04.09.2014 Views

2G HTS High Field Magnet Demonstration - SuperPower Inc.

2G HTS High Field Magnet Demonstration - SuperPower Inc.

2G HTS High Field Magnet Demonstration - SuperPower Inc.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>2G</strong> <strong>HTS</strong> <strong>High</strong> <strong>Field</strong> <strong>Magnet</strong><br />

<strong>Demonstration</strong><br />

Presented by: Drew W. Hazelton<br />

<strong>SuperPower</strong>, <strong>Inc</strong>.<br />

<strong>Magnet</strong> Technology Conference, MT-20<br />

August 28, 2007<br />

Providing <strong>HTS</strong> Solutions for a New Dimension in Power – TODAY!


Acknowledgements<br />

<strong>SuperPower</strong>, , <strong>Inc</strong>.<br />

• Jason Duval, Venkat Selvamanickam, Yi-Yuan Xie<br />

• …and the rest of the <strong>SuperPower</strong> Team<br />

• <strong>2G</strong> <strong>HTS</strong> Wire Development Program funding from Title III and DOE through UT-<br />

Battelle<br />

National <strong>High</strong> <strong>Magnet</strong>ic <strong>Field</strong> Laboratory / FSU<br />

• Zhijun Chen, David Larbalestier, Denis Markiewicz, Ed Miller, Patrick Noyes,<br />

Ken Pickard, Ulf Trociewitz, and Huub Weijers<br />

• A portion of this work was performed at the National <strong>High</strong> <strong>Magnet</strong>ic <strong>Field</strong><br />

Laboratory, which is supported by NSF Cooperative Agreement No. DMR-<br />

0084173, by the State of Florida, and by the DOE<br />

MT-20 August 28, 2007 –1–


<strong>SuperPower</strong>’s <strong>2G</strong> wire utilizes high strength substrates<br />

coupled with high throughput processing<br />

<strong>SuperPower</strong>’s <strong>2G</strong> <strong>HTS</strong> wire is based on high throughput IBAD MgO and<br />

MOCVD processes.<br />

Use of IBAD as buffer template provides us choice of any substrate.<br />

• Advantages of IBAD are high strength, low ac loss (non-magnetic, high<br />

resistivity substrates) and high engineering current density (ultra-thin<br />

substrates)<br />

<strong>High</strong> throughput is critical for low cost <strong>2G</strong> wire and to minimize capital<br />

investment.<br />

20μm Cu<br />

2 μm Ag<br />

1 μm <strong>HTS</strong><br />

~ 30 nm LMO<br />

~ 30 nm Homo-epi MgO<br />

~ 10 nm IBAD MgO<br />

< 0.1 mm<br />

50μm Hastelloy substrate<br />

20μm Cu<br />

MT-20 August 28, 2007 –2–


Long length processing of <strong>2G</strong> wire demonstrated<br />

250<br />

Critical current<br />

(A/cm)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Jan. 2007<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

300<br />

350<br />

400<br />

450<br />

500<br />

550<br />

600<br />

77 K, Ic measured every 5 m using continuous dc<br />

currents over entire tape width of 12 mm (not slit)<br />

Position (m)<br />

Minimum Ic = 173 A/cm over 595 m<br />

Ic × Length = 102,935 A-m<br />

Uniformity over 595 m = 6.4%<br />

Process<br />

(single pass)<br />

IBAD MgO<br />

Homo-epi MgO<br />

LMO<br />

MOCVD<br />

Speed of 4 mm tape<br />

(m/h)<br />

360<br />

213<br />

360<br />

135<br />

MT-20 August 28, 2007 –3–


Critical current properties of the <strong>2G</strong> wire make it ideal for<br />

