11.07.2014 Views

Download - Society for Maternal-Fetal Medicine

Download - Society for Maternal-Fetal Medicine

Download - Society for Maternal-Fetal Medicine

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Fetal</strong> Anomalies:<br />

What is the Diagnosis When the<br />

Karyotype is Normal?<br />

Mary E. Norton, MD<br />

Regional Director, Perinatal<br />

Genetic Services, Kaiser<br />

Permanente, NCal<br />

Clinical Professor, Stan<strong>for</strong>d<br />

University School of <strong>Medicine</strong>


Genetic evaluation of fetal<br />

mal<strong>for</strong>mations<br />

• Congenital anomalies are present in ~3% of<br />

live births<br />

• Many of these are identified prenatally<br />

• Usual work up includes detailed ultrasound<br />

and amniocentensis<br />

• What then??


Genetic evaluation of fetal<br />

mal<strong>for</strong>mations<br />

• Amniocentesis (karyotype) does not tell you<br />

everything about genetic disorders<br />

• A fetus is not the same as a neonate<br />

• The most important anomaly is the second<br />

anomaly<br />

• The key to diagnosis is often in the family<br />

history


Making a precise diagnosis is<br />

important <strong>for</strong> determining:<br />

• Etiology<br />

• Prognosis<br />

• Recurrence risk<br />

• Prevention / prenatal diagnosis<br />

options in future pregnancies


An amniocentesis does not tell<br />

you everything about genetic<br />

diseases


Genetic Disease<br />

• Chromosome abnormalities account <strong>for</strong><br />

about 20% of all genetic diseases<br />

• Somewhat higher prenatally,<br />

approximately one-third<br />

• Only these abnormalities are diagnosed<br />

by routine amniocentesis


Spectrum of Genetic Disease<br />

Autosomal recessive<br />

Autosomal dominant<br />

X-linked<br />

Congenital<br />

mal<strong>for</strong>mations<br />

Chromosomal


Amniocentesis<br />

• Detects chromosomal abnormalities with<br />

close to 100% accuracy<br />

• Can diagnose other genetic diseases if the<br />

DNA or biochemical basis is known and<br />

specifically tested <strong>for</strong><br />

• A routinely processed amniocentesis will<br />

not detect other genetic syndromes


Clues to determining the diagnosis<br />

when the karyotype is normal<br />

• Ultrasound findings<br />

• Details of other imaging<br />

• Gender<br />

• Family history<br />

• Family studies<br />

• Additional studies on amniotic fluid<br />

• Perinatal autopsy


Sometimes the ultrasound<br />

diagnosis is obvious…


BWS case


What is the Diagnosis?


