HEAT PROCESSING Report: Knowledge management in maintenance of thermal process plants (Vorschau)
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
International Magaz<strong>in</strong>e for Industrial Furnaces<br />
Heat Treatment & Equipment<br />
03 I 2014<br />
ISSN 1611-616X<br />
Vulkan-Verlag<br />
HK Special on pages 37-55<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
The full spectrum<br />
<strong>of</strong> heat treatment<br />
B.M.I. Fours Industriels www.bmi-fours.com<br />
Vacuum Furnaces for harden<strong>in</strong>g, temper<strong>in</strong>g, carburiz<strong>in</strong>g, nitrid<strong>in</strong>g,<br />
s<strong>in</strong>ter<strong>in</strong>g, high and low temperature braz<strong>in</strong>g<br />
IVA Industrieöfen GmbH www.iva-onl<strong>in</strong>e.com<br />
Retort Type Furnaces, Sealed Quench Furnaces, Rotary Hearth<br />
Furnaces, Rotary Drum Type Furnaces, Hood Type Furnaces, Pit<br />
Type Furnaces<br />
LOI Therm<strong>process</strong> GmbH www.tenova.com<br />
Cont<strong>in</strong>uous Carburiz<strong>in</strong>g Furnaces, Bright Anneal<strong>in</strong>g L<strong>in</strong>es for<br />
tubes and rods, Heat Treatment Plants for wire<br />
Mahler GmbH Industrie<strong>of</strong>enbau www.mahler<strong>of</strong>en.de<br />
Cont<strong>in</strong>uous Furnaces with protective gas for bright anneal<strong>in</strong>g,<br />
braz<strong>in</strong>g, harden<strong>in</strong>g, temper<strong>in</strong>g, s<strong>in</strong>ter<strong>in</strong>g <strong>of</strong> powder metal alloys<br />
RIVA Sp. z.o.o. www.riva-furnaces.com<br />
Sealed Quench Furnaces, Forg<strong>in</strong>g Furnaces, Temper<strong>in</strong>g Furnaces,<br />
Nitrid<strong>in</strong>g Furnaces, Carburiz<strong>in</strong>g Furnaces, Endogas Generators<br />
and Wash<strong>in</strong>g Mach<strong>in</strong>es<br />
Schmetz GmbH Vakuumöfen www.schmetz.de<br />
Vacuum Furnaces for harden<strong>in</strong>g, temper<strong>in</strong>g, braz<strong>in</strong>g, anneal<strong>in</strong>g,<br />
s<strong>in</strong>ter<strong>in</strong>g<br />
Cologne Trade Fair<br />
22 – 24 October 2014<br />
Hall 4.1, Booth No. C-060<br />
LOI Therm<strong>process</strong> GmbH - Tenova Metals Division<br />
Am Lichtbogen 29 - 45141 Essen / Germany<br />
Tel. +49 (0)201 1891.1 - Fax +49 (0)201 1891.321<br />
loi@tenova.com - www.tenova.com<br />
ITPS ASIA<br />
Information about the 2 nd<br />
International Therm<strong>process</strong><br />
Summit 2014, Mumbai (India)<br />
REPORT<br />
<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong><br />
ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong><br />
<strong>process</strong> <strong>plants</strong><br />
INTERVIEW<br />
Thomas Brüser about the<br />
future <strong>of</strong> energy <strong>in</strong>dustry and<br />
technological challenges<br />
13002-14 LOI Anz MTH HeatProcess Titel.<strong>in</strong>dd 1 31.07.14 12:30
Read our report on pages 59-62!
EDITORIAL<br />
70 th HeatTreatmentCongress<br />
– for the first time <strong>in</strong> Cologne<br />
See you next time <strong>in</strong> Wiesbaden …” has been the conclusion<br />
<strong>of</strong> many a conversation <strong>in</strong> recent years and, <strong>in</strong>deed, past<br />
decades. “Wiesbaden”, for sixty-n<strong>in</strong>e years the venue for the Heat-<br />
TreatmentColloquium and, later, for the HeatTreatmentCongress,<br />
had come to symbolise the high-level <strong>in</strong>terchange <strong>of</strong> specialist<br />
knowledge <strong>in</strong> the fields <strong>of</strong> heat treatment and materials science.<br />
Many will doubtless look back nostalgically on the years <strong>in</strong><br />
Wiesbaden. World-class technical papers, lively and, <strong>in</strong> some<br />
cases, controversial discussions between colleagues, an ever<br />
larger technical exhibition and, not least <strong>of</strong> all, the even<strong>in</strong>g events<br />
<strong>in</strong> the “Eimer” or “Ratskeller” hostelries, which had not a few<br />
conference participants sett<strong>in</strong>g <strong>of</strong>f back to their hotels only <strong>in</strong><br />
the first glimmer <strong>of</strong> dawn ...<br />
The 70 th HeatTreatmentCongress will be held <strong>in</strong> Cologne (from<br />
22 to 24 October)! Germany’s AWT heat treatment association has<br />
made an extremely good choice <strong>of</strong> venue <strong>in</strong> the great Rh<strong>in</strong>eland<br />
city <strong>of</strong> Cologne. The Cologne trade-fair grounds are located centrally<br />
<strong>in</strong> the city with excellent transport access, and provide all<br />
the opportunities needed to meet the requirements <strong>of</strong> a modern<br />
technical conference with an accompany<strong>in</strong>g specialist exhibition.<br />
Cologne, <strong>in</strong> addition, has the space needed to allow the exhibition<br />
event to grow even further. Here, the technical advisory stands<br />
will all be located for the exhibition <strong>in</strong> a large hall <strong>in</strong> the immediate<br />
vic<strong>in</strong>ity <strong>of</strong> the congress auditorium. Cologne, furthermore, as<br />
a famous German “Karneval” centre, certa<strong>in</strong>ly <strong>of</strong>fers more than<br />
enough <strong>of</strong> the right facilities for f<strong>in</strong>ish<strong>in</strong>g the day <strong>in</strong> a convivial<br />
manner together. The lodge president, Joachim Wüst, will without<br />
doubt impart one or two reflections on his native city on the<br />
open<strong>in</strong>g day <strong>of</strong> the HK, tak<strong>in</strong>g as a “Kölsch” (Cologne dialect) motto<br />
“Hey Cologne, you’re more <strong>of</strong> an emotion than a city”.<br />
And this year’s conference agenda is yet aga<strong>in</strong> an impressive<br />
one! The AWT’s organis<strong>in</strong>g and plann<strong>in</strong>g committee has, once<br />
aga<strong>in</strong>, selected a large number <strong>of</strong> fitt<strong>in</strong>g, high-rank<strong>in</strong>g speakers,<br />
who will focus on “Simulation <strong>of</strong> heat-treatment <strong>process</strong>es”,<br />
“Production and residual stresses”, “High-energy heat treatment”,<br />
“Integration <strong>of</strong> heat-treatment <strong>process</strong>es <strong>in</strong>to production” and<br />
“Innovations <strong>in</strong> materials science, heat treatment, production<br />
methods and <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g”. Worthy <strong>of</strong> special mention<br />
is, above all, Pr<strong>of</strong>. Harry Bhadeshia’s plenary address on “Out-<strong>of</strong>the-ord<strong>in</strong>ary<br />
ba<strong>in</strong>itic steels”.<br />
This year’s event <strong>in</strong> Cologne will aga<strong>in</strong> <strong>in</strong>clude a background<br />
technology sem<strong>in</strong>ar for the heat-treatment “practitioners” dur<strong>in</strong>g<br />
the morn<strong>in</strong>g <strong>of</strong> the first day, thus preced<strong>in</strong>g the open<strong>in</strong>g <strong>of</strong> the<br />
congress itself. Dr. Peter Sommer will report on “Heat treatment<br />
– errors, harm and causes”, and Marco Jost will speak on “Nitrid<strong>in</strong>g<br />
under gas and under plasma – component-specific <strong>process</strong><br />
selection on economic criteria”.<br />
“Noth<strong>in</strong>g, as is well known, is as constant as change.” We are,<br />
therefore, pleased to have found <strong>in</strong> the new Cologne venue not<br />
only a “successor solution” to Wiesbaden<br />
for our heat treatment<br />
<strong>in</strong>dustry, but also at hav<strong>in</strong>g<br />
selected a sett<strong>in</strong>g<br />
which will allow the<br />
“HeatTreatmentCongress<br />
success story”<br />
to cont<strong>in</strong>ue to grow<br />
and develop. So from<br />
now on, it’s “See you<br />
next time <strong>in</strong> Cologne …”.<br />
Dr. Ing. Olaf Irretier<br />
IBW Dr. Irretier GmbH (Industrial Heat<br />
Treatment Consult<strong>in</strong>g)<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
1
International Magaz<strong>in</strong>e for Industrial Furnaces<br />
Heat Treatment & Equipment<br />
“10 years <strong>of</strong> heat <strong>process</strong><strong>in</strong>g magaz<strong>in</strong>e.<br />
<strong>of</strong> high-quality reports about state-<strong>of</strong>-<br />
This means 10 years <strong>of</strong> an impressive<br />
national authors. And this means 10<br />
wide range <strong>of</strong> different technologies<br />
Happy birthday heat <strong>process</strong><strong>in</strong>g!“<br />
Dr. Andreas Seitzer<br />
Manag<strong>in</strong>g Director <strong>of</strong> SMS Elotherm GmbH<br />
2 heat <strong>process</strong><strong>in</strong>g 1-2014
• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />
This means 10 years<br />
the-art products.<br />
variety <strong>of</strong> truly <strong>in</strong>teryears<br />
<strong>of</strong> successful gather<strong>in</strong>g a<br />
<strong>in</strong> a unique communication format.<br />
1-2014 heat <strong>process</strong><strong>in</strong>g<br />
3
TABLE OF CONTENTS 3-2014<br />
10<br />
HOT SHOTS<br />
Multi-frequency harden<strong>in</strong>g<br />
106<br />
REPORTS<br />
Energy efficiency – potential options<br />
<strong>Report</strong>s<br />
Heat Treatment<br />
by Maciej Korecki, Piotr Kula, Emilia Wołowiec, Michał Bazel, Michał Sut<br />
59 Low pressure carburiz<strong>in</strong>g and nitrid<strong>in</strong>g <strong>of</strong> fuel <strong>in</strong>jection nozzles<br />
by Hartmut Steck-W<strong>in</strong>ter, Axel Filounek<br />
63 <strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> the ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong> <strong>process</strong> <strong>plants</strong><br />
Measur<strong>in</strong>g & Process Control<br />
by Karl-Michael W<strong>in</strong>ter<br />
71 Impacts <strong>of</strong> allowed tolerances <strong>in</strong> temperature on nitrid<strong>in</strong>g results<br />
Induction Technology<br />
by Valent<strong>in</strong> Nemkov<br />
79 Magnetic flux control <strong>in</strong> <strong>in</strong>duction systems<br />
by Dirk M. Schibisch, Jochen C. Huljus<br />
87 Modular <strong>in</strong>duction solutions for drive and axle components<br />
Burner & Combustion<br />
by Dirk Mäder, Octavio Schmiel Gamarra, Mario Schulze, René Lohr<br />
91 Efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance <strong>of</strong> heat<strong>in</strong>g systems<br />
by Frank Hammer<br />
95 Sensory combustion optimisation <strong>of</strong> gas combustion systems<br />
4 heat <strong>process</strong><strong>in</strong>g 3-2014
3-2014 heat <strong>process</strong><strong>in</strong>g
TABLE OF CONTENTS 3-2014<br />
52<br />
<strong>HEAT</strong> TREATMENT CONGRESS<br />
All <strong>in</strong>formation about the HK 2014<br />
63<br />
REPORTS<br />
<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance<br />
Energy Management<br />
by Christian Sprung<br />
101 Energy efficiency – potential options for <strong>in</strong>dustrial furnaces<br />
Research & Development<br />
by Jörg Neumeyer, Bernard Nacke<br />
111 Induction assisted hybrid- weld<strong>in</strong>g <strong>process</strong>es to jo<strong>in</strong> heavy-walled steel components<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
39 General Information<br />
40 Basic Data<br />
42 Program<br />
46 Product Preview<br />
6 heat <strong>process</strong><strong>in</strong>g 3-2014
ADVANCING<br />
INDUCTION<br />
TECHNOLOGY<br />
1388 Atlantic Blvd.<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
l Auburn Hills, MI 48326 USA l P: 1.248.393.2000 l 1.800.224.5522 USA l F: 1.248.393.0277 l fluxtrol.com
TABLE OF CONTENTS 3-2014<br />
12 122<br />
NEWS<br />
Vacuum oxygen decarburization plant launched<br />
PROFILE+<br />
Chair <strong>of</strong> Thermodynamics and Combustion<br />
<strong>of</strong> the University Magdeburg<br />
Focus On<br />
115 Edition 11: Thomas Brüser<br />
“The labour shortage is def<strong>in</strong>itely affect<strong>in</strong>g us”<br />
Pr<strong>of</strong>ile+<br />
121 Edition 7: Chair <strong>of</strong> Thermodynamics and Combustion <strong>of</strong> the University Magdeburg<br />
Technology <strong>in</strong> Practice<br />
125 90 th anniversary <strong>of</strong> Otto Junker<br />
128 High-precision control <strong>of</strong> metal heat<strong>in</strong>g elements<br />
130 New kiln and dryer system for terracotta tiles<br />
Companies Pr<strong>of</strong>ile<br />
156 Process-Electronic GmbH<br />
News<br />
12 Trade & Industry<br />
25 Events<br />
28 Diary<br />
32 Personal<br />
36 Media<br />
heat<strong>process</strong><strong>in</strong>g<br />
Stay <strong>in</strong>formed and follow us on Twitter<br />
heat <strong>process</strong><strong>in</strong>g<br />
@heat<strong>process</strong><strong>in</strong>g<br />
heat <strong>process</strong><strong>in</strong>g is the <strong>in</strong>ternational magaz<strong>in</strong>e for <strong>in</strong>dustrial furnaces,<br />
heat treatment & equipment<br />
Essen · http://www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
8 heat <strong>process</strong><strong>in</strong>g 3-2014
SENSOR LOGIC ACTUATOR<br />
117<br />
FOCUS ON<br />
Edition 11: Thomas Brüser<br />
Bus<strong>in</strong>ess Directory<br />
134 I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat<br />
treatment <strong>process</strong>es<br />
144 II. Components, equipment, production and<br />
auxiliary materials<br />
151 III. Consult<strong>in</strong>g, design, service and eng<strong>in</strong>eer<strong>in</strong>g<br />
152 IV. Trade associations, <strong>in</strong>stitutes, universities,<br />
organisations<br />
152 V. Exhibition organizers, tra<strong>in</strong><strong>in</strong>g and education<br />
COLUMN<br />
1 Editorial<br />
10 Hot Shots<br />
132 Index <strong>of</strong> Advertisers<br />
U3 Impr<strong>in</strong>t<br />
Elster Kromschröder has developed tailor-made<br />
solutions for fitt<strong>in</strong>g out thermo<strong>process</strong><strong>in</strong>g <strong>in</strong>stallations<br />
across all sectors such as the iron and steel,<br />
non-ferrous metals, ceramics or glass <strong>in</strong>dustries.<br />
This applies <strong>in</strong> particular for SIL/PL:<br />
our products, design tools, calculation s<strong>of</strong>tware,<br />
example applications and, <strong>of</strong> course, our customer<br />
service department facilitate the safe design and<br />
operation <strong>of</strong> your heat<strong>in</strong>g system.<br />
Visit us!<br />
Härtereikongress 2014, Cologne<br />
22. – 24. October 2014<br />
Hall 4.1, Stand C-089<br />
Elster GmbH<br />
Postfach 2809<br />
49018 Osnabrück<br />
T +49 541 1214-0<br />
F +49 541 1214-370<br />
<strong>in</strong>fo@kromschroeder.com<br />
www.kromschroeder.com<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
Anz_PW2014_SILPL_89x255_de_en.<strong>in</strong>dd 1 07.08.14 15:24
HOT SHOTS<br />
10 heat <strong>process</strong><strong>in</strong>g 3-2014
HOT SHOTS<br />
Multi-frequency harden<strong>in</strong>g <strong>in</strong> action<br />
The simultaneous multi-frequency harden<strong>in</strong>g <strong>process</strong><br />
patented by EFD Induction achieves true contour harden<strong>in</strong>g<br />
<strong>of</strong> small gears <strong>in</strong> far under one second. Notable is the<br />
absence <strong>of</strong> through harden<strong>in</strong>g <strong>in</strong> the teeth.<br />
(Source: EFD Induction GmbH)<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
11
NEWS<br />
Trade & Industry<br />
Vacuum oxygen decarburization plant from Siemens<br />
launched at voestalp<strong>in</strong>e<br />
vacuum oxygen decarburization<br />
A (VOD) plant from Siemens Metals<br />
Techno logies with a capacity <strong>of</strong> 50 t commenced<br />
operation at voestalp<strong>in</strong>e Giesserei<br />
L<strong>in</strong>z GmbH. The Austrian company is<br />
thereby add<strong>in</strong>g to its equipment for secondary<br />
metallurgical treatment <strong>of</strong> steel<br />
cast<strong>in</strong>gs for sophisticated applications <strong>in</strong><br />
the energy and mechanical eng<strong>in</strong>eer<strong>in</strong>g<br />
<strong>in</strong>dustries. The plant features electrically<br />
driven mechanical vacuum pumps <strong>in</strong>stead<br />
<strong>of</strong> steam <strong>in</strong>jectors and therefore does not<br />
require any steam generator.<br />
For the new vacuum oxygen decarburization<br />
plant, Siemens handled the<br />
configuration and supplied all the core<br />
components. These <strong>in</strong>cluded, for example,<br />
a special ladle hood made <strong>of</strong> copper-plated<br />
sheet. This m<strong>in</strong>imizes the occurrence <strong>of</strong><br />
baked slag on the upper edge <strong>of</strong> the ladle<br />
and on the vacuum lid. The scope <strong>of</strong> supply<br />
also <strong>in</strong>cluded the vacuum lid, an oxygenblow<strong>in</strong>g<br />
lance system, a gas cooler and a<br />
filter system, mechanical vacuum pumps<br />
and the hydraulic system. The order also<br />
<strong>in</strong>cluded a water <strong>management</strong> system<br />
matched to the overall plant as well as the<br />
complete automation technology and<br />
<strong>in</strong>strumentation.<br />
As one <strong>of</strong> the first VOD systems worldwide,<br />
the plant <strong>in</strong> L<strong>in</strong>z uses a comb<strong>in</strong>ation<br />
<strong>of</strong> electrically driven, mechanical vacuum<br />
pumps to generate a vacuum. This <strong>in</strong>cludes<br />
roots blowers and screw compressors.<br />
Unlike the conventional steam <strong>in</strong>jectors<br />
used <strong>in</strong> secondary metallurgy, these do not<br />
require any <strong>process</strong> steam, so there is no<br />
need for any external steam or the <strong>in</strong>stallation<br />
<strong>of</strong> a separate boiler to generate steam.<br />
voestalp<strong>in</strong>e Giesserei L<strong>in</strong>z GmbH is<br />
complet<strong>in</strong>g its secondary metallurgical<br />
treatment options with the new vacuum<br />
oxygen decarburization plant. This enlarges<br />
the product portfolio and will play a major<br />
part <strong>in</strong> achiev<strong>in</strong>g cost-efficient production.<br />
ABB <strong>in</strong>stalls EFD Induction system for short-circuit r<strong>in</strong>g braz<strong>in</strong>g<br />
Power generation and distribution<br />
company ABB recently <strong>in</strong>stalled the<br />
largest s<strong>in</strong>gle-shot short-circuit r<strong>in</strong>g braz<strong>in</strong>g<br />
system yet developed by EFD Induction.<br />
The system, which was <strong>in</strong>stalled at<br />
the ABB plant <strong>in</strong> Vittuone outside Milan,<br />
Italy, can braze r<strong>in</strong>gs with a diameter up to<br />
1,500 mm. The company’s previous record<br />
for a one-shot short-circuit r<strong>in</strong>g braz<strong>in</strong>g system<br />
was 1,200 mm, so the system developed<br />
for ABB represents quite an <strong>in</strong>crease.<br />
The system comprises customized coils,<br />
an EFD Induction S<strong>in</strong>ac 250/320 power<br />
source, and a mount<strong>in</strong>g table. The system’s<br />
first project was to braze a 1,500 mm<br />
diameter short-circuit r<strong>in</strong>g for a w<strong>in</strong>d tunnel<br />
motor. The end user is one <strong>of</strong> the world’s<br />
most famous sports car manufacturers.<br />
Accord<strong>in</strong>g to Stefano Chieregato <strong>of</strong> ABB,<br />
he and his colleagues exam<strong>in</strong>ed proposals<br />
from six companies before opt<strong>in</strong>g for the<br />
EFD Induction solution. He says that there<br />
were several reasons beh<strong>in</strong>d the choice<br />
<strong>of</strong> EFD Induction for this critical piece <strong>of</strong><br />
equipment. First, their proposal made<br />
technical and economic sense. Second,<br />
the company has deep expertise <strong>in</strong> the<br />
field. And third, ABB <strong>in</strong> Italy has had positive<br />
experiences with EFD Induction heat<strong>in</strong>g<br />
solutions for other applications.<br />
EFD Induction is one <strong>of</strong> the world’s lead<strong>in</strong>g<br />
suppliers <strong>of</strong> <strong>in</strong>duction-based shortcircuit<br />
r<strong>in</strong>g braz<strong>in</strong>g systems. The company<br />
has even devised a specialized <strong>in</strong>duction<br />
coil that equalizes the temperature around<br />
the r<strong>in</strong>g. This coil m<strong>in</strong>imizes energy <strong>in</strong>put<br />
<strong>in</strong>to lam<strong>in</strong>ations, thereby protect<strong>in</strong>g the<br />
shaft from heat and preserv<strong>in</strong>g the r<strong>in</strong>g’s<br />
<strong>in</strong>tegrity.<br />
12 heat <strong>process</strong><strong>in</strong>g 3-2014
Trade & Industry<br />
NEWS<br />
Air Liquide <strong>in</strong>vests <strong>in</strong> a new Research and Technology Center<br />
<strong>in</strong> Ch<strong>in</strong>a<br />
At the end <strong>of</strong> July Air Liquide broke<br />
ground on its new Research and Technology<br />
Center, the Shanghai Research &<br />
Technology Center (SRTC), located <strong>in</strong> the<br />
<strong>in</strong>dustrial park <strong>of</strong> X<strong>in</strong>zhuang, <strong>in</strong> the M<strong>in</strong>hang<br />
district <strong>of</strong> Shanghai, Ch<strong>in</strong>a. This new<br />
center will ultimately house 200 highly<br />
skilled employees – who <strong>in</strong>clude researchers,<br />
experts <strong>in</strong> customer applications, and<br />
bus<strong>in</strong>ess development teams – to contribute<br />
to the acceleration <strong>of</strong> the Group’s<br />
<strong>in</strong>novation <strong>in</strong> Asia-Pacific. The scientific<br />
experts will be work<strong>in</strong>g <strong>in</strong> several different<br />
areas <strong>of</strong> research, such as energy efficiency,<br />
technologies designed to reduce <strong>in</strong>dustrial<br />
emissions <strong>of</strong> CO 2 , water treatment, and <strong>process</strong>es<br />
for preserv<strong>in</strong>g and freez<strong>in</strong>g food.<br />
The center will be operational at the end<br />
<strong>of</strong> 2015.<br />
The company’s new Research and<br />
Technology Center bolsters the group’s<br />
research capabilities <strong>in</strong> Japan and South<br />
Korea. It will be connected with the <strong>in</strong>novation<br />
teams based <strong>in</strong> Europe and <strong>in</strong> North<br />
America. It will first focus on br<strong>in</strong>g<strong>in</strong>g to<br />
market <strong>in</strong>nova tive solutions adapted to the<br />
usages <strong>of</strong> Ch<strong>in</strong>ese customers and consumers.<br />
It will leverage the ma<strong>in</strong> <strong>in</strong>novation<br />
ecosystems <strong>in</strong> Ch<strong>in</strong>a, build<strong>in</strong>g on exist<strong>in</strong>g<br />
partnerships with Shanghai Jiao Tong University,<br />
as well as Zhejiang University and<br />
the research <strong>in</strong>stitutes affiliated with the<br />
Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences.<br />
Cover<strong>in</strong>g 12,000 m 2 , the center represents<br />
an <strong>in</strong>vestment <strong>of</strong> nearly € 25 million. It<br />
will house laboratories as well as large pilot<br />
platforms with equipment for design<strong>in</strong>g<br />
and test<strong>in</strong>g technologies <strong>in</strong> <strong>in</strong>dustrial-scale<br />
conditions for the group’s customers. The<br />
build<strong>in</strong>g is designed <strong>in</strong> compliance with<br />
LEED certification (Leadership <strong>in</strong> Energy<br />
and Environment Design), a global standard<br />
<strong>in</strong> susta<strong>in</strong>able build<strong>in</strong>g that factors <strong>in</strong><br />
the efficient water <strong>management</strong>, good use<br />
<strong>of</strong> energy, and the reduction <strong>of</strong> emissions.<br />
www.burkert.com<br />
All <strong>in</strong>clusive!<br />
What you see here is the essence <strong>of</strong> universality.<br />
Perfect for whenever you require a direct-act<strong>in</strong>g<br />
2/2-way solenoid valve. It’s the one valve you can use<br />
for each and every occasion. Built for both neutral<br />
and slightly aggressive media – powerful enough to<br />
work with dry gases or steam. Three design elements<br />
ensure you get maximum performance: its highest<br />
flow rates, its long service life and its top reliability.<br />
All <strong>of</strong> which come standard. And it’s no problem at all<br />
if your <strong>process</strong><strong>in</strong>g environment demands additional<br />
features – from more pressure and a different supply<br />
voltage, to an Ex version. Simply universal: our<br />
solenoid valve 6027.<br />
We make ideas flow.<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
Solenoid Valves | Process & Control Valves | Pneumatics & Process Interfaces | Sensors | Transmitters & Controllers | MicroFluidics | Mass Flow Controllers | Solenoid Control Valves<br />
13
NEWS<br />
Trade & Industry<br />
Deutsche Edelstahlwerke orders cool<strong>in</strong>g bed from SMS Meer<br />
University orders <strong>in</strong>duction heat<strong>in</strong>g system from Ambrell<br />
Deutsche Edelstahlwerke has ordered<br />
a new rake-type cool<strong>in</strong>g bed from<br />
SMS Meer for its Siegen works <strong>in</strong> Germany<br />
as part <strong>of</strong> the modernization <strong>of</strong><br />
its bar mill. The new cool<strong>in</strong>g bed allows<br />
controlled cool<strong>in</strong>g <strong>of</strong> the bars, surfaceprotect<strong>in</strong>g<br />
transport and very straight<br />
f<strong>in</strong>ished products. Thus, all demands on<br />
quality steel are met. In addition to round<br />
steel bars with dimensions from 21.5 to<br />
90 mm, it will also be possible to cool<br />
hexagonal sections on the cool<strong>in</strong>g bed<br />
<strong>in</strong> future.<br />
Accord<strong>in</strong>g to Jens Eisbach, Manager<br />
Bar Mill, the aim <strong>of</strong> the modernization<br />
Ambrell, a lead<strong>in</strong>g manufacturer <strong>of</strong><br />
<strong>in</strong>duction heat<strong>in</strong>g systems, has<br />
sold an Ekoheat 45-kW/100-kHz <strong>in</strong>duction<br />
heat<strong>in</strong>g system to a large research<br />
university for “superalloy” research. The<br />
application <strong>in</strong>volves melt<strong>in</strong>g up to 20 g<br />
<strong>of</strong> tungsten to 3,500 °C (6,332 °F) <strong>in</strong> a<br />
cold crucible. A cold crucible <strong>in</strong>volves<br />
levitation and requires virtually no contact<br />
between the crucible and melt<strong>in</strong>g<br />
bath. This method maximizes the purity<br />
<strong>of</strong> the melt.<br />
The university, which had previously<br />
used Ambrell <strong>in</strong>duction heat<strong>in</strong>g systems<br />
for research applications, purchased this<br />
system because they needed to melt<br />
larger batches. The Ekoheat enabled them<br />
to meet their objective. Ambrell <strong>of</strong>fers its<br />
is to achieve a homogeneous temperature<br />
distribution <strong>in</strong> the bar layer. That will<br />
enable the company to prevent <strong>in</strong>accuracies<br />
when cutt<strong>in</strong>g the bars and to<br />
improve the productivity and quality <strong>in</strong><br />
the f<strong>in</strong>ish<strong>in</strong>g section.<br />
Deutsche Edelstahlwerke operates the<br />
world’s first 3-roll PSM ® (Precision Siz<strong>in</strong>g<br />
Mill) with hydraulic roll adjustment under<br />
load from SMS Meer. It is additionally<br />
equipped with the Meergauge ® precision<br />
measurement system and a dynamic<br />
monitor control. Commission<strong>in</strong>g <strong>of</strong> the<br />
new cool<strong>in</strong>g bed is scheduled for the<br />
third quarter <strong>of</strong> 2015.<br />
clients complimentary application test<strong>in</strong>g<br />
to ensure their new system will meet their<br />
<strong>process</strong> requirements.<br />
The company <strong>of</strong>fers a full l<strong>in</strong>e <strong>of</strong> <strong>in</strong>duction<br />
power supplies that can be used for<br />
melt<strong>in</strong>g applications. For those that need<br />
complete melt<strong>in</strong>g systems, Induction Technology<br />
Corporation is Ambrell’s melt<strong>in</strong>g<br />
partner.<br />
Sandvik and Tenaris sign new five-year strategic alliance<br />
agreement<br />
Sandvik and Tenaris have signed a new<br />
five-year strategic alliance agreement on<br />
the exclusive jo<strong>in</strong>t supply <strong>of</strong> corrosion resistant<br />
alloy OCTG materials and technology<br />
to the oil and gas <strong>in</strong>dustry. By this agreement<br />
Sandvik and Tenaris look to build on<br />
an already long established and successful<br />
alliance that goes back over a decade.<br />
Accord<strong>in</strong>g to Michael Andersson, Head<br />
<strong>of</strong> the Tube Product Area <strong>of</strong> Sandvik,<br />
this strategic alliance will facilitate closer<br />
co operation on future <strong>in</strong>novations target<strong>in</strong>g<br />
the most demand<strong>in</strong>g applications <strong>in</strong><br />
the market. Together, their research and<br />
development capability will be unmatched<br />
<strong>in</strong> the <strong>in</strong>dustry allow<strong>in</strong>g them to develop<br />
and <strong>of</strong>fer unique solutions for the most<br />
challeng<strong>in</strong>g operational environments<br />
faced by the customers.<br />
The prospect <strong>of</strong> br<strong>in</strong>g<strong>in</strong>g together the<br />
companies’ high-end technologies – with<br />
Sandvik’s corrosion resistant alloy tubes<br />
and TenarisHydril premium connections<br />
with Dopeless ® technology – will br<strong>in</strong>g<br />
many benefits <strong>in</strong>clud<strong>in</strong>g a complete <strong>of</strong>fer<br />
for the market. This is particularly true <strong>in</strong><br />
the most challeng<strong>in</strong>g oil and gas exploration<br />
and production environments, such<br />
as High Pressure/High Temperature and<br />
deep water, where harsh conditions call<br />
for safe operational material solutions while<br />
red uc<strong>in</strong>g environmental impact.<br />
Sebastián Salenave, Sales Manager <strong>of</strong><br />
Tenaris added that the product port folios<br />
<strong>of</strong> both companies complement each<br />
other perfectly and together they can<br />
reach every location with their extensive<br />
global network support<strong>in</strong>g oil and gas<br />
exploration and production worldwide.<br />
14 heat <strong>process</strong><strong>in</strong>g 3-2014
Trade & Industry<br />
NEWS<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
15
NEWS<br />
Trade & Industry<br />
SMS Siemag is expand<strong>in</strong>g the hot strip mill at Xichang<br />
Steel with a slab siz<strong>in</strong>g press<br />
PIETC Panzhihua Co., Ltd. has awarded<br />
SMS Siemag, Germany, the contract<br />
for expand<strong>in</strong>g the rough<strong>in</strong>g mill <strong>in</strong> its hot<br />
strip mill <strong>in</strong> Xichang City, Ch<strong>in</strong>a, through<br />
the addition <strong>of</strong> a slab siz<strong>in</strong>g press. The aim<br />
<strong>of</strong> the revamp is to make the production<br />
<strong>process</strong> more flexible. With an edg<strong>in</strong>g force<br />
<strong>of</strong> up to 22,000 kN, the slab siz<strong>in</strong>g press<br />
will reduce the slab width to the required<br />
dimension, by up to 350 mm <strong>in</strong> one pass. By<br />
cast<strong>in</strong>g slabs with a higher average width<br />
and a reduced number <strong>of</strong> cast<strong>in</strong>g sizes,<br />
Xichang Steel can <strong>in</strong>crease the throughput<br />
rate <strong>of</strong> its cont<strong>in</strong>uous cast<strong>in</strong>g mach<strong>in</strong>e. The<br />
slab siz<strong>in</strong>g press additionally allows more<br />
flexibility <strong>in</strong> the schedul<strong>in</strong>g <strong>of</strong> the roll<strong>in</strong>g<br />
programs.<br />
Xichang Steel produces carbon steels for<br />
pipel<strong>in</strong>es as well as for the construction <strong>of</strong><br />
ships, bridges and build<strong>in</strong>gs, among other<br />
th<strong>in</strong>gs. SMS Siemag already delivered the<br />
hot strip mill for Xichang Steel’s plant <strong>in</strong><br />
2011. The revamp <strong>of</strong> the 2,050-mm-wide<br />
plant will now take place dur<strong>in</strong>g a short<br />
downtime. The major part <strong>of</strong> the preparatory<br />
work will take place parallel to production.<br />
SMS Siemag will manufacture the core<br />
components <strong>of</strong> the slab siz<strong>in</strong>g press, such<br />
as press sleds with drive unit, width adjustment<br />
system and ma<strong>in</strong> gear unit, at its<br />
workshop <strong>in</strong> Hilchenbach, Germany. The<br />
completion <strong>of</strong> the revamp<strong>in</strong>g phase at<br />
Xichang Steel is scheduled for the second<br />
half <strong>of</strong> 2015.<br />
Ipsen delivers vacuum furnace to Mexico<br />
Ipsen recently shipped a horizontal TurboTreater<br />
® <strong>thermal</strong> <strong>process</strong><strong>in</strong>g vacuum<br />
system to an <strong>in</strong>ternational company’s plant<br />
<strong>in</strong> Mexico, where it will function as a substitute<br />
for another Ipsen furnace, substantially<br />
moderniz<strong>in</strong>g their operations. This company<br />
is part <strong>of</strong> the Metal-Cast<strong>in</strong>g <strong>in</strong>dustry,<br />
and they will use this TurboTreater to <strong>process</strong><br />
sta<strong>in</strong>less steel parts for a French car<br />
manufacturer and, eventually, a German<br />
car manufacturer as well. In both cases, the<br />
cars are assembled <strong>in</strong> Mexico and exported<br />
all over the world.<br />
The company has a long history with<br />
Ipsen, hav<strong>in</strong>g purchased multiple furnaces<br />
over the last few decades. In 2013, they<br />
contracted the company for a critical<br />
relocation <strong>of</strong> a large heat-treat<strong>in</strong>g furnace<br />
from one <strong>of</strong> their <strong>plants</strong> <strong>in</strong> Mexico to the<br />
same plant where this new TurboTreater<br />
will be <strong>in</strong>stalled – all to best support their<br />
customers <strong>in</strong> the automotive <strong>in</strong>dustry.<br />
Overall, the order and shipment went<br />
smoothly – the various milestones were<br />
met either ahead <strong>of</strong> schedule or on time,<br />
and the Factory Acceptance Test was<br />
seamless.<br />
This specific TurboTreater features<br />
a 24” x 24” x 36” (610 mm x 610 mm x<br />
914 mm) all-graphite hot zone with a<br />
2,000-pound (907 kg) load capacity. It<br />
utilizes gas cool<strong>in</strong>g to 2-bar absolute pressure<br />
and operates at temperatures <strong>of</strong> 1,000<br />
to 2,400 °F (538 to 1,316 °C). The furnace<br />
is also equipped with a 20-<strong>in</strong>ch Varian<br />
diffusion pump and Ipsen’s CompuVac ®<br />
control system.<br />
The TurboTreater l<strong>in</strong>e operates as a<br />
“build-your-own” furnace, allow<strong>in</strong>g customers<br />
to order heat treatment furnace<br />
systems specified to their unique needs.<br />
Possible modifications <strong>in</strong>clude variations<br />
on features such as the hot zone <strong>in</strong>sulation<br />
package, heat<strong>in</strong>g elements, pump<strong>in</strong>g<br />
systems and control system.<br />
16 heat <strong>process</strong><strong>in</strong>g 3-2014
Trade & Industry<br />
NEWS<br />
TimkenSteel to <strong>in</strong>vest <strong>in</strong> cont<strong>in</strong>uous heat-treat operations<br />
TimkenSteel Corporation, a leader <strong>in</strong><br />
customized alloy steel products and<br />
services, announced plans to open an<br />
additional cont<strong>in</strong>uous heat-treat facility <strong>in</strong><br />
the U.S. to produce more value-added steel<br />
for demand<strong>in</strong>g applications. Shawn J. Seanor,<br />
executive vice president <strong>of</strong> Energy and<br />
Distribution said that many <strong>of</strong> the applications<br />
the company serves require higher<br />
performance steels that give the customers<br />
confidence as they push the limits <strong>of</strong><br />
what’s possible. He added that this <strong>in</strong>vestment<br />
is foundational to the company’s ability<br />
to grow some <strong>of</strong> its most unique and<br />
sophisticated product l<strong>in</strong>es to meet those<br />
needs. Additional cont<strong>in</strong>uous heat-treat<br />
capa bilities provide the flexibility to create<br />
more customized steels to serve energy<br />
and other markets that have a strong longterm<br />
outlook.<br />
The company is evaluat<strong>in</strong>g locations for<br />
the cont<strong>in</strong>uous <strong>thermal</strong> heat-treat operations<br />
and plans to make that decision <strong>in</strong> the<br />
third quarter <strong>of</strong> 2014. The facility would be<br />
fully operational with<strong>in</strong> two years and have<br />
capacity for 50,000 <strong>process</strong>-tons annually <strong>of</strong><br />
4” to 13” bars and tubes. It would be larger<br />
than each <strong>of</strong> the company’s three exist<strong>in</strong>g<br />
<strong>thermal</strong> treatment facilities <strong>in</strong> Canton, OH.<br />
The <strong>in</strong>vestment is approximately $ 40 million.<br />
TimkenSteel’s energy <strong>of</strong>fer<strong>in</strong>gs serve<br />
global equipment manufacturers and service<br />
companies with customized products<br />
and services for their most demand<strong>in</strong>g<br />
applications <strong>in</strong> down-hole tools and top<strong>of</strong>-hole<br />
<strong>in</strong>frastructure.<br />
Heraeus acquires Vulcan Catalytic Systems Ltd.<br />
Heraeus Noblelight, the specialty light<br />
sources bus<strong>in</strong>ess group that is part <strong>of</strong><br />
the Heraeus precious metals and technology<br />
group, has concluded an asset deal to<br />
acquire the bus<strong>in</strong>ess activities <strong>of</strong> US-based<br />
Vulcan Catalytics Systems Ltd. The American<br />
company manufactures gas catalytic<br />
<strong>in</strong>frared systems especially for <strong>in</strong>dustrial<br />
powder coat<strong>in</strong>g <strong>process</strong>es.<br />
Ra<strong>in</strong>er Küchler, Manag<strong>in</strong>g Director <strong>of</strong><br />
Heraeus Noblelight expla<strong>in</strong>ed that with<br />
the acquisition <strong>of</strong> Vulcan Catalytic, Heraeus<br />
Noblelight is expand<strong>in</strong>g its application<br />
know-how <strong>in</strong> the area <strong>of</strong> coat<strong>in</strong>gs as well<br />
as its portfolio <strong>in</strong> the sphere <strong>of</strong> long-wave<br />
light. Vulcan Catalytic has decades <strong>of</strong> experience<br />
<strong>in</strong> the development <strong>of</strong> gas catalytic<br />
systems, which, <strong>in</strong> certa<strong>in</strong> applications, are<br />
an ideal complement to Heraeus’ electric<br />
<strong>in</strong>frared product l<strong>in</strong>e. Us<strong>in</strong>g the comb<strong>in</strong>ed<br />
expertise <strong>of</strong>fers the possibility <strong>of</strong> develop<strong>in</strong>g<br />
new solutions.<br />
Accord<strong>in</strong>g to Michael Chapman, President<br />
<strong>of</strong> Vulcan Catalytic Systems, both<br />
companies share a common goal: to consistently<br />
exceed customer expectations. He<br />
said that jo<strong>in</strong><strong>in</strong>g the Heraeus network will<br />
<strong>of</strong>fer Vulcan Catalytic Systems numerous<br />
opportunities to <strong>in</strong>troduce its products and<br />
expertise to new markets.<br />
ALD Vacuum Technologies<br />
signed a Memorandum <strong>of</strong><br />
Understand<strong>in</strong>g<br />
The AMG Advanced Metallurgical Group N.V. announces that its AMG<br />
Eng<strong>in</strong>eer<strong>in</strong>g unit, ALD Vacuum Technologies GmbH signed a Memorandum<br />
<strong>of</strong> Understand<strong>in</strong>g with Nukem Technologies GmbH, and E.ON<br />
Technologies GmbH to develop a concept for local melt<strong>in</strong>g services to<br />
recycle radioactive metallic wastes from closed nuclear power <strong>plants</strong>.<br />
ALD is a lead<strong>in</strong>g global supplier <strong>of</strong> vacuum furnaces and vacuum<br />
<strong>process</strong>es and holds a patent for the recycl<strong>in</strong>g <strong>of</strong> radioactive metallic<br />
waste treatment. Nukem Technologies GmbH <strong>of</strong> Alzenau, Germany,<br />
is globally active <strong>in</strong> the areas <strong>of</strong> <strong>management</strong> <strong>of</strong> radioactive waste<br />
and spent fuel, decommission<strong>in</strong>g <strong>of</strong> nuclear facilities, eng<strong>in</strong>eer<strong>in</strong>g and<br />
consult<strong>in</strong>g. Nukem Technologies GmbH has been part <strong>of</strong> the Rosatom<br />
Group s<strong>in</strong>ce 2009.<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
17<br />
GFW-Xtra_89x62_07-2014_DEU-ENG.<strong>in</strong>dd 1 01/08/14 10.33
NEWS<br />
Trade & Industry<br />
Edwards’ steel degass<strong>in</strong>g<br />
system br<strong>in</strong>gs benefits to<br />
Italian steel manufacturer<br />
Edwards has <strong>in</strong>stalled a modular steel degass<strong>in</strong>g system <strong>in</strong> a<br />
large steel producer <strong>in</strong> Italy, replac<strong>in</strong>g an exist<strong>in</strong>g steam ejector<br />
system which had high runn<strong>in</strong>g costs and energy usage. The<br />
steel manufacturer, which produces 1.5 million t/a <strong>of</strong> high quality<br />
steel for the automotive and power <strong>in</strong>dustries, has had six Edwards’<br />
mechanical steel degass<strong>in</strong>g modules <strong>in</strong>stalled. Key <strong>in</strong> the decision<br />
to use this steel degass<strong>in</strong>g vacuum equipment was that the system<br />
is modular – its standardized concept provides an easy <strong>in</strong>stallation<br />
and <strong>in</strong>tegration, secur<strong>in</strong>g immediate reduction <strong>of</strong> runn<strong>in</strong>g costs.<br />
The mechanical steel degass<strong>in</strong>g system enables the customer<br />
to enjoy the immediate read<strong>in</strong>ess <strong>of</strong> the system compared<br />
to steam ejectors, which require heat<strong>in</strong>g up time, provid<strong>in</strong>g an<br />
<strong>in</strong>crease <strong>in</strong> productivity, reliability and consistency. In the unlikely<br />
event <strong>of</strong> pump failure the modular design <strong>of</strong> the system ensures<br />
high uptime <strong>in</strong> a simple, reliable way, and provides improved<br />
stability.<br />
The company’s mechanical steel degass<strong>in</strong>g system uses<br />
multi stage mechanical boosters supported by dry screw primary<br />
vacuum pumps. Increas<strong>in</strong>gly mechanical dry pumps are<br />
replac<strong>in</strong>g traditional steam ejectors as the vacuum technology <strong>of</strong><br />
choice. Lower runn<strong>in</strong>g costs, higher pump<strong>in</strong>g speeds, predictable<br />
ma<strong>in</strong>tenance and lower environmental impact all lend weight<br />
to the case for mechanical dry pumps. The sav<strong>in</strong>gs <strong>in</strong> energy<br />
costs from us<strong>in</strong>g dry mechanical pumps are high compared to<br />
steam ejectors.<br />
Outokumpu steel extends<br />
the water heater life for<br />
PVI Industries<br />
P<br />
VI Industries LLC, an American water heaters manufacturer<br />
has chosen Outokumpu’s proprietary lean duplex<br />
grade LDX 2101 ® to replace carbon steel <strong>in</strong> its water heaters.<br />
Us<strong>in</strong>g lean duplex has significantly reduced PVI Industries’<br />
waste stream and <strong>in</strong>creased the useful life <strong>of</strong> its water heaters.<br />
PVI Industries produces water heaters for large commercial<br />
end-users like hotels, restaurants, schools, universities and<br />
hospitals. Water heaters can be as large as 11 x 2 m, and<br />
conta<strong>in</strong> as much as 17,000 l <strong>of</strong> water.<br />
In 2009, PVI Industries built a water heater prototype us<strong>in</strong>g<br />
Outokumpu LDX 2101 ® . The prototype went through an accelerated<br />
life test<strong>in</strong>g equivalent <strong>of</strong> 30 years <strong>of</strong> normal life use at<br />
highly elevated temperatures. Five years after development,<br />
the prototype is still operational. The useful life expectancy<br />
<strong>of</strong> carbon steel water heater tanks was five to fifteen years,<br />
depend<strong>in</strong>g on application. PVI now warranties standard<br />
duplex water heater tanks for up to 25 years.<br />
Previously, the company was us<strong>in</strong>g electroless nickel plat<strong>in</strong>g<br />
to reduce corrosion <strong>in</strong> the carbon steel water heater tanks.<br />
The <strong>process</strong> generated nearly 600,000 kg <strong>of</strong> waste a year. Now<br />
clear sav<strong>in</strong>gs are achieved s<strong>in</strong>ce no ma<strong>in</strong>tenance is required,<br />
because sta<strong>in</strong>less steel does not require any coat<strong>in</strong>g or plat<strong>in</strong>g.<br />
Mov<strong>in</strong>g to duplex sta<strong>in</strong>less steel also reduced PVI’s<br />
waste stream to nearly zero. The efforts were recognized<br />
<strong>in</strong> May 2014 by the State <strong>of</strong> Texas at the 2014 Environmental<br />
Excellence Awards where PVI received the honour for<br />
Pollution Prevention.<br />
New electrical power unit helps ArcelorMittal cut energy use<br />
ArcelorMittal Bottrop <strong>in</strong> Germany has<br />
<strong>in</strong>vested <strong>in</strong> a cutt<strong>in</strong>g-edge electrical<br />
power unit for its coke plant which not only<br />
produces electricity but also doubles up as<br />
a pressure reduc<strong>in</strong>g station. The new technology<br />
has been <strong>in</strong> use s<strong>in</strong>ce September<br />
2013. The electrical power unit – known as<br />
Energy Module and supplied by ENVA Systems<br />
GmbH – partially substitutes a pressure<br />
reduc<strong>in</strong>g station (<strong>in</strong> which the pressure <strong>of</strong><br />
the <strong>in</strong>com<strong>in</strong>g steam is reduced) and uses<br />
the result<strong>in</strong>g energy to produce electricity<br />
for the cok<strong>in</strong>g plant’s wash water treatment.<br />
The energy is also fed <strong>in</strong>to the cok<strong>in</strong>g<br />
plant’s power grid and consumed by various<br />
mach<strong>in</strong>es, plant sections, and pumps.<br />
With a production <strong>of</strong> 80 kWh, the Energy<br />
Module’s annual output would be sufficient<br />
to supply around 100 four-person<br />
households with electricity. Us<strong>in</strong>g the new<br />
electrical power unit also positively impacts<br />
operat<strong>in</strong>g costs, as it elim<strong>in</strong>ates the need<br />
for steam turb<strong>in</strong>es which are significantly<br />
more expensive and require more <strong>in</strong>tensive<br />
ma<strong>in</strong>tenance.<br />
Accord<strong>in</strong>g to ENVA Systems GmbH, when<br />
used at full capacity the Energy Module<br />
allows a return on <strong>in</strong>vestment <strong>in</strong> only three<br />
years. But beyond economic benefits, the<br />
optimised use <strong>of</strong> steam through the new<br />
technology also results <strong>in</strong> CO 2 and primary<br />
energy sav<strong>in</strong>gs – considerably improv<strong>in</strong>g<br />
Bottrop’s environmental footpr<strong>in</strong>t.<br />
18 heat <strong>process</strong><strong>in</strong>g 3-2014
Trade & Industry<br />
NEWS<br />
4<br />
ALUMINIUM 2014<br />
7 – 9 Oct 2014 | Messe Düsseldorf<br />
10th World Trade Fair & Conference<br />
www.alum<strong>in</strong>ium-messe.com<br />
Organised by<br />
Partners<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
19
NEWS<br />
Trade & Industry<br />
Loesche w<strong>in</strong>s the Deutscher Bildungspreis 2014<br />
In the sector category “Production: small<br />
and medium-sized enterprises”, Loesche<br />
managed to come out on top aga<strong>in</strong>st<br />
numerous competitors due to its best<br />
practice tra<strong>in</strong><strong>in</strong>g and talent <strong>management</strong><br />
and has received the Deutscher Bildungspreis<br />
2014. The TÜV Süd Academy and EuPD<br />
Research Susta<strong>in</strong>able Management present<br />
the Deutscher Bildungspreis (German Education<br />
Award) every year under the motto<br />
“Learn<strong>in</strong>g from the best”. In four sector categories,<br />
companies are awarded for best<br />
education and talent <strong>management</strong> under<br />
Andritz to supply new furnace plant for production<br />
<strong>of</strong> railroad tracks<br />
International technology Group Andritz has<br />
been awarded an order to supply a new<br />
walk<strong>in</strong>g beam furnace for the Donawitz plant<br />
<strong>of</strong> voestalp<strong>in</strong>e Schiene GmbH, Austria, one <strong>of</strong><br />
Europe’s lead<strong>in</strong>g suppliers <strong>of</strong> railroad tracks.<br />
Start-up is scheduled for the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />
2016. Andritz Maerz will supply the turnkey<br />
furnace plant with an output <strong>of</strong> 185 t/h,<br />
<strong>in</strong>clud<strong>in</strong>g steel structure, refractory l<strong>in</strong><strong>in</strong>g,<br />
transport system, combustion system, <strong>in</strong>strumentation<br />
and control system, mathematical<br />
furnace model to optimize the various<br />
the auspices <strong>of</strong> the Bundesm<strong>in</strong>isterium für<br />
Bildung und Forschung (Federal M<strong>in</strong>istry <strong>of</strong><br />
Education and Research).<br />
S<strong>in</strong>ce 2012, over 250 companies have<br />
applied for the Deutscher Bildungspreis.<br />
The w<strong>in</strong>ners are selected us<strong>in</strong>g a practiceoriented<br />
and expert-based valuation method,<br />
which was developed <strong>in</strong> collaboration<br />
with personnel and tra<strong>in</strong><strong>in</strong>g experts from<br />
companies <strong>of</strong> different sectors and sizes as<br />
well as scientists <strong>of</strong> different technical fields.<br />
Along with 120 other companies, Loesche<br />
GmbH applied for the Bildungspreis<br />
<strong>thermal</strong> furnace <strong>process</strong>es, buffer bed with<br />
separat<strong>in</strong>g systems, feed conveyor with automatic<br />
billet identification, and a complete<br />
hot water cool<strong>in</strong>g plant with recool<strong>in</strong>g and<br />
emergency cool<strong>in</strong>g systems.<br />
In order to make best possible use <strong>of</strong><br />
the residual heat from the waste gases, a<br />
heat recovery plant is planned to supply<br />
the district heat<strong>in</strong>g system. Thanks to this<br />
heat<strong>in</strong>g technology, heat consumption can<br />
be reduced to a m<strong>in</strong>imum <strong>in</strong> spite <strong>of</strong> the<br />
very uniform temperature ma<strong>in</strong>ta<strong>in</strong>ed, and<br />
2014 and was able to come out on top <strong>of</strong> the<br />
competition <strong>in</strong> the sector category “Production:<br />
small and medium-sized enterprises”.<br />
The award ceremony took place as part <strong>of</strong> a<br />
ceremonial event <strong>in</strong> the historic Munich Künstlerhaus<br />
(House <strong>of</strong> Art). Accord<strong>in</strong>g to Christian<br />
Trzeczak, Loesche Corporate Human<br />
Resources, the company owes this success<br />
to the <strong>in</strong>struments <strong>of</strong> the demand-oriented<br />
personnel development <strong>in</strong>troduced <strong>in</strong> 2008<br />
as well as the close cooperation with the<br />
Loesche Tra<strong>in</strong><strong>in</strong>g Center and the benefits<br />
for the staff associated with this.<br />
maximum reductions can be achieved <strong>in</strong><br />
emissions <strong>of</strong> NO X and CO.<br />
AFC-Holcr<strong>of</strong>t retr<strong>of</strong>its Tier One’s generators for new gas supply<br />
global Tier One automotive supplier has<br />
A placed an order with AFC-Holcr<strong>of</strong>t for a<br />
production gas modernization project <strong>in</strong>volv<strong>in</strong>g<br />
the purchase <strong>of</strong> new multiple-retort E-Z<br />
Series endothermic generators. The facility<br />
receiv<strong>in</strong>g the equipment is located <strong>in</strong> Mexico.<br />
The E-Z Series endothermic generators will<br />
provide the customer with a lower cost<br />
gas production option than their exist<strong>in</strong>g<br />
nitrogen/methanol systems. The return on<br />
<strong>in</strong>vestment for the new endothermic gas<br />
generators is typically less than two years.<br />
Production furnaces <strong>in</strong> the facility will<br />
keep their exist<strong>in</strong>g nitrogen/methanol gas<br />
systems, but the operator will now be able<br />
to switch between nitrogen/methanol<br />
supply or the less expensive endothermic<br />
gas produced by the new E-Z generators.<br />
Multiple furnaces consist<strong>in</strong>g <strong>of</strong> pusher<br />
l<strong>in</strong>es, batch <strong>in</strong>tegral quench units and<br />
mesh belt furnaces will be field retr<strong>of</strong>it<br />
to receive this lower-cost gas option.<br />
AFC-Holcr<strong>of</strong>t will provide two 13,500 CFH<br />
units each equipped with an additional<br />
4,500 CFH expansion module and one<br />
13,500 CFH unit. Each E-Z Series generator<br />
will be equipped with a back-up<br />
mixture and blower. Three endothermic<br />
gas header distribution systems will also<br />
be field <strong>in</strong>stalled for endo supply <strong>in</strong>to the<br />
exist<strong>in</strong>g production furnaces. To m<strong>in</strong>imize<br />
downtime dur<strong>in</strong>g the project, the work is<br />
provided as a “cont<strong>in</strong>uous flow” project,<br />
spread across three phases to provide the<br />
customer with un<strong>in</strong>terrupted project flow<br />
schedule.<br />
20 heat <strong>process</strong><strong>in</strong>g 3-2014
Market breakthrough for Paul Wurth’s<br />
tuyere phenomena detection system<br />
With<strong>in</strong> the past three years, Paul Wurth has<br />
developed a new monitor<strong>in</strong>g technology<br />
for the tuyeres and raceway area <strong>of</strong> blast furnaces.<br />
An <strong>in</strong>tegrated system employ<strong>in</strong>g digital<br />
cameras provides cont<strong>in</strong>uous visualisation <strong>of</strong><br />
all tuyeres on any computer connected to the<br />
network. Mach<strong>in</strong>e vision methods (extraction<br />
<strong>of</strong> <strong>process</strong> relevant <strong>in</strong>formation out <strong>of</strong> pictures)<br />
are applied for automatic phenomena detection,<br />
which is backed-up by an <strong>in</strong>tegrated<br />
mathematic blast furnace model for the raceway<br />
zone. This feature also <strong>in</strong>cludes detection<br />
algorithms especially designed for the use with<br />
tuyere-<strong>in</strong>jected auxiliary reduc<strong>in</strong>g agents like<br />
pulverised coal. Direct l<strong>in</strong>k to the furnace’s automation<br />
system helps to implement additional<br />
emergency measures (for <strong>in</strong>stance, immediate<br />
shut-<strong>of</strong>f <strong>of</strong> PCI) improv<strong>in</strong>g safety for personnel,<br />
equipment and plant. In the course <strong>of</strong> normal<br />
operation, cont<strong>in</strong>uous remote monitor<strong>in</strong>g <strong>of</strong><br />
the tuyere area improves the BF <strong>process</strong> stability<br />
and opens potential for higher PCI rates with,<br />
subsequently, reduced hot metal cost.<br />
Paul Wurth’s new tuyere phenomena detection<br />
system (TPDS) has now been operat<strong>in</strong>g for<br />
more than eight months on four blast furnaces<br />
<strong>in</strong> Belgium and Germany, fully equipped (each<br />
tuyere) with 117 units <strong>in</strong> total. While two <strong>plants</strong><br />
<strong>in</strong> Germany and Spa<strong>in</strong> are currently evaluat<strong>in</strong>g<br />
the system’s benefits on <strong>in</strong>dividual tuyeres, Paul<br />
Wurth has recently received orders for equipp<strong>in</strong>g<br />
four more blast furnaces (<strong>in</strong> the Netherlands<br />
and <strong>in</strong> Germany) completely (128 tuyeres)<br />
with this technology.<br />
Vacuum furnace from Solar Manufactur<strong>in</strong>g<br />
well received by market<br />
The furnace manufacturer Solar Manufac tur<strong>in</strong>g<br />
from Souderton, PA, USA has sold seven<br />
“Mentor” vacuum furnaces over the last twelve<br />
months. This illustrates that this small size furnace<br />
is well received by the market. When William R.<br />
Jones, CEO <strong>of</strong> the Solar Group <strong>of</strong> Companies,<br />
decided to donate a small horizontal vacuum<br />
furnace for use as a teach<strong>in</strong>g tool <strong>in</strong> the ASM International<br />
tra<strong>in</strong><strong>in</strong>g facility <strong>in</strong> Materials Park, Ohio, this<br />
furnace was given the name “The Mentor” as it<br />
would serve to teach and guide students seek<strong>in</strong>g<br />
to advance <strong>in</strong> the metals <strong>process</strong><strong>in</strong>g world.<br />
At the same time that this furnace was<br />
eng<strong>in</strong>eered and manufactured, a second unit<br />
was built for the Solar Atmospheres Plant <strong>in</strong><br />
Hermitage, PA. This furnace proved to be<br />
very useful for test<strong>in</strong>g various materials and<br />
for <strong>process</strong><strong>in</strong>g smaller production loads economically.<br />
Because <strong>of</strong> the usefulness <strong>of</strong> this<br />
smaller furnace <strong>in</strong> handl<strong>in</strong>g many different<br />
needs, Solar Manufactur<strong>in</strong>g elected to <strong>of</strong>fer<br />
this furnace to the general marketplace. Several<br />
companies realized that such a unit could<br />
be a very useful piece <strong>of</strong> equipment.<br />
The furnace is a horizontal model HFL-2018-<br />
2IQ and is mounted on a s<strong>in</strong>gle, portable platform<br />
for easy shipment and manoeuvrability.<br />
The Mentor’s work zone measures 12” x<br />
12” x 18” deep which allows heat treaters the<br />
convenience <strong>of</strong> runn<strong>in</strong>g smaller workloads<br />
more economically. The hot zone design<br />
<strong>in</strong>corpor ates a graphite foil hot face backed<br />
by four layers <strong>of</strong> ½” thick, highly efficient Rayon<br />
graphite felt supported <strong>in</strong> a sta<strong>in</strong>less steel r<strong>in</strong>g<br />
structure. It is rated to a maximum operat<strong>in</strong>g<br />
temperature <strong>of</strong> 3,000 °F and is AMS2750E<br />
compliant with a temperature uniformity <strong>of</strong><br />
+/- 10 °F between 800 °F and 2,400 °F. The<br />
furnace hearth is capable <strong>of</strong> support<strong>in</strong>g loads<br />
up to 250 pounds at 2,150 °F.<br />
22.–24.10.2014<br />
HK Köln 2014,<br />
Hall 4.1,<br />
Booth A-011<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
21
NEWS<br />
Trade & Industry<br />
Praxair builds presence <strong>in</strong> Petrochemical Park <strong>in</strong> Ch<strong>in</strong>a<br />
Praxair, Inc., through a subsidiary, has<br />
signed a long-term contract to supply<br />
<strong>in</strong>dustrial gases to Nanj<strong>in</strong>g J<strong>in</strong>l<strong>in</strong>g Huntsman<br />
New Materials Co., Ltd., a jo<strong>in</strong>t venture<br />
between S<strong>in</strong>opec J<strong>in</strong>l<strong>in</strong>g and Huntsman.<br />
J<strong>in</strong>l<strong>in</strong>g Huntsman will use the gases to help<br />
build a state-<strong>of</strong>-the-art propylene oxide<br />
(PO) and methyl tertiary butyl ether (MTBE)<br />
plant located <strong>in</strong> Nanj<strong>in</strong>g, East Ch<strong>in</strong>a. PO is a<br />
high-quality <strong>in</strong>termediate compound used<br />
to make polyurethane materials, and MTBE<br />
is a clean fuel additive.<br />
Praxair will construct its new air separation<br />
unit (ASU), with a capacity <strong>of</strong> 900 t/d<br />
<strong>of</strong> oxygen, <strong>in</strong> the Phase II area <strong>of</strong> Nanj<strong>in</strong>g<br />
Chemical Industrial Park (NCIP), a lead<strong>in</strong>g,<br />
state-level <strong>in</strong>terconnected chemical<br />
production facility. The company will also<br />
build a pipel<strong>in</strong>e <strong>in</strong> the park to help meet<br />
the <strong>in</strong>dustrial gas requirements <strong>of</strong> J<strong>in</strong>l<strong>in</strong>g<br />
Huntsman and other customers throughout<br />
NCIP. The ASU is expected to start up<br />
<strong>in</strong> 2016.<br />
Accord<strong>in</strong>g to Ju Zhengyu, general<br />
manager <strong>of</strong> Nanj<strong>in</strong>g J<strong>in</strong>l<strong>in</strong>g Huntsman<br />
New Materials Co., Ltd., the company is<br />
very pleased to select Praxair as its <strong>in</strong>dustrial<br />
gas supplier and cooperative partner,<br />
because as a lead<strong>in</strong>g global <strong>in</strong>dustrial gases<br />
company, Praxair has developed a safe and<br />
reliable gas solution for the project.<br />
The air separation plant that the company<br />
will build will establish Praxair as the first<br />
<strong>in</strong>dustrial gases pipel<strong>in</strong>e supplier <strong>in</strong> NCIP,<br />
with great potential to supply more customers<br />
<strong>in</strong> the new phase <strong>of</strong> this top-notch<br />
chemical park. Praxair has a strong track<br />
record <strong>of</strong> develop<strong>in</strong>g <strong>in</strong>dustrial gases supply<br />
networks <strong>in</strong> lead<strong>in</strong>g chemical <strong>in</strong>dustrial<br />
parks such as Shanghai Chemical Industry<br />
Park, Huizhou Daya Bay Chemical Industrial<br />
Park and Yangzhou Chemical Industry Park.<br />
Sciaky to provide EBAM system to major aerospace parts maker<br />
Sciaky, Inc., a subsidiary <strong>of</strong> Phillips Service<br />
Industries, Inc. (PSI) and provider<br />
<strong>of</strong> large-scale additive manufactur<strong>in</strong>g<br />
solutions, announced that it received a<br />
purchase order from a major aerospace<br />
parts maker to provide an electron beam<br />
additive manufactur<strong>in</strong>g (EBAM) system. The<br />
EBAM system will help the manufacturer<br />
save significant time and cost on the production<br />
<strong>of</strong> large, high-value metal parts.<br />
In July Sciaky announced the availability<br />
<strong>of</strong> EBAM systems to the marketplace.<br />
This is the first <strong>of</strong> two multi-million dollar<br />
orders from a major global manufactur<strong>in</strong>g<br />
company s<strong>in</strong>ce the announcement. In addition,<br />
the company is work<strong>in</strong>g with over a<br />
dozen other companies and entities with<strong>in</strong><br />
the aerospace, defence and manufactur<strong>in</strong>g<br />
sectors to provide EBAM systems for their<br />
unique needs.<br />
Sciaky’s EBAM technology comb<strong>in</strong>es<br />
computer-aided design (CAD), electron<br />
beam weld<strong>in</strong>g technology and layer-additive<br />
<strong>process</strong><strong>in</strong>g. Start<strong>in</strong>g with a 3D model<br />
from a CAD program, the fully-articulated,<br />
mov<strong>in</strong>g electron beam weld<strong>in</strong>g gun deposits<br />
metal, layer by layer, until the part reaches<br />
near-net shape. From there, the near-net<br />
shape part requires m<strong>in</strong>or post-production<br />
mach<strong>in</strong><strong>in</strong>g. The 110” x 110” x 110” (L x W x H)<br />
build envelope <strong>of</strong> the EBAM system will<br />
allow the manufacturer to produce large<br />
parts, with virtually no waste.<br />
Besides <strong>of</strong>fer<strong>in</strong>g <strong>in</strong>novative additive<br />
manufactur<strong>in</strong>g solutions for metal parts,<br />
the company provides state-<strong>of</strong>-the-art<br />
electron beam and advanced arc weld<strong>in</strong>g<br />
systems, as well as job shop/contract weld<strong>in</strong>g<br />
services, for manufacturers <strong>in</strong> the aerospace,<br />
defence, automotive, and healthcare<br />
<strong>in</strong>dustries.<br />
22 heat <strong>process</strong><strong>in</strong>g 3-2014
The best <strong>of</strong> 10 years<br />
heat <strong>process</strong><strong>in</strong>g<br />
heat <strong>process</strong><strong>in</strong>g –<br />
10 years – anniversary edition<br />
The anniversary issue celebrat<strong>in</strong>g ten years <strong>of</strong> the “heat <strong>process</strong><strong>in</strong>g“ technical journal<br />
showcases the best articles published dur<strong>in</strong>g the past decade <strong>in</strong> this, the <strong>in</strong>ternational<br />
journal for thermo<strong>process</strong> technology. This edition opens with prefaces<br />