lower temperature, high field applications<br />

Data (solid figures) taken on bridge sample.<br />

Dashed red line is hypothetical curve.<br />

J c<br />

( MA/cm 2 )<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

4.2K//c<br />

4.2K//ab<br />

0<br />

0 5 10 15 20 25 30 35<br />

μ 0<br />

H (Tesla)<br />

J e<br />

( A/mm 2 )<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

0 3 6 9 12 15 18 21 24 27 30 33<br />

μ 0<br />

H (Tesla)<br />

4.2K//c<br />

4.2K//ab<br />

Superconductor critical current density<br />

Data by Z. Chen at NHMFL / FSU (2007)<br />

Conductor critical current density<br />

thickness ~ 95 μm<br />

MT-20 August 28, 2007 –4–


Mechanical properties of <strong>2G</strong> wire are ideal for high stress<br />

applications<br />

Stress-strain traces for <strong>SuperPower</strong> <strong>2G</strong> YBCO at 76K. <strong>Inc</strong>luded are a<br />

trace of the base substrate material, Hastelloy C276 which dominates the<br />

conductor mechanical properties. Note the impact of copper stabilizer<br />

which slightly lowers the overall composite strength.<br />

Measurements conducted at NIST by Ekin et al (2004)<br />

MT-20 August 28, 2007 –5–


50 micron substrate tape shows superior bend strain<br />

characteristics<br />

Ic/Ic(original)<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

Bend at R.T. and Test While held on Mandrel<br />

100 micron substrate<br />

4 mm wide with 20<br />

micron surround Cu<br />

50 micron substrate<br />

4 mm wide and<br />

surround Cu<br />

50 micron substrate<br />

12 mm wide no Cu<br />

-10 -11 -12 -14 -16 -19 -23 24 19 16 14 12 10 9<br />

Compressive<br />

Bend diameter (mm)<br />

Tensile<br />

95%<br />

Maximum Bend Strain = +/- t / D ~ 95 μm / 11000 μm = 0.86 % (~ 0.45 % on the YBCO)<br />

