13.07.2014 Views

Fall 2002 - Course 3 Solutions

Fall 2002 - Course 3 Solutions

Fall 2002 - Course 3 Solutions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fall</strong> <strong>2002</strong><br />

<strong>Course</strong> 3 solutions<br />

Question #1<br />

Answer: E<br />

b g<br />

b g b g<br />

µ 4 = −s' 4 / s 4<br />

d<br />

4<br />

= - - e / 100<br />

4<br />

1-<br />

e / 100<br />

4<br />

e / 100<br />

=<br />

-<br />

4<br />

1 e / 100<br />

4<br />

e<br />

=<br />

100-<br />

e<br />

4<br />

= 1202553 .<br />

i


Question # 2<br />

Answer: A<br />

q<br />

b g<br />

i<br />

x<br />

= q<br />

b g<br />

b g<br />

τ<br />

x<br />

L<br />

N<br />

M<br />

τ µ<br />

= q x ×<br />

µ<br />

ln p′<br />

ln p<br />

big<br />

bτg<br />

( i)<br />

x<br />

bτg<br />

x<br />

O<br />

Q<br />

P<br />

q<br />

P =<br />

b g<br />

τ<br />

x<br />

L<br />

NM<br />

b g b g b g b g<br />

τ 1 2 3<br />

x x x x<br />

ln e<br />

ln<br />

µ = µ + µ + µ = 15.<br />

b g<br />

τ<br />

x<br />

b g<br />

− µ τ<br />

q = 1− e = 1−<br />

e<br />

=0.7769<br />

b g<br />

q x<br />

2<br />

−15<br />

.<br />

e<br />

−µ<br />

-<br />

big<br />

b g<br />

µ τ<br />

2<br />

b07769 . gµ<br />

b g b05 . gb07769<br />

. g<br />

µ<br />

b τ<br />

15 .<br />

= =<br />

= 0.<br />

2590<br />

O<br />

QP


Question # 3<br />

Answer: D<br />

3<br />

2 2<br />

A[ 60] v 2p[ 60] q[ 60]<br />

2<br />

= × × +<br />

B B B +<br />

pay at end live then die<br />

of year 3 2 years in year 3<br />

4<br />

+ v × 3p[ 60]<br />

× q60+<br />

3<br />

pay at end live then die<br />

of year 4 3 years in year 4<br />

1<br />

1<br />

= 1− 0. 09 1− 011 . 013 . + 1−0. 09 1− 011 . 1−<br />

013 . 015 .<br />

3 4<br />

103 .<br />

103 .<br />

b g<br />

b gb gb g<br />

b g<br />

b gb gb gb g<br />

= 019 .<br />

Question # 4<br />

Answer: B<br />

ax = a + E a<br />

x x x+<br />

a<br />

5<br />

x: 5<br />

:5 5 5<br />

b g<br />

−0.<br />

07 5<br />

1 e<br />

= − = 4.<br />

219<br />

0.<br />

07<br />

b g<br />

− 0.<br />

07 5<br />

Ex = e = 0705 .<br />

1<br />

a x+ 5 = =<br />

0.<br />

08<br />

∴ a x = 4. 219 + 0. 705 12. 5 = 13.<br />

03<br />

, where 0. 07 = µ + δ for t < 5<br />

12. 5, where 0. 08 = µ + δ for t ≥ 5<br />

b gb g


Question # 5<br />

Answer: E<br />

The distribution of claims (a gamma mixture of Poissons) is negative binomial.<br />

EbNg = E∧dEcN Λhi = E∧bΛg<br />

= 3<br />

VarbNg = E∧dVarcN Λhi + Var∧d<br />

EcN<br />

Λ hi<br />

= E∧bΛg+ Var∧bΛg = 6<br />

rβ = 3<br />

rβb1+ βg<br />

= 6<br />

+ βg = 6 / 3 = 2 ; β = 1<br />

rβ = 3<br />

r = 3<br />

−r<br />

b g .<br />

p0 = 1+ β = 0125<br />

rβ<br />

p1 = = 01875 .<br />

r+<br />

1<br />

1+<br />

β<br />

g<br />

b g = p +<br />

Prob at most 1 p<br />

= 0.<br />

3125<br />

0 1<br />

Question # 6<br />

Answer: A<br />

EbSg EbNg Eb Xg<br />

= × = 110× 1101 , = 121110 ,<br />

2<br />

b g b g b g b g b g<br />

Var S = E N × Var X + E X × Var N<br />

= 110× 70 + 1101 × 750<br />

=<br />

Std Dev S<br />

909, 689,<br />

750<br />

2 2<br />

b g = 30161 ,<br />

bS<br />

< g = cZ<br />

< b -<br />

= Pr bZ < - 0. 70g<br />

= 0.<br />

242<br />

g<br />

Pr 100, 000 Pr 100, 000 121110 , / 30161 , h where Z has standard normal distribution


Question # 7<br />

Answer: C<br />

This is just the Gambler’s Ruin problem, in units of 5,000 calories.<br />

Each day, up one with p = 0. 45; down 1 with q = 055 .<br />

Will Allosaur ever be up 1 before being down 2?<br />

e<br />

e<br />

b<br />

b<br />

g<br />

g<br />

1−<br />

055 . / 045 . 2<br />

P 2 =<br />

∧<br />

1−<br />

055 . / 0.<br />

45 3<br />

∧<br />

j<br />

j<br />

= 0598 .<br />

Or, by general principles instead of applying a memorized formula:<br />

Let P 1 = probability of ever reaching 3 (15,000 calories) if at 1 (5,000 calories).<br />

Let P 2 = probability of ever reaching 3 (15,000 calories) if at 2 (10,000 calories).<br />

From either, we go up with p = 0. 45, down with q = 055 .<br />

P(reaching 3) = P(up) × P(reaching 3 after up) + P(down) × P(reaching 3 after down)<br />

