29.08.2014 Views

Historical introduction, overview, and reproductive biology of the ...

Historical introduction, overview, and reproductive biology of the ...

Historical introduction, overview, and reproductive biology of the ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

1<br />

REVIEW / SYNTHÈSE<br />

<strong>Historical</strong> <strong>introduction</strong>, <strong>overview</strong>, <strong>and</strong> <strong>reproductive</strong><br />

<strong>biology</strong> <strong>of</strong> <strong>the</strong> protochordates 1<br />

Charles C. Lambert<br />

Abstract: This issue <strong>of</strong> <strong>the</strong> Canadian Journal <strong>of</strong> Zoology exhaustively reviews most major aspects <strong>of</strong> protochordate <strong>biology</strong><br />

by specialists in <strong>the</strong>ir fields. Protochordates are members <strong>of</strong> two deuterostome phyla that are exclusively marine.<br />

The Hemichordata, with solitary enteropneusts <strong>and</strong> colonial pterobranchs, share a ciliated larva with echinoderms <strong>and</strong><br />

appear to be closely related, but <strong>the</strong>y also have many chordate-like features. The invertebrate chordates are composed<br />

<strong>of</strong> <strong>the</strong> exclusively solitary cephalochordates <strong>and</strong> <strong>the</strong> tunicates with both solitary <strong>and</strong> colonial forms. The cephalochordates<br />

are all free-swimming, but <strong>the</strong> tunicates include both sessile <strong>and</strong> free-swimming forms. Here I explore <strong>the</strong> history<br />

<strong>of</strong> research on protochordates, show how views on <strong>the</strong>ir relationships have changed with time, <strong>and</strong> review some <strong>of</strong><br />

<strong>the</strong>ir <strong>reproductive</strong> <strong>and</strong> structural traits not included in o<strong>the</strong>r contributions to this special issue.<br />

Résumé : Le numéro courant de la Revue canadienne de zoologie présente une synthèse exhaustive par des spécialistes<br />

des principaux aspects de la biologie des protochordés. Les protochordés appartiennent à deux phylums exclusivement<br />

marins de deutérostomiens. Les hémichordés qui contiennent les entéropneustes solitaires et les ptérobranches coloniaux<br />

ont, comme les échinodermes, des larves ciliées et semblent leur être apparentés, tout en ayant de nombreuses caractéristiques<br />

semblables à celles des chordés. Les chordés invertébrés comprennent les céphalochordés qui sont toujours solitaires<br />

et les tuniciers qui possèdent des formes solitaires et coloniales. Les céphalochordés nagent librement dans<br />

l’eau, alors que les tuniciers sont représentés par des formes nageuses et sessiles. Ma contribution retrace l’histoire de<br />

la recherche sur les protochordés, elle montre comment les relations entre les groupes ont été interprétées différemment<br />

au cours des années et elle fait le point sur certaines caractéristiques <strong>reproductive</strong>s et structurales qui ne sont pas traitées<br />

dans les autres présentations de cette série.<br />

[Traduit par la Rédaction] Lambert 7<br />

<strong>Historical</strong> <strong>overview</strong><br />

This issue <strong>of</strong> <strong>the</strong> Canadian Journal <strong>of</strong> Zoology is devoted<br />

to protochordates, an intriguing <strong>and</strong> somewhat disparate<br />

group <strong>of</strong> marine invertebrates. These reviews convey <strong>the</strong><br />

excitement <strong>of</strong> <strong>the</strong> current renaissance <strong>of</strong> interest in <strong>the</strong>se<br />

members <strong>of</strong> two deuterostome phyla: Hemichordata <strong>and</strong> <strong>the</strong><br />

invertebrate members <strong>of</strong> <strong>the</strong> Chordata. Molecular data places<br />

<strong>the</strong> hemichordates closer to <strong>the</strong> echinoderms than <strong>the</strong> chordates,<br />

but we treat <strong>the</strong> groups here as <strong>the</strong>y have been considered<br />

historically. In this issue, Ruppert (2005) critically considers<br />

<strong>the</strong> relationship between <strong>the</strong>se organisms in morphological<br />

Received 5 August 2004. Accepted 17 November 2004.<br />

Published on <strong>the</strong> NRC Research Press Web site at<br />

http://cjz.nrc.ca on 15 April 2005.<br />

C.C. Lambert. 2 University <strong>of</strong> Washington Friday Harbor<br />

Laboratories, Friday Harbor, WA 98250, USA (e-mail:<br />

clambert@fullerton.edu).<br />

1 This review is one <strong>of</strong> a series dealing with aspects <strong>of</strong> <strong>the</strong><br />

<strong>biology</strong> <strong>of</strong> <strong>the</strong> Protochordata. This series is one <strong>of</strong> several<br />

virtual symposia on <strong>the</strong> <strong>biology</strong> <strong>of</strong> neglected groups that will<br />

be published in <strong>the</strong> Journal from time to time.<br />

2 Mailing address: 12001 11th Avenue NW, Seattle,<br />

WA 98177, USA.<br />

terms, while Zeng <strong>and</strong> Swalla (2005) examines <strong>the</strong>ir molecular<br />

phylogeny <strong>and</strong> suggests that tunicates be placed in <strong>the</strong>ir<br />

own phylum. The designation hemichordate was by Bateson<br />

(1885), who considered <strong>the</strong>ir development sufficiently<br />

chordate-like to place <strong>the</strong>m in <strong>the</strong> same phylum as <strong>the</strong> o<strong>the</strong>r<br />

chordates, but Hyman (1959) <strong>and</strong> most modern authors regard<br />

<strong>the</strong>m as a separate phylum. There are fewer than 100<br />

species <strong>of</strong> hemichordates, which include <strong>the</strong> solitary class<br />

Enteropneusta with about 70 species <strong>of</strong> benthic organisms<br />

living in s<strong>of</strong>t substrates <strong>and</strong> <strong>the</strong> class Pterobranchia with<br />

only 21 species <strong>of</strong> tubiculous <strong>and</strong> colonial organisms living<br />

on shells <strong>and</strong> o<strong>the</strong>r hard substrates (Ruppert <strong>and</strong> Barnes<br />

1994).<br />

The invertebrate chordates include two subphyla: Tunicata<br />

<strong>and</strong> Cephalochordata. Since <strong>the</strong> cephalochordates lack <strong>the</strong><br />

most anterior portions <strong>of</strong> <strong>the</strong> vertebrate nervous system, <strong>the</strong><br />

term Acrania has also been applied to <strong>the</strong>m. The cephalochordates<br />

are a small group with only about 30 species <strong>of</strong><br />

free-living benthic organisms that live in coarse s<strong>and</strong>s<br />

throughout <strong>the</strong> world (reviewed by Lambert 2005). They<br />

were considered mollusks until <strong>the</strong>ir fish-like nature was discovered<br />

in <strong>the</strong> 19th century. The Tunicata (<strong>of</strong>ten incorrectly<br />

called <strong>the</strong> Urochordata; P. Kott, personal communication)<br />

are <strong>the</strong> most prevalent protochordates <strong>and</strong> include both freeswimming<br />

<strong>and</strong> fixed classes. With few exceptions, <strong>the</strong>y are<br />

Can. J. Zool. 83: 1–7 (2005) doi: 10.1139/Z04-160 © 2005 NRC Canada


2 Can. J. Zool. Vol. 83, 2005<br />

all hermaphrodites. Thaliaceans <strong>and</strong> appendicularians (sometimes<br />

called larvaceans) are free-swimming, whereas ascidians<br />

<strong>and</strong> sorberaceans (Monniot <strong>and</strong> Monniot 1990; but see<br />

Kott 1989b, 1998) are generally anchored as adults.<br />

Thaliaceans include pyrosomid colonies as well as solitary<br />

<strong>and</strong> colonial doliolids <strong>and</strong> salps. Life cycles reach extremes<br />

<strong>of</strong> complexity in this group. Like <strong>the</strong> thaliaceans, appendicularians<br />

are also planktonic but lack colonial forms<br />

<strong>and</strong> have simple life cycles (Ruppert <strong>and</strong> Barnes 1994). Although<br />

pelagic tunicates include relatively few species, <strong>the</strong>ir<br />

biomass can be quite high <strong>and</strong> <strong>the</strong>y occupy important places<br />

in marine food webs (for review <strong>and</strong> literature see Bone<br />

1998). Ascidians are convenient to collect <strong>and</strong> very useful<br />

experimental material; consequently, <strong>the</strong>y are <strong>the</strong> best<br />

known protochordates <strong>and</strong> as a result <strong>the</strong> majority <strong>of</strong> this<br />

<strong>overview</strong> deals with <strong>the</strong>m. Lambert (2005) examines <strong>the</strong><br />

ecology <strong>and</strong> natural history <strong>of</strong> protochordates, which is <strong>the</strong><br />

first comprehensive review <strong>of</strong> <strong>the</strong> field in over 30 years<br />