from Dr. Timo Würz, <strong>of</strong> the VDMA (German Eng<strong>in</strong>eer<strong>in</strong>g Association) and Dr. Hermann<br />
Stumpp. The editorial team has selected two articles from each year <strong>of</strong> publication.<br />
Burners & Combustion, Induction Technology, Heat Treatment – the range <strong>of</strong> topics<br />
encompasses the entire thermo<strong>process</strong><strong>in</strong>g field.<br />
The expert articles track, <strong>in</strong> a retrospective, the technological and economic developments<br />
<strong>in</strong> the thermo-<strong>process</strong> <strong>in</strong>dustry. Numerous well-known <strong>in</strong>dustry figures from<br />
the bus<strong>in</strong>ess, <strong>management</strong> and academic worlds have also contributed. Technical articles<br />
with up-to-date contemporary content and an <strong>in</strong>dustry perspective for the future<br />
round <strong>of</strong>f heat <strong>process</strong><strong>in</strong>g‘s anniversary issue. The f<strong>in</strong>al, essential, feature: the Hot Shots<br />
– selected series <strong>of</strong> high-impact images focuss<strong>in</strong>g on fasc<strong>in</strong>at<strong>in</strong>g technological topics.<br />
Edition hp, 1st edition 2014, approx. 180 pages, <strong>in</strong> full colour,<br />
Brochure, DIN A4<br />
ISBN: 978-3-8027-2975-1<br />
Price: € 40.--<br />
Publication: late August 2014<br />
Hot-Hot-Heat<br />
www.vulkan-verlag.de<br />
Events<br />
NEWS<br />
Pre-order now!<br />
Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />
KNOWLEDGE FOR THE<br />
FUTURE<br />
Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />
Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />
Yes, I place a firm order for the technical book. Please send<br />
— copies <strong>of</strong> heat <strong>process</strong><strong>in</strong>g – 10 years – anniversary edition<br />
1 st edition 2014 (ISBN: 978-3-8027-2975-1)<br />
at the price <strong>of</strong> € 40.-- (plus postage and pack<strong>in</strong>g)<br />
Company / <strong>in</strong>stitution<br />
First name and surname <strong>of</strong> recipient<br />
Street/P.O. Box, No.<br />
Country, Postcode, Town<br />
Reply / Antwort<br />
Vulkan Verlag GmbH<br />
Versandbuchhandlung<br />
Postfach 10 39 62<br />
45039 Essen<br />
GERMANY<br />
Phone<br />
E-mail<br />
L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />
Fax<br />
Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />
to Vulkan Verlag GmbH, Versandbuchhandlung, Postfach 10 39 62, 45039 Essen, Germany.<br />
In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />
It is approved 3-2014 that heat this data <strong>process</strong><strong>in</strong>g may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />
This approval may be withdrawn at any time.<br />
✘<br />
Date, signature<br />
PAHPAE2014<br />
23
NEW COURSE:<br />
METAL 2015<br />
MIDDLE EAST<br />
INTERNATIONAL TRADE FAIR FOR METALLURGICAL TECHNOLOGY,<br />
THERMO PROCESS TECHNOLOGY, FOUNDRY MACHINERY AND<br />
METAL WORKING<br />
10 – 13 JANUARY 2015<br />
DUBAI INTERNATIONAL<br />
CONVENTION & EXHIBITION CENTRE,<br />
DUBAI, UAE<br />
WWW.METAL-MIDDLE-EAST.COM<br />
SUPPORTED BY:<br />
IN CONJUNCTION WITH:<br />
Foundry Mach<strong>in</strong>ery<br />
Metallurgical Plants and Roll<strong>in</strong>g Mills<br />
Thermo Process Technology<br />
Metallurgy<br />
European<br />
Metallurgical Equipment<br />
Association<br />
5 th INTERNATIONAL<br />
TRADE FAIR FOR<br />
THE TUBE & PIPE<br />
INDUSTRIES<br />
2 nd INTERNATIONAL<br />
TRADE FAIR<br />
JOINING, CUTTING,<br />
SURFACING<br />
IN CO-OPERATION WITH:<br />
Messe Düsseldorf GmbH<br />
P.O. Box 10 10 06 _ 40001 Düsseldorf _ Germany<br />
Phone +49 (0) 2 11/45 60-77 93/-77 07 _ Fax +49 (0) 2 11/45 60-77 40<br />
RyfischD@messe-duesseldorf.de _ BurbullaK@messe-duesseldorf.de<br />
www.messe-duesseldorf.de
Events<br />
NEWS<br />
ITPS 2014 goes Asia<br />
The first ITPS (International Therm<strong>process</strong><br />
Summit) was held successfully<br />
last year <strong>in</strong> Düsseldorf, Germany. 147<br />
participants from 16 different countries<br />
and exhibitors used the conference as a<br />
welcome opportunity to hold <strong>in</strong>-depth<br />
exchanges <strong>of</strong> ideas and <strong>in</strong>formation for<br />
the thermo <strong>process</strong> <strong>in</strong>dustry. This year,<br />
the <strong>in</strong>dustry demanded to hold the ITPS<br />
2014 from 27 to 28 October <strong>in</strong> Mumbai,<br />
India.<br />
The world economy is expected to<br />
bounce back by the year 2015 and emerg<strong>in</strong>g<br />
economies like India are expected to<br />
drive the global economy. With all these<br />
positive vibes around the entire thermo<br />
<strong>process</strong> <strong>in</strong>dustry, the organizers – Messe<br />
Düsseldorf India, CECOF, VDMA and “heat<br />
<strong>process</strong><strong>in</strong>g” – are gear<strong>in</strong>g up to host ITPS<br />
2014 <strong>in</strong> the commercial capital <strong>of</strong> Mumbai.<br />
ITPS 2014 will welcome 150-200 top <strong>in</strong>dustry<br />
experts from 10+ countries worldwide.<br />
Excellent speeches will come from 30+<br />
speakers <strong>in</strong> highly attractive sessions.<br />
Moreover, ITPS exhibition is staged concurrently<br />
to the biggest metal trade fair<br />
platform <strong>in</strong> India, i.e., Wire & Cable India,<br />
Tube India International, Metallurgy India<br />
& India Essen Weld<strong>in</strong>g & Cutt<strong>in</strong>g which<br />
will take place <strong>in</strong> the Bombay Convention<br />
& Exhibition Centre, Goregaon (East),<br />
Mumbai.<br />
In addition to the high-level <strong>in</strong>formation<br />
supplied, the ITPS will also have a network<strong>in</strong>g<br />
function. Contacts between highrank<strong>in</strong>g<br />
representatives <strong>of</strong> the participat<strong>in</strong>g<br />
companies are established and ma<strong>in</strong>ta<strong>in</strong>ed.<br />
Companies have the opportunity to present<br />
themselves to participants at an exhibition<br />
held <strong>in</strong> conjunction with the summit<br />
or to achieve heightened awareness dur<strong>in</strong>g<br />
the event and <strong>in</strong> connection with market<strong>in</strong>g<br />
through various forms <strong>of</strong> sponsorship.<br />
The organizers’ competence guarantees an<br />
event <strong>of</strong> the highest quality with optimum<br />
benefits to participants.<br />
For further <strong>in</strong>formation please visit:<br />
www.itps-asia.com<br />
Composites Europe 2014 with new themes and special areas<br />
Composites are one <strong>of</strong> the key technologies<br />
<strong>in</strong> lightweight construction, and<br />
the Composites Europe trade fair reflects<br />
the grow<strong>in</strong>g market for lightweight materials.<br />
From 7 to 9 October, the Düsseldorf<br />
trade fair will once aga<strong>in</strong> showcase the full<br />
range <strong>of</strong> fibre-re<strong>in</strong>forced plastics. In addition,<br />
the trade fair will provide an outlook<br />
on the future <strong>of</strong> composites through a<br />
number <strong>of</strong> forums and new special areas<br />
such as the “Bio-based Pavilion” and “Industry<br />
meets Science”.<br />
More than 400 exhibitors from 25 nations<br />
– many <strong>in</strong>ternational key players among<br />
them – are expected to present new lightweight<br />
construction concepts, materials,<br />
and the latest production and automation<br />
solutions at the n<strong>in</strong>th edition <strong>of</strong> Composites<br />
Europe. A total <strong>of</strong> 10,000 lightweight construction<br />
experts represent<strong>in</strong>g automotive<br />
eng<strong>in</strong>eer<strong>in</strong>g, aviation and boatbuild<strong>in</strong>g as<br />
well as the w<strong>in</strong>d energy and construction<br />
sectors are expected at the Düsseldorf Exhibition<br />
Centre, a third <strong>of</strong> them from outside<br />
Germany. Solidly booked country pavilions<br />
represent<strong>in</strong>g Italy, the Netherlands, Russia,<br />
Ch<strong>in</strong>a and Hungary further underscore how<br />
important the trade fair has become for the<br />
<strong>in</strong>ternational composites sector.<br />
Thanks to the new special area entitled<br />
“Industry meets Science”, Composites Europe<br />
enables visitors to “grasp” – <strong>in</strong> both senses<br />
<strong>of</strong> the word – the latest developments and<br />
highlights from <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g, dimension<strong>in</strong>g<br />
and quality assurance. The Institute<br />
<strong>of</strong> Plastics Process<strong>in</strong>g (IKV) at RWTH Aachen<br />
University and add itional partner <strong>in</strong>stitutes<br />
will be responsible for implement<strong>in</strong>g this<br />
special area.<br />
At the Product<br />
Demonstration Area<br />
the trade fair gathers<br />
new high-tech<br />
products and br<strong>in</strong>gs<br />
to life the development<br />
<strong>of</strong> composites<br />
components <strong>in</strong> live<br />
presentations. Exhibitors<br />
will <strong>in</strong>clude Euro-<br />
RTM-Group, Büfa, RH<br />
Schneidtechnik, 3D<br />
Core and Dresden<br />
University <strong>of</strong> Technology.<br />
Natural fibres are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />
important as biocomposites. The<br />
“Bio-based Pavilion”, made possible <strong>in</strong> collaboration<br />
with the nova-Institute <strong>in</strong> Hürth,<br />
showcases the advantages and potential <strong>of</strong><br />
bi<strong>of</strong>ibres. In addition to companies from<br />
the WPC and NFC segments, enterprises<br />
associated with bio-based thermoset plastics<br />
and thermoplastics will also be represented<br />
at the trade fair.<br />
For further <strong>in</strong>formation please visit:<br />
www.composites-europe.com<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
25
NEWS<br />
Events<br />
Premiere: International Forum at ALUMINIUM 2014<br />
From 7 to 9 October, more than 50 nations<br />
will represent the entire world <strong>of</strong> alum<strong>in</strong>ium<br />
at ALUMINIUM 2014 <strong>in</strong> Düsseldorf. With<br />
more than 950 exhibitors and as many as<br />
21,500 visitors at the last event – some 50 %<br />
<strong>of</strong> them from outside Germany – the world<br />
fair provides the most comprehensive overview<br />
<strong>of</strong> the <strong>in</strong>dustry and emerg<strong>in</strong>g markets.<br />
The trade fair’s new “International Forum”<br />
will put the spotlight on two <strong>of</strong> them: Ch<strong>in</strong>a<br />
and India. Held for the first time, the lecture<br />
forum <strong>in</strong> Hall 13 will serve as an <strong>in</strong>formation<br />
exchange for both German and <strong>in</strong>ternational<br />
companies <strong>in</strong>terested <strong>in</strong> expand<strong>in</strong>g their<br />
activities abroad.<br />
How do the Ch<strong>in</strong>ese and Indian markets<br />
function? What opportunities and risks await<br />
European companies when launch<strong>in</strong>g there?<br />
How best to prepare trade fair appearances<br />
abroad? Officials represent<strong>in</strong>g embassies,<br />
regional alum<strong>in</strong>ium associations and corporations<br />
as well as tax pr<strong>of</strong>essionals will provide<br />
answers to these and other questions. The<br />
lecture programme starts <strong>in</strong> the morn<strong>in</strong>g<br />
and concludes with an <strong>in</strong>ternational reception<br />
<strong>in</strong> the afternoon. Trade fair visitors are<br />
welcome to attend the International Forum<br />
without prior registration. Admission is free;<br />
lectures are held <strong>in</strong> English. The International<br />
Forum is presented <strong>in</strong> collaboration with the<br />
German-Ch<strong>in</strong>ese Bus<strong>in</strong>ess Association (DCW)<br />
and Prexma Limited. Thanks to their ties with<br />
organisations such as the Ch<strong>in</strong>a Alum<strong>in</strong>ium<br />
Network, Asia-Pacific Management Consult<strong>in</strong>g<br />
and the German-Indian Chamber <strong>of</strong> Commerce,<br />
both partners have access to a great<br />
network <strong>of</strong> experts <strong>in</strong> both markets.<br />
For further <strong>in</strong>formation please visit:<br />
www.alum<strong>in</strong>ium-messe.com<br />
<strong>in</strong>dometal 2014 – Trade fair for Indonesia’s metal and<br />
steel <strong>in</strong>dustries<br />
The <strong>in</strong>dometal 2014 returns with a greater<br />
focus on the synergistic capabilities<br />
<strong>of</strong> foundry technology, cast<strong>in</strong>g products,<br />
metallurgy and thermo <strong>process</strong> technology<br />
follow<strong>in</strong>g its <strong>in</strong>augural success <strong>in</strong> 2013.<br />
Build<strong>in</strong>g on the global expertise <strong>of</strong> Messe<br />
Düsseldorf’s <strong>in</strong>ternationally renowned<br />
trade fairs Gifa, Metec, Therm<strong>process</strong> and<br />
Newcast, <strong>in</strong>dometal 2014 provides the ideal<br />
launch pad for Asian companies to grow its<br />
regional and <strong>in</strong>ternational market share <strong>of</strong><br />
the metal and steel <strong>in</strong>dustry with<strong>in</strong> Indonesia<br />
and around Asia.<br />
Jo<strong>in</strong>tly organized by Messe Düsseldorf<br />
Asia and local exhibition organizer PT<br />
Wahana Kemalaniaga Makmur (Wakeni),<br />
the trade fair br<strong>in</strong>gs together lead<strong>in</strong>g brand<br />
names <strong>in</strong> the metal and steel <strong>in</strong>dustry from<br />
Indonesia and abroad, provid<strong>in</strong>g the best<br />
exposure for companies with medium and<br />
long-term strategic plans to do bus<strong>in</strong>ess <strong>in</strong><br />
Indonesia and Southeast Asia.<br />
<strong>in</strong>dometal 2014 will be the right platform<br />
to meet key <strong>in</strong>dustry players and<br />
decision-makers, share new concepts and<br />
ideas, establish new relationships and ga<strong>in</strong><br />
critical bus<strong>in</strong>ess leads <strong>in</strong>to Indonesia and<br />
the region.<br />
For further <strong>in</strong>formation please visit:<br />
www.<strong>in</strong>dometal.net<br />
7 th International Scientific Colloquium on MEP<br />
The 7 th International Scientific Colloquium<br />
on Modell<strong>in</strong>g for Electromagnetic<br />
Process<strong>in</strong>g is tak<strong>in</strong>g place <strong>in</strong> Hannover,<br />
Germany from 16 to 19 September 2014. In<br />
tradition <strong>of</strong> the <strong>in</strong>ternational scientific colloquiums<br />
Modell<strong>in</strong>g for Material Process<strong>in</strong>g <strong>in</strong><br />
Riga <strong>in</strong> 1999, 2001, 2006, 2010 and Modell<strong>in</strong>g<br />
for Electromagnetic Process<strong>in</strong>g <strong>in</strong><br />
Hannover <strong>in</strong> 2003 and 2008 the Institute <strong>of</strong><br />
Electrotechnology <strong>of</strong> the Leibniz University<br />
<strong>of</strong> Hannover and the University <strong>of</strong> Latvia<br />
organize the next colloquium Modell<strong>in</strong>g<br />
for Electromagnetic Process<strong>in</strong>g <strong>in</strong> Hannover<br />
2014.<br />
Recent results <strong>of</strong> numerical and experimental<br />
research activities <strong>in</strong> the field <strong>of</strong><br />
<strong>in</strong>dustrial <strong>process</strong><strong>in</strong>g technologies for creat<strong>in</strong>g<br />
new and alternative materials, materials<br />
with highest quality and purity and new<br />
<strong>in</strong>novative products will be presented at<br />
the colloquium.<br />
The organizers k<strong>in</strong>dly <strong>in</strong>vite those who<br />
are <strong>in</strong>terested to participate <strong>in</strong> the <strong>in</strong>ternational<br />
colloquium MEP 2014 “Modell<strong>in</strong>g<br />
for Electromagnetic Process<strong>in</strong>g”. Up<br />
to 100 <strong>in</strong>ternational participants from<br />
universities and research centres as well<br />
as from <strong>in</strong>dustrial suppliers and users <strong>of</strong><br />
electromagnetic and electro<strong>thermal</strong> <strong>process</strong>es<br />
are expected. The colloquium will<br />
take place <strong>in</strong> the Leibnizhaus, the guesthouse<br />
<strong>of</strong> the Leibniz University <strong>of</strong> Hannover,<br />
located <strong>in</strong> the historical centre <strong>of</strong><br />
Hannover.<br />
For further <strong>in</strong>formation please visit:<br />
www.mep2014.uni-hannover.de<br />
26 heat <strong>process</strong><strong>in</strong>g 3-2014
Connect<strong>in</strong>g Global Competence<br />
Events<br />
NEWS<br />
Alum<strong>in</strong>ium Braz<strong>in</strong>g 2014<br />
with record number <strong>of</strong> visitors<br />
F<br />
or the second time, DVS – Deutscher Verband für<br />
Schweißen und verwandte Verfahren e.V., with the<br />
support <strong>of</strong> DVS Media GmbH, had been the organizer<br />
<strong>of</strong> the 8 th International Congress Alum<strong>in</strong>ium Braz<strong>in</strong>g and<br />
Exhibition. From 3 to 5 June 2014, 250 participants and<br />
13 exhibitors from 28 countries had made their way to<br />
Düssel dorf to the Radisson Blu Scand<strong>in</strong>avia Hotel and thus<br />
set a new record number <strong>of</strong> visitors for the event.<br />
22 lectures shed light from different sides on the world <strong>of</strong><br />
braz<strong>in</strong>g <strong>of</strong> alum<strong>in</strong>ium materials. A wide range <strong>of</strong> topics from<br />
research and practice had been <strong>of</strong>fered to <strong>in</strong>terested visitors,<br />
start<strong>in</strong>g from the materials topic through applications,<br />
devices, <strong>process</strong> and quality control, up to research and<br />
development. The participants largely came from <strong>in</strong>dustry,<br />
and they assessed the lectures for the most part as be<strong>in</strong>g<br />
very <strong>in</strong>formative and the majority <strong>of</strong> them also <strong>in</strong>tend to<br />
attend the congress aga<strong>in</strong> <strong>in</strong> 2016.<br />
The accompany<strong>in</strong>g exhibition <strong>of</strong>fered the participants<br />
the opportunity to <strong>in</strong>form themselves <strong>in</strong> detail about the<br />
current product range and service <strong>of</strong>fer <strong>of</strong> the companies<br />
present. At the same time, the overall event was an ideal<br />
platform <strong>in</strong> order to refresh <strong>in</strong>dustry contacts and to establish<br />
new ones. Above all, the <strong>in</strong>ternational aspect <strong>of</strong> the 8 th<br />
International Congress Alum<strong>in</strong>ium Braz<strong>in</strong>g and Exhibition<br />
was <strong>of</strong> particular importance for many visitors and exhibitors.<br />
For <strong>in</strong>stance, one exhibitor commented that the congress<br />
kept gett<strong>in</strong>g more and more <strong>in</strong>ternational <strong>in</strong>terest,<br />
someth<strong>in</strong>g that is important from her perspective.<br />
From April 19 to 21, 2016, the 9 th International Congress<br />
Alum<strong>in</strong>ium Braz<strong>in</strong>g and Exhibition <strong>in</strong>tends to cont<strong>in</strong>ue with<br />
this year’s successful event.<br />
For further <strong>in</strong>formation please visit: www.dvs-ev.de/<br />
alum<strong>in</strong>ium-braz<strong>in</strong>g<br />
The perfect recipe for success.<br />
ceramitec 2015 is the surefire way to<br />
give your bus<strong>in</strong>ess the competitive edge.<br />
Exhibit at this lead<strong>in</strong>g <strong>in</strong>ternational exhibition<br />
and enjoy the benefits <strong>of</strong> a truly<br />
pr<strong>of</strong>essional forum:<br />
∙ Full coverage <strong>of</strong> the ceramics sector.<br />
∙ High-caliber trade audience from<br />
around the world.<br />
∙ Pr<strong>of</strong>essional services for exhibitors.<br />
Don’t delay. Sign up today!<br />
To register:<br />
www.ceramitec.de/application<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
27
NEWS<br />
Events<br />
DIARY<br />
11-13 Sep.<br />
16-19 Sep.<br />
16-19 Sep.<br />
17-19 Sep.<br />
21-24. Sep.<br />
24-25 Sep.<br />
24-27 Sep.<br />
30 Sep. -<br />
1 Oct.<br />
6-8 Oct.<br />
7-9 Oct.<br />
7-9 Oct.<br />
22-24 Oct.<br />
27-28 Oct.<br />
28-30. Oct.<br />
Ankiros / Ann<strong>of</strong>er / Turkcast<br />
<strong>in</strong> Istanbul, Turkey<br />
www.hmankiros.com<br />
7 th MEP – Modell<strong>in</strong>g for Electromagnetic Process<strong>in</strong>g<br />
<strong>in</strong> Hanover, Germany<br />
www.mep2014.uni-hannover.de<br />
Metalurgia 2014<br />
<strong>in</strong> Jo<strong>in</strong>ville, Brazil<br />
www.metalurgia.com.br<br />
KazMet 2014<br />
<strong>in</strong> Almaty, Kazakhstan<br />
www.kazmet.iteca.kz<br />
Euro PM2014<br />
<strong>in</strong> Salzburg, Austria<br />
www.epma.com/pm2014<br />
57 th International Colloquium on Refractories<br />
<strong>in</strong> Aachen, Germany<br />
www.feuerfest-kolloquium.de<br />
wire + Tube Ch<strong>in</strong>a<br />
<strong>in</strong> Shanghai, Ch<strong>in</strong>a<br />
www.wirech<strong>in</strong>a.net<br />
www.tubech<strong>in</strong>a.net<br />
CWIEME<br />
<strong>in</strong> Chicago (IL), United States<br />
www.coilw<strong>in</strong>d<strong>in</strong>gexpo.com<br />
Furnaces North America<br />
In Nashville (TN), United States<br />
www.furnacesnorthamerica.com<br />
Alum<strong>in</strong>ium 2014<br />
<strong>in</strong> Düsseldorf, Germany<br />
www.alum<strong>in</strong>ium-messe.com<br />
Composites Europe<br />
<strong>in</strong> Düsseldorf, Germany<br />
www.composites-europe.com<br />
70 th Heat Treatment Congress<br />
<strong>in</strong> Cologne, Germany<br />
www.hk-awt.de<br />
ITPS Asia – 2 nd International Therm<strong>process</strong> Summit<br />
<strong>in</strong> Mumbai, India<br />
www.itps-asia.com<br />
5 th Metallurgy India / 6 th Tube India / 5 th Wire & Cable India /<br />
6 th Weld<strong>in</strong>g & Cutt<strong>in</strong>g India<br />
<strong>in</strong> Mumbai, India<br />
www.metallurgy-<strong>in</strong>dia.com / www.tube-<strong>in</strong>dia.com /<br />
www.wire-<strong>in</strong>dia.com / www.i-ewc.com<br />
Expansion <strong>of</strong><br />
Metalurgia 2014<br />
T<br />
he metal-mechanic <strong>in</strong>dustry <strong>in</strong> Brazil is<br />
com<strong>in</strong>g out <strong>of</strong> a retraction phase and is<br />
already show<strong>in</strong>g signs <strong>of</strong> recovery, with a forecast<br />
for expansion <strong>in</strong> the com<strong>in</strong>g years. In the<br />
truck <strong>in</strong>dustry alone, six new factories have<br />
begun their activities <strong>in</strong> the country: DAF, JAC,<br />
Foton Aumark, S<strong>in</strong>otruck, Metro-Schacman and<br />
International. While those already <strong>in</strong>stalled are<br />
expand<strong>in</strong>g their l<strong>in</strong>es with heavier models,<br />
show<strong>in</strong>g that there will be strong demand<br />
growth <strong>in</strong> the sector. The northern region <strong>of</strong><br />
Santa Catar<strong>in</strong>a is one <strong>of</strong> Brazil’s most developed<br />
<strong>in</strong> this sector, and is attract<strong>in</strong>g large companies<br />
to <strong>in</strong>stall new <strong>plants</strong>, like GM with its two units<br />
and BMW; add<strong>in</strong>g to those already based here<br />
such as Tupy, Docol, Whirlpool , Embraco, Weg,<br />
Tuper, ArcelorMittal, Marcegaglia, Schulz, Zen,<br />
Wetzel, Altona and others.<br />
At the centre <strong>of</strong> all this expansion is the<br />
Metalurgia fair, which attracts exhibitors and<br />
visitors from Brazil and abroad. For over 15 years<br />
it has <strong>in</strong>tegrated and developed the sector’s<br />
supply cha<strong>in</strong> by present<strong>in</strong>g <strong>in</strong>novative products<br />
with technological advances. By participat<strong>in</strong>g<br />
<strong>in</strong> Metalurgia 2014, visitors have access<br />
to the entire national market <strong>in</strong> its moment <strong>of</strong><br />
recovery.<br />
The Metalurgia – International Fair and<br />
Congress <strong>of</strong> Technology for Cast<strong>in</strong>g, Forg<strong>in</strong>g,<br />
Alum<strong>in</strong>um and Services is the sector’s largest<br />
fair held <strong>in</strong> Brazil. It always takes place <strong>in</strong> even<br />
years and, <strong>in</strong> 2014, will be held from 16 to 19<br />
September 2014.<br />
In the 2012 edition, <strong>in</strong> an area <strong>of</strong> 20,000 m 2 ,<br />
the fair brought together 24,000 visitors, who<br />
conferred the latest news brought by 450<br />
exhibit<strong>in</strong>g companies from Brazil, Germany,<br />
USA, Ch<strong>in</strong>a, Italy and Spa<strong>in</strong>. The trade show<br />
generated approximately R$ 450 million <strong>in</strong> bus<strong>in</strong>ess<br />
dur<strong>in</strong>g the fair itself and with<strong>in</strong> the follow<strong>in</strong>g<br />
six months, due to contacts <strong>in</strong>itiated at the<br />
event. Metalurgia is a realization <strong>of</strong> Brazilian<br />
Foundry Association (Abifa), with organization<br />
by Messe Brasil.<br />
For further <strong>in</strong>formation please visit:<br />
www.metalurgia.com.br<br />
28 heat <strong>process</strong><strong>in</strong>g 3-2014
Events<br />
NEWS<br />
Com<strong>in</strong>g up <strong>of</strong> 6 th wire & Tube Ch<strong>in</strong>a<br />
This year the All Ch<strong>in</strong>a International<br />
Tube and Pipe Industry Trade Fair (Tube<br />
Ch<strong>in</strong>a 2014) and the All Ch<strong>in</strong>a International<br />
Wire & Cable Industry Trade Fair (Wire Ch<strong>in</strong>a<br />
2014) are to be held concurrently for the<br />
sixth time at Shanghai New International<br />
Expo Centre (SNIEC). Organized by Messe<br />
Düsseldorf (Shanghai) Co., Ltd. (MDS) the<br />
two trade fairs will take place from 24 to<br />
27 September 2014.<br />
As an <strong>in</strong>ternational trade fair the Wire<br />
Ch<strong>in</strong>a provides exhibitors and suppliers<br />
<strong>of</strong> wires and cables <strong>in</strong> addition to the latest<br />
technology, specialty products and<br />
<strong>in</strong>novative mach<strong>in</strong>es around the wire and<br />
cable manufactur<strong>in</strong>g, a unique communication<br />
platform. Experts from all over<br />
the world use the trade fair not only as<br />
an <strong>in</strong>formation centre for the developments<br />
and trends <strong>in</strong> wire, cable and wire<strong>process</strong><strong>in</strong>g<br />
<strong>in</strong>dustries: This key fair is the<br />
<strong>in</strong>ternational forum for the purpose <strong>of</strong><br />
sett<strong>in</strong>g up closer bus<strong>in</strong>ess contacts and<br />
for <strong>in</strong>tensify<strong>in</strong>g exist<strong>in</strong>g relations with<br />
customers.<br />
The Tube Ch<strong>in</strong>a is one <strong>of</strong> the world’s<br />
largest trade fairs for tube and pipe technologies.<br />
It has long been recognized as<br />
a forum for cutt<strong>in</strong>g edge technologies<br />
and provides one <strong>of</strong> the best platforms<br />
for trade and exchange. The fair provides<br />
novel materials and<br />
products, <strong>in</strong>novative<br />
mach<strong>in</strong>ery and<br />
production <strong>process</strong>es.<br />
The visitors can<br />
<strong>in</strong>form themselves<br />
about all these<br />
themes comprehensively.<br />
Given the glorious<br />
success <strong>of</strong> the<br />
previous four editions,<br />
the era <strong>of</strong><br />
strong demand <strong>in</strong><br />
tube & pipe, and<br />
great opportunities along with the fast grow<strong>in</strong>g<br />
tube & pipe <strong>in</strong>dustry <strong>in</strong> East Ch<strong>in</strong>a, Tube<br />
Ch<strong>in</strong>a 2014 will cont<strong>in</strong>ue to lead the latest<br />
trend <strong>in</strong> Ch<strong>in</strong>a’s tube and pipe <strong>in</strong>dustry and<br />
establish a trade and exchange platform.<br />
For further <strong>in</strong>formation please visit:<br />
www.wirech<strong>in</strong>a.net or<br />
www.tubech<strong>in</strong>a.net<br />
Ankiros/Ann<strong>of</strong>er/Turkcast 2014 fairs <strong>in</strong> Istanbul<br />
This year’s Ankiros/Ann<strong>of</strong>er/Turkcast will<br />
be organized by Hannover-Messe Ankiros<br />
A.S. from 11 to 13 September at Tuyap Fair<br />
and Congress Center <strong>in</strong> Istanbul, Turkey. The<br />
visit<strong>in</strong>g hours are 9:30 to 19:00 daily. These<br />
fairs have become the largest and most prestigious<br />
metallurgy events <strong>of</strong> Eurasia aim<strong>in</strong>g to<br />
br<strong>in</strong>g together all the key players <strong>of</strong> foundry,<br />
iron & steel and non-ferrous metals <strong>in</strong>dustries<br />
under one ro<strong>of</strong>. Tak<strong>in</strong>g place every two years<br />
s<strong>in</strong>ce 1991, the exhibition size and scale has<br />
expended each year, establish<strong>in</strong>g a reputation<br />
as one <strong>of</strong> the most significant exhibitions<br />
for <strong>in</strong>dustry suppliers. The fairs will form<br />
a cha<strong>in</strong> <strong>of</strong> foundries, iron & steel and nonferrous<br />
metals <strong>in</strong>dustries which will br<strong>in</strong>g a<br />
great convenience to exhibitors and visitors.<br />
The 2012 edition <strong>of</strong> this exhibition trio<br />
was a great success as 850 exhibitors from<br />
39 countries, more than 15,000 <strong>in</strong>dustry pr<strong>of</strong>essionals<br />
from all around the world gathered<br />
<strong>in</strong> the 20,141 m 2 stand area. The 2014<br />
event will have 22,000 m 2 <strong>of</strong> net stand area<br />
to accommodate the expected more than<br />
950 exhibitors and more than 16,000 visitors.<br />
The fairs will play an important role <strong>in</strong> the<br />
metallurgy <strong>in</strong>dustry and br<strong>in</strong>g great bus<strong>in</strong>ess<br />
opportunities aga<strong>in</strong>.<br />
By visit<strong>in</strong>g Ankiros/Ann<strong>of</strong>er 2014, one<br />
will have access to latest products <strong>in</strong>clud<strong>in</strong>g<br />
furnaces, refractory materials, mold<strong>in</strong>g<br />
l<strong>in</strong>es, dust preparatories, foundry mach<strong>in</strong>es,<br />
laboratory and analysis mach<strong>in</strong>es, turnkey<br />
metallurgical facilities, roll<strong>in</strong>g equipment and<br />
all k<strong>in</strong>ds <strong>of</strong> heat <strong>process</strong><strong>in</strong>g products and<br />
materials <strong>in</strong> halls 2, 3, 5 and 6. The exhibitions<br />
will present a full range <strong>of</strong> bus<strong>in</strong>ess<br />
opportunities and smart solutions. In halls<br />
8 and 9 steel producers, steel service centres<br />
and global steel suppliers will exhibit<br />
together. Some <strong>of</strong> the lead<strong>in</strong>g suppliers <strong>of</strong><br />
global metallurgy <strong>in</strong>dustry such as Germany,<br />
Italy, Spa<strong>in</strong>, Ch<strong>in</strong>a, United K<strong>in</strong>gdom and Iran<br />
will be showcas<strong>in</strong>g <strong>in</strong> the country pavilions<br />
which are supported by their governments.<br />
Turkcast 2014 is a unique platform where<br />
the lead<strong>in</strong>g Turkish foundries will exhibit their<br />
latest products and technologies for global<br />
cast<strong>in</strong>gs buyers across various <strong>in</strong>dustries <strong>in</strong><br />
hall 7. The fair will provide a wide rang<strong>in</strong>g<br />
selection <strong>of</strong> cast<strong>in</strong>gs for automotive, heavy<br />
equipment, construction, cement, heavy<br />
mach<strong>in</strong>ery, shipment, agricultural mach<strong>in</strong>ery,<br />
white good, energy, defence, glass and<br />
ceramic <strong>in</strong>dustries.<br />
For further <strong>in</strong>formation please visit:<br />
www.ankiros.com<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
29
NEWS<br />
Events<br />
11 th Furnaces North America<br />
This year will mark the 11 th Furnaces<br />
North America (FNA) produced by<br />
the Metal Treat<strong>in</strong>g Institute and its media<br />
Partner Industrial Heat<strong>in</strong>g Magaz<strong>in</strong>e.<br />
Established <strong>in</strong> 1995, FNA has become<br />
synonymous with br<strong>in</strong>g<strong>in</strong>g top suppliers<br />
and heat treaters, both captive and commercial,<br />
from around the world to one location<br />
for technical education, network<strong>in</strong>g<br />
and the latest developments <strong>in</strong> furnace<br />
equipment, accessories and services.<br />
The Furnaces North America (FNA<br />
2012) will take place <strong>in</strong> Nashville, Tennessee<br />
from 6 to 8 October and it is full <strong>of</strong><br />
technical <strong>in</strong>formation, trends, bus<strong>in</strong>ess and<br />
network<strong>in</strong>g opportunities. The trade fair is<br />
truly a worldwide event with heat treaters<br />
and suppliers attend<strong>in</strong>g from nearly 40+<br />
states and over 15 countries to experience<br />
this 2-day event.<br />
FNA 2014 will be the largest heat treat<br />
show <strong>of</strong> the year <strong>in</strong> North America, <strong>of</strong>fer<strong>in</strong>g<br />
over 30 technical sessions with the<br />
<strong>in</strong>formation to energize your bus<strong>in</strong>ess,<br />
2-day trade show to network with 150+<br />
top suppliers to see the latest trends and<br />
technology.<br />
Bottom l<strong>in</strong>e, everywhere the visitors<br />
turn, there are people who are experienc<strong>in</strong>g<br />
the same challenges and successes as<br />
they do. Attend<strong>in</strong>g FNA gives participants<br />
a wealth <strong>of</strong> <strong>in</strong>formation to help create new<br />
ideas and energize their company back to<br />
record productivity.<br />
For further <strong>in</strong>formation please visit:<br />
www.furnacesnorthamerica.com<br />
Euro PM2014 <strong>in</strong> Austria<br />
Europe’s annual powder metallurgy<br />
congress and exhibition organised<br />
and sponsored by the European Powder<br />
Metallurgy Association, will make its return<br />
to Austria <strong>in</strong> 2014. This will be the first time<br />
the Euro PM event has visited Austria s<strong>in</strong>ce<br />
the World PM2004 <strong>in</strong> Vienna.<br />
The Euro PM2014 Congress and<br />
Exhibition will be held at the Messezentrum<br />
Salzburg <strong>in</strong> Salzburg, a UNESCO World Heritage<br />
Site, from 21 to 24 September 2014.<br />
The comb<strong>in</strong>ation <strong>of</strong> a world class technical<br />
programme and state-<strong>of</strong>-the-art exhibition<br />
will provide the ideal network<strong>in</strong>g opportunity<br />
for suppliers, producers and end-users.<br />
The congress is an all topic powder metallurgy<br />
event featur<strong>in</strong>g:<br />
■■<br />
Additive manufactur<strong>in</strong>g,<br />
■■<br />
Hard materials and diamond tools,<br />
■■<br />
Hot isostatic press<strong>in</strong>g,<br />
■■<br />
New materials and applications,<br />
■■<br />
PM structural parts,<br />
■■<br />
Powder <strong>in</strong>jection mould<strong>in</strong>g.<br />
Follow<strong>in</strong>g the great success <strong>of</strong> Euro PM2013<br />
<strong>in</strong> Gothenburg, the organizers are expect<strong>in</strong>g<br />
a considerable attendance from all over<br />
Europe and beyond, with what will surely<br />
be an outstand<strong>in</strong>g level <strong>of</strong> technical presentations<br />
and key note speeches to share<br />
and promote the latest developments <strong>in</strong><br />
PM technologies and markets.<br />
Salzburg is the perfect location to hold<br />
the next Euro PM event as Austria plays<br />
a great role <strong>in</strong> powder metallurgy with a<br />
number <strong>of</strong> companies <strong>in</strong>volved <strong>in</strong> this field<br />
hav<strong>in</strong>g had a lead<strong>in</strong>g role <strong>in</strong> the development<br />
<strong>of</strong> cemented carbide, hardmetals,<br />
the tungsten <strong>in</strong>dustry, powder metallurgy<br />
refractory metals, and also technologies like<br />
gas powder atomization <strong>process</strong>es.<br />
To improve the onsite experience<br />
EPMA will be launch<strong>in</strong>g a web app.<br />
For further <strong>in</strong>formation please visit:<br />
www.epma.com/pm 2014<br />
Visit us at the HK 2014<br />
Vulkan-Verlag<br />
Hall 4.1 / Booth G 018<br />
22 - 24 October 2014<br />
Koelnmesse, Cologne<br />
Germany<br />
30 heat <strong>process</strong><strong>in</strong>g 3-2014
Personal<br />
NEWS<br />
The future — your future — is on full display at FABTECH. From 1,400+ exhibits with end-to-end<br />
solutions <strong>in</strong> metal form<strong>in</strong>g, fabricat<strong>in</strong>g, weld<strong>in</strong>g and f<strong>in</strong>ish<strong>in</strong>g, to the <strong>in</strong>dustry’s lead<strong>in</strong>g education<br />
and peer-to-peer network<strong>in</strong>g, this is your opportunity to capitalize on the future.<br />
The answers and know-how you need for the challenges <strong>of</strong> tomorrow can be found at FABTECH.<br />
Visit fabtechexpo.com for complete event details. REGISTER TODAY!<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
31
NEWS<br />
Personal<br />
Nucor Executive Vice President<br />
Keith Grass to retire<br />
Nucor Corporation announced that<br />
Keith Grass, Nucor’s Executive Vice<br />
President <strong>of</strong> Raw Materials and Chief<br />
Executive Officer <strong>of</strong> The David J. Joseph<br />
Company (DJJ), plans to retire effective<br />
12 September 2014. Grass jo<strong>in</strong>ed DJJ <strong>in</strong><br />
1978. He began his career as a brokerage<br />
representative and then as district<br />
manager <strong>of</strong> several DJJ trad<strong>in</strong>g <strong>of</strong>fices. He<br />
was appo<strong>in</strong>ted Vice President <strong>of</strong> Trad<strong>in</strong>g<br />
<strong>in</strong> 1992. From 1996 to 1998, he served as<br />
President <strong>of</strong> DJJ’s International Division.<br />
He headed the Metals Recycl<strong>in</strong>g Division<br />
dur<strong>in</strong>g 1999 and served as President <strong>of</strong><br />
DJJ from 2000 until December 2012. Grass<br />
has served as CEO <strong>of</strong> DJJ s<strong>in</strong>ce 2000 and<br />
was appo<strong>in</strong>ted Executive Vice President<br />
<strong>of</strong> Nucor Corporation when DJJ became<br />
part <strong>of</strong> Nucor <strong>in</strong> 2008.<br />
Upon the retirement <strong>of</strong> Keith Grass,<br />
Joe Stratman, who began his Nucor<br />
career <strong>in</strong> 1989 and has served as Executive<br />
Vice President s<strong>in</strong>ce 2007, will<br />
assume EVP responsibilities for the raw<br />
materials group, which, <strong>in</strong> addition to<br />
DJJ, <strong>in</strong>cludes Nucor’s natural gas <strong>in</strong>vestments<br />
and logistics.<br />
Nucor and affiliates are manufacturers<br />
<strong>of</strong> steel products, with operat<strong>in</strong>g<br />
facilities primarily <strong>in</strong> the US and Canada.<br />
Products produced <strong>in</strong>clude: carbon and<br />
alloy steel – <strong>in</strong> bars, beams, sheet and<br />
plate; steel pil<strong>in</strong>g; steel joists and joist<br />
girders; steel deck; fabricated concrete<br />
re<strong>in</strong>forc<strong>in</strong>g steel; cold f<strong>in</strong>ished steel; steel<br />
fasteners; metal build<strong>in</strong>g systems; steel<br />
grat<strong>in</strong>g and expanded metal; and wire<br />
and wire mesh.<br />
Ch<strong>in</strong>a names new<br />
General Manager<br />
for Baosteel Group<br />
Ch<strong>in</strong>a’s Baosteel Group, which owns the<br />
country’s biggest listed steelmaker,<br />
has named Chen Derong as its General<br />
Manager, replac<strong>in</strong>g He Wenbo. Chen (53)<br />
used to be the Vice General Manager <strong>of</strong><br />
Zhejiang Metallurgical Group and the<br />
vice governor <strong>of</strong> eastern Zhejiang prov<strong>in</strong>ce.<br />
Furthermore Chen once worked <strong>in</strong><br />
Hangzhou Iron & Steel Group Company<br />
for many years.<br />
The 59-year-old He Wenbo also resigned<br />
as the chairman <strong>of</strong> Baoshan Iron and Steel<br />
Co Ltd. He, who has been work<strong>in</strong>g for Baosteel<br />
s<strong>in</strong>ce 1982, will be assigned a new job,<br />
the company announced without elaborat<strong>in</strong>g.<br />
The <strong>of</strong>ficial X<strong>in</strong>hua news agency cited<br />
unidentified sources as say<strong>in</strong>g He could be<br />
made the general manager <strong>of</strong> m<strong>in</strong><strong>in</strong>g giant<br />
Ch<strong>in</strong>a M<strong>in</strong>metals Corp.<br />
Michael Majerus new CFO <strong>of</strong> SGL Carbon<br />
The Supervisory Board <strong>of</strong> SGL Carbon<br />
SE has appo<strong>in</strong>ted Dr. Michael Majerus<br />
(photo) as CFO effective 1 July 2014 for a<br />
three year term until 30 June 2017. By mutual<br />
agreement, Jürgen Muth stepped down<br />
from the Board <strong>of</strong> Management as <strong>of</strong> 30<br />
June 2014.<br />
Dr. Michael Majerus was born on 6 February<br />
1961 <strong>in</strong> Cologne and studied bus<strong>in</strong>ess<br />
adm<strong>in</strong>istration at the University <strong>of</strong><br />
Cologne. Follow<strong>in</strong>g his doctorate at the<br />
University <strong>of</strong> Siegen, he commenced his<br />
pr<strong>of</strong>essional career <strong>in</strong> 1989 <strong>in</strong> the f<strong>in</strong>ancial<br />
controll<strong>in</strong>g department at Mannesmann<br />
AG. In the follow<strong>in</strong>g years he held various<br />
executive functions <strong>in</strong> f<strong>in</strong>ance-related areas<br />
with<strong>in</strong> the Mannesmann Group. From 1999<br />
to 2000, as Central Divisional Director, he<br />
had responsibility for f<strong>in</strong>ancial controll<strong>in</strong>g<br />
and account<strong>in</strong>g at the Mannesmann<br />
Group. Follow<strong>in</strong>g the acquisition by Vodafone,<br />
he held the same position for the<br />
<strong>in</strong>dustrial activities under the umbrella <strong>of</strong><br />
ATECS Mannesmann AG. From the end <strong>of</strong><br />
2000 until 2006, he was a member <strong>of</strong> the<br />
divisional <strong>management</strong> board and CFO <strong>of</strong><br />
the Memory Products Division at Inf<strong>in</strong>eon<br />
Technologies AG. After the division became<br />
a legally <strong>in</strong>dependent entity <strong>in</strong>corporated<br />
as Qimonda AG, he was appo<strong>in</strong>ted CFO and<br />
Labor Director <strong>of</strong> the company <strong>in</strong> 2006 and<br />
subsequently prepared the company’s IPO<br />
on the New York Stock Exchange. Follow<strong>in</strong>g<br />
his departure from Qimonda AG, he<br />
became a member <strong>of</strong> the <strong>management</strong><br />
board (CFO) <strong>of</strong> PHOENIX Pharmahandel<br />
GmbH & Co KG from 2009 to 2013.<br />
32 heat <strong>process</strong><strong>in</strong>g 3-2014
Personal<br />
NEWS<br />
Robrecht Himpe elected new Eur<strong>of</strong>er President<br />
Robrecht Himpe (photo), executive<br />
vice president at ArcelorMittal Europe,<br />
has been appo<strong>in</strong>ted as new president <strong>of</strong><br />
Eur<strong>of</strong>er, the European Steel Association. At<br />
European Steel Day he addressed hundreds<br />
<strong>of</strong> delegates <strong>in</strong> his new function. He identified<br />
three targets for his presidency, to<br />
ensure the future <strong>of</strong> the steel <strong>in</strong>dustry <strong>in</strong><br />
Europe: market demand, trade, and energy<br />
and climate. With steel demand <strong>in</strong> Europe<br />
still 25 % below pre-crisis levels – despite<br />
positive signs <strong>of</strong> a moderate recovery <strong>in</strong> the<br />
EU economy – Himpe rem<strong>in</strong>ded delegates<br />
that ris<strong>in</strong>g steel consumption <strong>of</strong> European<br />
steel, together with support from policymakers,<br />
is needed to create an <strong>in</strong>ternationally<br />
competitive environment for the <strong>in</strong>dustry:<br />
“We are all aware that <strong>in</strong>dustry is the<br />
backbone <strong>of</strong> the European economy. Be<strong>in</strong>g<br />
at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the supply cha<strong>in</strong>, the<br />
steel <strong>in</strong>dustry has a special position <strong>in</strong> the<br />
manufactur<strong>in</strong>g <strong>in</strong>dustry <strong>in</strong> Europe, account<strong>in</strong>g<br />
for more than 350,000 direct jobs and<br />
1.5 million <strong>in</strong>direct jobs through the supply<br />
cha<strong>in</strong>.” As such a major employer <strong>in</strong> the<br />
region, Himpe called on the European<br />
Commission (EC) to take the steel <strong>in</strong>dustry<br />
<strong>in</strong>to account, as a strategic sector for the<br />
EU economy.<br />
Eur<strong>of</strong>er was founded <strong>in</strong> 1976 and<br />
has 59 direct member companies and<br />
national associations, represent<strong>in</strong>g 528<br />
production facilities <strong>in</strong> 24 EU member<br />
states. voestalp<strong>in</strong>e CEO Wolfgang Eder<br />
was the previous Eur<strong>of</strong>er president, serv<strong>in</strong>g<br />
for four years.<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
33
NEWS<br />
Personal<br />
Peter Schwab new member <strong>of</strong> the voestalp<strong>in</strong>e<br />
Management Board<br />
In its meet<strong>in</strong>g, the Supervisory Board<br />
<strong>of</strong> voestalp<strong>in</strong>e AG has appo<strong>in</strong>ted former<br />
Head <strong>of</strong> Group Research, DI Dr. Peter<br />
Schwab, to become a member <strong>of</strong> the Management<br />
Board <strong>of</strong> voestalp<strong>in</strong>e AG, with<br />
effect from 1 October 2014. Consequently,<br />
from October 2014 the Management Board<br />
will consist <strong>of</strong> six, rather than five members.<br />
DI Dr. Peter Schwab will become the<br />
Head <strong>of</strong> the Metal Form<strong>in</strong>g Division. The<br />
former Head <strong>of</strong> this Division, DI Herbert<br />
Eibenste<strong>in</strong>er, will become Head <strong>of</strong> the Steel<br />
Division from October 2014. In future, Dr.<br />
Wolfgang Eder, Chairman <strong>of</strong> the Management<br />
Board, and Head <strong>of</strong> the Steel Division<br />
s<strong>in</strong>ce 1999, will be exclusively responsible<br />
for group activities and <strong>in</strong>creas<strong>in</strong>gly focus<br />
on the group’s strategic development.<br />
These changes to the Management Board<br />
and the allocation <strong>of</strong> responsibilities reflect<br />
the growth <strong>of</strong> the voestalp<strong>in</strong>e Group over<br />
the past years. The term <strong>of</strong> <strong>of</strong>fice for each<br />
Management Board member ends on 31<br />
March 2019.<br />
Change <strong>in</strong> Management Board <strong>of</strong> Trumpf<br />
As <strong>of</strong> the end <strong>of</strong> the 2013/14 f<strong>in</strong>ancial<br />
year, Harald Völker stepped down from<br />
the Group Management Board <strong>of</strong> Trumpf<br />
GmbH + Co. KG. Dr. Lars Grünert (photo),<br />
who was already a member <strong>of</strong> the Management<br />
Board <strong>of</strong> the mach<strong>in</strong>e tool and laser<br />
manufacturer <strong>in</strong> Ditz<strong>in</strong>gen, took over his<br />
duties as CFO.<br />
Harald Völker (59) worked for Trumpf<br />
s<strong>in</strong>ce 1990 and held the position as CFO <strong>of</strong><br />
Trumpf GmbH + Co. KG and at the same<br />
time as Chairman <strong>of</strong> the Medical Technology<br />
Division s<strong>in</strong>ce 2001. Accord<strong>in</strong>g to Dr. Nicola<br />
Leib<strong>in</strong>ger-Kammüller, Chairwoman <strong>of</strong> the<br />
Trumpf Management Board, Harald Völker<br />
played a decisive role <strong>in</strong> shap<strong>in</strong>g the success<br />
<strong>of</strong> the company <strong>in</strong> the past two decades. He<br />
made the Medical Technology Division a<br />
highly regarded player <strong>in</strong> the market. Moreover,<br />
it is largely thanks to him that Trumpf as<br />
a company was able to cope with the great<br />
crisis so well after 2008, she added.<br />
Dr. rer. pol. Lars Grünert (46), who has<br />
been work<strong>in</strong>g for Trumpf s<strong>in</strong>ce 2002, is<br />
the new CFO. Dr. Grünert has been Executive<br />
Vice President <strong>of</strong> Trumpf GmbH + Co.<br />
KG s<strong>in</strong>ce 2010 and was up to now CFO <strong>of</strong><br />
the Laser Technology/Electronics Division.<br />
With<strong>in</strong> the Group Management Board he<br />
rema<strong>in</strong>s responsible for organizational<br />
development and <strong>in</strong>formation technology,<br />
among other th<strong>in</strong>gs.<br />
IHEA announces 2014-15 Board <strong>of</strong> Directors and Officers<br />
At IHEA’s 85 th Annual Meet<strong>in</strong>g at the<br />
West<strong>in</strong> Verasa <strong>in</strong> Napa, California, the<br />
Industrial Heat<strong>in</strong>g Equipment Association<br />
announced its 2014-15 Board <strong>of</strong> Directors<br />
and Officers. Serv<strong>in</strong>g a second term<br />
as president is Tim Lee <strong>of</strong> Maxon, a div. <strong>of</strong><br />
Honeywell. B.J. Bernard <strong>of</strong> Surface Combustion<br />
was elected IHEA Vice-President<br />
and Daniel Llaguno <strong>of</strong> Nutec Bickley was<br />
elected Treasurer. Past president, Mike Shay<br />
<strong>of</strong> Elster Kromschröder rema<strong>in</strong>s <strong>in</strong> that role<br />
and cont<strong>in</strong>ues to serve on the Board <strong>of</strong><br />
Directors.<br />
Furthermore IHEA announced the<br />
addition <strong>of</strong> three new board members<br />
to serve three-year terms; Francis Liebens<br />
<strong>of</strong> Solo Swiss; Michael Stowe <strong>of</strong> Advanced<br />
Energy and Aaron Zoeller <strong>of</strong> SCC Combustion<br />
Inc. Appo<strong>in</strong>ted to the IHEA Board<br />
<strong>of</strong> Directors to serve unexpired terms <strong>of</strong><br />
open board seats are Scott Sch<strong>in</strong>dlbeck<br />
<strong>of</strong> Eclipse, Inc. and Jonathan Markley <strong>of</strong><br />
Seco/Warwick. Cont<strong>in</strong>u<strong>in</strong>g their service<br />
on the Board <strong>of</strong> Directors for 2014-2015;<br />
David Bovenizer, Selas Heat Technology<br />
Co.; Mike Chapman, Vulcan Catalytic<br />
Systems; Jay Cherry, Wellman Furnaces;<br />
John Podach, Fostoria Process Equip. –<br />
a Division <strong>of</strong> TPI; and John Stanley, Karl<br />
Dungs, Inc.<br />
34 heat <strong>process</strong><strong>in</strong>g 3-2014
Handbook <strong>of</strong><br />
Alum<strong>in</strong>ium Recycl<strong>in</strong>g<br />
www.vulkan-verlag.de<br />
Personal NEWS<br />
Order now!<br />
Mechanical Preparation | Metallurgical Process<strong>in</strong>g |<br />
Heat Treatment<br />
The Handbook has proven to be helpful to plant designers and operators<br />
for eng<strong>in</strong>eer<strong>in</strong>g and production <strong>of</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>plants</strong>. The<br />
book deals with alum<strong>in</strong>ium as material and its recovery from bauxite,<br />
the various <strong>process</strong> steps and procedures, melt<strong>in</strong>g and cast<strong>in</strong>g <strong>plants</strong>,<br />
metal treatment facilities, provisions and equipment for environmental<br />
control and workforce safety, cold and hot recycl<strong>in</strong>g <strong>of</strong> alum<strong>in</strong>ium <strong>in</strong>clud<strong>in</strong>g<br />
scrap preparation and remelt<strong>in</strong>g, operation and plant <strong>management</strong>.<br />
Due to more and more str<strong>in</strong>gent regulations for environmental control<br />
and fuel efficiency as well as quality requirements sections about salt<br />
slag recycl<strong>in</strong>g, oxy-fuel heat<strong>in</strong>g and heat treatment <strong>process</strong>es are now <strong>in</strong>corporated<br />
<strong>in</strong> the new edition. The reader is thus provided with a detailed<br />
overview <strong>of</strong> the technology <strong>of</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g.<br />
Editor: Christoph Schmitz<br />
2 nd edition 2014, 556 pages, hardcover,<br />
with <strong>in</strong>teractive e-book (read-onl<strong>in</strong>e access)<br />
ISBN: 978-3-8027-2970-6<br />
Price: € 130,-<br />
Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen, Germany<br />
KNOWLEDGE FOR THE<br />
FUTURE<br />
Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />
Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />
Yes, I place a firm order for the technical book. Please send<br />
— copies <strong>of</strong> Handbook <strong>of</strong> Alum<strong>in</strong>ium Recycl<strong>in</strong>g<br />
2 nd edition 2014 (ISBN: 978-3-8027-2970-6 )<br />
at the price <strong>of</strong> € 130,- (plus postage and pack<strong>in</strong>g)<br />
Company/<strong>in</strong>stitution<br />
First name and surname <strong>of</strong> recipient<br />
Street/P.O. Box, No.<br />
Country, Postcode, Town<br />
Reply / Antwort<br />
Vulkan Verlag GmbH<br />
Versandbuchhandlung<br />
Postfach 10 39 62<br />
45039 Essen<br />
GERMANY<br />
Phone<br />
E-mail<br />
L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />
Fax<br />
Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />
to Vulkan Verlag GmbH, Versandbuchhandlung, Friedrich-Ebert-Str. 55, 45127 Essen, Germany.<br />
In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />
It is approved 3-2014 that heat this data <strong>process</strong><strong>in</strong>g may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />
This approval may be withdrawn at any time.<br />
✘<br />
Date, signature<br />
PAHBAR2014<br />
35
t <strong>in</strong>duction technology.<br />
nd easy ma<strong>in</strong>tenance.<br />
erformance.<br />
23.05.2013 15:27:32<br />
2 nd Edition<br />
NEWS<br />
Media<br />
INFO<br />
by K.S.K. Weranga, Sisil<br />
Kumarawadu,<br />
D.P. Chandima<br />
1 st edition 2014<br />
141 pages, s<strong>of</strong>tcover<br />
€ 53.49<br />
ISBN: 978-981-4451-81-9<br />
www.spr<strong>in</strong>ger.com<br />
Smart meter<strong>in</strong>g design and applications<br />
Tak<strong>in</strong>g <strong>in</strong>to account the present day trends<br />
and the requirements, this brief focuses<br />
on smart meter<strong>in</strong>g <strong>of</strong> electricity for next<br />
generation energy efficiency and conservation.<br />
The contents <strong>in</strong>clude discussions on the<br />
smart meter<strong>in</strong>g concepts and exist<strong>in</strong>g technologies<br />
and systems as well as design and<br />
implementation <strong>of</strong> smart meter<strong>in</strong>g schemes<br />
together with detailed examples.<br />
The table <strong>of</strong> contents <strong>in</strong>cludes: smart<br />
grid and smart meter<strong>in</strong>g, evolution <strong>of</strong><br />
electricity meters, basic functionalities<br />
<strong>in</strong>side an energy measurement chip,<br />
smart meter prototype design, shortterm<br />
demand forecast<strong>in</strong>g and warn<strong>in</strong>g<br />
signal generation as well as smart meter<strong>in</strong>g<br />
applications.<br />
UT<br />
ION<br />
m<br />
Erw<strong>in</strong> Dötsch Inductive Melt<strong>in</strong>g and Hold<strong>in</strong>g<br />
2 nd Edition<br />
Erw<strong>in</strong> Dötsch<br />
Inductive Melt<strong>in</strong>g<br />
and Hold<strong>in</strong>g<br />
Fundamentals | Plants and Furnaces | Process Eng<strong>in</strong>eer<strong>in</strong>g<br />
INFO<br />
by Erw<strong>in</strong> Dötsch<br />
2 nd edition 2013<br />
306 pages, hardcover<br />
<strong>in</strong>cl. ebook,<br />
€ 75.00<br />
ISBN: 978-3-8027-2386-5<br />
www.vulkan-verlag.de<br />
Inductive melt<strong>in</strong>g and hold<strong>in</strong>g<br />
The second, revised edition <strong>of</strong> this standard<br />
work for eng<strong>in</strong>eers, technicians<br />
and other practitioners work<strong>in</strong>g <strong>in</strong> melt<strong>in</strong>g<br />
shops and foundries appeared <strong>in</strong> mid-2013.<br />
This new version <strong>of</strong> the title on <strong>in</strong>ductive<br />
melt<strong>in</strong>g and temperature ma<strong>in</strong>tenance<br />
orig<strong>in</strong>ally published <strong>in</strong> 2009 is the result <strong>of</strong><br />
the great demand generated at that time,<br />
and <strong>in</strong>cludes coverage <strong>of</strong> the plant- and<br />
<strong>process</strong>-eng<strong>in</strong>eer<strong>in</strong>g advances achieved<br />
dur<strong>in</strong>g the <strong>in</strong>terven<strong>in</strong>g four years. These<br />
relate, <strong>in</strong> particular, to the use <strong>of</strong> the <strong>in</strong>duction<br />
furnace <strong>in</strong> electric-steel production,<br />
a field <strong>in</strong> which this environmentally and<br />
ma<strong>in</strong>s-friendly melt<strong>in</strong>g system has evolved<br />
<strong>in</strong>to a genu<strong>in</strong>e and advantageous alternative<br />
to the electric arc furnace. Characteristic<br />
<strong>of</strong> this is the recent <strong>in</strong>crease <strong>in</strong> <strong>in</strong>verter<br />
supply power from its maximum <strong>of</strong> 18 MW<br />
at the time <strong>of</strong> publication <strong>of</strong> the first edition<br />
<strong>of</strong> the book to its present 42 MW to permit<br />
supply <strong>of</strong> 65 t crucible furnaces.<br />
INFO<br />
by Cecil L. Smith<br />
1 st edition June 2014<br />
336 pages, hardcover<br />
€ 88.20<br />
ISBN: 978-0-470-38199-1<br />
www.wiley.com<br />
Control <strong>of</strong> batch <strong>process</strong>es<br />
This book gives a real world explanation<br />
<strong>of</strong> how to analyze and troubleshoot a<br />
<strong>process</strong> control system <strong>in</strong> a batch <strong>process</strong><br />
plant. This is important s<strong>in</strong>ce batch<br />
<strong>process</strong><strong>in</strong>g is used extensively <strong>in</strong> the<br />
pharma ceutical, biotechnology, coat<strong>in</strong>gs,<br />
electronic materials etc. <strong>in</strong>dustries, where<br />
new jobs are be<strong>in</strong>g created.<br />
In batch <strong>process</strong>es the product is made<br />
<strong>in</strong> discrete batches sequentially perform<strong>in</strong>g<br />
a number <strong>of</strong> <strong>process</strong><strong>in</strong>g steps on raw<br />
materials and <strong>in</strong>termediate products. For<br />
example, fixed amounts <strong>of</strong> reactants may<br />
be charged to a vessel, mixed and heated<br />
to a reaction temperature, reacted for a<br />
fixed period <strong>of</strong> time, dra<strong>in</strong>ed from the vessel,<br />
separated, dried and packaged. In a<br />
batch <strong>process</strong>, the path followed is state<br />
space is <strong>of</strong>ten important. Consequently,<br />
compared to cont<strong>in</strong>uous <strong>process</strong>, batch<br />
<strong>process</strong> control requires a greater percentage<br />
<strong>of</strong> discrete logic and sequential control<br />
than regulatory control loops. Batch<br />
Control applications must control the tim<strong>in</strong>g<br />
and sequenc<strong>in</strong>g <strong>of</strong> the <strong>process</strong> steps<br />
based on discrete <strong>in</strong>puts and outputs as<br />
well as analog outputs. Batch <strong>process</strong><strong>in</strong>g<br />
is <strong>of</strong>ten used when more precise higher<br />
quality products have to be made therefore<br />
batch <strong>process</strong><strong>in</strong>g is used <strong>in</strong> pharmaceutical<br />
formulations, biotech products, electronic<br />
materials, coat<strong>in</strong>gs, food products. It is also<br />
used <strong>in</strong> beverage <strong>process</strong><strong>in</strong>g, dairy <strong>process</strong><strong>in</strong>g<br />
and soap manufactur<strong>in</strong>g.<br />
36 heat <strong>process</strong><strong>in</strong>g 3-2014
International Magaz<strong>in</strong>e for Industrial Furnaces<br />
Heat Treatment & Equipment<br />
03 I 2014<br />
ISSN 1611-616X<br />
Vulkan-Verlag<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
Halle 4.1/Stand E-040<br />
Hall 4.1/Booth E-040<br />
Energieberater!<br />
Ipsen optimiert die Effizienz se<strong>in</strong>er Öfen und Anlagen. EcoFire, HybridCarb und Endo-<br />
Save s<strong>in</strong>d nur drei unserer Verfahren, die mit diesem Ziel entwickelt wurden. Die mittels<br />
EcoFire optimierte Verbrennung sorgt für e<strong>in</strong>e hocheffiziente Energienutzung während<br />
HybridCarb und EndoSave den Prozessgasverbrauch <strong>in</strong> signifikante Weise reduzieren.<br />
Energy Consultant!<br />
Ipsen is optimiz<strong>in</strong>g the efficiency <strong>of</strong> its furnaces and systems. EcoFire, HybridCarb<br />
and EndoSave are just three <strong>of</strong> our <strong>process</strong>es that have been developed with this goal<br />
<strong>in</strong> m<strong>in</strong>d. Combustion optimized us<strong>in</strong>g the EcoFire system ensures highly efficient energy<br />
use while HybridCarb and EndoSave significantly reduce <strong>process</strong> gas consumption.<br />
www.ipsen.de<br />
INFORMATION<br />
All about the HK 2014 <strong>in</strong><br />
Cologne (Germany)<br />
BASIC DATA<br />
Details and site plan <strong>of</strong> the<br />
new venue<br />
PRODUCT PREVIEW<br />
The latest product highlights<br />
from the HK-Exhibitors
www.vulkan-verlag.de<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
The best <strong>of</strong> 10 years<br />
heat <strong>process</strong><strong>in</strong>g<br />
heat <strong>process</strong><strong>in</strong>g –<br />
10 years – anniversary edition<br />
The anniversary issue celebrat<strong>in</strong>g ten years <strong>of</strong> the “heat <strong>process</strong><strong>in</strong>g“ technical journal<br />
showcases the best articles published dur<strong>in</strong>g the past decade <strong>in</strong> this, the <strong>in</strong>ternational<br />
journal for thermo<strong>process</strong> technology. This edition opens with prefaces<br />
from Dr. Timo Würz, <strong>of</strong> the VDMA (German Eng<strong>in</strong>eer<strong>in</strong>g Association) and Dr. Hermann<br />
Stumpp. The editorial team has selected two articles from each year <strong>of</strong> publication.<br />
Burners & Combustion, Induction Technology, Heat Treatment – the range <strong>of</strong> topics<br />
encompasses the entire thermo<strong>process</strong><strong>in</strong>g field.<br />
The expert articles track, <strong>in</strong> a retrospective, the technological and economic developments<br />
<strong>in</strong> the thermo-<strong>process</strong> <strong>in</strong>dustry. Numerous well-known <strong>in</strong>dustry figures from<br />
the bus<strong>in</strong>ess, <strong>management</strong> and academic worlds have also contributed. Technical articles<br />
with up-to-date contemporary content and an <strong>in</strong>dustry perspective for the future<br />
round <strong>of</strong>f heat <strong>process</strong><strong>in</strong>g‘s anniversary issue. The f<strong>in</strong>al, essential, feature: the Hot Shots<br />
– selected series <strong>of</strong> high-impact images focuss<strong>in</strong>g on fasc<strong>in</strong>at<strong>in</strong>g technological topics.<br />
Edition hp, 1st edition 2014, approx. 180 pages, <strong>in</strong> full colour,<br />
Brochure, DIN A4<br />
ISBN: 978-3-8027-2975-1<br />
Price: € 40.--<br />
Publication: late August 2014<br />
Hot-Hot-Heat<br />
Pre-order now!<br />
Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />
KNOWLEDGE FOR THE<br />
FUTURE<br />
Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />
Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />
Yes, I place a firm order for the technical book. Please send<br />
— copies <strong>of</strong> heat <strong>process</strong><strong>in</strong>g – 10 years – anniversary edition<br />
1 st edition 2014 (ISBN: 978-3-8027-2975-1)<br />
at the price <strong>of</strong> € 40.-- (plus postage and pack<strong>in</strong>g)<br />
Company / <strong>in</strong>stitution<br />
First name and surname <strong>of</strong> recipient<br />
Street/P.O. Box, No.<br />
Country, Postcode, Town<br />
Reply / Antwort<br />
Vulkan Verlag GmbH<br />
Versandbuchhandlung<br />
Postfach 10 39 62<br />
45039 Essen<br />
GERMANY<br />
Phone<br />
E-mail<br />
L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />
Fax<br />
Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />
to Vulkan Verlag GmbH, Versandbuchhandlung, Postfach 10 39 62, 45039 Essen, Germany.<br />
In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />
38<br />
It is approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />
