmental<br />

changes <strong>in</strong> <strong>the</strong> Arctic. On <strong>the</strong> o<strong>the</strong>r hand, <strong>Dimethyl</strong> <strong>sulphide</strong><br />

(DMS) emission <strong>in</strong> Arctic Ocean plays an important role for <strong>the</strong><br />

global warm<strong>in</strong>g. <strong>The</strong> ice cover as <strong>the</strong> special feature <strong>of</strong> Arctic<br />

Ocean has significant effect on regulation <strong>of</strong> <strong>the</strong> large distribution<br />

tion<br />

<strong>of</strong> phytoplankton production. Chlorophyll-a a (CHL), as <strong>the</strong> primary<br />

production <strong>of</strong> phytoplankton, has its strong relationship with DMS<br />

<strong>derived</strong> aerosol <strong>in</strong> <strong>the</strong> ocean surface.


Arctic<br />

Ocean<br />

North Pole


Arctic Current<br />

<strong>The</strong> sunlight goes some way towards heat<strong>in</strong>g <strong>the</strong> Arctic, but heat also<br />

comes from <strong>the</strong> south with ocean currents and airstreams. One branch <strong>of</strong><br />

<strong>the</strong> Gulf Stream, called <strong>the</strong> North Atlantic Current, flows along <strong>the</strong> coast<br />

<strong>of</strong> Norway and cont<strong>in</strong>ues all <strong>the</strong> way to <strong>the</strong> Arctic Ocean.<br />

<strong>The</strong> area <strong>of</strong> <strong>the</strong> Barents Sea<br />

where <strong>the</strong> cold, relatively fresh,<br />

Arctic water meets <strong>the</strong> warm,<br />

sal<strong>in</strong>e Atlantic water is called<br />

<strong>the</strong> polar front. <strong>The</strong> polar front<br />

does not lie <strong>in</strong> a specific<br />

geographical position, but may<br />

move somewhat from year to<br />

year.


Study region: Barents Sea, 30-35E, 70-80N<br />

Three Cruises<br />

collected DMSP data<br />

from Biglow<br />

Laboratory for Ocean<br />

Sciences , ME, USA


MLD (m)<br />

Monthly Mean MLD (m)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month<br />

Ice Cover (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

Ice cover (%) (1988-2002)<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month<br />

Study region:<br />

30-35E,<br />

70-80N<br />

SST (Celsius)<br />

Monthly Mean SST (1980-1993)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Cloud Cover (Octas)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Monthly Mean Cloud Cover (1980-1993)<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month<br />

Month<br />

Speed (m/s)<br />

Monthly Mean W<strong>in</strong>d Speed (1980-1993)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month<br />

PAR (W/m^2)<br />

1998-2002 Mean PAR (1998-2002)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

73 103 133 163 193 223 253<br />

Day <strong>of</strong> year


<strong>The</strong> comparisons for <strong>the</strong> calibrated model results and <strong>the</strong> orig<strong>in</strong>al<br />

SeaWiFS data for 1998. Due to <strong>the</strong> fitness function is calculated<br />

by us<strong>in</strong>g negative value with maximum optimization rule<br />

applied, hence, <strong>the</strong> closer to zero, <strong>the</strong> better <strong>the</strong> fitness.<br />

Year 1998 had its best fitness <strong>of</strong> -2.6758, while <strong>the</strong> 5 years<br />

mean (from year 1998 to 2002) also achieved quite high fitness<br />

(-4.4098).<br />

CHL (mg/m^3)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1998 GA calibration for CHL Comparison<br />

( k4=0.00002106, k23=0.3157, Ik=17.8188, no=450.73, k19=0.0084, k20=0.012)<br />

fitness=-2.6758<br />

CHL(SeaWiFS)<br />

CHL(Model)<br />

0<br />

3/ 7 3/ 31 4/ 24 5/ 18 6/ 11 7/ 5 7/ 29 8/ 22 9/ 15


CHL and DMS <strong>in</strong> 1999 <strong>in</strong> <strong>the</strong> study region<br />

CHL<br />

4<br />

DMS<br />

10<br />

CHL (mg/m^3)<br />

3<br />

2<br />

1<br />

8<br />

6<br />

4<br />

2<br />

DMS (nM)<br />

0<br />

0<br />

1 49 97 145 193 241 289 337<br />

Day <strong>of</strong> year<br />

CHL and DMS <strong>in</strong> 2000 <strong>in</strong> <strong>the</strong> study region<br />