P2 = 0. 45 × 1+ 0.<br />

55×<br />

P1<br />

P1 = 0. 45× P2 + 0. 55 × 0 = 0.<br />

45 × P2<br />

P2 = 0. 45 + 0. 55× P1 = 0. 45 + 0. 55 × 0. 45× P2 = 0. 45 + 0.<br />

2475P2<br />

P 2 = 045 . / 1− 0. 2475 = 0598 .<br />

b g<br />

Here is another approach, feasible since the number of states is small.<br />

Let states 0,1,2,3 correspond to 0; 5,000; 10,000; ever reached 15,000 calories. For purposes of<br />

this problem, state 3 is absorbing, since once the allosaur reaches 15,000 we don’t care what<br />

happens thereafter.<br />

The transition matrix is<br />

L<br />

N<br />

M<br />

1 0 0 0<br />

0. 55 0 0.<br />

45 0<br />

0 0.55 0 0.45<br />

0 0 0 1<br />

Starting with the allosaur in state 2;<br />

[0 0 1 0] at inception<br />

[0 0.55 0 0.45] after 1<br />

[0.3025 0 0.2475 0.45] after 2<br />

[0.3025 0.1361 0 0.5614] after 3<br />

[0.3774 0 0.0612 0.5614] after 4<br />

[0.3774 0.0337 0 0.5889] after 5<br />

[0.3959 0 0.0152 0.5889] after 6<br />

By this step, if not before, Prob(state 3) must be converging to 0.60. It’s already closer to 0.60<br />

than 0.57, and its maximum is 0.5889 + 0.0152<br />

O<br />

Q<br />

P


Question # 8<br />

Answer: B<br />

b g ≤ .<br />

The investor will receive at least 1.5 if and only if C 5 0<br />

b g<br />

b g<br />

b gb g = ,<br />

C 5 − C 1 is normally distributed with mean 4 0 0<br />

variance = (4)(0.01) = 0.04, standard deviation = 0.2.<br />

c b g b g h c b g b g<br />

Pr dcCb5g<br />

Cb1gh<br />

/ 0. 2 0. 05 / 0.<br />

2i<br />

1 Φ b025 . g 04 .<br />

Pr C 5 ≤ 0C 1 = 0. 05 = Pr C 5 − C 1 ≤ − 005 . =<br />

= − ≤ −<br />

= − =<br />

h


Question # 9<br />

Answer: D<br />

b gb gb g =<br />

Per 10 minutes, find coins worth exactly 10 at Poisson rate 05 . 0.<br />

2 10 1<br />

g<br />

g<br />

b g<br />

b g<br />

b g<br />

g<br />

b g<br />

Per 10 minutes, f 0 = 0. 3679 F 0 = 0.<br />

3679<br />

f<br />

f<br />

f<br />

1 = 0. 3679 F 1 = 0.<br />

7358<br />

2 = 01839 . F 2 = 0.<br />

9197<br />

3 = 00613 . F 3 = 09810 .<br />

Let Period 1 = first 10 minutes; period 2 = next 10.<br />

Method 1, succeed with 3 or more in period 1; or exactly 2, then one or more in period 2<br />

P = 1− F 2 + f 2 1− F 0 = 1− 09197 . + 01839 . 1−0.<br />

3679<br />

c b gh b gc b gh b g b gb g<br />

= 01965 .<br />

g<br />

b2g b0g<br />

b gb g<br />

Method 2: fail in period 1 if < 2; Pr ob = F 1 = 0.<br />

7358<br />

fail in period 2 if exactly 2 in period 1, then 0; Prob = f f<br />

= 01839 . 0. 3679 = 0.<br />

0677<br />

Succeed if fail neither period; Pr ob = 1− 0. 7358 − 0.<br />

0677<br />

= 01965 .<br />

(Method 1 is attacking the problem as a stochastic process model; method 2 attacks it as a ruin<br />

model.)


Question # 10<br />

Answer: C<br />

Which distribution is it from?<br />

0.25 < 0.30, so it is from the exponential.<br />

Given that Y is from the exponential, we want<br />

Pr Y ≤ y = F y = .<br />

b g b g 0 69<br />

-<br />

1- e y θ<br />

= 0.<br />

69<br />

-<br />

1- e y 0. 5<br />

= 069 . since mean = 0.5<br />

− y = ln b1 − 0. 69g<br />

= − 1171 .<br />

0.<br />

5<br />

y = 05855 .<br />

Question # 11<br />

Answer: D<br />

Use Mod to designate values unique to this insured.<br />

b g b g b g b g<br />

60 60 60 b g<br />

a&& = 1− A / d = 1− 0. 36933 / 0. 06 / 106 . = 111418 .<br />

60 60<br />

1000P = 1000A / a&& = 1000 036933 . / 111418 . = 3315 .<br />

d i b gb g<br />

Mod Mod Mod<br />

A60 = v q60 + 1<br />

p60 A61<br />

= 0. 1376 0 8624 0 383 0 44141<br />

106 .<br />

+ . . = .<br />

Mod<br />

Mod<br />

d 60 i b g<br />

a&& = 1− A / d = 1− 044141 . / 0. 06/ 106 . = 9.<br />

8684<br />

Mod Mod Mod<br />

0 60 60 60<br />

E L = 1000 A − P a&&<br />

d<br />

= 1000 0. 44141−<br />

003315 . 98684 .<br />

= 114.<br />

27<br />

i<br />

b<br />

g


Question # 12<br />

Answer: D<br />

The prospective reserve at age 60 per 1 of insurance is A 60 , since there will be no future<br />

premiums. Equating that to the retrospective reserve per 1 of coverage, we have:<br />