This approval may be withdrawn at any time.<br />
✘<br />
Date, signature<br />
heat <strong>process</strong><strong>in</strong>g 3-2014<br />
PAHPAE2014
GENERAL INFORMATION<br />
Heat Treatment Congress 2014<br />
The Heat Treatment Congress’ move to Cologne is <strong>in</strong> full<br />
sw<strong>in</strong>g. Once aga<strong>in</strong>, this year’s l<strong>in</strong>eup <strong>of</strong> high caliber presentations<br />
will <strong>in</strong>clude several that are guaranteed to be the ic<strong>in</strong>g<br />
on the cake. As the plenary speaker visitors will be able to listen<br />
to Pr<strong>of</strong>. Harry Bhadeshia from Cambridge University who will<br />
hold lecture on “Extraord<strong>in</strong>ary ba<strong>in</strong>itic steels”. To report on the<br />
successful evaluation <strong>of</strong> the pre-competitive collective<br />
research program, the organizers have <strong>in</strong>vited Burkhard<br />
Schmidt, Manag<strong>in</strong>g Director <strong>of</strong> the research division <strong>of</strong> the<br />
German Federation <strong>of</strong> Industrial Research Associations (AiF).<br />
Detlef Dauke from the Federal M<strong>in</strong>istry for Economic Affairs<br />
and Energy will make a short welcom<strong>in</strong>g speech <strong>in</strong> the name<br />
<strong>of</strong> the M<strong>in</strong>istry.<br />
The organizers are especially happy to welcome Dr. Joachim<br />
Wüst, Vice-President and Counsel <strong>of</strong> the festival committee <strong>of</strong><br />
the Cologne Carnival and President <strong>of</strong> the “Große Kölner” as a<br />
guest speaker. He will <strong>in</strong>troduce participants to the “kölsche”<br />
way <strong>of</strong> life with the motto: “Hey Kölle do bes e Jeföhl” (Cologne<br />
dialect: Cologne, you are a feel<strong>in</strong>g).<br />
Besides host<strong>in</strong>g the Heat Treatment Congress 2014, the city<br />
<strong>of</strong> Cologne has much more to see. The Cologne Cathedral, built<br />
between 1248 and 1880, is always worth a visit and its towers<br />
<strong>of</strong>fer a fantastic view over one <strong>of</strong> the oldest cities <strong>in</strong> Germany.<br />
Whether visit<strong>in</strong>g the Romano-Germanic Museum, look<strong>in</strong>g<br />
around the Roman Praetorium or tak<strong>in</strong>g a walk past the medieval<br />
city gates – Cologne’s 2,000-year history can be felt everywhere.<br />
Situated directly on the Rh<strong>in</strong>e and marked by narrow<br />
gables and high slated ro<strong>of</strong>s, the Old City <strong>of</strong> Cologne stands out<br />
with its unmistakable, historically appear<strong>in</strong>g character.<br />
Visitors who arrive by car have to note that effective 1 January<br />
2008, Cologne’s downtown area was declared a “low emission<br />
zone”. This means that only vehicles with one <strong>of</strong> the stickers<br />
for Emission Groups 2 to 4 are allowed to enter this area. The<br />
Koelnmesse exhibition centre will rema<strong>in</strong> accessible for all types<br />
<strong>of</strong> vehicles, even if they do not bear one <strong>of</strong> the aforementioned<br />
stickers. All <strong>of</strong> the routes for driv<strong>in</strong>g to and from the exhibition<br />
centre can be found at: www.koelnmesse.de<br />
However, only vehicles that bear the pert<strong>in</strong>ent sticker will be<br />
allowed to drive outside <strong>of</strong> these routes. Trade fair visitors can<br />
apply for a sticker that allows them to drive <strong>in</strong>to the environmental<br />
zone at: www.umwelt-plakette.de<br />
Start<strong>in</strong>g now it is possible to register for the congress and the<br />
exhibition via the new HK ticket shop. The ticket shop provides<br />
all visitors with the opportunity to adm<strong>in</strong>ister their address data<br />
and pr<strong>in</strong>t or download onto their phones their own personal<br />
admission code for the event. The congress will be simultaneously<br />
translated German/English vice versa. In this way the organizer<br />
AWT (Association for Heat Treatment and Materials Technology)<br />
creates a forum for <strong>in</strong>ternational knowledge transfer. This<br />
also addresses a significantly <strong>in</strong>creased demand on the part <strong>of</strong><br />
foreign visitors.<br />
Start<strong>in</strong>g now you can f<strong>in</strong>d the f<strong>in</strong>al program <strong>of</strong> events for the<br />
2014 Heat Treatment Congress and all <strong>in</strong>formation on the exhibition<br />
on the <strong>in</strong>dividual HK website: www.hk-awt.de<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
39
BASIC DATA<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Heat Treatment Congress 2014<br />
Basic Data<br />
Location<br />
Koelmesse<br />
Messeplatz 1<br />
50679 Köln, Germany<br />
Entrance West<br />
Organiser<br />
Arbeitsgeme<strong>in</strong>schaft Wärmebehandlung und Werkst<strong>of</strong>ftechnik<br />
e.V. (AWT)<br />
Paul-Feller-Straße 1<br />
28199 Bremen, Germany<br />
Tel.: +49 (0) 421 / 5229339<br />
Fax: +49 (0) 421 / 5229041<br />
E-Mail: <strong>in</strong>fo@awt-onl<strong>in</strong>e.org<br />
Internet: www.awt-onl<strong>in</strong>e.org<br />
Entdecken Sie die Koelnmesse<br />
Discover the Koelnmesse<br />
A57 Zoobrücke<br />
Open<strong>in</strong>g hours<br />
Wednesday, 22 October 2014, 9.00 - 18.00 h<br />
Thursday, 23 October 2014, 9.00 - 18.00 h<br />
Friday, 24 October 2014, 9.00 - 14.00 h<br />
Fees<br />
Complete program: 690 €<br />
Speakers and university employees: 385 €<br />
1-day-ticket: 460 €<br />
2-day-ticket: 575 €<br />
Transferrable ticket for exhibitors: 320 €<br />
Practitioner’s sem<strong>in</strong>ar (only <strong>in</strong> German language)<br />
- One sem<strong>in</strong>ar: 150 €<br />
- Both sem<strong>in</strong>ars: 290 €<br />
All prices <strong>in</strong>cl. 7 % VAT.<br />
Rhe<strong>in</strong>park<br />
CC Nord<br />
Messeallee Nord<br />
Messeplatz<br />
E<strong>in</strong>gang Nord<br />
Entrance North<br />
Congress-Centrum Nord<br />
Congress Centre North<br />
Boulevard<br />
Messehochhaus<br />
Tanzbrunnen<br />
Rhe<strong>in</strong>terrassen<br />
Theater am<br />
Tanzbrunnen<br />
E<strong>in</strong>gang West<br />
Entrance West<br />
Staatenhaus<br />
am Rhe<strong>in</strong>park<br />
Auenweg<br />
Messeallee West<br />
CC Ost<br />
Messe-Kreisel<br />
3, 4<br />
Pfälzischer R<strong>in</strong>g<br />
A3 /A4<br />
Autobahnkreuz Köln-Ost<br />
A3 Frankfurt/Oberhausen<br />
A4 Olpe<br />
Hauptbahnh<strong>of</strong><br />
Central Station<br />
City<br />
Hohenzollernbrücke<br />
E<strong>in</strong>gang Süd<br />
Entrance South<br />
Messeallee Süd<br />
Barmer Straße<br />
1, 9<br />
Deutz-Mülheimer Straße<br />
E<strong>in</strong>gang Ost<br />
Entrance East<br />
Congress-Centrum Ost<br />
Congress Centre East<br />
Bahnh<strong>of</strong> Köln Messe / Deutz – Sonderhalte ICE- und IC-Züge<br />
Tra<strong>in</strong> Station Köln Messe / Deutz – Special stops rapid tra<strong>in</strong>s<br />
LANXESS arena<br />
40<br />
Dom<br />
Cathedral<br />
Opladener Straße<br />
3, 4<br />
City<br />
heat <strong>process</strong><strong>in</strong>g 3-2014<br />
aße<br />
raße<br />
A4, Aachen
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Focus on Innovation.<br />
HeatTreatmentCongress Cologne / AICHELIN Group booth E-060.<br />
www.aichel<strong>in</strong>.com<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
41
PROGRAM<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Heat Treatment<br />
Congress 2014<br />
Program<br />
Wednesday, 22 October 2014<br />
PRACTITIONERS’ SEMINAR (only <strong>in</strong> German language)<br />
9:00 - 10:30 h<br />
Nitrieren im Gas und im Plasma – Bauteilbezogene<br />
Verfahrensauswahl unter wirtschaftlichen Gesichtspunkten<br />
Marco Jost<br />
10:30 - 10:45 h<br />
C<strong>of</strong>fee break<br />
10:45 - 12:15 h<br />
Wärmebehandlung – Fehler, Schäden und Ursachen<br />
Peter Sommer<br />
13:50 - 14:30 h<br />
Plenary lecture<br />
Hey Kölle, do bes e Jeföhl<br />
Joachim Wüst<br />
INTEGRATION OF <strong>HEAT</strong> TREATMENT INTO<br />
THE PRODUCTION<br />
Chairmen: Michael Lohrmann, Berthold Scholtes<br />
14:30 - 15:05 h<br />
Survey lecture<br />
Integration <strong>of</strong> heat treatment <strong>in</strong>to the production l<strong>in</strong>e<br />
Wilfried Goy<br />
15:05 - 15:30 h<br />
Integration <strong>of</strong> heat treatment <strong>in</strong>to mechanical large<br />
scale production – based on the example <strong>of</strong> modern<br />
gear production<br />
Karl Ritter<br />
15:30 - 15:55 h<br />
Direct <strong>in</strong>tegration <strong>of</strong> plasma nitrid<strong>in</strong>g <strong>in</strong>to manufactur<strong>in</strong>g<br />
Uwe Huchel<br />
15:55 - 16:15 h<br />
C<strong>of</strong>fee break<br />
LEIGHTWEIGHT<br />
Chairmen: Dieter Liedtke, Marco Jost<br />
or<br />
9:00 - 10:30 h<br />
Wärmebehandlung – Fehler, Schäden und Ursachen<br />
Peter Sommer<br />
10:30 - 10:45 h<br />
C<strong>of</strong>fee break<br />
10:45 - 12:15 h<br />
Nitrieren im Gas und im Plasma – Bauteilbezogene<br />
Verfahrensauswahl unter wirtschaftlichen Gesichtspunkten<br />
Marco Jost<br />
13:30 - 13:40 h<br />
Open<strong>in</strong>g<br />
Michael Lohrmann<br />
16:15 - 16:40 h<br />
Lightweight forg<strong>in</strong>g <strong>in</strong>itiative<br />
Hans-Willi Raedt<br />
THERMOCHEMICAL PROCESSES<br />
Chairmen: Dieter Liedtke, Marco Jost<br />
16:40 - 17:05 h<br />
Recent development on the microstructure and the<br />
mechanical properties <strong>of</strong> carbonitrided parts, part 1:<br />
Heat treatment and microstructure<br />
Matthias Ste<strong>in</strong>bacher<br />
17:05 - 17:30 h<br />
Recent development on the microstructure and the<br />
mechanical properties <strong>of</strong> carbonitrided parts, part 2:<br />
Load capacity <strong>of</strong> spur wheels<br />
Simone Lombardo<br />
13:40 - 13:50 h<br />
Welcome speech <strong>of</strong> the city <strong>of</strong> Cologne<br />
18:00 h<br />
General meet<strong>in</strong>g <strong>of</strong> AWT members<br />
42<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
PROGRAM<br />
Thursday, 23 October 2014<br />
THERMOCHEMICAL PROCESSES<br />
Chairmen: Michael Jung, Hans Werner Zoch<br />
9:00 - 9:25 h<br />
Research on low pressure carbonitrid<strong>in</strong>g with am<strong>in</strong>es<br />
David Koch<br />
9:25 - 9:50 h<br />
Ammonia based closed loop control for def<strong>in</strong>ed<br />
plasma nitrid<strong>in</strong>g and nitrocarburiz<strong>in</strong>g – first results<br />
Sebastian Bisch<strong>of</strong>f<br />
9:50 - 10:15 h<br />
C<strong>of</strong>fee break<br />
10:15 - 10:30 h<br />
Welcom<strong>in</strong>g speech from the Federal M<strong>in</strong>istry for<br />
Economic Affairs and Energy<br />
Detlef Dauke<br />
10:30 - 10:50 h<br />
Plenary lecture<br />
Perfect l<strong>in</strong>k between science and <strong>in</strong>dustry – Results<br />
from the accompany<strong>in</strong>g evaluation <strong>of</strong> the pre-competitive<br />
collective research program<br />
Burkhard Schmidt<br />
10:50 - 11:00 h<br />
Grant<strong>in</strong>g <strong>of</strong> the Paul-Riebensahm-Award 2013 to<br />
Mart<strong>in</strong> Beck<br />
11:00 - 12:00 h<br />
Plenary lecture<br />
Extraord<strong>in</strong>ary ba<strong>in</strong>itic steels<br />
Harry Bhadeshia<br />
12:00 - 13:20 h<br />
Lunch hour<br />
13:55 - 14:20 h<br />
Simulation <strong>of</strong> heat treatment <strong>process</strong>es also for “nonsimulation<br />
experts”<br />
Stefan Braun<br />
14:20 - 14:45 h<br />
From current to structure: FE-simulation <strong>of</strong> <strong>in</strong>duction<br />
harden<strong>in</strong>g <strong>of</strong> a calendar roll<br />
Jörg Neumeyer<br />
14:45 - 15:10 h<br />
New applications <strong>of</strong> numerical simulation <strong>in</strong> <strong>in</strong>duction<br />
surface harden<strong>in</strong>g <strong>process</strong>es<br />
Dirk Schlesselmann<br />
15:10 - 15:30 h<br />
C<strong>of</strong>fee break<br />
15:30 - 15:55 h<br />
Adaptive f<strong>in</strong>ite element simulation for multifrequency<br />
<strong>in</strong>duction harden<strong>in</strong>g <strong>in</strong> 3D<br />
Thomas Petzold<br />
15:55 - 16:20 h<br />
Numerical optimization <strong>of</strong> the carburiz<strong>in</strong>g <strong>process</strong><br />
for function-related construction details <strong>of</strong> steel<br />
components<br />
Andreas Diemar<br />
HIGH ENERGY <strong>HEAT</strong> TREATMENT<br />
Chairmen: Ra<strong>in</strong>er Braun, Olaf Irretier<br />
16:20 - 16:55 h<br />
Survey lecture<br />
High-energy heat treatment – What energy beams<br />
can achieve <strong>in</strong> the field <strong>of</strong> surface treatment today?<br />
Rolf Zenker<br />
16:55 - 17:20 h<br />
A new comb<strong>in</strong>ed surface treatment technology for<br />
tribological-loaded Al alloys<br />
Erik Zaulig<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
SIMULATION OF <strong>HEAT</strong> TREATMENT PROCESSES<br />
Chairmen: Jörg Kleff, Klaus Löser<br />
13:20 - 13:55 h<br />
Survey lecture<br />
Simulation <strong>of</strong> case harden<strong>in</strong>g <strong>process</strong>es – state <strong>of</strong><br />
the art<br />
Matthias Ste<strong>in</strong>bacher<br />
17:20 - 17:45 h<br />
Electron-beam cladd<strong>in</strong>g <strong>of</strong> wear-resistant coat<strong>in</strong>gs on<br />
corrosion-resistant steels<br />
Anne Jung<br />
18:00 h<br />
Reception – Bestowal <strong>of</strong> the<br />
Karl-Wilhelm-Burgdorf-Award<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
43
PROGRAM<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Friday, 24 October 2014<br />
MANUFACTURING AND RESIDUAL STRESSES<br />
Chairmen: Brigitte Haase, Peter Krug<br />
9:00 - 9:35 h<br />
Survey lecture<br />
Manufactur<strong>in</strong>g and residual stresses<br />
Volker Schulze<br />
9:35 - 10:00 h<br />
Mechanical surface treatment by micro peen<strong>in</strong>g<br />
Reg<strong>in</strong>a We<strong>in</strong>gärtner<br />
10:00 - 10:25 h<br />
Residual-stress fields as a consequence <strong>of</strong> turn<strong>in</strong>g<br />
operations <strong>of</strong> differently heat treated shafts made <strong>of</strong><br />
steel SAE 6150<br />
Wolfgang Z<strong>in</strong>n<br />
10:25 - 10:50 h<br />
Shell harden<strong>in</strong>g by high speed quench<strong>in</strong>g<br />
Friedhelm Frerichs<br />
10:50 - 11:15 h<br />
Internal <strong>in</strong>tensive quench<strong>in</strong>g<br />
Jürgen H<strong>of</strong>meister<br />
11:15 - 11:35 h<br />
C<strong>of</strong>fee break<br />
QUALITY CONTROL<br />
Chairmen: W<strong>in</strong>fried Gräfen, Hansjürg Stiele<br />
12:00 - 12:25 h<br />
<strong>Report</strong> from the AWT expert-committee 20 “Sensors<br />
<strong>in</strong> heat treatment”: Test bench for qualify<strong>in</strong>g oxygen<br />
probes – first results<br />
He<strong>in</strong>rich Klümper-Westkamp<br />
12:25 - 12:50 h<br />
Heat treatment and nondestructive test<strong>in</strong>g: f<strong>in</strong>d<strong>in</strong>g<br />
surface cracks us<strong>in</strong>g laser-thermography<br />
Matthias Ziegler<br />
LEGISLATION<br />
12:50 - 13:15 h<br />
Brussels: News for our <strong>in</strong>dustry<br />
Franz Beneke<br />
13:15 h<br />
Publication <strong>of</strong> Paul-Riebensahm-Laureate 2014<br />
Peter Krug<br />
13:20 h<br />
Summary<br />
Michael Lohrmann<br />
13:30 h<br />
End <strong>of</strong> the event<br />
11:35 - 12:00 h<br />
Simulation <strong>of</strong> the time-dependent evolution <strong>of</strong> the<br />
hardness and residual stresses <strong>in</strong> <strong>in</strong>ductive heat<br />
treatment procedures<br />
Frank Schweizer<br />
Visit us at the HK 2014<br />
Vulkan-Verlag<br />
Hall 4.1 / Booth G 018<br />
22 - 24 October 2014<br />
Koelnmesse, Cologne<br />
Germany<br />
44<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
Boost PRODUCT PREVIEW productivity.<br />
Cut costs.<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Modernizations for quality and reliability<br />
Excellent eng<strong>in</strong>eer<strong>in</strong>g services stand out from the crowd …<br />
especially when it comes to <strong>in</strong>telligent revamps. It’s about<br />
noth<strong>in</strong>g less than upgrad<strong>in</strong>g exist<strong>in</strong>g <strong>plants</strong> to meet future<br />
market demands – one <strong>of</strong> today’s central challenges.<br />
That’s where our whole wealth <strong>of</strong> experience comes <strong>in</strong>.<br />
After all, our job is to help you <strong>in</strong>crease your productivity<br />
while improv<strong>in</strong>g quality. Equally significant here is smart<br />
plann<strong>in</strong>g, for <strong>in</strong>stance tak<strong>in</strong>g advantage <strong>of</strong> scheduled ma<strong>in</strong>tenance<br />
stoppages and m<strong>in</strong>imiz<strong>in</strong>g production losses.<br />
Your bottom l<strong>in</strong>e: You save time and money.<br />
Countless completed projects prove our quality and<br />
reliability as a global specialist <strong>in</strong> metallurgical plant and<br />
roll<strong>in</strong>g mill technology.<br />
SMS SIEMAG AG<br />
Eduard-Schloemann-Strasse 4 Phone: +49 211 881-0 E-mail: communications@sms-siemag.com<br />
40237 Düsseldorf, Germany<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
Fax: +49 211 881-4902 Internet: www.sms-siemag.com<br />
45
PRODUCT PREVIEW<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Harden<strong>in</strong>g centre for crankshafts<br />
Efficient 4-cyl<strong>in</strong>der eng<strong>in</strong>es form the basis for the passenger<br />
car drive concepts <strong>of</strong> the future. This calls for <strong>in</strong>novative<br />
approaches to the harden<strong>in</strong>g <strong>process</strong> which can be ideally<br />
implemented with Alf<strong>in</strong>g’s BAZ KW600 harden<strong>in</strong>g centre.<br />
The harden<strong>in</strong>g centre is a new addition to the exist<strong>in</strong>g product<br />
range and was developed specially for 4-cyl<strong>in</strong>der<br />
crankshafts. It is designed on the pr<strong>in</strong>ciple <strong>of</strong> mach<strong>in</strong><strong>in</strong>g centres<br />
and is suitable for crankshafts <strong>of</strong> up to 600 mm <strong>in</strong> length.<br />
Emphasis was also placed on good energy efficiency, a high<br />
throughput, low operat<strong>in</strong>g costs and ease <strong>of</strong> operation. The<br />
p<strong>in</strong> bear<strong>in</strong>gs are hardened <strong>in</strong> module 1 and the ma<strong>in</strong> bear<strong>in</strong>gs<br />
<strong>in</strong> module 2 <strong>of</strong> the two-module system. An optional<br />
extension can also be <strong>in</strong>tegrated for the harden<strong>in</strong>g <strong>of</strong> flanges,<br />
journals and gear wheels. The full encapsulation <strong>of</strong> the work<strong>in</strong>g<br />
areas permits complete extraction <strong>of</strong> quench<strong>in</strong>g fumes.<br />
Efficient drive systems and assemblies as well as optimized<br />
<strong>in</strong>ductors guarantee low energy consumption, good <strong>process</strong><br />
reliability and maximum availability. M<strong>in</strong>imum space requirement,<br />
full accessibility on one level and a standard height <strong>of</strong><br />
only 2.3 m are all revolutionary features <strong>of</strong> this type <strong>of</strong> harden<strong>in</strong>g<br />
mach<strong>in</strong>e. Preced<strong>in</strong>g and subsequent <strong>process</strong>es can<br />
easily be <strong>in</strong>tegrated. Connection to portal systems can be<br />
performed <strong>in</strong> the same way as for exist<strong>in</strong>g technologies for<br />
mach<strong>in</strong><strong>in</strong>g centres.<br />
Masch<strong>in</strong>enfabrik Alf<strong>in</strong>g Kessler GmbH<br />
www.alf<strong>in</strong>g.de<br />
Hall 4.1 / Booth B-021<br />
ATEX Certificate for steel degass<strong>in</strong>g vacuum systems<br />
Degass<strong>in</strong>g, especially those with oxygen <strong>in</strong>sufflation, as <strong>in</strong><br />
VOD and RH-OB methods, produce potentially explosive<br />
gases. Vacuum components and equipment with ATEX<br />
approval enable safe and cost-efficient solutions for mechanical<br />
vacuum solutions. Today, the standard mechanical<br />
vacuum pumps already fulfil high requirement for safety.<br />
Nevertheless, <strong>in</strong> case there are uncerta<strong>in</strong>ties regard<strong>in</strong>g the<br />
flammability <strong>of</strong> gas mixtures which need to be handled by<br />
the pump sets, the user will have to conduct a risk analysis <strong>of</strong><br />
the various plant parts to def<strong>in</strong>e the relevant explosion protection<br />
zones. The result will most probably be the def<strong>in</strong>ition<br />
<strong>of</strong> an explosion Zone 1 for the <strong>in</strong>ner part <strong>of</strong> the vacuum system.<br />
For this assessment, components with an ATEX-certificate<br />
Category 2 (<strong>in</strong>side) for gases can be the easy solution.<br />
Thus way the user can reach the highest safety standard for<br />
his employees with relatively low <strong>in</strong>vestment expenditure.<br />
ATEX vacuum solutions from Oerlikon Leybold Vacuum<br />
consist <strong>of</strong> pumps and components that meet the specification<br />
<strong>of</strong> ATEX Cat 2 (i) G IIC T2. This equipment can be comb<strong>in</strong>ed <strong>in</strong>to<br />
ATEX certified vacuum systems. To meet the requirements, an<br />
additional gas cool<strong>in</strong>g and temperature control between the<br />
pumps is provided to prevent gas temperatures from exceed<strong>in</strong>g<br />
the def<strong>in</strong>ed limits. Furthermore, all pumps are controlled<br />
and monitored by a specially programmed frequency converter.<br />
Regard<strong>in</strong>g the vacuum pump set, potential ignition<br />
sources such as overheat<strong>in</strong>g or electrostatic charg<strong>in</strong>g must be<br />
considered, which will be achieved with the usual attention<br />
dur<strong>in</strong>g design and manufactur<strong>in</strong>g <strong>of</strong> ATEX-certified pumps. In<br />
particular, the pumps must be protected efficiently aga<strong>in</strong>st<br />
overload by too high pressure differences <strong>in</strong> order to avoid<br />
excessive temperatures. This is valid for all possible operat<strong>in</strong>g<br />
po<strong>in</strong>t start<strong>in</strong>g with high suction pressures, pass<strong>in</strong>g to medium<br />
operat<strong>in</strong>g pressures, that are to be hold over a longer time as<br />
for example dur<strong>in</strong>g delayed pump down <strong>in</strong> the VD-<strong>process</strong> or<br />
dur<strong>in</strong>g the oxygen blow phase <strong>in</strong> the VOD-<strong>process</strong>, down to<br />
lowest end pressures with its high compression ratios. The<br />
vacuum solutions <strong>of</strong> Oerlikon Leybold Vacuum consist <strong>of</strong> two<br />
different standard pump models only, comb<strong>in</strong>ed <strong>in</strong>to threestage<br />
vacuum systems. Such three-stage designs allow highest<br />
suction speed comb<strong>in</strong>ed with lowest power consumption.<br />
Oerlikon Leybold Vacuum GmbH<br />
www.oerlikon.de<br />
Hall 4.1 / Booth F-058 - G-059<br />
46<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
PRODUCT PREVIEW<br />
Digital pyrometry re<strong>in</strong>vented<br />
Sensortherm <strong>in</strong>troduces another Metis sensor to its Metis<br />
series product l<strong>in</strong>e. Known as the Metis M3, it has an<br />
advanced design, customization, and adaptability. The sensor<br />
has the ability to be used <strong>in</strong> ambient temperatures up to<br />
80 °C, with fibre optic versions on the optical head rated up to<br />
250 °C. The <strong>in</strong>tegrated keypad and 10-digit display enable all<br />
sett<strong>in</strong>gs to be easily manipulated by the user for a variety <strong>of</strong><br />
applications.<br />
The device <strong>of</strong>fers manually adjustable focus optics, fixed<br />
focus optics, or remote motorized focus options. The precise<br />
alignment <strong>of</strong> the target is accomplished by laser, through lens<br />
sight<strong>in</strong>g, or real-time colour video. It is available <strong>in</strong> either s<strong>in</strong>gle<br />
wavelength or two colour pyrometer versions. Superior to<br />
analogue technology and based on the latest electronic and<br />
digital signal <strong>process</strong><strong>in</strong>g, the M3 provides convenient universal<br />
configur<strong>in</strong>g. Equipped with many new features, such as<br />
digital <strong>in</strong>puts and outputs as well as an <strong>in</strong>creased accuracy <strong>of</strong><br />
0.25 %, it meets the highest <strong>in</strong>dustry demands. The sensor’s<br />
built-<strong>in</strong> video chip <strong>of</strong>fers the ability to view <strong>in</strong> real time a<br />
colour composite video that can be displayed on a video<br />
monitor or PC us<strong>in</strong>g a standard <strong>of</strong>f-the-shelf video to USB<br />
frame grabber.<br />
The high-speed serial digital <strong>in</strong>terface and two high-resolution<br />
16-bit analogue current outputs are adjustable and<br />
configurable for a precise output <strong>of</strong> temperature measured<br />
values. Optionally, a PID controller can be <strong>in</strong>tegrated or the<br />
pyrometer can be equipped with Pr<strong>of</strong><strong>in</strong>et, Pr<strong>of</strong>ibus or Ethernet<br />
to couple to a master controller.<br />
Sensortherm GmbH<br />
www.sensortherm.de<br />
Hall 4.1 / Booth A-002<br />
AFC-Holcr<strong>of</strong>t:<br />
Strength and Innovation s<strong>in</strong>ce 1916.<br />
Powerful Solutions for the Future.<br />
As a privately owned company with thousands <strong>of</strong> <strong>in</strong>stallations worldwide,<br />
AFC-Holcr<strong>of</strong>t is a worldwide leader <strong>in</strong> the heat treat equipment <strong>in</strong>dustry.<br />
One <strong>of</strong> the most diverse product l<strong>in</strong>es <strong>in</strong> the heat treat equipment<br />
<strong>in</strong>dustry: Pusher Furnaces, Cont<strong>in</strong>uous Belt Furnaces,<br />
Rotary Hearth Furnaces, Universal Batch Quench (UBQ)<br />
Furnaces and Endothermic Generators.<br />
Robust construction and long service life,<br />
designed for ease <strong>of</strong> ma<strong>in</strong>tenance.<br />
Various global facilities <strong>in</strong> North America, Europe<br />
and Asia for fastest local delivery, service and support.<br />
HK 2014 Cologne<br />
October 22–24, 2014<br />
UBQ: Universal Batch Quench Furnace.<br />
Ultimate <strong>in</strong> flexibility and versatility.<br />
Modularly constructed universal batch system<br />
with state-<strong>of</strong>-the-art technology.<br />
Delivers consistently high quality with predicable<br />
and repeatable results.<br />
Hall 4.1, Stand E-038<br />
Get <strong>in</strong> touch with us today to learn more about how<br />
we can improve your production <strong>process</strong>es and<br />
how we can give you the edge over the competition.<br />
For further <strong>in</strong>formation please visit<br />
www.afc-holcr<strong>of</strong>t.com<br />
AFC-Holcr<strong>of</strong>t USA · Wixom, Michigan AFC-Holcr<strong>of</strong>t Europe · Boncourt, Switzerland AFC-Holcr<strong>of</strong>t Asia · Shanghai, Ch<strong>in</strong>a<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
Phone: +1-248-624-8191 Phone: +41 32 475 56 16 Phone: +86-21-58999100<br />
47
PRODUCT PREVIEW<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Hybrid charg<strong>in</strong>g stick for <strong>thermal</strong> treatments<br />
The GTD Graphit Technologie GmbH <strong>of</strong>fers patent-registered<br />
hybrid-systems for <strong>thermal</strong> treatments. The latest<br />
product development is the GTD hybrid charg<strong>in</strong>g stick for all<br />
charges, that are hardened <strong>in</strong> a hang<strong>in</strong>g or upright way. The<br />
stick has an <strong>in</strong>lay made <strong>of</strong> C/C (Carbon-fibre-re<strong>in</strong>forced Carbon)<br />
which is surrounded by steel. C/C as a high-strength<br />
composite material consist<strong>in</strong>g <strong>of</strong> carbon-fibre provides a<br />
heat-resistance <strong>of</strong> the charg<strong>in</strong>g stick <strong>in</strong> <strong>in</strong>ert gas or vacuum<br />
Boron-free and copper-free stop-<strong>of</strong>f pa<strong>in</strong>ts<br />
new labell<strong>in</strong>g requirement for stop-<strong>of</strong>f pa<strong>in</strong>ts will take<br />
A effect on 15 June 2015. Stop-<strong>of</strong>f pa<strong>in</strong>ts will then be subject<br />
to the GHS, the Globally Harmonised System <strong>of</strong> Classification<br />
and Labell<strong>in</strong>g <strong>of</strong> Chemicals. Stop-<strong>of</strong>f pa<strong>in</strong>ts conta<strong>in</strong><strong>in</strong>g<br />
boron can easily be removed by wash<strong>in</strong>g and are made <strong>of</strong> the<br />
raw materials boron trioxide, borax and boric acid. Copperbased<br />
stop-<strong>of</strong>f pa<strong>in</strong>ts can mostly be removed by sandblast<strong>in</strong>g<br />
and conta<strong>in</strong> copper, copper(I) oxide or copper(II) oxide.<br />
While the first version will, <strong>in</strong> future, be labelled as toxic for<br />
reproduction with<strong>in</strong> this classification, the version conta<strong>in</strong><strong>in</strong>g<br />
copper will be classified as environmentally dangerous. That<br />
means that the new labell<strong>in</strong>g will clarify one th<strong>in</strong>g: All stop-<strong>of</strong>f<br />
pastes currently used <strong>in</strong> the <strong>in</strong>dustry or <strong>in</strong> the market pose a<br />
risk not only to the environment <strong>in</strong> general but also to the<br />
<strong>in</strong>dividual person.<br />
For more than 20 years, DAM Härtetechnik GmbH has<br />
been a worldwide active and lead<strong>in</strong>g company which specialises<br />
<strong>in</strong> the development and manufactur<strong>in</strong>g <strong>of</strong> stop-<strong>of</strong>f pa<strong>in</strong>ts<br />
for the heat treatment <strong>of</strong> steel.<br />
The company reacted to the new GHS regulation with<br />
new developments. These products are used like traditional<br />
stop-<strong>of</strong>f pa<strong>in</strong>ts for gas carburis<strong>in</strong>g and vacuum carburis<strong>in</strong>g,<br />
nitrid<strong>in</strong>g and nitrocarburis<strong>in</strong>g, for plasmanitrid<strong>in</strong>g, anneal<strong>in</strong>g<br />
and oxidation, for <strong>in</strong>duction harden<strong>in</strong>g and braz<strong>in</strong>g. The<br />
furnaces at temperatures up to more than 1,200 °C. In that<br />
way it prevents any deformations <strong>of</strong> the stick long-term. The<br />
steel cover saves the <strong>in</strong>lay from abrasion <strong>of</strong> sharp-edged<br />
components and covers the charge aga<strong>in</strong>st carbon contam<strong>in</strong>ation.<br />
Individual braces prevent equable charg<strong>in</strong>g <strong>of</strong> the<br />
components, for example r<strong>in</strong>gs.<br />
The new hybrid charg<strong>in</strong>g stick is part <strong>of</strong> the patent-registered<br />
GTD hybrid system, which also <strong>in</strong>cludes a hybrid grid<br />
that employs a comb<strong>in</strong>ation <strong>of</strong> C/C and ceramic parts. Decisive<br />
arguments for the use <strong>of</strong> carbon materials are the high<br />
load capacity comb<strong>in</strong>ed with tensile and flectional resistance<br />
especially when used <strong>in</strong> automated <strong>process</strong>es. The low density<br />
and the light weight <strong>of</strong> C/C makes handl<strong>in</strong>g much easier<br />
and also ensures an excellent energy balance<br />
GTD Graphit Technologie GmbH<br />
www.gtd-graphit.de<br />
Hall 4.1. / Booth D-079<br />
name <strong>of</strong> these new stop-<strong>of</strong>f products is Luiso®. What is new is<br />
the fact that these products are both boron-free and copperfree<br />
and ensure optimal protection properties. They have, <strong>in</strong><br />
addition, a neutral odour and do not conta<strong>in</strong> any solvents.<br />
Any residues rema<strong>in</strong><strong>in</strong>g after the heat treatment can be<br />
removed easily by wash<strong>in</strong>g with water. Even their viscosity<br />
and flow can be controlled by water. The objective beh<strong>in</strong>d<br />
the development <strong>of</strong> these new stop-<strong>of</strong>f pastes was to<br />
strongly improve their environmental performance.<br />
Three additional products (Luiso W30, W34 und W36) are<br />
<strong>of</strong>fered for gas carburis<strong>in</strong>g for case depths <strong>of</strong> up to 6 mm. And<br />
the new product l<strong>in</strong>e also <strong>in</strong>cludes two products for nitrid<strong>in</strong>g<br />
and nitrocarburis<strong>in</strong>g: Luiso W21 which is ceramic-based and<br />
the Luiso W25 paste which can be used both for nitrid<strong>in</strong>g and<br />
nitrocarburis<strong>in</strong>g. The product portfolio conta<strong>in</strong>s, <strong>in</strong> addition,<br />
two hardness protection pa<strong>in</strong>ts each for vacuum carburis<strong>in</strong>g<br />
(W44 and W45) and anneal<strong>in</strong>g (W61) as well as two pastes<br />
which cover the field <strong>of</strong> plasmanitrid<strong>in</strong>g (W51 and W53). The<br />
product <strong>of</strong>fer is rounded <strong>of</strong>f by a kneadable protection mass<br />
(W63) to seal <strong>of</strong>f harden<strong>in</strong>g boxes, small or large holes.<br />
DAM Härtetechnik GmbH<br />
www.dam-gmbh.de<br />
Hall 4.1 / Booth A-071<br />
48<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
PRODUCT PREVIEW<br />
A modular approach to production<br />
global rise <strong>in</strong> component production has <strong>in</strong>creased demand<br />
A for heat treatment systems capable <strong>of</strong> meet<strong>in</strong>g production<br />
needs today, yet scalable for future production. AFC-Holcr<strong>of</strong>t<br />
<strong>of</strong>fers many <strong>thermal</strong> <strong>process</strong><strong>in</strong>g solutions, and highlights one <strong>of</strong><br />
the most flexible heat treat<strong>in</strong>g furnace designs available – the<br />
UBQ (Universal Batch Quench) system. The UBQ is capable <strong>of</strong><br />
runn<strong>in</strong>g a variety <strong>of</strong> metallurgical <strong>process</strong>es, and can be delivered<br />
as a s<strong>in</strong>gle unit or as a complete, fully automated cell <strong>in</strong>tegrated<br />
with companion equipment such as temper<strong>in</strong>g furnaces,<br />
pre-heat furnaces, spray-dunk washers, forced air cool stations<br />
and more. With its modular design, additional cells can be<br />
added for maximum productivity with consistent, repeatable<br />
metallurgical results.<br />
Another modular, flexible product featured is AFC-Holcr<strong>of</strong>t’s<br />
EZ-Series endothermic gas generator, <strong>of</strong>fer<strong>in</strong>g a ma<strong>in</strong>tenance-<br />
and operator-friendly design. A 5:1 turn down ratio<br />
provides substantial sav<strong>in</strong>gs <strong>in</strong> operat<strong>in</strong>g costs vs. nitrogen<br />
methanol; <strong>of</strong>ten with return on <strong>in</strong>vestment less than one year.<br />
Units can be provided <strong>in</strong>dividually, or up to three units<br />
grouped <strong>in</strong>to an array; each unit hav<strong>in</strong>g standalone plug-andplay<br />
type control.<br />
When consistent high volume production is needed, the<br />
company <strong>of</strong>fers its classic pusher-style furnace for cont<strong>in</strong>uous<br />
throughput under protective gas atmosphere. The pusher-style<br />
furnace design allows the furnace chambers to be comb<strong>in</strong>ed<br />
<strong>in</strong>to one, or separated <strong>in</strong>to multiple chambers for <strong>in</strong>dependent<br />
control over temperature and atmosphere.<br />
AFC-Holcr<strong>of</strong>t<br />
www.afc-holcr<strong>of</strong>t.com<br />
Hall 4.1 / Booth E-038<br />
Innovative Heat Treatment Systems<br />
Visit us at HK 2014:<br />
Hall 4.1, Stand E 078<br />
For hot-form harden<strong>in</strong>g,<br />
harden<strong>in</strong>g, anneal<strong>in</strong>g,<br />
s<strong>in</strong>ter<strong>in</strong>g and braz<strong>in</strong>g etc.<br />
Also under protective and<br />
reactive atmospheres<br />
schwartz GmbH<br />
Edisonstrasse 5<br />
D-52152 Simmerath<br />
Germany<br />
schwartz Heat Treatment Systems<br />
Asia (Kunshan) Co. Ltd.<br />
278 JuJ<strong>in</strong> Road<br />
Zhangpu Town Kunshan City<br />
Jiangsu Prov<strong>in</strong>ce<br />
215321, P.R. Ch<strong>in</strong>a<br />
For more <strong>in</strong>formation visit: www.schwartz-wba.com<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
schwartz, Inc.<br />
2015 J. Route 34<br />
Oswego IL 60543<br />
USA<br />
49
PRODUCT PREVIEW<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Industrial furnaces made <strong>in</strong> Germany<br />
Nolzen Industrie<strong>of</strong>enbau produces <strong>in</strong> the fourth generation<br />
“made <strong>in</strong> Germany” – s<strong>in</strong>ce 1919 – <strong>in</strong>dustrial furnaces<br />
and heat treatment <strong>plants</strong> for anneal<strong>in</strong>g and harden<strong>in</strong>g <strong>of</strong><br />
metals. With own cas<strong>in</strong>g and <strong>in</strong>sulat<strong>in</strong>g construction, retorts<br />
manufactur<strong>in</strong>g as well as switchgear production, the company<br />
located <strong>in</strong> Wuppertal <strong>of</strong>fers competence <strong>in</strong> consultation,<br />
construction and manufactur<strong>in</strong>g solutions for economically<br />
and <strong>in</strong>dividually designed heat treatment <strong>process</strong>es.<br />
Nolzen delivers energy-efficient standard furnaces and<br />
customised solutions <strong>in</strong> electric- and gas-heated version for<br />
temperatures up to 1,300 °C. Pit type furnaces, boogie hearth<br />
and chamber furnaces belong to the core bus<strong>in</strong>ess for largevolume<br />
components and heavy load weights. Pit type<br />
furnaces for nitrid<strong>in</strong>g, case harden<strong>in</strong>g and anneal<strong>in</strong>g have<br />
already been realised up to a diameter <strong>of</strong> 4,500 mm or a<br />
depth <strong>of</strong> 11,000 mm. Boogie hearth and chamber furnaces<br />
Precision temperature control to <strong>in</strong>crease efficiency<br />
and pr<strong>of</strong>itability<br />
Invensys Eurotherm, a global supplier <strong>of</strong> measurement and<br />
<strong>in</strong>strumentation for <strong>process</strong> and mach<strong>in</strong>e control applications,<br />
has launched a family <strong>of</strong> new precision PLC products<br />
aimed at significantly <strong>in</strong>creas<strong>in</strong>g the pr<strong>of</strong>itability and efficiency<br />
<strong>of</strong> heat treatment and <strong>thermal</strong> <strong>process</strong><strong>in</strong>g. The new<br />
E+PLC series comb<strong>in</strong>es precision measurement and control,<br />
secure data record<strong>in</strong>g, and a variety <strong>of</strong> visualisation solutions.<br />
Previously to obta<strong>in</strong> optimum performance and meet<br />
accurate pyrometry specifications (e.g. AMS2750E), companies<br />
needed to separate products for temperature control,<br />
data record<strong>in</strong>g and visualisation. This was costly and <strong>in</strong>efficient.<br />
Comb<strong>in</strong><strong>in</strong>g all these products <strong>in</strong>to one easy to use, flexible<br />
and highly function<strong>in</strong>g precision PLC platform simplifies<br />
commission<strong>in</strong>g and reduces eng<strong>in</strong>eer<strong>in</strong>g time. The E+PLC<br />
also targets operational efficiency and makes regulatory compliance<br />
much easier.<br />
The high precision temperature control ensures the correct<br />
temperature is obta<strong>in</strong>ed quicker and stays at the optimum<br />
level required without deviation, ensur<strong>in</strong>g high quality results<br />
first time without wast<strong>in</strong>g time wait<strong>in</strong>g for operat<strong>in</strong>g temperature<br />
to be reached. This <strong>in</strong>creases throughput <strong>of</strong> a furnace or<br />
<strong>thermal</strong> treat<strong>in</strong>g mach<strong>in</strong>e <strong>in</strong> comparison with traditional PLC<br />
based control. Fast act<strong>in</strong>g PID with overshoot <strong>in</strong>hibition can<br />
enable an extra furnace batch cycle to be completed with<strong>in</strong><br />
any 24 hour period. By elim<strong>in</strong>at<strong>in</strong>g damp<strong>in</strong>g <strong>of</strong> PID sets and<br />
rely<strong>in</strong>g on Eurotherm’s overshoot <strong>in</strong>hibition customers can<br />
are designed <strong>in</strong> all dimensions, up to 50 m 3 volumes and load<br />
weights <strong>of</strong> more than 100 t.<br />
The company <strong>of</strong>fers “everyth<strong>in</strong>g out <strong>of</strong> one hand”. Beside<br />
the development <strong>of</strong> new furnace design its special ma<strong>in</strong> focus is<br />
on engaged after sales service which encloses the servic<strong>in</strong>g and<br />
ma<strong>in</strong>tenance as well as modernisation and the <strong>process</strong> optimisation<br />
<strong>of</strong> furnaces. On account <strong>of</strong> the nearly 100-year-old experience<br />
<strong>in</strong> <strong>in</strong>dustrial furnace design, the high manufactur<strong>in</strong>g depth<br />
<strong>in</strong> production as well as the robust construction method <strong>of</strong> the<br />
furnaces Nolzen stands for efficiency <strong>of</strong> specially developed<br />
and produced furnaces. Today the company grants a guarantee<br />
from up to 5 years on <strong>in</strong>dustrial furnaces to its customers.<br />
Artur Nolzen Industrie<strong>of</strong>enbau GmbH + Co. KG<br />
www.nolzen.de<br />
Hall 10 / Booth A-005<br />
heat aggressively up to temperature with the confidence <strong>of</strong><br />
keep<strong>in</strong>g with<strong>in</strong> the required set po<strong>in</strong>t temperature tolerances.<br />
The E+PLC range also <strong>in</strong>cludes secure data logg<strong>in</strong>g designed<br />
to meet the requirements <strong>of</strong> <strong>thermal</strong> treatment standards such<br />
as CQI-9 and AMS2750E. The precision measurement circuitry<br />
also assures compliance with accuracy specifications, aids conformance<br />
to System Accuracy Tests (SAT) and improves the output<br />
from Temperature Uniformity Surveys (TUS).<br />
Key features and benefits <strong>of</strong> E+PLC <strong>in</strong>clude:<br />
■■<br />
Easy to commission precision PID control blocks with<br />
auto tun<strong>in</strong>g.<br />
■■<br />
Set po<strong>in</strong>t programmer.<br />
■■<br />
Precision measurement <strong>of</strong> <strong>process</strong> variables to give accurate,<br />
repeatable results which translates to m<strong>in</strong>imum<br />
energy usage.<br />
■■<br />
Total data <strong>in</strong>tegrity and secure record<strong>in</strong>g, keep<strong>in</strong>g valuable<br />
<strong>process</strong> records safe by us<strong>in</strong>g highly robust file storage<br />
strategies to protect aga<strong>in</strong>st power and network failures.<br />
■■<br />
An open Codesys platform, a de facto <strong>in</strong>dustry standard.<br />
■■<br />
Integrated HMI s<strong>of</strong>tware platform with a variety <strong>of</strong> visualisation<br />
options.<br />
Invensys Systems GmbH Eurotherm<br />
www.eurotherm.de<br />
Hall 4.1 / Booth E-091<br />
50<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
PRODUCT PREVIEW<br />
c\aaa\anzeigen\vulkan\EW HP 13.qxd<br />
Elektrowärme; Heat <strong>process</strong><strong>in</strong>g 2014<br />
182 x 31 1/8 4c<br />
Tube<br />
furnaces<br />
Heat <strong>process</strong><strong>in</strong>g 3 /14<br />
Induction harden<strong>in</strong>g systems<br />
Rohröfen<br />
Induktions-Härteanlagen<br />
Schutzgasöfen<br />
Team solutions from a s<strong>in</strong>gle source<br />
The KompetenzTeam, a materials eng<strong>in</strong>eer<strong>in</strong>g division <strong>of</strong><br />
MWS Dr. Schre<strong>in</strong>er VDI at Munich, is preoccupied with the<br />
formation <strong>of</strong> work<strong>in</strong>g groups for project implementation,<br />
accumulate knowledge, researches, develop<strong>in</strong>g and organizes<br />
symposia, sem<strong>in</strong>ars and workshops. An annual symposium<br />
<strong>in</strong> Munich, for over 30 years, provides pr<strong>of</strong>essionals a<br />
Elektrowärme 3 /14<br />
platform for exchange among colleagues, access to expertise<br />
and specific <strong>in</strong>formation from the work areas. The next meet<strong>in</strong>g<br />
<strong>of</strong> “Härterei 2015” takes place between 19 and 20 March<br />
2015 <strong>in</strong> Munich <strong>in</strong>stead.<br />
In addition to the focus on the German speak<strong>in</strong>g countries<br />
(D, A, CH), the team <strong>of</strong> experts, <strong>in</strong> materials technology, also<br />
ma<strong>in</strong>ta<strong>in</strong>s contacts throughout Europe and demonstrated<br />
experience <strong>in</strong> Ch<strong>in</strong>a and overseas. Together with partners<br />
they <strong>of</strong>fer analysis, systems eng<strong>in</strong>eer<strong>in</strong>g and heat treatment<br />
Protective gas furnaces<br />
as a service, which expands on the workpiece- and partsclean<strong>in</strong>g.<br />
The Central Association <strong>of</strong> Surface Technology (ZVO) and<br />
the Association <strong>of</strong> Industrial Parts Clean<strong>in</strong>g e.V. (FIT) will host<br />
together with the KompetenzTeam, Induktionserwärmung<br />
the 24 th Fachtagung<br />
Industrielle Teilere<strong>in</strong>igung on 12 and 13 March 2015 <strong>in</strong> Munich.<br />
On the HeatTreatment Congress 2014 <strong>in</strong> Cologne provides<br />
the KomptetenzTeam the companies Ahotec eK, Graphite<br />
Materials GmbH, Spectro Analytical Instruments GmbH, TAZ<br />
GmbH and Uttis srl. Here, <strong>in</strong>terested visitors can meet the<br />
booth makers <strong>of</strong> these companies and get <strong>in</strong>formation about<br />
news, facts and scope.<br />
Universal-Induktions-<br />
Härteanlage.<br />
MWS Dr. Schre<strong>in</strong>er VDI<br />
www.kompetenzteam.com<br />
Hall 4.1 / Booth A-021<br />
Induction heat<strong>in</strong>g<br />
www.l<strong>in</strong>n.de<br />
www.l<strong>in</strong>n.de<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
New controller generation<br />
Based on the successful carbon, nitrid<strong>in</strong>g, dew po<strong>in</strong>t<br />
and temperature controllers Mesa Electronic GmbH is<br />
<strong>in</strong>troduc<strong>in</strong>g a new family <strong>of</strong> MCon controllers to the market.<br />
The new generation <strong>of</strong> controllers provides controllers<br />
for any application. MCon type Carbo is the new C-level<br />
controller with a total <strong>of</strong> three different control loops enabl<strong>in</strong>g<br />
the customer to regulate the C-level, furnace temperature<br />
and oil bath temperature. MCon type Nitro regulates<br />
the nitrid<strong>in</strong>g factor Kn and furnace temperature. MCon<br />
type TP is used for dew po<strong>in</strong>t control <strong>of</strong> an endogas generator,<br />
MCon type Uni is a universal controller used to control<br />
up to three different <strong>process</strong> factors. All controllers are<br />
equipped with the latest technologies such as touchscreen<br />
colour display, multiple analogue <strong>in</strong>puts and outputs<br />
as well as a wide variety <strong>of</strong> communication protocols.<br />
Complex <strong>process</strong>es can be carried out with the program<br />
controller option. By means <strong>of</strong> control tracks all MCon controllers<br />
can control the <strong>process</strong> without SPS and thus<br />
reduce costs. MCon controllers provide the ability to communicate<br />
with different automation systems via communication<br />
protocols such as Modbus RTU, TCP, Ethernet and<br />
Pr<strong>of</strong>ibus. An <strong>in</strong>tegrated data logger allows the record<strong>in</strong>g <strong>of</strong><br />
<strong>process</strong> data dur<strong>in</strong>g the entire <strong>process</strong>. To be flexible, the<br />
customer can order and configure each controller with a<br />
desired number <strong>of</strong> analogue or digital <strong>in</strong>puts and outputs.<br />
Mesa Electronic GmbH<br />
www.mesa-<strong>in</strong>ternational.de<br />
Hall 4.1 / Booth D-029<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
51
PRODUCT PREVIEW<br />
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Chamber furnace heat treatment plant for big size r<strong>in</strong>gs<br />
Recently a customer <strong>in</strong> Mexico expanded his production<br />
facility with the IOB chamber heat treatment furnace<br />
plant system consist<strong>in</strong>g out <strong>of</strong> four chamber furnaces, one<br />
charg<strong>in</strong>g mach<strong>in</strong>e and two quench<strong>in</strong>g baths. In this furnace<br />
plant system it is possible to heat treat r<strong>in</strong>gs up to a diameter<br />
<strong>of</strong> 4,300 mm. Follow<strong>in</strong>g <strong>process</strong>es can be executed: harden<strong>in</strong>g,<br />
temper<strong>in</strong>g and normaliz<strong>in</strong>g. For the quench<strong>in</strong>g baths the<br />
choice is between water or polymer quench<strong>in</strong>g.<br />
The properties after heat treatment to be achieved are:<br />
homogeneous hardness at 90° <strong>of</strong> 300-330 HBN, distortion<br />
(oval) less than 6 mm, charpy impact above 30-35 lbft at ¼"<br />
thickness and Ferrite at the core < 5 %. To guarantee the temperature<br />
uniformity and operat<strong>in</strong>g the furnace plant economically<br />
the furnaces were equipped with natural gas operated<br />
high velocity recuperator burners. The uniformity <strong>in</strong>side<br />
the furnaces: 530-950 °C = ± 5 °C; 450-529 °C = ± 7.5 °C.<br />
The quench<strong>in</strong>g baths are equipped with rotat<strong>in</strong>g, lift<strong>in</strong>g<br />
and lower<strong>in</strong>g lift<strong>in</strong>g tables. In addition to the <strong>in</strong>stalled agitation<br />
and cool<strong>in</strong>g pumps IOB also <strong>in</strong>stalled stationary <strong>in</strong>side<br />
the bath and on to the movable lift<strong>in</strong>g table so-called liquid<br />
jet mix<strong>in</strong>g nozzles for <strong>in</strong>tense agitation. The load<strong>in</strong>g/unload<strong>in</strong>g<br />
<strong>of</strong> the furnaces, baths and deposit tables is done us<strong>in</strong>g<br />
the charg<strong>in</strong>g mach<strong>in</strong>e. In automatic mode the plant here<br />
achieves transit times <strong>of</strong> approx. 25-30 s between furnace and<br />
bath. A modern measur<strong>in</strong>g and control system with material<br />
trac<strong>in</strong>g and connection to further <strong>process</strong><strong>in</strong>g l<strong>in</strong>e equipment<br />
will complete the furnace plant system.<br />
IOB Industrie-Ofen-Bau GmbH<br />
www.<strong>in</strong>dustrial-furnaces.com<br />
Hall 4.1 / Booth F-091<br />
Heat treatment specialist <strong>in</strong>vests <strong>in</strong> state-<strong>of</strong>-the-art<br />
plant technology<br />
For the last 78 years, the Hauck Group has been active as a<br />
powerful system supplier to customers throughout<br />
Europe <strong>in</strong> key sectors such as the automobile <strong>in</strong>dustry,<br />
mechanical eng<strong>in</strong>eer<strong>in</strong>g, electrical eng<strong>in</strong>eer<strong>in</strong>g, medical<br />
technology, jo<strong>in</strong>t<strong>in</strong>g and fasten<strong>in</strong>g technology and many<br />
others. At seven locations <strong>in</strong> Germany, a wide variety <strong>of</strong> components<br />
are <strong>process</strong>ed with almost all the heat treatment<br />
<strong>process</strong>es <strong>in</strong> common use (<strong>thermal</strong> and thermo-chemical),<br />
different surface treatments and galvanic <strong>process</strong>es. All company<br />
locations comb<strong>in</strong>e experience and precise production<br />
<strong>process</strong>es with consistent quality <strong>management</strong>, quality assurance<br />
through <strong>in</strong>-house <strong>in</strong>spection procedures, state-<strong>of</strong>-theart<br />
plant technology with backup options, certification <strong>in</strong><br />
accordance with all relevant <strong>in</strong>ternational quality, environment<br />
and energy standards and a close relationship with our<br />
customers <strong>in</strong> the regions.<br />
This year, Hauck has further extended its service and has<br />
<strong>in</strong>vested even more than usual <strong>in</strong> new plant technology. The<br />
highlight is the new semi-automatic charg<strong>in</strong>g system at the<br />
Remscheid site, which is unique <strong>in</strong> its construction and<br />
design. Significant <strong>in</strong>vestments have also been made <strong>in</strong> the<br />
expansion <strong>of</strong> nitrid<strong>in</strong>g facilities. Fifteen large furnaces are currently<br />
<strong>in</strong> operation, functionally treat<strong>in</strong>g more than 40 t <strong>of</strong><br />
products per day.<br />
Härterei Hauck GmbH<br />
www.haerterei-hauck.de<br />
Hall 4.1 / Booth E-030<br />
52<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
PRODUCT PREVIEW<br />
Simultaneous crack and structure test<strong>in</strong>g<br />
with eddy current<br />
S<strong>in</strong>ce its found<strong>in</strong>g <strong>in</strong> the year 1977, Rohmann GmbH has<br />
specialised <strong>in</strong> non-destructive test<strong>in</strong>g by means <strong>of</strong> eddy<br />
current. The comprehensive product range extends from<br />
sensors to coils, rotors and universal hand-held devices, to<br />
tailor-made test<strong>in</strong>g systems. Customers from the most varied<br />
branches such as aviation, automotive <strong>in</strong>dustry, rail transport<br />
and the steel <strong>in</strong>dustry value the work <strong>of</strong> this family-managed<br />
company.<br />
The basis for successful eddy current test<strong>in</strong>g lies <strong>in</strong> the<br />
<strong>in</strong>teraction between highly sensitive sensors and the latest<br />
equipment technology. Here, and <strong>in</strong> addition to a wide range<br />
<strong>of</strong> standard sensors, Rohmann GmbH <strong>of</strong>fers a wide range <strong>of</strong><br />
customized sensors for the most varied test<strong>in</strong>g tasks, supported<br />
by a flexibly configurable, fully digital equipment<br />
platform. One component <strong>of</strong> this equipment platform is the<br />
Elotest IS500 family. It is available as a 19” module or as a separate<br />
box-variant for <strong>in</strong>tegration <strong>in</strong>to the production l<strong>in</strong>e. The<br />
series has a wide range <strong>of</strong> configuration possibilities up to a<br />
maximum <strong>of</strong> two test channels. This enables comb<strong>in</strong>ed crack<br />
test<strong>in</strong>g, with simultaneous structure and material identification<br />
test<strong>in</strong>g. In the case <strong>of</strong> structure test<strong>in</strong>g, the user can<br />
choose between simple 1-frequency sort<strong>in</strong>g, fast sort<strong>in</strong>g at<br />
several hundred parts per second, or multi-frequency test<strong>in</strong>g<br />
as a solution for complex sort<strong>in</strong>g tasks. The product series can<br />
optionally also be equipped with a multiplex option for the<br />
connection <strong>of</strong> up to eight sensors per test channel, and can<br />
therefore cover a broad range <strong>of</strong> test<strong>in</strong>g applications <strong>in</strong> the<br />
course <strong>of</strong> the production <strong>process</strong>. If the Elotest IS500 family is<br />
not enough, a universal multi-channel equipment family is<br />
available as an alternative <strong>in</strong> the form <strong>of</strong> the Elotest PL500 l<strong>in</strong>e.<br />
Rohmann GmbH<br />
www.rohmann.de<br />
Hall 4.1 / Booth E-070<br />
Visit us<br />
at the HK <strong>in</strong> Cologne,<br />
hall 04.1, booth C-031!<br />
SyncroTherm ®<br />
© appeal 098 406<br />
Efficient and ecological heat treatment<br />
ALD Vacuum Technologies latest development SyncroTherm ® <strong>of</strong>fers the highest flexibility for heat<br />
treatment. Harden<strong>in</strong>g and caseharden<strong>in</strong>g <strong>of</strong> small batches is possible <strong>in</strong> stand-alone units and <strong>in</strong><br />
one-piece-flow production with full <strong>in</strong>tegration <strong>in</strong>to the manufactur<strong>in</strong>g l<strong>in</strong>e. Charg<strong>in</strong>g <strong>in</strong> s<strong>in</strong>gle<br />
layers leads to short <strong>process</strong> times and m<strong>in</strong>imum distortion.<br />
For 3-2014 more <strong>in</strong>formation heat <strong>process</strong><strong>in</strong>g please contact us!<br />
ALD Vacuum Technologies GmbH<br />
Wilhelm-Rohn-Strasse 35<br />
63450 Hanau, GERMANY<br />
Phone +49 (0) 6181 307-0<br />
Email <strong>in</strong>fo@ald-vt.com<br />
Internet www.ald-vt.com
<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />
Protective system control with bus communication<br />
With the protective system control FCU 500, Elster Kromschröder<br />
is <strong>of</strong>fer<strong>in</strong>g a comprehensive all-round<br />
package for the implementation <strong>of</strong> current safety standards.<br />
The unit performs the essential functions <strong>of</strong> a central protective<br />
system pursuant to EN 746-2:2010 <strong>in</strong> multiple burner<br />
applications.<br />
The protective system control monitors various safety<br />
conditions (such as m<strong>in</strong>imum and maximum gas pressure<br />
and air pressure) and carries out a standard-compliant prepurge.<br />
The ma<strong>in</strong> valves undergo an extended tightness test<br />
<strong>in</strong> parallel to purge. This tightness test function checks the<br />
system for leaks dur<strong>in</strong>g system start. A special algorithm saves<br />
time <strong>in</strong> the case <strong>of</strong> large test volumes. As an option and <strong>in</strong><br />
conjunction with Kromschröder burner control units, an <strong>in</strong>ternal<br />
safety temperature limiter (STL) or a safety temperature<br />
monitor (STM) for monitor<strong>in</strong>g the maximum furnace/flue gas<br />
temperature or for high temperature monitor<strong>in</strong>g guarantee<br />
<strong>in</strong>creased operational safety.<br />
The functions comb<strong>in</strong>ed <strong>in</strong> the FCU 500 can be precisely<br />
adapted to the requirements <strong>of</strong> the respective heat<strong>in</strong>g equipment<br />
us<strong>in</strong>g parameters. For this, the FCU features an optical<br />
<strong>in</strong>terface via which the parameters can be adjusted us<strong>in</strong>g the<br />
PC s<strong>of</strong>tware BCS<strong>of</strong>t and data for diagnosis can be read.<br />
The system has been developed for <strong>in</strong>stallation <strong>in</strong> control<br />
cab<strong>in</strong>ets. It features tried-and-tested operat<strong>in</strong>g controls on<br />
the front <strong>of</strong> the unit or can be controlled directly from the<br />
control cab<strong>in</strong>et door us<strong>in</strong>g the external operator-control unit<br />
OCU. Thanks to the Pr<strong>of</strong><strong>in</strong>et bus module BCM 500, the<br />
FCU 500 can be easily <strong>in</strong>tegrated <strong>in</strong> the <strong>process</strong> automation<br />
system. This opens up a wide range <strong>of</strong> options as regards<br />
<strong>process</strong> control and visualization. The automation system<br />
(controller) and the connected units <strong>of</strong> the FCU 500 series<br />
(device) communicate via the bus module BCM 500 on two<br />
levels.<br />
The acyclic communication allows <strong>in</strong>formation on the<br />
parameters and statistics <strong>of</strong> the FCU 500 as controlled by the<br />
program to be read. The device master data required for system<br />
eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> the bus module BCM 500 can be read<br />
from the GSD file <strong>of</strong> the FCU 500. The Internet-based knowledge<br />
platform KST (Kromschröder System Technology) is<br />
available as plann<strong>in</strong>g support for the protective system as<br />
well as for the design <strong>of</strong> the entire heat<strong>in</strong>g equipment. KST<br />
<strong>of</strong>fers many tools for the effective and safe project plann<strong>in</strong>g<br />
<strong>of</strong> heat<strong>in</strong>g equipment.<br />
Elster GmbH<br />
www.kromschroeder.com<br />
Hall 4.1 / Booth C-089<br />
Hardware and s<strong>of</strong>tware solution for more efficiency<br />
The Ipsen EcoFire system burns natural gas<br />
and protective gas for highly efficient<br />
energy usage – with almost no loss. The system<br />
is an <strong>in</strong>telligent solution, which allows the gas<br />
fired heat<strong>in</strong>g system already <strong>in</strong>stalled<br />
<strong>in</strong> your furnace to burn<br />
protective gas. It <strong>in</strong>creases<br />
the efficiency <strong>of</strong> <strong>in</strong>dustrial<br />
furnace systems<br />
through <strong>in</strong>telligent<br />
hardware and s<strong>of</strong>tware,<br />
sav<strong>in</strong>g money and protect<strong>in</strong>g<br />
the environment<br />
susta<strong>in</strong>ably.<br />
Normally, the protective<br />
gas used <strong>in</strong> a<br />
furnace must be burnt <strong>of</strong>f safely. But with the EcoFire system<br />
the protective gas needed <strong>in</strong> atmospheric heat treatment<br />
furnaces is used for the gas fired heat<strong>in</strong>g system. In this way,<br />
the energy content <strong>of</strong> the protective gas is available for the<br />
heat<strong>in</strong>g system. In addition, it’s used to heat the halls <strong>in</strong> w<strong>in</strong>ter<br />
– this saves money and protects the environment at the same<br />
time!<br />
With EcoFire, one not only can use the energy content <strong>of</strong><br />
the otherwise useless burnt protective gas, <strong>in</strong>creas<strong>in</strong>g plant<br />
efficiency, but also lower the cost <strong>of</strong> the natural gas consumption<br />
and lower the CO 2 emissions.<br />
Ipsen International GmbH<br />
www.ipsen.de<br />
Hall 4.1 / Booth E-040<br />
54<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
Heat treatment us<strong>in</strong>g ceramic matrix composites<br />
The WPX Faserkeramik GmbH develops and manufactures<br />
heat treatment components made <strong>of</strong> <strong>in</strong>novative Whipox®<br />
oxide ceramic matrix composite (OCMC). Whipox® OCMC<br />
consists <strong>of</strong> pure alum<strong>in</strong>ium oxide fibre ceramic Nextel®<br />
embedded <strong>in</strong> a pure alum<strong>in</strong>ium oxide matrix. Due to its excellent<br />
properties like extreme stability aga<strong>in</strong>st <strong>thermal</strong> and<br />
mechanical shocks, <strong>thermal</strong> <strong>in</strong>sulation, low <strong>thermal</strong> load,<br />
m<strong>in</strong>imal warp<strong>in</strong>g, and good tensile and bend<strong>in</strong>g strength, the<br />
material is well suited for charge carriers and furnace l<strong>in</strong><strong>in</strong>g for<br />
heat treatment <strong>process</strong>es <strong>in</strong> the temperature range from 750-<br />
1,300 °C (1,380-2,370 °F). As it is oxidation- and corrosionresistant,<br />
it can be used <strong>in</strong> atmospheric <strong>process</strong>es.<br />
In particular, its open grid structures can be used as systems,<br />
components and parts for fast temperature change and<br />
homogeneous temperature distribution. Whipox® allows<br />
improved energy efficiency by significant reduction <strong>of</strong> carrier<br />
weight, improved product properties by precise temperature<br />
control, <strong>in</strong>creased furnace equipment uptime through noncatastrophic<br />
failure, and less rejects due to Carbon contam<strong>in</strong>ation.<br />
USPs are documented through <strong>in</strong>dustrial applications.<br />
WPX Faserkeramik GmbH<br />
www.whipox.com<br />
Hall 4.1 / Booth C-101<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
55
International Magaz<strong>in</strong>e for Industrial Furnaces<br />
Heat Treatment & Equipment<br />
“One heat <strong>process</strong><strong>in</strong>g world – with<br />
But only one, heat <strong>process</strong><strong>in</strong>g, covers<br />
from a truly unique <strong>in</strong>ternational<br />
Congratulations on 10 years and<br />
all the best for the future.”<br />
Paweł Wyrzykowski<br />
CEO <strong>of</strong> Seco Warwick Group
• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />
so many magaz<strong>in</strong>es.<br />
the whole <strong>in</strong>dustry<br />
perspective.
