An overview of Canadian heat stress research related to mining - SME
An overview of Canadian heat stress research related to mining - SME
An overview of Canadian heat stress research related to mining - SME
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
<strong>An</strong> <strong>overview</strong> <strong>of</strong> <strong>Canadian</strong> <strong>heat</strong> <strong>stress</strong><br />
<strong>research</strong> <strong>related</strong> <strong>to</strong> <strong>mining</strong><br />
Stephen Hardcastle, G. Kenny, & C. Allen<br />
14 th U.S./North American Mine Ventilation<br />
Symposium, Salt Lake City, Utah, June 17-20, 2012
Controlling personnel <strong>heat</strong> exposure<br />
in Canada’s deep and highly<br />
mechanized mines<br />
• Project developed in 2004<br />
• Base/precious metal industry identified <strong>heat</strong><br />
<strong>stress</strong>/management as a major challenge<br />
affecting productivity and operating costs<br />
• Project started in 2005<br />
• Current <strong>research</strong> nearing completion<br />
• Guidelines, workbook, further data analysis and<br />
“Communicating the Science” will continue in<strong>to</strong><br />
2013<br />
2
Physical and mechanical characteristics<br />
<strong>of</strong> selected mechanized <strong>mining</strong> tasks<br />
• In situ characterization – motion,<br />
loads, duration frequency, video<br />
analysis etc. <strong>of</strong> 36 subjects<br />
across six typical occupations:<br />
drilling, ore transport, bolting,<br />
shotcrete, support services<br />
• In situ measurement <strong>of</strong> energy<br />
cost (O 2 ), skin & core<br />
temperatures for the typical<br />
occupations<br />
3
General Services<br />
16% 25%<br />
14%<br />
18%<br />
27%<br />
Longhole Drilling<br />
3%<br />
6%<br />
21%<br />
23%<br />
47%<br />
Shotcrete<br />
6%<br />
4%<br />
5%<br />
43%<br />
42%<br />
Bolting<br />
10%<br />
11%<br />
19%<br />
29% 31%<br />
Ore Transport<br />
5%<br />
5%<br />
22%<br />
30%<br />
38%<br />
Rest (0-114 W)<br />
Light (115-234 W)<br />
Moderate ( 235-359 W)<br />
Heavy (360-469 W)<br />
Very Heavy (470+ W)<br />
Work intensity (Qualitative)<br />
• Non-thermally <strong>stress</strong>ful<br />
environment<br />
• 6-7 hrs video per subject<br />
• ISO 7243 classification<br />
• All groups include some “Very<br />
Heavy” work<br />
• Overall average “Light” <strong>to</strong><br />
“Moderate”<br />
• Average work <strong>to</strong> rest ratios ≈2:1<br />
through ≈7:1, maximum ≈72:1<br />
• Used <strong>to</strong> define standard exercise<br />
4
Energy & temperature (Quantitative)<br />
• Non-thermally <strong>stress</strong>ful environment<br />
• 5-6 hrs physiological moni<strong>to</strong>ring per subject<br />
• Generally confirmed video assessment<br />
• LHD opera<strong>to</strong>r upgraded <strong>to</strong> Moderate task<br />
• General Services and Bolting have highest<br />
demands at 290-330 W with peaks <strong>of</strong> 530 W<br />
• Provided foundation for controlled labora<strong>to</strong>ry<br />
tests at ≈360-400 W<br />
• Temperature pill showed core temperatures<br />
>38 C in all work categories, at varying times<br />
for up <strong>to</strong> 60 minutes in middle aged miners<br />
5
Extreme task – Mine Rescue<br />
• Cool environment (17 C/15 C dry/wet)<br />
• Simulated ramp rescue – three climbs,<br />
up <strong>to</strong> 150 kg load, 8 grade, for 250 m<br />
plus light activities and descents<br />
• Confirmed mine rescue as “Very<br />
Heavy” task for prolonged duration<br />
>470 W for > 60 minutes<br />
• Breathing apparatus, static carry and<br />
Nomex clothing adds <strong>to</strong> the severity <strong>of</strong><br />
the task<br />
• Core temperatures reached >39 C<br />