(Millar 1971).<br />

Ascidians are generally sessile with no resemblance to<br />

vertebrates, but <strong>the</strong>ir larvae have chordate traits, including a<br />

notochord, dorsal tubular nerve cord, <strong>and</strong> pharyngeal gill<br />

clefts. They constitute <strong>the</strong> most numerous class <strong>of</strong> tunicates.<br />

Because <strong>the</strong>y are mostly sessile as adults, through history<br />

<strong>the</strong>y have been variously classified as plants or animals<br />

(Berrill 1950). Aristotle recognized <strong>the</strong>ir animal affinities,<br />

<strong>and</strong> <strong>the</strong>y were assigned to various groups as science progressed<br />

<strong>and</strong> techniques for observation became more acute.<br />

Mainly, <strong>the</strong> colonial forms were considered to be cnidarians<br />

that were related to corals (Monniot et al. 1991). Linnaeus in<br />

1767 placed <strong>the</strong> solitary ascidians in <strong>the</strong> genus Ascidia <strong>and</strong><br />

described Ascidia intestinalis, which now is in <strong>the</strong> genus<br />

Ciona <strong>and</strong> is probably <strong>the</strong> world’s best known ascidian.<br />

Lamarck (1816) named <strong>the</strong> group Tunicata, <strong>and</strong> Cuvier<br />

(1815) added much to our knowledge <strong>of</strong> <strong>the</strong>ir anatomy but,<br />

along with many o<strong>the</strong>rs, classified <strong>the</strong>m with lamellibranch<br />

mollusks, an affinity that was endorsed as late as 1905<br />

(Alder <strong>and</strong> Hancock 1905–1907). Savigny (1816) clearly<br />

showed <strong>the</strong> relationship between solitary <strong>and</strong> colonial ascidians<br />

<strong>and</strong> also showed that <strong>the</strong>y were not allied with <strong>the</strong><br />

lamellibranch mollusks. Through most <strong>of</strong> <strong>the</strong> remainder <strong>of</strong><br />

<strong>the</strong> 19th century <strong>the</strong>re were numerous publications on <strong>the</strong><br />

structure, larvae, <strong>and</strong> metamorphosis <strong>of</strong> ascidians, but no<br />

one had pointed out <strong>the</strong>ir obvious chordate nature. In 1867,<br />

Kowalevsky published <strong>the</strong> detailed development <strong>and</strong> structure<br />

<strong>of</strong> <strong>the</strong> eggs <strong>and</strong> larvae <strong>of</strong> Ciona intestinalis <strong>and</strong><br />

Phallusia mammillata <strong>and</strong> pointed out <strong>the</strong>ir affinity with <strong>the</strong><br />

Chordata. This finding electrified Darwin as well as Huxley<br />

<strong>and</strong> o<strong>the</strong>r champions <strong>of</strong> Darwin’s Origin <strong>of</strong> <strong>the</strong> Species By<br />

Means <strong>of</strong> Natural Selection, or <strong>the</strong> Preservation <strong>of</strong> Favoured<br />

Races in <strong>the</strong> Struggle for Life. A paradigm shift was required<br />

to accept that tunicates were chordates, not mollusks, <strong>and</strong><br />

such a shift required time as many workers who considered<br />

<strong>the</strong>m mollusks were replaced by those who agreed with<br />

Kowalevsky.<br />

During <strong>the</strong> 19th century numerous coastal areas were extensively<br />

explored <strong>and</strong> many ascidians described, which resulted<br />

in many fine taxonomic publications. As more species<br />

were described <strong>and</strong> details <strong>of</strong> <strong>the</strong>ir anatomy were revealed, it<br />

became necessary to erect classification schemes to better<br />

enable scientists to categorize taxa into manageable groups.<br />

Foremost in <strong>the</strong>se efforts was <strong>the</strong> work <strong>of</strong> Lahille (1886)<br />

that proposed three orders based upon <strong>the</strong> structure <strong>of</strong> <strong>the</strong><br />

branchial sac: Aplousobranchia, Phlebobranchia, <strong>and</strong> Stolidobranchia.<br />

Many <strong>of</strong> us today still prefer this categorization.<br />

In 1898, Perrier recommended ano<strong>the</strong>r scheme based<br />

upon <strong>the</strong> position <strong>of</strong> <strong>the</strong> gonads. The Enterogona included<br />

Lahille’s Aplousobranchia <strong>and</strong> Phlebobranchia <strong>and</strong> <strong>the</strong><br />

Pleurogona included only <strong>the</strong> Stolidobranchia. Subsequently,<br />

many workers adopted Perrier’s classification, with Lahille’s<br />

orders becoming suborders (Berrill 1950). However, this<br />

idea implies that <strong>the</strong> aplousobranchs are more closely related<br />

to <strong>the</strong> phlebobranchs than ei<strong>the</strong>r group to <strong>the</strong> stolidobranchs.<br />

Until such time as this is verified by molecular or o<strong>the</strong>r<br />

means, it would be prudent to continue to apply Lahille’s orders,<br />

especially since <strong>the</strong>y have precedence.<br />

Increasing interest in <strong>the</strong> structure, development, physiology,<br />

<strong>and</strong> biogeography <strong>of</strong> ascidians led to several valuable<br />

books <strong>and</strong> major monographs on all aspects <strong>of</strong> <strong>the</strong>ir lives.<br />

Herdman (1882, 1886) admirably reviewed <strong>the</strong> major works<br />

<strong>of</strong> <strong>the</strong> 19th century. Huus (1937) reviewed many articles that<br />

dealt with all aspects <strong>of</strong> ascidians, including <strong>the</strong>ir structure,<br />

development, biogeography, <strong>and</strong> classification. Brien (1948)<br />

reviewed structure <strong>and</strong> reproduction. Berrill (1950) continues<br />

to be a widely used classic reference on all aspects <strong>of</strong><br />

ascidians with a description <strong>of</strong> <strong>the</strong> British species; his subsequent<br />

book in 1955, The Origin <strong>of</strong> Vertebrates, though still<br />

useful contains some ideas that are no longer accepted. The<br />

Monniots published a superb <strong>overview</strong> <strong>of</strong> <strong>the</strong> class as part <strong>of</strong><br />

<strong>the</strong>ir account <strong>of</strong> tropical ascidians (Monniot et al. 1991). The<br />

Biology <strong>of</strong> Ascidians (Sawada et al. 2001) with a collection<br />

<strong>of</strong> 69 papers on all aspects <strong>of</strong> ascidians appeared in 2001.<br />

In addition to <strong>the</strong>se <strong>overview</strong> accounts, more specialized<br />

reviews have emphasized specific attributes <strong>of</strong> <strong>the</strong> protochordates.<br />

Several aspects <strong>of</strong> <strong>the</strong> <strong>biology</strong> <strong>of</strong> <strong>the</strong> group appeared<br />

in Protochordates (Barrington <strong>and</strong> Jefferies 1975).<br />

Millar (1971) reviewed ecology <strong>and</strong> Goodbody (1974) reviewed<br />

ascidian physiology. Satoh (1994), <strong>and</strong> later, Jeffery<br />

<strong>and</strong> Swalla (1997) reviewed <strong>the</strong> extensive literature on development<br />

<strong>and</strong> Whittaker (1997) reviewed cephalochordates<br />

in <strong>the</strong> same volume. A special issue <strong>of</strong> <strong>the</strong> American Zoologist<br />

contained a series <strong>of</strong> papers on ascidian development in<br />

1982. The recent review by Burighel <strong>and</strong> Cloney (1997) admirably<br />

summarizes ascidian structure <strong>and</strong> function.<br />

Fertilization <strong>and</strong> development<br />

Many hemichordates produce a swimming larva similar to<br />

an echinoderm larva, one <strong>of</strong> <strong>the</strong> similar traits between hemichordates<br />

<strong>and</strong> echinoderms. Enteropneusts are exclusively<br />

dioecious, but pterobranch colonies can include both sexes.<br />

Hemichordates from both classes show extensive asexual development<br />

(Hadfield 1975). Spawning is apparently epidemic<br />

<strong>and</strong> related to tides or temperature (for a review see Hadfield<br />

1975).<br />

Cephalochordates are usually dioecious but may have<br />

skewed sex ratios in nature (Kubokawa et al. 2003). They<br />

are incapable <strong>of</strong> budding or asexual development, but larvae<br />

may become sexually mature if blocked from metamorphosis<br />

(Wickstead 1975). Whittaker (1997) has thoroughly reviewed<br />

<strong>the</strong>ir development.<br />

© 2005 NRC Canada


Lambert 3<br />

In this issue, Bates (2005) discusses environmental signals<br />

<strong>and</strong> <strong>reproductive</strong> strategies in ascidians, while here I focus<br />

on spawning, fertilization, <strong>and</strong> development. Light is an<br />

important cue in ascidian spawning. Some, such as <strong>the</strong> phlebobranchs<br />