Handbook <strong>of</strong><br />
Thermo<strong>process</strong><strong>in</strong>g<br />
Technologies<br />
www.vulkan-verlag.de<br />
Order now!<br />
Volume 1: Fundamentals | Processes | Calculations<br />
This Handbook provides a detailed overview <strong>of</strong> the entire thermo<strong>process</strong><strong>in</strong>g<br />
sector, structured on practical criteria, and will be <strong>of</strong> particular assistance<br />
to manufacturers and users <strong>of</strong> thermo<strong>process</strong><strong>in</strong>g equipment.<br />
In Europe thermo<strong>process</strong><strong>in</strong>g is the third largest energy consumption<br />
sector with a very diversified and complex structure. Therefore it is split<br />
<strong>in</strong>to a large number <strong>of</strong> subdivisions, each hav<strong>in</strong>g a high importance<br />
for the <strong>in</strong>dustrial economy. Accord<strong>in</strong>gly we f<strong>in</strong>d the application knowhow<br />
for the design and the execution <strong>of</strong> respective equipment represented<br />
by a multitude <strong>of</strong> small but very specialized companies and their experts.<br />
So this second edition is based on the contribution <strong>of</strong> many highly<br />
experienced eng<strong>in</strong>eers work<strong>in</strong>g <strong>in</strong> this fi eld. The book’s ma<strong>in</strong> <strong>in</strong>tention is<br />
the presentation <strong>of</strong> practical <strong>thermal</strong> <strong>process</strong><strong>in</strong>g for the improvement <strong>of</strong><br />
materials and parts <strong>in</strong> <strong>in</strong>dustrial application. Additionally it <strong>of</strong>fers a summary<br />
<strong>of</strong> respective <strong>thermal</strong> and material science fundamentals. Further it<br />
covers the basic fuel-related and electrical eng<strong>in</strong>eer<strong>in</strong>g knowledge and<br />
design aspects, components and safety requirements for the necessary<br />
heat<strong>in</strong>g <strong>in</strong>stallations.<br />
Editors: Franz Beneke, Bernhard Nacke, Herbert Pfeifer<br />
2 nd edition 2012, 674 pages with additional media files<br />
and e-book on DVD, hardcover<br />
Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />
KNOWLEDGE FOR THE<br />
FUTURE<br />
Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />
Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />
Yes, I place a firm order for the technical book. Please send<br />
— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />
(ISBN: 978-3-8027-2966-9) at the price <strong>of</strong> € 200,- (plus postage and pack<strong>in</strong>g)<br />
— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />
(ISBN: 978-3-8027-2966-9) at the special price <strong>of</strong> € 180,- (plus postage and pack<strong>in</strong>g)<br />
for subscribers <strong>of</strong> heat <strong>process</strong><strong>in</strong>g<br />
Company/<strong>in</strong>stitution<br />
First name and surname <strong>of</strong> recipient<br />
Street/P.O. Box, No.<br />
Country, Postcode, Town<br />
Reply / Antwort<br />
Vulkan Verlag GmbH<br />
Versandbuchhandlung<br />
Postfach 10 39 62<br />
45039 Essen<br />
GERMANY<br />
Phone<br />
E-mail<br />
L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />
Fax<br />
Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />
to Vulkan Verlag GmbH, Versandbuchhandlung, Friedrich-Ebert-Str.11, 45127 Essen, Germany.<br />
Date, signature<br />
PAHBTT2014<br />
In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />
It is<br />
58<br />
approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />
heat <strong>process</strong><strong>in</strong>g 2-2014<br />
This approval may be withdrawn at any time.<br />
✘
Heat Treatment<br />
REPORTS<br />
Low pressure carburiz<strong>in</strong>g and<br />
nitrid<strong>in</strong>g <strong>of</strong> fuel <strong>in</strong>jection nozzles<br />
by Maciej Korecki, Piotr Kula, Emilia Wołowiec, Michał Bazel, Michał Sut<br />
The article describes the newest achievements <strong>in</strong> heat treatment <strong>of</strong> fuel <strong>in</strong>jection nozzles made <strong>of</strong> hot work<strong>in</strong>g tool steel<br />
applied <strong>in</strong> diesel eng<strong>in</strong>es. Different methods <strong>of</strong> improv<strong>in</strong>g surface properties have been applied by means <strong>of</strong> vacuum<br />
carburiz<strong>in</strong>g and vacuum nitrid<strong>in</strong>g, especially suitable for elements characterized by difficult shape geometry such as<br />
bl<strong>in</strong>d holes. Variable <strong>process</strong> parameters have been considered <strong>in</strong> terms <strong>of</strong> sequence and temperature as well as their<br />
<strong>in</strong>fluence on surface microstructure, hardness and case layer uniformity. A complex technology was <strong>in</strong>vented <strong>in</strong>volv<strong>in</strong>g<br />
thermo-chemical <strong>process</strong> supplemented by high pressure gas quench<strong>in</strong>g (HPGQ), deep freez<strong>in</strong>g and temper<strong>in</strong>g. All<br />
technological steps were performed <strong>in</strong> a s<strong>in</strong>gle chamber vacuum furnace equipped with LPC, LPN and HPGQ.<br />
Fuel <strong>in</strong>jection nozzles (Fig. 1) are a key element <strong>of</strong><br />
a diesel eng<strong>in</strong>e which <strong>in</strong>fluences its performance<br />
properties, <strong>in</strong>clud<strong>in</strong>g fuel consumption and reliability.<br />
Furthermore, they play a major role <strong>in</strong> emission <strong>of</strong> harmful<br />
substances. In the course <strong>of</strong> cyclic operation they withstand<br />
various loads, they work at raised temperatures under high<br />
pressures (1,500-3,000 bar) and withstand <strong>in</strong>tense streams<br />
<strong>of</strong> liquids (above 100 m/s) [1]. Due to these factors, nozzles<br />
are prone to accelerated wear and defects (Fig. 2) [2]. The<br />
design <strong>of</strong> fuel <strong>in</strong>jection nozzles must ensure appropriate<br />
strength, impact as well as fatigue resistance and abrasion<br />
<strong>of</strong> passage channels.<br />
Nozzles are made <strong>of</strong> medium and high alloy steels featur<strong>in</strong>g<br />
additionally hardened surface. Typically, the tensile<br />
strength <strong>of</strong> the core rema<strong>in</strong>s with<strong>in</strong> the range <strong>of</strong> 1,000-<br />
1,500 MPa for steel grades 20MnCr5, 17CrNiMo6, EN39B,<br />
18CrNi8, while extended surface hardness (above 60 HRC) is<br />
obta<strong>in</strong>ed through the harden<strong>in</strong>g which follows carburiz<strong>in</strong>g.<br />
Adequate heat treatment is performed <strong>in</strong> vacuum furnaces<br />
featur<strong>in</strong>g vacuum carburiz<strong>in</strong>g (LPC) and high pressure<br />
gas quench<strong>in</strong>g (15 bar and above). Vacuum carburiz<strong>in</strong>g<br />
enables obta<strong>in</strong><strong>in</strong>g case uniformity <strong>in</strong> the th<strong>in</strong> nozzle channels<br />
<strong>of</strong> complicated shapes, <strong>in</strong>accessible to conventional<br />
carburiz<strong>in</strong>g atmospheres. On the other hand, gas quench<br />
elim<strong>in</strong>ates the <strong>in</strong>convenience <strong>of</strong> clean<strong>in</strong>g after quench<strong>in</strong>g<br />
<strong>in</strong> oil. In some solutions, nitrid<strong>in</strong>g is applied <strong>in</strong> place <strong>of</strong><br />
carburiz<strong>in</strong>g to harden the surface.<br />
For certa<strong>in</strong> applications, <strong>in</strong>jection nozzles are made<br />
<strong>of</strong> even more durable steels, e.g. hot work<strong>in</strong>g tool steels.<br />
In such events, the strength <strong>in</strong>creases decidedly (over<br />
2,000 MPa), although the surface still requires additional<br />
re<strong>in</strong>forcement. This article presents the complex <strong>process</strong>es<br />
and results <strong>of</strong> <strong>thermal</strong> and thermo-chemical treatment<br />
<strong>of</strong> fuel <strong>in</strong>jection nozzles made <strong>of</strong> hot work<strong>in</strong>g tool steel<br />
carried out <strong>in</strong> a vacuum furnace. The <strong>process</strong>es applied<br />
<strong>in</strong>cluded vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g (LPC and LPN),<br />
gas quench<strong>in</strong>g, deep freez<strong>in</strong>g and temper<strong>in</strong>g.<br />
Fig. 1: Fuel <strong>in</strong>jection nozzle (Bosch)<br />
Fig. 2: Typical nozzle defects: crack<strong>in</strong>g (left) and abrasive wear (right)<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
59
REPORTS<br />
Heat Treatment<br />
Fig. 3: Fuel <strong>in</strong>jection nozzle used<br />
Fig. 4: Standard s<strong>in</strong>gle chamber vacuum furnace Seco/Warwick<br />
model 15.0VPT-4035/36IQCN Vector – Vacuum Furnaces L<strong>in</strong>e<br />
Fig. 5: Uniformly carburized case layer <strong>in</strong> a nozzle crosssection<br />
follow<strong>in</strong>g LPC 920 <strong>process</strong><br />
THE OBJECT AND OBJECTIVE<br />
OF TESTS AND RESEARCH<br />
The object <strong>of</strong> test<strong>in</strong>g were <strong>in</strong>jection nozzles made <strong>of</strong> X37Cr-<br />
MoV5-1 (1.2343, H11) steel shaped as presented <strong>in</strong> Fig. 3.<br />
The objective <strong>of</strong> test<strong>in</strong>g was to create upon the nozzle surfaces<br />
(<strong>in</strong> particular upon the <strong>in</strong>ternal surfaces) a uniformly<br />
hardened case layer while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g appropriate core<br />
hardness. The required case layers were created through<br />
vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g.<br />
TESTING EQUIPMENT<br />
Applied for the tests was a standard Seco/Warwick s<strong>in</strong>gle<br />
chamber vacuum furnace model 15.0VPT-4035/36IQCN<br />
(Fig. 4) <strong>of</strong> work<strong>in</strong>g area 600/600/900 mm, equipped with<br />
a vacuum carburiz<strong>in</strong>g (LPC) and nitrid<strong>in</strong>g (LPN) systems<br />
and high pressure gas quench system (15 bar).<br />
Carburiz<strong>in</strong>g was performed with a gas mixture <strong>of</strong> acetylene<br />
(C 2 H 2 ), ethylene (C 2 H 4 ) and hydrogen (H 2 ), while<br />
ammonia (NH 3 ) was used for nitrid<strong>in</strong>g. The 250 kg workload<br />
consisted <strong>of</strong> ballast rods among which the tested <strong>in</strong>jection<br />
nozzles were placed. The workload reflected typical conditions<br />
found <strong>in</strong> <strong>in</strong>dustrial heat treatment.<br />
Fig. 6: Hardness pr<strong>of</strong>iles obta<strong>in</strong>ed at selected po<strong>in</strong>ts M1-5 <strong>in</strong> LPC<br />
<strong>process</strong>es<br />
LPC PROCESSES<br />
Four heat treat<strong>in</strong>g series based on vacuum carburiz<strong>in</strong>g were<br />
conducted. Carburiz<strong>in</strong>g was preceded with pre-nitrid<strong>in</strong>g<br />
us<strong>in</strong>g the PreNitLPC® [3] technology <strong>in</strong> order to restrict<br />
the growth <strong>of</strong> austenite gra<strong>in</strong> at high temperature. The<br />
entire <strong>process</strong> sequence consisted <strong>of</strong>: pre-nitrid<strong>in</strong>g, vacuum<br />
carburiz<strong>in</strong>g (us<strong>in</strong>g the F<strong>in</strong>eCarb® [4] technology) at various<br />
temperatures, which was followed by the repeated for all<br />
sequence <strong>of</strong> (direct) quench<strong>in</strong>g <strong>in</strong> 5 bar nitrogen, deep<br />
freez<strong>in</strong>g at -75 °C for 2 h and temper<strong>in</strong>g for 2 h at the temperature<br />
<strong>of</strong> 200 °C. Carburiz<strong>in</strong>g treatments were performed<br />
at four temperatures: 860, 920, 950 and 1,020 °C, <strong>in</strong> each<br />
60 heat <strong>process</strong><strong>in</strong>g 3-2014
Heat Treatment<br />
REPORTS<br />
case targeted at the surface concentration <strong>of</strong> carbon <strong>in</strong><br />
the range <strong>of</strong> 0.60 % and predef<strong>in</strong>ed case depth <strong>of</strong> approx.<br />
0.4 mm.<br />
Total times <strong>in</strong> the sequence <strong>of</strong> carburiz<strong>in</strong>g and diffusion<br />
for <strong>in</strong>dividual treatments were as follows:<br />
LPC 860 C = 10 m<strong>in</strong>, D = 70 m<strong>in</strong><br />
LPC 920 C = 4 m<strong>in</strong>, D = 40 m<strong>in</strong><br />
LPC 950 C = 4 m<strong>in</strong>, D = 20 m<strong>in</strong><br />
LPC 1020 C = 2 m<strong>in</strong>, D = 6 m<strong>in</strong><br />
Fig. 5 presents a longitud<strong>in</strong>al cross-section through a<br />
nozzle follow<strong>in</strong>g LPC carburization at the temperature <strong>of</strong><br />
920 °C. A uniform case was obta<strong>in</strong>ed both on the outer and<br />
<strong>in</strong> the <strong>in</strong>ner channels <strong>of</strong> the nozzle, which is characteristic<br />
for vacuum carburiz<strong>in</strong>g. The uniformity <strong>of</strong> the case layers<br />
obta<strong>in</strong>ed at <strong>in</strong>dividual treatments was presented <strong>in</strong> Fig. 6<br />
as hardness pr<strong>of</strong>iles at selected M1-5 po<strong>in</strong>ts.<br />
After the LPC 860 treatment a uniformly hardened<br />
case layer was obta<strong>in</strong>ed on the outer and <strong>in</strong>ner surfaces<br />
<strong>of</strong> the nozzle. The surface hardness was approx. 850 HV (at<br />
0.05 mm) and the core hardness was 500 HV, at predef<strong>in</strong>ed<br />
case layer depth <strong>of</strong> 0.35 mm for core hardness +50 HV. The<br />
LPC 920 treatment yielded a uniform case layer <strong>of</strong> surface<br />
hardness 820 HV and case layer depth <strong>of</strong> 0.30 mm for core<br />
hardness <strong>of</strong> 590 HV.<br />
Also carburiz<strong>in</strong>g at 950 °C (LPC 950) resulted <strong>in</strong> appropriate<br />
uniformity and case layer parameters: depth 0.35 mm,<br />
surface harness 850 HV and core hardness 620 HV.<br />
It was only the LPC 1020 <strong>process</strong> that failed to provide<br />
satisfactory outcomes. The case layer appeared only on<br />
the outer surfaces <strong>of</strong> the nozzle while none <strong>of</strong> it appeared<br />
<strong>in</strong>side. Maximum hardness was 850 HV at the surface and<br />
680 HV at the core. The hardness pr<strong>of</strong>ile <strong>in</strong> the outer layer<br />
<strong>in</strong>dicates a drop right at the surface, which is suggestive<br />
<strong>of</strong> improper microstructure.<br />
Fig. 7 presents a comparison <strong>of</strong> the case layer microstructure<br />
after the <strong>in</strong>dividual treatments. Globular carbides<br />
are a characteristic feature <strong>in</strong> the matrix <strong>of</strong> martensite. Their<br />
size and number <strong>in</strong>creases parallel to the <strong>in</strong>crease <strong>of</strong> <strong>process</strong><br />
temperature. At higher temperatures they tend to create<br />
dist<strong>in</strong>ct structures, a network at boundaries <strong>of</strong> austenite<br />
gra<strong>in</strong>s, as <strong>in</strong> the LPC 1020 <strong>process</strong>.<br />
LPN PROCESS<br />
The nitrided layer was created as a result <strong>of</strong> a complex<br />
<strong>process</strong> composed <strong>of</strong> the follow<strong>in</strong>g phases: austenitization<br />
at 1,030 °C, quench<strong>in</strong>g <strong>in</strong> 5 bar nitrogen, temper<strong>in</strong>g<br />
at 580 °C for 2 h and vacuum nitrid<strong>in</strong>g at the temperature<br />
<strong>of</strong> 560 °C for 4 h. The results <strong>of</strong> the <strong>process</strong> are presented<br />
<strong>in</strong> Fig. 8 as hardness pr<strong>of</strong>iles measured at selected spots<br />
on the <strong>in</strong>side and outside surfaces <strong>of</strong> the nozzle (M1-5).<br />
In the course <strong>of</strong> nitrid<strong>in</strong>g a very uniform hardened case<br />
was obta<strong>in</strong>ed <strong>of</strong> surface hardness <strong>in</strong> excess <strong>of</strong> 900 HV at<br />
the depth <strong>of</strong> 0.05 mm and case depth <strong>of</strong> nearly 0.2 mm<br />
at core hardness <strong>of</strong> 530 HV. The results shown <strong>in</strong> Table 1<br />
were obta<strong>in</strong>ed <strong>in</strong> the <strong>process</strong>es performed:<br />
LPC 1,580 °F (860 °C)<br />
LPC 1,688 °F (920 °C)<br />
LPC 1,742 °F (950 °C)<br />
LPC 1,868 °F (1,020 °C)<br />
Fig. 7: Surface microstructure after LPC <strong>process</strong><strong>in</strong>g at various<br />
temperatures<br />
Fig. 8: Hardness pr<strong>of</strong>ile and case layer microstructure follow<strong>in</strong>g<br />
LPN treatment<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
61
REPORTS<br />
Heat Treatment<br />
Table 1: Results <strong>of</strong> the performed <strong>process</strong>es<br />
Process<br />
Surface<br />
hardness<br />
[HV/HRC]<br />
CONCLUSION<br />
The <strong>process</strong>es <strong>of</strong> vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g enable<br />
to obta<strong>in</strong> uniformly hardened case layers on hardly accessible<br />
surfaces <strong>of</strong> fuel <strong>in</strong>jection nozzles made <strong>of</strong> X37CrMoV5-1<br />
tool steel. In the event <strong>of</strong> vacuum carburiz<strong>in</strong>g the surface<br />
hardness accessible exceeds 800 HV for temper<strong>in</strong>g<br />
temperature <strong>of</strong> 200 °C (hardness decreases as temper<strong>in</strong>g<br />
temperature rises). The core hardness depends on the<br />
quench<strong>in</strong>g temperature and is the higher parallel to the<br />
rise <strong>in</strong> temperature; <strong>in</strong> the tests from 49 to 59 HRC and also<br />
depends on temper<strong>in</strong>g temperature.<br />
Carburiz<strong>in</strong>g at 1,020 °C failed to create proper uniformity<br />
and microstructure (carbides network) due to high <strong>in</strong>tensity<br />
<strong>of</strong> treatment (<strong>in</strong>controllable) and the tendency to create<br />
carbides <strong>in</strong> the steel at higher temperature. LPC <strong>process</strong>es<br />
at that temperature need to be ref<strong>in</strong>ed.<br />
Promis<strong>in</strong>g results were atta<strong>in</strong>ed for the vacuum nitrid<strong>in</strong>g<br />
<strong>process</strong>: case layer uniformity and the highest surface<br />
hardness <strong>in</strong> excess <strong>of</strong> 900 HV as well as stability <strong>of</strong> case layer<br />
parameters at high temperatures exceed<strong>in</strong>g 500 °C. In the<br />
light <strong>of</strong> the study it should be claimed that the case harden<strong>in</strong>g<br />
technology <strong>of</strong> the fuel <strong>in</strong>jection nozzles made <strong>of</strong> tool steel by<br />
vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g has been developed, tested<br />
and is ready for <strong>in</strong>dustrial implementation. Further research<br />
will focus on improvement <strong>of</strong> LPC <strong>process</strong>es at high temperatures<br />
and on us<strong>in</strong>g hybrid: carburized and nitrided case layers.<br />
LITERATURE<br />
Core<br />
hardness<br />
[HV/<br />
HRC]<br />
[1] Blau, P.J.; Yang, N.: Materials for high pressure fuel <strong>in</strong>jection<br />
systems, US Dept. <strong>of</strong> Energy, poster presentation May 10, 2011<br />
[2] http://www.dieselpowermag.com/tech/1211dp_why_diesel_<br />
fuel_<strong>in</strong>jectors_fail/viewall.html<br />
Case depth<br />
[mm]<br />
LPC 860 850/66 500/49 0.35 good<br />
Case uniformity<br />
LPC 920 820/65 590/55 0.30 very good<br />
LPC 950 850/66 620/56 0.35 good<br />
LPC 1020 850/66 680/59 0-0.40 <strong>in</strong>sufficient<br />
LPN >900/67 530/51 0.18 very good<br />
[3] Kula, P.; Pietrasik, R.; Dybowski, K.; Korecki, M.; Olejnik, J.:<br />
Prenit LPC – the modern technology for automotive, New<br />
Challenges. In: Heat Treatment and Surface Eng<strong>in</strong>eer<strong>in</strong>g,<br />
Dubrownik-Cavtat, Croatia, 2009, pp. 165-170<br />
[4] Kula, P.; Korecki, M.; Pietrasik, R.; Wołowiec, E.; Dybowski, K.;<br />
Kołodziejczyk, Ł.; Atraszkiewicz, R.; Krasowski, M. F<strong>in</strong>eCarb ®<br />
– the flexible system for low pressure carburiz<strong>in</strong>g. New<br />
options and performance, The Japan Society for Heat Treatment<br />
2009, 49 (1), pp. 133-136<br />
AUTHORS<br />
Ph. D. Eng. Maciej Korecki<br />
Seco/Warwick<br />
Swiebodz<strong>in</strong>, Poland<br />
Tel.: +48 (0) 683820506<br />
maciej.korecki@secowarwick.com<br />
Pr<strong>of</strong>. Piotr Kula Ph. D.<br />
Technical University <strong>of</strong> Lodz<br />
Institute <strong>of</strong> Materials,<br />
Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />
Lodz, Poland<br />
Tel.: +48 (0) 426312279<br />
piokula@p.lodz.pl<br />
Ph. D. Emilia Wołowiec<br />
Technical University <strong>of</strong> Lodz<br />
Institute <strong>of</strong> Materials,<br />
Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />
Lodz, Poland<br />
Tel.: +48 (0) 426312269<br />
emilia.wolowiec@p.lodz.pl<br />
Michał Bazel<br />
Seco/Warwick<br />
Swiebodz<strong>in</strong>, Poland<br />
Tel.: +48 (0) 68-4111632<br />
Michal.sut@secowarwick.com<br />
Michał Sut<br />
Seco/Warwick<br />
Swiebodz<strong>in</strong>, Poland<br />
Tel.: +48 (0) 68-4111632<br />
michal.bazel@secowarwick.com<br />
62 heat <strong>process</strong><strong>in</strong>g 3-2014
Heat Treatment<br />
REPORTS<br />
<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong><br />
the ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong><br />
<strong>process</strong> <strong>plants</strong><br />
by Hartmut Steck-W<strong>in</strong>ter, Axel Filounek<br />
<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance has become a critical success factor. System availability requirements, cost pressures,<br />
<strong>in</strong>creas<strong>in</strong>g complexity <strong>of</strong> systems and, especially, knowledge-<strong>in</strong>tensive ma<strong>in</strong>tenance strategies are just some <strong>of</strong> the<br />
reasons why the systematic <strong>management</strong> <strong>of</strong> knowledge is becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly important. The knowledge <strong>management</strong><br />
solutions ma<strong>in</strong>ly used <strong>in</strong> practice today are – like a library – focused on the archiv<strong>in</strong>g and retrieval <strong>of</strong> <strong>in</strong>formation. Meanwhile,<br />
the progressive transformation <strong>of</strong> ma<strong>in</strong>tenance <strong>in</strong>to an eng<strong>in</strong>eer<strong>in</strong>g discipl<strong>in</strong>e receives rather less attention. Us<strong>in</strong>g the example<br />
<strong>of</strong> condition-based ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong> <strong>process</strong> <strong>plants</strong>, this article will describe how knowledge <strong>management</strong> and<br />
ma<strong>in</strong>tenance methods can complement each other, without neglect<strong>in</strong>g practical ma<strong>in</strong>tenance, with knowledge managers<br />
form<strong>in</strong>g the l<strong>in</strong>k to operational practice. Document <strong>management</strong> cont<strong>in</strong>ues to play an important role, but even more emphasis<br />
is given to the use and creation <strong>of</strong> knowledge. After all, what good is a great library if no one reads the books?<br />
If our company only knew how much it knew, then…<br />
Who hasn’t heard this sentence 1 ? For the ma<strong>in</strong>tenance <strong>of</strong><br />
<strong>in</strong>dustrial <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> (ITP), we could complete<br />
the sentence as follows: If our ma<strong>in</strong>tenance department only<br />
knew how much it knew, then the availability, reliability and<br />
safety <strong>of</strong> our <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> would be better than the<br />
competition, then our cost-efficiency would be better, and<br />
we would make fewer mistakes and never repeat them [1].<br />
So why don’t we <strong>in</strong>vest more <strong>in</strong> knowledge <strong>management</strong>?<br />
The answer, which will be demonstrated <strong>in</strong> this article,<br />
is that knowledge <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance is a complex<br />
matter that imposes considerable organisational requirements,<br />
demonstrat<strong>in</strong>g once aga<strong>in</strong> the transformation <strong>of</strong><br />
ma<strong>in</strong>tenance <strong>in</strong>to an eng<strong>in</strong>eer<strong>in</strong>g discipl<strong>in</strong>e.<br />
WHAT IS KNOWLEDGE?<br />
In this <strong>in</strong>troductory chapter we will first def<strong>in</strong>e a few key<br />
terms <strong>in</strong> knowledge <strong>management</strong>.<br />
<strong>Knowledge</strong> as production factor and company asset<br />
Fig. 1 shows how the most important resources <strong>of</strong> almost any<br />
1 This say<strong>in</strong>g is attributed to Siemens CEO He<strong>in</strong>rich von Pierer. At a press conference,<br />
von Pierer lamented the fact that Siemens was always „re<strong>in</strong>vent<strong>in</strong>g<br />
the wheel“ and wast<strong>in</strong>g a lot <strong>of</strong> resources <strong>in</strong> the <strong>process</strong>. However, the say<strong>in</strong>g<br />
was already <strong>in</strong> use <strong>in</strong>ternally much earlier than this.<br />
company – labour, capital and knowledge – have changed<br />
over the years. Even <strong>in</strong> agrarian societies, people tried to<br />
acquire, keep and re-apply knowledge. Early techniques<br />
<strong>in</strong>cluded storytell<strong>in</strong>g or picture stories. With the progress <strong>of</strong><br />
<strong>in</strong>dustrialisation, knowledge became <strong>in</strong>creas<strong>in</strong>gly important,<br />
overtak<strong>in</strong>g the production factors <strong>of</strong> labour and capital. More<br />
and more specialised knowledge was needed, for example to<br />
build new mach<strong>in</strong>ery or provide special services.<br />
In a knowledge society, the value <strong>of</strong> knowledge as a production<br />
factor <strong>in</strong>creases further still. <strong>Knowledge</strong> became the<br />
most important resource <strong>in</strong> production and services. Today,<br />
Importance<br />
Labor<br />
Agrarian<br />
society<br />
Capital<br />
Industrial<br />
society<br />
<strong>Knowledge</strong><br />
<strong>Knowledge</strong><br />
society<br />
Fig. 1: Importance <strong>of</strong> the production factor knowledge<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
63
REPORTS<br />
Heat Treatment<br />
knowledge <strong>management</strong> is <strong>of</strong> existential importance <strong>in</strong> many<br />
sectors <strong>of</strong> <strong>in</strong>dustry. Today, knowledge as an <strong>in</strong>dependent<br />
production factor is so important that it must be actively managed<br />
– which is why we talk about ‘knowledge <strong>management</strong>’.<br />
Data, <strong>in</strong>formation, knowledge –<br />
the knowledge pyramid<br />
Data, <strong>in</strong>formation and knowledge form a pyramid. <strong>Knowledge</strong><br />
is the tip <strong>of</strong> the pyramid and data forms the base. Data refers<br />
to facts about events or <strong>process</strong>es, for example vibration<br />
measurements. When data is placed <strong>in</strong> context and given<br />
mean<strong>in</strong>g, it becomes <strong>in</strong>formation – for example the permissible<br />
vibration limit values for a specific part. P. Drucker, a<br />
pioneer <strong>of</strong> modern <strong>management</strong> theory, said, “Information<br />
is data with relevance and an <strong>in</strong>tended purpose.”<br />
<strong>Knowledge</strong>, on the other hand, is goal-oriented, networked<br />
<strong>in</strong>formation that <strong>in</strong>cludes expert op<strong>in</strong>ions and experience,<br />
for example how a vibration will probably develop<br />
<strong>in</strong>to a problem. <strong>Knowledge</strong> is always personal and usually<br />
problem-oriented. The difference between knowledge and<br />
<strong>in</strong>formation is not ultimately the most important question,<br />
but rather which data, <strong>in</strong>formation and knowledge is useful<br />
for an organisation and which is not.<br />
Explicit vs. tacit knowledge<br />
In literature, a dist<strong>in</strong>ction is made between explicit and tacit<br />
knowledge. The metaphor <strong>of</strong>ten used to expla<strong>in</strong> this is that<br />
<strong>of</strong> an iceberg. The part <strong>of</strong> the iceberg above water is explicit<br />
knowledge, and the part below water is tacit knowledge.<br />
Explicit knowledge is found <strong>in</strong> documents, books, forms,<br />
photos or draw<strong>in</strong>gs, for example. It can be stored, <strong>process</strong>ed<br />
and transmitted us<strong>in</strong>g any type <strong>of</strong> media. It can be logically<br />
expla<strong>in</strong>ed and practically applied. It would probably be more<br />
accurate to speak <strong>of</strong> ‘explicit <strong>in</strong>formation’, because it exists<br />
<strong>in</strong>dependently <strong>of</strong> a person.<br />
Tacit knowledge, on the other hand, has a personal quality.<br />
It is always l<strong>in</strong>ked to personal experience and personal skills.<br />
Core competencies are conta<strong>in</strong>ed with<strong>in</strong> tacit knowledge.<br />
On average, 80-90 % <strong>of</strong> the knowledge <strong>in</strong> a company is tacit.<br />
One <strong>of</strong> the ma<strong>in</strong> functions <strong>of</strong> knowledge <strong>management</strong> is<br />
the transformation <strong>of</strong> tacit knowledge <strong>in</strong>to explicit knowledge<br />
[2]. However, this is easier said than done. Michael Polanyi,<br />
known for his work <strong>in</strong> theory <strong>of</strong> knowledge, said <strong>in</strong> 1985,<br />
“We know more than we can tell.” Tacit knowledge can be<br />
<strong>in</strong>ternalised <strong>in</strong> such a way that it is no longer (consciously)<br />
accessible. For example, service technicians may be able to<br />
<strong>in</strong>tuitively assess the condition <strong>of</strong> a gas circulation fan and<br />
the repairs required by the runn<strong>in</strong>g noise, but be unable to<br />
expla<strong>in</strong> exactly how they do it. There are many publications<br />
deal<strong>in</strong>g with this problem, <strong>in</strong>clud<strong>in</strong>g methods for stor<strong>in</strong>g<br />
and transmitt<strong>in</strong>g knowledge, and especially for safeguard<strong>in</strong>g<br />
knowledge us<strong>in</strong>g storytell<strong>in</strong>g, m<strong>in</strong>d mapp<strong>in</strong>g, competence<br />
matrices and so on.<br />
Relevant knowledge<br />
Obviously, knowledge is only relevant to a company if it allows<br />
the company to solve problems or create someth<strong>in</strong>g new. It<br />
doesn’t matter whether this knowledge is tacit or explicit.<br />
The question <strong>of</strong> relevance is the most important one. Only<br />
when this question has been answered can we proceed to<br />
ask what knowledge is relevant.<br />
Probst et al. [3] def<strong>in</strong>e knowledge as the entirety <strong>of</strong> <strong>in</strong>sights<br />
and skills that <strong>in</strong>dividuals use to solve problems. This def<strong>in</strong>ition<br />
<strong>in</strong>cludes both theoretical knowledge and practical everyday<br />
rules and <strong>in</strong>structions.<br />
Accord<strong>in</strong>g to another, equally popular, def<strong>in</strong>ition, there is<br />
knowledge about why you do someth<strong>in</strong>g (know why), what<br />
you do (know what) and how to do it correctly (know how).<br />
Two additional factors are <strong>of</strong>ten added: know<strong>in</strong>g where to f<strong>in</strong>d<br />
<strong>in</strong>formation for a specific purpose (know where) and when<br />
what <strong>in</strong>formation is needed (know when). So knowledge is<br />
more than what is <strong>of</strong>ten referred to as ‘know-how’.<br />
Ma<strong>in</strong>tenance knowledge<br />
Ma<strong>in</strong>tenance demands specialised knowledge. It needs to be<br />
embedded <strong>in</strong> practical activity without neglect<strong>in</strong>g the transformation<br />
to an eng<strong>in</strong>eer<strong>in</strong>g discipl<strong>in</strong>e. A good ma<strong>in</strong>tenance<br />
department used to be one that fixed problems quickly, but<br />
now it is measured by its ability to prevent problems (breakdowns<br />
or faults) occurr<strong>in</strong>g <strong>in</strong> the first place. So a modern<br />
ma<strong>in</strong>tenance department must have an understand<strong>in</strong>g <strong>of</strong><br />
damage mechanisms and scientific methods relat<strong>in</strong>g to the<br />
changes caused by wear and tear. In other words, <strong>in</strong> addition<br />
to practical knowledge, it is <strong>in</strong>creas<strong>in</strong>gly important to know<br />
why someth<strong>in</strong>g is done <strong>in</strong> the way it is done.<br />
The role <strong>of</strong> the experts<br />
Experts are the ma<strong>in</strong> knowledge holders <strong>in</strong> a company. They<br />
have specialist knowledge and technical authority. They have<br />
experience and the ability to apply their knowledge to new<br />
situations. In other words, they are not just knowledge holders,<br />
but knowledge developers. This characteristic cannot<br />
necessarily be attributed to other knowledge holders, for<br />
example pure practitioners.<br />
When experts leave a company, their tacit <strong>in</strong>dividual knowledge<br />
is lost to the organisation. Some <strong>of</strong> their explicit knowledge<br />
rema<strong>in</strong>s, for example <strong>in</strong> the form <strong>of</strong> records, but as the<br />
metaphor <strong>of</strong> the iceberg shows, this is only the smaller part.<br />
The volatility <strong>of</strong> knowledge<br />
<strong>Knowledge</strong> is tied to people. There is always the risk that a<br />
knowledge holder will leave the company, for example due<br />
to retirement. Demographic change therefore plays an important<br />
role <strong>in</strong> ma<strong>in</strong>tenance pr<strong>of</strong>essions, where experience and<br />
knowledge are so important. We also shouldn’t forget that<br />
knowledge, too, becomes obsolete. The average half-life <strong>of</strong><br />
pr<strong>of</strong>essional technical knowledge is approximately five years,<br />
64 heat <strong>process</strong><strong>in</strong>g 3-2014
Heat Treatment<br />
REPORTS<br />
and considerably less for automation eng<strong>in</strong>eers and computer<br />
scientists. As paradoxical as this may sound, it is because our<br />
knowledge is currently explod<strong>in</strong>g – and therefore loses its<br />
value ever more quickly as a result <strong>of</strong> technological change.<br />
So sometimes it is important to forget what you know, get<br />
rid <strong>of</strong> ballast and be open to new ideas.<br />
WHAT IS KNOWLEDGE MANAGEMENT?<br />
Albert E<strong>in</strong>ste<strong>in</strong> is credited with say<strong>in</strong>g, “<strong>Knowledge</strong> means<br />
know<strong>in</strong>g where it’s written down.” He was probably th<strong>in</strong>k<strong>in</strong>g<br />
along similar l<strong>in</strong>es to the problem outl<strong>in</strong>ed at the start, “If<br />
my company only knew how much it knew”. For this reason,<br />
knowledge <strong>management</strong> is commonly discussed <strong>in</strong> the context<br />
<strong>of</strong> locat<strong>in</strong>g <strong>in</strong>formation or creat<strong>in</strong>g databases, and is <strong>of</strong>ten<br />
reduced to simply that. But merely build<strong>in</strong>g a database isn’t<br />
knowledge <strong>management</strong>. Databases are tools for <strong>in</strong>formation<br />
<strong>process</strong><strong>in</strong>g; sometimes data graveyards. At the beg<strong>in</strong>n<strong>in</strong>g a<br />
database is like a library without books – empty.<br />
The most familiar example <strong>of</strong> an external database is the<br />
Internet. To someone look<strong>in</strong>g for knowledge, the Internet is<br />
like a vast unsorted library without librarians to impose any<br />
k<strong>in</strong>d <strong>of</strong> order. Information stored on the web can be found<br />
with the help <strong>of</strong> search eng<strong>in</strong>es. A search turns up a huge<br />
amount <strong>of</strong> irrelevant and unverified <strong>in</strong>formation, to name just<br />
the two biggest problems, and the user must decide for themselves<br />
what is relevant and what is not, which <strong>in</strong>formation can<br />
be trusted and which cannot. There is no librarian to help.<br />
By contrast, document <strong>management</strong> systems represent<br />
an attempt to reproduce a more or less structured company<br />
memory. One <strong>of</strong> the ma<strong>in</strong> purposes <strong>of</strong> a document <strong>management</strong><br />
system is to store text documents (such as <strong>in</strong>stallation<br />
<strong>in</strong>structions, troubleshoot<strong>in</strong>g guides or criteria lists), draw<strong>in</strong>gs,<br />
pictures and so on <strong>in</strong> a central place and make them accessible<br />
to employees. Information is generally made available<br />
on a company <strong>in</strong>tranet. However, the documents must first<br />
be classified <strong>in</strong> order for the knowledge they conta<strong>in</strong> to be<br />
located quickly and <strong>in</strong> context. This sometimes <strong>in</strong>volves a lot<br />
<strong>of</strong> work and is only worth it if the ‘keyworded’ knowledge is<br />
<strong>of</strong> permanent relevance. This is rarely the case.<br />
Elements <strong>of</strong> knowledge <strong>management</strong><br />
We have seen so far that knowledge <strong>management</strong> is much<br />
more than just know<strong>in</strong>g where it’s written down. Probst et al.<br />
[3] go considerably further by def<strong>in</strong><strong>in</strong>g knowledge <strong>management</strong><br />
as a systematic <strong>process</strong> <strong>of</strong> organisational knowledge<br />
use and creation with<strong>in</strong> a company. In the authors’ view, the<br />
<strong>process</strong> proposed by Probst et al., shown <strong>in</strong> Fig. 2, is a good<br />
theoretical basis for knowledge <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance.<br />
The <strong>in</strong>dividual elements are briefly expla<strong>in</strong>ed below.<br />
<strong>Knowledge</strong> goals<br />
Corporate knowledge <strong>management</strong> beg<strong>in</strong>s with the def<strong>in</strong>ition<br />
<strong>of</strong> knowledge goals as part <strong>of</strong> the company strategy.<br />
Strategic<br />
level<br />
Operational<br />
level<br />
<strong>Knowledge</strong><br />
acquisition<br />
<strong>Knowledge</strong><br />
goals<br />
<strong>Knowledge</strong><br />
identification<br />
<strong>Knowledge</strong><br />
development<br />
<strong>Knowledge</strong><br />
assessment<br />
<strong>Knowledge</strong><br />
preservation<br />
<strong>Knowledge</strong><br />
distribution<br />
Fig. 2: Build<strong>in</strong>g blocks <strong>of</strong> knowledge <strong>management</strong><br />
These goals can be used both for plann<strong>in</strong>g and as a basis<br />
for implementation and performance monitor<strong>in</strong>g. This<br />
<strong>in</strong>cludes, for example, the direction <strong>in</strong> which the company<br />
wants to develop its knowledge and the fields <strong>in</strong> which it<br />
wants to achieve superior knowledge over competitors.<br />
<strong>Knowledge</strong> identification<br />
<strong>Knowledge</strong> identification creates transparency as to <strong>in</strong>ternally<br />
and externally available knowledge. This <strong>in</strong>cludes an<br />
analysis <strong>of</strong> the state <strong>of</strong> knowledge <strong>in</strong> the accessible environment<br />
(customers, suppliers, <strong>in</strong>dustry associations, etc.). A<br />
deficient analysis may result <strong>in</strong> <strong>in</strong>efficiency, <strong>in</strong>adequately<br />
justified decisions and duplications. <strong>Knowledge</strong> identification<br />
also entails the systematic evaluation <strong>of</strong> customer<br />
compla<strong>in</strong>ts, error analyses and customer surveys and the<br />
identification <strong>of</strong> employees with specific competencies.<br />
Not all knowledge needs to be with<strong>in</strong> the company itself,<br />
as long as it is accessible <strong>in</strong> some way.<br />
<strong>Knowledge</strong> acquisition<br />
Much <strong>of</strong> the knowledge a company needs is imported from<br />
external sources. External tra<strong>in</strong><strong>in</strong>g courses and sem<strong>in</strong>ars<br />
are the traditional sources, as well as <strong>in</strong>ternal tra<strong>in</strong><strong>in</strong>g and<br />
development programmes. There is also considerable and<br />
<strong>of</strong>ten untapped potential for knowledge acquisition <strong>in</strong> l<strong>in</strong>ks<br />
with customers, suppliers, competitors and cooperation<br />
partners.<br />
<strong>Knowledge</strong> development<br />
<strong>Knowledge</strong> development is complementary to knowledge<br />
acquisition. It revolves around develop<strong>in</strong>g new skills, products,<br />
new and better ideas and more effective <strong>process</strong>es.<br />
Much <strong>in</strong>ternal knowledge is tacit (remember the iceberg)<br />
and consists <strong>of</strong> experience and special skills not accessible<br />
to other employees. The essential aim is to pass this<br />
knowledge on to colleagues.<br />
<strong>Knowledge</strong><br />
utilization<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
65
REPORTS<br />
Heat Treatment<br />
<strong>Knowledge</strong> distribution<br />
<strong>Knowledge</strong> must be shared and distributed with<strong>in</strong> a company<br />
so that the entire organisation can use it. The distribution <strong>of</strong><br />
exist<strong>in</strong>g knowledge with<strong>in</strong> the company must be put <strong>in</strong>to<br />
practice and upheld. Shar<strong>in</strong>g <strong>in</strong>formation with colleagues<br />
and supervisors, as well as people outside the company at<br />
meet<strong>in</strong>gs, conferences and forums such as the Aichel<strong>in</strong> Ma<strong>in</strong>tenance<br />
Forum, is very important. Even a very good technical<br />
<strong>in</strong>frastructure cannot by itself satisfy the requirements <strong>of</strong><br />
knowledge shar<strong>in</strong>g and distribution. This is an opportunity<br />
for knowledge managers to play a key role.<br />
<strong>Knowledge</strong> utilisation<br />
The ultimate aim <strong>of</strong> knowledge <strong>management</strong> is to make<br />
productive use <strong>of</strong> knowledge for the benefit <strong>of</strong> the company.<br />
However, the successful identification and shar<strong>in</strong>g/distribution<br />
<strong>of</strong> knowledge will not by themselves ensure that knowledge<br />
is used effectively <strong>in</strong> everyday operations. The utilisation <strong>of</strong><br />
available knowledge must be accompanied and ensured by<br />
organisational measures, such as service plans.<br />
<strong>Knowledge</strong> preservation<br />
Once it has been acquired and developed, perhaps with great<br />
effort, knowledge must be reta<strong>in</strong>ed and kept up to date.<br />
Both the technical <strong>in</strong>frastructure (databases or document<br />
<strong>management</strong> systems) and the retention <strong>of</strong> experts with<strong>in</strong><br />
the company play the most important roles <strong>in</strong> this respect.<br />
There are plenty <strong>of</strong> ways <strong>in</strong> which available knowledge can<br />
be quickly lost aga<strong>in</strong>, for example when employees leave<br />
the company.<br />
<strong>Knowledge</strong> assessment<br />
F<strong>in</strong>ally, the measures taken must be assessed. Have the <strong>in</strong>vestments<br />
<strong>in</strong> knowledge <strong>management</strong> paid <strong>of</strong>f? Are they mov<strong>in</strong>g<br />
<strong>in</strong> the right direction? Have the def<strong>in</strong>ed objectives been<br />
achieved? This evaluation is not at all easy because there are<br />
no standard measurements for knowledge.<br />
Cont<strong>in</strong>uous improvement <strong>process</strong><br />
The connect<strong>in</strong>g l<strong>in</strong>es between the various elements <strong>in</strong> Fig. 2<br />
show the <strong>in</strong>terdependencies at work. It is not sufficient to<br />
focus on one particular element to the exclusion <strong>of</strong> the rest.<br />
<strong>Knowledge</strong> <strong>management</strong> is a <strong>process</strong> without an explicit start<br />
and end, a <strong>process</strong> <strong>of</strong> cont<strong>in</strong>uous improvement. However, this<br />
wider def<strong>in</strong>ition <strong>of</strong> knowledge <strong>management</strong> is not yet evident<br />
<strong>in</strong> many organisations. Exist<strong>in</strong>g knowledge is not utilised, for<br />
example because <strong>in</strong>ternal knowledge is not valued enough<br />
and knowledge is acquired externally at high cost. Employees<br />
are sent on po<strong>in</strong>tless tra<strong>in</strong><strong>in</strong>g courses, the content <strong>of</strong> which<br />
they cannot apply <strong>in</strong> their jobs. Expensive document <strong>management</strong><br />
systems are <strong>of</strong>ten useless because the system does not<br />
conta<strong>in</strong> any relevant <strong>in</strong>formation. So there are many reasons<br />
to cont<strong>in</strong>ually re-implement the elements <strong>of</strong> knowledge <strong>management</strong><br />
and take appropriate corrective action.<br />
KNOWLEDGE MANAGEMENT<br />
IN MAINTENANCE<br />
<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance is associated with<br />
very specific requirements and problems. When it comes to<br />
the ma<strong>in</strong>tenance <strong>of</strong> complex mach<strong>in</strong>es and <strong>plants</strong>, ma<strong>in</strong>tenance<br />
knowledge has always been shared between a number<br />
<strong>of</strong> different pr<strong>of</strong>essions. Designers, operators, ma<strong>in</strong>tenance<br />
departments and external service teams need to pool their<br />
specific experience to come up with solutions to problems.<br />
Ma<strong>in</strong>tenance demands multidiscipl<strong>in</strong>ary knowledge – a<br />
comb<strong>in</strong>ation <strong>of</strong> mechanics, automation and <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />
The breadth and depth <strong>of</strong> knowledge required today can<br />
no longer be held by a s<strong>in</strong>gle <strong>in</strong>dividual. A modern ma<strong>in</strong>tenance<br />
department will carry out key <strong>process</strong>es cooperatively,<br />
i.e. <strong>in</strong> close collaboration with relevant specialists [4].<br />
The ma<strong>in</strong>tenance <strong>of</strong> complex <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> can<br />
only be achieved through a close <strong>in</strong>terl<strong>in</strong>k<strong>in</strong>g <strong>of</strong> theoretical<br />
knowledge, experience and practical activity. The extent to<br />
which ma<strong>in</strong>tenance has already developed <strong>in</strong>to an eng<strong>in</strong>eer<strong>in</strong>g<br />
discipl<strong>in</strong>e will be described us<strong>in</strong>g the example <strong>of</strong> knowledge<br />
<strong>management</strong> at Aichel<strong>in</strong> Service GmbH.<br />
Data base<br />
• Wear <strong>process</strong><br />
symptoms e.g.<br />
vibration, etc.<br />
• Wear <strong>process</strong> marks<br />
e.g. abrasion, etc.<br />
• Characteristic life-time<br />
data (MTBF)<br />
• Runn<strong>in</strong>g times or<br />
cycles<br />
• Repair times (MTTR)<br />
• Failure statistics<br />
• Limit values<br />
• …<br />
<strong>Knowledge</strong> goals<br />
• Service plans with<br />
ideal ma<strong>in</strong>tenance<br />
strategies<br />
• Functional wear<br />
models<br />
• Best practice guides<br />
• Lifetime data<br />
• Weak-po<strong>in</strong>ts<br />
• Hazards<br />
• Failure probabilities<br />
• FMEA, PFMEA<br />
• …<br />
Key <strong>process</strong>es<br />
• Inspection<br />
• Ma<strong>in</strong>tenance<br />
• Repair<br />
• CIP e.g. on energy,<br />
efficiency<br />
• Spare parts<br />
<strong>management</strong><br />
• Change <strong>management</strong><br />
• Remote services<br />
utilization<br />
• Cooperation<br />
• …<br />
<strong>Knowledge</strong> objectives <strong>in</strong> ma<strong>in</strong>tenance<br />
As a general rule, every ma<strong>in</strong>tenance key <strong>process</strong> requires<br />
several knowledge objectives. As shown <strong>in</strong> Fig. 3, knowledge<br />
objectives must be def<strong>in</strong>ed and the data basis or knowledge<br />
status must be assessed at a strategic level on the basis <strong>of</strong><br />
the key <strong>process</strong>es.<br />
The most important knowledge objectives <strong>in</strong> ma<strong>in</strong>tenance<br />
<strong>in</strong>clude a plant-specific service plan and an optimum<br />
ma<strong>in</strong>tenance strategy 2 for critical parts (for example<br />
a condition-based ma<strong>in</strong>tenance strategy). This requires the<br />
procurement <strong>of</strong> a lot <strong>of</strong> knowledge about the parts used, for<br />
Fig. 3: <strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance – Strategic level<br />
2 Ultimately, the ma<strong>in</strong>tenance strategy def<strong>in</strong>es what k<strong>in</strong>d <strong>of</strong> measure is carried<br />
out on def<strong>in</strong>ed ma<strong>in</strong>tenance objects and how <strong>of</strong>ten. [DIN EN 13306:<br />
Ma<strong>in</strong>tenance terms]<br />
66 heat <strong>process</strong><strong>in</strong>g 3-2014
Heat Treatment<br />
REPORTS<br />
example characteristic lifetime data. Other<br />
important knowledge objectives <strong>in</strong>clude<br />
best practice procedures, the identification<br />
<strong>of</strong> weak po<strong>in</strong>ts, failure mode and effects<br />
analyses and guides.<br />
Key ma<strong>in</strong>tenance <strong>process</strong>es<br />
Though, before the def<strong>in</strong>ition <strong>of</strong> knowledge<br />
objectives comes the question <strong>of</strong> relevance:<br />
we are talk<strong>in</strong>g primarily about ma<strong>in</strong>tenance<br />
key <strong>process</strong>es. This refers to the four basic<br />
measures named <strong>in</strong> DIN 31051 [5]: ma<strong>in</strong>tenance,<br />
<strong>in</strong>spection, repair and improvement.<br />
However, an optimum ma<strong>in</strong>tenance plan is<br />
not limited to these activities but <strong>in</strong>cludes<br />
further key <strong>process</strong>es such as efficiency<br />
enhancement, cost-optimised parts procurement<br />
and change <strong>management</strong>.<br />
Service<br />
plan<br />
Def<strong>in</strong>ition <strong>of</strong><br />
plant<br />
structure<br />
and ma<strong>in</strong>tenance<br />
strategies<br />
Functional wear<br />
model<br />
(1) (2.1) (2.3) (3.1)<br />
(7)<br />
Create a<br />
functional<br />
model <strong>of</strong><br />
wear<br />
<strong>process</strong><br />
conditions<br />
(2.2) (2.4)<br />
Determ<strong>in</strong>e<br />
wear<br />
<strong>process</strong><br />
limits<br />
Determ<strong>in</strong>e<br />
wear<br />
<strong>process</strong><br />
marks or<br />
symptoms<br />
Select a<br />
measurement<br />
technique<br />
Inspection, wear prediction<br />
and ma<strong>in</strong>tenance measures<br />
Def<strong>in</strong>ition <strong>of</strong><br />
specified<br />
conditions<br />
& detection<br />
<strong>of</strong> actual<br />
conditions<br />
(3.2)<br />
Readjust<br />
marks or<br />
symptoms<br />
<strong>of</strong> wear<br />
(4.1)<br />
(4.2)<br />
Document<strong>in</strong>g and archiv<strong>in</strong>g<br />
Evaluation<br />
and failure<br />
prediction<br />
Lifetime<br />
data<br />
statistics,<br />
e.g. MTBF<br />
(5.1)<br />
Determ<strong>in</strong>e<br />
ma<strong>in</strong>tenance<br />
measures<br />
(5.2)<br />
Adjust<br />
operat<strong>in</strong>g<br />
<strong>in</strong>structions<br />
CIP<br />
Weak po<strong>in</strong>t<br />
analysis<br />
(6.2)<br />
(6.1)<br />
Optimisation<br />
Data basis and knowledge evaluation<br />
In order to achieve the strategic knowledge<br />
objectives, the data basis and the<br />
atta<strong>in</strong>ed knowledge status must be regularly<br />
evaluated. A potential stick<strong>in</strong>g po<strong>in</strong>t<br />
is feedback from ma<strong>in</strong>tenance employees,<br />
for example after a condition assessment.<br />
Ma<strong>in</strong>tenance technicians are not writers,<br />
and if <strong>in</strong>formation is conveyed at all, it<br />
tends to be verbal. If data and <strong>in</strong>formation are not documented,<br />
they are not available for evaluation purposes etc.<br />
– either now or <strong>in</strong> the future. Not documented is like not<br />
been done!<br />
<strong>Knowledge</strong> managers are a critical success factor<br />
In the authors’ experience, a knowledge manager must<br />
be someone who holds the re<strong>in</strong>s for a particular knowledge<br />
area, an expert who proactively manages their own<br />
knowledge area. <strong>Knowledge</strong> managers ensure through<br />
effective personal communication that colleagues share<br />
their knowledge with one another. They motivate people<br />
to cooperate and make clear that it is the knowledge<br />
<strong>in</strong>side their heads that keeps the company competitive.<br />
They create organisationally embedded (explicit) action<br />
rout<strong>in</strong>es and rules, for example service plans or condition<br />
assessment checklists.<br />
<strong>Knowledge</strong> managers also form a l<strong>in</strong>k between those<br />
who possess knowledge and those who are try<strong>in</strong>g to f<strong>in</strong>d<br />
it. To return to the library metaphor, they are the librarians.<br />
They make sure that knowledge reaches the ma<strong>in</strong>tenance<br />
technician’s workplace and therefore produces a benefit.<br />
Hence, knowledge managers are much more than just<br />
adm<strong>in</strong>istrators <strong>of</strong> knowledge. They must have knowledge<br />
<strong>of</strong> their own and act as role models. Their success is also<br />
<strong>Knowledge</strong> goals <strong>Knowledge</strong> acquisition<br />
<strong>Knowledge</strong> identification <strong>Knowledge</strong> utilization<br />
<strong>Knowledge</strong> preservation<br />
dependent on their personal credibility and honesty, especially<br />
<strong>in</strong> the handl<strong>in</strong>g <strong>of</strong> other people’s <strong>in</strong>tellectual property.<br />
Practical example at operational level: knowledge<br />
<strong>management</strong> <strong>in</strong> condition-based ma<strong>in</strong>tenance<br />
Few ma<strong>in</strong>tenance strategies are so frequently mis<strong>in</strong>terpreted,<br />
or not fully <strong>in</strong>terpreted, as condition-based ma<strong>in</strong>tenance.<br />
Condition-based ma<strong>in</strong>tenance depends on recognisable<br />
wear <strong>of</strong> a unit detected dur<strong>in</strong>g an <strong>in</strong>spection 3 . The wear<br />
must be measurable and closely l<strong>in</strong>ked with the failure <strong>of</strong> the<br />
unit. For many components this is not the case, or cannot<br />
be formulated <strong>in</strong> a practically relevant way. Strictly speak<strong>in</strong>g,<br />
condition-based ma<strong>in</strong>tenance is not possible <strong>in</strong> this case.<br />
The basic idea <strong>of</strong> condition-based ma<strong>in</strong>tenance is to<br />
predict the rema<strong>in</strong><strong>in</strong>g lifetime <strong>of</strong> a part by compar<strong>in</strong>g a<br />
theoretical wear model and an <strong>in</strong>spection, as described<br />
<strong>in</strong> VDI guidel<strong>in</strong>e 2888 [6]. For reasons <strong>of</strong> economy, worn<br />
parts should cont<strong>in</strong>ue to be used for as long as possible<br />
before the part is replaced. Both, knowledge <strong>management</strong><br />
and practical ma<strong>in</strong>tenance activities with<strong>in</strong> this key <strong>process</strong><br />
are based on the <strong>process</strong> shown <strong>in</strong> Fig. 4, which <strong>in</strong> turn is<br />
based on VDI guidel<strong>in</strong>e 2888.<br />
3 Accord<strong>in</strong>g to DIN 31051, a unit is “any part, element, device, subsystem,<br />
functional unit, piece <strong>of</strong> equipment or system that can be considered on its<br />
own”.<br />
<strong>Knowledge</strong> development<br />
<strong>Knowledge</strong> assessment<br />
Fig. 4: <strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> condition-based ma<strong>in</strong>tenance – Operational level<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
67
REPORTS<br />
Heat Treatment<br />
100 %<br />
± 5 mm<br />
Wear marg<strong>in</strong><br />
Bulg<strong>in</strong>g <strong>of</strong> tube<br />
Wear marg<strong>in</strong> limit<br />
(maximum bulg<strong>in</strong>g <strong>of</strong> tube)<br />
+ 15 mm<br />
0 %<br />
Characteristic wear marks <strong>in</strong> the wear <strong>process</strong> model<br />
3 4<br />
5 Years<br />
Fig. 5: Example <strong>of</strong> a multi-purpose chamber furnace<br />
Fig. 6: Wear characteristic mark: Bulg<strong>in</strong>g <strong>of</strong> a radiant tube<br />
Ma<strong>in</strong>tenance tasks and knowledge <strong>management</strong> elements<br />
cannot be simply matched up because they usually<br />
overlap. Instead, the technical <strong>process</strong>es <strong>of</strong> ma<strong>in</strong>tenance and<br />
the organisational <strong>process</strong>es <strong>of</strong> knowledge <strong>management</strong><br />
are <strong>in</strong>terl<strong>in</strong>ked <strong>in</strong> a matrix. For clarity, <strong>in</strong> Fig. 4 the numbers<br />
<strong>in</strong> round brackets are referenced <strong>in</strong> the description below.<br />
Service plan<br />
To start with, for every plant there is an <strong>in</strong>dividual service plan<br />
(1), agreed with the customer, for example a service plan for<br />
a multi-purpose chamber furnace (Fig. 5). All elements <strong>of</strong><br />
knowledge <strong>management</strong> are <strong>in</strong>corporated <strong>in</strong> the service<br />
plan. For example, the knowledge objectives and knowledge<br />
identification are def<strong>in</strong>ed by the ma<strong>in</strong>tenance strategies. A<br />
well-designed service plan <strong>in</strong>cludes a list <strong>of</strong> system parts or<br />
sections requir<strong>in</strong>g ma<strong>in</strong>tenance and the associated ma<strong>in</strong>tenance<br />
activities. The allocation <strong>of</strong> ma<strong>in</strong>tenance activities<br />
<strong>in</strong>cludes the chosen ma<strong>in</strong>tenance strategy for the section or<br />
part (event-oriented, time-oriented or condition-oriented),<br />
<strong>in</strong>spection f<strong>in</strong>d<strong>in</strong>gs, and if necessary possible improvements.<br />
A service plan also <strong>in</strong>cludes the ma<strong>in</strong>tenance cycle and<br />
planned duration <strong>of</strong> activities. The <strong>in</strong>tervals for ma<strong>in</strong>tenance<br />
jobs are cont<strong>in</strong>ually reviewed and must be empirically<br />
adjusted to avoid too little or too much ma<strong>in</strong>tenance.<br />
Provid<strong>in</strong>g scheduled times for ma<strong>in</strong>tenance activities allows<br />
the required capacity to be predicted for both, staff plann<strong>in</strong>g<br />
and ma<strong>in</strong>tenance duration.<br />
All measures carried out are documented <strong>in</strong> the service<br />
plan. The proper documentation <strong>of</strong> ma<strong>in</strong>tenance is not only<br />
a legal requirement but also an important element <strong>of</strong> knowledge<br />
<strong>management</strong>, both for the ma<strong>in</strong>tenance department<br />
and even more for the operator.<br />
Def<strong>in</strong><strong>in</strong>g a wear model<br />
When it comes to produc<strong>in</strong>g a theoretical wear model,<br />
the biggest knowledge <strong>management</strong> problem is probably<br />
knowledge acquisition, because for furnace parts there are<br />
typically only a few examples to provide orientation. To<br />
produce the wear model we can avail ourselves <strong>of</strong> the wear<br />
marg<strong>in</strong> def<strong>in</strong>ed <strong>in</strong> DIN 31051 [5]. In this model a part has a<br />
limited wear marg<strong>in</strong>, which is reduced cont<strong>in</strong>ually through<br />
normal use and abruptly by extreme stress until it reaches<br />
the end <strong>of</strong> its useful life. Wear behaviour is described by<br />
the wear curve (2.1). The difficulty arises firstly from the<br />
determ<strong>in</strong>ation <strong>of</strong> the wear curve and secondly from the<br />
def<strong>in</strong>ition <strong>of</strong> the wear limit or optimum time at which the<br />
piece <strong>of</strong> equipment is preventatively replaced (2.2), which<br />
should be just before the time <strong>of</strong> failure. The closer the optimum<br />
date is to the time <strong>of</strong> failure, the greater the potential<br />
sav<strong>in</strong>gs compared with periodic, non-condition-based<br />
ma<strong>in</strong>tenance.<br />
As a further difficulty, wear is usually a comb<strong>in</strong>ation <strong>of</strong><br />
very different chemical and/or physical <strong>process</strong>es caused<br />
by various types <strong>of</strong> stress, such as friction, corrosion, fatigue,<br />
age<strong>in</strong>g, cavitation, fracture and temperature. Ma<strong>in</strong>tenance<br />
therefore tends to concentrate on the symptoms <strong>of</strong> wear,<br />
for example vibration. The symptoms <strong>of</strong> wear are different<br />
from wear per se. The best way to expla<strong>in</strong> the difference is<br />
by us<strong>in</strong>g an analogy. A viral <strong>in</strong>fection is caused by a virus,<br />
but because viruses themselves are very difficult to detect,<br />
we focus on the symptoms, such as fever, which are more<br />
easily measurable.<br />
As can be seen <strong>in</strong> Fig. 6, it is by no means straightforward<br />
to def<strong>in</strong>e measurable condition-based features or<br />
symptoms (2.3) for furnace parts, such as a radiant tube.<br />
However, without them it is impossible to def<strong>in</strong>e measurement<br />
variables and a measurement method for <strong>in</strong>spection<br />
purposes (2.4). Usually, a solution can be found. For<br />
example, the bulg<strong>in</strong>g <strong>of</strong> a radiant tube may appear to be<br />
‘only’ a qualitative wear characteristic, but it can be made<br />
measurable with relatively little effort – <strong>in</strong> this example<br />
us<strong>in</strong>g hole templates <strong>of</strong> different diameters. The measur-<br />
68 heat <strong>process</strong><strong>in</strong>g 3-2014
Heat Treatment<br />
REPORTS<br />
able characteristic wear marks can then be assigned a limit<br />
(the wear marg<strong>in</strong> limit). Most parts will have more than one<br />
wear characteristic, each with its own wear limit.<br />
Inspection<br />
In accordance with DIN 31051 [5], the <strong>in</strong>spection <strong>in</strong>cludes<br />
all measures designed to establish and evaluate the current<br />
condition, <strong>in</strong>clud<strong>in</strong>g the identification <strong>of</strong> causes<br />
<strong>of</strong> wear and the def<strong>in</strong>ition <strong>of</strong> necessary consequences<br />
for future use. With condition-based ma<strong>in</strong>tenance the<br />
<strong>in</strong>spected condition must be correlated with the theoretical<br />
wear curve and wear characteristics def<strong>in</strong>ed <strong>in</strong> the<br />
wear model (3.1). This is the key characteristic <strong>of</strong> conditionbased<br />
ma<strong>in</strong>tenance. Because wear (friction, corrosion,<br />
fatigue, age<strong>in</strong>g etc.) is <strong>of</strong>ten very difficult to measure<br />
directly if at all, ma<strong>in</strong>tenance and <strong>in</strong>spection criteria are<br />
primarily concerned with the symptoms <strong>of</strong> wear, such<br />
as unbalance, <strong>in</strong>creased temperature or noise, which are<br />
more easily measurable.<br />
Sometimes more suitable wear characteristics or symptoms<br />
only become apparent through experience. In this<br />
case the def<strong>in</strong>ed target and actual characteristics may<br />
have to be adjusted (3.2). Only a very few furnace parts<br />
can be constantly monitored with a condition monitor<strong>in</strong>g<br />
system (CMS), for example to measure the unbalance <strong>of</strong> a<br />
gas circulation fan. All other parts, particularly <strong>in</strong>side the<br />
furnace, require <strong>in</strong>spection by a suitably qualified person.<br />
The possibilities <strong>of</strong> CMS <strong>in</strong> <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> are<br />
<strong>of</strong>ten seriously overestimated. Dur<strong>in</strong>g the <strong>in</strong>spection it<br />
is essential to utilise and develop exist<strong>in</strong>g knowledge. In<br />
other words, the condition assessment should always be<br />
carried out with reference to a checklist <strong>of</strong> criteria – otherwise<br />
the results <strong>of</strong> an <strong>in</strong>spection are just the personal<br />
op<strong>in</strong>ion <strong>of</strong> the <strong>in</strong>spector.<br />
Forecast<br />
If we assume that the unit is still <strong>in</strong>tact at the present time,<br />
then the forecast concerns the rema<strong>in</strong><strong>in</strong>g time until probable<br />
failure. Based on a comparison <strong>of</strong> the theoretical wear<br />
model and the practical <strong>in</strong>spection, the task is to predict<br />
whether a part can cont<strong>in</strong>ue to be used until the next<br />
ma<strong>in</strong>tenance, needs to be repaired, or needs to be replaced<br />
immediately (4.1).<br />
If the wear is approximately proportional to the service<br />
life <strong>in</strong> the relevant time period <strong>of</strong> the wear model, the<br />
forecast is very straightforward. The probable time <strong>of</strong><br />
failure can then be mentally extrapolated us<strong>in</strong>g the rule<br />
<strong>of</strong> proportion. Although <strong>in</strong> many cases the wear marg<strong>in</strong><br />
cannot be assumed to be l<strong>in</strong>ear, it is usually possible, on<br />
the basis <strong>of</strong> experience, to estimate the failure risk <strong>of</strong> a<br />
part before the next ma<strong>in</strong>tenance. Failure rates and the<br />
characteristic lifetime <strong>of</strong> a unit <strong>of</strong> this k<strong>in</strong>d are also taken<br />
<strong>in</strong>to account (4.2).<br />
Reliability forecasts based on failure rates<br />
If condition-based ma<strong>in</strong>tenance is not possible because<br />
no measurements or qualitative wear characteristics can<br />
be noted, we can revert to (time-based) predictive ma<strong>in</strong>tenance<br />
with MTBF values, or the technical failure rate. For<br />
this purpose it is assumed that identical parts always wear<br />
<strong>in</strong> the same way every time. The failure rate (<strong>of</strong>ten shown<br />
as a bathtub curve) can be mathematically calculated very<br />
easily us<strong>in</strong>g a Weibull distribution 4 . To calculate a reliability<br />
forecast us<strong>in</strong>g the Weibull distribution, we simply need<br />
to know the characteristic lifetime and the form factor<br />
that characterises the failure behaviour [7, 8]. However, this<br />
alternative will not be discussed further here; the quoted<br />
sources should be consulted for more <strong>in</strong>formation.<br />
Measures (ma<strong>in</strong>tenance and repairs)<br />
The necessary ma<strong>in</strong>tenance or repairs are then carried<br />
out <strong>in</strong> accordance with the forecast (5.1). These measures<br />
typically <strong>in</strong>clude clean<strong>in</strong>g, lubrication and the replacement<br />
or repair <strong>of</strong> parts. The operat<strong>in</strong>g <strong>in</strong>structions may also be<br />
updated if necessary (5.2).<br />
Cont<strong>in</strong>uous improvement<br />
The aim <strong>of</strong> cont<strong>in</strong>uous improvement <strong>in</strong> condition-based<br />
ma<strong>in</strong>tenance is to cont<strong>in</strong>ually improve the quality <strong>of</strong> ma<strong>in</strong>tenance<br />
<strong>process</strong>es through small <strong>in</strong>cremental changes.<br />
Cont<strong>in</strong>uous improvement is a central <strong>process</strong> <strong>in</strong> both<br />
knowledge <strong>management</strong> and condition-based ma<strong>in</strong>tenance,<br />
requir<strong>in</strong>g errors and weak po<strong>in</strong>ts to be cont<strong>in</strong>ually<br />
re-analysed (6.1) and optimised (6.2).<br />
Documentation<br />
Documentation is a central <strong>process</strong> with<strong>in</strong> knowledge<br />
<strong>management</strong> (7). Protect<strong>in</strong>g acquired knowledge is vital<br />
to the success <strong>of</strong> a company. Useful improvement cannot<br />
be achieved without documentation. Only once a relevant<br />
volume <strong>of</strong> data has been evaluated can weak po<strong>in</strong>ts be<br />
clearly identified and probability statements be made as<br />