6
Labora<strong>to</strong>ry controlled environment<br />
studies<br />
• Replication <strong>of</strong> typical <strong>mining</strong> tasks<br />
• Simulation <strong>of</strong> moderate <strong>to</strong> extreme<br />
environments<br />
• Influence <strong>of</strong> clothing †<br />
• Intermittent work & recovery<br />
practices †<br />
• Combined effects <strong>of</strong> clothing,<br />
• work and humidity †<br />
• Acclimation<br />
† Study added based upon findings<br />
7
Rectal Temperature (ºC)<br />
38.5<br />
38.0<br />
37.5<br />
37.0<br />
36.5<br />
Labora<strong>to</strong>ry simulation<br />
- Environmental chamber<br />
Subjects unable <strong>to</strong> complete test<br />
Core Limit<br />
1 2 3 4 5 6<br />
0 20 40 60 80 100 120<br />
Time (min)<br />
Environment<br />
39ºC 60RH<br />
35ºC 80RH<br />
35ºC 60RH<br />
35ºC 40RH<br />
30ºC 60RH<br />
Work<br />
1: 386 W<br />
2: 360 W<br />
3: 345 W<br />
4: 227 W<br />
5: 365 W<br />
6: 285 W<br />
• 2- hr exercise<br />
pro<strong>to</strong>col<br />
• “Standard” mine<br />
gear<br />
• WBGT’s 26 <strong>to</strong><br />
34 C<br />
• Exposure more<br />
<strong>related</strong> <strong>to</strong> WBGT<br />
than t WB<br />
8
Clothing study<br />
- “Gold standard” calorimeter<br />
Semi-nude<br />
(Control)<br />
Wicking<br />
Undergarment<br />
Coveralls<br />
Full PPE<br />
Work Pant<br />
Wicking T-Shirt<br />
• Clothing<br />
• 2-3 W<br />
resolution <strong>of</strong><br />
dry and<br />
evaporative<br />
<strong>heat</strong> loss,<br />
and body<br />
<strong>heat</strong> s<strong>to</strong>rage<br />
Combined 2-layer arrangement<br />
9
Esophageal Temperature (ºC)<br />
1.0<br />
0.8<br />
0.6<br />
0.4<br />
0.2<br />
0.0<br />
-0.2<br />
Clothing study<br />
- Potential <strong>to</strong> affect <strong>heat</strong> s<strong>to</strong>rage<br />
Exercise<br />
37.66ºC<br />
37.25ºC<br />
0 15 30 45 60 75 90 105 120<br />
Time (min)<br />
Control - Shorts<br />
Undergarment only<br />
Mine gear only<br />
Mine gear + undergarment<br />
Recovery<br />
• Less <strong>heat</strong> loss with<br />
coveralls - core<br />
temperature rises<br />
continually<br />
• Sportswear similar<br />
<strong>to</strong> being naked<br />
• Coveralls s<strong>to</strong>re<br />
more <strong>heat</strong> when<br />
resting<br />
• Pant with t-shirt<br />
perform similar <strong>to</strong><br />
semi-nude control<br />
10
Work: Recovery practices<br />
- ACGIH Screening Criteria for TLV/Action Limit, ºC<br />
Demand Category<br />
(median)<br />
Allocation<br />
Light<br />
180W<br />
Moderate<br />
300W<br />
360 W<br />
Heavy<br />
415W<br />
Very Heavy<br />
520W<br />
Work/Recovery TLV AL TLV AL TLV AL TLV AL<br />
75% - 100% Work 31.0 28.0 28.0 25.0<br />
50% -75% Work 31.0 28.5 29.0 26.0 27.5 24.0<br />
25% - 50% Work: 32.0 29.5 30.0 27.0 29.0 25.5 28.0 24.5<br />
0% - 25% Work 32.5 30.0 31.5 29.0 30.5 28.0 30.0 27.0<br />
• Increased environmental conditions <strong>of</strong>fset by greater recovery<br />
11
Rectal Temperature (°C)<br />
Work: Recovery practices<br />
- Young subjects<br />
38.2<br />
38.0<br />
37.8<br />
37.6<br />
37.4<br />
37.2<br />
37.0<br />
0<br />
100% Continuous, 28.0 t wbgt<br />
75:25% (6 x 15:5 min), 29.0 t wbgt<br />
50:50% (4 x 15:15 min), 31.0 t wbgt<br />
25:75% (2 x 15:45 min), 31.5 t wbgt<br />
15 30 45 60 75 90 105 120<br />
Time (min)<br />
• Final core<br />
temperature<br />
decreases<br />
through trials<br />
• Recovery period<br />
more than<br />
compensates for<br />
the higher<br />
environmental<br />
temperature<br />
• “Active” recovery maintaining blood circulation is preferable<br />
12
Rectal Temperature (°C)<br />
Combined effects<br />
- Clothing, work practice & environment<br />
38.2<br />