&&<br />

A P s 40:<br />

10 Mod<br />

60 = 40 + P50 s&&<br />

− k<br />

E<br />

5010 : 20 40<br />

A<br />

60<br />

10 50<br />

1<br />

A a&&<br />

a&&<br />

A<br />

40 4010 : Mod 50: 10 :<br />

= × + P50<br />

−<br />

a&&<br />

E E E E<br />

40<br />

10 40 10 50<br />

10 50<br />

40 20<br />

20 40<br />

0.<br />

16132 7.<br />

70<br />

7.<br />

57 0.<br />

06<br />

0.<br />

36913 = × + P Mod<br />

50 −<br />

14.<br />

8166 0. 53667 0.<br />

51081 0.<br />

51081 0.<br />

27414<br />

b gb g<br />

0. 36913 = 0. 30582 + 14. 8196 − 0.<br />

21887<br />

1000 P Mod 50 = 19.<br />

04<br />

P Mod<br />

50<br />

Alternatively, you could equate the retrospective and prospective reserves at age 50. Your<br />

equation would be:<br />

1<br />

A a&&<br />

A<br />

Mod<br />

40 4010 : :<br />

A50 - P50 a&&<br />

= · -<br />

50:<br />

10<br />

a&&<br />

E E<br />

1<br />

where A 40 : 10<br />

40<br />

10 40<br />

= A40−10E40 A50<br />

40 10<br />

10 40<br />

b gb g<br />

= 016132 . − 053667 . 0.<br />

24905<br />

= 0.<br />

02766<br />

d ib g<br />

016132 . 7.<br />

70 0.<br />

02766<br />

0. 24905 − P Mod<br />

50 7.<br />

57 = × −<br />

14.<br />

8166 0.<br />

53667 0.<br />

53667<br />

b1000gb014437<br />

1000P Mod . g<br />

50 = = 19.<br />

07<br />

7.<br />

57<br />

Alternatively, you could set the actuarial present value of benefits at age 40 to the actuarial<br />

present value of benefit premiums. The change at age 50 did not change the benefits, only the<br />

pattern of paying for them.<br />

Mod<br />

40 40 4010 : 50 10 40 50:<br />

10<br />

A = P a&&<br />

+ P E a&&<br />

b g d ib gb g<br />

F 016132 .<br />

0.<br />

16132 = 7. 70 50 0. 53667 7.<br />

57<br />

H G I<br />

14.<br />

8166 K J + P Mod<br />

b1000gb0 07748<br />

1000P Mod . g<br />

50 = = 19.<br />

07<br />

4.<br />

0626


Question # 13<br />

Answer: A<br />

b g b g b g<br />

2 2 τ<br />

x x x<br />

d = q × l = 400<br />

b g<br />

d x<br />

1<br />

b2g<br />

b g<br />

= 0.<br />

45 400 = 180<br />

q′ x =<br />

l<br />

p x<br />

2<br />

b g<br />

2<br />

dx<br />

b g 1<br />

x − db g<br />

.<br />

τ<br />

x<br />

b g<br />

. .<br />

′ = 1− 0 488 = 0512<br />

400<br />

= = 0 488<br />

1000−<br />

180<br />

Note: The UDD assumption was not critical except to have all deaths during the year so that<br />

1000 - 180 lives are subject to decrement 2.


Question #14<br />

Answer: D<br />

Use “age” subscripts for years completed in program. E.g., p 0 applies to a person newly hired<br />

(“age” 0).<br />

Let decrement 1 = fail, 2 = resign, 3 = other.<br />

b g b g b g<br />

1 1 1 1 1 1<br />

0 4 1 5 2 3<br />

′<br />

b2g = 1 2<br />

0 5 1 ′ = 1 2<br />

,<br />

b g<br />

3 , 2 ′<br />

b g<br />

= 1 8<br />

′<br />

b3g = 1 3<br />

0 10 1 ′ = 1 3<br />

,<br />

b g<br />

9 , 2 ′<br />

b g<br />

= 1 4<br />

Then q′ = , q′ = , q′ =<br />

q q q<br />

q q q<br />

bτg b gb gb g<br />

bτg b gb gb g<br />

bτg b gb gb g<br />

τ<br />

τ<br />

τ<br />

0 = 1 = =<br />

2<br />

This gives p 0 = 1− 1/ 4 1− 1/ 5 1− 1/ 10 = 054 .<br />

p 1 = 1− 1/ 5 1−1/ 3 1− 1/ 9 = 0.<br />

474<br />

p 2 = 1− 1/ 3 1−1/ 8 1− 1/ 4 = 0438 .<br />

b g b g b g<br />

b g b g<br />

So 1 200, 1 200 054 . 108, and 1 = 108 0474 . = 512 .<br />

b g b g b g b g<br />

1<br />

2<br />

1<br />

2<br />

τ τ<br />

2 2<br />

q = log p′<br />

/ log p q<br />

b g c h b g<br />

= b0. 405/ 0826 . gb0562<br />

. g<br />

q 2<br />

1 2<br />

= log / log 0. 438 1−<br />

0438 .<br />

3<br />

= 0.<br />

276<br />

b1g<br />

b g b1<br />

= τ g<br />

d2<br />

l2 q2<br />

= 512 . 0276 . = 14<br />

b gb g


Question #15<br />

Answer: C<br />

Let:<br />

N = number<br />

X = profit<br />

S = aggregate profit<br />

subscripts G = “good”, B = “bad”, AB = “accepted bad”<br />

c hb g<br />

1 1<br />

c 2hc 3hb60g 10 (If you have trouble accepting this, think instead of a heads-tails rule, that<br />

2<br />

λ G =<br />

3<br />

60 = 40<br />

λ AB = =<br />

the application is accepted if the applicant’s government-issued identification number, e.g. U.S.<br />