to the failure behaviour <strong>of</strong> particular parts.<br />
In day-to-day operations, however, ma<strong>in</strong>tenance documentation<br />
is <strong>of</strong>ten given secondary importance or neglected<br />
altogether. As a result, the results <strong>of</strong> <strong>in</strong>spections and<br />
measures carried out <strong>of</strong>ten go unrecorded, and no record<br />
rema<strong>in</strong>s <strong>of</strong> the quantitative or qualitative measurements <strong>of</strong><br />
the actual condition or the forecasts and measures based<br />
on them. If someth<strong>in</strong>g is not documented, it is like not been<br />
done. Quite apart from the requirements <strong>of</strong> knowledge<br />
<strong>management</strong>, it should be borne <strong>in</strong> m<strong>in</strong>d that the test<strong>in</strong>g,<br />
ma<strong>in</strong>tenance and upkeep <strong>of</strong> safety equipment is required<br />
by law, and records must be kept for this reason alone. The<br />
4 The supplementary use <strong>of</strong> mathematical methods is characteristic <strong>of</strong> predictive<br />
ma<strong>in</strong>tenance.<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
69
REPORTS<br />
Heat Treatment<br />
crucial importance <strong>of</strong> documentation cannot therefore be<br />
over-emphasised.<br />
CONCLUSION<br />
A few years ago knowledge <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance<br />
was still the exception, but it has now become an essential<br />
component <strong>of</strong> forward-look<strong>in</strong>g strategies <strong>in</strong> pr<strong>of</strong>essional<br />
ma<strong>in</strong>tenance organisations. Good knowledge <strong>management</strong><br />
enables these organisations to exploit the full potential<br />
<strong>of</strong> ma<strong>in</strong>tenance. Condition-based ma<strong>in</strong>tenance is an<br />
organisationally and technically complex task. In few areas<br />
<strong>of</strong> ma<strong>in</strong>tenance theory and practice are so closely l<strong>in</strong>ked.<br />
Condition-based ma<strong>in</strong>tenance is not possible without<br />
knowledge <strong>management</strong>, because the prediction <strong>of</strong> service<br />
life always requires a comparison <strong>of</strong> the <strong>in</strong>spection<br />
(practice) with the previously def<strong>in</strong>ed wear characteristics<br />
(theory). <strong>Knowledge</strong> managers play a central role <strong>in</strong> this<br />
<strong>process</strong>, particularly as they represent the l<strong>in</strong>k between<br />
theory and practice.<br />
<strong>Knowledge</strong> <strong>management</strong> is an ongo<strong>in</strong>g <strong>process</strong> that<br />
depends on the team performance <strong>of</strong> the organisation as<br />
a whole. When it comes to knowledge development and<br />
application <strong>in</strong> the key <strong>process</strong> <strong>of</strong> condition-based ma<strong>in</strong>tenance,<br />
manufacturers’ service teams can contribute their<br />
additional knowledge (e.g. design knowledge, <strong>process</strong><br />
eng<strong>in</strong>eer<strong>in</strong>g, possession <strong>of</strong> the technical documentation or<br />
<strong>in</strong>formation dur<strong>in</strong>g the warranty period). This has enormous<br />
benefits for the customer, too.<br />
LITERATURE<br />
[1] Filounek, A.: <strong>Knowledge</strong> Management <strong>in</strong> the Ma<strong>in</strong>tenance <strong>of</strong><br />
Thermal Process Plants. Presentation at Aichel<strong>in</strong> Ma<strong>in</strong>tenance<br />
Forum 2013. Korntal-Münch<strong>in</strong>gen, 2013<br />
[2] Nonaka, I.; Takeuchi, H.: Die Organisation des Wissens: Wie<br />
japanische Unternehmen e<strong>in</strong>e brachliegende Ressource<br />
nutzbar machen. Frankfurt am Ma<strong>in</strong>, 1997<br />
[3] Probst, G.; Raub, S.; Romhardt, K.: Wissen managen: wie<br />
Unternehmen ihre wertvollste Ressource optimal nutzen.<br />
Gabler, Wiesbaden, 2006<br />
[4] Hiller, M.; Steck-W<strong>in</strong>ter, H.: Kooperative Instandhaltung von<br />
Thermoprozessanlagen. gwi – gaswärme <strong>in</strong>ternational<br />
3-2013, Vulkan-Verlag, Essen, 2013<br />
[5] DIN 31051:2012-09. Grundlagen der Instandhaltung. Beuth<br />
Verlag Berl<strong>in</strong>, 2012<br />
[6] VDI: Richtl<strong>in</strong>ie 2888, Zustandsorientierte Instandhaltung.<br />
Beuth Verlag, Berl<strong>in</strong>, 1999<br />
[7] Steck-W<strong>in</strong>ter, H.: Instandhaltungskennzahlen. Gaswärme<br />
International Nr. 3/2012, Vulkan Verlag Essen, 2012<br />
[8] Steck-W<strong>in</strong>ter, H.: Vorausschauende Instandhaltung von<br />
Thermoprozessanlagen. Gaswärme International Nr. 3/2011,<br />
Vulkan Verlag Essen, 2011<br />
AUTHORS<br />
Dr. Hartmut Steck-W<strong>in</strong>ter<br />
Aichel<strong>in</strong> Service GmbH<br />
Ludwigsburg, Germany<br />
Tel.: +49 (0) 7141 / 6437 106<br />
hartmut.steck-w<strong>in</strong>ter@aichel<strong>in</strong>.com<br />
Dr.-Ing. Axel Filounek<br />
Aichel<strong>in</strong> Service GmbH<br />
Ludwigsburg, Germany<br />
Tel.: +49 (0) 7141 / 6437 528<br />
axel.filounek@aichel<strong>in</strong>.com<br />
Visit us at the HK 2014<br />
Vulkan-Verlag<br />
Hall 4.1 / Booth G 018<br />
22 - 24 October 2014<br />
Koelnmesse, Cologne<br />
Germany<br />
70 heat <strong>process</strong><strong>in</strong>g 3-2014
Measur<strong>in</strong>g & Process Control<br />
REPORTS<br />
Impacts <strong>of</strong> allowed tolerances <strong>in</strong><br />
temperature on nitrid<strong>in</strong>g results<br />
by Karl-Michael W<strong>in</strong>ter<br />
In recent years, nitrid<strong>in</strong>g and nitrocarburiz<strong>in</strong>g have ga<strong>in</strong>ed more and more importance <strong>in</strong> the heat treatment <strong>of</strong> components.<br />
While only a few years ago, it has been common to perform these <strong>process</strong>es with fixed set temperatures and gas<br />
flows, today so-called potential control became state <strong>of</strong> the art. Consequently, besides appropriate temperature uniformity<br />
nowadays also permissible tolerances <strong>in</strong> atmosphere potential control are required. The article uses the example <strong>of</strong><br />
the American aerospace specifications SAE AMS2759/10 and 2750D on the extent to how the there<strong>in</strong> required tolerance<br />
bands allow for stay<strong>in</strong>g with<strong>in</strong> the specified tolerances <strong>of</strong> given compound layer thickness. Intensive experiments were<br />
conducted us<strong>in</strong>g pure iron, carbon steels AISI 1018 and 1070 , the high-tensile steel AISI 4140 and the hot work tool steel<br />
AISI H13, where potentials and temperatures have been varied over a wide range <strong>in</strong> order to make qualified conclusions.<br />
As a follow up on an article about the impact <strong>of</strong> measurement errors on nitrid<strong>in</strong>g and nitrocarburiz<strong>in</strong>g results (Gaswärme<br />
International (60) No. 3/2011 and Heat Process<strong>in</strong>g (9) No. 3/2011) requirements for measurement <strong>in</strong>struments and furnace<br />
equipment are additionally considered. In a second series <strong>of</strong> experiments, <strong>process</strong> setup has been varied, <strong>in</strong> order to<br />
quantify the <strong>in</strong>fluence <strong>of</strong> heat<strong>in</strong>g and cool<strong>in</strong>g with <strong>in</strong>ert gas or <strong>process</strong> gas and nitrogen diluted atmospheres.<br />
Goal <strong>of</strong> a classical nitrid<strong>in</strong>g / nitrocarburiz<strong>in</strong>g treatment<br />
is to <strong>in</strong>duce nitrogen / nitrogen and carbon<br />
<strong>in</strong>to the surface <strong>of</strong> a part <strong>in</strong> order to enhance its<br />
mechanical and chemical properties. The treatment is<br />
typically performed <strong>in</strong> a temperature range between 490<br />
and 590 °C. At this temperature nitrogen / nitrogen and<br />
carbon will diffuse <strong>in</strong>to the ferritic structure <strong>of</strong> the material.<br />
Because <strong>of</strong> the comparably low temperature (below<br />
A C1 <strong>in</strong> the iron – nitrogen system <strong>of</strong> ferritic steels) there<br />
will be no phase change forced <strong>in</strong> the base material and<br />
the hardness <strong>in</strong>crease is given by lattice distortion created<br />
by <strong>in</strong>terstitially placed nitrogen / nitrogen and carbon<br />
but mostly by formation <strong>of</strong> nitrides / carbonitrides with<br />
nitride form<strong>in</strong>g alloy<strong>in</strong>g elements such as chromium,<br />
alum<strong>in</strong>um, titanium etc. In addition, nitrogen also has a<br />
high aff<strong>in</strong>ity to iron which may also evolve <strong>in</strong>to the formation<br />
<strong>of</strong> a so-called compound layer (CL), also known<br />
as white layer. This very hard ceramic layer <strong>of</strong>fers very<br />
low friction and high resistivity to chemical aggression<br />
and may consist <strong>of</strong> Fe 4 N γ‘-nitrides, Fe 2-3 N[C] ε-(carbo)-<br />
nitrides or a mixture <strong>of</strong> both. Depend<strong>in</strong>g on material and<br />
the planned for stress scenario once the parts are <strong>in</strong> use,<br />
either the nitrogen diffusion depth and with it the effective<br />
hardness depth or the dimension and composition<br />
<strong>of</strong> the compound layer will be <strong>in</strong> the focus <strong>of</strong> the treatment.<br />
The temperature and atmosphere dependence <strong>of</strong><br />
the formation <strong>of</strong> such iron (carbo)-nitrides for pure iron<br />
is shown <strong>in</strong> the Lehrer Diagram (Fig. 1).<br />
Fig. 1: Fe-N Lehrer Diagram with iso-concentration-l<strong>in</strong>es<br />
for Nitrogen <strong>in</strong> the Epsilon phase [1, 2], nitrid<strong>in</strong>g<br />
potential K N <strong>in</strong> bar -0.5<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
71
REPORTS<br />
Measur<strong>in</strong>g & Process Control<br />
Fig. 2: K N ranges for AISI 4140 versus temperature for white layer thickness<br />
classes 0, 1 and 2<br />
Specified parameters for nitrided and nitrocarburized<br />
parts are [3]:<br />
■■<br />
Surface hardness,<br />
■■<br />
Core hardness,<br />
■■<br />
Case depth (NHD for nitrid<strong>in</strong>g hardness depth), either<br />
effective (<strong>in</strong> relation to a given reference hardness) or<br />
core hardness plus 50 HV,<br />
■■<br />
Compound layer thickness (CLT).<br />
Often, there might be additional requirements such as:<br />
■■<br />
Compound layer composition,<br />
■■<br />
Thickness <strong>of</strong> allowed for porous layer respectively percentage<br />
<strong>of</strong> porosity.<br />
The nitrid<strong>in</strong>g <strong>process</strong>es discussed <strong>in</strong> the article will ma<strong>in</strong>ly<br />
focus on a comparably deep diffusion depth to <strong>in</strong>crease<br />
load resistance. In this <strong>process</strong> the formation <strong>of</strong> a compound<br />
layer is rather unwanted as this layer is very brittle<br />
and tends to break out; consequently the thickness <strong>of</strong> the<br />
compound layer should not exceed a given limit.<br />
SPECIFICATIONS<br />
As early as <strong>in</strong> 1987, the SAE International, an <strong>in</strong>ternationally<br />
active U.S. American organization for standardization <strong>of</strong><br />
automotive and aerospace part manufactur<strong>in</strong>g <strong>in</strong>troduced<br />
a specification for nitrid<strong>in</strong>g <strong>of</strong> aerospace parts, giv<strong>in</strong>g a classification<br />
<strong>of</strong> the treated parts <strong>in</strong> relation to the maximum<br />
allowed for compound layer thickness. In the document,<br />
nitrid<strong>in</strong>g parameters temperature and dissociation degree<br />
are specified [4]. Classified are: nitrid<strong>in</strong>g to a maximum<br />
compound layer thickness <strong>of</strong> either 12.7 microns (Class 1)<br />
or 23 microns (Class 2). In order to achieve the given classes,<br />
the specification also requires good temperature uniformity<br />
(+/- 8 °C) and a tight control <strong>of</strong> the dissociation (+/- 5 % <strong>of</strong><br />
setpo<strong>in</strong>t). The <strong>process</strong> may be performed <strong>in</strong> one or two<br />
stages, the stages differ<strong>in</strong>g <strong>in</strong> temperature, dissociation<br />
or both. Typically the first stage starts at low temperature<br />
and low dissociation followed by a second stage at<br />
higher temperature and high dissociation. The first stage<br />
(nucleation) is aim<strong>in</strong>g for a very little closed compound<br />
layer, later used as a diffusion reservoir, while the second<br />
stage uses the higher temperature to produce the desired<br />
case depth without excessively <strong>in</strong>creas<strong>in</strong>g the compound<br />
layer thickness.<br />
The dissociation degree is given by the <strong>thermal</strong> dissociation<br />
<strong>of</strong> ammonia (1) <strong>in</strong>to nitrogen and hydrogen and<br />
describes the percentage <strong>in</strong> the exhaust gas no longer<br />
be<strong>in</strong>g ammonia. Dissociation can easily be measured us<strong>in</strong>g<br />
a water burette.<br />
(1) Thermal dissociation<br />
Unfortunately, this specification is not applicable to nitrogen<br />
diluted atmospheres as the ratio between ammonia<br />
and dissociated ammonia cannot be determ<strong>in</strong>ed correctly.<br />
Partially out <strong>of</strong> this reason, the requirements have been<br />
modified <strong>in</strong> 1999 by launch<strong>in</strong>g the AMS2759/10 [5]. In this<br />
specification the atmosphere control parameter dissociation<br />
has been replaced by the nitrid<strong>in</strong>g potential K N , better<br />
describ<strong>in</strong>g nitrid<strong>in</strong>g phenomena and not affected by<br />
nitrogen dilution. In addition to the two classes specified<br />
<strong>in</strong> AMS2759/6 a new class has been added aim<strong>in</strong>g for no<br />
compound layer at all (Class 0). The limits for classes one<br />
and two have been slightly changed to 13 microns and<br />
25 microns.<br />
From the nitrid<strong>in</strong>g reaction (2) can be observed that the<br />
nitrogen uptake is proportional to the partial pressure ratio<br />
<strong>of</strong> ammonia to hydrogen; establish<strong>in</strong>g equilibrium between<br />
atmosphere and nitrogen percentage <strong>in</strong> the very surface<br />
<strong>of</strong> the material which can be described by the nitrid<strong>in</strong>g<br />
potential (3) and the actual <strong>process</strong> conditions, given by<br />
temperature and percentages <strong>of</strong> alloy<strong>in</strong>g elements.<br />
(2) Nitrid<strong>in</strong>g reaction<br />
(3) Nitrid<strong>in</strong>g potential<br />
In atmosphere consist<strong>in</strong>g exclusively <strong>of</strong> ammonia and dissociated<br />
ammonia both atmosphere parameters can easily<br />
be converted <strong>in</strong>to each other (4).<br />
(4) with D = Dissociation /<br />
100 %<br />
Like the older specification, the newer AMS2759/10 is giv<strong>in</strong>g<br />
tolerances for the <strong>process</strong> parameters.<br />
72 heat <strong>process</strong><strong>in</strong>g 3-2014
Measur<strong>in</strong>g & Process Control<br />
REPORTS<br />
Table 1: Recommended ranges <strong>of</strong> nitrid<strong>in</strong>g potential <strong>in</strong> AMS2759/10A (Excerpt)<br />
Steel Class 0 (no CL) Class 1 (max. 13 μm) Class 2 (max. 25 μm)<br />
Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2<br />
AISI 4140 4-12 0.25-0.7 4-15 0.6-2.6 4-15 1.2-4.5<br />
Carbon Steel N/A N/A 5-12 0.8-2.6 1.2-4.0 N/A<br />
PROCESS PARAMETERS AND TOLERANCES<br />
AMS2759/10 is def<strong>in</strong><strong>in</strong>g setpo<strong>in</strong>ts for the controlled nitrid<strong>in</strong>g<br />
potential depend<strong>in</strong>g on compound layer class and steel<br />
grade, for one and two stage <strong>process</strong>es (see Table 1). As<br />
the allowed for temperature range is set between 490 and<br />
590 °C, the table is <strong>in</strong>terpreted <strong>in</strong> such a way that at 490 °C<br />
the higher nitrid<strong>in</strong>g potential has to be applied and at<br />
590 °C the lower. In between the two extremes the potential<br />
is determ<strong>in</strong>ed by l<strong>in</strong>ear <strong>in</strong>terpolation. If, for example, an<br />
AISI 4140 shall be nitrided without formation <strong>of</strong> a compound<br />
layer at 548 °C, <strong>in</strong> the first stage a nitrid<strong>in</strong>g potential <strong>of</strong> 7.3<br />
(range 4-12) has to be applied. In the second stage, at the<br />
same temperature, the nitrid<strong>in</strong>g potential has to be reduced<br />
to 0.44 (range 0.25-0.7). Fig. 2 displays K N ranges versus<br />
temperature for this particular steel and all three classes. The<br />
black dashed l<strong>in</strong>es represent the phase boundaries towards<br />
Fe4N and Fe2-3N <strong>in</strong> the Lehrer Diagram.<br />
The atmosphere controller has to be able to ma<strong>in</strong>ta<strong>in</strong><br />
an actual nitrid<strong>in</strong>g potential stay<strong>in</strong>g with<strong>in</strong> +/- 10 % <strong>of</strong> the<br />
setpo<strong>in</strong>t. The maximum allowed for tolerances <strong>in</strong> our example<br />
come to 7.3 +/- 0.73 <strong>in</strong> stage one and 0.44 +/- 0.044 <strong>in</strong><br />
stage two.<br />
REQUIREMENTS ON MEASUREMENT<br />
EQUIPMENT<br />
Assum<strong>in</strong>g the <strong>process</strong> gas is consist<strong>in</strong>g <strong>of</strong> ammonia and<br />
dissociated ammonia only, the setpo<strong>in</strong>ts for nitrid<strong>in</strong>g<br />
potential can be converted <strong>in</strong>to volume percentages <strong>of</strong><br />
ammonia and hydrogen <strong>in</strong> exhaust. Dur<strong>in</strong>g stage one,<br />
residual ammonia has to be ma<strong>in</strong>ta<strong>in</strong>ed between 70.2<br />
and 73.0 %, the accord<strong>in</strong>g hydrogen percentage range<br />
comes to 20.2 to 22.4 %. For stage two, the ammonia<br />
percentage comes to 19.1 and 21.9 % and the hydrogen<br />
percentage comes to 60.7 and 58.6 %. Consequently, the<br />
measurement <strong>of</strong> ammonia requires a m<strong>in</strong>imum accuracy<br />
<strong>of</strong> 1.8 %, the measurement <strong>of</strong> hydrogen requires an accuracy<br />
<strong>of</strong> 2.1 %; both numbers related to a full scale (FS) <strong>of</strong><br />
100 %. These requirements, per se, should not cause any<br />
problems for commercially available measurement technique<br />
but the conditions will change over a range from<br />
zero to full scale and behave reciprocal for ammonia and<br />
hydrogen. If only one <strong>in</strong>strument is used to determ<strong>in</strong>e the<br />
nitrid<strong>in</strong>g potential and the correspond<strong>in</strong>g partial pressure<br />
is calculated, this will result <strong>in</strong> non-negligible errors. Fig. 3<br />
illustrates the relative error <strong>in</strong> calculated nitrid<strong>in</strong>g potential<br />
determ<strong>in</strong>ed by a<br />
hydrogen measurement<br />
and allow<strong>in</strong>g<br />
for vary<strong>in</strong>g allowed<br />
for tolerances on<br />
the full scale error.<br />
The deviations <strong>in</strong><br />
the hydrogen measurement<br />
are given<br />
<strong>in</strong> absolute volume<br />
percentages.<br />
Table 2: Furnace classes accord<strong>in</strong>g<br />
to AMS2750 D [7]<br />
(Excerpt)<br />
Furnace class<br />
Temperature<br />
uniformity<br />
1 +/- 3 °C<br />
2 +/- 6 °C<br />
3 +/- 8 °C<br />
4 +/- 10 °C<br />
REQUIREMENTS ON<br />
TEMPERATURE UNIFORMITY<br />
Nitrid<strong>in</strong>g equipment respectively heat treat<strong>in</strong>g furnaces<br />
are classified accord<strong>in</strong>g to their temperature uniformity.<br />
E.g. AMS2750D [7], orig<strong>in</strong>ally serv<strong>in</strong>g as basis for CQI-9, differentiates<br />
furnaces <strong>in</strong> an order shown <strong>in</strong> Table 2.<br />
Allow<strong>in</strong>g for a tolerance <strong>in</strong> temperature throughout the<br />
load automatically results <strong>in</strong> a variation <strong>in</strong> nitrid<strong>in</strong>g potential,<br />
as this number is a function <strong>of</strong> temperature accord<strong>in</strong>g<br />
to AMS2759/10. Consequently this raises the question at<br />
what allowed for temperature deviation the derived nitrid-<br />
Fig. 3: Relative error <strong>in</strong> the calculated nitrid<strong>in</strong>g potential<br />
<strong>of</strong> Ammonia – dissociated Ammonia atmosphere<br />
when us<strong>in</strong>g a Hydrogen analyzer [6]<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
73
REPORTS<br />
Measur<strong>in</strong>g & Process Control<br />
In addition, it is possible to set a higher surface nitrogen<br />
content (8), also <strong>in</strong>creas<strong>in</strong>g the growth rate.<br />
(6) Influence <strong>of</strong> diffusion coefficient on<br />
layer growth<br />
(7) Influence <strong>of</strong> temperature on diffusion<br />
coefficient<br />
(8) Influence <strong>of</strong> surface nitrogen<br />
content (cs) on layer growth<br />
referenced to specified<br />
nitrogen content (cx)<br />
Fig. 4: K N ranges for AISI 4140 versus temperature for white layer thickness<br />
classes 0, 1 and 2<br />
<strong>in</strong>g number will stay with<strong>in</strong> the given tolerances. Fig. 4<br />
shows a part <strong>of</strong> Fig. 2 at a temperature setpo<strong>in</strong>t <strong>of</strong> 548 °C<br />
and a maximum deviation <strong>of</strong> +/- 8 °C (furnace class 3). It<br />
can be seen that up to this furnace class the graph <strong>of</strong> the<br />
temperature dependent nitrid<strong>in</strong>g number is still with<strong>in</strong> the<br />
allowed for tolerance at set temperature. If a <strong>process</strong> would<br />
be performed <strong>in</strong> a higher furnace class, the <strong>process</strong> would<br />
not be longer comply<strong>in</strong>g with the specification. Based on<br />
a temperature setpo<strong>in</strong>t <strong>of</strong> 548 °C, the diagram displays a<br />
temperature range represent<strong>in</strong>g furnaces classes 1 through<br />
3. Nitrid<strong>in</strong>g potentials are shown with<strong>in</strong> the allowed for<br />
tolerances. The black dashed l<strong>in</strong>es represent the phase<br />
boundaries towards Fe 4 N and Fe 2-3 N <strong>in</strong> the Lehrer Diagram.<br />
PARAMETERS INFLUENCING<br />
COMPOUND LAYER GROWTH<br />
Hav<strong>in</strong>g a look on the allowed for tolerances presented up<br />
to this po<strong>in</strong>t <strong>in</strong> the article raises the question on how these<br />
deviations <strong>in</strong> temperature and potential will <strong>in</strong>fluence the<br />
growth <strong>of</strong> the compound layer and if it will still be possible<br />
to reach the required results. First <strong>of</strong> all, the growth <strong>of</strong> the<br />
compound layer is follow<strong>in</strong>g a square root <strong>of</strong> time law (5).<br />
(5) Diffusion controlled growth rate<br />
But this is only valid if a) the temperature and with it the<br />
diffusion coefficient and b) the expected percentage <strong>of</strong><br />
nitrogen <strong>in</strong> the surface <strong>in</strong> equilibrium with the atmosphere<br />
are constant. As an analogy, Fig. 5 is display<strong>in</strong>g the growth<br />
<strong>of</strong> a carbon pr<strong>of</strong>ile depend<strong>in</strong>g on time, temperature and<br />
carbon potential, achieved <strong>in</strong> a carburiz<strong>in</strong>g <strong>process</strong>. With<br />
<strong>in</strong>creas<strong>in</strong>g temperature the diffusion speed is <strong>in</strong>creas<strong>in</strong>g<br />
and consequently the growth <strong>of</strong> the layer is <strong>in</strong>creased (6, 7).<br />
NITRIDING TESTS<br />
A series <strong>of</strong> heat treatments has been performed on various<br />
steels <strong>in</strong> order to validate the <strong>in</strong>fluence <strong>of</strong> <strong>process</strong> parameters<br />
temperature and nitrid<strong>in</strong>g potential. Samples made<br />
from iron, carbon steels AISI 1018 and 1070, low alloy steel<br />
AISI 4140 and hot work<strong>in</strong>g steel AISI H13 were nitrided for<br />
4.5, 5 and 5.5 hours soak time at temperatures <strong>of</strong> 550 °C<br />
+/- 10 °C and a nitrid<strong>in</strong>g potential <strong>of</strong> K N = 3.5. Parts have<br />
been loaded <strong>in</strong>to the cold furnace, heated to 360 °C <strong>in</strong><br />
air and held for 5 m<strong>in</strong>utes. Afterwards the furnace was<br />
purged with nitrogen, filled with <strong>process</strong> gas and heated to<br />
<strong>process</strong> temperature <strong>in</strong> about 30 m<strong>in</strong>utes. After soak time,<br />
parts were cooled down to about 100 °C with nitrogen<br />
flow, with<strong>in</strong> approximately one hour. Test results <strong>in</strong>clud<strong>in</strong>g<br />
expected (calculated) results are listed <strong>in</strong> Table 3.<br />
It is clearly to observe that the measured results for the<br />
lower tolerance limit <strong>of</strong> temperature (550 °C - 10 °C) show<br />
good agreement with the calculated values, except for the<br />
hot work<strong>in</strong>g steel H13. However, at the upper tolerance limit<br />
(550 °C + 10 °C) measured compound layer thicknesses<br />
were significantly higher than expected. Fig. 6 illustrates<br />
this effect with the example <strong>of</strong> iron. A possible explanation<br />
for these differences is the higher effective nitrid<strong>in</strong>g<br />
potential <strong>in</strong> the phase diagram at the higher temperature<br />
and a longer heat<strong>in</strong>g time. Both effects have not been<br />
considered <strong>in</strong> the calculation.<br />
Table 3: Average measured and [expected] CL thicknesses<br />
for 550 °C, K N = 3.5, 5.5 hrs.<br />
Material<br />
Temperature<br />
540 °C 550 °C 560 °C<br />
Iron 12.5 [13.5] 15 23 [16.7]<br />
1018 8.5 [7.7] 10 20 [11.1]<br />
1070 13 [12.6] 14 18 [15.1]<br />
4140 9 [7.2] 8 15 [8.9]<br />
H13 2 [6.3] 7 7.5 [7.8]<br />
74 heat <strong>process</strong><strong>in</strong>g 3-2014
Measur<strong>in</strong>g & Process Control<br />
REPORTS<br />
Fig. 5: Parameters time (left), temperature (center) and temperature and carbon potential (right)<br />
INFLUENCE OF NITRIDING POTENTIAL ON<br />
THE GROWTH OF THE COMPOUND LAYER<br />
In a second series <strong>of</strong> tests performed at 550 °C, the nitrid<strong>in</strong>g<br />
potential was raised to K N = 10. The expected results were<br />
estimated us<strong>in</strong>g data from an extensive study conducted<br />
by the Stiftung Institut für Werkst<strong>of</strong>ftechnik (IWT) <strong>in</strong> Bremen<br />
[8] several years ago. Fig. 7 is based on data from this<br />
study, which was presented by Dr. Klümper-Westkamp<br />
dur<strong>in</strong>g a nitrid<strong>in</strong>g conference <strong>in</strong> Canada. The black dashed<br />
l<strong>in</strong>es show the phase boundaries towards Fe 4 N (left) and<br />
Fe 2-3 N (right) for iron. The red dashed l<strong>in</strong>e represents the<br />
phase boundary towards Fe 2-3 N[C] corrected for the carbon<br />
content <strong>of</strong> the steel.<br />
Us<strong>in</strong>g the square root <strong>of</strong> time relation and tak<strong>in</strong>g the<br />
change <strong>in</strong> diffusion speed and the temperature dependent<br />
displacement <strong>of</strong> the phase boundaries <strong>in</strong>to account, it is possible<br />
to transfer the diagram shown <strong>in</strong> Fig. 7 to the actual test<br />
conditions (550 °C, 5.5 hours soak time). The calculation for<br />
the Ck15 performed with HT-Tools Nitrid<strong>in</strong>g Simulation results<br />
<strong>in</strong> a compound layer thickness <strong>of</strong> 9 microns at K N = 3.5 and<br />
12 microns at K N = 10. The measured values for the AISI 1018,<br />
with very similar chemical composition, showed an average<br />
<strong>of</strong> 10 microns at K N = 3.5 and 12 microns for K N = 10.<br />
INFLUENCE OF TOLERANCE LIMITS ON THE<br />
ABILITY TO REACH THE SPECIFIED CLT<br />
In the same manner the expected variations were also estimated<br />
for the other steels and compared with the experimental<br />
results. From the results summarized <strong>in</strong> Table 4 can<br />
be seen that it is possible to meet the specification given<br />
for class 2 (13-25 microns CLT) for all the steels tested, with<br />
the exception <strong>of</strong> AISI 4140, and allow<strong>in</strong>g for a tolerance<br />
<strong>of</strong> +/- 10 °C <strong>in</strong> temperature and +/- 10 % variation <strong>in</strong> the<br />
nitrid<strong>in</strong>g potential.<br />
INFLUENCE OF PROCESS SETUP ON THE<br />
ABILITY TO REACH THE SPECIFIED CLT<br />
In another series <strong>of</strong> experiments, changes were made <strong>in</strong> the<br />
<strong>process</strong> setup. The aim was to determ<strong>in</strong>e the role played by<br />
heat<strong>in</strong>g with nitrogen as opposed to heat<strong>in</strong>g with <strong>process</strong><br />
Fig. 6: Calculated (red) und measured (blue) white layer<br />
thickness at constant K N and soak time for temperature<br />
deviation <strong>of</strong> +/- 10 °C<br />
Fig. 7: Measured white layer thickness for a Ck15, nitrided at 570 °C,<br />
10 hours soak time with vary<strong>in</strong>g nitrid<strong>in</strong>g potentials<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
75
REPORTS<br />
Measur<strong>in</strong>g & Process Control<br />
Table 4: Achievable tolerances <strong>in</strong> CLT when treated to class 2<br />
(13-25 μm WL) with allowed for +/- 10 % <strong>in</strong> nitrid<strong>in</strong>g<br />
potential <strong>in</strong> furnaces <strong>of</strong> classes 1 through 4<br />
Furnace class<br />
Material<br />
1: +/- 3 °C 2: +/- 6 °C 3: +/- 8 °C 4: +/- 10 °C<br />
Iron 17-21 16-22 16-22 15-23<br />
1018 18-20 17-21 17-21 16-22<br />
1070 17-20 16-20 16-21 16-21<br />
4140 10-21 10-22 10-23 10-23<br />
H13 16-20 15-21 15-21 15-22<br />
Table 5: White layer thickness μm after 5 hours at 550 °C and K N = 10<br />
Material Iron 1018 1070 4140 H13<br />
Nitrogen 22-23 N/A 16-25 12-16 9-13<br />
Ammonia 23-25 10-15 15-20 17-24 7-12<br />
gas and the use <strong>of</strong> nitrogen diluted atmospheres on layer<br />
formation and composition.<br />
For the heat<strong>in</strong>g experiments a <strong>process</strong> at 550 °C and<br />
K N = 10 was performed for 5 hours soak time, then cooled<br />
under nitrogen with<strong>in</strong> about one hour to 100 °C. The heat<strong>in</strong>g<br />
was carried out <strong>in</strong> a time span <strong>of</strong> about 1.5 hours, first with<br />
ammonia, next with nitrogen. Table 5 shows the achieved<br />
compound layer thicknesses. As might be expected, the<br />
compound layer thicknesses reached for heat<strong>in</strong>g with<br />
ammonia where slightly above the ones reached for heat<strong>in</strong>g<br />
with nitrogen. Heat<strong>in</strong>g was performed dur<strong>in</strong>g 1.5 hours with<br />
ammonia and with nitrogen. The parts have been cooled<br />
down with nitrogen for about one hour. Interest<strong>in</strong>g at this<br />
po<strong>in</strong>t is that for the AISI H13 little difference <strong>in</strong> the compound<br />
layer thickness was found, but the diffusion zone<br />
was significantly affected. While for heat<strong>in</strong>g under ammonia<br />
100 microns diffusion layer was achieved, for heat<strong>in</strong>g under<br />
nitrogen this was reduced to only 90 microns.<br />
Theoretically, AMS2759/10 should allow for diluted atmospheres,<br />
s<strong>in</strong>ce <strong>in</strong> this <strong>process</strong> the nitrid<strong>in</strong>g potential is controlled.<br />
However, <strong>in</strong> the past already Zimdars [9] proved that<br />
the results are strongly <strong>in</strong>fluenced with <strong>in</strong>creas<strong>in</strong>g dilution<br />
and the concomitant decrease <strong>in</strong> residual ammonia, despite<br />
constant nitrid<strong>in</strong>g potential, when reach<strong>in</strong>g a certa<strong>in</strong> dilution.<br />
From Table 6 it can be seen that a nitrogen dilution results<br />
<strong>in</strong> lower CLT. This is especially true for the higher alloyed H13,<br />
where no compound layer was observed at 90 % dilution. In<br />
addition, start<strong>in</strong>g with 70 % dilution the diffusion zone was<br />
not provided with sufficient nitrogen flow. This is expla<strong>in</strong>ed<br />
by the fact that no perfect nucleation on the surface has<br />
taken place, which results <strong>in</strong> an <strong>in</strong>sufficient and very irregular<br />
nitrid<strong>in</strong>g by itself.<br />
CONCLUSION<br />
The test results have shown that both, variations <strong>in</strong> temperature<br />
(+/- 10 °C) and variations <strong>in</strong> nitrid<strong>in</strong>g potential (+/- 10 %)<br />
have a non-negligible <strong>in</strong>fluence on the growth <strong>of</strong> the compound<br />
layer. The result<strong>in</strong>g too low nitrid<strong>in</strong>g potentials at the<br />
lower end <strong>of</strong> the temperature band as well as the too high<br />
nitrid<strong>in</strong>g potentials at the upper end <strong>of</strong> the temperature<br />
band, assum<strong>in</strong>g constant gas conditions, lead to a greater<br />
difference <strong>in</strong> CLT than expected from temperature deviation<br />
affect<strong>in</strong>g the diffusion speed only.<br />
Both allowed for tolerance bands require controll<strong>in</strong>g the<br />
nitrid<strong>in</strong>g potential to a value far enough away from the phase<br />
boundaries; the distance also reflect<strong>in</strong>g the capabilities <strong>of</strong> the<br />
measurement system and control deviations; this is taken <strong>in</strong>to<br />
account <strong>in</strong> the AMS2759/10. A treatment to class 1 and class 2<br />
(≤ 13 microns / ≤ 25 microns) can theoretically be performed<br />
<strong>in</strong> a furnace <strong>of</strong> class 3 (+/- 8 °C) and class 4 (+/- 10 °C).<br />
The steel AISI 4140 showed unexpected deviations for<br />
all tests performed and this will be <strong>in</strong>vestigated <strong>in</strong>to <strong>in</strong> a<br />
separate study. A treatment to class 0 (no compact layer<br />
permitted) requires the use <strong>of</strong> measurement devices with<br />
a maximum FS error <strong>of</strong> 0.5 % or better due to the very little<br />
distance to the phase boundaries.<br />
Process setup also has a tremendous <strong>in</strong>fluence on the<br />
nitrid<strong>in</strong>g result; e.g. heat<strong>in</strong>g with nitrogen requires longer<br />
nitrid<strong>in</strong>g times compared to heat<strong>in</strong>g <strong>in</strong> ammonia. As a consequence,<br />
parts with geometrical variations, such as a solid<br />
block with attached f<strong>in</strong>s, where the f<strong>in</strong>s will be heated faster<br />
Table 6: White layer thickness <strong>in</strong> μm after performed with vary<strong>in</strong>g nitrogen dilution<br />
Material<br />
N 2 Dilution<br />
Iron 1018 1070 4140 H13<br />
0 % 23-25 10-15 15-20 17-24 7-12 100<br />
20 % 19-21 26-32 14-25 13-16 8-9 100<br />
45 % 20-21 10-12 23 15-25 8-10 100<br />
70 % 17-19 16-19 20-27 12-17 7-9 95<br />
90 % 13-14 8-10 14-20 8-15 0 10-60<br />
H13 Diffusion<br />
Zone<br />
76 heat <strong>process</strong><strong>in</strong>g 3-2014
Measur<strong>in</strong>g & Process Control<br />
REPORTS<br />
compared to the solid block, should be heated <strong>in</strong> nitrogen<br />
and temperature stabilized prior to start <strong>in</strong>ject<strong>in</strong>g the nitrid<strong>in</strong>g<br />
atmosphere, <strong>in</strong> order not to risk non-uniform nitrid<strong>in</strong>g.<br />
Nitrogen dilution eventually will result <strong>in</strong> non-uniformly<br />
nitrided layers even if the nitrid<strong>in</strong>g potential is controlled<br />
perfectly to the setpo<strong>in</strong>t.<br />
ACKNOWLEDGEMENTS<br />
I would like to thank my colleagues Dimitri Koshel and Paulo<br />
Abrantes from Nitrex Montreal who performed the tests and<br />
evaluated the samples.<br />
[5] S.A.E. Aerospace: AMS2759/10A, Automated Gaseous Nitrid<strong>in</strong>g<br />
Controlled by Nitrid<strong>in</strong>g Potential<br />
[6] W<strong>in</strong>ter, K.-M.: Auswirkungen von Messfehlern auf das Behandlungsergebnis<br />
beim Nitrieren und Nitrocarburieren. Gaswärme<br />
International (60) Nr. 3/2011 and Heat Process<strong>in</strong>g (9) Nr. 3/2011<br />
[7] S.A.E. Aerospace: AMS2750D, Pyrometry<br />
[8] Klümper-Westkamp, H.: Multi Sensor Controlled Gas Nitrocarburiz<strong>in</strong>g<br />
for Optimized Properties <strong>of</strong> Component Parts and<br />
Tools, Vortrag auf dem Nitriersem<strong>in</strong>ar <strong>in</strong> Montreal, 2005<br />
[9] Zimdars, H.: Technologische Grundlagen für die Erzeugung<br />
nitridhaltiger Schichten <strong>in</strong> stickst<strong>of</strong>fangereicherten Nitrieratmosphären,<br />
Dissertation, TU Freiberg 1987<br />
LITERATURE<br />
[1] Lehrer, E.: Über das Eisen-Wasserst<strong>of</strong>f-Ammoniak-Gleichgewicht.<br />
Zeitschrift für Elektrochemie 36, 1930, p. 383-392<br />
[2] Spies, H.-J.; Berg, H.-J.; Zimdars, H.: Fortschritte beim sensorkontrollierten<br />
Gasnitrieren und -nitrocarburieren. Zeitschrift für<br />
Werkst<strong>of</strong>fe, Wärmebehandlung, Fertigung - HTM, 58, 4/2003, p.<br />
189-197<br />
[3] DIN ISO 15787: Technische Produktdokumentation - Wärmebehandelte<br />
Teile aus Eisenwerkst<strong>of</strong>fen - Darstellung und Angaben<br />
[4] S.A.E. Aerospace: AMS2759/6A, Gas Nitrid<strong>in</strong>g and Heat Treatment<br />
<strong>of</strong> Low-Alloy Steel Parts<br />
AUTHOR<br />
Dipl.-Ing. (FH) Karl-Michael W<strong>in</strong>ter<br />
Process-Electronic GmbH<br />
He<strong>in</strong><strong>in</strong>gen, Germany<br />
Tel.: +49 (0) 7161 / 94888-0<br />
km.w<strong>in</strong>ter@<strong>process</strong>-electronic.com<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
77
6th All Indian Exhibition<br />
& Conference for the<br />
Tube and Pipe Industries<br />
www.tube-<strong>in</strong>dia.com<br />
28 – 30 October 2014<br />
5th International Exhibition<br />
& Conference on Metallurgical<br />
Technology, Material Handl<strong>in</strong>g<br />
and Services<br />
www.metallurgy-<strong>in</strong>dia.com<br />
Bombay Convention & Exhibition Centre, Mumbai, India<br />
Held <strong>in</strong> conjunction with:<br />
WELDING<br />
Messe Düsseldorf GmbH<br />
CUTTING<br />
P.O. Box 10 10 06 _ 40001 Düsseldorf _ Germany<br />
&<br />
Phone +49 (0) 2 11/45 60-77 62 _ Fax +49 (0) 2 11/45 60-77 40<br />
SchreiberG@messe-duesseldorf.de<br />
78 heat <strong>process</strong><strong>in</strong>g 3-2014<br />
www.messe-duesseldorf.de
Induction Technology<br />
REPORTS<br />
Magnetic flux control <strong>in</strong><br />
<strong>in</strong>duction systems<br />
by Valent<strong>in</strong> Nemkov<br />
Magnetic flux controllers are widely used <strong>in</strong> <strong>in</strong>duction heat<strong>in</strong>g systems for concentration, shield<strong>in</strong>g or redistribution <strong>of</strong><br />
the magnetic field which generates power <strong>in</strong> the part to be heated. Controllers, made <strong>of</strong> S<strong>of</strong>t Magnetic Composites<br />
(SMC), provide accurate heat pattern control, improve parameters <strong>of</strong> <strong>in</strong>ductors and performance <strong>of</strong> the entire <strong>in</strong>stallation.<br />
In melt<strong>in</strong>g systems, especially <strong>in</strong> the case <strong>of</strong> vacuum furnaces, cold crucible and other specialty furnaces, the magnetic<br />
control can provide large energy sav<strong>in</strong>gs, magnetic field shield<strong>in</strong>g, shorter melt<strong>in</strong>g cycles and optimized field distribution<br />
for enhancement <strong>of</strong> the metallurgical <strong>process</strong>es. Due to the diversity <strong>of</strong> applications, service conditions <strong>of</strong> controllers<br />
are very different <strong>in</strong>clud<strong>in</strong>g very severe cases. Mechanical, magnetic, electrical, <strong>thermal</strong> and other properties must be<br />
considered <strong>in</strong> design and application <strong>of</strong> SMC. This article describes properties and performance <strong>of</strong> SMC typically used<br />
<strong>in</strong> <strong>in</strong>duction heat<strong>in</strong>g technology. Several presented case stories are based on more than 20 years <strong>of</strong> R&D and practical<br />
experience <strong>of</strong> scientists and practitioners at Fluxtrol, Inc. Presented material may be <strong>in</strong>terest<strong>in</strong>g not only for <strong>in</strong>duction<br />
heat<strong>in</strong>g community but also for all people us<strong>in</strong>g AC magnetic fields <strong>in</strong> technological <strong>process</strong>es.<br />
Magnetic flux control, i.e. modification <strong>of</strong> the<br />
magnetic field distribution and <strong>in</strong>tensity may<br />
be accomplished by variation <strong>of</strong> shape and<br />
position<strong>in</strong>g <strong>of</strong> the <strong>in</strong>duction coil turns, by <strong>in</strong>sertion <strong>of</strong><br />
the non-magnetic shields or the magnetic templates<br />
that may be all called the magnetic controllers. Each<br />
method <strong>of</strong> magnetic control has its own advantages,<br />
drawbacks and limitations.<br />
Induction coil designers pay ma<strong>in</strong> attention to optimisation<br />
<strong>of</strong> active conductors, their size, number and<br />
position. They try to avoid us<strong>in</strong>g additional components<br />
for the magnetic flux control <strong>in</strong> order to simplify<br />
design, reduce cost and possibility <strong>of</strong> the potential coil<br />
life time reduction. This approach is understandable<br />
but it is only partially correct. In today’s competitive<br />
market with new materials and technologies, more<br />
strict demands to the product quality and ergonomic<br />
requirements force us to review the exist<strong>in</strong>g guidel<strong>in</strong>es<br />
and make corrections to the design procedure. The<br />
ma<strong>in</strong> tool for that is computer simulation which can<br />
predict not only the <strong>process</strong> parameters but also life<br />
time <strong>of</strong> tool<strong>in</strong>g (<strong>in</strong>ductors) and service properties <strong>of</strong><br />
the f<strong>in</strong>al products [1]. Different methods <strong>of</strong> magnetic<br />
flux control must be considered <strong>in</strong> the <strong>process</strong> <strong>of</strong> new<br />
system development and modification <strong>of</strong> the exist<strong>in</strong>g<br />
equipment.<br />
Non-magnetic controllers (shields), typically made<br />
<strong>in</strong> the form <strong>of</strong> copper r<strong>in</strong>gs (Faraday r<strong>in</strong>gs), sheets or<br />
massive copper blocks, are <strong>of</strong>ten called “Robber R<strong>in</strong>gs”.<br />
Their use leads to <strong>in</strong>crease <strong>in</strong> the coil current, reduction<br />
<strong>in</strong> the <strong>in</strong>duction coil power factor and efficiency. However<br />
they may be less expensive and give good results<br />
<strong>in</strong> the case <strong>of</strong> shield<strong>in</strong>g. Magnetic flux concentration<br />
and accurate control <strong>of</strong> the power distribution by us<strong>in</strong>g<br />
Faraday r<strong>in</strong>gs are very problematic and require significant<br />
power adjustment.<br />
Use <strong>of</strong> magnetic flux controllers, made <strong>of</strong> s<strong>of</strong>t magnetic<br />
materials (steel lam<strong>in</strong>ations, ferrites and magnetic composites),<br />
is addressed <strong>in</strong> this paper. Application <strong>of</strong> magnetic<br />
controllers can <strong>in</strong>crease field <strong>in</strong>tensity <strong>in</strong> required areas<br />
(field concentration), change field distribution, shield certa<strong>in</strong><br />
areas from un<strong>in</strong>tended heat<strong>in</strong>g and strongly reduce<br />
magnetic field <strong>in</strong> external space. Typically several effects<br />
are be<strong>in</strong>g achieved simultaneously and a reasonable<br />
compromise must be found <strong>in</strong> the <strong>process</strong> <strong>of</strong> design.<br />
In some cases it is difficult or even impossible to meet<br />
specifications <strong>of</strong> heat<strong>in</strong>g without application <strong>of</strong> magnetic<br />
controllers. Effects <strong>of</strong> us<strong>in</strong>g magnetic controllers, design<br />
guidel<strong>in</strong>es and results prediction with the help <strong>of</strong> computer<br />
simulation are described <strong>in</strong> multiple publications [1-3].<br />
This presentation is focused on performance <strong>of</strong> materials<br />
used for magnetic flux control <strong>in</strong> different applications.<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
79
REPORTS<br />
Induction Technology<br />
MATERIALS FOR MAGNETIC FLUX CONTROL<br />
Ferrites<br />
Use <strong>of</strong> ferrites for magnetic flux control <strong>in</strong> <strong>in</strong>duction systems<br />
is limited to high frequency applications (typically<br />
above 100 kHz) such as impeders for HF tube weld<strong>in</strong>g,<br />
<strong>in</strong>ductors for seal<strong>in</strong>g and plastic weld<strong>in</strong>g, small braz<strong>in</strong>g<br />
coils, etc. Advantages <strong>of</strong> ferrites are: possibility to work at<br />
high frequencies (up to 13.56 MHz <strong>in</strong> some cases <strong>of</strong> <strong>in</strong>duction<br />
heat<strong>in</strong>g), high permeability <strong>in</strong> weak fields, high electrical<br />
resistivity (not for all grades <strong>of</strong> ferrites) and chemical<br />
resistance. However they have low saturation flux density<br />
(below 0.3-0.4 T), low Curie po<strong>in</strong>t (typically below 200-<br />
250 °C with up to 350 °C for some types). Ferrites are sensitive<br />
to <strong>thermal</strong> shocks, brittle and very hard, which makes<br />
manufactur<strong>in</strong>g the complex geometries by mach<strong>in</strong><strong>in</strong>g very<br />
challeng<strong>in</strong>g. Variety <strong>of</strong> <strong>in</strong>duction coil designs is very big but<br />
quantity <strong>of</strong> the coils <strong>of</strong> any particular type is usually rather<br />
small and it isn’t economical to make “net shape” concentrators<br />
<strong>of</strong> optimal size and geometry. Designers <strong>of</strong> <strong>in</strong>duction<br />
tool<strong>in</strong>g try to use the standard shapes (plates, rods,<br />
C and E forms, etc.) and “adapt” the coil design to these<br />
limits. Of course there are some cases when a required<br />
number <strong>of</strong> controllers may be very big and it is effective<br />
to manufacture special net shape ferrites, e.g. ferrite rods<br />
for the impeders for high frequency tube weld<strong>in</strong>g. In traditional<br />
<strong>in</strong>duction heat<strong>in</strong>g applications the use <strong>of</strong> ferrites is<br />
limited to relatively simple shape controllers for small high<br />
frequency <strong>in</strong>duction coils.<br />
Lam<strong>in</strong>ations<br />
Lam<strong>in</strong>ations are the ma<strong>in</strong> material for low and middle frequencies<br />
(up to 30 kHz and even up to 50 kHz <strong>in</strong> some<br />
special cases). They are used for match<strong>in</strong>g transformers (up<br />
to 20 kHz), shunts and cores for <strong>in</strong>duction melt<strong>in</strong>g furnaces,<br />
forge heat<strong>in</strong>g furnaces, large heat treat<strong>in</strong>g coils. Advantages<br />
<strong>of</strong> lam<strong>in</strong>ations: very large components <strong>of</strong> simple geometry<br />
may be made (such as big furnace shunts which may reach<br />
a length <strong>of</strong> several meters), high saturation flux density<br />
(1.7 T), high permeability, low losses at low frequencies,<br />
high Curie po<strong>in</strong>t and good temperature resistance. The<br />
drawbacks <strong>of</strong> lam<strong>in</strong>ations are: bad performance <strong>in</strong> 3D magnetic<br />
fields, limited mach<strong>in</strong>ability, laborious assembl<strong>in</strong>g,<br />
frequency limits and complicated <strong>thermal</strong> <strong>management</strong><br />
(cool<strong>in</strong>g). Stamp<strong>in</strong>g and laser cutt<strong>in</strong>g simplify manufactur<strong>in</strong>g<br />
<strong>of</strong> sheets but some manual clean<strong>in</strong>g <strong>of</strong> burr and other<br />
defects is still required.<br />
SMC<br />
SMC is a class <strong>of</strong> materials that was significantly improved<br />
dur<strong>in</strong>g the last two decades [2, 3]. SMCs are made from<br />
ferrous particles (iron or its alloys), covered with a th<strong>in</strong> <strong>in</strong>sulation<br />
layer, mixed with organic or <strong>in</strong>organic b<strong>in</strong>der, pressed<br />
at high pressure (up to 720 MPa and even higher) and<br />
cured or s<strong>in</strong>tered. Majority <strong>of</strong> SMC that are be<strong>in</strong>g used <strong>in</strong><br />
<strong>in</strong>duction <strong>in</strong>dustry has organic b<strong>in</strong>der, which provides good<br />
mach<strong>in</strong>ability. Long term experience <strong>in</strong> <strong>in</strong>duction bus<strong>in</strong>ess<br />
shows that mechanical properties are very important for<br />
the magnetic flux controll<strong>in</strong>g materials. Possibility to work<br />
<strong>in</strong> 3D fields and good mach<strong>in</strong>ability are highly valued by<br />
the <strong>in</strong>duction coil manufacturers.<br />
Different types <strong>of</strong> SMC can work <strong>in</strong> the whole range <strong>of</strong><br />
frequencies used <strong>in</strong> <strong>in</strong>duction heat<strong>in</strong>g (50 Hz-13.56 MHz).<br />
Losses <strong>of</strong> SMC at low frequency may be comparable to<br />
losses <strong>in</strong> lam<strong>in</strong>ations and at high frequencies – to losses<br />
<strong>in</strong> ferrites. Temperature resistance is lower than for lam<strong>in</strong>ations<br />
but usually sufficient for <strong>in</strong>duction applications. High<br />
<strong>thermal</strong> conductivity (up to 0.2 W/cmK) and possibility <strong>of</strong><br />
effective <strong>thermal</strong> <strong>management</strong> us<strong>in</strong>g external or <strong>in</strong>ternal<br />
cool<strong>in</strong>g can keep the controllers safe <strong>in</strong> heavy loaded cases<br />
[3]. The drawbacks <strong>of</strong> SMC are limited dimensions (up to<br />
220 mm long plates at present time) and higher price than<br />
for lam<strong>in</strong>ations. However with account for labour cost and<br />
possible improvement <strong>in</strong> performance, use <strong>of</strong> SMC <strong>in</strong> many<br />
cases is cheaper than for lam<strong>in</strong>ations. Technical and economic<br />
analyses show that <strong>in</strong> some cases a comb<strong>in</strong>ation <strong>of</strong><br />
different materials will give excellent results. For example,<br />
lam<strong>in</strong>ations may be used for the regular part <strong>of</strong> controllers<br />
and SMC for areas with complex shape and 3D field, such<br />
as the end zones <strong>of</strong> seam anneal<strong>in</strong>g coils.<br />
PROPERTIES OF SELECTED SMC MATERIALS<br />
SMCs are very versatile materials. Wide and always grow<strong>in</strong>g<br />
variety <strong>of</strong> applications sets new demands to the material<br />
properties [2, 4]. These applications <strong>in</strong>clude biomedical<br />
treatment, food packag<strong>in</strong>g, electronic clean room <strong>process</strong><strong>in</strong>g,<br />
crystal growth, traditional heat treat<strong>in</strong>g, metals and<br />
non-metals melt<strong>in</strong>g, and many others. Typically the follow<strong>in</strong>g<br />
groups <strong>of</strong> properties must be considered: mechanical,<br />
magnetic, electrical, <strong>thermal</strong> and chemical. For special<br />
applications the magnetostriction and acoustic properties<br />
may be also important. A significant number <strong>of</strong> SMC types<br />
are be<strong>in</strong>g used <strong>in</strong> <strong>in</strong>dustry. Three materials: Fluxtrol 100,<br />
Ferrotron 559H and Alphaform MF are selected for further<br />
description as representatives <strong>of</strong> different groups <strong>of</strong> SMCs<br />
[2, 3]. The first two materials are manufactured by press<strong>in</strong>g<br />
technology and the third one is formable. Some magnetic,<br />
<strong>thermal</strong> and mechanical properties <strong>of</strong> these materials are<br />
presented <strong>in</strong> Table 1.<br />
All pressed materials have certa<strong>in</strong> anisotropy with<br />
lower <strong>thermal</strong> conductivity and permeability <strong>in</strong> direction<br />
<strong>of</strong> press<strong>in</strong>g. Magnetic and <strong>thermal</strong> properties <strong>in</strong> the table<br />
correspond to the favourable direction, i.e. for a plane perpendicular<br />
to direction <strong>of</strong> press<strong>in</strong>g. Anisotropy must be<br />
taken <strong>in</strong>to account <strong>in</strong> design <strong>of</strong> <strong>in</strong>duction coils and stock<br />
material orientation <strong>in</strong> the <strong>process</strong> <strong>of</strong> magnetic controller<br />
manufactur<strong>in</strong>g. In spite <strong>of</strong> anisotropy all pressed materials<br />
80 heat <strong>process</strong><strong>in</strong>g 3-2014
Induction Technology<br />
REPORTS<br />
Table 1: Ma<strong>in</strong> properties <strong>of</strong> selected s<strong>of</strong>t magnetic composites<br />
Material<br />
Frequency<br />
Range,<br />
kHz<br />
Density,<br />
g/cm3<br />
Initial<br />
Permeability<br />
Max<br />
Permeability<br />
Saturation,<br />
Bs, T<br />
Thermal<br />
Cond-ty,<br />
W/cmK<br />
Flexural<br />
Strength,<br />
MPa<br />
Flexural<br />
Modulus,<br />
GPa<br />
Fluxtrol 100 Up to 50 6.8 80 130 1.8 0.22 75-80 9-10
REPORTS<br />
Induction Technology<br />
practical tests showed that for majority <strong>of</strong> <strong>in</strong>duction systems<br />
permeability <strong>of</strong> 20-40 is sufficient for good performance<br />
<strong>of</strong> magnetic controllers [3]. It is because almost all<br />
<strong>in</strong>duction systems have open magnetic circuit and above<br />
a certa<strong>in</strong> limit the value <strong>of</strong> permeability ceases to <strong>in</strong>fluence<br />
the system parameters. Major improvements take<br />
place when permeability <strong>in</strong>creases from 1 to approximately<br />
10. Further <strong>in</strong>crease <strong>in</strong> permeability causes lower effects<br />
and improvements disappear at permeability higher than<br />
30-50 depend<strong>in</strong>g on particular case. Moreover, computer<br />
simulation shows that when permeability <strong>of</strong> C-shaped<br />
concentrator is too high, there is no improvement <strong>in</strong> the<br />
power concentration, coil efficiency and power factor, while<br />
power density concentration <strong>in</strong> the corners <strong>of</strong> the coil<br />
tub<strong>in</strong>g grows. It leads to local overheat<strong>in</strong>g <strong>of</strong> copper and<br />
formation <strong>of</strong> cracks due to <strong>thermal</strong> stresses. This effect was<br />
confirmed <strong>in</strong> crankshaft harden<strong>in</strong>g when switch<strong>in</strong>g from<br />
lam<strong>in</strong>ations to Fluxtrol material significantly extended the<br />
copper life time [6].<br />
The above evaluations <strong>of</strong> the permeability <strong>in</strong>fluence<br />
were made for the service conditions. Under heavy load<strong>in</strong>g<br />
conditions which are typical for example for surface<br />
harden<strong>in</strong>g at low frequencies (up to 3-5 kHz) the concentrator<br />
permeability must be still high enough. It means that<br />
low frequency materials must have high saturation flux<br />
density and their maximum permeability must be much<br />
higher than 40.<br />
In high frequency applications flux density is much<br />
lower and high maximum permeability isn’t necessary. In<br />
some high frequency applications such as <strong>in</strong>duction weld<strong>in</strong>g<br />
<strong>of</strong> small diameter tubes, flux density <strong>in</strong> the impeder<br />
may be high, the ferrite core saturates and the <strong>process</strong><br />
efficiency drops. Use <strong>of</strong> SMCs with high Bs can improve<br />
the situation. It is important to underl<strong>in</strong>e that SMCs are<br />
quasi-l<strong>in</strong>ear materials. Permeability <strong>of</strong> Ferrotron is almost<br />
constant <strong>in</strong> a wide range <strong>of</strong> the magnetic field strengths<br />
with <strong>in</strong>itial and maximum permeabilities equal to 16 and<br />
Fig. 2: Fluxtrol 100 with zirconia coat<strong>in</strong>g<br />
Fig. 3: CNC mach<strong>in</strong>ed set <strong>of</strong> parts with th<strong>in</strong> walls<br />
18. L<strong>in</strong>ear properties are favourable for some <strong>in</strong>duction<br />
<strong>process</strong>es because the l<strong>in</strong>ear magnetic controller does not<br />
generate higher harmonics <strong>in</strong> the coil voltage and current.<br />
Electrical properties<br />
Electrical resistivity and strength are two parameters important<br />
for SMCs. Electrical strength may be measured for HF<br />
materials only. Ferrotron 559H has break strength <strong>of</strong> around<br />
100 V for a 1 mm thick plate at frequencies 100-400 kHz.<br />
For Alphaform MF it is app. 350-400 V. These values are very<br />
small for real dielectric materials but are sufficient for majority<br />
<strong>of</strong> <strong>in</strong>duction heat<strong>in</strong>g applications and the live parts can<br />
touch the magnetic controllers. For example, Alphaform<br />
may be applied to bare turns <strong>of</strong> the coil without danger <strong>of</strong><br />
short-circuit<strong>in</strong>g. Fluxtrol 100 has much lower resistivity and<br />
there is a <strong>thermal</strong>, not electrical break <strong>in</strong> tests. Therefore<br />
the parts made <strong>of</strong> this material must not touch two live<br />
parts with a difference <strong>of</strong> potentials. Insulation coat<strong>in</strong>gs<br />
must be applied to the copper or <strong>in</strong>sulation tape such as<br />
Kapton glued to the controller.<br />
Electrical resistivity <strong>of</strong> SMCs is a tricky parameter. In the<br />
<strong>process</strong> <strong>of</strong> material press<strong>in</strong>g or mach<strong>in</strong><strong>in</strong>g <strong>of</strong> the components<br />
there is always smear<strong>in</strong>g <strong>of</strong> the surface, which creates<br />
an additional path for current to flow. Surface resistivity <strong>of</strong><br />
smeared layer depends upon the material composition<br />
and structure, manufactur<strong>in</strong>g <strong>process</strong> (gr<strong>in</strong>d<strong>in</strong>g, mill<strong>in</strong>g,<br />
turn<strong>in</strong>g, saw cutt<strong>in</strong>g), tool quality and regime <strong>of</strong> operation.<br />
Its value can vary from several Ohms to several hundred<br />
Ohm. Remov<strong>in</strong>g <strong>of</strong> smeared layer by etch<strong>in</strong>g helps but<br />
does not give reliable results. Etch<strong>in</strong>g agent penetrates <strong>in</strong>to<br />
the material pores and <strong>in</strong>fluences the electrical resistivity.<br />
Special technique for evaluation <strong>of</strong> volumetric resistivity<br />
has been developed and used for different materials. More<br />
<strong>in</strong>formation about resistivity <strong>of</strong> considered SMCs may be<br />
found <strong>in</strong> [3]. Alphaform samples for measur<strong>in</strong>g resistivity<br />
may be made with no surface smear<strong>in</strong>g and traditional<br />
4-po<strong>in</strong>t technique may be used.<br />
Ferrotron 559H and<br />
Alphaform have very<br />
high resistivity, exceed<strong>in</strong>g<br />
1 MOhm·cm. In <strong>in</strong>duction<br />
applications it may be<br />
considered as <strong>in</strong>f<strong>in</strong>itely<br />
high. For low and middle<br />
frequency materials<br />
<strong>in</strong>clud<strong>in</strong>g Fluxtrol 100,<br />
the situation is more<br />
complicated. Fluxtrol 100<br />
has resistivity around<br />
12 kOhm·cm. This level <strong>of</strong><br />
resistivity is sufficient for<br />
keep<strong>in</strong>g the <strong>in</strong>duced eddy<br />
currents <strong>in</strong> the controller<br />
82 heat <strong>process</strong><strong>in</strong>g 3-2014
Induction Technology<br />
REPORTS<br />
volume at a negligible level. However one<br />
needs to prevent application <strong>of</strong> external voltage<br />
to the concentrator body.<br />
(a)<br />
(b)<br />
Chemical resistance<br />
In Alphaform all the iron particles are encapsulated<br />
<strong>in</strong> epoxy and the material is resistant<br />
to the environmental conditions <strong>of</strong> <strong>in</strong>duction<br />
<strong>process</strong>es. Fluxtrol 100 and Ferrotron 559H<br />
are resistant to traditionally used quenchants<br />
except <strong>of</strong> a smeared surface layer where the<br />
iron particles may be exposed to atmosphere<br />
and the surface rust<strong>in</strong>g can happen. Additional<br />
treatment <strong>of</strong> mach<strong>in</strong>ed controllers can<br />
elim<strong>in</strong>ate the problem. For traditional heat<br />
treat<strong>in</strong>g and braz<strong>in</strong>g application it is sufficient<br />
to etch the parts <strong>in</strong> CrysCoat or similar agents.<br />
Etch<strong>in</strong>g removes smeared layer and loose<br />
particles and prepares the parts for additional treatments<br />
if it’s necessary.<br />
Coat<strong>in</strong>g and other treatments<br />
Several treatment technologies may be used <strong>in</strong> order to<br />
meet special requirements. Some <strong>of</strong> them are described<br />
below:<br />
■■<br />
■■<br />
■■<br />
■■<br />
Teflon coat<strong>in</strong>g may be used to meet requirements <strong>of</strong><br />
clean rooms, food packag<strong>in</strong>g and other special applications.<br />
After etch<strong>in</strong>g the parts are coated by a th<strong>in</strong> layer <strong>of</strong><br />
a special Teflon coat<strong>in</strong>g accord<strong>in</strong>g to a patented DuPont<br />
technology. Coat<strong>in</strong>g penetrates <strong>in</strong>to the porous material<br />
and forms a firm surface cohesion. Coat<strong>in</strong>g thickness<br />
may be 4-6 microns. This coat<strong>in</strong>g is FDA approved and<br />
is be<strong>in</strong>g used <strong>in</strong> packag<strong>in</strong>g <strong>in</strong>dustry for many years.<br />
Alum<strong>in</strong>a, zirconia or other ceramic coat<strong>in</strong>gs may be<br />
applied to both Fluxtrol 100 and Ferrotron 559H us<strong>in</strong>g<br />
traditional flame spray technique. Of course special<br />
attention must be paid to the <strong>process</strong> setup <strong>in</strong> order to<br />
prevent <strong>thermal</strong> damage <strong>of</strong> SMC. A consistent ceramic<br />
layer may be formed with excellent cohesion with the<br />
substrate (Fig. 2). Ceramic coat<strong>in</strong>g may be applied also<br />
to the whole assembly <strong>of</strong> <strong>in</strong>duction coil. This coat<strong>in</strong>g<br />
can prevent wear<strong>in</strong>g and electrical ground<strong>in</strong>g <strong>of</strong> the<br />
coil <strong>in</strong> the case <strong>of</strong> occasional touch to the mov<strong>in</strong>g part<br />
<strong>in</strong> the <strong>process</strong> <strong>of</strong> heat<strong>in</strong>g.<br />
Other coat<strong>in</strong>gs such as electrostatic plastic powder<br />
coat<strong>in</strong>g may be used when required for less demand<strong>in</strong>g<br />
applications.<br />
Impregnation may be successfully used to fill the material<br />
pores and prevent outgass<strong>in</strong>g, improve chemical<br />
resistance and mechanical strength. Impregnation<br />
with anaerobic epoxy accord<strong>in</strong>g to Henkel technology<br />
showed very good results. Depth <strong>of</strong> impregnation<br />
depends upon the material type. Impregnated pieces<br />
Fig. 4: Clamshell <strong>in</strong>ductors for non-rotational harden<strong>in</strong>g <strong>of</strong> crankshafts (a)<br />
and simulated temperature distribution (b)<br />
may be glued to each other or to copper. Th<strong>in</strong> impregnated<br />
parts <strong>of</strong> Ferrotron passed severe down-hole tests<br />
for oil and gas drill<strong>in</strong>g application.<br />
Material mach<strong>in</strong><strong>in</strong>g<br />
Fluxtrol 100 and Ferrotron may be easily mach<strong>in</strong>ed us<strong>in</strong>g<br />
sharp standard tools or coated carbide tools. Materials may<br />
be mach<strong>in</strong>ed us<strong>in</strong>g various methods (drill<strong>in</strong>g, mill<strong>in</strong>g, turn<strong>in</strong>g,<br />
gr<strong>in</strong>d<strong>in</strong>g, saw cutt<strong>in</strong>g, etc.). It is recommended to use<br />
higher speed and slower feed than for mach<strong>in</strong><strong>in</strong>g s<strong>of</strong>t steel.<br />
Multiple passes are recommended <strong>in</strong> mach<strong>in</strong><strong>in</strong>g <strong>of</strong> th<strong>in</strong>wall<br />
parts. With some experience parts with wall thickness<br />
less than 1 mm may be produced by turn<strong>in</strong>g or mill<strong>in</strong>g (Fig.<br />
3). Drill<strong>in</strong>g must be made on a strong support (wooden or<br />
plastic block) to avoid chipp<strong>in</strong>g and pilot holes are required<br />
for mak<strong>in</strong>g large bores. It is not necessary to use cool<strong>in</strong>g<br />
or lubricat<strong>in</strong>g fluids.<br />
Threaded bores may be made directly <strong>in</strong> Fluxtrol or<br />
Ferrotron parts but for higher strength and multiple use it<br />
is better to <strong>in</strong>stall brass or sta<strong>in</strong>less steel <strong>in</strong>serts. Ferrotron<br />
559H has low coefficient <strong>of</strong> friction and it is recommended<br />
to use a small droplet <strong>of</strong> epoxy when <strong>in</strong>stall<strong>in</strong>g <strong>in</strong>serts Flat<br />
parts may be produced by water jet cutt<strong>in</strong>g from disks<br />
or plates.<br />
EXAMPLES OF USE OF SMC<br />
IN INDUCTION <strong>HEAT</strong> TREATING<br />
Crankshaft harden<strong>in</strong>g<br />
Crankshafts were the first parts <strong>in</strong> mass production [5]<br />
hardened by <strong>in</strong>duction us<strong>in</strong>g clam-shell <strong>in</strong>ductors (1934-35).<br />
Heat<strong>in</strong>g was static, i.e. the crankshaft did not rotate <strong>in</strong> the<br />
<strong>process</strong> <strong>of</strong> heat<strong>in</strong>g. U-shaped <strong>in</strong>duction coils have been<br />
<strong>in</strong>troduced later (1940-42) by Elotherm company; <strong>in</strong> this<br />
case the crankshaft was rotat<strong>in</strong>g. Both types <strong>of</strong> <strong>in</strong>ductors<br />
are still be<strong>in</strong>g used until today. In spite <strong>of</strong> almost 80 years <strong>of</strong><br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
83
REPORTS<br />
Induction Technology<br />
Fig. 5: Inductor for rotational harden<strong>in</strong>g <strong>of</strong> crankshaft<br />
Fig. 6: Inductor for simultaneous harden<strong>in</strong>g <strong>of</strong> four cams<br />
production history, there are new tasks (more complicated<br />
geometry and hardness pattern, reliability, lifetime, etc.)<br />
that require technology improvement. Ma<strong>in</strong> improvements<br />
are connected with <strong>in</strong>novative applications <strong>of</strong> magnetic<br />
controllers [6].<br />
In clam-shell <strong>in</strong>ductors, th<strong>in</strong> plates <strong>of</strong> magnetic controllers<br />
made <strong>of</strong> SMC Fluxtrol 100 applied to the sides <strong>of</strong> the<br />
coil (Fig. 4). Magnetic plates are accurately positioned<br />
<strong>in</strong> place by p<strong>in</strong>s and glued to the coil for effective heat<br />
transfer. They provide precise control <strong>of</strong> heat pattern and<br />
simultaneously improve the system parameters. Fig. 4b<br />
shows temperature distribution <strong>in</strong> the crankshaft at the<br />
end <strong>of</strong> heat<strong>in</strong>g cycle generated by program Flux2D. When<br />
there are no side plates (top half <strong>of</strong> picture), significant<br />
heat<strong>in</strong>g <strong>of</strong> the crankshaft web (side portions <strong>of</strong> the shaft)<br />
take place. This un<strong>in</strong>tended heat<strong>in</strong>g results <strong>in</strong> energy waste<br />
and additional distortion <strong>of</strong> the part. Practical experience<br />
showed reliable performance <strong>of</strong> SMC shields.<br />
Flux controllers made <strong>of</strong> lam<strong>in</strong>ations are traditionally<br />
used on U-shaped crankshaft harden<strong>in</strong>g coils <strong>in</strong> order to<br />
distribute power <strong>in</strong> such a way that results <strong>in</strong> required heat<br />
pattern, <strong>in</strong>clud<strong>in</strong>g the patterns that extend onto the fillet.<br />
U-shaped coils are much more loaded because the coils<br />
cover only a small part <strong>of</strong> the p<strong>in</strong> surface (Fig. 5). One <strong>of</strong><br />
the drawbacks <strong>of</strong> such coils is <strong>in</strong>sufficient lifetime due to<br />