Beckwith Wiedemann Syndrome<br />

Molecular studies done on amniotic fluid<br />

confirmed hypomethylation of KCNQ1OT,<br />

consistent with a diagnosis of BWS


Beckwith Wiedemann Syndrome<br />

• Clinical features include omphalocele,<br />

macroglossia, overgrowth, visceromegaly<br />

• Hypoglycemia in neonatal period, various<br />

malignancies in childhood<br />

• Add’l ultrasound features: polyhydramnios<br />

and large placenta<br />

• ?associated with ART


Beckwith Wiedemann Syndrome<br />

• Caused by variety of abnormalities involving<br />

imprinted genes within the chromosome 11p15.5<br />

region<br />

• Different causes of maternal genomic imprinting<br />

defect<br />

• Translocation, mutation, deletion etc<br />

• Overexpression of paternal allele<br />

• Overgrowth and malignancies in BWS patients reflect<br />

imbalance between paternal and maternal alleles


Etiology of BWS<br />

Etiology<br />

Mat translocation/inversion


Why Does it Matter?<br />

• 10-20% of prenatally diagnosed<br />

omphaloceles are due to BWS<br />

• BWS should be considered whenever an<br />

omphalocele is detected on prenatal US


Outcome of Prenatally Diagnosed<br />

Omphalocele<br />

Calvert et al, 2009: n=94<br />

• Aneuploidy 43%<br />

• Of euploid 53% other anomalies<br />

• Of liveborn isolated 93% survived<br />

28% postnatal anomalies<br />

Porter et al, 2009: n=65<br />

• Isolated defect or minor anomalies 29%<br />

• Add’l findings at birth 25%<br />

• PTD 37%


Outcome of Prenatally Diagnosed<br />

Omphalocele<br />

• Most children with BWS are neurologically<br />

normal and do well<br />

• There is a small increased risk of cancer,<br />

although most children with BWS do not<br />

develop cancer<br />

‣Making this diagnosis can be reassuring and<br />

allow more precise counseling when<br />

omphalocele is detected prenatally


Often the salient findings are<br />

difficult to detect…


Bilaterally enlarged lungs


Kidneys?


US Findings<br />

• Oligohydramnios<br />

• Enlarged,echogenic lungs (laryngeal<br />

atresia)<br />

• Ascites and body wall edema<br />

• Bilateral renal agenesis?


What is the Diagnosis?<br />

Prenatal<br />

• Oligohydramnios<br />

• Enlarged,echogenic<br />

lungs (laryngeal atresia)<br />

• Ascites and body wall<br />

edema<br />

• Bilateral renal agenesis?<br />

Postnatal<br />

• Syndactyly<br />

• Bilateral renal agenesis<br />

• Cryptophthalmos<br />

• Laryngeal atresia


Fraser Syndrome<br />

• Autosomal recessive<br />

• Clinical features include: bilateral renal<br />

agenesis, largyngeal stenosis/atresia,<br />

cryptophthalmos, syndactyly<br />

• Some heterogeneity<br />

• Should be considered in cases of bilateral<br />

renal agenesis and/or laryngeal atresia


A careful history (medical<br />

history, pregnancy history and<br />

family history) is often the key to<br />

the diagnosis


Family History<br />

parents<br />

partner<br />

PATIENT<br />

sibling<br />

children


First Degree Relatives<br />

parents<br />

partner<br />

PATIENT<br />

sibling<br />

children


Second & Third Degree Relatives<br />

uncle<br />

aunt<br />

PATIENT<br />

1 st cousins<br />

nephew<br />

niece


Second & Third Degree Relatives<br />

Parent<br />

Aunt<br />

cousins


X-Linked<br />

Disorders<br />

1/2<br />

1/4<br />

Hemophilia<br />

1/16


Case: Fetus with congenital<br />

heart defect<br />

• 29 yo G1P0 at 19 weeks<br />

• Routine ultrasound suspected<br />

congenital heart defect<br />

• Level II and fetal echo


<strong>Fetal</strong> Heart Defect<br />

Tetralogy of Fallot


<strong>Fetal</strong> Heart Defect<br />

Cleft palate<br />

Cleft palate<br />

VSD<br />

Developmental delay<br />

Tetralogy of Fallot


What is the Diagnosis?