Social Security Number, is odd. It is not the same as saying he automatically alternates<br />

accepting and rejecting.)<br />

2<br />

b Gg b Gg b Gg b Gg b Gg<br />

= b40gb10, 000g+ b40gd300 i<br />

2 = 4, 000,<br />

000<br />

2<br />

b ABg b ABg b ABg b ABg b ABg<br />

Var S = E N × Var X + Var N × E X<br />

Var S = E N × Var X + Var N × E X<br />

b gb g b gb g 2<br />

= 10 90, 000 + 10 − 100 = 1, 000,<br />

000<br />

S G and S AB are independent, so<br />

b g b g b g<br />

Var S = Var SG<br />

+ Var S AB = 4, 000, 000 + 1, 000,<br />

000<br />

= 5, 000,<br />

000<br />

If you don’t treat it as three streams (“goods”, “accepted bads”, “rejected bads”), you can<br />

compute the mean and variance of the profit per “bad” received.<br />

1<br />

λ B =<br />

3<br />

60 = 20<br />

c hb g<br />

d i b g b g<br />

2<br />

b g<br />

2 B 2<br />

B B<br />

If all “bads” were accepted, we would have E X = Var X + E X<br />

= 90, 000+ − 100 = 100,<br />

000<br />

Since the probability a “bad” will be accepted is only 50%,<br />

E X = Prob accepted · E X accepted + Prob not accepted · E X not accepted<br />

b Bg b g c B h b g c B h<br />

b gb g b gb g<br />

d i b gb g b gb g<br />

E X B<br />

2<br />

Likewise,<br />

= 05 . − 100 + 05 . 0 = −50<br />

= 05 . 100, 000 + 05 . 0 = 50,<br />

000<br />

2<br />

b Bg b Bg b Bg b Bg b Bg<br />

2<br />

= b20gb47, 500g + b20gd50 i = 1000 , , 000<br />

Now Var S = E N × Var X + Var N × E X<br />

S G and S B are independent, so<br />

b g b g b g<br />

Var S = Var SG<br />

+ Var SB<br />

= 4, 000, 000 + 1, 000,<br />

000<br />

= 5, 000,<br />

000


Question # 16<br />

Answer: C<br />

Let N = number of prescriptions then S<br />

b g<br />

E N<br />

E<br />

E<br />

∞<br />

∑<br />

= 4 = 1−<br />

F j<br />

j=<br />

0<br />

c<br />

b gh<br />

n f n<br />

0<br />

1<br />

2<br />

3<br />

bS − 80g = 40 × E N − 2 +<br />

+<br />

= N × 40<br />

Nb g FNbng 1− FNbng<br />

0.2000<br />

0.1600<br />

0.1280<br />

0.1024<br />

∞<br />

b g = 40× ∑c1<br />

− Fb jgh<br />

j=<br />

2<br />

L ∞<br />

1<br />

O<br />

∑<br />

NM<br />

c Fb jgh ∑c<br />

Fb jgh<br />

j=<br />

0<br />

j=<br />

0 QP<br />

b . g . .<br />

= 40 × 1 − − 1 −<br />

= 40 4 − 144 = 40 × 2 56 = 102 40<br />

∞<br />

bS −120g = 40× E N − 3 = 40× 1−<br />

F j<br />

+<br />

b g+<br />

∑c<br />

b gh<br />

j=<br />

3<br />

L ∞<br />

2<br />

O<br />

∑<br />

NM<br />

c Fb jgh ∑c<br />

Fb jgh<br />

j=<br />

0<br />

j=<br />

0 QP<br />

b . g . .<br />

= 40 × 1 − − 1 −<br />

= 40 4 − 1952 = 40 × 2 048 = 8192<br />

Since no values of S between 80 and 120 are possible,<br />

0.2000<br />

0.3600<br />

0.4880<br />

0.5904<br />

0.8000<br />

0.6400<br />

0.5120<br />

0.4096<br />

E<br />

b<br />

g<br />

S − 100 =<br />

+<br />

b120− 100g × E bS − 80g + 100− 80 × E S −120<br />

+<br />

b g b g<br />

+<br />

= 9216 .<br />

120<br />

Alternatively,<br />

∞<br />

b g+<br />

∑b g Nb g Nb g Nb g Nb g<br />

j=<br />

0<br />

E S − 100 = 40j − 100 f j + 100 f 0 + 60 f 1 + 20 f 2<br />

(The correction terms are needed because b40 j −100g would be negative for j = 0, 1, 2; we need<br />

to add back the amount those terms would be negative)<br />

¥<br />

¥<br />

Nb g Nb g b gb g b gb g b gb g<br />

j=<br />

0 j=<br />

0<br />

= 40 j · f j - 100 f j + 100 0. 200 + 016 . 60 + 0128 . 20<br />

b g . .<br />

= 40 E N − 100+ 20+ 9 6+<br />

256<br />

= 160 − 67. 84 = 9216 .


Question #17<br />

Answer: B<br />

10 30:<br />

40 10 30 10 40<br />

10<br />

10<br />

10 10<br />

d 10 30 id 10 40 ib1<br />

g<br />

10<br />

b10E30gb 10 E40gb1<br />

ig<br />

E = p p v = p v p v + i<br />

= +<br />

= b054733 . gb053667 . gb179085<br />

. g<br />

= 052604 .<br />

10<br />

The above is only one of many possible ways to evaluate 10 p 30 10 p 40 v , all of which should<br />