MT-20 August 28, 2007 –6–


<strong>High</strong> field insert coil construction<br />

Conductor:<br />

Dimensions: 4 mm wide x<br />

95 microns thick<br />

Substrate: 50 micron Hastelloy<br />

<strong>HTS</strong>:<br />

~ 1 micron YBCO<br />

Stabilizer: ~ 2 micron Ag on YBCO<br />

Tape Ic<br />

Coil Winding<br />

~ 20 microns of surround<br />

copper stabilizer per side<br />

72 – 82 A, 77 K, sf<br />

Double Pancake Construction<br />

Dry Wound (no epoxy)<br />

Kapton polyimide insulation (cowound)<br />

Overbanding: 316 Stainless Steel<br />

Coil ID<br />

Winding ID<br />

Winding OD<br />

Coil Height<br />

# of Pancakes<br />

<strong>2G</strong> tape used<br />

# of turns<br />

Coil Je<br />

Coil constant<br />

9.5 mm (clear)<br />

19.1 mm<br />

~ 87 mm<br />

~ 51.6 mm<br />

12 (6 x double)<br />

~ 462 m<br />

~ 2772<br />

~1.569 A/mm 2 per A<br />

~ 44.4 mT/A<br />

MT-20 August 28, 2007 –7–


NHMFL facilities provide 19T axial background field<br />

Insert coil tested in NHMFL’s unique, 19-tesla,<br />

20-centimeter wide-bore, 20-megawatt Bitter<br />

magnet<br />

<strong>2G</strong> HF Insert Coil Showing Terminals, Overbanding and<br />

Partial Support Structure. Flange OD is 127 mm.<br />

MT-20 August 28, 2007 –8–


Test setup at NHMFL<br />

Data Acquisition<br />

<strong>HTS</strong> magnet<br />

power supply<br />

Shunt<br />

Fault<br />

detection<br />

1.5 Ω Dump<br />

resistor<br />

Insert & Hall data<br />

YBCO insert<br />

Large Bore<br />

Resistive magnet<br />

Hall sensor<br />

MT-20 August 28, 2007 –9–


Typical V-I trace (19T background field)<br />

1.00E+00<br />

lead-lead voltage in 19 T background<br />

lead-lead<br />

Pancake 12<br />

1.00E-01<br />

1.00E-02<br />

Ic = 175 A<br />

inductive voltage @ 5.9<br />

A/min<br />

Voltage [V]<br />

1.00E-03<br />

1.00E-04<br />

1.00E-05<br />

inductive voltage @ 3.7 A/min<br />

1.00E-06<br />

1.00E-07<br />

1 10 100 1000<br />

Current<br />

MT-20 August 28, 2007 –10–


Hall probe data shows linear field generation<br />

Hall probe signal showing non-linearity of sensor and near-perfect field generation by insert<br />

30<br />

0.20<br />

28<br />

Hall<br />

linear fit, 44.4 mT/A<br />

deviation from linear<br />

0.15<br />

26<br />

0.10<br />

Central <strong>Field</strong> [T] .<br />

24<br />

22<br />

current reversal loop<br />

0.05<br />

0.00<br />

non-linearity [T] .<br />

20<br />

pause in ramping<br />

-0.05<br />

19 T Axial<br />

Background <strong>Field</strong><br />

18<br />

0 50 100 150 200 250<br />

Insert current [A]<br />

-0.10<br />

MT-20 August 28, 2007 –11–


<strong>High</strong> field insert coil achieves world records for highest<br />

<strong>HTS</strong> field, highest magnetic field by a SC magnet<br />

Peak hoop stress ~ 215 MPa,<br />

well below tape limit<br />

Ic of Tapes in Coil<br />

4.2 K Coil Ic - self field<br />

72 A – 82 A<br />

(77K, sf)<br />

221 A<br />

19T background<br />

self field<br />

4.2 K Amp Turns @ Icself<br />

field<br />

612,612<br />

30.0<br />

4.2 K Je @ Ic, self field<br />

346.7 A/mm 2<br />

Central <strong>Field</strong> (T)<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

26.8 T @ 175 A<br />

9.81 T @ 221 A<br />

0 50 100 150 200 250<br />

Current (A)<br />

4.2K Peak Radial <strong>Field</strong><br />

@ Ic, self field<br />

4.2 K Central field –<br />

self field<br />

4.2 K Coil Ic – 19 T<br />

background (axial)<br />

4.2 K Amp Turns @ Ic –<br />

19 T background (axial)<br />

4.2 K Je @ Ic, 19 T<br />

background (axial)<br />

4.2 K Peak Radial <strong>Field</strong><br />

@ Ic, 19 T bkgd (axial)<br />

4.2K Central <strong>Field</strong> – 19<br />

T background (axial)<br />

3.2 T<br />

9.81 T<br />

175 A<br />

485,100<br />

274.6 A/mm 2<br />

2.7 T<br />

26.8 T<br />

MT-20 August 28, 2007 –12–


Summary<br />

• We have not reached the limit of <strong>2G</strong> <strong>HTS</strong> wire capability<br />

• Coil performance limited by operation of Pancake 12<br />

• Stress limit on the wire still has significant margin<br />

Hoop stress ~ 215 MPa vs. ~ 600 MPa limit<br />

• <strong>2G</strong> <strong>HTS</strong> wire with 50 micron Hastelloy substrate enables high<br />

winding pack Je<br />

• <strong>2G</strong> <strong>HTS</strong> wire is available in lengths and quantity to enable<br />

development in high field magnet design and construction<br />

• 30 T (and beyond) is within our grasp……<br />

MT-20 August 28, 2007 –13–


Questions?<br />

Thank you for your interest!<br />

For further information about <strong>SuperPower</strong> and to see the coil,<br />

please visit us at Booth No. 5<br />

or at:<br />

www.superpower-inc.com<br />

or e-mail: info@superpower-inc.com<br />

MT-20 August 28, 2007 –14–

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!