11.07.2014 Views

An overview of Canadian heat stress research related to mining - SME

An overview of Canadian heat stress research related to mining - SME

An overview of Canadian heat stress research related to mining - SME

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>An</strong> <strong>overview</strong> <strong>of</strong> <strong>Canadian</strong> <strong>heat</strong> <strong>stress</strong><br />

<strong>research</strong> <strong>related</strong> <strong>to</strong> <strong>mining</strong><br />

Stephen Hardcastle, G. Kenny, & C. Allen<br />

14 th U.S./North American Mine Ventilation<br />

Symposium, Salt Lake City, Utah, June 17-20, 2012


Controlling personnel <strong>heat</strong> exposure<br />

in Canada’s deep and highly<br />

mechanized mines<br />

• Project developed in 2004<br />

• Base/precious metal industry identified <strong>heat</strong><br />

<strong>stress</strong>/management as a major challenge<br />

affecting productivity and operating costs<br />

• Project started in 2005<br />

• Current <strong>research</strong> nearing completion<br />

• Guidelines, workbook, further data analysis and<br />

“Communicating the Science” will continue in<strong>to</strong><br />

2013<br />

2


Physical and mechanical characteristics<br />

<strong>of</strong> selected mechanized <strong>mining</strong> tasks<br />

• In situ characterization – motion,<br />

loads, duration frequency, video<br />

analysis etc. <strong>of</strong> 36 subjects<br />

across six typical occupations:<br />

drilling, ore transport, bolting,<br />

shotcrete, support services<br />

• In situ measurement <strong>of</strong> energy<br />

cost (O 2 ), skin & core<br />

temperatures for the typical<br />

occupations<br />

3


General Services<br />

16% 25%<br />

14%<br />

18%<br />

27%<br />

Longhole Drilling<br />

3%<br />

6%<br />

21%<br />

23%<br />

47%<br />

Shotcrete<br />

6%<br />

4%<br />

5%<br />

43%<br />

42%<br />

Bolting<br />

10%<br />

11%<br />

19%<br />

29% 31%<br />

Ore Transport<br />

5%<br />

5%<br />

22%<br />

30%<br />

38%<br />

Rest (0-114 W)<br />

Light (115-234 W)<br />

Moderate ( 235-359 W)<br />

Heavy (360-469 W)<br />

Very Heavy (470+ W)<br />

Work intensity (Qualitative)<br />

• Non-thermally <strong>stress</strong>ful<br />

environment<br />

• 6-7 hrs video per subject<br />

• ISO 7243 classification<br />

• All groups include some “Very<br />

Heavy” work<br />

• Overall average “Light” <strong>to</strong><br />

“Moderate”<br />

• Average work <strong>to</strong> rest ratios ≈2:1<br />

through ≈7:1, maximum ≈72:1<br />

• Used <strong>to</strong> define standard exercise<br />

4


Energy & temperature (Quantitative)<br />

• Non-thermally <strong>stress</strong>ful environment<br />

• 5-6 hrs physiological moni<strong>to</strong>ring per subject<br />

• Generally confirmed video assessment<br />

• LHD opera<strong>to</strong>r upgraded <strong>to</strong> Moderate task<br />

• General Services and Bolting have highest<br />

demands at 290-330 W with peaks <strong>of</strong> 530 W<br />

• Provided foundation for controlled labora<strong>to</strong>ry<br />

tests at ≈360-400 W<br />

• Temperature pill showed core temperatures<br />

>38 C in all work categories, at varying times<br />

for up <strong>to</strong> 60 minutes in middle aged miners<br />

5


Extreme task – Mine Rescue<br />

• Cool environment (17 C/15 C dry/wet)<br />

• Simulated ramp rescue – three climbs,<br />