give 0.52604<br />

a = a − E a<br />

30: 4010 : 30: 40 10 30: 40 30+ 10:<br />

40+<br />

10<br />

= ba&& 30: 40 −1g −b0. 52604gba&&<br />

40:<br />

50 −1g<br />

b g b gb g<br />

= 13. 2068 − 0. 52604 114784 .<br />

= 71687 .<br />

Question #18<br />

Answer: A<br />

Equivalence Principle, where π is annual benefit premium, gives<br />

d<br />

b g<br />

1000 35 35<br />

π =<br />

d<br />

A + IA × π = a&&<br />

x π<br />

i<br />

1000A35<br />

1000·<br />

042898 .<br />

=<br />

a&&<br />

- IA ( 1199143 . - 616761 . )<br />

b g<br />

35 35<br />

We obtained a&&<br />

35 from<br />

a&&<br />

35<br />

i<br />

42898 .<br />

=<br />

582382 .<br />

= 7366 .<br />

1 A35<br />

1 0.<br />

42898<br />

= − = − = 11.<br />

99143<br />

d 0.<br />

047619


Question #19<br />

Answer: D<br />

Low random ⇒ early deaths, so we want t q = 0. 42 or l + t = 0.<br />

58l<br />

Using the Illustrative Life Table, l80+ t = b 058 . g 3 , 914 , 365<br />

= 2, 270,<br />

332<br />

l > l > l<br />

80+ 5 80+ t 80+<br />

6<br />

so K = curtate future lifetime = 5<br />

80 80 80<br />

30<br />

L = 1000<br />

1<br />

v k + – (Contract premium) a&&<br />

k +1<br />

= 705 − 20 5.<br />

2124<br />

= 601<br />

b gb<br />

g<br />

Question #20<br />

Answer: C<br />

Time until arrival = waiting time plus travel time.<br />

Waiting time is exponentially distributed with mean 1 λ<br />

. The time you may already have been<br />

waiting is irrelevant: exponential is memoryless.<br />

You: E (wait) =<br />

20 1 hour = 3 minutes<br />

E (travel) = b0. 25gb16g + b0.<br />

75gb28g<br />

= 25 minutes<br />

E (total) = 28 minutes<br />

Co-worker:<br />

E (wait) = 1 5<br />

hour = 12 minutes<br />

E (travel) = 16 minutes<br />

E (total) = 28 minutes


Question #21<br />

Answer: B<br />

Bankrupt has 3 states 0, 1, 2, corresponding to surplus = 0, 1, 2<br />

Transition matrix is<br />

M =<br />

L<br />

NM<br />

1 0 0<br />

0. 1 0.<br />

9 0<br />

0. 01 0. 09 0.<br />

9<br />

O<br />

QP<br />

Initial vector t 0 = 0 0 1<br />

t M = t =<br />

0 1<br />

t M = t =<br />

1 2<br />

t M = t =<br />

2 3<br />

0. 01 0. 09 090 .<br />

0028 . 0162 . 081 .<br />

00523 . 0. 2187 0729 .<br />

At end of 2 months, probability ruined = 0.0285%<br />

Question #22<br />

Answer: D<br />

This is equivalent to a compound Poisson surplus process. Water from stream is like premiums.<br />

Deer arriving to drink is like claims occurring. Water drunk is like claim size.<br />

E[water drunk in a day] = (1.5)(250) = 375<br />

b1<br />

g<br />

+ θ =<br />

500<br />

375<br />

Prob(surplus level at time t is less than initial surplus, for some t)<br />

1 375<br />

= Ψb0g<br />

= = = 75%<br />

1 + θ 500


Question #23<br />

Answer: C<br />

Time of first claim is T 1 = − 1/ 3log 05 . = 023 .<br />

0.<br />

23<br />

b g . Size of claim = =<br />

Time of second claim is T 2 = 0. 23− 1/ 3log 0. 2 = 0.<br />

77<br />

Time of third claim is T 3 = 077 . − 1/ 3log 01 . = 1.<br />

54<br />

10 1.<br />

7<br />

0.<br />

77<br />

b g . Size of claim = =<br />

1.<br />

54<br />

b g . Size of claim = =<br />

Since initial surplus = 5> first claim, the first claim does not determine c<br />

0 z.<br />

77<br />

4<br />

Test at T 2 : Cumulative assets = 5 + ct dt = 5 + 0 . 054c<br />

Cumulative claims = 1.7 + 5.9 = 7.6<br />

Assets ≥ claims for c ≥ 4815 .<br />

Test at T 3 : Cumulative claims = 1.7 + 5.9 + 34.7 = 42.3<br />

Cumulative assets = 5+ ct dt = 5+<br />

1732 . c<br />

0<br />

z. 154<br />

0<br />

Assets ≥ claims for c ≥ 2154 .<br />

If c < 4815 . , insolvent at T 2 .<br />

If c > 4815 . , solvent throughout.<br />

49 is smallest choice > 48.15.<br />

4<br />

10 5.<br />

9<br />

10 34.<br />

7<br />

Question #24<br />

Answer: C<br />

µ xy = µ x + µ y = 014 .<br />

µ<br />

Ax<br />

= Ay<br />

=<br />

+ = 007 .<br />

= 05833 .<br />

µ δ 007 . + 005 .<br />

µ xy<br />

Axy<br />

=<br />

axy<br />

+ = 0.<br />

14 014 .<br />

1<br />

= = 0 7368 =<br />

µ δ 0 14 + 0 05 019<br />

µ + δ<br />

= 1<br />

. and<br />

. . .<br />

014 . + 0.<br />

05<br />

xy<br />

P<br />

A xy A + A − A<br />

= =<br />

a a<br />

xy<br />

x y xy<br />

xy<br />

b g<br />

2 0. 5833 −0.<br />

7368<br />

=<br />

= 0.<br />

0817<br />

52632 .<br />

xy<br />

= 5.<br />

2632


Question #25<br />

Answer: E<br />

b gb g b g<br />

b gb i g b g<br />

0545 1− 0022 + 0022<br />

b1<br />

+ ig b . gb . g .<br />

=<br />

V + P 1+ i − q 1− V = V<br />

20 20 20 40 21 20 21 20<br />

0. 49 + 0. 01 1+ − 0. 022 1− 0545 . = 0545 .<br />

= 111 .<br />

050 .<br />

b gb g b g<br />

b gb g q 41b g<br />

V + P 1+ i − q 1− V = V<br />

21 20 20 41 22 20 22 20<br />

0545 . + . 01 111 . − 1− 0. 605 = 0.<br />

605<br />

0. 61605 − 0.<br />

605<br />

q 41 =<br />

0.<br />

395<br />

= 0.<br />

028<br />

Question #26<br />

Answer: E<br />

1000 P = 1000 A / a&&<br />

60 60 60<br />

b 60 60 61g b 60 61g<br />

= 1000 v q + p A / 1+<br />

p v a&&<br />

b 60 60 61g b 60 61g<br />

= 1000 q + p A / 1. 06 + p a&&<br />

c b gb gh c b gb gh<br />

= 15+ 0. 985 382. 79 / 106 . + 0. 985 10. 9041 = 3322 .