C. intestinalis (Lambert <strong>and</strong> Br<strong>and</strong>t 1967;<br />

Whittingham 1967), Corella parallelogramma (Huus 1939),<br />

Corella inflata, <strong>and</strong> Corella willmeriana (Lambert et al. 1981),<br />

spawn within a few minutes <strong>of</strong> light following darkness.<br />

Spawning requires a longer light exposure in several stolidobranchs<br />

(Rose 1939; West <strong>and</strong> Lambert 1976; Numakunai <strong>and</strong><br />

Hoshino 1980; Jeffery 1990). However, ano<strong>the</strong>r stolidobranch,<br />

Molgula manhattensis, requires only a short exposure<br />

(Whittingham 1967). Interestingly, C. intestinalis populations<br />

from different regions have dissimilar responses to<br />

light. This species from <strong>the</strong> Atlantic <strong>and</strong> Pacific US coasts<br />

spawns in light following darkness (Lambert <strong>and</strong> Br<strong>and</strong>t<br />

1967; Whittingham 1967), but <strong>the</strong> same species spawns in<br />

response to darkness following light in <strong>the</strong> Mediterranean<br />

(Georges 1968; C.C. Lambert, unpublished observation). The<br />

target for light reception is included in <strong>the</strong> gonoducts <strong>and</strong><br />

dorsal str<strong>and</strong> <strong>of</strong> C. intestinalis (Reese 1967; Woollacott 1974)<br />

<strong>and</strong> an action spectrum for spawning suggests a cytochrome<br />

for <strong>the</strong> receptor molecule (Lambert <strong>and</strong> Br<strong>and</strong>t 1967).<br />

Like many sessile organisms all ascidians are hermaphrodites,<br />

although many species are prot<strong>and</strong>rous (Sabbadin et<br />

al. 1991). Most solitary ascidians spawn <strong>the</strong>ir eggs freely<br />

into <strong>the</strong> sea where fertilization <strong>and</strong> development take place,<br />

but a few species brood within <strong>the</strong> atrium (Lambert et al.<br />

1995). All colonial forms brood <strong>the</strong>ir eggs, ei<strong>the</strong>r in special<br />

brood chambers or in <strong>the</strong> atrium. Sperm is shed into <strong>the</strong> sea<br />

<strong>and</strong> some colonial forms can store exogenous sperm for prolonged<br />

periods (Bishop <strong>and</strong> Ryl<strong>and</strong> 1991).<br />

A tadpole larva, which may swim for 12 h to several days,<br />

is produced by most free-spawning species; however, larvae<br />

from brooded eggs generally swim for only a few minutes or<br />

hours (Lambert 1968; Lambert et al. 1995). In this issue,<br />

McHenry (2005) reviews swimming <strong>of</strong> ascidian larvae, <strong>and</strong><br />

Lambert (2005) <strong>and</strong> Bates (2005) consider <strong>the</strong> ecological<br />

consequences <strong>of</strong> a shortened swimming period. Still ano<strong>the</strong>r<br />

<strong>reproductive</strong> strategy is seen in several Molgula species<br />

where <strong>the</strong> spawned egg develops directly into a functional<br />

juvenile without going through a swimming larval stage<br />

(Berrill 1931; Bates 2005). Tadpole release from <strong>the</strong> colony<br />

appears to be under <strong>the</strong> control <strong>of</strong> light (Watanabe <strong>and</strong> Lambert<br />

1973; Forward et al. 2000.). Light <strong>and</strong> gravity also influence<br />

<strong>the</strong> behavior <strong>of</strong> swimming larvae. The review by McHenry<br />

(2005) exp<strong>and</strong>s on <strong>the</strong> behavior <strong>of</strong> larval ascidians.<br />

Ascidian eggs are enclosed within cellular <strong>and</strong> noncellular<br />

vestments. A layer <strong>of</strong> test cells surrounds <strong>the</strong> egg <strong>and</strong> contributes<br />

to <strong>the</strong> larval tunic (Cloney <strong>and</strong> Hansson 1996;<br />

Takamura et al. 1996). These cells are enclosed within a<br />

noncellular vitelline coat (termed chorion in older literature).<br />

Around <strong>the</strong> outside <strong>of</strong> <strong>the</strong> vitelline coat (VC) is a single<br />

layer <strong>of</strong> follicle cells that function in protein <strong>and</strong> RNA syn<strong>the</strong>sis<br />

(Jeffery 1980), egg flotation (Lambert <strong>and</strong> Lambert<br />

1978), <strong>and</strong> egg adhesion (Young et al. 1988; Lambert et al.<br />

1995) in some species. They are required for maturation in<br />

Halocynthia roretzi (Sakairi <strong>and</strong> Shirai 1991), fertilization<br />

(Hoshi et al. 1981; Hice <strong>and</strong> Moody 1988; Fuke <strong>and</strong><br />

Numakunai 1996), <strong>and</strong> <strong>the</strong> block to polyspermy in o<strong>the</strong>rs<br />

(Lambert et al. 1997). They also contribute to <strong>the</strong> block to<br />

self-fertilization in C. intestinalis (Marino et al. 1999) <strong>and</strong><br />

H. roretzi (Fuke <strong>and</strong> Numakunai 1996). This layer <strong>of</strong> cells is<br />

<strong>the</strong> inner <strong>of</strong> two follicle cell layers present in <strong>the</strong> ovarian<br />

follicle (Burighel <strong>and</strong> Cloney 1997). Ascidian eggs have at<br />

least two blocks to polyspermy: <strong>the</strong> follicle cell-generated<br />

fast block <strong>and</strong> a slower electrical block (Lambert et al.<br />

1997). Polyspermy blocks are essential for normal development,<br />

as ascidians <strong>of</strong>ten live in massive aggregations <strong>and</strong> <strong>the</strong><br />

sperm concentration when <strong>the</strong> eggs are released may be<br />

quite high.<br />

Solitary ascidians generally produce a large number <strong>of</strong><br />

eggs that are around 150 µm in diameter, whereas compound<br />

forms usually have only a few but much larger eggs. Forms<br />

with external fertilization like most phlebobranchs <strong>and</strong><br />

stolidobranchs spawn small, ra<strong>the</strong>r simple sperm; those with<br />

internal fertilization like all aplousobranchs have larger <strong>and</strong><br />

more complex sperm (Lambert 1982; Martinucci et al.<br />

2001). Sperm from solitary ascidians can swim for extended<br />

periods <strong>and</strong> undergo hypermotility in <strong>the</strong> vicinity <strong>of</strong> conspecific<br />

eggs (Bolton <strong>and</strong> Havenh<strong>and</strong> 1996). In addition,<br />

ascidian eggs release factors that increase <strong>the</strong> motility <strong>of</strong><br />

sperm <strong>and</strong> can cause <strong>the</strong> directed swimming <strong>of</strong> <strong>the</strong> sperm to<br />

<strong>the</strong> egg (Miller 1975; Morisawa et al. 2001; Yoshida et al.<br />

2002; Ishikawa et al. 2004).<br />

Sperm <strong>of</strong> hemichordates, cephalochordates, <strong>and</strong> appendicularians<br />

have a large apical acrosome <strong>and</strong> a midpiece posterior<br />

to <strong>the</strong> nucleus. During fertilization an acrosomal filament<br />

extends <strong>and</strong> fuses with <strong>the</strong> egg (for a review see Jamieson<br />

1991). In contrast, <strong>the</strong> sperm <strong>of</strong> ascidians <strong>and</strong> thaliaceans<br />

have a much reduced acrosome <strong>and</strong> lack a classical midpiece.<br />

The single mitochondrion is adjacent to <strong>the</strong> nucleus in<br />

<strong>the</strong> head (Retzius 1904, 1905; Franzén 1976;Villa 1977).<br />

During fertilization <strong>the</strong> mitochondrion slides down <strong>the</strong> tail<br />

by an actin–myosin driven process (Lambert <strong>and</strong> Lambert<br />

1984) as <strong>the</strong> sperm passes through <strong>the</strong> VC (Lambert <strong>and</strong><br />

Epel 1979; Lambert <strong>and</strong> Lambert 1983; Lambert 1989; Lambert<br />

<strong>and</strong> Battaglia 1993).<br />

All ascidians are hermaphrodites, but many cannot fertilize<br />

<strong>the</strong>ir own eggs. For instance C. intestinalis, Ciona savignyi,<br />

<strong>and</strong> all pyurids such as Halocynthia <strong>and</strong> Pyura species<br />

are generally self-sterile, whereas many o<strong>the</strong>r species including<br />

many styelids <strong>and</strong> most ascidiids are self-fertile, at least<br />

in <strong>the</strong> laboratory. The mechanism <strong>of</strong> this specificity involves<br />

a particular protein in <strong>the</strong> VC (Fuke <strong>and</strong> Numakunai 1996,<br />