copper crack<strong>in</strong>g under the concentrators. It was found<br />
that replacement <strong>of</strong> lam<strong>in</strong>ations with SMC material led<br />
to a significant <strong>in</strong>crease <strong>in</strong> the coil life and to a possibil-<br />
Fig. 7: a) Magnetic l<strong>in</strong>es and temperature distribution <strong>in</strong> a tube heated by 4-turn <strong>in</strong>ductor; b) ID coil with moldable Alphaform core;<br />
c) Mach<strong>in</strong>ed <strong>in</strong>ductor with SMC core for ID harden<strong>in</strong>g <strong>of</strong> hub (courtesy <strong>of</strong> Eldec Induction)<br />
84 heat <strong>process</strong><strong>in</strong>g 3-2014
Induction Technology<br />
REPORTS<br />
ity <strong>of</strong> better heat pattern control. This application is very<br />
demand<strong>in</strong>g and big attention must be paid to material<br />
selection and concentrator <strong>in</strong>stallation technique. High<br />
<strong>thermal</strong> conductivity <strong>of</strong> Fluxtrol 100 provides effective heat<br />
transfer between the coil copper and the concentrator.<br />
Fluxtrol concentrator is made <strong>of</strong> a set <strong>of</strong> blocks <strong>in</strong> order to<br />
m<strong>in</strong>imize <strong>in</strong>fluence <strong>of</strong> difference <strong>in</strong> <strong>thermal</strong> expansion <strong>of</strong><br />
the copper and concentrator.<br />
Another example <strong>of</strong> <strong>in</strong>ductor with SMC controllers is<br />
presented <strong>in</strong> Fig. 6. This assembly conta<strong>in</strong>s 4 s<strong>in</strong>gle-turn<br />
coils separated by Fluxtrol r<strong>in</strong>gs. These r<strong>in</strong>gs shield the coils,<br />
elim<strong>in</strong>at<strong>in</strong>g their mutual <strong>in</strong>fluence and improve treatment<br />
quality and efficiency.<br />
Internal <strong>in</strong>ductors<br />
Internal Diameter (ID) <strong>in</strong>ductors are widely used for braz<strong>in</strong>g,<br />
cur<strong>in</strong>g, heat treat<strong>in</strong>g and other operations. Application <strong>of</strong><br />
magnetic controllers is especially important for ID coils<br />
because magnetic flux must flow <strong>in</strong> closed loop around<br />
the turns through the narrow space <strong>in</strong>side the coil. For this<br />
reason the current demand for ID coils without core is high<br />
and their parameters (efficiency, power factor) are much<br />
lower than for the external coils. The core “magnetically”<br />
expands the area <strong>in</strong>side the <strong>in</strong>ductor thus strongly reduc<strong>in</strong>g<br />
additional coil current required to push the magnetic flux<br />
around the turns (Fig. 7a). Results <strong>of</strong> computer simulation<br />
for one <strong>of</strong> typical ID heat<strong>in</strong>g cases are presented <strong>in</strong><br />
Table 2. The part is a sta<strong>in</strong>less steel tube with ID 55 mm<br />
and wall thickness 6.4 mm; <strong>in</strong>ductor has ID 30 mm and,<br />
length 30 mm. W<strong>in</strong>d<strong>in</strong>g is made <strong>of</strong> 4 turns <strong>of</strong> square tub<strong>in</strong>g<br />
6.4 x 6.4 mm. Frequency is 15 kHz and power transferred<br />
<strong>in</strong>to the part 10 kW [7]. One can see that magnetic core<br />
reduced the coil current and reactive power more than 2<br />
times with approximately the same coil voltage. Efficiency<br />
<strong>in</strong>creased from 70 to 84 %. For smaller parts effects will be<br />
even higher.<br />
Both mach<strong>in</strong>ed and moldable SMC materials may be<br />
effectively used for ID coils. Small ID coils are <strong>of</strong>ten made by<br />
bend<strong>in</strong>g copper tub<strong>in</strong>g (Fig. 7b). This case is very favorable<br />
for us<strong>in</strong>g Alphaform. Moldable material fills the whole space<br />
<strong>in</strong>side the w<strong>in</strong>d<strong>in</strong>g <strong>in</strong> spite <strong>of</strong> some irregularities <strong>in</strong> dimensions<br />
and provides excellent <strong>thermal</strong> contact to the copper.<br />
Mach<strong>in</strong>ed <strong>in</strong>duction coils are used for harden<strong>in</strong>g larger<br />
parts such as automotive hubs (Fig. 7c). In this coil quench<strong>in</strong>g<br />
fluid is supplied onto the part surface through the<br />
orifices both <strong>in</strong> copper and <strong>in</strong> mach<strong>in</strong>ed concentrator made<br />
<strong>of</strong> Fluxtrol material.<br />
TEMPERATURE PREDICTION AND CONTROL<br />
The ma<strong>in</strong> problem that can appear when SMC controller<br />
is not applied properly is its overheat<strong>in</strong>g. There might be<br />
three sources <strong>of</strong> heat: magnetic losses <strong>in</strong> the controller,<br />
convection and radiation from the heated part and, <strong>in</strong><br />
Table 2: ID coil parameters with and without core<br />
Core Ui, V Ii, A Pi, kW Pw, kW Eff-cy, % Coil kVA<br />
Yes 46 875 12.0 10.0 84 40<br />
No 44 1,850 14.3 10.0 70 81<br />
some cases, heat transfer from the locally overheated coil<br />
copper. Temperature prediction <strong>of</strong> magnetic controllers<br />
is a complex task, which requires consideration <strong>of</strong> electromagnetic<br />
and <strong>thermal</strong> phenomena and material characteristics.<br />
When magnetic controllers are cooled by contact<br />
to the coil turns, coil temperature must be considered<br />
simultaneously with the concentrator. There are many cases<br />
when the concentrator fails due to too hot coil copper.<br />
Computer simulation is the most accurate way to study<br />
and predict temperature distribution. Flux 2D program is<br />
a proven tool for this task [8]. With some additional procedures<br />
the simulation can account for the magnetic losses<br />
and external heat sources, properties <strong>of</strong> material and glue<br />
as well as heat transfer from the copper wall to cool<strong>in</strong>g<br />
water. An example <strong>of</strong> simulation is presented <strong>in</strong> Fig. 8. It<br />
shows a map <strong>of</strong> temperature <strong>in</strong> the coil copper and <strong>in</strong> the<br />
concentrator for a s<strong>in</strong>gle-turn scann<strong>in</strong>g <strong>in</strong>ductor. Selection<br />
<strong>of</strong> the concentrator material and glue between the copper<br />
and concentrator plays a big role <strong>in</strong> temperature control.<br />
There are many methods <strong>of</strong> the concentrator temperature<br />
control. One <strong>of</strong> them is an <strong>in</strong>ternal cool<strong>in</strong>g <strong>of</strong> material<br />
by means <strong>of</strong> water channels milled or drilled <strong>in</strong>side the<br />
concentrator.<br />
Fig. 8: Concentrator temperature prediction us<strong>in</strong>g computer simulation;<br />
temperature scales are different for the part and coil<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
85
• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />
REPORTS<br />
Induction Technology<br />
CONCLUSION<br />
Theoretical studies and practical experience demonstrate<br />
that magnetic flux control is a very important component<br />
<strong>of</strong> optimal design <strong>of</strong> <strong>in</strong>duction systems. Magnetic flux controllers<br />
can improve heat pattern, prevent un<strong>in</strong>tended heat<strong>in</strong>g<br />
<strong>of</strong> the part, harden<strong>in</strong>g mach<strong>in</strong>e or furnace structure,<br />
improve <strong>in</strong>duction coil parameters and performance <strong>of</strong> the<br />
whole <strong>in</strong>duction <strong>in</strong>stallation and shield the external space<br />
from strong magnetic fields. S<strong>of</strong>t magnetic composites can<br />
give new opportunities for <strong>in</strong>duction system optimisation<br />
with account for magnetic flux control. They are very versatile<br />
materials and may be custom modified for special<br />
applications. Different types <strong>of</strong> SMC can cover the need<br />
<strong>in</strong> magnetic controllers for all range <strong>of</strong> frequencies used<br />
for <strong>in</strong>duction heat<strong>in</strong>g (up to 13.56 MHz).<br />
One <strong>of</strong> the most valuable features <strong>of</strong> SMC with organic<br />
b<strong>in</strong>der is their good mach<strong>in</strong>ability, which allows the users<br />
to make magnetic controllers <strong>of</strong> various shape and size.<br />
Additional treatment <strong>of</strong> SMC controllers (impregnation,<br />
coat<strong>in</strong>gs) expands their application to food packag<strong>in</strong>g, electronic,<br />
etc. Computer simulation makes possible to forecast<br />
their effectiveness and optimize the heat<strong>in</strong>g <strong>process</strong> and<br />
coil design. It can predict also temperature distribution<br />
<strong>in</strong>side the controller and evaluate life time <strong>of</strong> the <strong>in</strong>ductor.<br />
[1] Goldste<strong>in</strong>, R.; Nemkov, V.; Jackowski, J.: Virtual Prototyp<strong>in</strong>g <strong>of</strong><br />
Induction Heat Treat<strong>in</strong>g, Proc. <strong>of</strong> the 25 th Conf. ASM Heat<br />
Treat<strong>in</strong>g Society, Indianapolis, September 2009<br />
[2] Ruff<strong>in</strong>i, R.; Vysh<strong>in</strong>skaya, N.; Nemkov, V.; Goldste<strong>in</strong>, R.; Yakey, C.:<br />
Innovations <strong>in</strong> S<strong>of</strong>t Magnetic Composites and their Applications<br />
<strong>in</strong> Induction Systems, Proc. <strong>of</strong> the 25 th Conf. ASM Heat<br />
Treat<strong>in</strong>g Society, Indianapolis, September 2013<br />
[3] Website www.fluxtrol.com<br />
[4] Nemkov, V.: Magnetic Flux Control <strong>in</strong> Induction Installations,<br />
Proc. <strong>of</strong> the Int. Symp. HES13, Heat<strong>in</strong>g by Electromagnetic<br />
Sources, Padua, Italy, 2013<br />
[5] Muehlbauer, A.: History <strong>of</strong> Induction Heat<strong>in</strong>g and Melt<strong>in</strong>g,<br />
Vulkan-Verlag, 2008<br />
[6] Myers, C.; Osborn, J.; Tiell, C. et al.: Optimiz<strong>in</strong>g Performance <strong>of</strong><br />
Crankshaft Harden<strong>in</strong>g Inductors,” Industrial Heat<strong>in</strong>g, December,<br />
2006<br />
[7] Nemkov, V.; Goldste<strong>in</strong>, R.: Optimal Design <strong>of</strong> Internal Induction<br />
Coils, Proc. <strong>of</strong> the Int. Symp. HES04, Heat<strong>in</strong>g by Electromagnetic<br />
Sources, Padua, Italy, 2004<br />
[8] Nemkov, V.; Goldste<strong>in</strong>, R.; Jackowski, J.; Vysh<strong>in</strong>skaya, N.; Yakey,<br />
C.: Temperature Prediction and Thermal Management for<br />
Composite Magnetic Controllers <strong>of</strong> Induction Coils, Proc. <strong>of</strong><br />
the Int. Symp. HES10, Heat<strong>in</strong>g by Electromagnetic Sources,<br />
Padua, Italy, 2010<br />
LITERATURE<br />
AUTHOR<br />
Pr<strong>of</strong>. Dr.-Ing. Valent<strong>in</strong> Nemkov<br />
Fluxtrol, Inc.<br />
Auburn Hills, MI, USA<br />
Tel.: +1 248-393-2000<br />
vsnemkov@fluxtrol.com<br />
Get your copy <strong>of</strong> the<br />
anniversary issue now!<br />
10<br />
Anniversary Issue<br />
Years<br />
• 10 Ye<br />
0 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />
86 heat <strong>process</strong><strong>in</strong>g 3-2014
Induction Technology<br />
REPORTS<br />
Modular <strong>in</strong>duction solutions for<br />
drive and axle components<br />
by Dirk M. Schibisch, Jochen C. Huljus<br />
The automobile <strong>in</strong>dustry cont<strong>in</strong>uously roles out more models while simultaneously shorten<strong>in</strong>g new model launch<br />
<strong>in</strong>tervals. Meanwhile, worldwide car sales are boom<strong>in</strong>g, particularly with the emerg<strong>in</strong>g demand from Ch<strong>in</strong>a and India.<br />
To drive over pot holes and rough roads at speed without damage, and yet give the driver a sensitive road feel would<br />
seem to be mutually exclusive goals. Powertra<strong>in</strong> and suspension components require toughness to handle the worst<br />
<strong>of</strong> everyday driv<strong>in</strong>g, and also high-precision mechanical characteristics to accurately transmit road conditions and driv<strong>in</strong>g<br />
dynamics to the driver. This paradox can be resolved with <strong>in</strong>duction hardened modern automotive components.<br />
The manufactur<strong>in</strong>g <strong>of</strong> these high-performance components is accomplished by a sophisticated <strong>in</strong>duction harden<strong>in</strong>g<br />
mach<strong>in</strong>e with the flexibility to harden a variety <strong>of</strong> disparate parts.<br />
Today’s <strong>in</strong>duction harden<strong>in</strong>g mach<strong>in</strong>es handle a<br />
dynamic and cont<strong>in</strong>uously grow<strong>in</strong>g product spectrum<br />
while sett<strong>in</strong>g new records for shorter cycle<br />
times and higher throughputs. Fast, reliable, and reproducible<br />
setup and change-over from one product run to<br />
the next is critical, particularly with today’s smaller lot sizes<br />
and flexible run schedul<strong>in</strong>g.<br />
Essential mach<strong>in</strong>e performance requirements <strong>in</strong>clude:<br />
■■<br />
■■<br />
■■<br />
■■<br />
■■<br />
A good price/performance ratio,<br />
Fast and reliable setup,<br />
Short mach<strong>in</strong>e delivery times,<br />
Simple and quick <strong>in</strong>stallation and commission<strong>in</strong>g on<br />
the production floor,<br />
Optimal, appropriate solutions for each application.<br />
with one or more workstations for harden<strong>in</strong>g and temper<strong>in</strong>g.<br />
These mach<strong>in</strong>es feature an elegant modern design that<br />
meets all the requirements regard<strong>in</strong>g <strong>process</strong> visibility and<br />
ma<strong>in</strong>tenance access. Selected example configurations are<br />
described below.<br />
Elotherm has developed a manual mach<strong>in</strong>e with two<br />
double workstations for harden<strong>in</strong>g drive shafts (Fig. 1) with<br />
a length <strong>of</strong> 1,000 mm. In each station, two shafts are hardened<br />
simultaneously, while the other station is unloaded<br />
and reloaded. Both stations are supplied by a s<strong>in</strong>gle power<br />
supply. Thus, the time for load<strong>in</strong>g and unload<strong>in</strong>g does not<br />
MODULAR MACHINE DESIGN<br />
Induction harden<strong>in</strong>g mach<strong>in</strong>es meet these diverse requirements<br />
by <strong>in</strong>corporat<strong>in</strong>g modular mach<strong>in</strong>e designs, where<br />
a base system can be configured with various modules<br />
for fast and easy adaptation to a variety <strong>of</strong> harden<strong>in</strong>g jobs.<br />
Standard hardware and s<strong>of</strong>tware <strong>in</strong>terfaces (analogous to<br />
object oriented programm<strong>in</strong>g) facilitate a plug-and-play<br />
approach to the mach<strong>in</strong>e configuration <strong>process</strong>, streaml<strong>in</strong><strong>in</strong>g<br />
the eng<strong>in</strong>eer<strong>in</strong>g, manufactur<strong>in</strong>g, <strong>in</strong>stallation, and<br />
commission<strong>in</strong>g <strong>of</strong> these mach<strong>in</strong>es.<br />
BASIC MACHINE VARIANTS<br />
Depend<strong>in</strong>g on the requirements, mach<strong>in</strong>es are available<br />
both with manual and automated load<strong>in</strong>g and unload<strong>in</strong>g,<br />
Fig. 1: Examples <strong>of</strong> a few drive shafts <strong>in</strong> solid design<br />
and surface<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
87
REPORTS<br />
Induction Technology<br />
Fig. 2: Harden<strong>in</strong>g depths on a longitud<strong>in</strong>al cross section <strong>of</strong> <strong>in</strong>duction-hardened<br />
drive shafts<br />
Fig. 3: Various ball hubs and jo<strong>in</strong>ts<br />
Fig. 4: Harden<strong>in</strong>g depth on a ball hub (right) and a jo<strong>in</strong>t part (left)<br />
<strong>in</strong>crease the cycle time. Depend<strong>in</strong>g on customer requirements,<br />
harden<strong>in</strong>g depths <strong>in</strong> a range from 3 to 8 mm can be<br />
achieved by adjust<strong>in</strong>g the relevant parameters like power,<br />
feed rate, and frequency (Fig. 2).<br />
The EloFlex Inl<strong>in</strong>e is an automatically-cha<strong>in</strong>ed mach<strong>in</strong>e<br />
with one workstation for harden<strong>in</strong>g ball hubs, jo<strong>in</strong>ted parts<br />
(see Fig. 3 and 4) or similar workpieces with a harden<strong>in</strong>g<br />
zone. The harden<strong>in</strong>g can be performed <strong>in</strong> a s<strong>in</strong>gle shot<br />
or alternatively <strong>in</strong> the scann<strong>in</strong>g <strong>process</strong>. The workpieces<br />
go <strong>in</strong>to the mach<strong>in</strong>e by way <strong>of</strong> a plate conveyor with a<br />
separat<strong>in</strong>g device. From there, the mach<strong>in</strong>e transports<br />
them to the harden<strong>in</strong>g station and (if needed) to cool<strong>in</strong>g<br />
and/or blow-<strong>of</strong>f stations, before they are placed on a plate<br />
conveyor aga<strong>in</strong> at the mach<strong>in</strong>e outlet.<br />
The automatically-cha<strong>in</strong>ed mach<strong>in</strong>e is also available<br />
with two workstations for harden<strong>in</strong>g workpieces with two<br />
harden<strong>in</strong>g zones, e.g. axle journals or tripods (see Fig. 5-7).<br />
For these workpieces, usually a shaft and the bear<strong>in</strong>g races<br />
(contact surfaces) are hardened <strong>in</strong> the bell and/or <strong>in</strong> the<br />
tulip. These areas can be hardened with a s<strong>in</strong>gle shot or<br />
a scann<strong>in</strong>g <strong>process</strong>. Optionally, the two stations can be<br />
used for harden<strong>in</strong>g and subsequent temper<strong>in</strong>g. Here as<br />
well, the <strong>in</strong>termediate positions are available for cool<strong>in</strong>g<br />
and/or blow-<strong>of</strong>f.<br />
MODULAR STRUCTURE<br />
The harden<strong>in</strong>g system is modular, mean<strong>in</strong>g that the appropriate<br />
hardware for the customer’s special requirements<br />
can be selected for each <strong>in</strong>dividual mach<strong>in</strong>e module.<br />
With standardized <strong>in</strong>terfaces, plug-and-play modules can<br />
be selected to make multiple configurations. This also<br />
applies to the <strong>in</strong>dividual workstations so, for example,<br />
dur<strong>in</strong>g the harden<strong>in</strong>g <strong>of</strong> axle journals or tripods, the harden<strong>in</strong>g<br />
sequence for the shaft and bell/tulip can be freely<br />
selected. Also bells/tulips can be hardened from below or<br />
from above (with workpiece turn<strong>in</strong>g) <strong>in</strong> the s<strong>in</strong>gle shot or<br />
scann<strong>in</strong>g <strong>process</strong>. The transport direction <strong>of</strong> the workpieces<br />
through the harden<strong>in</strong>g mach<strong>in</strong>e can be <strong>in</strong> either direction.<br />
Different options for transport systems with<strong>in</strong> the<br />
mach<strong>in</strong>e <strong>of</strong>fer solutions for short or long workpieces. With<br />
options for two different control systems and multiple<br />
converter sizes, the base mach<strong>in</strong>e is quickly adapted to a<br />
given application. Fig. 8 shows the <strong>in</strong>dividual modules <strong>in</strong><br />
the mach<strong>in</strong>e, emphasized <strong>in</strong> color, which can be expanded<br />
with further modules and various option packages.<br />
Process know-how and energy efficiency<br />
Synergies are realized through a systems eng<strong>in</strong>eer<strong>in</strong>g<br />
approach to mach<strong>in</strong>e and <strong>process</strong> development. This starts<br />
with the converter technology for optimal and energyefficient<br />
heat<strong>in</strong>g <strong>of</strong> workpieces, selective application <strong>of</strong><br />
the current exactly at the po<strong>in</strong>t <strong>in</strong> the workpiece to be<br />
heated by precisely adjusted <strong>in</strong>ductors and not least, by<br />
exact parameter sett<strong>in</strong>g for the entire <strong>process</strong>.<br />
The current generation <strong>of</strong> the digitally-controlled frequency<br />
converter (power supply) features:<br />
■■<br />
■■<br />
■■<br />
■■<br />
Patented control algorithms for the converter for an<br />
automatic adaptation <strong>of</strong> the converter to various loads<br />
and for reduc<strong>in</strong>g losses <strong>in</strong> the converter [1],<br />
Fast reaction times for extremely short heat<strong>in</strong>g times<br />
< 1 s,<br />
The ability to run cont<strong>in</strong>uously at 100 % <strong>of</strong> rated power,<br />
A larger frequency range,<br />
88 heat <strong>process</strong><strong>in</strong>g 3-2014
Induction Technology<br />
REPORTS<br />
Fig. 6: Micrograph <strong>of</strong> a tripod<br />
Fig. 5: Various sizes and designs <strong>of</strong> axle journals<br />
Fig. 7: Micrograph <strong>of</strong> an axle journal<br />
■■<br />
■■<br />
Short-circuit-resistance due to <strong>in</strong>tegrated overcurrent<br />
and overvoltage protection,<br />
Robust monitor<strong>in</strong>g and diagnostic capabilities.<br />
Energy efficiency has been improved by optimiz<strong>in</strong>g the medium-frequency<br />
equipment (better placement <strong>of</strong> <strong>in</strong>dividual<br />
components with respect to each other, better bus bar and<br />
cable connections to the capacitors, more precise match<strong>in</strong>g<br />
<strong>of</strong> the transformer to the <strong>in</strong>ductor). Optimized <strong>in</strong>ductors are<br />
essential for a reproducible and energy-efficient harden<strong>in</strong>g<br />
<strong>process</strong>. For further reduction <strong>of</strong> the energy consumption, if<br />
there are no workpieces at the load<strong>in</strong>g position, the mach<strong>in</strong>es<br />
automatically switch to standby mode <strong>in</strong> which all pumps and<br />
auxiliary equipment are shut <strong>of</strong>f.<br />
Accessibility and ma<strong>in</strong>tenance-friendl<strong>in</strong>ess<br />
Large doors <strong>in</strong> the front allow good observation <strong>of</strong> the<br />
<strong>process</strong> and also good access for ma<strong>in</strong>tenance work. A<br />
reduced work space depth improves component access.<br />
Another safety door permits access from the rear.<br />
Reduced floor space<br />
The complete mach<strong>in</strong>e, together with the control, the converter,<br />
the network transformer and the capacitor cab<strong>in</strong>et,<br />
is set up on a common base frame. The mach<strong>in</strong>e footpr<strong>in</strong>t<br />
is reduced, and complete, fully-assembled mach<strong>in</strong>es can<br />
be transported to the plant.<br />
Quality<br />
Patented net workpiece energy monitor<strong>in</strong>g performs 100 %<br />
onl<strong>in</strong>e quality control <strong>of</strong> the harden<strong>in</strong>g <strong>process</strong> <strong>in</strong> these<br />
mach<strong>in</strong>es [2]. Power generated by the IGBT power supply<br />
is necessarily subject to heat losses <strong>in</strong> the converter, <strong>in</strong> the<br />
busbars, capacitors, transformers, and f<strong>in</strong>ally <strong>in</strong> the <strong>in</strong>ductor.<br />
The net heat<strong>in</strong>g energy applied to the workpiece is less<br />
than the power supply output energy. Conventional energy<br />
monitor<strong>in</strong>g schemes have monitored only to the power<br />
output by the converter and therefore do not account<br />
for system losses. The SMS Elotherm patent describes a<br />
method with which the frequency-dependent losses are<br />
measured and considered so ultimately the power actually<br />
applied to the workpiece is <strong>in</strong>tegrated over the complete<br />
heat<strong>in</strong>g time (energy) and recorded as a curve and<br />
monitored <strong>in</strong> real time. In this case, the energy applied to<br />
the workpiece is an absolutely reliable measurement for<br />
check<strong>in</strong>g the quality <strong>of</strong> the heat<strong>in</strong>g. The smallest changes<br />
<strong>of</strong> the coupl<strong>in</strong>g gap between <strong>in</strong>ductor and workpiece<br />
lead to clearly measurable changes <strong>in</strong> the energy values,<br />
and tolerance limits are user-adjustable. Changes <strong>of</strong> the<br />
coupl<strong>in</strong>g cap could, on one hand, be due to deformations<br />
<strong>of</strong> the <strong>in</strong>ductor. On the other hand, these changes<br />
could be caused by tolerance deviations or cracks <strong>in</strong> the<br />
workpiece surface.<br />
In addition to the heat<strong>in</strong>g (austenitiz<strong>in</strong>g), the harden<strong>in</strong>g<br />
<strong>process</strong> consists <strong>of</strong> quench<strong>in</strong>g with cool<strong>in</strong>g medium.<br />
Dur<strong>in</strong>g quench<strong>in</strong>g, it is a matter <strong>of</strong> runn<strong>in</strong>g through a fast<br />
cool<strong>in</strong>g curve by us<strong>in</strong>g adequate cool<strong>in</strong>g medium supply,<br />
which leads to the desired harden<strong>in</strong>g microstructure <strong>in</strong><br />
the material (martensitic microstructure). Monitor<strong>in</strong>g <strong>of</strong> the<br />
quench<strong>in</strong>g <strong>process</strong> occurs us<strong>in</strong>g measurement <strong>of</strong> the exact<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
89
REPORTS<br />
Induction Technology<br />
frequently-chang<strong>in</strong>g harden<strong>in</strong>g tasks and designed costeffectively<br />
accord<strong>in</strong>g to this. Us<strong>in</strong>g net workpiece energy<br />
measurement and other systems for quality monitor<strong>in</strong>g,<br />
out-<strong>of</strong>-spec parts recognized and rejected automatically,<br />
ensur<strong>in</strong>g cont<strong>in</strong>uous operation without <strong>in</strong>terruption.<br />
LITERATURE<br />
[1] SMS Elotherm Patent DE 101 15 326 B4, Method for actuat<strong>in</strong>g<br />
a resonant circuit converter and controller<br />
[2] SMS Elotherm Patent EP 0 427 879 B1, Device and method for<br />
<strong>in</strong>ductive heat<strong>in</strong>g <strong>of</strong> workpieces<br />
Fig. 8: Modules <strong>of</strong> the EloFlex Inl<strong>in</strong>e<br />
AUTHORS<br />
spray flow quantity and an appropriate temperature control<br />
for the quench<strong>in</strong>g medium. Together with the net workpiece<br />
energy monitor, the complete harden<strong>in</strong>g <strong>process</strong> is<br />
therefore monitored and recorded for each and every part.<br />
CONCLUSION<br />
With modular <strong>in</strong>duction systems for harden<strong>in</strong>g automotive<br />
components, manufacturers are set up for both current<br />
and future product requirements. This is true for complex<br />
and also simple components, with high reproducibility<br />
and <strong>process</strong> control us<strong>in</strong>g patented <strong>process</strong> technologies.<br />
Modular system solutions are conceived for users with<br />
Dipl.-Wirtsch.-Ing. Dirk M. Schibisch<br />
SMS Elotherm GmbH<br />
Remscheid, Germany<br />
Tel.: +49 (0) 2191 / 891-300<br />
d.schibisch@sms-elotherm.de<br />
Dipl.-Ing. Jochen C. Huljus<br />
SMS Elotherm GmbH<br />
Remscheid, Germany<br />
Tel.: +49 (0) 2191 / 891-331<br />
j.huljus@sms-elotherm.de<br />
HOTLINE Meet the team<br />
Manag<strong>in</strong>g Editor: Dipl.-Ing. Stephan Schalm +49(0)201/82002-12 s.schalm@vulkan-verlag.de<br />
Editorial Office: Annamaria Frömgen +49(0)201/82002-91 a.froemgen@vulkan-verlag.de<br />
Editor: Thomas Schneidew<strong>in</strong>d +49(0)201/82002-36 t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />
Editor (Tra<strong>in</strong>ee): Sabr<strong>in</strong>a F<strong>in</strong>ke +49(0)201/82002-15 s.f<strong>in</strong>ke@vulkan-verlag.de<br />
Advertis<strong>in</strong>g Sales: Ute Perkovic +49(0)201/82002-24 u.perkovic@vulkan-verlag.de<br />
Subscription: Marcus Zepmeisel +49(0)931/4170-459 leserservice@vulkan-verlag.de<br />
90 heat <strong>process</strong><strong>in</strong>g 3-2014
Burner & Combustion<br />
REPORTS<br />
Efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance<br />
<strong>of</strong> heat<strong>in</strong>g systems<br />
by Dirk Mäder, Octavio Schmiel Gamarra, Mario Schulze, René Lohr<br />
As a matter <strong>of</strong> fact, the heat<strong>in</strong>g system engenders a major part <strong>of</strong> current operat<strong>in</strong>g and servic<strong>in</strong>g costs <strong>of</strong> a thermo<strong>process</strong><strong>in</strong>g<br />
<strong>in</strong>stallation. It is not rare that sav<strong>in</strong>g potentials are latent there<strong>in</strong> which cannot be immediately detected by<br />
the end user. As regards fir<strong>in</strong>g efficiency, the <strong>in</strong>dex for combustion efficiency, this is not only attributable to the burner<br />
but also to other central components <strong>of</strong> heat<strong>in</strong>g system; contrary to the widespread belief. The present article shows<br />
various ma<strong>in</strong>tenance concepts and describes, on the basis <strong>of</strong> examples, where and who optimisation potentials can be<br />
opened-up by simple measures, for <strong>in</strong>stance, <strong>in</strong> terms <strong>of</strong> efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance.<br />
As to thermo<strong>process</strong><strong>in</strong>g equipment (TPE), the heat<strong>in</strong>g<br />
system is also <strong>of</strong> fundamental importance as the<br />
eng<strong>in</strong>e for a car. In both cases, optimal results and a<br />
long lifetime can be achieved only by good care or, <strong>in</strong> other<br />
words, by <strong>in</strong>telligent ma<strong>in</strong>tenance (IM).<br />
When purchas<strong>in</strong>g a TPE, numerous options for potential<br />
energy sav<strong>in</strong>gs usually recede <strong>in</strong>to the background dur<strong>in</strong>g<br />
price negotiations at the latest due to their extra price and<br />
are discarded aga<strong>in</strong> aga<strong>in</strong>st all common sense due to the<br />
enormous cost pressure. As compared to the purchase costs,<br />
the costs for runn<strong>in</strong>g operation <strong>of</strong> TPE are rather treated as<br />
someth<strong>in</strong>g <strong>of</strong> secondary importance. Costs for ma<strong>in</strong>tenance<br />
only <strong>in</strong>curred <strong>in</strong> the third step are very <strong>of</strong>ten completely<br />
neglected at that moment. This carelessness may have negative<br />
impacts for the end user afterwards. If said carelessness<br />
is accompanied by a no longer up-to-date, exclusively reactive<br />
ma<strong>in</strong>tenance accord<strong>in</strong>g to the motto “Rather wait than<br />
ma<strong>in</strong>ta<strong>in</strong>”, <strong>in</strong>creas<strong>in</strong>gly occurr<strong>in</strong>g faults, <strong>in</strong> the worst case,<br />
even unplanned breakdowns and, thus, production failures<br />
are pre-programmed. The TPE performance is ever more<br />
reduced over the period <strong>of</strong> time <strong>in</strong> use, thus mak<strong>in</strong>g the<br />
operation <strong>of</strong> equipment more and more <strong>in</strong>efficient. Predictive<br />
ma<strong>in</strong>tenance is also <strong>of</strong> particular importance which<br />
counteracts the decrease <strong>of</strong> equipment performance due<br />
to <strong>in</strong>creased wear and tear and, <strong>in</strong> the ideal case, keeps it<br />
constant over the entire time <strong>of</strong> use, as shown <strong>in</strong> Fig. 1. The<br />
“free exercise” here is undoubtedly the efficiency-enhanc<strong>in</strong>g<br />
ma<strong>in</strong>tenance where weak po<strong>in</strong>ts and/or reserve capacities<br />
are, for <strong>in</strong>stance, systematically detected by a check <strong>of</strong> heat<strong>in</strong>g<br />
system [1]. Thanks to their elim<strong>in</strong>ation and/or activation,<br />
the production capacity <strong>of</strong> TPE can be noticeably <strong>in</strong>creased<br />
by partially simple optimisation measures. On the other hand,<br />
the costs for runn<strong>in</strong>g operation can be discernibly reduced<br />
to a similar extent.<br />
REACTIVE MAINTENANCE IS<br />
A THING OF THE PAST<br />
When design<strong>in</strong>g TPEs, it was usual for a long time to provide<br />
higher reserve capacities and to operate such central<br />
components as, for <strong>in</strong>stance, burners not cont<strong>in</strong>uously near<br />
their load limits. As a consequence there<strong>of</strong>, the lifetimes<br />
<strong>of</strong> numerous components were accord<strong>in</strong>gly high. Fig. 2<br />
shows a Noxmat burner <strong>of</strong> the first production series that<br />
was operated between 1991 and 1998 <strong>in</strong> cont<strong>in</strong>uous duty<br />
with almost no failures without the need to perform significant<br />
ma<strong>in</strong>tenance work thereon.<br />
Not least because <strong>of</strong> such high lifetimes, it was mostly<br />
common practice to perform purely reactive ma<strong>in</strong>tenance<br />
Fig. 1: Impacts <strong>of</strong> various ma<strong>in</strong>tenance concepts on equipment<br />
performance [1]<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
91
REPORTS<br />
Burner & Combustion<br />
Fig. 2: Noxmat recuperator burner<br />
operated <strong>in</strong> cont<strong>in</strong>uous<br />
duty from 1991<br />
Fig. 3: Damage on a steel-jacket tube/<br />
recuperator burner<br />
work restricted to repair and/or replacement <strong>of</strong> defective components.<br />
If, however, further consequential damages occur <strong>in</strong><br />
such cases, the repair expenditure is generally much higher<br />
and damages on affected components are partially irreparable.<br />
Fig. 3 shows a typical damage on a steel-jacket tube/<br />
recuperator burner to be attributed to overheat<strong>in</strong>g <strong>in</strong> the<br />
area <strong>of</strong> burner mouth. In this case, the flame gases were not<br />
led through the flame tube to the bottom <strong>of</strong> jacket tube, as<br />
provided, and redirected there. As a consequence there<strong>of</strong>,<br />
they could not transmit their energy conta<strong>in</strong>ed uniformly<br />
over the surface <strong>of</strong> jacket tube to the furnace atmosphere<br />
<strong>in</strong> the backdraught but were redirected <strong>in</strong>to the waste-gas<br />
chamber without cool<strong>in</strong>g directly after exit<strong>in</strong>g the burner.<br />
The resultant partial overheat<strong>in</strong>g destroyed both the jacket<br />
radiant tube and the recuperator <strong>of</strong> burner. A typical reason<br />
for such a failure is the negligence <strong>of</strong> regular clean<strong>in</strong>g <strong>of</strong><br />
steel-jacket tube. Unlike ceramic jacket tubes, scale will<br />
normally settle there <strong>in</strong> the bottom area which more and<br />
more obstructs the normal way <strong>of</strong> flame gases as described<br />
above. This damage became obvious by combustion gases<br />
exit<strong>in</strong>g the jacket tube due to a steadily ris<strong>in</strong>g pollution <strong>of</strong><br />
furnace atmosphere and associated quality deficits on the<br />
material to be heated. Other consequences for the end user<br />
<strong>in</strong>cluded the replacement <strong>of</strong> destroyed components and<br />
unplanned furnace breakdown with production failure.<br />
PREVENTIVE MAINTENANCE MAINTAINS<br />
EQUIPMENT PERFORMANCE<br />
As to preventive ma<strong>in</strong>tenance, components are replaced<br />
<strong>in</strong> regular <strong>in</strong>tervals the failure there<strong>of</strong> may adversely affect<br />
flawless operation. This takes place irrespectively <strong>of</strong> their<br />
condition and represents the m<strong>in</strong>imum level <strong>of</strong> basic ma<strong>in</strong>tenance<br />
further to some other actions to be performed. As to<br />
ma<strong>in</strong>tenance-friendly burners, as shown <strong>in</strong> Fig. 4, wear parts<br />
(W) cover only very few and cost-effective components. In<br />
this case, only some seals as well as the ignition and monitor<strong>in</strong>g<br />
electrode are concerned. If this is equally done with other<br />
comparably cost-<strong>in</strong>tensive components, the so-called spare<br />
parts (S), that are also subject to some wear and tear, it is quite<br />
obvious that unnecessary costs may <strong>in</strong>cur to the end user as<br />
replacement would take place already well before reach<strong>in</strong>g<br />
the maximum possible lifetime <strong>in</strong> many cases. Therefore,<br />
these components are renewed <strong>in</strong> terms <strong>of</strong> ma<strong>in</strong>tenance<br />
only when reach<strong>in</strong>g a def<strong>in</strong>ed wear limit where the function is<br />
not yet necessarily affected. This is called “condition-oriented<br />
(preventive) ma<strong>in</strong>tenance”. A precondition therefore is that<br />
the wear <strong>of</strong> associated component is measurable. In case<br />
<strong>of</strong> a burner, this refers e.g. to the recuperator. The circular<br />
burner exit port <strong>in</strong> new condition is checked for roundness<br />
and diameter errors and the ribbed segments <strong>in</strong> the front<br />
<strong>thermal</strong>ly stressed area for wear and tear. If the wear limits<br />
to be def<strong>in</strong>ed by the manufacturer have been reached, the<br />
component is replaced and/or can be recovered <strong>in</strong> many<br />
cases to save costs.<br />
As to ma<strong>in</strong>tenance work performed <strong>in</strong> regular <strong>in</strong>tervals,<br />
it is meanwhile possible to pre-def<strong>in</strong>e spare parts required<br />
<strong>in</strong> addition to wear parts with sufficiently high accuracy. In<br />
this way, time and cost expenditure can be estimated very<br />
precisely <strong>in</strong> advance, <strong>of</strong>fer<strong>in</strong>g relevant plann<strong>in</strong>g reliability to<br />
the end user. The special benefits <strong>of</strong> recuperator burners<br />
designed ma<strong>in</strong>tenance-friendly will accord<strong>in</strong>gly contribute<br />
thereto. However, not only the burner itself but also the<br />
design <strong>of</strong> upstream air-gas proportion<strong>in</strong>g application plays<br />
a decisive part <strong>in</strong> whether a fault-resistant, energy-efficient<br />
and, thus, susta<strong>in</strong>ably cost-efficient configuration is obta<strong>in</strong>ed<br />
for the end user or not. The superior design <strong>in</strong> the most<br />
cases <strong>in</strong>cludes separate feed <strong>of</strong> supply media through quickopen<strong>in</strong>g<br />
gas and air valves characterised by simplest and<br />
most precise mix adjustment due to the cease <strong>of</strong> comb<strong>in</strong>ed<br />
air-gas control. However, it makes also special demands on<br />
the ignition behaviour <strong>of</strong> burner. Special advantages become<br />
evident <strong>in</strong> gas consumption, emissions, easy and, thus, timesav<strong>in</strong>g<br />
burner adjustment as well as temperature uniformity<br />
<strong>in</strong> the combustion chamber <strong>of</strong> TPE but also <strong>in</strong> easily feasible<br />
monitor<strong>in</strong>g <strong>of</strong> volumetric flow rates required by standard <strong>in</strong><br />
any condition <strong>of</strong> operation as they are always constant [2]. It<br />
is mandatory to consider here that a recuperator burner must<br />
be set at operat<strong>in</strong>g temperature. The burner sett<strong>in</strong>g records<br />
will provide <strong>in</strong>formation there<strong>of</strong>. In cold condition, <strong>in</strong>creased<br />
volumetric flow rates are existent due to the absence <strong>of</strong> air<br />
preheat<strong>in</strong>g and, thus, completely different pressure conditions.<br />
If one considers this, optimal sett<strong>in</strong>g <strong>of</strong> such a burner<br />
can be normally performed without any problems.<br />
92 heat <strong>process</strong><strong>in</strong>g 3-2014
Burner & Combustion<br />
REPORTS<br />
Fig. 4: Overview <strong>of</strong> spare and wear parts <strong>of</strong> a Noxmat RHGB recuperator burner<br />
Each ma<strong>in</strong>tenance procedure should be f<strong>in</strong>alised by a<br />
detailed service report on which the end user can clearly see<br />
and comprehend the actions and checks carried out such<br />
as, for <strong>in</strong>stance, waste-gas measurement on the burners at<br />
different operat<strong>in</strong>g conditions, annual leak test <strong>of</strong> solenoid<br />
gas valves, <strong>of</strong> gas l<strong>in</strong>e belong<strong>in</strong>g to the thermo<strong>process</strong><strong>in</strong>g<br />
equipment and, as far as provided, <strong>of</strong> jacket radiant tubes.<br />
COST PRESSURE CAUSES WEAK POINTS<br />
In order to withstand the enormous cost pressure, it is nowadays<br />
rather usual to choose central components such as, for<br />
<strong>in</strong>stance, radiant tubes, combustion-air fans, valves, pipel<strong>in</strong>es<br />
etc. as small as possible, however, to pressurise them with<br />
maximum possible loads just as the burners. Although the<br />
quality <strong>of</strong> many burner components has been cont<strong>in</strong>uously<br />
improved, much shorter lifetimes unlike the example shown<br />
<strong>in</strong> Fig. 1 are normally achieved. The failure to reach the optimal<br />
fir<strong>in</strong>g efficiency possible for the relevant burner type is<br />
another negative effect result<strong>in</strong>g therefrom.<br />
Many circumstances adversely affect<strong>in</strong>g energy-efficient<br />
operation <strong>of</strong> a burner which rema<strong>in</strong> undetected unless be<strong>in</strong>g<br />
visualised by the burner itself and/or by burner or furnace<br />
controls can be very <strong>of</strong>ten attributed to the periphery <strong>of</strong> heat<strong>in</strong>g<br />
system. Tightly dimensioned or unfavourably arranged<br />
components <strong>of</strong> the gas-pressure control and safety system<br />
may cause, for <strong>in</strong>stance, undesired pressure fluctuations <strong>in</strong><br />
the gas supply <strong>of</strong> burner so that the burner is operated with<br />
a too high air ratio [3]. Another consequence is the decrease<br />
<strong>of</strong> equipment performance, thus caus<strong>in</strong>g unnecessary costs<br />
to the end user <strong>in</strong> two respects. The same applies analogously<br />
to the combustion-air fan <strong>of</strong> a heat<strong>in</strong>g system. A too tightly<br />
dimensioned fan effects <strong>in</strong>creased pressure drop <strong>in</strong> full-load<br />
operation. Understoichiometric combustion, <strong>in</strong>admissible<br />
CO-concentrations <strong>in</strong> waste-gas and considerable excess<br />
consumptions come <strong>in</strong>to question as potential consequences.<br />
MAINTENANCE AND <strong>HEAT</strong>ING CHECKS<br />
REVEAL OPTIMISING POTENTIALS<br />
As already mentioned before, efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance<br />
is, further to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the <strong>in</strong>stallation, also focussed<br />
on the optimisation there<strong>of</strong>, contrary to reactive and preventive<br />
ma<strong>in</strong>tenance. This may <strong>in</strong>clude <strong>in</strong>crease <strong>of</strong> production,<br />
more efficient operation as well as enhancement <strong>of</strong> plant<br />
safety. On a more detailed analysis <strong>of</strong> the heat<strong>in</strong>g system <strong>of</strong> a<br />
TPE by accord<strong>in</strong>gly skilled personnel, optimisation potentials<br />
can be revealed <strong>in</strong> astonish<strong>in</strong>gly many cases. The demands<br />
made on the qualification level <strong>of</strong> ma<strong>in</strong>tenance personnel<br />
are accord<strong>in</strong>gly high and reach meanwhile far beyond purely<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
93
REPORTS<br />
Burner & Combustion<br />
purposefully searched for. This applies both to the thermo<strong>process</strong><strong>in</strong>g<br />
equipment as a whole and the section <strong>of</strong> heat<strong>in</strong>g<br />
system which naturally causes the major part <strong>of</strong> operat<strong>in</strong>g<br />
costs <strong>in</strong>curred. However, potentials <strong>of</strong> this k<strong>in</strong>d cannot be<br />
exclusively found on old systems but are frequently tacitly<br />
tolerated on new systems due to the <strong>in</strong>creased cost pressure<br />
as the costs for runn<strong>in</strong>g operation and ma<strong>in</strong>tenance mostly<br />
recede <strong>in</strong>to the background as compared to the purchase<br />
price. Heat<strong>in</strong>g checks and up-to-date ma<strong>in</strong>tenance concepts<br />
demonstrate to the end user weak po<strong>in</strong>ts <strong>of</strong> his system thanks<br />
to the elim<strong>in</strong>ation there<strong>of</strong> potential reserve capacities can be<br />
activated to <strong>in</strong>crease safety and to enhance energy efficiency<br />
<strong>of</strong> the whole thermo<strong>process</strong><strong>in</strong>g equipment.<br />
Fig. 5: Optimisation action on a combustion-air manifold to reduce pressure<br />
fluctuations (LH before, RH after)<br />
mechanical/electrical knowledge <strong>of</strong> the <strong>in</strong>dividual components<br />
that has been sufficient for such jobs over many years.<br />
In the ideal case, such heat<strong>in</strong>g checks should take place <strong>in</strong><br />
close co-operation with the end user who knows the system<br />
very well and can give important advice on the basis <strong>of</strong> his<br />
observations.<br />
Fluctuations <strong>in</strong> the operat<strong>in</strong>g pressures <strong>of</strong> supply media are<br />
frequently encountered here. The end user generally notices<br />
this only <strong>in</strong>directly by higher gas consumption which, however,<br />
appears to him as normal and, <strong>in</strong> extreme cases, by<br />
failures occurred such as, for <strong>in</strong>stance, breakdown <strong>of</strong> burner<br />
flame. Pipel<strong>in</strong>es unfavourably dimensioned <strong>in</strong> terms <strong>of</strong> fluid<br />
technology have the same effect as undersized combustionair<br />
fans. Fig. 5 shows such a pipel<strong>in</strong>e LH before and RH after<br />
the optimisation action. Pressure fluctuations <strong>in</strong> air supply<br />
could be considerably reduced, emission values improved,<br />
burner failures reduced, and system efficiency <strong>in</strong>creased.<br />
In terms <strong>of</strong> efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance, a service<br />
report should <strong>in</strong>clude a check <strong>of</strong> heat<strong>in</strong>g system and<br />
demonstrate to the end user those or similar weak po<strong>in</strong>ts<br />
<strong>of</strong> his system along with potential countermeasures as well<br />
as potentials for improvement result<strong>in</strong>g therefrom. A check<br />
with regard to meet<strong>in</strong>g the currently valid safety regulations,<br />
for <strong>in</strong>stance, DIN EN 746-2 should also be <strong>in</strong>cluded <strong>in</strong> this<br />
respect. As, however, this really takes place rather seldom <strong>in</strong><br />
terms <strong>of</strong> ma<strong>in</strong>tenance by an externally contracted company,<br />
efficiency enhancement <strong>in</strong> this form is <strong>in</strong> a way the “free exercise”<br />
<strong>of</strong> ma<strong>in</strong>tenance.<br />
CONCLUSION<br />
Exclusively reactive methods for care and ma<strong>in</strong>tenance<br />
accord<strong>in</strong>g to the motto “Rather wait than ma<strong>in</strong>ta<strong>in</strong>” are<br />
nowadays a th<strong>in</strong>g <strong>of</strong> the past. In terms <strong>of</strong> efficiency-enhanc<strong>in</strong>g<br />
ma<strong>in</strong>tenance that is naturally the supreme discipl<strong>in</strong>e <strong>of</strong><br />
ma<strong>in</strong>tenance, weak po<strong>in</strong>ts and optimisation potentials are<br />
LITERATURE<br />
[1] Hiller, M. and Steck-W<strong>in</strong>ter, H.: Co-operative ma<strong>in</strong>tenance <strong>of</strong><br />
thermo<strong>process</strong><strong>in</strong>g equipment. gwi – gaswärme <strong>in</strong>ternational<br />
No. 3/2013, Vulkan Verlag Essen, 2013<br />
[2] Mäder, D.; Lohr, R. and Schmiel Gamarra, O.: Practical burner<br />
applications <strong>in</strong> consideration <strong>of</strong> DIN EN 746-2. gwi – gaswärme<br />
<strong>in</strong>ternational No. 2/2013, Vulkan Verlag Essen, 2013<br />
[3] Mäder, D.; Rakette, R. and Lohr, R.: Energy-efficient operation<br />
<strong>of</strong> natural-gas burners. gwi – gaswärme <strong>in</strong>ternational, No.<br />
5/2009, Vulkan Verlag Essen, 2009<br />
AUTHORS<br />
Dipl.-Eng. (FH) Dirk Mäder<br />
Noxmat GmbH<br />
Hagen, Germany<br />
Tel.: +49 (0) 2334 / 442358<br />
maeder@noxmat.de<br />
Octavio Schmiel Gamarra<br />
Noxmat GmbH<br />
Oederan, Germany<br />
Tel.: +49 (0) 37292 / 650361<br />
schmiel@noxmat.de<br />
Dipl.-Eng. Mario Schulze<br />
Noxmat GmbH<br />
Oederan, Germany<br />
Tel.: +49 (0) 37292 / 650369<br />
m.schulze@noxmat.de<br />
René Lohr<br />
Noxmat GmbH<br />
Oederan, Germany<br />
Tel.: +49 (0) 37292 / 650343<br />
lohr@noxmat.de<br />
94 heat <strong>process</strong><strong>in</strong>g 3-2014
Burner & Combustion<br />
REPORTS<br />
Sensory combustion optimisation<br />
<strong>of</strong> gas combustion systems<br />
by Frank Hammer<br />
Today, the quality <strong>of</strong> gas is already subjected to non-negligible fluctuations <strong>in</strong> the natural gas grid. New repositories, an<br />
altered distribution structure, and, especially, the supply <strong>of</strong> regenerative gases such as biogas and w<strong>in</strong>d-hydrogen <strong>in</strong>creas<strong>in</strong>gly<br />
alter the concentrations <strong>of</strong> hydrocarbon, hydrogen, and <strong>in</strong>ert gas components <strong>in</strong> the gas and thus its combustion<br />
properties. This has an effect on the combustion <strong>process</strong> and therefore on the efficiency and emissions <strong>of</strong> gas furnaces.<br />
A combustion control system to compensate for these gas quality variations and other disturbances on the <strong>process</strong> is<br />
therefore essential. In particular, the use <strong>of</strong> robust exhaust gas sensors for the measurement <strong>of</strong> oxygen (O 2 ) and for the<br />
detection <strong>of</strong> unburned gas components such as CO, H 2 , and HC (CO e ) allow simple control strategies for the self-adaptive<br />
optimisation <strong>of</strong> combustion and <strong>in</strong>creases the reliability and operational safety <strong>of</strong> the gas combustion system.<br />
The objective <strong>of</strong> any combustion control system<br />
should be the maximisation <strong>of</strong> efficiency at the simultaneous<br />
m<strong>in</strong>imisation <strong>of</strong> pollutants. The <strong>in</strong>fluence <strong>of</strong><br />
the air value l or rather, the rema<strong>in</strong><strong>in</strong>g oxygen content on<br />
the efficiency and the pollut<strong>in</strong>g emissions <strong>of</strong> a combustion<br />
plant is fundamentally shown <strong>in</strong> Fig. 1. Too much excess<br />
air leads to exhaust gas heat loss, whilst a lack <strong>of</strong> air leads<br />
to efficiency losses due to <strong>in</strong>complete combustion. Ideally,<br />
the plant is operated at the optimum air value, which may<br />
lie at l opt = 1.02 <strong>in</strong> the case <strong>of</strong> today’s <strong>plants</strong>, shortly <strong>in</strong> front<br />
<strong>of</strong> the so-called emission edge.<br />
Challenges for every combustion <strong>process</strong> are presented<br />
by gradually chang<strong>in</strong>g conditions and quick, externally<br />
active disturbance variables, such as:<br />
■■<br />
■■<br />
■■<br />
■■<br />
■■<br />
Combustion air (temperature, pressure, humidity),<br />
Fuel (calorific value, temperature, viscosity),<br />
Contam<strong>in</strong>ation (burner, combustion chamber, boiler,<br />
exhaust gas duct),<br />
Chimney (w<strong>in</strong>d, temperature, draught),<br />
Mechanics (play, hysteresis, component failure).<br />
Typical fluctuations <strong>in</strong> air temperature <strong>of</strong> ± 20 °C lead to<br />
O 2 changes <strong>of</strong> ± 1.5 % by volume O 2 . Table 1 shows the<br />
<strong>in</strong>fluence <strong>of</strong> additional disturbance variables on the O 2<br />
content <strong>in</strong> furnace exhaust gas. If a combustion <strong>process</strong> is<br />
adjusted to a certa<strong>in</strong> po<strong>in</strong>t, it is “bl<strong>in</strong>dly” exposed to these<br />
O 2 fluctuations without sensor monitor<strong>in</strong>g. An <strong>in</strong>crease<br />
<strong>in</strong> O 2 accord<strong>in</strong>g to Fig. 1, leads to an efficiency loss due<br />
to an <strong>in</strong>crease <strong>in</strong> the amount <strong>of</strong> exhaust gas because <strong>of</strong><br />
excess air. A reduction <strong>in</strong> O 2 , especially <strong>in</strong> case <strong>of</strong> a lack<br />
Table 1: Typical disturbance variables and their effect on the O 2 content <strong>in</strong><br />
furnace exhaust gas<br />
Fig. 1: Typical curve <strong>of</strong> the pollutant emissions and<br />
efficiency depend<strong>in</strong>g on excess air<br />
Disturbance variable for<br />
combustion<br />
Typical fluctuation <strong>of</strong> the<br />
disturbance variable<br />
O 2 change <strong>in</strong> Vol.%<br />
Ambient temperature ± 20 °C ± 1.5 Vol.%<br />
Ambient pressure ± 25 mbar ± 0.8 Vol.%<br />
Calorific value ± 10 % ± 2.0 Vol.%<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
95
REPORTS<br />
Burner & Combustion<br />
<strong>of</strong> oxygen, leads to a risk <strong>of</strong> <strong>in</strong>complete combustion with<br />
high pollut<strong>in</strong>g emissions <strong>of</strong> CO e when exceed<strong>in</strong>g the emission<br />
edge. The efficiency drops drastically s<strong>in</strong>ce unburned<br />
combustible gas gets unused outside through the flue.<br />
A monitor<strong>in</strong>g and safe adjustment <strong>of</strong> the combustion<br />
for the compensation <strong>of</strong> such disturbance variables is thus<br />
unavoidable for both environmental and safety reasons. In<br />
the follow, the exhaust gas sensor required for this purpose,<br />
the classic O 2 control and the even more efficient CO e /<br />
O 2 optimisation that can be implemented as a result are<br />
<strong>in</strong>troduced.<br />
THE SENSORS<br />
For monitor<strong>in</strong>g the dynamic combustion <strong>process</strong> and for<br />
the compensation <strong>of</strong> disturbances, quickly react<strong>in</strong>g sensors<br />
must be placed ideally directly <strong>in</strong>to the exhaust gas duct <strong>of</strong><br />
the combustion plant. These <strong>in</strong>-situ exhaust gas sensors are<br />
exposed to high loads <strong>in</strong> flue gas. In addition to the known<br />
combustion products, these loads <strong>in</strong>clude temperature,<br />
pressure, humidity, water steam, additives, HF, SO 2 , SO 3 ,<br />
H 2 SO, ash, dust, heavy metals, boiler abrasion, vibrations,<br />
and so on. Robust, highly dynamic gas sensors based on<br />
solid electrolyte ceramics are thus used for this task. The<br />
best known example <strong>of</strong> a solid electrolyte sensor is the<br />
l-probe, which is ma<strong>in</strong>ly used <strong>in</strong> automobile applications.<br />
Lamtec develops and produces its own solid electrolyte<br />
sensors for measur<strong>in</strong>g O 2 and detect<strong>in</strong>g CO e . Fig. 2 shows an<br />
example <strong>of</strong> the comb<strong>in</strong>ation probe KS1D for the simultaneous<br />
measurement <strong>of</strong> O 2 and CO e with relevant data and facts<br />
(from left to right: top: thimble-like sensor element/sensor/<br />
<strong>in</strong>stallation situation <strong>of</strong> the probe; middle: KS1D probe with<br />
measur<strong>in</strong>g gas extraction and built-<strong>in</strong> fitt<strong>in</strong>g/<strong>in</strong>stallation<br />
situation <strong>of</strong> the probe; bottom: technical data <strong>of</strong> KS1D)<br />
Fig. 3 conta<strong>in</strong>s a pr<strong>in</strong>ciple draw<strong>in</strong>g <strong>of</strong> the thimble-like<br />
structure <strong>of</strong> the KS1D probe. It is located <strong>in</strong> the exhaust<br />
gas duct <strong>of</strong> the combustion plant. The functional ceramics<br />
(yttria-stabilised zirconia) separates the reference gas<br />
chamber (ambient) from the measur<strong>in</strong>g gas chamber (flue)<br />
<strong>in</strong> a gastight manner. The “<strong>in</strong>side” <strong>of</strong> the functional ceramics<br />
conta<strong>in</strong>s a reference electrode made <strong>of</strong> plat<strong>in</strong>um, whilst<br />
both measur<strong>in</strong>g electrodes for O 2 and CO e are located on<br />
the “outside” <strong>of</strong> the ceramics <strong>in</strong> the measur<strong>in</strong>g gas. The<br />
O 2 electrode 1 made <strong>of</strong> plat<strong>in</strong>um and the CO e electrode 2<br />
made <strong>of</strong> a plat<strong>in</strong>um/noble metal alloy differ only <strong>in</strong> regard<br />
to material. The different catalytic and electrochemical<br />
properties <strong>of</strong> the electrodes are what permit the detection<br />
<strong>of</strong> CO e . By means <strong>of</strong> an <strong>in</strong>tegrated heater, the probe is<br />
heated to and regulated at temperatures <strong>of</strong> T = 650 °C. At<br />
this temperature, the solid electrolyte ceramics is a good<br />
oxygen ion conductor which allows form<strong>in</strong>g both sensor<br />
signal voltages U S1 between electrode 1 and the reference<br />
electrode and U S2 between electrode 2 and the reference<br />
electrode that can be measured.<br />
The sensor voltage at both electrodes U Si with i = 1,2<br />
<strong>in</strong>itially correspond with the known Nernstian voltage,<br />
USi = U0,i + R Ti/4F · ln (pO2,ref / pO2,meas) (1)<br />
which depends on the partial oxygen pressure p O2,meas <strong>in</strong><br />
the exhaust gas. The oxygen partial pressure <strong>of</strong> the environment<br />
is known as a reference and lies at a constant <strong>of</strong> p O2,ref<br />
= 21 Vol.%. The universal gas constant R and the Faraday<br />
constant F are also known. A simple 1-po<strong>in</strong>t calibration <strong>in</strong><br />
air where p O2,meas = p O2,ref = 21 Vol.% results <strong>in</strong> U Si =U 0,i and<br />
thus directly the sensor-specific <strong>of</strong>fset voltage U 0,i at the<br />
set sensor temperature T i .<br />
In the presence <strong>of</strong> combustible CO e gases, a non-Nernstian<br />
sensor voltage U COe forms at the second measur<strong>in</strong>g<br />
electrode, which is added to the pure Nernstian oxygen<br />
signal voltage. The result<strong>in</strong>g sensor signal at electrode 2,<br />
thus results <strong>in</strong><br />
U S2 =U S1 + U COe (2)<br />
For the combustible CO e components, the follow<strong>in</strong>g results:<br />
U COe =U S2 - U S1 (3)<br />
Fig. 2: Comb<strong>in</strong>ation probe KS1D for the simultaneous measurement <strong>of</strong> O 2<br />
and CO e<br />
In Fig. 4, both signals U S1 and U S2 <strong>of</strong> KS1D are shown with<br />
respect to the O 2 content <strong>in</strong> the exhaust gas <strong>of</strong> a typical<br />
combustion plant. In addition, the concentration <strong>of</strong> the<br />
unburned CO e components is shown <strong>in</strong> ppm on the second<br />
y axis.<br />
96 heat <strong>process</strong><strong>in</strong>g 3-2014
Burner & Combustion<br />
REPORTS<br />
Fig. 3: Functional pr<strong>in</strong>ciple <strong>of</strong> KS1D<br />
Fig. 4: Pr<strong>in</strong>ciple signal curve <strong>of</strong> both KS1D sensor voltages<br />
depend<strong>in</strong>g on excess air<br />
A typical CO e curve when slowly reduc<strong>in</strong>g O 2 and hence<br />
head<strong>in</strong>g towards <strong>in</strong>complete/bad combustion shows a<br />
significant <strong>in</strong>crease <strong>of</strong> combustibles CO e at the emission<br />
edge due to a lack <strong>of</strong> combustion air (also refer to Fig. 1).<br />
In the excess air range <strong>in</strong> the case <strong>of</strong> clean, CO e -free<br />
combustion, both sensor signals U S1 and U S2 are identical<br />
to each other and show the current percentage <strong>of</strong> oxygen<br />
<strong>in</strong> the exhaust gas duct accord<strong>in</strong>g to Nernst. In the vic<strong>in</strong>ity<br />
<strong>of</strong> the emission edge, however, the sensor signal <strong>of</strong> the<br />
second electrode U S2 rises disproportionally due to the<br />
cumulative non-Nernstian CO e signal. For the locat<strong>in</strong>g <strong>of</strong><br />
the emission edge, both the absolute sensor signals U S1<br />
and U S2 and the relative sensor signal change accord<strong>in</strong>g<br />
to time dU S2 /dt, i.e., the signal dynamics, especially <strong>of</strong> the<br />
CO e electrode, are used.<br />
O 2 CONTROL<br />
To prevent the risk <strong>of</strong> an <strong>in</strong>complete combustion, most<br />
<strong>in</strong>dustrial combustion <strong>plants</strong> are set to an air value λ with<br />
sufficient safety distance to the emission edge us<strong>in</strong>g<br />
classic O 2 control accord<strong>in</strong>g to today’s technological<br />
standards. Fig. 1 shows the result<strong>in</strong>g, nom<strong>in</strong>al operat<strong>in</strong>g<br />
range, which can extend to l nom = 1.3 and beyond.<br />
The safety distance to the emission edge must be<br />
selected to be larger, the greater the measur<strong>in</strong>g <strong>in</strong>accuracy<br />
and measur<strong>in</strong>g error <strong>of</strong> the O 2 measurement,<br />
e.g., due to false air, and the greater and more dynamic<br />
the fluctuations are, especially <strong>in</strong> regard to chang<strong>in</strong>g gas<br />
quality. Depend<strong>in</strong>g on the <strong>process</strong>, this safety distance is<br />
necessary but unfavourably affects the efficiency s<strong>in</strong>ce<br />
the optimisation potential up to the plant and fuel specific<br />
combustion optimum <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> the emission<br />
edge is not used.<br />
The classic O 2 control adjust<strong>in</strong>g to a constant O 2 value<br />
mostly compensates these fluctuations. With a loaddependent<br />
O 2 sett<strong>in</strong>g, the efficiency <strong>of</strong> the plant can be<br />
<strong>in</strong>creased even further. Beyond the O 2 control, the emission<br />
edge strategy for combustion optimisation described <strong>in</strong><br />
the follow<strong>in</strong>g enables to settle much closer to the emission<br />
edge up to the operat<strong>in</strong>g po<strong>in</strong>t with maximum efficiency.<br />
CO e /O 2 OPTIMISATION (EMISSION EDGE<br />
STRATEGY)<br />
For the locat<strong>in</strong>g <strong>of</strong> the emission edge, the fuel/air ratio is<br />
reduced dynamically towards a smaller air value l without<br />
<strong>in</strong>fluenc<strong>in</strong>g the burner-fir<strong>in</strong>g rate until the CO e sensor signal<br />
U S2 spreads from the O 2 signal U S1 at the emission edge<br />
(Fig. 4) and both the absolute sensor signal U S2 and the<br />
sensor signal dynamics dU S2 /dt <strong>in</strong>crease significantly due<br />
to the <strong>in</strong>cipient bad combustion. A small <strong>in</strong>crease <strong>of</strong> the air<br />
value ultimately results <strong>in</strong> the optimum work<strong>in</strong>g po<strong>in</strong>t l opt<br />
<strong>of</strong> the system right <strong>in</strong> front <strong>of</strong> the emission edge. This cyclic<br />
procedure is repeated cont<strong>in</strong>uously <strong>in</strong> order to be able to<br />
guarantee operation close to optimum combustion, even<br />
<strong>in</strong> case <strong>of</strong> changed conditions or burner loads that lead to<br />
a shift <strong>in</strong> the emission edge.<br />
Fast changes or disturbances <strong>in</strong> a plant that is already optimally<br />
set are detected immediately due to the permanent<br />
monitor<strong>in</strong>g <strong>of</strong> the CO e emissions. Additional system <strong>in</strong>formation<br />
regard<strong>in</strong>g the current O 2 content <strong>in</strong> the exhaust gas<br />
and supplemental plausibility considerations may be used, if<br />
desired. Us<strong>in</strong>g these <strong>in</strong>formation, the plant will immediately<br />
be brought back <strong>in</strong>to a “safe” operat<strong>in</strong>g mode with sufficient<br />
excess air and then, start<strong>in</strong>g from a safe characteristic curve<br />
us<strong>in</strong>g the rout<strong>in</strong>e described above, led up to its optimum<br />
operat<strong>in</strong>g po<strong>in</strong>t under the changed conditions aga<strong>in</strong>.<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
97
REPORTS<br />
Burner & Combustion<br />
Fig. 5: Boiler with dual-fuel burner equipped with BurnerTronic BT300, speed control, <strong>in</strong>-situ gas sensor and sensor<br />
electronics for optimise CO e /O 2<br />
The CO e /O 2 optimisation has been used successfully<br />
worldwide for over 10 years. The most important advantages<br />
<strong>of</strong> the CO e /O 2 optimisation <strong>in</strong> comparison with an<br />
O 2 control are as follows:<br />
■■<br />
■■<br />
■■<br />
■■<br />
■■<br />
■■<br />
Higher energy sav<strong>in</strong>gs through cont<strong>in</strong>uous self-optimisation<br />
<strong>in</strong> every load po<strong>in</strong>t,<br />
Better control performance through significantly shorter<br />
sett<strong>in</strong>g times,<br />
Independent <strong>of</strong> false air,<br />
Failsafe,<br />
Robust,<br />
Ma<strong>in</strong>tenance-free.<br />
SAVINGS CALCULATION<br />
For combustion control, a complete range <strong>of</strong> electronic<br />
burner control devices, fuel/air ratio controllers, IR/UV sensors,<br />
flame monitors, and CO e /O 2 measur<strong>in</strong>g devices with<br />
the pert<strong>in</strong>ent sensor systems is available on the market.<br />
For medium-sized <strong>plants</strong> from 0.3-5 MW, the BurnerTronic<br />
BT300 is the first device worldwide <strong>in</strong> its price class that<br />
can be used for both O 2 control and CO e /O 2 optimisation<br />
(Fig. 5). It comb<strong>in</strong>es all advantages <strong>of</strong> an electronic fuel/<br />
air ratio control with an electronic burner control device.<br />
S<strong>in</strong>ce the market <strong>in</strong>troduction about 3 years ago, more than<br />
3,000 <strong>plants</strong> per year and ris<strong>in</strong>g have been equipped and<br />
Table 2: Conservative sav<strong>in</strong>gs calculation for the modernised 5 MW dual-fuel burner <strong>in</strong> Fig. 6<br />
Sav<strong>in</strong>gs for burner 1: Low load Medium load High load<br />
Operat<strong>in</strong>g hours h/a 800 800 6,400<br />
Fuel costs (assumed) €/h 46 105 159<br />
O 2 reduction through O 2 control Vol.% 1.28 1.46 1.33<br />
Sav<strong>in</strong>gs through O 2 control €/a 464 1,223 13,598 15,286<br />
Additional O 2 reduction due to CO e /O 2 optimisation Vol.% 0.33 0.22 0.33<br />
Additional O 2 reduction due to CO e /O 2 optimisation €/a 120 186 3,353 3,660<br />
Sav<strong>in</strong>gs due to speed controlled fan €/a 2,974<br />
Total sav<strong>in</strong>gs €/a 21,920<br />
98 heat <strong>process</strong><strong>in</strong>g 3-2014
Burner & Combustion<br />
REPORTS<br />
Fig. 6: 5 MW dual-fuel burner converted for CO e /O 2 optimisation<br />
with LT3F sensor electronics and switch<br />
cab<strong>in</strong>et with <strong>in</strong>tegrated BT300, speed control, etc.<br />
Fig. 7: Comparison <strong>of</strong> the energy consumption <strong>of</strong> the unregulated<br />
and speed-controlled combustion air fan via the burner<br />
load<br />
optimally operated with this component – for the sake <strong>of</strong><br />
a clean environment!<br />
Fig. 6 shows one <strong>of</strong> the boilers <strong>of</strong> a <strong>thermal</strong> <strong>process</strong><strong>in</strong>g<br />
plant for the food <strong>in</strong>dustry with a 5 MW dual-fuel burner<br />
(oil/gas). All boilers <strong>of</strong> the plant were recently equipped<br />
with a CO e /O 2 optimisation and a load-dependent speed<br />
control <strong>of</strong> the combustion air fan. To estimate the pr<strong>of</strong>it <strong>of</strong><br />
the conversion measures, the plant and operation specific<br />
boundary conditions and some <strong>of</strong> the measurement data<br />
from before and after the conversion are <strong>in</strong>cluded <strong>in</strong> the<br />
sav<strong>in</strong>gs calculation.<br />
As a boundary condition, typical fluctuations accord<strong>in</strong>g<br />
to Table 1 are <strong>in</strong>cluded <strong>in</strong> the sav<strong>in</strong>gs calculation. The<br />
exhaust gas temperature was measured at 150 °C at high<br />
load and at 120 °C at low load. The combustion air temperatures<br />
typically lie at 35 °C <strong>in</strong> the summer and at 10 °C<br />
<strong>in</strong> the w<strong>in</strong>ter. To calculate the sav<strong>in</strong>gs, fuel costs <strong>of</strong> € 0.35/<br />
kWh gas are assumed.<br />