up <strong>to</strong> 150 kg load, 8 grade, for 250 m<br />

plus light activities and descents<br />

• Confirmed mine rescue as “Very<br />

Heavy” task for prolonged duration<br />

>470 W for > 60 minutes<br />

• Breathing apparatus, static carry and<br />

Nomex clothing adds <strong>to</strong> the severity <strong>of</strong><br />

the task<br />

• Core temperatures reached >39 C<br />

6


Labora<strong>to</strong>ry controlled environment<br />

studies<br />

• Replication <strong>of</strong> typical <strong>mining</strong> tasks<br />

• Simulation <strong>of</strong> moderate <strong>to</strong> extreme<br />

environments<br />

• Influence <strong>of</strong> clothing †<br />

• Intermittent work & recovery<br />

practices †<br />

• Combined effects <strong>of</strong> clothing,<br />

• work and humidity †<br />

• Acclimation<br />

† Study added based upon findings<br />

7


Rectal Temperature (ºC)<br />

38.5<br />

38.0<br />

37.5<br />

37.0<br />

36.5<br />

Labora<strong>to</strong>ry simulation<br />

- Environmental chamber<br />

Subjects unable <strong>to</strong> complete test<br />

Core Limit<br />

1 2 3 4 5 6<br />

0 20 40 60 80 100 120<br />

Time (min)<br />

Environment<br />

39ºC 60RH<br />

35ºC 80RH<br />

35ºC 60RH<br />

35ºC 40RH<br />

30ºC 60RH<br />

Work<br />

1: 386 W<br />

2: 360 W<br />

3: 345 W<br />

4: 227 W<br />

5: 365 W<br />

6: 285 W<br />

• 2- hr exercise<br />

pro<strong>to</strong>col<br />

• “Standard” mine<br />

gear<br />

• WBGT’s 26 <strong>to</strong><br />

34 C<br />

• Exposure more<br />

<strong>related</strong> <strong>to</strong> WBGT<br />

than t WB<br />

8


Clothing study<br />

- “Gold standard” calorimeter<br />

Semi-nude<br />

(Control)<br />

Wicking<br />

Undergarment<br />

Coveralls<br />

Full PPE<br />

Work Pant<br />

Wicking T-Shirt<br />

• Clothing<br />

• 2-3 W<br />

resolution <strong>of</strong><br />

dry and<br />

evaporative<br />

<strong>heat</strong> loss,<br />

and body<br />

<strong>heat</strong> s<strong>to</strong>rage<br />

Combined 2-layer arrangement<br />

9


Esophageal Temperature (ºC)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

Clothing study<br />

- Potential <strong>to</strong> affect <strong>heat</strong> s<strong>to</strong>rage<br />

Exercise<br />

37.66ºC<br />

37.25ºC<br />

0 15 30 45 60 75 90 105 120<br />

Time (min)<br />

Control - Shorts<br />

Undergarment only<br />

Mine gear only<br />

Mine gear + undergarment<br />

Recovery<br />

• Less <strong>heat</strong> loss with<br />

coveralls - core<br />

temperature rises<br />

continually<br />

• Sportswear similar<br />

<strong>to</strong> being naked<br />

• Coveralls s<strong>to</strong>re<br />

more <strong>heat</strong> when<br />

resting<br />

• Pant with t-shirt<br />

perform similar <strong>to</strong><br />

semi-nude control<br />

10


Work: Recovery practices<br />

- ACGIH Screening Criteria for TLV/Action Limit, ºC<br />

Demand Category<br />

(median)<br />

Allocation<br />

Light<br />

180W<br />

Moderate<br />

300W<br />

360 W<br />

Heavy<br />

415W<br />

Very Heavy<br />

520W<br />

Work/Recovery TLV AL TLV AL TLV AL TLV AL<br />

75% - 100% Work 31.0 28.0 28.0 25.0<br />

50% -75% Work 31.0 28.5 29.0 26.0 27.5 24.0<br />

25% - 50% Work: 32.0 29.5 30.0 27.0 29.0 25.5 28.0 24.5<br />

0% - 25% Work 32.5 30.0 31.5 29.0 30.5 28.0 30.0 27.0<br />

• Increased environmental conditions <strong>of</strong>fset by greater recovery<br />