Question #27<br />

Answer: E<br />

Method 1:<br />

In each round,<br />

N = result of first roll, to see how many dice you will roll<br />

X = result of for one of the N dice you roll<br />

S = sum of X for the N dice<br />

b g = EbNg<br />

= 35 .<br />

b g = VarbNg<br />

= 2.<br />

9167<br />

b g = b g* b g = 12.<br />

25<br />

b g = b g b g + b g b g<br />

2<br />

b35 . gb2. 9167g b2. 9167gb35<br />

. g<br />

E X<br />

Var X<br />

E S E N E X<br />

Var S E N Var X Var N E X<br />

= +<br />

= 45.<br />

938<br />

Let S 1000 = the sum of the winnings after 1000 rounds<br />

b g = =<br />

b g b g<br />

E S 1000 1000 * 12. 25 12,<br />

250<br />

Stddev S1000 = sqrt 1000* 45. 938 = 214.<br />

33<br />

2<br />

After 1000 rounds, you have your initial 15,000, less payments of 12,500, plus winnings<br />

of S 1000 .<br />

Since actual possible outcomes are discrete, the solution tests for continuous outcomes greater<br />

than 15000-0.5. In this problem, that continuity correction has negligible impact.<br />

b<br />

Pr 15000 - 12500 + S > 14999.<br />

5 =<br />

c<br />

1000<br />

b g b g<br />

= Pr S 1000 - 12250 / 214. 33> 149995 . - 2500 - 12250 / 214.<br />

33 =<br />

= 1− Φ 117 . = 012 .<br />

Method 2<br />

b g<br />

g<br />

Realize that you are going to determine N 1000 times and roll the sum of those 1000 N’s dice,<br />

adding the numbers showing.<br />

Let N 1000 = sum of those N’s<br />

h


g b g b gb g<br />

E 1000E N 1000 3 5 3500<br />

Varb = N1000g = . =<br />

= 1000Var( N ) = 2916.<br />

7<br />

E S1000 = E N1000 E X = 3500 3. 5 = 12.<br />

250<br />

b g b g b g b gb g<br />

b 1000g = b 1000g b g + b 1000g b g<br />

2<br />

= b gb . g + b . gb . g = .<br />

Var S E N Var X Var N E X<br />

3500 2 9167 29167 35 45938<br />

2<br />

StddevbS 1000 g = 214.<br />

33<br />

Now that you have the mean and standard deviation of S 1000 (same values as method 1), use the<br />

normal approximation as shown with method 1.<br />

Question #28<br />

Answer: B<br />

p<br />

k<br />

F bI = a +<br />

k K J p k−1<br />

HG<br />

b g<br />

F bI = +<br />

HG<br />

2 K J F bI a × ⇒ −<br />

HG K J × =<br />

0. 25 = a + b × 0.<br />

25⇒ a + b = 1<br />

0. 1875 0. 25 1 0. 25 0.<br />

1875<br />

2<br />

b = 0.<br />

5<br />

a = 05.<br />

F I<br />

HG K J × =<br />

p 3 0 5 0 .<br />

= . +<br />

5<br />

3<br />

01875 . 0125 .


Question #29<br />

Answer: C<br />

Limiting probabilities satisfy (where B = Bad = Poor):<br />

P = 0. 95P + 015 . S<br />

S = 0. 04P + 080 . S + 0.<br />

25B<br />

B = 001 . P + 005 . S + 0.<br />

75B<br />

P + S + B = 100 .<br />

Solving, P = 0.<br />

694<br />

Question #30<br />

Answer: B<br />

Transform these scenarios into a four-state Markov chain, where the final disposition of rates in<br />

any scenario is that they decrease, rather than if rates increase, as what is given.<br />

2<br />

00<br />

P<br />

2<br />

01<br />

from year t – 3 to from year t – 2 to Probability that year t will<br />

State<br />

year t – 2 year t – 1 decrease from year t - 1<br />

0 Decrease Decrease 0.8<br />

1 Increase Decrease 0.6<br />

2 Decrease Increase 0.75<br />

3 Increase Increase 0.9<br />

Transition matrix is<br />

+ P = 0. 8* 0. 8 + 0. 2 * 0. 75 = 0.<br />

79<br />

L<br />

N<br />

M<br />

0. 80 0. 00 0. 20 0.<br />

00<br />

0. 60 0. 00 0. 40 0.<br />

00<br />

0. 00 0. 75 0. 00 0.<br />

25<br />

0. 00 0. 90 0. 00 0.<br />

10<br />

For this problem, you don’t need the full transition matrix. There are two cases to consider.<br />

Case 1: decrease in 2003, then decrease in 2004; Case 2: increase in 2003, then decrease in 2004.<br />