Through the use <strong>of</strong> a speed-controlled combustion air<br />
fan <strong>in</strong>stead <strong>of</strong> a fan with valve control operated at constant<br />
speed, an additional sav<strong>in</strong>g <strong>in</strong> electrical power is achieved<br />
accord<strong>in</strong>g to Fig. 7. For the calculation <strong>of</strong> the electrical sav<strong>in</strong>gs,<br />
energy costs <strong>of</strong> € 0.12/kWh el are assumed.<br />
In Table 2, the results <strong>of</strong> the mostly conservative sav<strong>in</strong>gs<br />
calculation based on the well-known Siegert formula are<br />
briefly <strong>in</strong>troduced. Accord<strong>in</strong>g to this table, the annual sav<strong>in</strong>gs<br />
due to O 2 control reach up to € 15,286 for each boiler <strong>of</strong><br />
this plant. The additional ga<strong>in</strong> due to CO e /O 2 optimisation<br />
amounts to € 3,660. The CO e /O 2 optimisation us<strong>in</strong>g a s<strong>in</strong>gle<br />
probe (KS1D) is an additional benefit and comparable with<br />
a pure O 2 control <strong>in</strong> regard to expense. For this reason, it<br />
is easy to use for all <strong>plants</strong>, <strong>in</strong>creas<strong>in</strong>gly <strong>of</strong> <strong>in</strong>terest for boilers<br />
with medium-sized output, and recently available as<br />
well. The sav<strong>in</strong>gs due to speed control amount to another<br />
€ 2,974 per year. This results <strong>in</strong> a total sav<strong>in</strong>gs <strong>of</strong> € 21,920<br />
a year per boiler! In addition to these fuel or cost sav<strong>in</strong>gs<br />
for plant operators, the environment also benefits from an<br />
annual CO 2 reduction <strong>of</strong> about 130 t per boiler <strong>in</strong> this plant.<br />
AUTHOR<br />
Dr.-Ing. Frank Hammer<br />
Lamtec Meß- und Regeltechnik für<br />
Feuerungen GmbH & Co. KG<br />
Walldorf, Germany<br />
Tel.: +49 (0) 6227 / 6052-0<br />
hammer@lamtec.de<br />
+++ www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com +++ www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com +++<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
99
Handbook <strong>of</strong><br />
Thermo<strong>process</strong><strong>in</strong>g<br />
Technologies<br />
www.vulkan-verlag.de<br />
Order now!<br />
Volume 1: Fundamentals | Processes | Calculations<br />
This Handbook provides a detailed overview <strong>of</strong> the entire thermo<strong>process</strong><strong>in</strong>g<br />
sector, structured on practical criteria, and will be <strong>of</strong> particular assistance<br />
to manufacturers and users <strong>of</strong> thermo<strong>process</strong><strong>in</strong>g equipment.<br />
In Europe thermo<strong>process</strong><strong>in</strong>g is the third largest energy consumption<br />
sector with a very diversified and complex structure. Therefore it is split<br />
<strong>in</strong>to a large number <strong>of</strong> subdivisions, each hav<strong>in</strong>g a high importance<br />
for the <strong>in</strong>dustrial economy. Accord<strong>in</strong>gly we f<strong>in</strong>d the application knowhow<br />
for the design and the execution <strong>of</strong> respective equipment represented<br />
by a multitude <strong>of</strong> small but very specialized companies and their experts.<br />
So this second edition is based on the contribution <strong>of</strong> many highly<br />
experienced eng<strong>in</strong>eers work<strong>in</strong>g <strong>in</strong> this fi eld. The book’s ma<strong>in</strong> <strong>in</strong>tention is<br />
the presentation <strong>of</strong> practical <strong>thermal</strong> <strong>process</strong><strong>in</strong>g for the improvement <strong>of</strong><br />
materials and parts <strong>in</strong> <strong>in</strong>dustrial application. Additionally it <strong>of</strong>fers a summary<br />
<strong>of</strong> respective <strong>thermal</strong> and material science fundamentals. Further it<br />
covers the basic fuel-related and electrical eng<strong>in</strong>eer<strong>in</strong>g knowledge and<br />
design aspects, components and safety requirements for the necessary<br />
heat<strong>in</strong>g <strong>in</strong>stallations.<br />
Editors: Franz Beneke, Bernhard Nacke, Herbert Pfeifer<br />
2 nd edition 2012, 674 pages with additional media files<br />
and e-book on DVD, hardcover<br />
Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />
KNOWLEDGE FOR THE<br />
FUTURE<br />
Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />
Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />
Yes, I place a firm order for the technical book. Please send<br />
— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />
(ISBN: 978-3-8027-2966-9) at the price <strong>of</strong> € 200,- (plus postage and pack<strong>in</strong>g)<br />
— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />
(ISBN: 978-3-8027-2966-9) at the special price <strong>of</strong> € 180,- (plus postage and pack<strong>in</strong>g)<br />
for subscribers <strong>of</strong> heat <strong>process</strong><strong>in</strong>g<br />
Company/<strong>in</strong>stitution<br />
First name and surname <strong>of</strong> recipient<br />
Street/P.O. Box, No.<br />
Country, Postcode, Town<br />
Reply / Antwort<br />
Vulkan Verlag GmbH<br />
Versandbuchhandlung<br />
Postfach 10 39 62<br />
45039 Essen<br />
GERMANY<br />
Phone<br />
E-mail<br />
L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />
Fax<br />
Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />
to Vulkan Verlag GmbH, Versandbuchhandlung, Friedrich-Ebert-Str.11, 45127 Essen, Germany.<br />
Date, signature<br />
PAHBTT2014<br />
In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />
It is<br />
100<br />
approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />
heat <strong>process</strong><strong>in</strong>g 3-2014<br />
This approval may be withdrawn at any time.<br />
✘
Energy Management<br />
REPORTS<br />
Energy efficiency – potential<br />
options for <strong>in</strong>dustrial furnaces<br />
by Christian Sprung<br />
The subject <strong>of</strong> energy efficiency, and how to <strong>in</strong>crease it, is becom<strong>in</strong>g more and more significant for <strong>in</strong>dustry and will be<br />
one <strong>of</strong> the challenges fac<strong>in</strong>g it <strong>in</strong> the com<strong>in</strong>g years. This applies <strong>in</strong> particular to the energy-<strong>in</strong>tensive sectors. The driv<strong>in</strong>g<br />
forces beh<strong>in</strong>d this development are social and political pressure on the one hand, while on the other hand, ever-<strong>in</strong>creas<strong>in</strong>g<br />
energy costs are also fuell<strong>in</strong>g the subject. For this reason, energy costs are <strong>in</strong>creas<strong>in</strong>gly becom<strong>in</strong>g a substantial location<br />
factor. The ma<strong>in</strong> obstacle when it comes to implement<strong>in</strong>g concrete measures for <strong>in</strong>creas<strong>in</strong>g efficiency is presented by<br />
the high <strong>in</strong>vestment costs associated with them. However, the complexity <strong>in</strong>volved <strong>in</strong> analyz<strong>in</strong>g <strong>in</strong>terl<strong>in</strong>ked systems <strong>in</strong> a<br />
production plant also makes it more difficult to search for the optimal solution. In many cases though, even small measures<br />
requir<strong>in</strong>g correspond<strong>in</strong>gly small <strong>in</strong>vestments can br<strong>in</strong>g about a measurable improvement. The follow<strong>in</strong>g article attempts<br />
to illustrate the wide range <strong>of</strong> technical options available specifically for gas-fired <strong>in</strong>dustrial furnaces. At the same time it<br />
should be po<strong>in</strong>ted out that there is no ready-made solution. Individual and comprehensive <strong>in</strong>vestigation must always be<br />
carried out to determ<strong>in</strong>e which approach <strong>of</strong>fers the best results <strong>in</strong> terms <strong>of</strong> costs and benefits for each <strong>in</strong>dividual case.<br />
Energy-<strong>in</strong>tensive <strong>in</strong>dustries <strong>in</strong> Germany can for the<br />
moment breathe a sigh <strong>of</strong> relief. This applies <strong>in</strong><br />
particular to companies active <strong>in</strong> the fields <strong>of</strong> steel<br />
and NF metals production. The Federal German government<br />
has come to an agreement with the EU Commission<br />
and has achieved the dismissal <strong>of</strong> the subsidy<br />
proceed<strong>in</strong>gs brought aga<strong>in</strong>st Germany. This removes<br />
the obstacles to the reform <strong>of</strong> the Renewable Energy Act<br />
(EEG) already adopted on April 8 th by the Federal Cab<strong>in</strong>et.<br />
From the viewpo<strong>in</strong>t <strong>of</strong> the energy-<strong>in</strong>tensive <strong>in</strong>dustries <strong>in</strong><br />
Germany, one <strong>of</strong> the most crucial aspects <strong>of</strong> the act is<br />
that such branches <strong>of</strong> <strong>in</strong>dustry shall cont<strong>in</strong>ue to receive<br />
rebates under the EEG levy. Furthermore, the companies<br />
own generation <strong>of</strong> electrical power shall cont<strong>in</strong>ue to be<br />
accepted from the levy. The withhold<strong>in</strong>g <strong>of</strong> these privileges,<br />
as had been demanded by a number <strong>of</strong> political<br />
parties and associations, would have signified enormous<br />
problems <strong>of</strong> competition on the global market for steel<br />
and alum<strong>in</strong>ium producers <strong>in</strong> Germany. Thus, for example,<br />
dur<strong>in</strong>g the “Steel Market 2014” conference, Hans Jürgen<br />
Kerkh<strong>of</strong>f, President <strong>of</strong> the German Steel Federation, estimated<br />
that the annual additional burden on the German<br />
steel <strong>in</strong>dustry would have been at least € 1 billion [1]. It<br />
would have been difficult, or even impossible, to cope<br />
with such additional costs <strong>in</strong> what is <strong>in</strong> any case a stra<strong>in</strong>ed<br />
market environment.<br />
WHY IS ENERGY EFFICIENCY<br />
BECOMING INCREASINGLY IMPORTANT<br />
IN GERMANY?<br />
Follow<strong>in</strong>g the rul<strong>in</strong>gs <strong>of</strong> April 8 th and 9 th , can one now<br />
say that topics such as the “change <strong>in</strong> energy policies and<br />
attitudes”, CO 2 emissions and energy efficiency have disappeared<br />
from the list <strong>of</strong> pend<strong>in</strong>g challenges? This is def<strong>in</strong>itely<br />
not the case! Thus, irrespective <strong>of</strong> these one-<strong>of</strong>f rul<strong>in</strong>gs,<br />
noth<strong>in</strong>g has changed <strong>in</strong> the long-term framework conditions<br />
with<strong>in</strong> Europe. Also the two ma<strong>in</strong> factors fuell<strong>in</strong>g all<br />
<strong>of</strong> the developments and efforts be<strong>in</strong>g made <strong>in</strong> this sphere<br />
thus rema<strong>in</strong> unaffected or are likely to be aggravated.<br />
One <strong>of</strong> these factors is the constantly <strong>in</strong>creas<strong>in</strong>g external<br />
pressure on <strong>in</strong>dustry: The so-called 3 X 20 resolutions were<br />
adopted at the 2007 Environment and Climate Change<br />
Summit. Under these resolutions, the member states <strong>of</strong><br />
the EU undertake to reduce greenhouse gas emissions and<br />
energy consumption by 20 % <strong>in</strong> each case and to <strong>in</strong>crease<br />
the proportion <strong>of</strong> renewable energies by 20 % by 2020 (all<br />
percentage values relat<strong>in</strong>g to 1990). The national objectives<br />
<strong>in</strong> Germany even go over and above these values.<br />
On March 3, 2014, the Group <strong>of</strong> Environment and Energy<br />
M<strong>in</strong>isters from 13 EU member countries issued a jo<strong>in</strong>t declaration<br />
on an ambitious climate and energy framework for<br />
the European Union by 2030. The declaration <strong>in</strong>cluded for<br />
example an appeal to the European Council to ensure a<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
101
REPORTS<br />
Energy Management<br />
Fig. 1: Energy flow diagram (2012) for the Federal Republic <strong>of</strong> Germany<br />
<strong>in</strong> petajoules [2]<br />
Fig. 2: For the <strong>process</strong><strong>in</strong>g <strong>in</strong>dustries: a) Share <strong>of</strong> energy costs <strong>in</strong><br />
gross value-added for 2008, b) <strong>in</strong>crease <strong>in</strong> energy costs<br />
between 2003 and 2008 <strong>in</strong> % [4]<br />
reduction <strong>in</strong> greenhouse gases <strong>of</strong> at least 40 % compared<br />
to 1990 by 2030, and to aim at an expansion <strong>of</strong> renewable<br />
energies by at least 27 % by 2030. Here too, the German<br />
demands <strong>in</strong> respect <strong>of</strong> climate protection, renewable energies<br />
and energy efficiency go significantly further than the<br />
contents <strong>of</strong> the declaration.<br />
This list could be extended at random. One need only<br />
open the newspaper, switch on the television or enter the<br />
requisite search words <strong>in</strong>to the <strong>in</strong>ternet. In all <strong>of</strong> the above<br />
endeavours, German <strong>in</strong>dustry is very much <strong>in</strong> the foreground<br />
with an energy consumption <strong>of</strong> 2,599 petajoules [2]<br />
<strong>in</strong> 2012 (ahead <strong>of</strong> traffic: 2,571 PJ and households: 2,431 PJ)<br />
(Fig. 1; [2]). This applies above all to the energy-<strong>in</strong>tensive<br />
sectors such as chemicals, glass, NF metals, steel, paper<br />
and cement.<br />
For the steel <strong>in</strong>dustry it is only a slight consolation that<br />
<strong>in</strong> an <strong>in</strong>ternational comparison <strong>of</strong> specific emissions (per<br />
ton <strong>of</strong> crude steel <strong>in</strong> each case) and energy consumption,<br />
Germany lies well below the figures for Russia and<br />
Ch<strong>in</strong>a, for example. On the contrary: This signifies a further<br />
strengthen<strong>in</strong>g <strong>of</strong> the pressure <strong>of</strong> <strong>in</strong>ternational competition<br />
already exist<strong>in</strong>g.<br />
A second driv<strong>in</strong>g force for developments <strong>in</strong> the field<br />
<strong>of</strong> energy efficiency is the ris<strong>in</strong>g pressure <strong>of</strong> costs: Thus,<br />
the average energy costs for German <strong>in</strong>dustry rose from<br />
approx. € 20 billion <strong>in</strong> 1997 to approx. € 45 billion [3] <strong>in</strong><br />
2011. The average share <strong>of</strong> energy costs <strong>in</strong> gross valueadded<br />
dur<strong>in</strong>g the same period <strong>in</strong>creased from 4.8 % to<br />
7.2 % [3]. On diversify<strong>in</strong>g these costs further and tak<strong>in</strong>g a<br />
quick look at the costs for the <strong>in</strong>dividual sectors and the<br />
development <strong>of</strong> these over the past few years (Fig. 2; [4]),<br />
it quickly becomes clear that this pool <strong>of</strong> costs is becom<strong>in</strong>g<br />
an <strong>in</strong>creas<strong>in</strong>gly important location factor, for <strong>in</strong>stance for<br />
the German steel <strong>in</strong>dustry.<br />
But also a comparison <strong>of</strong> energy costs with<strong>in</strong> the EU<br />
illustrates the significance <strong>of</strong> this factor for German <strong>in</strong>dustry.<br />
Thus, <strong>in</strong> 2011, the prices for <strong>in</strong>dustrial electricity <strong>in</strong> Germany<br />
were around 115 €/MWh [3], whereby Germany occupied a<br />
somewhat undesirable third place among the then 27 EU<br />
countries (average EU27: 95 €/MWh). Prices for natural gas<br />
take fourth place at 50 €/MWh (average EU27: 38 €/MWh)<br />
[3].<br />
FACTORS INHIBITING THE ACHIEVEMENT<br />
OF AN INCREASE IN ENERGY EFFICIENCY<br />
The various figures <strong>in</strong>dicated as examples are very succ<strong>in</strong>ct:<br />
The improvement <strong>of</strong> energy efficiency is becom<strong>in</strong>g<br />
<strong>in</strong>creas<strong>in</strong>gly important and will be one <strong>of</strong> the challenges<br />
102 heat <strong>process</strong><strong>in</strong>g 3-2014
Energy Management<br />
REPORTS<br />
for the future. A large variety <strong>of</strong> technical solutions are<br />
already available today for enhanc<strong>in</strong>g efficiency. Even so,<br />
the implementation <strong>of</strong> concrete measures is still a rarity. As<br />
before, when it comes to new <strong>in</strong>vestments, it is usually the<br />
<strong>in</strong>vestment volume itself and criteria such as productivity,<br />
product quality and specific location factors that occupy<br />
the top place <strong>in</strong> the list <strong>of</strong> priorities. Energy efficiency <strong>of</strong>ten<br />
plays a rather subord<strong>in</strong>ate role. What is the reason for this?<br />
An <strong>in</strong>direct answer to this question has already been<br />
given: Technical solutions that make possible higher energy<br />
efficiency cost money, or at least more money than conventional<br />
technologies! Even if this is not a completely new<br />
revelation, this aspect def<strong>in</strong>itely cannot be quoted <strong>of</strong>ten<br />
enough. This then clearly highlights the dilemma which<br />
an <strong>in</strong>dustrial firm faces. To survive on the market, it always<br />
has to f<strong>in</strong>d a balanced compromise between the burdens<br />
<strong>of</strong> <strong>in</strong>vestments on the one hand, and the operat<strong>in</strong>g costs<br />
on the other, these latter naturally <strong>in</strong>volv<strong>in</strong>g energy needs<br />
and the pressures imposed by various <strong>of</strong>ficial requirements.<br />
The logical conclusion here is that this is a subject where<br />
global agreements are def<strong>in</strong>itely needed, s<strong>in</strong>ce “push<strong>in</strong>g<br />
ahead” on a national or regional basis will necessarily lead<br />
to distortions <strong>in</strong> competition.<br />
It is confirmed by various <strong>in</strong>vestigations [5-7] that it is the<br />
<strong>in</strong>vestment costs which represent the ma<strong>in</strong> obstacle to the<br />
implementation and <strong>in</strong>troduction <strong>of</strong> the relevant measures<br />
for enhanc<strong>in</strong>g <strong>of</strong> efficiency. A further important factor that<br />
h<strong>in</strong>ders concrete energy-sav<strong>in</strong>g measures is the extreme<br />
complexity, <strong>in</strong> many cases, <strong>of</strong> the range <strong>of</strong> tasks to be performed.<br />
For example, on consider<strong>in</strong>g the flow quantities<br />
<strong>of</strong> gas, electricity and other utilities <strong>in</strong> an <strong>in</strong>tegrated metallurgical<br />
works, <strong>in</strong>volv<strong>in</strong>g a coke-oven plant, blast furnace,<br />
converter, roll<strong>in</strong>g mill and “<strong>in</strong>-house”<br />
power station, it rapidly becomes clear<br />
that a systematic and comprehensive<br />
analysis <strong>of</strong> all relevant utilities and their<br />
consumption figures cannot be dealt<br />
with as a matter <strong>of</strong> course. Thus, an<br />
answer to the question “Do you know<br />
what is the largest consumer <strong>of</strong> energy<br />
<strong>in</strong> your works?” will quickly turn <strong>in</strong>to a<br />
scientific treatise. A further difficult factor<br />
here is that most <strong>of</strong> the utilities and<br />
energy sources are conducted through<br />
the works <strong>in</strong> circuits, and this results <strong>in</strong><br />
the mutual <strong>in</strong>teraction <strong>of</strong> the <strong>in</strong>dividual<br />
systems. Individual isolated solutions<br />
should therefore be exam<strong>in</strong>ed critically<br />
before they are <strong>in</strong>troduced, s<strong>in</strong>ce<br />
improvements at one po<strong>in</strong>t may well<br />
cause deterioration at another location.<br />
The follow<strong>in</strong>g can be regarded as a<br />
general rule <strong>in</strong> the discussion on <strong>in</strong>troduc<strong>in</strong>g<br />
concrete measures for the <strong>in</strong>creas<strong>in</strong>g <strong>of</strong> energy<br />
efficiency: Patent solutions do not exist, and nor does the<br />
“best technology for all situations”. It is more the case that <strong>in</strong><br />
each concrete <strong>in</strong>dividual <strong>in</strong>stance and under consideration<br />
<strong>of</strong> the respective <strong>in</strong>frastructure, a search must always be<br />
made for an <strong>in</strong>tegrated optimum approach.<br />
What is good for one <strong>in</strong>dustrial firm may by no means<br />
be the best solution <strong>in</strong> another firm, particularly as the cost<br />
aspects for each concrete case must always be <strong>in</strong>cluded<br />
<strong>in</strong> the considerations. Plant owners, plantmakers and also<br />
consult<strong>in</strong>g firms have to make equally strong efforts here.<br />
Modern energy <strong>management</strong> systems can assist with<br />
the complex analysis <strong>of</strong> an entire <strong>in</strong>dustrial firm or works. As<br />
a plantmaker active worldwide <strong>in</strong> the field <strong>of</strong> metallurgical<br />
plant and roll<strong>in</strong>g mill technology, SMS Siemag makes its<br />
Energy Advisor available as an energy <strong>management</strong> system<br />
accord<strong>in</strong>g to ISO 50001, and this also performs energy<br />
data <strong>management</strong> over and above mere monitor<strong>in</strong>g. It is<br />
thus able to be used already <strong>in</strong> the plann<strong>in</strong>g phase <strong>of</strong> a<br />
new plant. Fig. 3 shows the essential modules and the<br />
structure <strong>of</strong> the system. Its ma<strong>in</strong> task is primarily to systematically<br />
record and archive all relevant measured data<br />
from the <strong>in</strong>dividual units. This gigantic data stock is then<br />
evaluated and displayed <strong>in</strong> a very wide variety <strong>of</strong> ways at<br />
the next level. This also makes it possible to display large<br />
and complex works systems <strong>in</strong> a structured manner and<br />
to create the necessary transparency, which <strong>in</strong> turn is the<br />
basic prerequisite for a fully comprehensive analysis. S<strong>in</strong>ce<br />
this is not a one-<strong>of</strong>f procedure but <strong>in</strong>volves the permanent<br />
record<strong>in</strong>g <strong>of</strong> data, trend analyses and boundary-value<br />
alarms can be employed to provide further <strong>in</strong>formation on<br />
the ongo<strong>in</strong>g production and on the condition <strong>of</strong> <strong>in</strong>dividual<br />
Fig. 3: Modules and functions <strong>of</strong> the SMS Siemag energy <strong>management</strong> system, “Energy Advisor”<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
103
REPORTS<br />
Energy Management<br />
Fig. 4: Categories <strong>of</strong> possible measures for <strong>in</strong>creas<strong>in</strong>g the energy efficiency <strong>in</strong> gas-fired <strong>in</strong>dustrial furnaces<br />
plant units, thus enabl<strong>in</strong>g early <strong>in</strong>tervention and tak<strong>in</strong>g <strong>of</strong><br />
countermeasures. This system thus also supplies important<br />
data for the plann<strong>in</strong>g <strong>of</strong> systematic ma<strong>in</strong>tenance.<br />
INCREASING OF ENERGY EFFICIENCY<br />
USING THE EXAMPLE OF GAS-FIRED<br />
INDUSTRIAL FURNACES<br />
Us<strong>in</strong>g the example <strong>of</strong> gas-fired <strong>in</strong>dustrial furnaces for the<br />
heat<strong>in</strong>g and heat-treatment <strong>of</strong> steel, a number <strong>of</strong> fundamental<br />
aspects relat<strong>in</strong>g to improvement <strong>of</strong> efficiency are<br />
expla<strong>in</strong>ed below (without claim<strong>in</strong>g to be complete). As<br />
Fig. 5: Defective roller seal<strong>in</strong>g <strong>in</strong> a roller hearth furnace<br />
already mentioned, the list <strong>of</strong> technologies which enable<br />
sav<strong>in</strong>gs to be made <strong>in</strong> energy consumption is long. This is<br />
true above all also for the field <strong>of</strong> <strong>in</strong>dustrial furnaces. There<br />
is hardly a specialist journal or publication that does not<br />
deal <strong>in</strong> one way or another with this subject, illustrat<strong>in</strong>g<br />
the advantageous technical features <strong>of</strong> special plant and<br />
equipment. The present article will refra<strong>in</strong> from list<strong>in</strong>g and<br />
analyz<strong>in</strong>g all <strong>of</strong> these solutions <strong>in</strong>dividually. Instead, an overall<br />
view is to be provided, which will also conta<strong>in</strong> smaller<br />
and (<strong>in</strong> respect <strong>of</strong> expenditure) medium-sized measures.<br />
A system supplier has the task <strong>of</strong> tak<strong>in</strong>g <strong>in</strong>to consideration<br />
all technical possibilities with<strong>in</strong> a concrete project <strong>in</strong><br />
order thus to achieve an <strong>in</strong>tegrated solution which is also<br />
optimum for each <strong>in</strong>dividual case, <strong>in</strong> other words, to analyze<br />
the costs and benefits relat<strong>in</strong>g to the possible plant and<br />
equipment variants and to elaborate the best solution on<br />
this basis.<br />
If it is wished to assess the expenditure <strong>in</strong>volved by<br />
measures for improv<strong>in</strong>g efficiency, these measures can be<br />
roughly divided <strong>in</strong>to three categories <strong>in</strong> accordance with<br />
the magnitude <strong>of</strong> the required <strong>in</strong>vestments. Fig. 4 shows<br />
such a classification with the correspond<strong>in</strong>g examples. This<br />
figure, <strong>of</strong> course, cannot as yet make any statements on the<br />
amount <strong>of</strong> the respective potential sav<strong>in</strong>gs. This can only be<br />
assessed on a project-specific basis, i.e. accord<strong>in</strong>g to concrete<br />
cases. The only rule <strong>of</strong> thumb that can be employed<br />
<strong>in</strong> this context is that if a higher proportion <strong>of</strong> energy can<br />
be reta<strong>in</strong>ed <strong>in</strong> the <strong>process</strong> or even, wherever possible, does<br />
not have to be <strong>in</strong>troduced <strong>in</strong> the first place, this will always<br />
be preferable to the recovery <strong>of</strong> energy, s<strong>in</strong>ce the latter<br />
necessarily always <strong>in</strong>volves losses <strong>in</strong> operat<strong>in</strong>g efficiency.<br />
104 heat <strong>process</strong><strong>in</strong>g 3-2014
Energy Management<br />
REPORTS<br />
MEASURES INVOLVING<br />
LOW INVESTMENT COSTS<br />
The fist category, i.e. measures <strong>in</strong>volv<strong>in</strong>g low additional<br />
<strong>in</strong>vestment costs, <strong>in</strong>cludes for example the raised awareness<br />
<strong>of</strong> all employees who work each day with the furnace<br />
equipment. If, for example, a furnace door is left<br />
open unnecessarily, the heat<strong>in</strong>g system will only be able<br />
to keep the furnace at operat<strong>in</strong>g temperature by additionally<br />
supply<strong>in</strong>g a substantial quantity <strong>of</strong> heat which<br />
will at the same time be escap<strong>in</strong>g <strong>in</strong>to the furnace bay.<br />
Someth<strong>in</strong>g like this can be avoided without any need<br />
for <strong>in</strong>vestments.<br />
But a large amount <strong>of</strong> energy-sav<strong>in</strong>g can <strong>of</strong>ten also be<br />
atta<strong>in</strong>ed via the ma<strong>in</strong>tenance <strong>of</strong> a furnace system, <strong>in</strong>volv<strong>in</strong>g<br />
little expenditure. Here, primarily, the condition <strong>of</strong> the<br />
refractory l<strong>in</strong><strong>in</strong>g and its regular improvement should be<br />
mentioned. In Fig. 5 a damaged roller seal can be seen.<br />
At this location, the heat can escape <strong>in</strong>to the bay virtually<br />
unimpeded. This effect is all the more serious the higher<br />
the furnace chamber temperature is set, whereby the heat<br />
radiation <strong>in</strong>to the bay <strong>in</strong>creases at a disproportionate rate. If<br />
such effects occur <strong>in</strong> conjunction with a defective furnace<br />
pressure control system, which may result <strong>in</strong> a slight negative<br />
pressure, the unnecessary losses will be multiplied yet<br />
further because the <strong>in</strong>filtrat<strong>in</strong>g air enter<strong>in</strong>g will also have<br />
to be warmed up by the heat<strong>in</strong>g system.<br />
Thus, under the key head<strong>in</strong>g <strong>of</strong> “ma<strong>in</strong>tenance”, a further<br />
aspect can now be <strong>in</strong>dicated: A large amount <strong>of</strong> energy<br />
can be wasted if the measurement and control equipment<br />
is not work<strong>in</strong>g properly or if its sett<strong>in</strong>gs<br />
have become distorted over time. For<br />
example, a deficiently measur<strong>in</strong>g air or<br />
gas orifice may cause the real air factor,<br />
lambda, to be <strong>in</strong>creased. A 10 % deviation<br />
<strong>in</strong> the air factor will already lead to<br />
a rise <strong>in</strong> the specific gas consumption <strong>of</strong><br />
the plant <strong>in</strong> the range <strong>of</strong> 2-3 %.<br />
Another factor which must also not<br />
be underestimated <strong>in</strong> ensur<strong>in</strong>g the best<br />
possible operation <strong>of</strong> a furnace system<br />
is the optimum utilization <strong>of</strong> the hearth,<br />
i.e. to be as complete as possible. This is<br />
because a system which has been set to<br />
a given temperature will consume energy<br />
even if no material is be<strong>in</strong>g heated<br />
<strong>in</strong> the furnace. Purely on the computational<br />
level, such a situation will result <strong>in</strong><br />
an <strong>in</strong>f<strong>in</strong>itely high specific consumption.<br />
Consequently, if the furnace system is<br />
be<strong>in</strong>g poorly utilized, a higher specific<br />
consumption will arise <strong>in</strong> comparison<br />
with a system <strong>in</strong> which the hearth is<br />
fully utilized.<br />
Incomplete utilization will be the case, for example,<br />
when there are large gaps between the <strong>in</strong>dividual pieces<br />
<strong>of</strong> material be<strong>in</strong>g heated. This could be caused by us<strong>in</strong>g<br />
small batches with constant changes <strong>in</strong> the geometry and<br />
required heat<strong>in</strong>g times or constant <strong>in</strong>terruptions <strong>in</strong> the<br />
feed <strong>of</strong> material to the furnace. For the sake <strong>of</strong> completeness,<br />
it must be mentioned that if the furnace operation is<br />
impeded due to the material be<strong>in</strong>g discharged too slowly<br />
after be<strong>in</strong>g <strong>process</strong>ed <strong>in</strong> the furnace, this will also result<br />
<strong>in</strong> a considerable <strong>in</strong>crease <strong>in</strong> the specific consumption,<br />
even if no unnecessary gaps are present <strong>in</strong> the material<br />
<strong>in</strong> the furnace.<br />
The extent to which sub-optimal hearth utilization<br />
affects the specific consumption <strong>of</strong> the system depends<br />
on the type <strong>of</strong> furnace <strong>in</strong>volved. The decisive factor here is<br />
how high the proportion <strong>of</strong> no-load losses <strong>of</strong> a system is <strong>in</strong><br />
relation to the overall energy balance. This becomes clear<br />
<strong>in</strong> Fig. 6. Thus, if the hearth utilization <strong>in</strong> a walk<strong>in</strong>g-beam<br />
furnace for the heat<strong>in</strong>g <strong>of</strong> slabs is reduced, this will result<br />
<strong>in</strong> a steep rise <strong>in</strong> the specific excess consumption. On the<br />
other hand, the effects on a roller hearth furnace with noncooled<br />
furnace rollers will not be so serious. The reason<br />
for this different curve characteristic is the fact that <strong>in</strong> a<br />
walk<strong>in</strong>g-beam furnace, the proportion <strong>of</strong> no-load losses <strong>in</strong><br />
the overall balance, particularly due to the water or steamcooled<br />
rail system, is considerably higher than <strong>in</strong> a roller<br />
hearth furnace without actively cooled components <strong>in</strong> the<br />
furnace chamber. This effect is re<strong>in</strong>forced if the walk<strong>in</strong>gbeam<br />
furnace is assumed to have a partially damaged<br />
Fig. 6: Influence <strong>of</strong> hearth area utilization on specific gas consumption for various furnace types<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
105
REPORTS<br />
Energy Management<br />
Fig. 7: a) Batch-type furnaces for heat treatment <strong>of</strong> plates with roller table and plate-handl<strong>in</strong>g<br />
mach<strong>in</strong>es; b) Possible means <strong>of</strong> subdivid<strong>in</strong>g the furnace chamber <strong>in</strong>to two areas to be operated<br />
<strong>in</strong>dependently<br />
Fig. 8: a) Quench harden<strong>in</strong>g equipment for heat-treatment <strong>of</strong> plates; b) Procedural pr<strong>in</strong>ciple for<br />
model-assisted stopp<strong>in</strong>g <strong>of</strong> plate cool<strong>in</strong>g and self-anneal<strong>in</strong>g<br />
rail <strong>in</strong>sulation. However, if the roller hearth furnace is now<br />
imag<strong>in</strong>ed to have water-cooled rollers, the <strong>in</strong>crease <strong>in</strong> specific<br />
excess consumption will be even more abrupt than <strong>in</strong><br />
the walk<strong>in</strong>g-beam furnace with damaged rail <strong>in</strong>sulation.<br />
An additional reason for sub-optimum hearth utilization<br />
may already appear dur<strong>in</strong>g the plann<strong>in</strong>g <strong>of</strong> a new furnace<br />
system. If the design is unduly burdened with “exotic” product<br />
dimensions, this sub-optimum<br />
hearth utilization will be predeterm<strong>in</strong>ed<br />
and become apparent later.<br />
Such “exotic” sizes are considered<br />
to mean the dimension<strong>in</strong>g <strong>of</strong> the<br />
system for products with extreme<br />
geometrical dimensions which, however,<br />
only represent a very small portion<br />
<strong>of</strong> the overall product mix. As<br />
a consequence, the furnace will be<br />
underutilized for a large proportion<br />
<strong>of</strong> the production and will operate<br />
<strong>in</strong>efficiently.<br />
In such cases it may make sense to<br />
split up the overall production. The<br />
major part <strong>of</strong> the production will<br />
then take place via a cont<strong>in</strong>uously<br />
operat<strong>in</strong>g roller hearth furnace, while<br />
special products will be relocated<br />
to a furnace system that is operated<br />
batch-wise. In Fig. 7, such a system<br />
is shown with two batch-type furnaces<br />
for the solution heat treatment<br />
<strong>of</strong> special-steel plates. The roller table<br />
upstream <strong>of</strong> the furnace is directly<br />
coupled with the hot roll<strong>in</strong>g mill via a<br />
cool<strong>in</strong>g and transfer bed, which enables<br />
the energy-sav<strong>in</strong>g hot-charg<strong>in</strong>g<br />
<strong>of</strong> the plates. Operat<strong>in</strong>g parallel to<br />
this l<strong>in</strong>e <strong>in</strong> the neighbour<strong>in</strong>g bay is<br />
a cont<strong>in</strong>uous roller hearth furnace<br />
which is arranged directly <strong>in</strong> l<strong>in</strong>e with<br />
the roll<strong>in</strong>g mill.<br />
The batch-type furnaces are<br />
designed for particularly wide and/<br />
or thick plates from the overall product<br />
range and can be operated at<br />
temperatures <strong>of</strong> up to 1,250 °C. It is<br />
precisely these parameter comb<strong>in</strong>ations<br />
which are not possible on the<br />
roller hearth furnace, or this furnace<br />
is not designed for this. To keep the<br />
hearth utilization <strong>of</strong> the two batchtype<br />
furnaces themselves also at a<br />
high level, the furnace chamber can<br />
be subdivided by an <strong>in</strong>termediate<br />
door <strong>in</strong>to two chambers to be operated separately. This<br />
special equipment arrangement makes it possible, for each<br />
furnace, either to treat two plates <strong>of</strong> length between 3 and<br />
8 m <strong>in</strong>dependently <strong>of</strong> one another or to charge one long<br />
plate (8 to 16 m). This will enable efficient operation <strong>of</strong> the<br />
system. If utilization is low, furthermore, one <strong>of</strong> the two<br />
furnaces can be switched <strong>of</strong>f altogether. This would not<br />
106 heat <strong>process</strong><strong>in</strong>g 3-2014
Energy Management<br />
REPORTS<br />
be possible with one s<strong>in</strong>gle large, cont<strong>in</strong>uously operated<br />
furnace which caters for the entire production.<br />
MEASURES INVOLVING<br />
MEDIUM INVESTMENT COSTS<br />
This category would comprise smaller <strong>in</strong>vestments and<br />
modernizations. Examples here are the utilization <strong>of</strong><br />
electric motors with an improved efficiency class. Here,<br />
above all <strong>in</strong> the lower power range (< 30 kW) considerable<br />
<strong>in</strong>creases <strong>in</strong> efficiency can be achieved. Especially<br />
for pumps or fans, significant energy sav<strong>in</strong>gs can be<br />
obta<strong>in</strong>ed by us<strong>in</strong>g frequency converters for speed control.<br />
The ability to set the drive speed to the delivery<br />
requirements makes it possible to do without “energygobbl<strong>in</strong>g”<br />
guide vane controls or throttl<strong>in</strong>g controls.<br />
Moreover, the <strong>in</strong>stallation <strong>of</strong> a waste-heat boiler for<br />
generation <strong>of</strong> steam or hot water <strong>in</strong> the <strong>of</strong>fgas flow <strong>of</strong><br />
a furnace allows energy to be reused which would otherwise<br />
be discharged to the surround<strong>in</strong>gs via the stack.<br />
Such <strong>in</strong>stallations, however, only make sense if the correspond<strong>in</strong>g<br />
network and the requisite <strong>in</strong>frastructure<br />
are present <strong>in</strong>side the works and the respective energy<br />
source can be fed <strong>in</strong> to these without problems.<br />
A further type <strong>of</strong> measures <strong>in</strong>volv<strong>in</strong>g medium <strong>in</strong>vestment<br />
costs is the use <strong>of</strong> <strong>in</strong>telligent computer-based calculation<br />
models. An example from this area, the <strong>in</strong>troduction<br />
<strong>of</strong> an energy <strong>management</strong> system, was already<br />
expla<strong>in</strong>ed <strong>in</strong> the third section. A somewhat different<br />
approach is followed by the so-called <strong>process</strong> models.<br />
Such systems help to record all <strong>of</strong> the relevant data on<br />
what are <strong>of</strong>ten highly complex systems, to analyze these<br />
data onl<strong>in</strong>e and to derive from them, likewise onl<strong>in</strong>e,<br />
optimized operat<strong>in</strong>g practices and reference values.<br />
Among these, the furnace control systems should be<br />
mentioned. The use <strong>of</strong> such s<strong>of</strong>tware is to be recommended<br />
<strong>in</strong> virtually all cases <strong>in</strong>volv<strong>in</strong>g medium to large<br />
<strong>in</strong>dustrial furnaces. For smaller furnace systems, on the<br />
other hand, the costs and benefits need to be exam<strong>in</strong>ed<br />
more precisely. It should naturally be considered here<br />
that not only optimization as regards an energy-sav<strong>in</strong>g<br />
operat<strong>in</strong>g practice but also other optimization strategies<br />
can be catered for by such a system <strong>of</strong> models.<br />
However, a considerable amount <strong>of</strong> energy can also<br />
be saved <strong>in</strong>directly dur<strong>in</strong>g the cool<strong>in</strong>g or quench<strong>in</strong>g <strong>of</strong><br />
plates. Thus, the classical sequence <strong>in</strong> the harden<strong>in</strong>g and<br />
temper<strong>in</strong>g <strong>of</strong> plates is the quench<strong>in</strong>g <strong>of</strong> the material from<br />
temperature ranges <strong>in</strong> which an austenitic microstructure<br />
is present, comb<strong>in</strong>ed with a subsequent, separate<br />
renewed temper<strong>in</strong>g <strong>of</strong> the plate <strong>in</strong> order to atta<strong>in</strong> the<br />
f<strong>in</strong>al properties. Powerful onl<strong>in</strong>e models for the cool<strong>in</strong>g<br />
<strong>process</strong> enable the quench <strong>process</strong> to be controlled <strong>in</strong><br />
such a manner that only the near-surface regions <strong>of</strong><br />
the plate need to be cooled <strong>in</strong>to the martensite range.<br />
Here, cool<strong>in</strong>g is stopped <strong>in</strong> a controlled manner before<br />
the core zones <strong>of</strong> the plate have reached the martensitic<br />
transformation temperature. The rema<strong>in</strong><strong>in</strong>g heat <strong>in</strong> the<br />
core that will re-heat the near-surface zones after the<br />
water cool<strong>in</strong>g has been stopped then leads to a k<strong>in</strong>d <strong>of</strong><br />
self-temper<strong>in</strong>g or recovery (Fig. 8) <strong>of</strong> the plate. It is thus<br />
possible to do completely without separate anneal<strong>in</strong>g<br />
<strong>of</strong> the plate, i.e. reheat<strong>in</strong>g to temper<strong>in</strong>g temperatures<br />
as a further <strong>process</strong> step. Of course, such elim<strong>in</strong>ation <strong>of</strong><br />
a complete <strong>process</strong> stage is only possible with certa<strong>in</strong><br />
products and grades but, <strong>in</strong> these cases, it represents<br />
an enormous sav<strong>in</strong>gs potential.<br />
MEASURES INVOLVING<br />
HIGH INVESTMENT COSTS<br />
As mentioned at the beg<strong>in</strong>n<strong>in</strong>g, this article refra<strong>in</strong>s from<br />
mak<strong>in</strong>g a detailed <strong>in</strong>vestigation, and list<strong>in</strong>g the advantages<br />
and disadvantages, <strong>of</strong> all modern energy-efficient burner<br />
systems or, for example, the substitution <strong>of</strong> combustion air<br />
by oxygen. Nevertheless, a general note should be permitted<br />
at this stage: The benefit (i.e. the possible energy-sav<strong>in</strong>g<br />
potential) <strong>of</strong> a special item <strong>of</strong> equipment <strong>in</strong> relation to the<br />
higher <strong>in</strong>vestments normally associated with this may <strong>in</strong> all<br />
cases only be considered for a concrete overall system with<br />
all <strong>of</strong> its operat<strong>in</strong>g parameters. If this <strong>in</strong>tegrative type <strong>of</strong><br />
consideration is performed, it may well be possible that the<br />
results deviate from those supplied by a purely theoretical<br />
consideration <strong>of</strong> stand-alone equipment items. As also <strong>in</strong><br />
everyday areas <strong>of</strong> life, it is true that the more expensive variant<br />
does not automatically represent the better solution.<br />
Here is a brief example: In an open-heated roller hearth furnace,<br />
plates are to be heated up to temperatures <strong>of</strong> 920 °C<br />
at a given hourly productive output. Towards the entry, the<br />
furnace chamber temperatures are slightly reduced (e.g.<br />
800 °C) as is usual for such furnaces. For this reason, it is<br />
not possible anyway to promptly reach an average furnace<br />
chamber temperature <strong>of</strong> e.g. 900 °C <strong>in</strong> the entry section if<br />
the furnace is charged with a plate at room temperature.<br />
If nonetheless a correspond<strong>in</strong>gly high setpo<strong>in</strong>t is selected<br />
for heat<strong>in</strong>g, this results <strong>in</strong> strong permanent fluctuations<br />
<strong>of</strong> the load conditions with extreme load peaks <strong>in</strong> the<br />
entry section. These substantially <strong>in</strong>crease the <strong>in</strong>evitable<br />
<strong>thermal</strong> shock to which the hearth rollers are subjected. It<br />
is absolutely recommended to reduce the temperatures<br />
<strong>in</strong> the entry section <strong>in</strong> order to m<strong>in</strong>imize breakage <strong>of</strong> the<br />
furnace rollers and <strong>in</strong>crease their service life.<br />
For heat<strong>in</strong>g <strong>of</strong> the system described previously, it is now<br />
necessary to clarify the question <strong>of</strong> whether use should<br />
be made <strong>of</strong> normal high-speed burners comb<strong>in</strong>ed with a<br />
central recuperator or recuperative burner. The <strong>in</strong>vestment<br />
for a heat<strong>in</strong>g system with recuperative burners is normally<br />
higher than for a solution <strong>in</strong>volv<strong>in</strong>g a central recuperator.<br />
On the other hand, higher air-preheat<strong>in</strong>g temperatures<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
107
REPORTS<br />
Energy Management<br />
Table 1: Comparison <strong>of</strong> the advantages and disadvantages <strong>of</strong> a recuperative burner and a central recuperator<br />
Recuperative Burner<br />
Central recuperator<br />
+ Efficient heat recovery directly <strong>in</strong> the burner / no loss <strong>of</strong> energy<br />
en route<br />
+ Simple and ma<strong>in</strong>tenance-friendly design<br />
+ Burner can be supplied with cold air + Size can be adapted <strong>in</strong>dividually<br />
- Due to the eductor air additionally required, the air consumption<br />
amounts to a value which is approx. 2.5 times that <strong>of</strong> a conventional<br />
burner<br />
- Only standard sizes available / large power rat<strong>in</strong>gs (> 500 kW)<br />
cannot be implemented.<br />
- In case <strong>of</strong> exhaust gas temperatures > 1,000 °C, ceramic recuperators<br />
must be used<br />
- High <strong>in</strong>vestment costs<br />
+ Investment costs are lower than for a<br />
recuperative burner system<br />
- Energy losses <strong>in</strong> the air and exhaust<br />
ducts<br />
- Air valves and fitt<strong>in</strong>gs must be designed<br />
for operation with hot air<br />
can usually be achieved with recuperative burners. A brief<br />
comparison <strong>of</strong> the advantages and disadvantages <strong>of</strong> both<br />
configurations is provided <strong>in</strong> Table 1.<br />
As already expla<strong>in</strong>ed, it is not sufficient to decide <strong>in</strong><br />
favour <strong>of</strong> one <strong>of</strong> the two systems on the basis <strong>of</strong> these fundamental<br />
<strong>in</strong>terrelationships. Instead, an <strong>in</strong>tegrated energy<br />
balance must be drawn up for the furnace system with all <strong>of</strong><br />
the relevant parameters. In Fig. 9 the results <strong>of</strong> this energy<br />
balance are displayed for both variants <strong>of</strong> the heat<strong>in</strong>g system.<br />
Calculation was made for plates with a thickness <strong>of</strong><br />
50 mm and a length <strong>of</strong> 10 m with fully cont<strong>in</strong>uous operation.<br />
The width <strong>of</strong> the plates was varied between 1,000 and<br />
Fig. 9: Results <strong>of</strong> the energy balance when utiliz<strong>in</strong>g recuperative burners or a central recuperator<br />
at a roller hearth furnace<br />
2,000 mm, with the parameters otherwise rema<strong>in</strong><strong>in</strong>g the<br />
same, with vary<strong>in</strong>g throughput rates and hearth utilizations<br />
be<strong>in</strong>g obta<strong>in</strong>ed as a result. As already expla<strong>in</strong>ed above,<br />
the effect <strong>of</strong> this variation on the specific consumption is<br />
such that these consumption rates fall as the throughput<br />
rates <strong>in</strong>crease. When discuss<strong>in</strong>g costs result<strong>in</strong>g from the<br />
consumption, it should be noted that the costs <strong>of</strong> electricity<br />
are currently more than three times those <strong>of</strong> natural gas (for<br />
the calculation <strong>of</strong> assumed values): Natural gas: 3 Cent/kWh;<br />
electricity: 10 Cent/kWh) This leads to differences between<br />
the bars shown <strong>in</strong> the diagram (energy consumption <strong>in</strong><br />
kWh/t) and the respective perta<strong>in</strong><strong>in</strong>g curve values (costs<br />
<strong>in</strong> € per 1,000 t).<br />
It becomes clear from the diagram<br />
that the heat<strong>in</strong>g system with a central<br />
recuperator supplies better results,<br />
even though it is the supposedly less<br />
energy-efficient solution. Even though<br />
the difference <strong>in</strong> consumption dim<strong>in</strong>ishes<br />
towards low throughput rates,<br />
the higher proportion <strong>of</strong> electricity for<br />
the recuperative burners means that <strong>in</strong><br />
respect <strong>of</strong> costs the central recuperator<br />
is the “front runner” here.<br />
The reason for this is to be found <strong>in</strong><br />
the slight lower<strong>in</strong>g <strong>of</strong> furnace chamber<br />
temperature towards the furnace entry<br />
section. This means that <strong>in</strong> the case <strong>of</strong><br />
a central recuperator all <strong>of</strong> the furnace<br />
<strong>of</strong>fgases leave the furnace at somewhat<br />
lower temperatures <strong>in</strong> comparison with<br />
a decentralized exhaustion system<br />
<strong>in</strong>stalled at the <strong>in</strong>dividual recuperative<br />
burners. Thus, already before the heat<br />
recovery takes place via air preheat<strong>in</strong>g,<br />
more heat can be reta<strong>in</strong>ed directly <strong>in</strong> the<br />
108 heat <strong>process</strong><strong>in</strong>g 3-2014
Energy Management<br />
REPORTS<br />
<strong>process</strong>. This example is <strong>in</strong>tended<br />
to illustrate that when evaluat<strong>in</strong>g<br />
the optimum solution, a pure comparison<br />
<strong>of</strong> the performance data<br />
<strong>of</strong> <strong>in</strong>dividual plant components is<br />
not sufficient.<br />
The f<strong>in</strong>al example <strong>of</strong> possibilities<br />
for enhanc<strong>in</strong>g the energy efficiency,<br />
taken from the field <strong>of</strong> CSP®<br />
technology, is <strong>in</strong>tended to illustrate<br />
the potential possibilities for sav<strong>in</strong>gs<br />
that are available if, besides<br />
the plant technology utilized, the<br />
<strong>process</strong> control itself is optimized<br />
from the po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> energy<br />
consumption.<br />
CSP® stands for Compact Strip<br />
Production, the cast<strong>in</strong>g <strong>of</strong> steel<br />
<strong>in</strong>to th<strong>in</strong> slabs which after a slight<br />
temperature <strong>in</strong>crease and equalization<br />
<strong>in</strong> a roller hearth furnace are<br />
rolled down directly. The fact that<br />
the slabs are hot-charged directly<br />
<strong>in</strong>to the furnace means that this is<br />
a highly efficient technology from<br />
the outset. For further enhancement<br />
<strong>of</strong> the efficiency, a package<br />
<strong>of</strong> measures has been developed<br />
for the complete CSP® facility. Here,<br />
the furnace has a key function.<br />
Typically, <strong>in</strong> this furnace, the slabs<br />
are heated up to roll<strong>in</strong>g temperatures<br />
<strong>of</strong> 1,150 °C. For many products,<br />
however, 1,100 °C upstream<br />
<strong>of</strong> the roll<strong>in</strong>g mill is already fully<br />
adequate. It was therefore seen<br />
to be feasible to lower the furnace<br />
temperatures as the first<br />
step towards energy-sav<strong>in</strong>g. To<br />
be able nevertheless to heat up<br />
<strong>in</strong>dividual slabs to temperatures<br />
<strong>of</strong> 1,150 °C whenever necessary,<br />
the furnace was comb<strong>in</strong>ed with<br />
<strong>in</strong>ductive heat<strong>in</strong>g modules on its<br />
exit side, which are switched on<br />
<strong>in</strong> a highly flexible manner as and<br />
when required and thus be able to<br />
provide the temperature <strong>in</strong>crease<br />
still needed (Fig. 10).<br />
In conjunction with the reduction <strong>of</strong> chamber temperatures<br />
<strong>in</strong> the roller heath furnace, the water-cooled rollers,<br />
which are otherwise customary <strong>in</strong> these furnaces, can be<br />
substituted by so-called “dry” rollers which are uncooled.<br />
Fig. 10: a) Basic overview <strong>of</strong> the components <strong>of</strong> a CSP® facility; b) Detailed view <strong>of</strong> the area at the<br />
furnace exit with <strong>in</strong>ductive heat<strong>in</strong>g equipment<br />
Fig. 11: Specific energy consumption <strong>of</strong> a CSP® roller hearth furnace with differ<strong>in</strong>g furnace chamber<br />
temperatures and roller designs<br />
This results <strong>in</strong> a further clear reduction <strong>in</strong> the energies that<br />
need to be supplied for operation <strong>of</strong> the furnace, particularly<br />
as no effects result<strong>in</strong>g from the wear <strong>of</strong> refractory materials<br />
arise on an uncooled furnace roller. The water-cooled<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
109
• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />
REPORTS<br />
Energy Management<br />
pipe used with the rollers otherwise customarily employed<br />
for this <strong>process</strong> is usually <strong>in</strong>sulated with refractory concrete.<br />
This <strong>in</strong>sulation is exposed to extreme stresses due to the<br />
permanent slab transport, which means that parts <strong>of</strong> this<br />
<strong>in</strong>sulation may become worn or even fall <strong>of</strong>f completely.<br />
This causes the heat dissipation via the water-cool<strong>in</strong>g <strong>of</strong><br />
the rollers to become <strong>in</strong>creased to a considerable extent.<br />
If both measures are implemented, i.e. lower<strong>in</strong>g <strong>of</strong> the<br />
furnace chamber temperatures by 50 °C and substitution<br />
<strong>of</strong> the water-cooled rollers by dry rollers, the specific consumption<br />
can be reduced by approx. 50-70 %, depend<strong>in</strong>g<br />
on the actual operat<strong>in</strong>g po<strong>in</strong>t (Fig. 11). The reference variables<br />
here are the values for the non-worn water-cooled<br />
rollers. If, on the other hand, defects occur on the <strong>in</strong>sulation,<br />
even more dramatic results are obta<strong>in</strong>ed as regards sav<strong>in</strong>gs.<br />
CONCLUSION<br />
On the subject <strong>of</strong> enhancement <strong>of</strong> energy efficiency, patent<br />
solutions do not exist, and nor does the “best technology<br />
for all situations”. An assessment as to which <strong>in</strong>dividual<br />
measures represent a favourable approach also from the<br />
po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> the costs <strong>in</strong>volved is to a large degree<br />
dependent on the details <strong>of</strong> the project-specific, <strong>in</strong>dividual<br />
set <strong>of</strong> tasks to be dealt with. For this, the application <strong>of</strong><br />
concrete technologies must always be considered <strong>in</strong> an<br />
<strong>in</strong>tegrative manner. The list <strong>of</strong> possible solutions for <strong>in</strong>creas<strong>in</strong>g<br />
the energy efficiency is a long one. Here, it is not always<br />
necessary to make the largest <strong>in</strong>vestments that are <strong>in</strong>volved<br />
with these solutions. To some extent, even small measures<br />
may result <strong>in</strong> visible progress.<br />
LITERATURE<br />
[1] Kerkh<strong>of</strong>f, H. J.: Tagung Stahlmarkt 2014, published <strong>in</strong> stahl<br />
und eisen 134 (2014) Nr. 3<br />
[2] Arbeitsgeme<strong>in</strong>schaft Energiebilanzen, September 2013<br />
[3] Bundesm<strong>in</strong>isterium für Wirtschaft und Technologie, Energie<br />
<strong>in</strong> Deutschland – Trends und H<strong>in</strong>tergründe zur Energieversorgung,<br />
aktualisierte Ausgabe Februar 2013<br />
[4] Rhe<strong>in</strong>isch-Westfälisches Institut für Wirtschaftsforschung,<br />
Energieeffizienz <strong>in</strong> der energie<strong>in</strong>tensiven Industrie <strong>in</strong><br />
Deutschland, Projektbericht November 2010, Quelle: Statistisches<br />
Bundesamt FS4R4.3<br />
[5] KfW Bankengruppe, Abteilung Volkswirtschaft, KfW-Befragung<br />
zu den Hemmnissen und Erfolgsfaktoren von Energieeffizienz<br />
<strong>in</strong> Unternehmen, Dezember 2005<br />
[6] Institut für Ressourceneffizienz und Energiestrategien GmbH,<br />
Fraunh<strong>of</strong>er-Institut für System-und Innovationsforschung ISI,<br />
Evaluation des Förderprogramms “Energieeffizienzberatung“<br />
als e<strong>in</strong>e Komponente des Sonderfonds Energieeffizienz<br />
<strong>in</strong> kle<strong>in</strong>en und mittleren Unternehmen (KMU), Schlussbericht<br />
November 2010<br />
[7] Prognos AG, Rolle und Bedeutung von Energieeffizienz und<br />
Energiedienstleistungen <strong>in</strong> KMU, Endbericht Februar 2010<br />
AUTHOR<br />
Dr. Christian Sprung<br />
SMS Siemag AG<br />
Düsseldorf, Germany<br />
Tel.: +49 (0) 211 / 881-6724<br />
christian.sprung@sms-siemag.com<br />
Get your copy <strong>of</strong> the<br />
anniversary issue now!<br />
10<br />
Anniversary Issue<br />
Years<br />
• 10 Ye<br />
0 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />
110 heat <strong>process</strong><strong>in</strong>g 3-2014
Research & Development<br />
REPORTS<br />
Induction assisted hybridweld<strong>in</strong>g<br />
<strong>process</strong>es to jo<strong>in</strong> heavywalled<br />
steel components<br />
by Jörg Neumeyer, Bernard Nacke<br />
So far jo<strong>in</strong><strong>in</strong>g <strong>of</strong> heavy-walled steel components hav<strong>in</strong>g a sheet thickness above 10 mm is executed by multilayer submerged<br />
arc weld<strong>in</strong>g. The <strong>in</strong>creas<strong>in</strong>g demand for high-strength f<strong>in</strong>e gra<strong>in</strong>ed steel requires an enhanced productivity that<br />
can only be realized by robust and high-performance <strong>process</strong>es with<strong>in</strong> a s<strong>in</strong>gle <strong>process</strong> step.<br />
Workpieces made <strong>of</strong> f<strong>in</strong>e gra<strong>in</strong>ed steel <strong>of</strong>fer very<br />
high solidity at low material effort and are suited<br />
excellent at the production <strong>of</strong> crane vehicles<br />
and for weight reduction at shipbuild<strong>in</strong>g. Especially, these<br />
materials enable the construction <strong>of</strong> higher w<strong>in</strong>d energy<br />
<strong>plants</strong> to cover the rais<strong>in</strong>g energy-demand <strong>of</strong> the world<br />
population, particularly <strong>in</strong> Ch<strong>in</strong>a, India and Brazil. The politically<br />
forced climate aims postulate a ratio <strong>of</strong> 35 % <strong>of</strong> the<br />
whole electric current generated by renewables. To realize<br />
this objectives on the one hand exist<strong>in</strong>g w<strong>in</strong>d energy <strong>plants</strong><br />
have to be upgraded (“Repower<strong>in</strong>g”), on the other hand<br />
new <strong>plants</strong> on- and <strong>of</strong>fshore require higher steel-based<br />
towers and basements.<br />
PROBLEM APPROACH<br />
The approach to raise the fabrication rate and production<br />
capacity <strong>of</strong> welded heavy plates made <strong>of</strong> f<strong>in</strong>e gra<strong>in</strong>ed<br />
steel is provided by the hybrid weld<strong>in</strong>g technology that<br />
facilitates high output power to jo<strong>in</strong> plate thicknesses<br />
above 10 mm. An application that uses a laser <strong>process</strong><br />
and a metal-arc weld<strong>in</strong>g <strong>process</strong> simultaneously <strong>in</strong> a s<strong>in</strong>gle<br />
common melt<strong>in</strong>g bath enables high weld<strong>in</strong>g penetration<br />
depths and speeds as well as <strong>in</strong>creased gap bridg<strong>in</strong>g [1].<br />
The limits <strong>of</strong> the weld<strong>in</strong>g <strong>process</strong> are def<strong>in</strong>ed by<br />
extremely tight temperature tolerances. The demanded<br />
temperature regime <strong>of</strong> a weld<strong>in</strong>g <strong>process</strong> can be ideally<br />
<strong>in</strong>fluenced and controlled by an <strong>in</strong>duction preheat<strong>in</strong>g. By<br />
means <strong>of</strong> the so far implemented applications the demand<br />
<strong>of</strong> a homogeneously preheated seam at thick-walled sheets<br />
can be met only <strong>in</strong>sufficiently. A bifid beam assignment first<br />
produces a mechanical and therefore electrical connection<br />
<strong>of</strong> both sheets. Subsequent, a perpendicular arranged<br />
<strong>in</strong>ductor causes an <strong>in</strong>duced current that flows along the<br />
weld flanks and through the connection to achieve an<br />
optimal preheat<strong>in</strong>g <strong>in</strong> the relevant areas. The follow<strong>in</strong>g<br />
hybrid-weld<strong>in</strong>g <strong>process</strong>, that conta<strong>in</strong>s the second stronger<br />
laser-beam part and the metal arc weld<strong>in</strong>g <strong>process</strong>, jo<strong>in</strong>s<br />
and f<strong>in</strong>ally fills up the weldseam (Fig. 1). The described concept<br />
targets the robust applicability at <strong>of</strong>ten used weld<strong>in</strong>g<br />
Laserbeam-<br />
Source<br />
Weld<strong>in</strong>g direction<br />
Oscillat<strong>in</strong>g<br />
scanner or double<br />
focus optics<br />
10 %<br />
Mirror<br />
Weld pool 1<br />
(contact<strong>in</strong>g)<br />
Induction<br />
coil<br />
Scanner<br />
Induction<br />
preheat<strong>in</strong>g<br />
100 %<br />
Mirror<br />
Weld pool 2<br />
(clos<strong>in</strong>g and<br />
fill<strong>in</strong>g)<br />
Oscillat<strong>in</strong>g<br />
MAG arc tube<br />
Fig. 1: Induction assisted laser-metal-arc hybrid weld<strong>in</strong>g <strong>process</strong><br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
111
REPORTS<br />
Research & Development<br />
Fig. 2: Test rig for <strong>in</strong>vestigation <strong>of</strong> an <strong>in</strong>duction heat<strong>in</strong>g unit<br />
positions and clearances. At the same time the production<br />
speed shall raise and so-called middle rip defects have to<br />
be avoided.<br />
Beside the s<strong>in</strong>gle consideration <strong>of</strong> the electromagnetic<strong>thermal</strong><br />
coupled <strong>in</strong>duction heat<strong>in</strong>g <strong>process</strong> also knowledge<br />
<strong>of</strong> structure-mechanic properties <strong>of</strong> the welded components<br />
and characteristics <strong>of</strong> the coupled hybrid-weld<strong>in</strong>g<br />
<strong>process</strong> are essential. Therefore an <strong>in</strong>terdiscipl<strong>in</strong>ary team<br />
(hybrid weld<strong>in</strong>g, steel construction, electrical eng<strong>in</strong>eer<strong>in</strong>g)<br />
was arranged to accomplish the postulated objectives.<br />
OPTIMIZATION BY SIMULATION<br />
For the design <strong>of</strong> the <strong>in</strong>duction heat<strong>in</strong>g application that<br />
shall be adapted especially to this problem extensive FEAsimulations<br />
and parametric studies by use <strong>of</strong> the commercial<br />
s<strong>of</strong>tware package ANSYS ® are executed. Dur<strong>in</strong>g the<br />
development the claimed temperature regime along the<br />
weld flanks must be considered. The geometric dimensions<br />
<strong>of</strong> the <strong>in</strong>ductor and the electromagnetic values are<br />
optimized keep<strong>in</strong>g the acceptable maximum temperature<br />
and the temperature distribution at the start <strong>of</strong> the weld<strong>in</strong>g<br />
<strong>process</strong> <strong>in</strong> m<strong>in</strong>d.<br />
The <strong>in</strong>duction assistance already demonstrated its<br />
capability to <strong>in</strong>crease the productivity and to improve the<br />
microstructure at beam weld<strong>in</strong>g <strong>process</strong>es <strong>of</strong> sheets with<br />
a thickness up to 10 mm [2, 3]. Thick-walled components<br />
between 10 and 23 mm <strong>of</strong>ten exhibit solidification cracks<br />
and therefore low weld<strong>in</strong>g qualities at one-layered weld<strong>in</strong>g<br />
procedures.<br />
To counter this difficulty the employment <strong>of</strong> an assist<strong>in</strong>g<br />
<strong>in</strong>duction heat<strong>in</strong>g application is <strong>in</strong>vestigated that pre-heats<br />
the weld<strong>in</strong>g region optimally by use <strong>of</strong> a special arrangement.<br />
In contrast to the already successful implemented<br />
<strong>in</strong>ductors here the current is driven perpendicular to the<br />
10<br />
43<br />
42<br />
350<br />
Messung Measurement<br />
Simulation<br />
Power Leistung <strong>in</strong> kW <strong>in</strong> kW<br />
8<br />
6<br />
4<br />
2<br />
41<br />
40<br />
39<br />
38<br />
37<br />
36<br />
35<br />
34<br />
Temperaturerhöhung raise <strong>in</strong> <strong>in</strong> K/3,000 K/3000 W<br />
Temperature <strong>in</strong> °C<br />
300<br />
250<br />
200<br />
150<br />
100<br />
50<br />
0<br />
1 3 5 7 10 20 30 40 50<br />
Frequency Frequenz <strong>in</strong> kHz<br />
33<br />
0<br />
7 10 13 16 19 22 25<br />
Time Zeit <strong>in</strong> <strong>in</strong> s s<br />
Fig. 3: Visualisation <strong>of</strong> the analyses results for determ<strong>in</strong>ation <strong>of</strong> the<br />
optimal frequency<br />
Fig. 4: Comparison <strong>of</strong> simulation and measurement<br />
1<br />
112 heat <strong>process</strong><strong>in</strong>g 3-2014
250<br />
200<br />
150<br />
100<br />
50<br />
0<br />
0 50000 100000 150000 200000<br />
Research & Development<br />
REPORTS<br />
scann<strong>in</strong>g direction to generate a direct heat<strong>in</strong>g<br />
with<strong>in</strong> the weld flanks. Dur<strong>in</strong>g first feasibility<br />
studies that were executed by FEA-simulations<br />
and physical heat<strong>in</strong>g trials the fundamental<br />
functionality <strong>of</strong> this procedure was affirmed<br />
(Fig. 2).<br />
Us<strong>in</strong>g numerical parametric studies as well<br />
as self-developed analytical correlations the<br />
geometric parameters <strong>of</strong> the <strong>in</strong>ductor were<br />
optimized at which the <strong>in</strong>ductor’s length and<br />
its width were the most focused values. These<br />
two quantities are directly <strong>in</strong>fluenc<strong>in</strong>g the width<br />
<strong>of</strong> the heated area that especially def<strong>in</strong>es the<br />
temperature gradients subsequent to the <strong>in</strong>duction<br />
heat<strong>in</strong>g part and the length <strong>of</strong> the heated<br />
area that def<strong>in</strong>es the required electrical power<br />
and the concentration <strong>of</strong> the heat generation.<br />
The frequency <strong>of</strong> the <strong>in</strong>ductor current and<br />
hence <strong>of</strong> the <strong>in</strong>duced eddy current has a strong<br />
effect onto the distribution <strong>of</strong> the heat sources,<br />
the electromagnetic efficiency and the <strong>process</strong><br />
efficiency. By numerical <strong>in</strong>vestigations the frequency<br />
that realizes a high and coevally homogenous<br />
temperature was estimated (Fig. 3).<br />
The comparatively weak contact<strong>in</strong>g <strong>process</strong><br />
that is performed before the <strong>in</strong>duction heat<strong>in</strong>g<br />
leads to an electrical and mechanical contact <strong>of</strong> both<br />
components. Additional it effects a heat dump<strong>in</strong>g <strong>in</strong> the<br />
workpiece. The <strong>in</strong>duction heat<strong>in</strong>g <strong>process</strong> is highly depend<strong>in</strong>g<br />
on the specific material properties which aga<strong>in</strong> are<br />
depend<strong>in</strong>g on the temperature. The quantitative and qualitative<br />
impacts <strong>of</strong> the laser energy onto the temperature are<br />
<strong>in</strong>vestigated with<strong>in</strong> these studies.<br />
Start conditions<br />
pos blank = 0<br />
ϑ = f(x 1 ,y 1 ,z 1 )<br />
v = Δpos / Δt<br />
Geometry preparation<br />
Harmonic Analysis<br />
ρ = f(ϑ), μ = f(ϑ, H)<br />
H (x n<br />
, y n<br />
, z n<br />
)<br />
Transient Analysis<br />
λ = f(ϑ), c p = f(ϑ)<br />
Electromagnetic calculation<br />
Magnetic field distribution<br />
μ m<br />
(x, y, z) ≈ μ m→∞<br />
(x, y, z)?<br />
p (x n<br />
, y n<br />
, z n<br />
) yes<br />
Adjustment <strong>of</strong> the permeability<br />
Heat generation distribution<br />
Thermal calculation<br />
Fig. 5: Executed simulation procedure<br />
no → m = m + 1<br />
Temperature distribution<br />
ϑ ( x n<br />
, y n<br />
, z n<br />
)<br />
Start<br />
New Position<br />