38.0<br />
37.8<br />
37.6<br />
37.4<br />
37.2<br />
37.0<br />
0<br />
Hot/dry: 46 t db , 22 t wb ; Warm/wet: 33 t db , 27 t wb<br />
75:25% (6 x 15:5 min), 29.0 t wbgt<br />
15 30 45 60 75 90 105 120<br />
Time (min)<br />
• Coveralls caused<br />
highest core<br />
temperature and<br />
change in body <strong>heat</strong><br />
content<br />
• Single parameters,<br />
such as T re , taken<br />
alone may<br />
misrepresent the<br />
human/clothing<br />
system interaction<br />
with environment<br />
13
Acclimation<br />
- Adaptation and retention <strong>of</strong> thermoregula<strong>to</strong>ry changes<br />
• 2 age groups <strong>of</strong> 8 persons (20-25 yrs & 50-65 yrs)<br />
• 28 day semi-nude assessment, 14/14 days<br />
acquisition and loss performed in a 35 C/20%RH<br />
environment<br />
• Same incremental intermittent exercise pro<strong>to</strong>col<br />
followed on all 14 days <strong>of</strong> <strong>heat</strong> training<br />
• Adaptation tested on five occasions – Day 1, 7,<br />
14, 21 & 28<br />
• Other functions such as sweat production<br />
assessed on non-calorimeter days<br />
14
Acclimation<br />
- Adaption phase <strong>heat</strong> production & loss<br />
Heat Production & Total Heat Loss (W)<br />
800<br />
700<br />
600<br />
500<br />
400<br />
300<br />
200<br />
100<br />
Baseline 300 W/m 2 350 W/m 2<br />
400 W/m 2<br />
WORK<br />
M-W<br />
Day 0<br />
Day 7<br />
Day 14<br />
HEAT<br />
LOSS<br />
GREATER<br />
HEAT<br />
LOSS<br />
• 20-25 yr subjects<br />
without any prior<br />
acclimation<br />
• Days 0-14 show<br />
progressive<br />
decrease in <strong>heat</strong><br />
retained<br />
0<br />
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />
Time (min.)<br />
15
Heat Production & Total Heat Loss (W)<br />
Deacclimation<br />
- Heat production & loss<br />
800<br />
700<br />
600<br />
500<br />
400<br />
300<br />
200<br />
100<br />
Baseline 300 W/m 2 350 W/m 2<br />
400 W/m 2<br />
WORK<br />
M-W<br />
Day 14<br />
Day 21<br />
Day 28<br />
HEAT<br />
LOSS<br />
REDUCED<br />
HEAT<br />
LOSS<br />
• Days 14-28 show<br />
progressive loss <strong>of</strong><br />
any adaptation<br />
• Similar effects<br />
seen for<br />
evaporative <strong>heat</strong><br />
loss and core<br />
temperature<br />
0<br />
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />
Time (min.)<br />
16
Change in body <strong>heat</strong> content (kJ)<br />
Acclimation<br />
- Cumulated <strong>heat</strong> s<strong>to</strong>rage<br />
Induction phase Decay phase • End <strong>of</strong> 3 rd exercise<br />
• Young subjects<br />
showed significant<br />
adaptation over 14<br />
days <strong>to</strong> exercising in<br />
the <strong>heat</strong><br />
• However, the effects<br />
<strong>of</strong> this first <strong>heat</strong><br />
training appears <strong>to</strong><br />
be short lived<br />
Day 0 Day 7 Day 14 Day 21 Day 28<br />
17
Parallel <strong>heat</strong> <strong>stress</strong> <strong>related</strong> studies for<br />
at risk populations and support<br />
• Budget within DMRC was limited<br />
• Other funding sources levered <strong>to</strong> fill gaps and<br />
extend scope<br />
• Workplace Safety Insurance Board (WSIB) <strong>of</strong><br />
Ontario<br />
• Natural Science and Engineering Research<br />
Council (NSERC), Canada<br />
• <strong>Canadian</strong> Foundation for Innovation<br />
• Precarn Inc. (Pre commercialization iICT funding agency)<br />
• University <strong>of</strong> Ottawa Research Chair<br />
18
Age, sex & health<br />
Personal fac<strong>to</strong>rs can affect how<br />
individuals respond <strong>to</strong> the <strong>heat</strong> and their<br />
ability <strong>to</strong> cool<br />
• The <strong>mining</strong> workforce in Canada is aging<br />