11


Rectal Temperature (°C)<br />

Work: Recovery practices<br />

- Young subjects<br />

38.2<br />

38.0<br />

37.8<br />

37.6<br />

37.4<br />

37.2<br />

37.0<br />

0<br />

100% Continuous, 28.0 t wbgt<br />

75:25% (6 x 15:5 min), 29.0 t wbgt<br />

50:50% (4 x 15:15 min), 31.0 t wbgt<br />

25:75% (2 x 15:45 min), 31.5 t wbgt<br />

15 30 45 60 75 90 105 120<br />

Time (min)<br />

• Final core<br />

temperature<br />

decreases<br />

through trials<br />

• Recovery period<br />

more than<br />

compensates for<br />

the higher<br />

environmental<br />

temperature<br />

• “Active” recovery maintaining blood circulation is preferable<br />

12


Rectal Temperature (°C)<br />

Combined effects<br />

- Clothing, work practice & environment<br />

38.2<br />

38.0<br />

37.8<br />

37.6<br />

37.4<br />

37.2<br />

37.0<br />

0<br />

Hot/dry: 46 t db , 22 t wb ; Warm/wet: 33 t db , 27 t wb<br />

75:25% (6 x 15:5 min), 29.0 t wbgt<br />

15 30 45 60 75 90 105 120<br />

Time (min)<br />

• Coveralls caused<br />

highest core<br />

temperature and<br />

change in body <strong>heat</strong><br />

content<br />

• Single parameters,<br />

such as T re , taken<br />

alone may<br />

misrepresent the<br />

human/clothing<br />

system interaction<br />

with environment<br />

13


Acclimation<br />

- Adaptation and retention <strong>of</strong> thermoregula<strong>to</strong>ry changes<br />

• 2 age groups <strong>of</strong> 8 persons (20-25 yrs & 50-65 yrs)<br />

• 28 day semi-nude assessment, 14/14 days<br />

acquisition and loss performed in a 35 C/20%RH<br />

environment<br />

• Same incremental intermittent exercise pro<strong>to</strong>col<br />

followed on all 14 days <strong>of</strong> <strong>heat</strong> training<br />

• Adaptation tested on five occasions – Day 1, 7,<br />

14, 21 & 28<br />

• Other functions such as sweat production<br />

assessed on non-calorimeter days<br />

14


Acclimation<br />

- Adaption phase <strong>heat</strong> production & loss<br />

Heat Production & Total Heat Loss (W)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Baseline 300 W/m 2 350 W/m 2<br />

400 W/m 2<br />

WORK<br />

M-W<br />

Day 0<br />

Day 7<br />

Day 14<br />

HEAT<br />

LOSS<br />

GREATER<br />

HEAT<br />

LOSS<br />

• 20-25 yr subjects<br />

without any prior<br />

acclimation<br />

• Days 0-14 show<br />

progressive<br />

decrease in <strong>heat</strong><br />

retained<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min.)<br />

15


Heat Production & Total Heat Loss (W)<br />

Deacclimation<br />

- Heat production & loss<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Baseline 300 W/m 2 350 W/m 2<br />

400 W/m 2<br />

WORK<br />

M-W<br />

Day 14<br />

Day 21<br />

Day 28<br />

HEAT<br />

LOSS<br />

REDUCED<br />

HEAT<br />

LOSS<br />

• Days 14-28 show<br />

progressive loss <strong>of</strong><br />

any adaptation<br />

• Similar effects<br />

seen for<br />

evaporative <strong>heat</strong><br />

loss and core<br />

temperature<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min.)<br />

16


Change in body <strong>heat</strong> content (kJ)<br />

Acclimation<br />

- Cumulated <strong>heat</strong> s<strong>to</strong>rage<br />

Induction phase Decay phase • End <strong>of</strong> 3 rd exercise<br />

• Young subjects<br />

showed significant<br />

adaptation over 14<br />

days <strong>to</strong> exercising in<br />

the <strong>heat</strong><br />

• However, the effects<br />

<strong>of</strong> this first <strong>heat</strong><br />

training appears <strong>to</strong><br />

be short lived<br />

Day 0 Day 7 Day 14 Day 21 Day 28<br />

17


Parallel <strong>heat</strong> <strong>stress</strong> <strong>related</strong> studies for<br />