CHL<br />

CHL (mg/m^3)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

DMS<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

DMS (nM)<br />

1 49 97 145 193 241 289 337<br />

Day <strong>of</strong> year<br />

CHL and DMS <strong>in</strong> 2001 <strong>in</strong> <strong>the</strong> study region<br />

CHL<br />

4<br />

DMS<br />

15<br />

CHL (mg/m^3)<br />

3<br />

2<br />

1<br />

10<br />

5<br />

DMS (nM)<br />

0<br />

0<br />

1 49 97 145 193 241 289 337<br />

Day <strong>of</strong> year


CHL(mg/m^3)<br />

6<br />

4<br />

2<br />

0<br />

CHL and DMS <strong>in</strong> 1998<br />

(5 days later than <strong>the</strong> first DMS bloom, 45 days to <strong>the</strong> peak DMS)<br />

CHL<br />

DMS(nmol/l<br />

1/1 2/18 4/7 5/25 7/12 8/29 10/16 12/3<br />

0.12<br />

0.08<br />

0.04<br />

0<br />

DMS(nmol/L)<br />

CHL(mg/m^3)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

CHL and DMS <strong>in</strong> 2002<br />

(4 days later than <strong>the</strong> first DMS bloom and 68 days to <strong>the</strong> peak DMS)<br />

CHL<br />

DMS(nmol/l<br />

1/1 2/18 4/7 5/25 7/12 8/29 10/16 12/3<br />

0.2<br />

0.1<br />

0<br />

DMS(nmol/L)


<strong>The</strong> spr<strong>in</strong>g blooms <strong>of</strong> phytoplankton (CHL peaks) were gradually<br />

shifted ahead from 17th May to 5th May dur<strong>in</strong>g <strong>the</strong> 5 years. This<br />

is due to <strong>the</strong> <strong>in</strong>creased SST and <strong>the</strong> earlier ice melt<strong>in</strong>g each year<br />

happened <strong>in</strong> <strong>the</strong> study region. <strong>The</strong> time lags between <strong>the</strong> CHL<br />

blooms and DMS peak blooms are <strong>in</strong>creased from 45 days to 68<br />

days <strong>in</strong> <strong>the</strong> 5 years. It is <strong>in</strong>terest<strong>in</strong>g to see that year 1998 had its<br />

DMS first blooms <strong>in</strong> spr<strong>in</strong>g a few days before CHL bloom while <strong>in</strong><br />

o<strong>the</strong>r years, DMS had its first bloom a few days after <strong>the</strong> CHL<br />

spr<strong>in</strong>g bloom. <strong>The</strong> reason could be that <strong>the</strong> higher ice cover <strong>in</strong><br />

year 1998 <strong>in</strong> south part <strong>of</strong> <strong>the</strong> study region could generate more<br />

and earlier DMS from <strong>the</strong> ice algal when ice started melt<strong>in</strong>g <strong>in</strong><br />

spr<strong>in</strong>g .


5<br />

GA Calibration for 98-02 mean CHL for zonal 70-80N :<br />

k4=0.00005501, k23=0.4964, ik=11.3997, no=536.88,<br />

k19=0.0424, k20=0.1381, fitness=-0.7598<br />

4<br />

CHL (mg/m^3)<br />

3<br />

2<br />

1<br />

CHL Model<br />

SeaWiFS<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month<br />

Before <strong>the</strong> transit climate data prediction, ano<strong>the</strong>r CHL GA<br />

calibration was carried out us<strong>in</strong>g average CHL SeaWiFS data <strong>in</strong><br />

zonal 70-80N dur<strong>in</strong>g <strong>the</strong> 5 years period: 1998-2002. <strong>The</strong><br />

excellent fitness value (-0.7598) gives better model parameter<br />

values .<br />

<strong>The</strong>re was a second smaller bloom <strong>in</strong> September due to <strong>the</strong><br />

shallower MLD and <strong>in</strong>creased w<strong>in</strong>d speed from August to<br />

September.