1999; Marino et al. 1998, 1999; Sawada <strong>and</strong> Yokosawa<br />

2001). Removal <strong>of</strong> <strong>the</strong> VC allows self-fertilization (Byrd <strong>and</strong><br />

Lambert 2000). The sperm binds to <strong>the</strong> egg through a sperm<br />

surface glycosidase binding to a VC glycoside (Hoshi 1986;<br />

Lambert <strong>and</strong> Koch 1988; Honegger 1992) or through a<br />

sperm proteasome binding to extra cellular ubiquitin<br />

(Sawada et al. 2002). Fertilization is species-specific as long<br />

as <strong>the</strong> VC is present (Reverberi 1971; Patricolo <strong>and</strong> Villa<br />

1992), but sperm interaction with follicle cells is not. This<br />

can lead to interspecific sperm competition: sperm from Ascidia<br />

sydneiensis <strong>and</strong> Phallusia julinea interfere with <strong>the</strong> fertilization<br />

<strong>of</strong> Phallusia nigra eggs (Lambert 2000). The block<br />

to self-fertilization in both C. intestinalis <strong>and</strong> C. savignyi is<br />

removed by acid treatment, but this does not allow interspecific<br />

hybridization (Byrd <strong>and</strong> Lambert 2000).<br />

Interspecific fertilization is generally not possible, but it is<br />

possible to obtain fertilization between two Molgula species<br />

© 2005 NRC Canada


4 Can. J. Zool. Vol. 83, 2005<br />

in which one has a tailed larva <strong>and</strong> <strong>the</strong> o<strong>the</strong>r lacks a tail. In<br />

this cross, <strong>the</strong> molecular switches to anural development<br />

have been discovered (Swalla <strong>and</strong> Jeffery 1990; Swalla et al.<br />

1999).<br />

Following fertilization, <strong>the</strong> egg experiences multiple<br />

pulses in intracellular calcium emanating from <strong>the</strong> fertilization<br />

site (Roegiers et al. 1995; Dumollard et al. 2004), leading<br />

to cortical <strong>and</strong> endoplasmic reticulum reorganization in<br />

<strong>the</strong> zygote (Speksnijder et al. 1995). Conklin (1905a) was<br />

<strong>the</strong> first to note <strong>the</strong> pigmented plasms present in <strong>the</strong> zygotes<br />

<strong>of</strong> Styela canopus (formerly Cynthia partita). He found that<br />

<strong>the</strong> plasms became localized in distinct parts <strong>of</strong> <strong>the</strong> tadpole<br />

larva <strong>and</strong> was able to determine <strong>the</strong> cell lineages involved.<br />

Subsequently, pigmented plasms have been seen in eggs <strong>of</strong><br />

Boltenia villosa, Styela plicata, <strong>and</strong> a few o<strong>the</strong>r species;<br />

however, most ascidian zygotes <strong>and</strong> embryos lack such<br />

markers. Conklin (1905b) went on to confirm, by blastomere<br />

deletion studies, that ascidian eggs were strictly mosaic <strong>and</strong><br />

only right or left half larvae were produced from one <strong>of</strong> <strong>the</strong><br />

first two blastomeres, a finding that has been verified by<br />

many o<strong>the</strong>r studies with various species. This is an intriguing<br />

result in view <strong>of</strong> <strong>the</strong> tremendous regenerative powers <strong>of</strong> adult<br />

ascidians. Indeed, half embryos can metamorphose into fully<br />

functional adults with all structures present (Nakauchi <strong>and</strong><br />

Takashita 1983). The numerous studies implicating mosaic<br />

development <strong>and</strong> autonomous differentiation in ascidian embryos<br />

have led to many investigations <strong>of</strong> <strong>the</strong> ability <strong>of</strong> one<br />

part <strong>of</strong> <strong>the</strong> embryo to influence o<strong>the</strong>r cells. In an early experiment<br />

with S. canopus embryos, Rose (1939) showed that<br />

neural induction was necessary for <strong>the</strong> formation <strong>of</strong> <strong>the</strong><br />

brain. Later studies have uncovered many o<strong>the</strong>r cases. The<br />

molecular nature <strong>of</strong> autonomous differentiation <strong>and</strong> induction<br />

in ascidian embryos continues to be a very active field<br />

<strong>of</strong> research that has been extensively reviewed (Satoh 1994,<br />

1998, 2001, 2003; Corbo et al. 2001; Makabe et al. 2001;<br />

Nishida 2002). In this issue, Cone <strong>and</strong> Zeller (2005) review<br />

<strong>the</strong> evolution <strong>of</strong> developmental gene networks, while<br />

Shimeld <strong>and</strong> Holl<strong>and</strong> (2005) analyze <strong>the</strong> extensive findings<br />

on <strong>the</strong> molecular <strong>biology</strong> <strong>of</strong> cephalochordate development<br />

<strong>and</strong> how <strong>the</strong>se findings impact our concept <strong>of</strong> <strong>the</strong> evolution<br />

<strong>of</strong> <strong>the</strong> chordates.<br />

Ascidian colonies are composed <strong>of</strong> numerous small zooids<br />

embedded in a common tunic or small individual zooids<br />

connected by stolons. Coloniality is not related to systematic<br />

position. Colonial species are common in two orders: all<br />

aplousobranchs <strong>and</strong> stolidobranchs from <strong>the</strong> family Styelidae.<br />

The only colonial phlebobranchs are Perophora species <strong>and</strong><br />

<strong>the</strong> poorly understood Plurellidae. Ascidians use multiple<br />

asexual methods <strong>of</strong> budding to produce colonies (reviewed<br />

by Nakauchi 1982; Nakauchi <strong>and</strong> Kawamura 1990; Satoh<br />

1994). Life cycles <strong>of</strong> zooids in Botryllus schlosseri colonies<br />

show a regular alternation between budding <strong>and</strong> death by<br />

apoptosis (Lauzon et al. 2002). Colonies grow larger by<br />

spreading on <strong>the</strong> substrate <strong>and</strong> frequently two colonies grow<br />

into each o<strong>the</strong>r. They can ei<strong>the</strong>r fuse or reject each o<strong>the</strong>r<br />

when <strong>the</strong>y meet. Colony fusion <strong>and</strong> rejection has fascinated<br />

biologists for decades <strong>and</strong> continues to be an active area <strong>of</strong><br />

research; in this issue, Rinkevich (2005) surveys <strong>the</strong> function<br />

<strong>of</strong> <strong>the</strong> immune system during colony fusion. In many<br />

stolidobranchs, such as Botryllus species, colony fusion is<br />

genetically controlled (Sc<strong>of</strong>ield et al. 1982; Watanabe <strong>and</strong><br />

Taneda 1982; for reviews see Satoh 1994), but colonies <strong>of</strong> <strong>the</strong><br />

aplousobranch Diplosoma listerianum fuse indiscriminately<br />

<strong>and</strong> <strong>the</strong> resulting colony is a chimera containing zooids <strong>of</strong><br />

several genotypes (Bishop <strong>and</strong> Sommerfeldt 1999).<br />

Structure <strong>and</strong> function<br />

Structure <strong>and</strong> function are inextricably linked <strong>and</strong> have<br />

been extensively reviewed (Goodbody 1974; Kott 1989a;<br />

Burighel <strong>and</strong> Cloney 1997). In this issue, Lacalli (2005) reviews<br />

protochordate body plans <strong>and</strong> <strong>the</strong> evolution <strong>of</strong> larvae,<br />

while Cameron (2005) reviews <strong>the</strong> morphological phylogeny<br />

<strong>of</strong> <strong>the</strong> hemichordates. In addition, Ruppert (2005) reviews<br />

<strong>the</strong> relationship <strong>and</strong> evolution <strong>of</strong> structural similarities between<br />

<strong>the</strong> protochordate phyla.<br />

Hormones are chemical signals operating to convey messages<br />

within <strong>the</strong> organism. Most were originally discovered<br />

in vertebrates or insects, but several are also found in protochordates<br />

<strong>and</strong> are important in evolutionary <strong>and</strong> functional<br />

issues. The review by Sherwood et al. (2005) on <strong>the</strong> endocrinology<br />

<strong>of</strong> protochordates covers <strong>the</strong> known hormones <strong>and</strong><br />

<strong>the</strong>ir receptors, as well as <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> endocrine system.<br />

Protochordates have evolved nervous systems quite different<br />

from most protostomes <strong>and</strong> <strong>the</strong> o<strong>the</strong>r deuterostomes.<br />

Certain similarities exist between <strong>the</strong> protochordate <strong>and</strong> vertebrate<br />

nervous systems, <strong>and</strong> <strong>the</strong>se are crucial to underst<strong>and</strong>ing<br />

evolutionary relationships. Because <strong>the</strong> central <strong>and</strong><br />

peripheral nervous systems <strong>of</strong> <strong>the</strong> ascidian larva have <strong>the</strong><br />

simplest structure in <strong>the</strong> chordate lineage, being composed<br />