Congenital Heart Defects<br />

• 5-10% of prenatally diagnosed heart<br />

defects are caused by a microdeletion<br />

of 22q<br />

• Typically not visible by routine<br />

karyotype, but CAN be detected with<br />

FISH or microarray CGH


del(22)(q11.2q11.2) (D22S75-)<br />

Chr 22<br />

Log2 Mean Ave Raw Ratio<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

0 10000 20000 30000 40000 50000


22q Deletion Syndrome<br />

Important prognostic implications:<br />

• Many associated anomalies, including cleft<br />

palate, developmental delay and psychiatric<br />

disorders<br />

• About 5% of cases inherited from<br />

apparently normal parent<br />

• If so, recurrence risk is 50% (vs 2-3% <strong>for</strong><br />

isolated heart defect)<br />

• Prenatal diagnosis very accurate


Etiology of<br />

Congenital Heart Defects<br />

• Isolated birth defect (most common)<br />

• Aneuploidy (trisomy 13, 18, 21, 45X)<br />

• Single gene disorders<br />

• Microdeletion syndromes (22q, others)<br />

• <strong>Maternal</strong> diabetes<br />

• Teratogen exposure


Etiology of Congenital Heart<br />

Defects<br />

McBrien et al, 2009<br />

n=272 cases of congenital heart defects<br />

• 73 diagnosed prenatally<br />

• 30/73 (41%) died < 28 days<br />

• Lethal trisomies<br />

• 15% prenatal dx<br />

• 2% postnatal dx


Tetralogy of Fallot<br />

Poon et al, 2007<br />

• N=129 cases of TOF in one center from 1998-<br />

2005<br />

• 65/129 other anomalies<br />

• 112 fetuses with chromosomal analysis<br />

• 55/112 (49%) abnormal<br />

• 15/112 (13%) 22q11 microdeletion<br />

• 77% survival in continuing pregnancies<br />

• Prognosis <strong>for</strong> fetal cases much less favorable than<br />

in postnatal series


Evaluation of<br />

Congenital Heart Defects<br />

• Level 2 OB Ultrasound<br />

• Echocardiogram<br />

• Karyotype (amnio or CVS)<br />

• 22q microdeletion studies<br />

(FISH vs aCGH)<br />

• Evaluate family (AD disorders)<br />

• Rule out maternal diabetes, other<br />

teratogen exposure


Congenital Heart Defects<br />

ETIOLOGY RR MANAGEMENT<br />

Isolated CHD 3% NT/fetal echo<br />

Trisomy 1% CVS/Amniocentesis<br />

Diabetes Minimal Diabetic control<br />

Ultrasound<br />

Teratogens Varies Adjust medications<br />

AD Form 50% Gamete donor<br />

AmnioDNA testing<br />

AR Syndromes 25% Gamete donor<br />

AmnioDNA testing


Case: Anhydramnios<br />

• 34 yo at 18 weeks gestation<br />

• Referred <strong>for</strong> oligohydramnios


Bilateral Renal Agenesis<br />

“Lying down adrenal”