at risk populations and support<br />

• Budget within DMRC was limited<br />

• Other funding sources levered <strong>to</strong> fill gaps and<br />

extend scope<br />

• Workplace Safety Insurance Board (WSIB) <strong>of</strong><br />

Ontario<br />

• Natural Science and Engineering Research<br />

Council (NSERC), Canada<br />

• <strong>Canadian</strong> Foundation for Innovation<br />

• Precarn Inc. (Pre commercialization iICT funding agency)<br />

• University <strong>of</strong> Ottawa Research Chair<br />

18


Age, sex & health<br />

Personal fac<strong>to</strong>rs can affect how<br />

individuals respond <strong>to</strong> the <strong>heat</strong> and their<br />

ability <strong>to</strong> cool<br />

• The <strong>mining</strong> workforce in Canada is aging<br />

• Agnico (~ 40 yrs), Mine Rescue (25-62 yrs)<br />

• Older subjects may not be as fit or healthy,<br />

type-2 diabetes (T2DM) is becoming more<br />

common<br />

• Muscle and sweating capacity can diminish<br />

with age<br />

• Females typically smaller than males<br />

19


Age, sex & health<br />

Generalized results:<br />

• Young vs Middle-aged - subjects matched<br />

for fitness typically exhibit similar responses<br />

and capacities for moderate work in<br />

temperate conditions<br />

• Males vs Females - females disadvantaged<br />

by smaller body mass, greater BMI for a<br />

given workload<br />

• Young vs Middle-aged vs Old – study ongoing<br />

• Healthy vs T2DM – added comparison<br />

20


Air velocity, sweating & skin blood flow<br />

- Core <strong>heat</strong> needs <strong>to</strong> reach the skin surface<br />

• Under current <strong>mining</strong> <strong>Canadian</strong> <strong>mining</strong><br />

conditions the evaporation <strong>of</strong> sweat has great<br />

cooling potential<br />

• Skin blood flow and sweating are affected by age<br />

• Evaporation at the skin surface is affected by air<br />

velocity<br />

• A study comparing air velocities <strong>of</strong> 0.5, 1.5 & 3.0<br />

m/s for both young and older subjects is ongoing<br />

21


Biomarkers & cognitive function<br />

Heat reactions and impairment<br />

• Exercise and/or working in the <strong>heat</strong> can stimulate a<br />

<strong>stress</strong> response within the body<br />

• A study <strong>of</strong> cortisol, a steroid hormone released under<br />

<strong>stress</strong>, and interluken-6, a protein secreted <strong>to</strong> stimulate<br />

the immune system, compared their production under<br />

hot/dry and warm/wet conditions<br />

• Heat not only affects physical ability but also<br />

compromise mental capacity and thereby vigilance<br />

• <strong>An</strong>other study is evaluating the effects <strong>of</strong> sleep debt and<br />

shift work on fatigue prior <strong>to</strong> considering <strong>heat</strong> exposure<br />

22


Personnel cooling & moni<strong>to</strong>ring<br />

Specific solutions & informed management<br />

•Unsuccessful development <strong>of</strong> garment from novel<br />

labora<strong>to</strong>ry bench proven hydrophobic membrane<br />

with controlled evaporation properties<br />

• Phase change “Ice Vest” – Calorimeter based studies proved<br />

technology as a special situation countermeasure as it could<br />

extend work duration in the <strong>heat</strong><br />

•Considering all the qualifiers and modifiers a<br />

single parameter moni<strong>to</strong>r may be inadequate<br />

• A smart ambula<strong>to</strong>ry moni<strong>to</strong>r including ECG, respiration,<br />

movement, skin impedance and temperature was<br />

pro<strong>to</strong>type tested & will be part <strong>of</strong> the cognitive study<br />

23


Non-physiological studies …..<br />

• In addition <strong>to</strong> studying the mechanics <strong>of</strong> <strong>heat</strong><br />