<strong>of</strong> only a few hundred cells (Nicol <strong>and</strong> Meinertzhagen 1991),<br />

<strong>and</strong> because <strong>of</strong> <strong>the</strong>ir invariant cleavage pattern (Meinertzhagen<br />

<strong>and</strong> Okamura 2001), development <strong>of</strong> this system is<br />

under intense scrutiny (Meinertzhagen et al. 2000). In this<br />

issue, Meinertzhagen (2005) reviews <strong>the</strong> development, structure,<br />

<strong>and</strong> function <strong>of</strong> <strong>the</strong> larval ascidian nervous system, <strong>and</strong><br />

Mackie <strong>and</strong> Burighel (2005) review <strong>the</strong> adult nervous system.<br />

Cephalochordates exhibit a very much reduced degree<br />

<strong>of</strong> cephalization compared with vertebrates. Consequently,<br />

<strong>the</strong> structure <strong>and</strong> function <strong>of</strong> <strong>the</strong>ir nervous system are proving<br />

crucial to underst<strong>and</strong>ing protochordate relationships (see<br />

review by Wicht <strong>and</strong> Lacalli 2005).<br />

These reviews show that while we have learned a great<br />

deal about protochordates, <strong>the</strong>re is still much more work to<br />

be done to underst<strong>and</strong> this key evolutionary group <strong>of</strong> organisms.<br />

“The study <strong>of</strong> animals is always <strong>the</strong> study <strong>of</strong> unresolved<br />

problems, <strong>and</strong> <strong>of</strong> no group is this more true than <strong>the</strong><br />

protochordates” (Barrington 1965). We hope that <strong>the</strong>se reviews<br />

inspire renewed efforts <strong>and</strong> serve to focus research<br />

into unresolved questions.<br />

References<br />

Alder, J., <strong>and</strong> Hancock, A. 1905–1907. The British Tunicata: an<br />

unfinished monograph. Edited by J. Hopkinson. Ray Society,<br />

London.<br />

Barrington, E.J. 1965. The Biology <strong>of</strong> Hemichordata <strong>and</strong> Protochordata.<br />

Oliver <strong>and</strong> Boyd, Edinburgh.<br />

Barrington, E.J., <strong>and</strong> Jefferies, R.P.S. (Editors). 1975. Protochordates,<br />

Academic Press, London.<br />

© 2005 NRC Canada


Lambert 5<br />

Bates, W.R. 2005. Environmental factors affecting reproduction<br />

<strong>and</strong> development in ascidians <strong>and</strong> o<strong>the</strong>r protochordates. Can. J.<br />

Zool. 83(1): 51–61.<br />

Bateson, W. 1885. The latter stages in <strong>the</strong> development <strong>of</strong> Balanoglossus<br />

kowalevskyi, with a suggestion as to <strong>the</strong> affinities <strong>of</strong> <strong>the</strong><br />

Enteropneusta. Q. J. Microsc. Sci. 25(Suppl.): 81–122.<br />

Berrill, N.J. 1931. Studies in tunicate development. II. Abbreviation<br />

<strong>of</strong> development in <strong>the</strong> Molgulidae. Philos. Trans. R. Soc.<br />

Lond. B Biol. Sci. No. 219. pp. 281–346.<br />

Berrill, N.J. 1950. The tunicata with an account <strong>of</strong> <strong>the</strong> British species.<br />

The Ray Society, London.<br />

Berrill, N.J. 1955. The origin <strong>of</strong> vertebrates. Oxford University<br />

Press, London.<br />

Bishop, J.D.D., <strong>and</strong> Ryl<strong>and</strong>, J.S. 1991. Storage <strong>of</strong> exogenous<br />

sperm by <strong>the</strong> compound ascidian Diplosoma listerianum. Mar.<br />

Biol. (Berl.), 108: 111–118.<br />

Bishop, J.D.D., <strong>and</strong> Sommerfeldt, A.D. 1999. Not like Botryllus:<br />

indiscriminate post-metamorphic fusion in a compound ascidian.<br />

Proc. R. Soc. Lond. B Biol. Sci. 266: 241–248.<br />

Bolton, T.F., <strong>and</strong> Havenh<strong>and</strong>, J.N. 1996. Chemical mediation <strong>of</strong><br />

sperm activity <strong>and</strong> longevity in <strong>the</strong> solitary ascidians Ciona<br />

intestinalis <strong>and</strong> Ascidiella aspersa. Biol. Bull. (Woods Hole),<br />

190: 329–335.<br />

Bone, Q. 1998. The <strong>biology</strong> <strong>of</strong> pelagic tunicates. Oxford University<br />

Press, Oxford.<br />

Brien, P. 1948. Morphologie et reproduction des tuniciers. Traite<br />

Zool. 11: 553–1040.<br />

Burighel, P., <strong>and</strong> Cloney, R.A. 1997. Urochordata: Ascidiacea. In<br />

Microscopic anatomy <strong>of</strong> invertebrates. Vol. 15. Edited by F.W.<br />

Harrison <strong>and</strong> E.E. Ruppert. Wiley-Liss, Inc., New York.<br />

pp. 221–347.<br />

Byrd, J., <strong>and</strong> Lambert, C.C. 2000. Mechanism <strong>of</strong> <strong>the</strong> block to hybridization<br />

<strong>and</strong> selfing between <strong>the</strong> sympatric ascidians Ciona<br />

intestinalis <strong>and</strong> Ciona savignyi. Mol. Reprod. Dev. 55: 109–116.<br />

Cameron, C.B. 2005. A phylogeny <strong>of</strong> <strong>the</strong> hemichordates based on<br />

morphological characters. Can. J. Zool. 83(1): 196–215.<br />

Cloney, R.A., <strong>and</strong> Hansson, L.J. 1996. Ascidian larvae: <strong>the</strong> role <strong>of</strong><br />

test cells in preventing hydrophobicity. Acta Zool. 77: 73–78.<br />

Cone, A.C., <strong>and</strong> Zeller, R.W. 2005. Using ascidian embryos to<br />

study <strong>the</strong> evolution <strong>of</strong> developmental gene regulatory networks.<br />

Can. J. Zool. 83(1): 75–89.<br />

Conklin, E.G. 1905a. The organization <strong>and</strong> cell-lineage <strong>of</strong> <strong>the</strong><br />

ascidian egg. J. Acad. Nat. Sci. Phila. 13: 1–119.<br />

Conklin, E.G. 1905b. Mosaic development in ascidian eggs. J. Exp.<br />

Zool. 2: 145–223.<br />

Corbo, J.C., Di Gregorio, A., <strong>and</strong> Levine, M. 2001. The ascidian as<br />

a model organism in developmental <strong>and</strong> evolutionary <strong>biology</strong>.<br />

Cell, 106: 535–538.<br />

Cuvier, G. 1815. Memoire sur les ascides et sur leur anatomie.<br />

Mem. Hist. Nat. Paris, 2: 10–39.<br />

Dumollard, R., McDougall, A., Rouviere, C., <strong>and</strong> Sardet, C. 2004.<br />

Fertilisation calcium signals in <strong>the</strong> ascidian egg. Biol. Cell. 96:<br />

29–36.<br />

Forward, R.B.J., Welch, J.M., <strong>and</strong> Young, C.M. 2000. Light induced<br />

larval release <strong>of</strong> a colonial ascidian. J. Exp. Mar. Biol.<br />

Ecol. 248: 225–238.<br />

Franzén, A. 1976. The fine structure <strong>of</strong> spermatid differentiation in<br />

a tunicate, Corella parallelogramma (Muller). Zoon, 4: 115–<br />

120.<br />

Fuke, M., <strong>and</strong> Numakunai, T. 1996. Establishment <strong>of</strong> self-sterility<br />

<strong>of</strong> eggs in <strong>the</strong> ovary <strong>of</strong> <strong>the</strong> solitary ascidian, Halocynthia roretzi.<br />

Roux’s Arch. Dev. Biol. 205: 391–400.<br />

Fuke, M., <strong>and</strong> Numakunai, T. 1999. Self-sterility <strong>of</strong> eggs induced<br />

by exogenous <strong>and</strong> endogenous protease in <strong>the</strong> solitary ascidian,<br />

Halocynthia roretzi. Mol. Reprod. Dev. 52: 99–106.<br />

Georges, D. 1968. Influence de l’éclairement sur la ponte de Ciona<br />

intestinalis L. Cah. Biol. Mar. 9: 105–113.<br />

Goodbody, I. 1974. The physiology <strong>of</strong> ascidians. In Advances in<br />

marine <strong>biology</strong>. Vol. 12. Edited by F.S. Russell <strong>and</strong> C.M. Yonge.<br />

Academic Press, London. pp. 1–149.<br />

Hadfield, M.G. 1975. Hemichordata. In Reproduction <strong>of</strong> marine invertebrates.<br />