Renal Agenesis<br />

• Most commonly isolated<br />

• Can occur as part of some genetic<br />

syndromes (Fraser syndrome)<br />

• Can also be autosomal dominant,<br />

sometimes with co-existing maternal<br />

Mullerian (uterine) anomalies<br />

• In 9% of cases, a 1st degree relative will<br />

have unilateral renal agenesis


Left Kidney<br />

<strong>Maternal</strong> evaluation


Right<br />

<strong>Maternal</strong> evaluation


Renal Agenesis<br />

• Empiric recurrence risk of BRA is 3-4%<br />

• With obligate heterozygote parent (eg<br />

unilateral renal agenesis, Mullerian<br />

anomalies), recurrence risk estimated at<br />

15-20%<br />

• Some familial cases are autosomal<br />

dominant with variable penetrance


Case: <strong>Fetal</strong> Hydrops<br />

• 29 y.o. G1P0 at 18 weeks<br />

• Initially seen <strong>for</strong> abnormal quad screen<br />

(1/53 chance of DS)<br />

• Ultrasound demonstrated hydrops<br />

• Counseled about grim prognosis,<br />

termination offered<br />

‣Second opinion requested


Hydrops


MCA Peak Systolic Velocity>1.55 MoM


<strong>Fetal</strong> Hydrops<br />

Evaluation:<br />

• US: structurally normal fetus with<br />

hydrops<br />

• O positive, Antibody screen negative<br />

• SE Asian MCV 92<br />

• History of exposure to 2 nephews with<br />

Fifth’s disease ~ 1 month prior


<strong>Fetal</strong> Hydrops<br />

Evaluation:<br />

• US: structurally normal fetus with<br />

hydrops<br />

• O positive, Antibody screen negative<br />

• SE Asian MCV 92<br />

• History of exposure to 2 nephews with<br />

Fifth’s disease ~ 1 month prior


Nonimmune Hydrops<br />

ETIOLOGY PROGNOSIS RR<br />

Chromosomal Poor ~ 1%<br />

Cardiac Poor 2-3%<br />

Other Structural Poor varies<br />

Hematologic Poor 25%<br />

(e.g. thalassemia)<br />

Metabolic Poor 25%<br />

Parvovirus UsuGood ~ 0%


Follow-up US


A fetus is not the same as a<br />

neonate<br />

=


A fetus is not the same as a<br />

neonate<br />

The prognosis is typically worse due to:<br />

• Undetected, additional anomalies<br />

• More likely to be syndromic<br />

• More likely to be associated with aneuploidy<br />

• Hidden mortality of most severe cases


Chromosome abnormalities are<br />

more common with prenatal vs<br />

postnatal mal<strong>for</strong>mations<br />

• Dysmorphism and other anomalies that are<br />

not identified prenatally<br />

• In utero mortality of aneuploidy syndromes<br />

• DS: 30%<br />

• T18: 70%


In Utero Mortality of Aneuploidy


A fetus is not the same as a<br />

neonate<br />

The prognosis in some cases is better:<br />

• Sex chromosome aneuploidy<br />

• Better prognosis prenatally due to postnatal<br />

ascertainment bias


The most important anomaly is<br />

the second anomaly


The hardest anomaly to detect is<br />

the second anomaly


Congenital diaphragmatic hernia


Congenital diaphragmatic hernia and<br />

mild ventriculomegaly


Mild Ventriculomegaly<br />

• Ventricles typically 7 mm<br />

• Mild VM: 10-15 mm<br />

• Usually normal outcome<br />

when isolated, esp in males,<br />

with vents


Fryns Syndrome<br />

• Autosomal recessive disorder<br />

• Clinical features:<br />

• Congenital diaphragmatic hernia (>80%)<br />

• Distal digital hypoplasia<br />

• Facial dysmorphism<br />

• Heart defects, clefts, renal anomalies, CNS<br />

abnormalities


Fryns Syndrome<br />

Important diagnosis to make!!<br />

• Survival is rare<br />

• Autosomal recessive: 25% RR<br />

• Can have Fryns syndrome without CDH<br />

• Recurrence may be difficult to detect<br />

• All survivors have mental retardation


CDH: Outcomes of Prenatal vs<br />

Postnatal Cases<br />

Abdullah et al 2009<br />

• 2173 CDH cases repaired in US<br />

• Survival 90%<br />

Logan et al, 2007<br />

• 763 prenatal cases in 11 centers in US<br />

• Survival 79%<br />

Bianco et al, 2005<br />

• N=149 cases referred to UCSF<br />

• Survival 58%


Survival of CDH Cases<br />

Logan et al, J Perinatol, 2007<br />

• Review of 13 reports from 11 centers<br />

• Survival rates:<br />

• Overall 603/763 79%<br />

• Isolated 560/661 85%<br />

• Other abn 43/102 40%


Survival of fetuses with CDH<br />

Author prenatal postnatal isolated other<br />

dx dx anomalies<br />

Witters(‘01) 31% -- 52% 7%<br />

Wenstrom(‘91) 55% 6%<br />

Cannon(‘96) 35% 78% 76% 38%


Congenital diaphragmatic hernia<br />

• Survival in postnatal series is greater than<br />

prenatal<br />

• Largely due to undetected syndromic<br />

prenatal cases<br />

• For many, additional findings may be<br />

difficult to detect prenatally<br />

‣What constitutes a second anomaly?