<strong>The</strong> transit climate data from GCM simulations for <strong>the</strong> period <strong>of</strong><br />

1960-1970 (pre-<strong>in</strong>dustry level: 1CO2) and 2078-2086 (tripled<br />

equivalent CO2: 3CO2) were obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> zonal 70-80N.<br />

SST (Celsius)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

1CO2<br />

3CO2<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Cloud Cover (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1CO2<br />

3CO2<br />

1 2 3 4 5 6 7 8 9 10 11 12


<strong>The</strong> transit climate data from GCM simulations for <strong>the</strong> period <strong>of</strong><br />

1960-1970 (pre-<strong>in</strong>dustry level: 1CO2) and 2078-2086 (tripled<br />

equivalent CO2: 3CO2) <strong>in</strong> <strong>the</strong> zonal 70-80N.<br />

100<br />

Ice Cover (%)<br />

80<br />

60<br />

40<br />

20<br />

1CO2<br />

3CO2<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

MLD (m)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1CO2<br />

3CO2<br />

1 2 3 4 5 6 7 8 9 10 11 12


Table : Mean Transit Climate Data for 1 CO2 and 3 CO2 <strong>in</strong> zonal 70-80N<br />

SST<br />

W<strong>in</strong>d<br />

Speed<br />

Cloud<br />

Cover<br />

Ice<br />

Cover<br />

MLD<br />

DMS<br />

DMS<br />

Flux<br />

1CO2<br />

-0.24<br />

4.2<br />

82.1%<br />

68.8%<br />

41.8<br />

12.1<br />

0.8<br />

3CO2<br />

0.71<br />

4.5<br />

74.7%<br />

50.3%<br />

35.3<br />

13.1<br />

1.8<br />

Increased<br />

40%<br />

3%<br />

-9%<br />

-27%<br />

-13%<br />

8%<br />

117%


CHL<br />

3<br />

2<br />

1<br />

CHL(1CO2)<br />

CHL(3CO2)<br />

0<br />

0 30 60 90 120 150 180 210 240 270 300 330 360<br />

Day <strong>of</strong> year<br />

2<br />

Z<br />

1<br />

Z(1CO2)<br />

Z(3CO2)<br />

0<br />

0 30 60 90 120 150 180 210 240 270 300 330 360<br />

Day <strong>of</strong> year<br />

DMS<br />

32<br />

28<br />

24<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

DMS(1CO2)<br />

DMS(3CO2)<br />

0 30 60 90 120 150 180 210 240 270 300 330 360<br />

Day <strong>of</strong> year<br />

3<br />

umole/m^2/d<br />

2<br />

1<br />

1xCO2 Flux<br />

3xCO2 Flux<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

m onth


DMS (nM)<br />

5 years DMS (nM) comparison <strong>in</strong> <strong>the</strong> study region<br />

1998<br />

35<br />

30<br />

1999<br />

2000<br />

25<br />

2001<br />

20<br />

2002<br />

15<br />

10<br />

5<br />

0<br />

73 89 105 121 137 153 169 185 201 217 233 249 265<br />

Day <strong>of</strong> year<br />

Monthly Mean Ice Cover and DMS <strong>in</strong> 1998 <strong>in</strong> <strong>the</strong> study region<br />

Ice Cover (%)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Ice Cover<br />

DMS<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Month<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

DMS (nM)<br />

umole/d^2/d<br />

Monthly Mean DMS Flux <strong>in</strong> Ice Free Water for Year 1998-2002 <strong>in</strong> <strong>the</strong> Study Region<br />

18<br />

16<br />

1998<br />

14<br />

1999<br />

12<br />

2000<br />

10<br />

2001<br />

8<br />

2002<br />

6<br />

4<br />

2<br />

0<br />

-2 1 2 3 4 5 6 7 8 9 10 11 12<br />

Month


Ice Cover (%)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Annual mean ice cover <strong>in</strong> <strong>the</strong> study region dur<strong>in</strong>g 1988-2002<br />

Error bar is <strong>the</strong> Standard Error <strong>of</strong> <strong>the</strong> Mean<br />

y = -0.565x + 1156.4<br />

R 2 = 0.3275<br />

0<br />

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

Year<br />

Average Ice cover <strong>in</strong> w<strong>in</strong>ter-sp<strong>in</strong>g (Nov.-Mar.) <strong>in</strong> sou<strong>the</strong>rn 70-75N, 30-35E<br />

Ice Cover (%)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

Year


We can conclude that <strong>the</strong> significant decrease <strong>of</strong><br />

ice cover and <strong>in</strong>crease <strong>of</strong> SST are <strong>the</strong> ma<strong>in</strong><br />

reason <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g DMS flux to more than<br />

100% by year 2086. This significant change <strong>in</strong><br />

<strong>the</strong> nor<strong>the</strong>rn belt would cause large impact on<br />

global warm<strong>in</strong>g.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!