Vol. 2. Chap. 7. Edited by A.C. Giese <strong>and</strong> J.S.<br />

Pearse. Academic Press, New York.<br />

Herdman, W.A. 1882. Report on <strong>the</strong> tunicata collected during <strong>the</strong><br />

voyage <strong>of</strong> H.M.S. Challenger during <strong>the</strong> years 1873–76. I.<br />

Ascidies simplices. Zool. Challenger Exped. VI: 1–296.<br />

Herdman, W.A. 1886. Report on <strong>the</strong> tunicata collected during <strong>the</strong><br />

voyage <strong>of</strong> H.M.S. Challenger during <strong>the</strong> years 1873–76. II<br />

Ascidae compositae. Zool. Challenger Exped. XIV: 1–432.<br />

Honegger, T.G. 1992. The involvement <strong>of</strong> sperm <strong>and</strong> egg<br />

glycosidases in animal fertilization. Trends Glycosci. Glycotech.<br />

4: 437–444.<br />

Hoshi, M. 1986. Sperm glycosidase as a plausible mediator <strong>of</strong><br />

sperm binding to <strong>the</strong> vitelline envelope in ascidians. In The molecular<br />

<strong>and</strong> cellular <strong>biology</strong> <strong>of</strong> fertilization. Edited by J.L.<br />

Hedrick. Plenum Publishing Corporation, New York. pp. 251–<br />

260.<br />

Hoshi, M., Numakunai, T., <strong>and</strong> Sawada, H. 1981. Evidence for participation<br />

<strong>of</strong> sperm proteinases in fertilization <strong>of</strong> <strong>the</strong> solitary<br />

ascidian, Halocynthia roretzi: effects <strong>of</strong> protease inhibitors. Dev.<br />

Biol. 86: 117–121.<br />

Huus, J. 1937. Tunicata: Ascidiaceae. H<strong>and</strong>b. Zool. Kukenthal<br />

Krumbach, 5(2nd half): 545–672.<br />

Huus, J. 1939. The effect <strong>of</strong> light on <strong>the</strong> spawning in ascidians.<br />

Avh<strong>and</strong>linger utgitt av Det Norske Videnskaps-Akademi i Oslo<br />

1. Mat.-Naturv. Klasse, 1939: 1–30.<br />

Hyman, L. 1959. The invertebrates: smaller coelomate groups.<br />

McGraw Hill, New York.<br />

Ishikawa, M., Tsutsui, H., Cosson, J., Oka, Y., <strong>and</strong> Morisawa, M.<br />

2004. Strategies for sperm chemotaxis in <strong>the</strong> siphonophores <strong>and</strong><br />

ascidians: a numerical simulation study. Biol. Bull. (Woods<br />

Hole), 206: 95–102.<br />

Jamieson, B.G.M. 1991. Fish evolution <strong>and</strong> systematics: evidence<br />

from spermatozoa. Cambridge University Press, Cambridge, UK.<br />

Jeffery, W.R. 1980. The follicular envelope <strong>of</strong> ascidian eggs: a<br />

site <strong>of</strong> messenger RNA <strong>and</strong> protein syn<strong>the</strong>sis during early<br />

embryogenesis. J. Exp. Zool. 212: 279–289<br />

Jeffery, W.R. 1990. Ultraviolet irradiation during ooplasmic segregation<br />

prevents gastrulation, sensory cell induction, <strong>and</strong> axis formation<br />

in <strong>the</strong> ascidian embryo. Dev. Biol. 140: 388–400.<br />

Jeffery, W.R., <strong>and</strong> Swalla, B.J. 1997. Tunicates. In Embryology:<br />

constructing <strong>the</strong> organism. Edited by S. Gilbert <strong>and</strong> A.M.<br />

Raunio. Sinauer Associates, Inc., Sunderl<strong>and</strong>, Mass. pp. 331–<br />

364.<br />

Kott, P. 1989a. Form <strong>and</strong> function in <strong>the</strong> Ascidiacea. Bull. Mar.<br />

Sci. 45: 253–276.<br />

Kott, P. 1989b. The Family Hexacrobylidae Seeliger, 1906<br />

(Ascidiacea, Tunicata). Mem. Queensl. Mus. 27: 517–534.<br />

Kott, P. 1998. Hemichordata, Tunicata, Cephalochordata. In Zoological<br />

catalogue <strong>of</strong> Australia. Edited by A. Wells <strong>and</strong> W.W.K.<br />

Houston. CSIRO Publishing, Collingwood, Victoria, Australia.<br />

pp. 51–252, 259–261.<br />

Kowalevsky, A.O. 1867. Entwicklungsgeschichte der einfachen<br />

Ascidien. Mem. Acad. Sci. St. Petersb. 10: 1–19.<br />

Kubokawa, K., Mizuta, T., Morisawa, M., <strong>and</strong> Azuma, N. 2003.<br />

Gonadal state <strong>of</strong> wild amphioxus populations <strong>and</strong> spawning suc-<br />

© 2005 NRC Canada


6 Can. J. Zool. Vol. 83, 2005<br />

cess in captive conditions during <strong>the</strong> breeding period in Japan.<br />

Zool. Sci. (Tokyo), 20: 889–895.<br />

Lacalli, T.C. 2005. Protochordate body plan <strong>and</strong> <strong>the</strong> evolutionary<br />

role <strong>of</strong> larvae: old controversies resolved? Can. J. Zool. 83(1):<br />

216–224.<br />

Lahille, F. 1886. Sur le classification des Tuniciers. C.R. Acad.<br />

Sci. Paris, CII: 1573–1575.<br />

Lamarck, J.B. 1816. Histoire naturelle des animaux sans vertebres.<br />

Vol. 3. pp. 80–130.<br />

Lambert, C.C. 1982. The ascidian sperm reaction. Am. Zool. 22:<br />

841–849.<br />

Lambert, C.C. 1989. Ascidian sperm penetration <strong>and</strong> <strong>the</strong> translocation<br />

<strong>of</strong> a cell surface glycosidase. J. Exp. Zool. 249: 308–<br />

315.<br />

Lambert, C.C. 2000. Germ-cell warfare in ascidians: Sperm from<br />

one species can interfere with <strong>the</strong> fertilization <strong>of</strong> a second species.<br />

Biol. Bull. (Woods Hole), 198: 22–25.<br />

Lambert, C.C., <strong>and</strong> Battaglia, D.E. 1993. Loss <strong>of</strong> <strong>the</strong> paternal mitochondrion<br />

during fertilization. Zool. Sci. (Tokyo), 10: 31–37.<br />

Lambert, C.C., <strong>and</strong> Br<strong>and</strong>t, C.L. 1967. The effect <strong>of</strong> light on <strong>the</strong><br />

spawning <strong>of</strong> Ciona intestinalis. Biol. Bull. (Woods Hole), 132:<br />

222–228.<br />

Lambert, C.C., <strong>and</strong> Epel, D. 1979. Calcium-mediated mitochondrial<br />

movement in ascidian sperm during fertilization. Dev. Biol.<br />

69: 296–304.<br />

Lambert, C.C., <strong>and</strong> Koch, R.A. 1988. Sperm binding <strong>and</strong> penetration<br />

during ascidian fertilization. Dev. Growth Differ. 30: 325–<br />

336.<br />

Lambert, C.C., <strong>and</strong> Lambert, G. 1978. Tunicate eggs utilize ammonium<br />

ions for flotation. Science (Wash., D.C.), 200: 64–65.<br />

Lambert, C.C., <strong>and</strong> Lambert, G. 1983. Mitochondrial movement<br />

during <strong>the</strong> ascidian sperm reaction. Gamete Res. 8: 295–307.<br />

Lambert, C.C., <strong>and</strong> Lambert, G. 1984. The role <strong>of</strong> actin <strong>and</strong> myosin<br />

in ascidian sperm mitochondrial translocation. Dev. Biol.<br />

l06: 307–314.<br />

Lambert, C.C., Lambert, I.M., <strong>and</strong> Lambert, G. 1995. Brooding<br />

strategies in solitary ascidians: Corella species from north <strong>and</strong><br />

south temperate waters. Can. J. Zool. 73: 1666–1671.<br />

Lambert, C.C., Goudeau, H., Franchet, C., Lambert, G., <strong>and</strong><br />

Goudeau, M. 1997. Ascidian eggs block polyspermy by two independent<br />

mechanisms: one at <strong>the</strong> plasma membrane, <strong>the</strong> o<strong>the</strong>r<br />

involving <strong>the</strong> follicle cells. Mol. Reprod. Dev. 48: 137–143.<br />

Lambert, G. 1968. The general ecology <strong>and</strong> growth <strong>of</strong> a solitary<br />

ascidian, Corella willmeriana. Biol. Bull. (Woods Hole), 135:<br />

296–307.<br />

Lambert, G. 2005. Ecology <strong>and</strong> natural history <strong>of</strong> <strong>the</strong> protochordates.<br />