Fryns syndrome cases at UCSF<br />

Congenital diaphragmatic hernia and…<br />

• Mild ventriculomegaly<br />

• Single umbilical artery<br />

• Unilateral renal agenesis


Survival of Fetuses with CDH<br />

and Second Anomalies<br />

Anomaly Survival p-value vs isolated<br />

Isolated 87/149 (58%)<br />

SUA 1/5 (20.0 %) 0.08<br />

Other 7/30 (23.3 %) 0.001<br />

Cardiac 1/6 (16.6 %) 0.04<br />

GI 0/1 (0 %) 0.23<br />

Renal 5/10 (50.0 %) 0.60<br />

Bianco et al, UCSF, 2005


Congenital Diaphragmatic Hernia<br />

and Associated Abnormalities<br />

Stoll et al, 2008<br />

• N= 115 births with CDH noted<br />

• 70 (61%) had associated mal<strong>for</strong>mations<br />

• Chromosomal abnormalities (n = 21, 18%)<br />

• Non-chromosomal syndromes (n=30, 26%)<br />

• Fryns syndrome, fetal alcohol syndrome, De Lange<br />

syndrome, CHARGE syndrome, Fraser syndrome,<br />

Goldenhar syndrome, Smith-Lemli-Opitz syndrome,<br />

multiple pterygium syndrome, Noonan syndrome, and<br />

spondylocostal dysostosis); mal<strong>for</strong>mation sequences<br />

(laterality sequence, ectopia cordis); mal<strong>for</strong>mation<br />

complexes (limb body wall complex) and non<br />

syndromic multiple congenital anomalies (MCA)


Case: Mild ventriculomegaly<br />

• 30 yo G1P0<br />

• Mild ventriculomegaly on routine 18<br />

wk scan


Agenesis of corpus callosum


Female fetus


Agenesis of corpus<br />

callosum<br />

Normal corpus callosum


Diagnoses on US & <strong>Fetal</strong> MRI<br />

Mild ventriculomegaly<br />

Agenesis of corpus callosum<br />

Subependymal heterotopia<br />

Frontal dysplasia<br />

Dysplastic cerebellum<br />

Microphthalmia


What is the Diagnosis?


Diagnosis: Aicardi Syndrome<br />

• Multiple anomalies, particularly CNS<br />

• Severe neurologic impairment<br />

• X-linked dominant, lethal in males<br />

• All cases due to new mutations<br />

• minimal recurrence risk<br />

• MRI changed counseling about<br />

prognosis and recurrence risk


MRI <strong>for</strong> CNS abnormalities<br />

Levine et al, Obstet Gynecol, 1999<br />

• 66 confirmed CNS abnormalities by sonogram<br />

• MRI findings changed diagnosis in 26/66 (40%)<br />

Simon et al, A J Neuroradiol 2000<br />

• 66 cases of fetal MRI <strong>for</strong> CNS abnormalities<br />

• 24/52 (46%) managed differently based on MRI<br />

findings


MRI <strong>for</strong> CNS abnormalities<br />

MRI findings not detected by ultrasound included<br />

(Levine et al):<br />

• Partial or complete agenesis corpus callosum<br />

• Porencephaly<br />

• Hemorrhage<br />

• Tethered cord<br />

• Cortical gyral abnormality<br />

• Cortical cleft<br />

• Midbrain abnormality<br />

• Partial or complete absence of septum pellucidum


Mild Ventriculomegaly<br />

• Associated with increased risk of other<br />

anomalies<br />

• Usually normal outcome when<br />

ISOLATED<br />

• Early manifestation of other CNS<br />

anomalies, in some cases<br />

• Broad spectrum of outcomes


Evaluation of Mild VM<br />

• Level 2 OB Ultrasound<br />

• R/O other anomalies<br />

• Gender ?<br />

• Family History<br />

• Amniocentesis<br />

• Karyotype<br />

• Viral studies (Toxoplasmosis, CMV)<br />

• MRI<br />

• R/O other CNS abnormalities<br />

• Subtle anomalies not detectable by US


Perinatal Autopsy<br />

• Perinatal autopsy has been demonstrated to<br />

provide further diagnostic in<strong>for</strong>mation in<br />

40-50% of cases<br />

• MRI may be useful as an adjunct to autopsy<br />

in some situations<br />

Antonsson et al, 2008; Amini et al, 2006


Take Home Messages<br />

• Even if US anomaly is felt to be lethal,<br />

a full evaluation is important!<br />

• New genetic tests become available<br />

almost daily

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!