For Case 1: decrease in 2003 (following 2 decreases) is 0.8; decrease in 2004 (following 2<br />

decreases is 0.8. Prob(both) = 0.8 × 0.8 = 0.64<br />

For Case 2: increase in 2003 (following 2 decreases) is 0.2; decrease in 2004 (following a<br />

decrease, then increase) is 0.75. Prob(both) = 0.2 × 0.75 = 0.15<br />

Combined probability of Case 1 and Case 2 is 0.64 + 0.15 = 0.79<br />

O<br />

Q<br />

P


Question #31<br />

Answer: B<br />

lx = ω − x = 105 − x<br />

⇒ t P45 = l45+<br />

t / l45 = 60 − t / 60<br />

Let K be the curtate future lifetime of (45). Then the sum of the payments is 0 if K ≤ 19 and is<br />

K – 19 if K ≥ 20 .<br />

&&a<br />

20 45<br />

=<br />

b<br />

60<br />

= 1·<br />

K=<br />

20<br />

F 60 - KI 1<br />

HG<br />

60 K J ·<br />

g b40gb41g<br />

2b60g<br />

40+ 39+ ... + 1 = = 1366 .<br />

60<br />

Hence,<br />

c h c h<br />

bK<br />

33g<br />

K<br />

b g<br />

Prob K − 19 > 1366 . = Prob K > 32 . 66<br />

= Prob ≥ since is an integer<br />

= Prob T ≥ 33<br />

l78<br />

27<br />

= 33p45<br />

= =<br />

l 60<br />

= 0.<br />

450<br />

45


Question #32<br />

Answer: C<br />

2<br />

A x =<br />

µ<br />

µ + 2δ<br />

= 0. 25→ µ = 0.<br />

04<br />

A x =<br />

µ<br />

µ + δ<br />

= 0.<br />

4<br />

dIAi = ¥<br />

A ds<br />

x z0 s x<br />

z<br />

∞<br />

0<br />

s x x<br />

E A ds<br />

d<br />

= ¥ -0.<br />

1s<br />

e<br />

z0<br />

=<br />

F e<br />

b0.<br />

4g HG<br />

ib04<br />

. g ds<br />

-0.<br />

1s<br />

-<br />

01 .<br />

I<br />

¥<br />

04 .<br />

= = 4<br />

KJ<br />

01 .<br />

0<br />

Alternatively, using a more fundamental formula but requiring more difficult integration.<br />

c h<br />

IA = t p µ t e dt<br />

x 0<br />

t x x<br />

=<br />

z<br />

z<br />

¥<br />

¥<br />

0<br />

= 0.<br />

04<br />

t e 0.<br />

04 e dt<br />

t e<br />

b g<br />

b<br />

-δ<br />

t<br />

-0. 04t<br />

-0.<br />

06t<br />

z¥<br />

0<br />

-0.<br />

1t<br />

dt<br />

(integration by parts, not shown)<br />

F -t<br />

1<br />

=<br />

HG -<br />

I -0.<br />

1 t<br />

¥<br />

004 . 01 K J e<br />

. 001 .<br />

0<br />

0.<br />

04<br />

= = 4<br />

0.<br />

01<br />

g


Question #33<br />

Answer: E<br />

Subscripts A and B here just distinguish between the tools and do not represent ages.<br />

ο<br />

We have to find e AB<br />

ο<br />

A<br />

e<br />

F I<br />

HG K J = - = - =<br />

z10<br />

2<br />

10<br />

t t<br />

= 1-<br />

dt t 10 5 5<br />

0 10 20<br />

F I<br />

7<br />

HG K J = − = 49 − 49 = 35 .<br />

0 14<br />

F tI t<br />

dt<br />

οHG K JF<br />

I<br />

-<br />

HG K J z<br />

7<br />

7F<br />

= - - +<br />

0 HG<br />

t<br />

e<br />

ο t<br />

= z7<br />

2<br />

−<br />

B 1 dt t<br />

0 7 14<br />

e<br />

ο<br />

AB<br />

z<br />

t t t<br />

= 1-<br />

1 1 7 10 10 7 70<br />

2 2 3<br />

t t t<br />

= t − − +<br />

20 14 210<br />

49 49 343<br />

= 7 − − + =<br />

20 14 210<br />

7<br />

0<br />

2.<br />

683<br />

0<br />

2<br />

I<br />

KJ<br />

dt<br />

ο ο ο ο<br />

AB A B AB<br />

e = e + e − e<br />

= 5+ 3. 5− 2. 683 = 5817 .