<strong>stress</strong> it was also important for the industry <strong>to</strong><br />

understand:<br />

• How <strong>to</strong> accurately measure the environment<br />

• The cause <strong>of</strong> that environment<br />

• How <strong>to</strong> provide cooling<br />

The final objective <strong>of</strong> the DMRC funded <strong>research</strong><br />

is <strong>to</strong> produce a “design” manual detailing all the<br />

<strong>research</strong> and studies <strong>to</strong> allow mines <strong>to</strong> develop<br />

more informed <strong>heat</strong> management strategies.<br />

24


Evaluating & understanding the environment<br />

- Sources <strong>of</strong> <strong>heat</strong> and their measurement<br />

•The <strong>research</strong> included an in-depth<br />

evaluation <strong>of</strong> <strong>heat</strong> <strong>stress</strong> meters<br />

• Study showed t DB and %RH are the most<br />

reliably measured parameters<br />

• Study showed most “hybrid” meters are<br />

untraceable or are inadequate for deep mines<br />

•<strong>An</strong> assessment <strong>of</strong> <strong>heat</strong> sources showed<br />

au<strong>to</strong>compression was the primary cause<br />

<strong>of</strong> hot conditions in Canada’s deep mines<br />

• Au<strong>to</strong>compression superimposed on surface<br />

climate dictate the thermal quality <strong>of</strong> air<br />

Heat Added in Summer (No Fans, No Cooling)<br />

271 kW<br />

2% Net Heat Gain 13,693<br />

Au<strong>to</strong>compression<br />

98%<br />

13,422 kW<br />

25


Moderating the environment<br />

- Cooling strategies<br />

•The DMRC contracted BBE <strong>to</strong><br />

produce a “A design manual<br />

for <strong>Canadian</strong> mine cooling<br />

plants”<br />

• Recognizes sub-zero surface winter<br />

conditions, short summers, low rock<br />

thermal properties<br />

• Considers surface and underground<br />

mechanical installations<br />

• Produced a series <strong>of</strong> decision trees<br />

• Subject <strong>of</strong> a short-course at this<br />

symposium<br />

26


Moderating the environment<br />

- Natural cooling<br />

•Expand the concept <strong>of</strong> using “cold<br />

s<strong>to</strong>pes”<br />

•Testing <strong>of</strong> Vale’s pro<strong>to</strong>type Modular<br />

Thermal Transfer Unit (MTTU)<br />

•Recycled sea-containers with water<br />

sprays<br />

•Efficient & cheap <strong>heat</strong> transfer<br />

during winter when ice forms<br />

•Summer cooling capacity needs<br />

further development but is<br />

promising small alternative<br />

27


Summary<br />

• When completed next year, the DMRC will have spent<br />

$3.5M, almost 50% <strong>of</strong> its cash funding on “<strong>heat</strong> <strong>stress</strong>”<br />

<strong>related</strong> <strong>research</strong><br />

• The mines and others have also made significant inkind<br />

contributions, i.e. freeing up manpower for the mine<br />

based studies<br />

• The DMRC work has also resulted in the University <strong>of</strong><br />

Ottawa and others in being able <strong>to</strong> lever another $2M+<br />

<strong>of</strong> funding for parallel and supporting <strong>research</strong> activities<br />

28


Conclusions<br />

• Understanding the reaction <strong>of</strong> human/clothing systems<br />

with the environment is complex<br />

• The physiological studies supported by direct<br />

calorimetry are bringing a new knowledge <strong>to</strong> <strong>heat</strong><br />

exposure management<br />

• The initial goal <strong>of</strong> developing a “new” criteria has been<br />

replaced by gaining a greater comprehension <strong>of</strong> the<br />

fac<strong>to</strong>rs that limit existing criteria<br />

• Combined the physiological and non-physiological<br />

<strong>research</strong> is allowing <strong>Canadian</strong> mines <strong>to</strong> develop more<br />

specific work practices and solutions as applicable <strong>to</strong><br />

their individual requirements<br />

29


Acknowledgements<br />

• The miners & staff at Agnico Eagle’s Laronde mine<br />

• The Ontario Mine Rescue and mine volunteers<br />

• The labora<strong>to</strong>ry test subjects young & old<br />

• The University <strong>of</strong> Ottawa <strong>research</strong> personnel<br />

• The Deep Mining Research Consortium – without their<br />

insight, patience & funding this <strong>research</strong> may not have<br />

taken place<br />

Questions ???<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!