Can. J. Zool. 83(1): 34–50.<br />

Lambert, G., Lambert, C.C., <strong>and</strong> Abbott, D.P. 1981. Corella species<br />

in <strong>the</strong> American Pacific Northwest: distinction <strong>of</strong> C. inflata<br />

Huntsman, 1912 from C. willmeriana Herdman, 1898<br />

(Ascidiacea, Phlebobranchia). Can. J. Zool. 59: 1493–1504.<br />

Lauzon, R.J., Ishizuka, K.J., <strong>and</strong> Weissman, I.L. 2002. Cyclical<br />

generation <strong>and</strong> degeneration <strong>of</strong> organs in a colonial urochordate<br />

involves crosstalk between old <strong>and</strong> new: a model for development<br />

<strong>and</strong> regeneration. Dev. Biol. 249: 333–348.<br />

Mackie, G.O., <strong>and</strong> Burighel, P. 2005. The nervous system in adult<br />

tunicates: current research directions. Can. J. Zool. 83(1): 151–<br />

183.<br />

Makabe, K.W., Kawashima, T., Kawashima, S., Sasakura, Y.,<br />

Ishikawa, H., Kawamura, H., et al. 2001. Maternal genetic information<br />

stored in fertilized eggs <strong>of</strong> <strong>the</strong> ascidian, Halocynthia<br />

roretzi. In The <strong>biology</strong> <strong>of</strong> ascidians. Edited by H. Sawada, H.<br />

Yokosawa, <strong>and</strong> C.C. Lambert. Springer-Verlag, Tokyo. pp. 165–<br />

177.<br />

Marino, R., Pinto, M.R., Cotelli, F., Lamia, C.L., <strong>and</strong> De Santis, R.<br />

1998. The hsp70 protein is involved in <strong>the</strong> acquisition <strong>of</strong> gamete<br />

self-sterility in <strong>the</strong> ascidian Ciona intestinalis. Development<br />

(Camb.), 125: 899–907.<br />

Marino, R., De Santis, R., Giuliano, P., <strong>and</strong> Pinto, M.R. 1999.<br />

Follicle cell proteasome activity <strong>and</strong> acid extract from <strong>the</strong> egg<br />

vitelline coat prompt <strong>the</strong> onset <strong>of</strong> self-sterility in Ciona<br />

intestinalis oocytes. Proc. Natl. Acad. Sci. U.S.A. 96: 9633–<br />

9636.<br />

Martinucci, G.B., Barbara, M.D., Boldrin, F., <strong>and</strong> Burighel, P. 2001.<br />

The “complex” ascidosperm <strong>of</strong> aplousobranchs. In The <strong>biology</strong><br />

<strong>of</strong> ascidians. Edited by H. Sawada, H. Yokosawa, <strong>and</strong> C.C. Lambert.<br />

Springer-Verlag, Tokyo. pp. 102–105.<br />

McHenry, M.J. 2005. The morphology, behavior, <strong>and</strong> biomechanics<br />

<strong>of</strong> swimming in ascidian larvae. Can. J. Zool. 83(1): 62–74.<br />

Meinertzhagen, I.A. 2005. Eutely, cell lineage, <strong>and</strong> fate within <strong>the</strong><br />

ascidian larval nervous system: determinacy or to be determined?.<br />

Can. J. Zool. 83(1): 184–195.<br />

Meinertzhagen, I.A., <strong>and</strong> Okamura, Y. 2001. The larval ascidian<br />

nervous system: <strong>the</strong> chordate brain from its small beginnings.<br />

Trends Neurosci. 24: 401–410.<br />

Meinertzhagen, I.A., Cole, A.G., <strong>and</strong> Stanley, S. 2000. The central<br />

nervous system, its cellular organisation <strong>and</strong> development, in <strong>the</strong><br />

tadpole larva <strong>of</strong> <strong>the</strong> ascidian Ciona intestinalis. Acta Biol.<br />

Hung. 51: 417–431.<br />

Millar, R.H. 1971. The <strong>biology</strong> <strong>of</strong> ascidians. Adv. Mar. Biol. 9: 1–<br />

100.<br />

Miller, R.L. 1975. Chemotaxis <strong>of</strong> <strong>the</strong> spermatozoa <strong>of</strong> Ciona intestinalis.<br />

Nature (Lond.), 254: 244–245.<br />

Monniot, C., <strong>and</strong> Monniot, F. 1990. Revision <strong>of</strong> <strong>the</strong> class<br />

Sorberacea (benthic tunicates) with descriptions <strong>of</strong> seven new<br />

species. Zool. J. Linn. Soc. 99: 239–290.<br />

Monniot, C., Monniot, F., <strong>and</strong> Laboute, P. 1991. Coral reef ascidians<br />

<strong>of</strong> New Caledonia. Orstom, Paris.<br />

Morisawa, M., Izumi, H., Yoshida, M., <strong>and</strong> Oka, Y. 2001. Cell<br />

signalings for activation <strong>of</strong> motility <strong>and</strong> chemotaxis in <strong>the</strong> sperm<br />

<strong>of</strong> Ciona. In The <strong>biology</strong> <strong>of</strong> ascidians. Edited by H. Sawada, H.<br />

Yokosawa, <strong>and</strong> C.C. Lambert. Springer-Verlag, Tokyo. pp. 86–91.<br />

Nakauchi, M. 1982. Asexual development <strong>of</strong> ascidians: its biological<br />

significance, diversity, <strong>and</strong> morphogenesis. Am. Zool. 22:<br />

753–763.<br />

Nakauchi, M., <strong>and</strong> Kawamura, K. 1990. Problems on <strong>the</strong> asexual<br />

reproduction <strong>of</strong> ascidians. In Advances in invertebrate reproduction.<br />

Edited by M. Hoshi <strong>and</strong> O. Yamashita. Elsevier Science<br />

Publisher, Amsterdam. pp. 49–54.<br />

Nakauchi, M., <strong>and</strong> Takeshita, T. 1983. Ascidian one-half embryos<br />

can develop into functional adult ascidians. J. Exp. Zool. 227:<br />

155–158.<br />

Nicol, D., <strong>and</strong> Meinertzhagen, I.A. 1991. Cell counts <strong>and</strong> maps in<br />

<strong>the</strong> larval central nervous system <strong>of</strong> <strong>the</strong> ascidian Ciona<br />

intestinalis (L.). J. Comp. Neurol. 309: 415–429.<br />

Nishida, H. 2002. Specification <strong>of</strong> developmental fates in ascidian<br />

embryos: molecular approach to maternal determinants <strong>and</strong> signaling<br />

molecules. Int. Rev. Cytol. 217: 227–276.<br />

Numakunai, T., <strong>and</strong> Hoshino, Z. 1980. Periodic spawning <strong>of</strong> three<br />

types <strong>of</strong> <strong>the</strong> ascidian Halocynthia roretzi (Drasch) under continuous<br />

light conditions. J. Exp. Zool. 212: 381–387.<br />

Patricolo, E., <strong>and</strong> Villa, L. 1992. Ascidian interspecific fertilization.<br />

A study <strong>of</strong> <strong>the</strong> external egg coating in hybrid crosses.<br />

Anim. Biol. 1: 9–15.<br />

Perrier, J.O. 1898. Note sur la classification des Tuniciers. C. R.<br />

Acad. Sci. Paris, 126: 1758–1762<br />

Reese, J.P. 1967. Photoreceptive regulation <strong>of</strong> spawning in Ciona<br />

© 2005 NRC Canada


Lambert 7<br />

intestinalis (L.). Masters <strong>the</strong>sis, San Diego State University, San<br />

Diego.<br />

Retzius, G. 1904. Zur kenntnis der spermien der evertebraten I.<br />

Biol. Unters. 11: 1–32.<br />

Retzius, G. 1905. Zur kenntnis der spermien der evertebraten II.<br />

Biol. Unters. 12: 79–115.<br />

Reverberi, G. 1971. Ascidians. In Experimental embryology <strong>of</strong><br />

marine <strong>and</strong> fresh-water invertebrates. Edited by G. Reverberi.<br />

North-Holl<strong>and</strong> Publishing Co., Amsterdam. pp. 507–550.<br />

Rinkevich, B. 2005. Rejection patterns in botryllid ascidian immunity:<br />

<strong>the</strong> first tier <strong>of</strong> allorecognition. Can. J. Zool. 83(1): 101–<br />

121.<br />

Roegiers, F., McDougall, A., <strong>and</strong> Sardet, C. 1995. The sperm entry<br />

point defines <strong>the</strong> orientation <strong>of</strong> <strong>the</strong> calcium-induced contraction<br />

wave that directs <strong>the</strong> first phase <strong>of</strong> cytoplasmic reorganization in<br />