• Agnico (~ 40 yrs), Mine Rescue (25-62 yrs)<br />
• Older subjects may not be as fit or healthy,<br />
type-2 diabetes (T2DM) is becoming more<br />
common<br />
• Muscle and sweating capacity can diminish<br />
with age<br />
• Females typically smaller than males<br />
19
Age, sex & health<br />
Generalized results:<br />
• Young vs Middle-aged - subjects matched<br />
for fitness typically exhibit similar responses<br />
and capacities for moderate work in<br />
temperate conditions<br />
• Males vs Females - females disadvantaged<br />
by smaller body mass, greater BMI for a<br />
given workload<br />
• Young vs Middle-aged vs Old – study ongoing<br />
• Healthy vs T2DM – added comparison<br />
20
Air velocity, sweating & skin blood flow<br />
- Core <strong>heat</strong> needs <strong>to</strong> reach the skin surface<br />
• Under current <strong>mining</strong> <strong>Canadian</strong> <strong>mining</strong><br />
conditions the evaporation <strong>of</strong> sweat has great<br />
cooling potential<br />
• Skin blood flow and sweating are affected by age<br />
• Evaporation at the skin surface is affected by air<br />
velocity<br />
• A study comparing air velocities <strong>of</strong> 0.5, 1.5 & 3.0<br />
m/s for both young and older subjects is ongoing<br />
21
Biomarkers & cognitive function<br />
Heat reactions and impairment<br />
• Exercise and/or working in the <strong>heat</strong> can stimulate a<br />
<strong>stress</strong> response within the body<br />
• A study <strong>of</strong> cortisol, a steroid hormone released under<br />
<strong>stress</strong>, and interluken-6, a protein secreted <strong>to</strong> stimulate<br />
the immune system, compared their production under<br />
hot/dry and warm/wet conditions<br />
• Heat not only affects physical ability but also<br />
compromise mental capacity and thereby vigilance<br />
• <strong>An</strong>other study is evaluating the effects <strong>of</strong> sleep debt and<br />
shift work on fatigue prior <strong>to</strong> considering <strong>heat</strong> exposure<br />
22
Personnel cooling & moni<strong>to</strong>ring<br />
Specific solutions & informed management<br />
•Unsuccessful development <strong>of</strong> garment from novel<br />
labora<strong>to</strong>ry bench proven hydrophobic membrane<br />
with controlled evaporation properties<br />
• Phase change “Ice Vest” – Calorimeter based studies proved<br />
technology as a special situation countermeasure as it could<br />
extend work duration in the <strong>heat</strong><br />
•Considering all the qualifiers and modifiers a<br />
single parameter moni<strong>to</strong>r may be inadequate<br />
• A smart ambula<strong>to</strong>ry moni<strong>to</strong>r including ECG, respiration,<br />
movement, skin impedance and temperature was<br />
pro<strong>to</strong>type tested & will be part <strong>of</strong> the cognitive study<br />
23
Non-physiological studies …..<br />
• In addition <strong>to</strong> studying the mechanics <strong>of</strong> <strong>heat</strong><br />
<strong>stress</strong> it was also important for the industry <strong>to</strong><br />
understand:<br />
• How <strong>to</strong> accurately measure the environment<br />
• The cause <strong>of</strong> that environment<br />
• How <strong>to</strong> provide cooling<br />
The final objective <strong>of</strong> the DMRC funded <strong>research</strong><br />
is <strong>to</strong> produce a “design” manual detailing all the<br />
<strong>research</strong> and studies <strong>to</strong> allow mines <strong>to</strong> develop<br />
more informed <strong>heat</strong> management strategies.<br />
24
Evaluating & understanding the environment<br />
- Sources <strong>of</strong> <strong>heat</strong> and their measurement<br />