Question #34<br />

Answer: A<br />

b g b g = + =<br />

µ τ x t<br />

0100 . 0004 . 0104 .<br />

t<br />

p<br />

b g =<br />

-0.<br />

104<br />

τ<br />

x<br />

e<br />

t<br />

Actuarial present value (APV) = APV for cause 1 + APV for cause 2.<br />

z5<br />

0<br />

z<br />

−0. 04 t −0 . 104 t 5<br />

−0. 04 t −0.<br />

104 t<br />

0<br />

z5<br />

−0.<br />

144t<br />

. , .<br />

0<br />

b g b g<br />

2000 e e 0100 . dt + 500, 000 e e 0400 . dt<br />

c b g b gh e dt<br />

= 2000 010 + 500 000 0 004<br />

e<br />

b gj<br />

2200 −<br />

= − =<br />

0 144 1 0.<br />

144 5<br />

e<br />

.<br />

7841<br />

Question #35<br />

Answer: A<br />

R = 1 − p = q<br />

x<br />

x<br />

S = 1− p × e since e<br />

0<br />

= e<br />

x<br />

b g<br />

z<br />

1<br />

1<br />

1<br />

−k − µ x + − µ x −<br />

0<br />

0<br />

So S = 0. 75R ⇒ 1− p × e = 0.<br />

75q<br />

x<br />

e<br />

e<br />

−k<br />

k<br />

−k<br />

t k dt t dt k dt<br />

= e<br />

−<br />

z<br />

z<br />

d b g i b g<br />

x<br />

q<br />

= 1−<br />

0.<br />

75<br />

p<br />

x<br />

x<br />

1<br />

0<br />

µ<br />

x<br />

b g<br />

t dt<br />

px<br />

1−<br />

qx<br />

= =<br />

1 − 0. 75q<br />

1−<br />

0.<br />

75q<br />

L<br />

NM<br />

1−qx<br />

k = ln<br />

1−0.<br />

75q<br />

x<br />

x<br />

O<br />

QP<br />

x<br />

e<br />

z<br />

−z<br />

1<br />

0<br />

k dt


Question #36<br />

Answer: E<br />

k k+<br />

1<br />

p k<br />

β = mean = 4; = β / 1+<br />

β<br />

n P N = n<br />

b g<br />

b g x f<br />

b1<br />

g bxg f<br />

b2<br />

g bxg f<br />

b3<br />

g bxg<br />

0 0.2 0 0 0 0<br />

1 0.16 1 0.25 0 0<br />

2 0.128 2 0.25 0.0625 0<br />

3 0.1024 3 0.25 0.125 0.0156<br />

f<br />

b k g b x g = probability that, given exactly k claims occur, that the aggregate amount is x.<br />

b1<br />

g b g<br />

bkg b g<br />

b g<br />

x<br />

k−1<br />

e b gj b g<br />

f x = f x ; the claim amount distribution for a single claim<br />

b g<br />

∑<br />

f x = f j x f x − j<br />

j=<br />

0<br />

x<br />

sb g ∑ b g bkgb g<br />

k = 0<br />

k<br />

f x = P N = k × f x ; upper limit of sum is really ∞ , but here with smallest possible<br />

claim size 1, f<br />

f s 0 02<br />

b g b g = 0 for k<br />

x<br />

> x<br />

g = .<br />

g = . * . = .<br />

= . * . + . * . = .<br />

b g = + + =<br />

b g = . + . + . + . = .<br />

f s 1 016 0 25 0 04<br />

f s 2 016 0 25 0128 00625 0048<br />

f s 3 016 . * 025 . 0128 . * 0125 . 01024 . * 00156 . 0.<br />

0576<br />

F s 3 02 004 0048 0 0576 0346


Question #37<br />

Answer: E<br />

Let L = incurred losses; P = earned premium = 800,000<br />

Bonus<br />

F LI = 0. 15× 0.<br />

60 −<br />

HG K J × P if positive<br />

P<br />

= 015 . × 060 . P − Lg if positive<br />

= 015 . × b480, 000−<br />

Lg if positive<br />

= 015 . · c480, 000-b<br />

L 480,<br />

000gh<br />

E (Bonus) = 0.15 (480,000– Ec<br />

L 480, 000gh<br />

From Appendix A.2.3.1<br />

= 0.15{480,000 – [500,000 × (1 – (500,000 / (480,000+500,000)))]}<br />

= 35,265<br />

Question #38<br />

Answer: D<br />

1<br />

28:<br />

2<br />

z2<br />

-δ<br />

t 1 72<br />

0<br />

2<br />

A = e dt<br />

d i b g<br />

1 - δ<br />

= 1- e = 0. 02622 since δ = ln 106 . = 0.<br />

05827<br />

72δ<br />

F 71<br />

a&& = 1+ v 1.<br />

9303<br />

28:<br />

2 H G I<br />

72 K J =<br />

1<br />

3V = 500, 000 A − 6643 a&&<br />

282 : 282 :<br />

= 287


Question #39<br />

Answer: D<br />

Let A x and a x be calculated with µ x t<br />

* *<br />

b g and δ = 006 .<br />

b g<br />

Let Ax<br />

and ax<br />

be the corresponding values with µ x t<br />

increased by 0.03 and δ decreased by 0.03<br />

a<br />

a<br />

x<br />

*<br />

x<br />

1 Ax<br />

= − 0.<br />

4<br />

= = 6.<br />

667<br />

δ 0.<br />

06<br />

= a<br />

x<br />

L<br />

N<br />

M<br />

t<br />

*<br />

¥ - µ x s + 0. 03 ds -0.<br />

03t<br />

x<br />

0<br />

0<br />

Proof: a = e e dt<br />

=<br />

=<br />

z<br />

z<br />

z<br />

= a<br />

* *<br />

x x x<br />

A = 1− 003 . a = 1−<br />

0.<br />

03a<br />

0<br />

x<br />

¥<br />

¥<br />

0<br />

t<br />

x<br />

0<br />

e e e dt<br />

-<br />

z<br />

-z<br />

t<br />

z0<br />

µ<br />

d<br />

µ<br />

= 1−<br />

003 . 6667 .<br />

= 08 .<br />

x<br />

b g<br />

b g<br />

b g<br />

s ds<br />

s ds<br />

-0. 03t<br />

-0.<br />

03t<br />

-0.<br />

06t<br />

e e dt<br />

b gb g<br />

i


Question #40<br />

Answer: A<br />

bulb ages<br />

year 0 1 2 3 # replaced<br />

0 10000 0 0 0 -<br />

1 1000 9000 0 0 1000<br />

2 100+2700 900 6300 0 2800<br />

3 280+270+3150 3700<br />

The diagonals represent bulbs that don’t burn out.<br />

E.g., of the initial 10,000, (10,000) (1-0.1) = 9000 reach year 1.<br />

(9000) (1-0.3) = 6300 of those reach year 2.<br />

Replacement bulbs are new, so they start at age 0.<br />

At the end of year 1, that’s (10,000) (0.1) = 1000<br />

At the end of 2, it’s (9000) (0.3) + (1000) (0.1) = 2700 + 100<br />

At the end of 3, it’s (2800) (0.1) + (900) (0.3) + (6300) (0.5) = 3700<br />

1000 2800 3700<br />

Actuarial present value = + +<br />

2 3<br />

105 . 1. 05 1.<br />

05<br />

= 6688

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!