<strong>the</strong> ascidian egg. Development (Camb.), 121: 3457–3466.<br />

Rose, S.M. 1939. Embryonic induction in ascidia. Biol. Bull.<br />

(Woods Hole), 77: 216–232.<br />

Ruppert, E.E. 2005. Key characters uniting hemichordates <strong>and</strong><br />

chordates: homologies or homoplasies? Can. J. Zool. 83(1): 8–<br />

23.<br />

Ruppert, E.F., <strong>and</strong> Barnes, R.D. 1994. Invertebrate zoology. 6th ed.<br />

Saunders College Publishing, Fort Worth, Tex.<br />

Sabbadin, A., Burighel, P., <strong>and</strong> Zaniolo, G. 1991. Studies on <strong>the</strong><br />

colonial ascidian Botryllus schlosseri. A review <strong>of</strong> some lines <strong>of</strong><br />

research. Acta Embryol. Morphol. Exp. New Ser. 12: 259–279.<br />

Sakairi, K., <strong>and</strong> Shirai, H. 1991. Possible MS production by follicle<br />

cells in spontaneous oocyte maturation <strong>of</strong> <strong>the</strong> ascidian,<br />

Halocynthia roretzi. Dev. Growth Differ. 33: 155–162.<br />

Satoh, N. 1994. Developmental <strong>biology</strong> <strong>of</strong> ascidians. Cambridge<br />

University Press, Cambridge, UK.<br />

Satoh, N. 1998. Mechanisms <strong>of</strong> specification in ascidian embryos.<br />

Biol. Bull. (Woods Hole), 195: 381–383.<br />

Satoh, N. 2001. Ascidian embryos as a model system to analyze<br />

expression <strong>and</strong> function <strong>of</strong> developmental genes. Differentiation,<br />

68: 1–12.<br />

Satoh, N. 2003. The ascidian tadpole larva: comparative molecular<br />

development <strong>and</strong> genomics. Nat. Rev. Genet. 4: 285–295.<br />

Savigny, M. 1816. Memoires sur les animaux sans vertebras. M.<br />

Savigny, Paris.<br />

Sawada, H., <strong>and</strong> Yokosawa, H. 2001. Self–nonself recognition <strong>and</strong><br />

lysin system in fertilization <strong>of</strong> <strong>the</strong> ascidian Halocynthia roretzi<br />

In The <strong>biology</strong> <strong>of</strong> ascidians. Edited by H. Sawada, H. Yokosawa,<br />

<strong>and</strong> C.C. Lambert. Springer-Verlag, Tokyo. pp. 18–23.<br />

Sawada, H., Yokosawa, H., <strong>and</strong> Lambert, C.C. (Editors). 2001. The<br />

<strong>biology</strong> <strong>of</strong> ascidians. Springer-Verlag, Tokyo.<br />

Sawada, H., Sakai, N., Abe, Y., Tanaka, E., Takahashi, Y., Fujino,<br />

J., Kodama, E., Takizawa, S., <strong>and</strong> Yokosawa, H. 2002. Extracellular<br />

ubiquitination <strong>and</strong> proteasome-mediated degradation <strong>of</strong><br />

<strong>the</strong> ascidian sperm receptor. Proc. Natl. Acad. Sci. U.S.A. 99:<br />

1223–1228.<br />

Sherwood, N.M., Adams, B.A., <strong>and</strong> Tello, J.A. 2005. Endocrinology<br />

<strong>of</strong> protochordates. Can. J. Zool. 83(1): 225–255.<br />

Shimeld, S.M., <strong>and</strong> Holl<strong>and</strong>, N.D. 2005. Amphioxus molecular<br />

<strong>biology</strong>: insights into vertebrate evolution <strong>and</strong> developmental<br />

mechanisms. Can. J. Zool. 83(1): 90–100.<br />

Sc<strong>of</strong>ield, V., Schlumpberger, J., <strong>and</strong> Weissman, I. 1982. Colony<br />

specificity in <strong>the</strong> colonial tunicate Botryllus <strong>and</strong> <strong>the</strong> origin <strong>of</strong><br />

vertebrate immunity. Am. Zool. 22:784–794.<br />

Speksnijder, J.E., McDougall, A., Sardet, C., Gualtieri, R., Jeffery,<br />

W.R., Berridge, M.J., Williams, R.J.P., Thomas, A.P., <strong>and</strong> Putney,<br />

J.W. 1995. Calcium signalling <strong>and</strong> localization <strong>of</strong> endoplasmic<br />

reticulum in ascidian embryos. In Calcium waves,<br />

gradients <strong>and</strong> oscillations. Edited by G.R. Bock <strong>and</strong> K. Ackrill.<br />

John Wiley & Sons Ltd., Chichester, West Sussex, UK. pp. 141–145.<br />

Swalla, B.J., <strong>and</strong> Jeffery, W.R. 1990. Interspecific hybridization between<br />

an anural <strong>and</strong> urodele ascidian; differential expression <strong>of</strong><br />

urodele features suggests multiple mechanisms control anural<br />

development. Dev. Biol. 142: 319–334.<br />

Swalla, B.J., Just, M.A., Pederson, E.L., <strong>and</strong> Jeffery, W.R. 1999. A<br />

multigene locus containing <strong>the</strong> Manx <strong>and</strong> bobcat genes is required<br />

for development <strong>of</strong> chordate features in <strong>the</strong> ascidian tadpole<br />

larva. Development (Camb.), 126: 1643–1653.<br />

Takamura, K., Ueda, Y., Irie, U., <strong>and</strong> Yamaguchi, Y. 1996.<br />

Immunohistology with antibodies specific to test cells in <strong>the</strong><br />

ascidian Ciona intestinalis suggests <strong>the</strong>ir role in larval tunic formation.<br />

Zool. Sci. (Tokyo), 13: 241–251.<br />

Villa, L. 1977. An ultrastructural investigation on preliminaries in<br />

fertilization <strong>of</strong> Ascidia malaca (Urochordata). Acta Embryol.<br />

Exp. 1977: 179–183.<br />

Watanabe, H., <strong>and</strong> Lambert, C.C. 1973. Larva release in response<br />

to light by <strong>the</strong> compound ascidians Distaplia occidentalis <strong>and</strong><br />

Met<strong>and</strong>rocarpa taylori. Biol. Bull. (Woods Hole), 144: 556–<br />

566.<br />

Watanabe, H., <strong>and</strong> Taneda, Y. 1982. Self <strong>and</strong> non self recognition<br />

in compound ascidians. Am. Zool. 22: 775–782.<br />

West, A.B., <strong>and</strong> Lambert, C.C. 1976. Control <strong>of</strong> spawning in <strong>the</strong><br />

tunicate Styela plicata by variations in a natural light regime. J.<br />

Exp. Zool. 195: 263–270.<br />

Whittaker, J.R. 1997. Cephalochordates, <strong>the</strong> lancelets. In Embryology:constructing<br />

<strong>the</strong> organism. Edited by S.F. Gilbert <strong>and</strong> A.M.<br />

Raunio. Sinauer Associates, Inc., Sunderl<strong>and</strong>, Mass. pp. 365–381.<br />

Whittingham, D.G. 1967. Light-induction <strong>of</strong> shedding <strong>of</strong> gametes<br />

in Ciona intestinalis <strong>and</strong> Molgula manhattensis. Biol. Bull.<br />

(Woods Hole), 132: 292–298.<br />

Wicht, H., <strong>and</strong> Lacalli, T.C. 2005. The nervous system <strong>of</strong> amphioxus:<br />

structure, development, <strong>and</strong> evolutionary significance. Can. J.<br />

Zool. 83(1): 122–150.<br />

Wickstead, J.H. 1975. Chordata: Acrania (Cephalochordata). In<br />

Reproduction <strong>of</strong> marine invertebrates. Vol. 2. Chap. 9. Edited by<br />

by A.C. Giese <strong>and</strong> J.S. Pearse. Academic Press, New York.<br />

Woollacott, R.M. 1974. Micr<strong>of</strong>ilaments <strong>and</strong> <strong>the</strong> mechanism <strong>of</strong> light<br />

triggered sperm release in ascidians. Dev. Biol. 40: 186–195.<br />

Yoshida, M., Murata, M., Inaba, K., <strong>and</strong> Morisawa, M. 2002. A<br />

chemoattractant for ascidian spermatozoa is a sulfated steroid.<br />

Proc. Natl. Acad. Sci. U.S.A. 99: 14831–14836.<br />

Young, C.M., Gowan, R.F., Dalby, J.J., Pennachetti, C.A., <strong>and</strong><br />

Gagliardi, D. 1988. Distributional consequences <strong>of</strong> adhesive<br />

eggs <strong>and</strong> anural development in <strong>the</strong> ascidian Molgula pacifica<br />

(Huntsman, 1912). Biol. Bull. (Woods Hole), 174: 39–46.<br />

Zeng, L., <strong>and</strong> Swalla, B.J. 2005. Molecular phylogeny <strong>of</strong> <strong>the</strong> protochordates:<br />

chordate evolution. Can. J. Zool. 83(1): 24–33.<br />

© 2005 NRC Canada

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!