•The <strong>research</strong> included an in-depth<br />
evaluation <strong>of</strong> <strong>heat</strong> <strong>stress</strong> meters<br />
• Study showed t DB and %RH are the most<br />
reliably measured parameters<br />
• Study showed most “hybrid” meters are<br />
untraceable or are inadequate for deep mines<br />
•<strong>An</strong> assessment <strong>of</strong> <strong>heat</strong> sources showed<br />
au<strong>to</strong>compression was the primary cause<br />
<strong>of</strong> hot conditions in Canada’s deep mines<br />
• Au<strong>to</strong>compression superimposed on surface<br />
climate dictate the thermal quality <strong>of</strong> air<br />
Heat Added in Summer (No Fans, No Cooling)<br />
271 kW<br />
2% Net Heat Gain 13,693<br />
Au<strong>to</strong>compression<br />
98%<br />
13,422 kW<br />
25
Moderating the environment<br />
- Cooling strategies<br />
•The DMRC contracted BBE <strong>to</strong><br />
produce a “A design manual<br />
for <strong>Canadian</strong> mine cooling<br />
plants”<br />
• Recognizes sub-zero surface winter<br />
conditions, short summers, low rock<br />
thermal properties<br />
• Considers surface and underground<br />
mechanical installations<br />
• Produced a series <strong>of</strong> decision trees<br />
• Subject <strong>of</strong> a short-course at this<br />
symposium<br />
26
Moderating the environment<br />
- Natural cooling<br />
•Expand the concept <strong>of</strong> using “cold<br />
s<strong>to</strong>pes”<br />
•Testing <strong>of</strong> Vale’s pro<strong>to</strong>type Modular<br />
Thermal Transfer Unit (MTTU)<br />
•Recycled sea-containers with water<br />
sprays<br />
•Efficient & cheap <strong>heat</strong> transfer<br />
during winter when ice forms<br />
•Summer cooling capacity needs<br />
further development but is<br />
promising small alternative<br />
27
Summary<br />
• When completed next year, the DMRC will have spent<br />
$3.5M, almost 50% <strong>of</strong> its cash funding on “<strong>heat</strong> <strong>stress</strong>”<br />
<strong>related</strong> <strong>research</strong><br />
• The mines and others have also made significant inkind<br />
contributions, i.e. freeing up manpower for the mine<br />
based studies<br />
• The DMRC work has also resulted in the University <strong>of</strong><br />
Ottawa and others in being able <strong>to</strong> lever another $2M+<br />
<strong>of</strong> funding for parallel and supporting <strong>research</strong> activities<br />
28
Conclusions<br />
• Understanding the reaction <strong>of</strong> human/clothing systems<br />
with the environment is complex<br />
• The physiological studies supported by direct<br />
calorimetry are bringing a new knowledge <strong>to</strong> <strong>heat</strong><br />
exposure management<br />
• The initial goal <strong>of</strong> developing a “new” criteria has been<br />
replaced by gaining a greater comprehension <strong>of</strong> the<br />
fac<strong>to</strong>rs that limit existing criteria<br />
• Combined the physiological and non-physiological<br />
<strong>research</strong> is allowing <strong>Canadian</strong> mines <strong>to</strong> develop more<br />
specific work practices and solutions as applicable <strong>to</strong><br />
their individual requirements<br />
29
Acknowledgements<br />
• The miners & staff at Agnico Eagle’s Laronde mine<br />
• The Ontario Mine Rescue and mine volunteers<br />
• The labora<strong>to</strong>ry test subjects young & old<br />
• The University <strong>of</strong> Ottawa <strong>research</strong> personnel<br />
• The Deep Mining Research Consortium – without their<br />
insight, patience & funding this <strong>research</strong> may not have<br />
taken place<br />
Questions ???<br />
30