pos blank = pos blank + Δpos<br />
t = tend?<br />
F<strong>in</strong>ish<br />
EXPERIMENTAL INVESTIGATION<br />
By the def<strong>in</strong>ition <strong>of</strong> all required geometric and electric<br />
parameters the <strong>in</strong>ductor could be built at the Institute<br />
<strong>of</strong> Electrotechnology and provided to the Laserzentrum<br />
Hannover for the execution <strong>of</strong> physical tests. The comparison<br />
<strong>of</strong> measured data that were extracted with thermocouples<br />
and optical measurement procedures shows<br />
a high accordance between simulation and experiment<br />
and therefore verifies the calculated results. To achieve an<br />
even better congruence the consequences <strong>of</strong> the material<br />
properties (heat conductivity, heat capacity) are analyzed<br />
by numerical parametric studies (Fig. 4). The evaluation <strong>of</strong><br />
the physical experiments also shows the relation between<br />
applied electrical power and head<strong>in</strong>g speed and reassures<br />
the assumptions.<br />
After completion <strong>of</strong> the physical weld<strong>in</strong>g tests <strong>in</strong>vestigations<br />
concern<strong>in</strong>g the result<strong>in</strong>g microstructure were<br />
conducted at the Institute for Steel Construction/Leibniz<br />
Universität Hannover and at the Laserzentrum Hannover.<br />
Regard<strong>in</strong>g a thermomechanical rolled f<strong>in</strong>e gra<strong>in</strong>ed<br />
steel “S700MC” hav<strong>in</strong>g a sheet thickness <strong>of</strong> 10 mm the<br />
<strong>in</strong>duction assistance enables a good controll<strong>in</strong>g <strong>of</strong> the<br />
hardness distribution with<strong>in</strong> the basic material, the heat<br />
affected zone and the welded area. Further <strong>in</strong>vestigations<br />
at a “X70”-steel hav<strong>in</strong>g a sheet thickness <strong>of</strong> 13.2 mm show<br />
that a huge implemented <strong>in</strong>duction power results <strong>in</strong> large<br />
excess penetration. This problem can be solved by us<strong>in</strong>g<br />
the productivity-<strong>in</strong>creas<strong>in</strong>g effect <strong>of</strong> higher <strong>process</strong> velocities.<br />
By use <strong>of</strong> a weld<strong>in</strong>g consumable with a high content<br />
<strong>of</strong> manganese and by use <strong>of</strong> <strong>in</strong>duction assistance the analyzed<br />
sheets could be jo<strong>in</strong>ed without middle rip defects.<br />
Beside the <strong>thermal</strong> dependency the permeability also<br />
possesses a dependency <strong>of</strong> the magnetic field strength [4].<br />
So far the property-distribution was only implemented with<br />
a temperature dependency <strong>in</strong> the FEA-simulation tool at<br />
which the quantitative values are bas<strong>in</strong>g on empiric studies.<br />
An additional algorithm <strong>in</strong> the simulation considers<br />
the dependency <strong>of</strong> the magnetic field strength. The algorithm<br />
is based on a self-developed function and enables<br />
the adaption <strong>of</strong> the material specific values accord<strong>in</strong>g the<br />
present field strength <strong>in</strong> f<strong>in</strong>e sub-divisions (Fig. 5). Generally<br />
a high conformance <strong>of</strong> the temperature curves <strong>of</strong> the<br />
previous results and the calculations that were done tak<strong>in</strong>g<br />
the field strength <strong>in</strong>to account was ascerta<strong>in</strong>ed.<br />
An important criterion <strong>of</strong> the <strong>in</strong>vestigations was the<br />
focused energy <strong>in</strong>sertion <strong>in</strong> the seam to assist the hybrid<br />
Temperature distribution<br />
ϑ (x n-1 , y n-1 , z n-1 )<br />
μ (x n<br />
, y n<br />
, z n<br />
)<br />
Relative Permeabilität<br />
Datenblatt<br />
Funktion<br />
Magnetische Feldstärke H [A/m]<br />
Permeability distribution<br />
yes<br />
no → n = n + 1<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
113
REPORTS<br />
Research & Development<br />
weld<strong>in</strong>g <strong>process</strong>. To accomplish this claim special geometry<br />
variants with engraved <strong>in</strong>ductors and tubular workpieces<br />
are developed and <strong>in</strong>terpreted with numerical simulations.<br />
Compared to the reference system this analyzed<br />
<strong>in</strong>ductors lead to the aspired <strong>in</strong>crease <strong>of</strong> the current and<br />
heat generation <strong>in</strong> the weld flanks and therefore <strong>of</strong> the<br />
temperature raise.<br />
To differentiate between the developed <strong>in</strong>ductor and<br />
the so far applied <strong>in</strong>ductors for weld<strong>in</strong>g <strong>process</strong>es up to<br />
10 mm comparative calculations were executed. The simulation<br />
results could expose the advantages <strong>of</strong> the perpendicular<br />
<strong>in</strong>ductor relat<strong>in</strong>g to focused power <strong>in</strong>sertion and<br />
high temperature homogeneity <strong>in</strong> the weld seam for the<br />
smallest thickness <strong>of</strong> 10 mm and for the highest thickness<br />
<strong>of</strong> 23 mm as well.<br />
CONCLUSION<br />
The performed studies are able to show that the demand<br />
on the s<strong>in</strong>ge-layered production <strong>of</strong> heavy-walled steel<br />
sheets can be fulfilled by support <strong>of</strong> an optimized <strong>in</strong>duction<br />
heat<strong>in</strong>g assistance. The adjustment <strong>of</strong> the laser and<br />
metal-arc parameters with the <strong>in</strong>duction unit leads to a<br />
save and powerful jo<strong>in</strong><strong>in</strong>g <strong>process</strong> with high velocities<br />
while respect<strong>in</strong>g high qualities <strong>of</strong> the weld seam.<br />
LITERATURE<br />
[1] Dilthey, U.: Pilotstudie zum E<strong>in</strong>satz des Laser-MSG-Hybridprozesses<br />
zum Hochleistungsschweißen von Stahl. Studiengesellschaft<br />
Stahlanwendung Düsseldorf, 2011<br />
[2] Mach, M.: Modell<strong>in</strong>g and Application <strong>of</strong> Induction-Assisted<br />
Laser and Laser-Hybrid-Weld<strong>in</strong>g Processes, Sierke Verlag,<br />
2012, ISBN 978-3-86844-450-6<br />
[3] Meier, O.: Laserstrahlschweißen hochfester Stahlfe<strong>in</strong>bleche<br />
mit prozess<strong>in</strong>tegrierter <strong>in</strong>duktiver Wärmebehandlung, Dissertation,<br />
PZH Produktionstechnisches Zentrum Hannover,<br />
2005, ISBN 3-936888-93-0<br />
[4] Nacke, B.: E<strong>in</strong> Verfahren zur numerischen Simulation <strong>in</strong>duktiver<br />
Erwärmungsprozesse und dessen technische Anwendung,<br />
Dissertation, Fakultät für Masch<strong>in</strong>enwesen der Universität<br />
Hannover, 1987<br />
AUTHORS<br />
Dr.-Ing. Jörg Neumeyer<br />
Institute <strong>of</strong> Electrotechnology<br />
Leibniz Unversität Hannover, Germany<br />
Tel.: +49 (0) 511 / 762-2872<br />
etp@etp.uni-hannover.de<br />
Pr<strong>of</strong>. Dr.-Ing. Bernard Nacke<br />
Institute <strong>of</strong> Electrotechnology<br />
Leibniz Unversität Hannover, Germany<br />
Tel.: +49 (0) 511 / 762-5533<br />
nacke@etp.uni-hannover.de<br />
Visit us at the HK 2014<br />
Vulkan-Verlag<br />
Hall 4.1 / Booth G 018<br />
22 - 24 October 2014<br />
Koelnmesse, Cologne<br />
Germany<br />
114 heat <strong>process</strong><strong>in</strong>g 3-2014
Edition 11<br />
FOCUS ON<br />
“The labour shortage is<br />
def<strong>in</strong>itely affect<strong>in</strong>g us”<br />
Thomas Brüser is Manag<strong>in</strong>g Director <strong>of</strong> Gefran Deutschland GmbH with headquarters<br />
<strong>in</strong> Seligenstadt. In this <strong>in</strong>terview with heat <strong>process</strong><strong>in</strong>g he talks about the future <strong>of</strong><br />
the energy <strong>in</strong>dustry and technological challenges and tells us about his personal contribution<br />
to sav<strong>in</strong>g energy.<br />
Read all<br />
<strong>in</strong>terviews onl<strong>in</strong>e<br />
The energy mix <strong>of</strong> the future: would you venture a<br />
forecast?<br />
Brüser: In the next 30 years, development <strong>of</strong> regenerative<br />
energies will certa<strong>in</strong>ly reach a share <strong>of</strong> more than 90 %.<br />
Fossil and nuclear energy sources <strong>in</strong> the future will be <strong>of</strong><br />
only secondary importance <strong>in</strong> the energy mix. This development<br />
is already apparent today <strong>in</strong> many <strong>in</strong>novations<br />
and is essential <strong>in</strong> the long run if we want to ma<strong>in</strong>ta<strong>in</strong> our<br />
standard <strong>of</strong> liv<strong>in</strong>g.<br />
Germany <strong>in</strong> the year 2020: how will everyday life have<br />
changed as a result <strong>of</strong> the changes <strong>in</strong> the energy <strong>in</strong>dustry?<br />
What will people use to fuel their cars? How will<br />
they heat their houses? How will they generate light?<br />
Describe a possible scenario.<br />
Brüser: Modern houses with solar <strong>in</strong>stallations and optimal<br />
<strong>thermal</strong> <strong>in</strong>sulation today already generate more<br />
energy than their <strong>in</strong>habitants need. Ris<strong>in</strong>g energy prices<br />
<strong>in</strong> the com<strong>in</strong>g years will cause a trend toward energyoriented<br />
renovations <strong>of</strong> build<strong>in</strong>gs. As a result, old build<strong>in</strong>gs<br />
will be brought up to the aforementioned energy<br />
standard. In 2020 a critical mass <strong>of</strong> people will live <strong>in</strong><br />
energy-efficient houses and this trend will cont<strong>in</strong>ue at an<br />
accelerated pace. Presumably the change <strong>in</strong> mobility will<br />
be much more pronounced. Transportation <strong>in</strong> the year<br />
2020 will be dom<strong>in</strong>ated by electromobility, where there<br />
will be rapid progress, reduction <strong>of</strong> <strong>in</strong>dividual transport<br />
through the use <strong>of</strong> flexible traffic systems, such as a<br />
comb<strong>in</strong>ation <strong>of</strong> rail, car shar<strong>in</strong>g and bicycle rentals. This<br />
will presumably be achieved by easy-to-use identification<br />
systems (“mobility credit cards”).<br />
Sun, w<strong>in</strong>d, water, geo<strong>thermal</strong> heat, etc.: which regenerative<br />
energy source do you th<strong>in</strong>k will be most important<br />
<strong>in</strong> the future?<br />
Brüser: In the future all regenerative energy sources will<br />
ga<strong>in</strong> <strong>in</strong> importance. The important challenges are decentralisation,<br />
energy storage and <strong>in</strong>telligent networks. The<br />
technical problem <strong>of</strong> actual power generation is long<br />
s<strong>in</strong>ce solved, even if great progress is still be<strong>in</strong>g made with<br />
respect to efficiency and costs <strong>in</strong> the area <strong>of</strong> PV modules.<br />
But with present-day technology it would already easily<br />
be possible to implement autonomous power supply <strong>in</strong><br />
residential build<strong>in</strong>gs.<br />
In which <strong>of</strong> the technologies currently under development<br />
would you <strong>in</strong>vest today?<br />
Brüser: Certa<strong>in</strong>ly <strong>in</strong> energy storage technologies, such<br />
as battery systems or energy conversion. Another good<br />
<strong>in</strong>vestment with high potential would be power-to-gas<br />
technology, <strong>in</strong> which excess electricity from photovoltaic<br />
systems, for example, is used dur<strong>in</strong>g lunchtime to manufacture<br />
gas.<br />
What is your estimate <strong>of</strong> the future importance <strong>of</strong> fossil<br />
fuels such as oil, coal and gas?<br />
Brüser: Fossil energy sources will become less important<br />
simply due to dw<strong>in</strong>dl<strong>in</strong>g availability and therefore ris<strong>in</strong>g<br />
costs. Also, the direct negative effect on the quality <strong>of</strong><br />
human life due to <strong>in</strong>creas<strong>in</strong>g air pollution will cause fossil<br />
fuels to gradually disappear from the energy mix.<br />
And nuclear power? What effects can be expected<br />
based on Germany’s current standpo<strong>in</strong>t?<br />
Brüser: Nuclear energy, aside from political discussions, will<br />
also no longer play a role <strong>in</strong> the relatively near future, simply<br />
due to its <strong>in</strong>efficiency. For a recently approved nuclear<br />
power plant <strong>in</strong> England, for example, the stipulated feed-<strong>in</strong><br />
tariff is higher than for new PV systems.<br />
On the subject <strong>of</strong> energy transition: what changes will<br />
have to take place at the (world) political, social and<br />
ecological level to realistically be able to speak <strong>of</strong> a<br />
transition?<br />
Brüser: A complex topic such as the energy transition is<br />
not conceivable with the current political options, sim-<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
115
FOCUS ON Edition 11<br />
RESUME<br />
Thomas Brüser<br />
Born on 22 July 1960 <strong>in</strong> Munich<br />
Married, four children<br />
Education<br />
1982 – 1985 Study <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g at TH Nürnberg<br />
Georg Simon Ohm<br />
1986 – 1990 Study <strong>of</strong> Communications Eng<strong>in</strong>eer<strong>in</strong>g at<br />
TH Nürnberg Georg Simon Ohm<br />
Degree:<br />
Eng<strong>in</strong>eer (University <strong>of</strong> Applied Sciences)<br />
Career<br />
1990 – 1995 Product Development and Market<strong>in</strong>g<br />
at He<strong>in</strong>z Kleiber Optische Temperaturmeßtechnik<br />
1995 – 1997 Project and Quality Management at Telefunken<br />
microelectronic GmbH<br />
1997 – 1999 Product Manager and Branch Manager at<br />
Cor<strong>in</strong>s Deutschland GmbH<br />
1999 – 2012 Branch Manager and Sales Manager at<br />
Gefran GmbH Deutschland<br />
2008 – today Works Manager <strong>of</strong> Siei-Areg GmbH<br />
2013 – today Area Manager for Germany, Austria and<br />
Switzerland at Gefran GmbH Deutschland<br />
ply because politicians have neither the stay<strong>in</strong>g power<br />
nor the necessary expertise. But there is at least a latent<br />
ecological consciousness among the population. At the<br />
latest when a critical number <strong>of</strong> people worldwide have<br />
understood that regenerative energies are the only and<br />
simultaneously most economical possibility for susta<strong>in</strong><strong>in</strong>g<br />
an environment worth liv<strong>in</strong>g, also <strong>in</strong> the future, the<br />
energy transition will organise itself, “despite politics”<br />
so to speak.<br />
What is your challenge to the federal government <strong>in</strong><br />
this context?<br />
Brüser: Fundamentally I would wish for more reliability and<br />
constancy <strong>in</strong> measures to br<strong>in</strong>g about the energy transition,<br />
<strong>in</strong>stead <strong>of</strong> the current disconnected attempts that only<br />
have the goal <strong>of</strong> postpon<strong>in</strong>g real change. I am critical <strong>of</strong> the<br />
massive support <strong>of</strong> a few protagonists through exemption<br />
from the EEG levy. For one th<strong>in</strong>g, that helps companies<br />
that benefit from the lower market electricity prices as a<br />
result <strong>of</strong> renewable energies. For another, it puts SMEs at<br />
a strong disadvantage. The imm<strong>in</strong>ent EEG levy on private<br />
consumption would make it difficult especially for these<br />
companies to benefit from modern technologies. The most<br />
important th<strong>in</strong>g, however, would be an honest and logical<br />
<strong>in</strong>formation policy, preferably start<strong>in</strong>g with children and<br />
youths <strong>in</strong> school.<br />
There are at least two problems with renewable energies:<br />
the lack <strong>of</strong> an <strong>in</strong>frastructure and the stagnation<br />
on the part <strong>of</strong> established companies by rely<strong>in</strong>g on<br />
conventional forms <strong>of</strong> energy. Will that change <strong>in</strong> the<br />
foreseeable future?<br />
Brüser: I see no problem with the lack <strong>of</strong> <strong>in</strong>frastructure.<br />
It will presumably occur only if centralised energy supply<br />
concepts, such as <strong>of</strong>f-shore w<strong>in</strong>d turb<strong>in</strong>es are to ga<strong>in</strong><br />
acceptance and be reta<strong>in</strong>ed. In a well-planned decentralised<br />
energy supply there is no lack <strong>of</strong> <strong>in</strong>frastructure. The<br />
problem <strong>of</strong> stagnation on the part <strong>of</strong> a few established<br />
companies is <strong>in</strong> fact more serious. But there will be many<br />
changes here as well <strong>in</strong> the com<strong>in</strong>g years, due to a change<br />
<strong>in</strong> the way people th<strong>in</strong>k and due to better <strong>in</strong>formation<br />
channels, result<strong>in</strong>g <strong>in</strong> a future worth liv<strong>in</strong>g, with affordable<br />
energy.<br />
Regardless <strong>of</strong> the energy form and the technology,<br />
many people th<strong>in</strong>k that “energy efficiency” is the key<br />
to the energy issues <strong>of</strong> the future. What is your view on<br />
this? What do you th<strong>in</strong>k is the most important development<br />
<strong>in</strong> this area?<br />
Brüser: Not to need energy <strong>in</strong> the first place is better than<br />
to generate it, because there are negative aspects even to<br />
the best regenerative energy technologies. A great deal has<br />
already been achieved, for example passive houses or elec-<br />
116 heat <strong>process</strong><strong>in</strong>g 3-2014
Edition 11<br />
FOCUS ON<br />
tric cars, so that our standard <strong>of</strong> liv<strong>in</strong>g can be safeguarded<br />
with a fraction <strong>of</strong> the energy consumption.<br />
What are the advantages <strong>of</strong> electric <strong>process</strong> heat technology,<br />
<strong>in</strong> your op<strong>in</strong>ion?<br />
Brüser: Very precise controllability and efficiency. Infrared<br />
radiators, for example, can be used to put heat exactly<br />
where it is needed, without significant losses. This is possible<br />
only with electrical <strong>process</strong>es.<br />
What is your attitude towards the heat treatment<br />
<strong>in</strong>dustry?<br />
Brüser: Heat treatment for me is simply a production <strong>process</strong><br />
that is necessary to give a material certa<strong>in</strong> properties.<br />
Like all other production <strong>process</strong>es, it should make the<br />
most efficient possible use <strong>of</strong> resources.<br />
How do you assess the development toward <strong>in</strong>creased<br />
efficiency?<br />
Brüser: Increased efficiency and productivity are a natural<br />
part <strong>of</strong> any economic activity. The aspect <strong>of</strong> conservation<br />
<strong>of</strong> resources <strong>in</strong> addition to productivity <strong>of</strong> capital and the<br />
workforce seems to me a “natural” development.<br />
How will energy consumption change, <strong>in</strong> your op<strong>in</strong>ion?<br />
Brüser: The primary energy consumption, at least <strong>in</strong> highly<br />
developed <strong>in</strong>dustrial nations, will most probably decrease<br />
<strong>in</strong> the com<strong>in</strong>g years. However, consumption <strong>of</strong> electricity<br />
will <strong>in</strong>crease due to electromobility.<br />
What is the role <strong>of</strong> your company on the energy market<br />
today?<br />
Brüser: Certa<strong>in</strong>ly a secondary role, s<strong>in</strong>ce our products <strong>in</strong>fluence<br />
the energy market only <strong>in</strong>directly. “Energy efficiency”<br />
is relevant for us, however, due to our <strong>in</strong>novative drive systems<br />
with <strong>in</strong>tegrated energy recovery and our <strong>in</strong>novative<br />
automation technology.<br />
What will be the role <strong>of</strong> your company on the energy<br />
market <strong>in</strong> 20 years?<br />
Brüser: There will be no significant change here. Our contributions<br />
will be primarily <strong>in</strong> the area <strong>of</strong> “energy efficiency”<br />
<strong>in</strong> the future, as well.<br />
What will be your company’s most important <strong>in</strong>novation<br />
/ most important project?<br />
Brüser: We see our role as support<strong>in</strong>g our customers for<br />
example <strong>in</strong> the construction <strong>of</strong> furnaces or mach<strong>in</strong>es for<br />
plastics extrusion. Innovations at our company therefore<br />
are always based on the requirements <strong>of</strong> our OEMs and are<br />
very difficult to plan. There will certa<strong>in</strong>ly be an <strong>in</strong>creased<br />
focus on the s<strong>of</strong>tware content <strong>of</strong> our products – with a<br />
view toward Industry 4.0 – as well as research projects <strong>in</strong><br />
the field <strong>of</strong> sensor elements, for example.<br />
What economic, technological and social challenges<br />
do you expect?<br />
Brüser: Meet<strong>in</strong>g economical and technological challenges<br />
for me is simply a part <strong>of</strong> what we have to do as a company.<br />
The social aspects are different than 10 or 20 years ago, due<br />
to demographic changes. Important issues <strong>in</strong> this respect<br />
<strong>in</strong>clude adapt<strong>in</strong>g the company to an age<strong>in</strong>g workforce<br />
and prepar<strong>in</strong>g young people for “lifelong learn<strong>in</strong>g”. Even if<br />
these tasks might seem to be self-evident, they represent<br />
a genu<strong>in</strong>e challenge <strong>in</strong> real life.<br />
How do EU expansion and globalisation affect your<br />
bus<strong>in</strong>ess?<br />
Brüser: As with many changes, both present a risk as well<br />
an opportunity. Above all we try to see<br />
the aspect <strong>of</strong> opportunity and<br />
creativity with the assumption<br />
<strong>of</strong> a positive effect on<br />
our company.<br />
How important is<br />
the brand name<br />
for product success<br />
<strong>in</strong> the <strong>in</strong>dustrial<br />
sector?<br />
Brüser: The<br />
brand is becom<strong>in</strong>g<br />
more important<br />
also <strong>in</strong> the<br />
<strong>in</strong>dustrial sector,<br />
because brands<br />
provide orienta-<br />
“The energy transition is not<br />
conceivable with the current<br />
political options.”<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
117
FOCUS ON Edition 11<br />
tion <strong>in</strong> the flood <strong>of</strong> <strong>in</strong>formation. We have been work<strong>in</strong>g<br />
<strong>in</strong>tensively on our brand image the past few years.<br />
Has the labour shortage prevented or delayed your implementation<br />
<strong>of</strong> developments <strong>in</strong> Germany?<br />
Brüser: The labour shortage is def<strong>in</strong>itely affect<strong>in</strong>g us. We<br />
need six to n<strong>in</strong>e months to fill a position for a technician<br />
or eng<strong>in</strong>eer.<br />
Does a <strong>management</strong> team need more media competence<br />
to conv<strong>in</strong>ce <strong>in</strong>vestors?<br />
Brüser: Although I am not directly familiar with this, I would<br />
say that this is the case.<br />
What would you like to change <strong>in</strong> your company?<br />
Brüser: I would <strong>in</strong>troduce even more systematic hir<strong>in</strong>g<br />
and advancement <strong>of</strong> talented employees, because <strong>in</strong> the<br />
end, the employees are decisive for all other factors <strong>in</strong> a<br />
company.<br />
How important are foreign expansions to your company?<br />
Brüser: Very important. We are cont<strong>in</strong>uously open<strong>in</strong>g subsidiaries<br />
and have <strong>plants</strong> on four cont<strong>in</strong>ents.<br />
Is your company open for renewable energies?<br />
Brüser: Gefran is very open for renewable energies. Our<br />
products <strong>in</strong>clude, for example, converters for PV systems.<br />
Does your company already use renewable energies?<br />
Brüser: Yes, we have a large PV <strong>in</strong>stallation at one <strong>of</strong> our<br />
factories <strong>in</strong> Italy.<br />
How open is your company for new technologies?<br />
Brüser: As a technological enterprise we are not only open for<br />
new technologies, we live from them. For example, we cooperate<br />
closely with lead<strong>in</strong>g universities and research <strong>in</strong>stitutes.<br />
What was/is your biggest contribution to sav<strong>in</strong>g energy<br />
as a private person?<br />
Brüser: In 2005 we built a house with excellent energy<br />
standards (triple glaz<strong>in</strong>g, a ventilation system with heat<br />
recovery, etc.). Back then the contractors thought we were<br />
crazy; today, all <strong>of</strong> these th<strong>in</strong>gs are standard.<br />
How could one describe your relationship with the<br />
employees?<br />
Brüser: Tough <strong>in</strong> action, gentle at heart.<br />
What do others especially value about you?<br />
Brüser: You would have to ask the others about that. But<br />
I hope that dependability is a trait that people attribute<br />
to me.<br />
What moral values are especially relevant for you at<br />
present?<br />
Brüser: The same ones that already applied thousands <strong>of</strong><br />
years ago. The Ten Commandments or the Sermon on the<br />
Mount are just as relevant as ever.<br />
Do you have any role models?<br />
Brüser: Mahatma Gandhi for his humanity, several entrepreneurs<br />
who have achieved great th<strong>in</strong>gs, and Miguel<br />
Indura<strong>in</strong> (a former rac<strong>in</strong>g cyclist) for his elegance.<br />
How were you brought up?<br />
Brüser: As was usual <strong>in</strong> the 70s – very tolerant.<br />
How should children be brought up today?<br />
Brüser: By sett<strong>in</strong>g examples!<br />
What good cause would you give your last shirt for?<br />
Brüser: Abolish<strong>in</strong>g hunger, especially among children. This<br />
is possible <strong>in</strong> the long run only through better education.<br />
What do you wish for the next generation?<br />
Brüser: A life just as good as the one our generation has.<br />
From a historic perspective, we live <strong>in</strong> times <strong>of</strong> paradise.<br />
What is your life motto?<br />
Brüser: To help make the world the way I would like it to<br />
be for my children.<br />
What was the most important <strong>in</strong>vention <strong>of</strong> the 20 th century<br />
<strong>in</strong> your op<strong>in</strong>ion?<br />
Brüser: Information technology, <strong>in</strong> all <strong>of</strong> its forms.<br />
118 heat <strong>process</strong><strong>in</strong>g 3-2014
• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />
Edition 11<br />
FOCUS ON<br />
What character traits are important to you personally?<br />
Brüser: Integrity and honesty.<br />
Whose career has impressed you most?<br />
Brüser: That <strong>of</strong> David Packard. He made the transition<br />
from a gifted eng<strong>in</strong>eer with visions<br />
to a genu<strong>in</strong>e pioneer <strong>of</strong> modern<br />
entrepreneurship.<br />
When do you not th<strong>in</strong>k about<br />
your work?<br />
Brüser: When I am with my wife<br />
and family, while hik<strong>in</strong>g <strong>in</strong> the mounta<strong>in</strong>s, climb<strong>in</strong>g on rocks<br />
or <strong>in</strong>doors and while listen<strong>in</strong>g to music.<br />
What is your personal advice for future generations?<br />
Brüser: Preserve this beautiful world and do whatever it<br />
takes to ensure that everyone can live happily <strong>in</strong> it.<br />
What contributed especially to your development?<br />
Brüser: A happy childhood and adolescence.<br />
“Not to need energy <strong>in</strong><br />
the first place is better<br />
than to generate it.”<br />
Where do you see yourself <strong>in</strong> 10 years?<br />
Brüser: In 10 years my career will gradually be com<strong>in</strong>g to an<br />
end. By then, I would like to have helped with the advancement<br />
<strong>of</strong> as many young talented people as possible.<br />
What is the mean<strong>in</strong>g <strong>of</strong> life, <strong>in</strong><br />
your op<strong>in</strong>ion?<br />
Brüser: That is a very personal<br />
question, but religion and spirituality<br />
play a part.<br />
What would you do differently<br />
<strong>in</strong> life if you had the choice?<br />
Brüser: I would spend more time with my family and get<br />
<strong>in</strong>volved <strong>in</strong> social projects. The only real bottleneck is my<br />
time budget.<br />
What do you wish for the world?<br />
Brüser: Above all peace and then I wish that all people<br />
can have everyth<strong>in</strong>g they need for a happy life – no more<br />
and no less.<br />
What can you absolutely not do without?<br />
Brüser: First <strong>of</strong> all, my wife and family. Then perhaps several<br />
books, a few music CDs and the opportunity to spend<br />
time <strong>in</strong> nature.<br />
What career would you like to pursue if you had the<br />
choice?<br />
Brüser: Exactly the career I now have.<br />
What country would you like to live <strong>in</strong>?<br />
Brüser: I like liv<strong>in</strong>g <strong>in</strong> Germany, but I could also imag<strong>in</strong>e<br />
liv<strong>in</strong>g <strong>in</strong> almost any other country <strong>of</strong> the world.<br />
What country would you emigrate to?<br />
Brüser: I have no preference.<br />
Thank you for this <strong>in</strong>terview.<br />
Get your copy <strong>of</strong> the<br />
anniversary issue now!<br />
10<br />
Anniversary Issue<br />
Years<br />
• 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />
10<br />
Anniversary Issue<br />
Years<br />
• 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
119
International Symposium on Lead and Z<strong>in</strong>c Process<strong>in</strong>g<br />
held <strong>in</strong> conjunction with<br />
Lead-Z<strong>in</strong>c 2015 is the 6th symposium that is devoted to the theory and practice <strong>of</strong> the extractive metallurgy<br />
<strong>of</strong> lead and z<strong>in</strong>c. It is organized by GDMB Society <strong>of</strong> Metallurgists and M<strong>in</strong>ers, and co-organized by the M<strong>in</strong>erals,<br />
Metals and Materials Society (TMS), the Metallurgical Society <strong>of</strong> the Canadian Institute <strong>of</strong> M<strong>in</strong><strong>in</strong>g, Metals<br />
and Petroleum (MetSoc), the M<strong>in</strong><strong>in</strong>g and Materials Process<strong>in</strong>g Institute <strong>of</strong> Japan (MMIJ), and will be held <strong>in</strong><br />
conjunction with the 2015 European Metallurgical Conference (EMC 2015). Lead-Z<strong>in</strong>c 2015 will br<strong>in</strong>g together<br />
plant operators, eng<strong>in</strong>eers and researchers to discuss all aspects <strong>of</strong> the hydrometallurgical, electrometallurgical<br />
and pyrometallurgical <strong>process</strong><strong>in</strong>g <strong>of</strong> these commercially important metals. At the operations level, the<br />
<strong>in</strong>tent is to outl<strong>in</strong>e benchmark<strong>in</strong>g technologies as well as present plant operations and recent commercial developments.<br />
The recycl<strong>in</strong>g <strong>of</strong> lead and z<strong>in</strong>c from a wide range <strong>of</strong> sources will be extensively discussed. At the<br />
research level, the emphasis will be placed on the understand<strong>in</strong>g <strong>of</strong> exist<strong>in</strong>g technologies and the development<br />
<strong>of</strong> new <strong>process</strong><strong>in</strong>g concepts. Environmental concerns associated with the <strong>process</strong><strong>in</strong>g <strong>of</strong> both metals will be<br />
considered. The Lead-Z<strong>in</strong>c 2015 Symposium is expected to attract participants from around the world.
Edition 7<br />
PROFILE+<br />
This is where we focus <strong>in</strong> regular <strong>in</strong>tervals on the ma<strong>in</strong> <strong>in</strong>stitutions and organisations active <strong>in</strong><br />
the field <strong>of</strong> thermo<strong>process</strong><strong>in</strong>g technology. This issue spotlights the Chair <strong>of</strong> Thermodynamics<br />
and Combustion <strong>of</strong> the Otto-von-Guericke University Magdeburg.<br />
Chair <strong>of</strong> Thermodynamics and Combustion<br />
The research work <strong>of</strong> the Chair <strong>of</strong> Thermodynamics<br />
and Combustion is focused<br />
on the analysis, mathematical model<strong>in</strong>g and<br />
simulation <strong>of</strong> thermo<strong>process</strong>es <strong>in</strong> Industrial<br />
furnaces and <strong>of</strong> quench<strong>in</strong>g <strong>process</strong>es <strong>in</strong><br />
cont<strong>in</strong>uous cast<strong>in</strong>g and harden<strong>in</strong>g <strong>of</strong> metals.<br />
The <strong>process</strong>es researched are summarized<br />
<strong>in</strong> the lower part <strong>of</strong> Fig. 1. For f<strong>in</strong>e and<br />
granular materials rotary kilns are used, for<br />
the <strong>thermal</strong> treatment <strong>of</strong> lumpy materials and<br />
stones shaft kilns, for the melt<strong>in</strong>g <strong>of</strong> granular<br />
materials and scrap cupola furnaces, for the<br />
<strong>thermal</strong> treatment <strong>of</strong> shaped materials tunnel<br />
kilns and for flat shaped material roller kilns.<br />
All <strong>in</strong>dustrial kiln <strong>process</strong>es are pr<strong>in</strong>cipally<br />
counter current flow heat exchanger. The<br />
one flow is the solid material and the other<br />
flow the gas. To simulate the temperature<br />
pr<strong>of</strong>iles, the energy generation, the heat<br />
transfer and the gas-solid-reactions must be<br />
known as summarized <strong>in</strong> the upper part <strong>of</strong><br />
the figure. To heat up the material, <strong>in</strong> a special<br />
zone heat is generated by combustion <strong>of</strong><br />
a fossil fuel. The combustion behavior, the<br />
flow and the mix<strong>in</strong>g <strong>of</strong> flows are simulated<br />
us<strong>in</strong>g computational fluid dynamics (CFD).<br />
The k<strong>in</strong>d <strong>of</strong> heat transfer is different <strong>in</strong> every<br />
kiln. Therefore various laboratory kilns exist<br />
<strong>in</strong> which the heat transfer can be measured.<br />
To measure the thermophysical properties a<br />
lot <strong>of</strong> equipment is available. To analyze the<br />
gas-solid-reactions a special thermo-gravimetric-apparatus<br />
was developed for samples<br />
up to 1,000 g <strong>of</strong> weight. In thermo<strong>process</strong>es<br />
the axial pr<strong>of</strong>iles <strong>of</strong> the gas temperature, the<br />
materials temperature, the wall temperature,<br />
the gas concentrations and the solid reaction<br />
are calculated us<strong>in</strong>g special numerical solvers.<br />
Therewith, the impact <strong>of</strong> the lot <strong>of</strong> <strong>in</strong>fluenc<strong>in</strong>g<br />
parameters can be visualized and quantified.<br />
The aim <strong>of</strong> the simulations is on the one<br />
hand a faster and safer design <strong>of</strong> furnaces<br />
and on the other hand to optimize the production<br />
for better quality and lower energy<br />
consumption. Basic <strong>of</strong> the model<strong>in</strong>g is the<br />
local energy generation (combustion), the<br />
local heat transfer and the reaction behavior<br />
<strong>of</strong> the materials. For the energy generation<br />
the combustion is calculated us<strong>in</strong>g CFD.<br />
Fig. 2 shows a combustion chamber with<br />
radial <strong>in</strong>jections, which is used e.g. for the<br />
combustion <strong>of</strong> lean gases [1]. The combustion<br />
behavior <strong>of</strong> lumpy coke and anthracite<br />
is measured <strong>in</strong> special laboratory kilns. In<br />
these kilns also the reaction behaviour <strong>of</strong><br />
solid materials can be measured <strong>in</strong> def<strong>in</strong>ed<br />
adjusted gas atmosphere.<br />
ROTARY KILNS<br />
For the <strong>process</strong> model<strong>in</strong>g <strong>in</strong> rotary kilns<br />
the motion behavior <strong>of</strong> the materials [2-4],<br />
the heat transfer [5-7] and the flames [8, 9]<br />
were researched. The transport <strong>of</strong> materials<br />
is <strong>in</strong>fluenced by roll<strong>in</strong>g motion, slump<strong>in</strong>g,<br />
slid<strong>in</strong>g, segregation, axial dispersion, dams<br />
Energy generation<br />
- Flame and flow<br />
simulation us<strong>in</strong>g CFD<br />
- Measur<strong>in</strong>g combustion<br />
behavior <strong>of</strong> lumpy coke<br />
particles<br />
Heat transfer<br />
- Measur<strong>in</strong>g heat transfer,<br />
e.g. quench<strong>in</strong>g <strong>of</strong> hot<br />
metals us<strong>in</strong>g water<br />
sprays and jets, contact<br />
heat transfer between<br />
particles and walls<br />
- Measur<strong>in</strong>g conductivity<br />
specific heat capacity<br />
and expansion up to<br />
1,600 °C<br />
Model<strong>in</strong>g and simulation <strong>of</strong> <strong>process</strong>es for<br />
and flights. Fig. 3 shows as an example the<br />
mov<strong>in</strong>g behavior <strong>in</strong> a drum with flights for<br />
<strong>in</strong>creas<strong>in</strong>g rotational speed. The heat transfer<br />
is coupled by different mechanisms. The heat<br />
is transferred by radiation and convection to<br />
the wall and the free board surface <strong>of</strong> the<br />
material. Enthalpy is transported <strong>in</strong> the wall<br />
by rotation under the material and transferred<br />
by contact through the covered area to the<br />
material. The heat transfer and the temperatures<br />
<strong>in</strong> the mov<strong>in</strong>g bed are measured <strong>in</strong><br />
special laboratory kilns. For the validation <strong>of</strong><br />
the model and for <strong>in</strong>vestigation <strong>of</strong> materials<br />
reaction behavior a laboratory rotary kiln <strong>of</strong><br />
5 m length and 400 mm <strong>in</strong>ternal diameter<br />
is used, <strong>in</strong> which at five axial positions the<br />
temperature pr<strong>of</strong>ile <strong>in</strong> the bed and the gas<br />
concentrations can be measured. With the<br />
simulations can be demonstrated <strong>in</strong> which<br />
way the <strong>process</strong> is <strong>in</strong>fluenced by the design<br />
Gas-solid-reactions<br />
- Limestone calc<strong>in</strong>ation<br />
- Dolomite calc<strong>in</strong>ation<br />
- Ore reduction<br />
- Coke gasification<br />
- Thermal treatment <strong>of</strong> solids <strong>in</strong> <strong>in</strong>dustrial furnaces, e.g. rotary kilns, shaft kilns, cupola<br />
furnaces, tunnel kilns, roller kilns<br />
- Cast<strong>in</strong>g and harden<strong>in</strong>g <strong>of</strong> ferrous and non-ferrous metals, e.g. DC-, EMC, Mould-, Hazelett-<br />
Caster<br />
Fig. 1: Overview<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
121
PROFILE+ Edition 7<br />
Fig. 2: Combustion chamber with two row radial <strong>in</strong>jection [1]<br />
Fig. 3: Particle flow <strong>in</strong> drums with flights for <strong>in</strong>creas<strong>in</strong>g rotational speed<br />
parameters (length, diameter, <strong>in</strong>cl<strong>in</strong>ation<br />
angle <strong>of</strong> the kiln), the operation parameters<br />
(rotational speed, throughput, energy <strong>in</strong>put,<br />
k<strong>in</strong>d <strong>of</strong> fuel, flame lengths) and the material<br />
parameters (particle size distribution, angle <strong>of</strong><br />
response, conductivity, density, specific heat<br />
capacity, reaction enthalpy) [10]. A program<br />
is available for companies to simulate their<br />
<strong>process</strong>es. For react<strong>in</strong>g materials the specific<br />
chemical k<strong>in</strong>etics and equilibrium conditions<br />
has to be implemented. The program can<br />
be used:<br />
■■<br />
■■<br />
To optimize the production <strong>process</strong><br />
(reduction <strong>of</strong> energy, improvement <strong>of</strong><br />
quality),<br />
Tra<strong>in</strong><strong>in</strong>g <strong>of</strong> personal for better understand<strong>in</strong>g<br />
the <strong>process</strong> with the <strong>in</strong>teraction<br />
<strong>of</strong> the various <strong>in</strong>fluenc<strong>in</strong>g parameters and<br />
■■<br />
To reduce work<strong>in</strong>g time to design kilns<br />
for new <strong>process</strong>es.<br />
SHAFT KILNS<br />
In shaft kilns ma<strong>in</strong>ly the burn<strong>in</strong>g <strong>of</strong> lime<br />
is researched. Dependent on the requirement<br />
on quality and reactivity normal shaft<br />
kilns, parallel flow regenerative kilns, annular<br />
shaft kilns and mixed feed kilns are used.<br />
Fig. 4 shows as an example the normal<br />
shaft kiln. For these kilns the axial pr<strong>of</strong>iles<br />
<strong>of</strong> solid temperature, gas temperature, gas<br />
concentration, calc<strong>in</strong>ation degree and pressure<br />
drop are calculated [11-13]. The mix<strong>in</strong>g<br />
<strong>of</strong> the cool<strong>in</strong>g air with the <strong>in</strong>jected fuel is<br />
researched us<strong>in</strong>g CFD [14]. Based on the<br />
simulation the <strong>in</strong>fluence on the <strong>process</strong> <strong>of</strong><br />
the design parameters (diameter, height),<br />
the operation parameters (throughput,<br />
energy <strong>in</strong>put, k<strong>in</strong>d <strong>of</strong> fuel, excess air) and<br />
the material parameters (size distribution,<br />
conductivity, pore diffusity, reaction coefficient,<br />
etc.) can be researched. For these<br />
kiln programs are available for companies<br />
to simulate their <strong>process</strong>es. The aim<br />
is f<strong>in</strong>d<strong>in</strong>g the conditions for optimal kiln<br />
<strong>process</strong>es e.g. if throughput, k<strong>in</strong>d <strong>of</strong> fuel,<br />
k<strong>in</strong>d <strong>of</strong> material etc. has to be changed.<br />
Companies design<strong>in</strong>g the refractory l<strong>in</strong><strong>in</strong>g<br />
can use the programs to calculate the<br />
pr<strong>of</strong>iles <strong>of</strong> the wall temperature.<br />
TUNNEL KILNS<br />
The burn<strong>in</strong>g <strong>of</strong> ceramic products <strong>in</strong> tunnel<br />
kilns such as bricks, tiles, vitrified clay, porcela<strong>in</strong><br />
and sanitary ware has a low fir<strong>in</strong>g<br />
efficiency. For <strong>in</strong>creas<strong>in</strong>g the efficiency new<br />
tunnel kiln concepts are required. In cooperation<br />
with the Brick and Tile Research Institute<br />
<strong>in</strong> Essen (Germany) such concepts are developed.<br />
Therefore, the dryers must be operated<br />
separately. In this way they can be optimized<br />
with a higher <strong>in</strong>put temperature <strong>of</strong> the dry<strong>in</strong>g<br />
air [15-17]. The cool<strong>in</strong>g air <strong>of</strong> the product<br />
must be used <strong>in</strong> the kiln <strong>process</strong> itself [18].<br />
Do<strong>in</strong>g this the heat transfer <strong>in</strong> the kiln have<br />
to be <strong>in</strong>creased us<strong>in</strong>g ventilators and optimally<br />
arranged burners with low range <strong>of</strong> the<br />
burn<strong>in</strong>g zone [19, 20]. The flow <strong>in</strong> the kiln and<br />
between the ware is calculated us<strong>in</strong>g CFD. It<br />
is researched <strong>in</strong> which way the flow can be<br />
<strong>in</strong>fluenced by ventilators and by gas <strong>in</strong>jection<br />
us<strong>in</strong>g jets. With <strong>in</strong>creas<strong>in</strong>g the heat transfer<br />
the gas flow can be reduced and therewith<br />
the flue gas losses.<br />
QUENCHING OF METALS<br />
The quench<strong>in</strong>g <strong>of</strong> metals with sprays, nozzle<br />
jets, mould jets, etc. is researched with a laboratory<br />
plant. Sheets <strong>of</strong> different metals are<br />
heated up to temperatures until 900 °C and<br />
quenched from one side. The temperature<br />
field on the other side is measured us<strong>in</strong>g an<br />
Infrared thermocamera with a local resolution<br />
<strong>of</strong> 0.2 mm with one thousand pictures<br />
per second. Fig. 5 shows as an example the<br />
temperature field <strong>of</strong> four nozzles. With oneand<br />
two-dimensional <strong>in</strong>verse temperature<br />
analysis the heat flux <strong>in</strong> dependence on<br />
surface temperature, the Leidenfrost temperature<br />
and the DNB-temperature are deter-<br />
122 heat <strong>process</strong><strong>in</strong>g 3-2014
Edition 7<br />
PROFILE+<br />
Fig. 5:Infrared image <strong>of</strong> the wett<strong>in</strong>g front <strong>in</strong> a field <strong>of</strong> four nozzles<br />
Fig. 4: Normal shaft kiln<br />
m<strong>in</strong>ed. The <strong>in</strong>fluence <strong>of</strong> the water impact,<br />
the k<strong>in</strong>d <strong>of</strong> nozzle, the k<strong>in</strong>d <strong>of</strong> metal, the<br />
water quality and the surface roughness are<br />
researched [19, 21-25]. The quality <strong>of</strong> water is<br />
an important parameter <strong>in</strong>fluenc<strong>in</strong>g the heat<br />
transfer which is not known <strong>in</strong> a lot <strong>of</strong> companies.<br />
Cool<strong>in</strong>g water <strong>of</strong> 13 different companies<br />
has been tested under the same conditions.<br />
The cool<strong>in</strong>g rate differed by a factor <strong>of</strong> two.<br />
The more salts are <strong>in</strong>cluded <strong>in</strong> the water the<br />
faster is the quench<strong>in</strong>g impact. A measure <strong>of</strong><br />
the amount <strong>of</strong> salts <strong>in</strong> water is the electrical<br />
conductivity which can be easily measured.<br />
Salts are dissociated <strong>in</strong> water which affects<br />
the electrical conductivity. For time constant<br />
cool<strong>in</strong>g conditions the temperature and the<br />
electrical conductivity should kept constant.<br />
STRESSES AND DISTORTION<br />
IN QUENCHING PROCESSES<br />
The <strong>in</strong>fluence <strong>of</strong> the quench<strong>in</strong>g on the structure,<br />
the stresses and the distortion <strong>in</strong> cont<strong>in</strong>uous<br />
cast<strong>in</strong>g <strong>process</strong>es and harden<strong>in</strong>g <strong>process</strong>es<br />
are simulated us<strong>in</strong>g own developed<br />
codes [26-30]. The advantage is the short<br />
comput<strong>in</strong>g time, the easy usage for <strong>in</strong>dustrial<br />
eng<strong>in</strong>eers and the temperature dependence<br />
<strong>of</strong> the material properties. With the simulation<br />
program it is researched <strong>in</strong> which way <strong>thermal</strong><br />
stresses and distortion can be reduced<br />
adjust<strong>in</strong>g a locally def<strong>in</strong>ed pr<strong>of</strong>ile <strong>of</strong> the heat<br />
transfer. It is shown that the mass lumped<br />
regions have to be cooled <strong>in</strong>tensively and<br />
edges and cores only s<strong>of</strong>tly. In cont<strong>in</strong>uous<br />
cast<strong>in</strong>g <strong>process</strong>es for steel and alum<strong>in</strong>um<br />
(DC cast<strong>in</strong>g) the development <strong>of</strong> the shell<br />
and the result<strong>in</strong>g stresses are calculated. It is<br />
researched <strong>in</strong> which way with an optimized<br />
local pr<strong>of</strong>ile <strong>of</strong> the heat transfer coefficient<br />
the maximum stresses can be reduced for<br />
chang<strong>in</strong>g cast<strong>in</strong>g speeds and metal alloys.<br />
MEASURING THERMOPHYSI-<br />
CAL MATERIAL PROPERTIES<br />
UP TO 1,600 °C<br />
All theoretical calculations and simulations<br />
are as accurate as accurate the material<br />
properties are known, especially <strong>in</strong> the high<br />
temperature range. Therefore, the <strong>thermal</strong><br />
conductivity is measured us<strong>in</strong>g a Laser-<br />
Flash-Apparatus (LFA). A laser beam hits<br />
the upper side <strong>of</strong> a disk shaped sample. The<br />
temperature <strong>in</strong>crease <strong>of</strong> the bottom side<br />
is measured us<strong>in</strong>g <strong>in</strong>frared thermography.<br />
From the one-dimensional analytic solution<br />
<strong>of</strong> the Fourier differential equation the <strong>thermal</strong><br />
diffusity and therewith the conductivity<br />
can be calculated. The specific heat capacity<br />
is measured us<strong>in</strong>g DSC and the <strong>thermal</strong><br />
expansion us<strong>in</strong>g a dilatometer. Reaction<br />
enthalpies and phase change enthalpies<br />
are measured with a standard DTA.<br />
For analyz<strong>in</strong>g the reaction behavior <strong>of</strong><br />
granular materials a special differential thermo<br />
gravimetric is developed. A cyl<strong>in</strong>der <strong>of</strong><br />
60 mm <strong>in</strong> diameter and 120 mm <strong>in</strong> length<br />
are filled with the material and heated up<br />
<strong>in</strong> an electrically heated tube furnace with<br />
regulated temperature pr<strong>of</strong>iles. The maximum<br />
temperature is 1,200 °C. The weight<br />
is measured and the <strong>in</strong>side temperatures <strong>in</strong><br />
the core and near the surface. The tube is<br />
flown through with a gas <strong>of</strong> given composition,<br />
e.g. N 2 , CO 2 , or O 2 /N 2 mixtures. The wall<br />
<strong>of</strong> the cyl<strong>in</strong>der is porous so that gas can also<br />
flow through the material.<br />
LITERATURE<br />
[1] Nirmolo, A.: Gas Mix<strong>in</strong>g <strong>in</strong> Cyl<strong>in</strong>drical Chambers<br />
after Radial Jet Injection with and without<br />
Combustion. Dissertation OvG Universität<br />
Magdeburg, 2007<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
123
PROFILE+ Edition 7<br />
[2] Liu, X.: Experimental and theoretical study<br />
<strong>of</strong> transverse solids motion <strong>in</strong> rotary kilns.<br />
Dissertation OvG Universität Magdeburg,<br />
2005<br />
[3] Shi, Y.: The outflow behaviour <strong>of</strong> particles<br />
at the discharge end <strong>of</strong> rotary kilns.<br />
Dissertation OvG Universität Magdeburg,<br />
2009<br />
[4] Sunkara, K.R.: Granular Flow and Design<br />
Studies <strong>in</strong> Flighted Rotat<strong>in</strong>g Drums. Disseration<br />
OvG Universität Magdeburg, 2013<br />
[5] Queck, A.: Untersuchung des gas- und<br />
wandseitigen Wärmetransportes <strong>in</strong> die<br />
Schüttung von Drehrohröfen. Dissertation<br />
OvG Universität Magdeburg, 2002<br />
[6] Agust<strong>in</strong>i, S.: Regenerative action <strong>of</strong> the wall<br />
on the heat transfer for directly and <strong>in</strong>directly<br />
heated rotary kilns. Dissertation OvG<br />
Universität Magdeburg, 2006<br />
[7] Yogesh, S.: Influence <strong>of</strong> the Wall on the Heat<br />
Transfer Process <strong>in</strong> Rotary Kiln. Dissertation<br />
OvG Universität Magdeburg, 2010<br />
[8] Giese, A.: Numerische Untersuchungen zur<br />
Bestimmung der Flammenlänge <strong>in</strong><br />
Drehrohröfen. Dissertation OvG Universität<br />
Magdeburg, 2003<br />
[9] Elattar, H.F.M.: Flame Simulation <strong>in</strong> Rotary<br />
Kilns Us<strong>in</strong>g Computational Fluid Dynamics.<br />
Dissertation OvG Universität Magdeburg,<br />
2011<br />
[10] Herz, F.: Entwicklung e<strong>in</strong>es mathematischen<br />
Modells zur Simulation thermischer<br />
Prozesse <strong>in</strong> Drehrohröfen. Dissertation<br />
OvG Universität Magdeburg, 2012<br />
[11] Schwertmann, T.: Untersuchung des Optimierungspotentials<br />
des R<strong>in</strong>gschacht<strong>of</strong>ens<br />
zum Brennen von karbonatischem Geste<strong>in</strong>.<br />
Dissertation OvG Universität Magdeburg,<br />
2007<br />
[12] El-Fakharany, M.: Process Simulation <strong>of</strong><br />
Lime Calc<strong>in</strong>ation <strong>in</strong> Mixed Feed Shaft Kilns.<br />
Dissertation OvG Universität Magdeburg,<br />
2012<br />
[13] Do, D.H.: Simulation <strong>of</strong> Lime Calc<strong>in</strong>ations <strong>in</strong><br />
Normal Shaft and Parallel-Flow-Regenerative<br />
Kilns. Dissertation OvG Universität<br />
Magdeburg, 2012<br />
[14] Xu, Z.: Reduced Model for Flow Simulation<br />
<strong>in</strong> the Burner Region <strong>of</strong> Lime Shaft Kilns.<br />
Dissertation OvG Universität Magdeburg,<br />
2010<br />
[15] Deppe, D.: Mechanismus und Bee<strong>in</strong>flussung<br />
von Trockenausblühungen aus Kalziumsulfat<br />
bei der Konvektionstrocknung<br />
von Ziegelrohl<strong>in</strong>gen. Dissertation OvG Universität<br />
Magdeburg, 2005<br />
[16] Telljohann, U.: Theoretische und experimentelle<br />
Untersuchung der Trocknung<br />
plastisch geformter Ziegelrohl<strong>in</strong>ge. Dissertation<br />
OvG Universität Magdeburg, 2004<br />
[17] Tretau, A.: E<strong>in</strong>fluss der Prozessführung auf<br />
den thermischen Energiebedarf von Konvektionstrocknern<br />
<strong>in</strong> der Ziegel<strong>in</strong>dustrie.<br />
Dissertation OvG Universität Magdeburg,<br />
2008<br />
[18] Meng, P.: Solid-Solid Recuperation to<br />
Improve the Energy Efficiency <strong>of</strong> Tunnel<br />
Kilns. Dissertation OvG Universität Magdeburg,<br />
2011<br />
[19] Specht, E.: Wärme- und St<strong>of</strong>fübertragung <strong>in</strong><br />
der Thermoprozesstechnik. Vulkan Verlag<br />
2014<br />
[20] Becker, F.; Gelbe, H.; Mörl, L.; Specht, E.:<br />
Thermischer Apparatebau und Industrieöfen.<br />
Dubbel 23. Auflage, 2011, Spr<strong>in</strong>ger<br />
Verlag<br />
[21] Bleiker, G.: Filmverdampfung von E<strong>in</strong>zeltropfen<br />
auf heißen Oberflächen. Dissertation<br />
OvG Universität Magdeburg, 2000<br />
[22] Puschmann, F.: Experimentelle Untersuchung<br />
der Spraykühlung zur Qualitätsverbesserung<br />
durch def<strong>in</strong>ierte E<strong>in</strong>stellung des<br />
Wärmeübergangs. Dissertation OvG Universität<br />
Magdeburg, 2003<br />
[23] Attalla, M.A.M.: Experimental Investigation<br />
<strong>of</strong> Heat Transfer Characteristics from Arrays<br />
<strong>of</strong> Free Imp<strong>in</strong>g<strong>in</strong>g Circular Jets and Hole<br />
Channels. Dissertation OvG Universität<br />
Magdeburg, 2005<br />
[24] Abd-Alrahman, K.H.M.: Influence <strong>of</strong> water<br />
quality and k<strong>in</strong>d <strong>of</strong> metal <strong>in</strong> the secondary<br />
cool<strong>in</strong>g zone <strong>of</strong> cast<strong>in</strong>g <strong>process</strong>. Dissertation<br />
OvG Universität Magdeburg, 2012<br />
[25] Alam, U.: Experimental Study <strong>of</strong> Local Heat<br />
Transfer dur<strong>in</strong>g Quench<strong>in</strong>g <strong>of</strong> Metals by<br />
Spray and Multiple Jets. Dissertation OvG<br />
Universität Magdeburg, 2011<br />
[26] Pietzsch, R.: Simulation und M<strong>in</strong>imierung<br />
des Verzuges von Stahlpr<strong>of</strong>ilen bei der<br />
Abkühlung. Dissertation OvG Universität<br />
Magdeburg, 2000<br />
[27] Brzoza, M.: Reduzierung von Eigenspannungen<br />
und Verzug von Stahlbauteilen<br />
durch örtliche Bee<strong>in</strong>flussung der Abkühlung.<br />
Dissertation OvG Universität Magdeburg,<br />
2006<br />
[28] Kaymak, Y.: Simulation <strong>of</strong> Metal Quench<strong>in</strong>g<br />
Processes for the M<strong>in</strong>imization <strong>of</strong> Distortion<br />
and Stresses. Dissertation OvG Universität<br />
Magdeburg, 2007<br />
[29] Nallathambi, A.K.: Thermomechanical Simulation<br />
<strong>of</strong> Direct Chill Cast<strong>in</strong>g. Dissertation<br />
OvG Universität Magdeburg, 2010<br />
[30] Silva González, M.: Experimental <strong>in</strong>vestigation<br />
<strong>of</strong> the thermophysical properties <strong>of</strong><br />
new and representative materials from<br />
room temperature up to 1,300 °C. Dissertation<br />
OvG Universität Magdeburg, 2009<br />
Author:<br />
Pr<strong>of</strong>. Dr.-Ing. Eckehard Specht<br />
Contact:<br />
Otto-von-Guericke University<br />
Magdeburg – Chair <strong>of</strong> Thermodynamics<br />
and Combustion<br />
Universitätsplatz 2<br />
39106 Magdeburg, Germany<br />
Tel.: +49 (0) 391 / 67-18765<br />
eckehard.specht@ovgu.de<br />
www.ltv.ovgu.de<br />
124 heat <strong>process</strong><strong>in</strong>g 3-2014
TECHNOLOGY IN PRACTICE<br />
90 th anniversary <strong>of</strong> Otto Junker<br />
For more than 90 years, Otto Junker has<br />
been defend<strong>in</strong>g its lead<strong>in</strong>g <strong>in</strong>ternational<br />
role <strong>in</strong> the manufacture <strong>of</strong> sophisticated<br />
<strong>in</strong>dustrial furnace systems for metallurgical<br />
applications and as a supplier <strong>of</strong> ‘ready<br />
for <strong>in</strong>stallation’ special-steel cast<strong>in</strong>gs. This<br />
is good reason for celebrat<strong>in</strong>g the 90-year<br />
anniversary with partners, customers and<br />
staff dur<strong>in</strong>g a Junker Furnace Conference<br />
on September 4 and 5, 2014.<br />
Today, several thousand <strong>in</strong>dustrial furnaces<br />
built by Otto Junker are <strong>in</strong> use all over the<br />
world. They are needed wherever demand<br />
exists for dimensionally accurate forg<strong>in</strong>gs,<br />
cast<strong>in</strong>gs and high-quality semi-f<strong>in</strong>ished<br />
products such as plates, strips, foils, sections<br />
or tubes consist<strong>in</strong>g <strong>of</strong> diverse metals.<br />
The equipment is used for melt<strong>in</strong>g, cast<strong>in</strong>g<br />
and heat treat<strong>in</strong>g metals. Through all these<br />
years the company has not only ma<strong>in</strong>ta<strong>in</strong>ed<br />
but even expanded its technological market<br />
leadership cont<strong>in</strong>uously.<br />
Founded <strong>in</strong> 1924 at Lammersdorf <strong>in</strong> the<br />
Eifel region, the company has dedicated<br />
itself to metal <strong>process</strong><strong>in</strong>g from its earliest<br />
days. Otto Junker established his enterprise<br />
to market the water-cooled mould <strong>in</strong>vented<br />
by his father for cast<strong>in</strong>g roll<strong>in</strong>g slabs <strong>of</strong><br />
brass. In the years that followed the company’s<br />
founder dedicated his efforts to the<br />
development and production <strong>of</strong> <strong>in</strong>novative<br />
mach<strong>in</strong>ery and equipment, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />
close relations with the Technical University<br />
<strong>of</strong> Aachen (RWTH) all the time <strong>in</strong> the awareness<br />
that cont<strong>in</strong>uous technical development<br />
is <strong>in</strong>dispensable for a company’s success.<br />
Thus, it was only logical that the foundation<br />
he set up <strong>in</strong> 1970 and which became<br />
the sole owner <strong>of</strong> the company after Dr. Otto<br />
Junker’s death should def<strong>in</strong>e the promotion<br />
<strong>of</strong> science and technology and the support<br />
<strong>of</strong> young eng<strong>in</strong>eers at RWTH as its ma<strong>in</strong><br />
objective. S<strong>in</strong>ce the start <strong>of</strong> its sponsorship<br />
programme <strong>in</strong> the mid-80s, the Foundation<br />
has f<strong>in</strong>anced well over 100 research projects<br />
and every year a considerable amount <strong>of</strong><br />
money was spent on scholarships and for<br />
the Otto Junker Awards conferred to outstand<strong>in</strong>g<br />
academic degree work. The close<br />
cooperation with the University <strong>of</strong> Aachen’s<br />
departments <strong>of</strong> electrical eng<strong>in</strong>eer<strong>in</strong>g and<br />
metallurgy has rema<strong>in</strong>ed the basis for key<br />
<strong>in</strong>novations until this day. A long-term and<br />
fruitful cooperation has also been pursued<br />
with the Aachen University <strong>of</strong> Applied<br />
Sciences.<br />
FURNACE MANUFACTURING<br />
Industrial furnace build<strong>in</strong>g faces exact<strong>in</strong>g<br />
demands. Apart from the need to meet<br />
<strong>process</strong> parameters ever more rigorously<br />
and to address pressures for more powerful<br />
and reliable equipment all the time,<br />
issues <strong>of</strong> power efficiency <strong>in</strong>creas<strong>in</strong>gly take<br />
centre stage. After all, <strong>in</strong>dustrial furnaces<br />
account for approx. 40 % <strong>of</strong> today’s <strong>in</strong>dustrial<br />
energy consumption, and almost 70 %<br />
<strong>of</strong> the energy demand <strong>of</strong> every foundry<br />
or casthouse is expended on the melt<strong>in</strong>g<br />
operation. Through its development<br />
and use <strong>of</strong> energy sav<strong>in</strong>g furnace technology<br />
for both melt<strong>in</strong>g and heat treatment<br />
needs Otto Junker has helped to<br />
improve energy efficiency. Compared to<br />
conventional technology and equipment,<br />
the sav<strong>in</strong>gs thus ga<strong>in</strong>ed may amount to as<br />
much as 30 %.<br />
As a driver <strong>of</strong> <strong>in</strong>novative designs and<br />
development <strong>in</strong> automatic <strong>process</strong> <strong>management</strong><br />
and control solutions, the company<br />
has contributed <strong>in</strong> a major way to today’s<br />
high standard <strong>of</strong> furnace technology. Today’s<br />
products <strong>of</strong>ten call for new metals or materials<br />
hav<strong>in</strong>g greatly improved properties. For<br />
the production <strong>of</strong> such materials, special<br />
<strong>in</strong>dustrial furnaces are necessary. The company<br />
addresses these requirements via a<br />
number <strong>of</strong> successful developments, e.g.,<br />
<strong>in</strong>duction furnaces for ref<strong>in</strong><strong>in</strong>g silicon for<br />
photovoltaic applications and equipment<br />
Photo: S. Dobler<br />
Fig. 1: Pull-through type cont<strong>in</strong>uous furnace for brass strip<br />
dur<strong>in</strong>g assembly<br />
Fig. 2: Strip anneal<strong>in</strong>g furnace<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
125
TECHNOLOGY IN PRACTICE<br />
Fig. 3: Graphite rod resistor furnace <strong>in</strong> foundry service<br />
Fig. 4: Complete medium-frequency melt<strong>in</strong>g plant<br />
for the high-quality heat treatment <strong>of</strong> components<br />
made <strong>of</strong> novel alum<strong>in</strong>ium alloys.<br />
EXTENSIVE PORTFOLIO OF<br />
<strong>HEAT</strong> TREATMENT EQUIPMENT<br />
As early as <strong>in</strong> 1929, Otto Junker developed<br />
an electrically heated pull-through type<br />
cont<strong>in</strong>uous anneal<strong>in</strong>g furnace for brass strip<br />
which <strong>in</strong>cluded the entire strip handl<strong>in</strong>g<br />
system and the equipment for simultaneous<br />
pickl<strong>in</strong>g. The system proved highly<br />
successful so that over 200 <strong>in</strong>stallations <strong>of</strong><br />
this type were built by 1963 (Fig. 1). Subsequent<br />
developments resulted <strong>in</strong> the launch<br />
<strong>of</strong> complex cont<strong>in</strong>uous strip treatment l<strong>in</strong>es<br />
based on strip flotation furnaces, which<br />
rank among the company’s most successful<br />
products today.<br />
In the years that followed, the product<br />
range was steadily expanded. Today it also<br />
comprises heat treatment systems for nonferrous<br />
metals for<br />
■■<br />
Homogenis<strong>in</strong>g <strong>of</strong> slabs and bar stock,<br />
■■<br />
Reheat<strong>in</strong>g <strong>of</strong> roll<strong>in</strong>g slabs and extrusion<br />
billets,<br />
■■<br />
Intermediate and f<strong>in</strong>al anneal<strong>in</strong>g <strong>of</strong><br />
plate, strip and coils,<br />
■■<br />
Heat treatment <strong>of</strong> plate, strip, cast<strong>in</strong>gs<br />
and forg<strong>in</strong>gs,<br />
■■<br />
Bright anneal<strong>in</strong>g <strong>of</strong> strip and coils<br />
us<strong>in</strong>g primarily<br />
■■<br />
Strip flotation furnace,<br />
■■<br />
Pit furnace,<br />
■■<br />
Pusher furnace,<br />
■■<br />
Chamber furnace,<br />
■■<br />
■■<br />
■■<br />
■■<br />
■■<br />
Roller hearth furnace,<br />
Induction furnace,<br />
Walk<strong>in</strong>g beam furnace,<br />
Cha<strong>in</strong> conveyor furnace as well as<br />
Surface treatment <strong>in</strong>stallations.<br />
By way <strong>of</strong> example, Fig. 2 illustrates an<br />
energy-efficient strip anneal<strong>in</strong>g furnace<br />
us<strong>in</strong>g an operat<strong>in</strong>g regime optimized by<br />
means <strong>of</strong> mathematical modell<strong>in</strong>g.<br />
SUCCESSFUL DEVELOPMENT<br />
OF INDUCTION FURNACE<br />
TECHNOLOGY<br />
The design <strong>of</strong> a graphite rod resistor furnace<br />
<strong>in</strong> 1937, which became hugely successful<br />
as a melt<strong>in</strong>g source throughout the<br />
foundry <strong>in</strong>dustry, marked the start <strong>of</strong> the<br />
company’s success story as a manufacturer<br />
<strong>of</strong> melt<strong>in</strong>g and pour<strong>in</strong>g furnaces (Fig. 3).<br />
Further developments gave rise to<br />
<strong>in</strong>novative <strong>in</strong>duction furnace systems for<br />
melt<strong>in</strong>g, hold<strong>in</strong>g and pour<strong>in</strong>g a diversity<br />
<strong>of</strong> metals, specifically the follow<strong>in</strong>g:<br />
■■<br />
Coreless medium-frequency <strong>in</strong>duction<br />
furnaces,<br />
■■<br />
Vacuum <strong>in</strong>duction furnaces,<br />
■■<br />
Channel-type <strong>in</strong>duction furnaces,<br />
■■<br />
Pressurized pour<strong>in</strong>g furnaces as well as<br />
■■<br />
Plann<strong>in</strong>g and eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> complete<br />
melt<strong>in</strong>g and pour<strong>in</strong>g plant.<br />
S<strong>in</strong>ce the early days <strong>of</strong> <strong>in</strong>dustrial use <strong>of</strong><br />
<strong>in</strong>duction furnaces for melt<strong>in</strong>g metals <strong>in</strong><br />
the 1950s, the energy consumption could<br />
be reduced and melt<strong>in</strong>g rates <strong>in</strong>creased<br />
substantially thanks to the R&D efforts <strong>of</strong><br />
Otto Junker. The <strong>in</strong>troduction <strong>of</strong> mediumfrequency<br />
technology based on electronically<br />
controlled frequency converter<br />
systems contributed substantially to this<br />
successful development.<br />
For the melt<strong>in</strong>g <strong>of</strong> grey cast iron the<br />
energy consumption dropped by about<br />
25 %. Due to the reduced energy consumption<br />
and greatly enhanced power density<br />
(kW/t) <strong>of</strong> modern furnaces, the maximum<br />
melt<strong>in</strong>g rate <strong>in</strong>creased to as much as 485 %.<br />
And this trend has not stopped there: Overall<br />
efficiencies <strong>in</strong> excess <strong>of</strong> 80 % are targeted<br />
thanks to the use <strong>of</strong> enhanced energy-sav<strong>in</strong>g<br />
coils. Fig. 4 shows the configuration <strong>of</strong><br />
an advanced medium-frequency melt<strong>in</strong>g<br />
<strong>in</strong>stallation with key peripheral equipment.<br />
FROM A TRIAL FOUNDRY TO A<br />
MARKET LEADERSHIP IN<br />
HIGH-GRADE STEEL CASTING<br />
Orig<strong>in</strong>ally planned exclusively as a test<strong>in</strong>g<br />
and demonstration facility, the high-grade<br />
steel foundry has evolved, start<strong>in</strong>g <strong>in</strong> the<br />
1940s, <strong>in</strong>to an advanced high-performance<br />
contract foundry for high-grade steels.<br />
Extensive <strong>in</strong>vestment <strong>in</strong> foundry equipment,<br />
mach<strong>in</strong>e tools, environmental protection<br />
and occupational safety technology, supported<br />
by the use <strong>of</strong> modern order <strong>process</strong><strong>in</strong>g<br />
and quality control procedures, have<br />
strengthened and expanded the company’s<br />
position as a lead<strong>in</strong>g manufacturer <strong>of</strong> highalloyed<br />
steel cast<strong>in</strong>gs. The approval <strong>of</strong> lead<strong>in</strong>g<br />
companies and classification societies<br />
126 heat <strong>process</strong><strong>in</strong>g 3-2014
TECHNOLOGY IN PRACTICE<br />
Fig. 5: R<strong>in</strong>g bowl after mach<strong>in</strong><strong>in</strong>g<br />
confirm this high quality standard. Its product<br />
range comprises f<strong>in</strong>ished, ready-for<strong>in</strong>stallation<br />
steel cast<strong>in</strong>gs made chiefly <strong>of</strong><br />
corrosion, heat and wear-resistant grades <strong>in</strong><br />
small-to-medium series, as well as one-<strong>of</strong>f<br />
cast<strong>in</strong>gs measur<strong>in</strong>g up to 6 m <strong>in</strong> diameter<br />
(Fig. 5). Key products specifically <strong>in</strong>clude<br />
r<strong>in</strong>g bowls for automatic bottl<strong>in</strong>g systems,<br />
grates for waste <strong>in</strong>c<strong>in</strong>eration <strong>plants</strong>,<br />
and valves and fitt<strong>in</strong>gs for the chemical<br />
<strong>in</strong>dustry. Otto Junker’s mach<strong>in</strong>e beds for<br />
lithographic systems for the production<br />
<strong>of</strong> microchips account for 30 % <strong>of</strong> global<br />
market volume.<br />
The exploration <strong>of</strong> new applications, the<br />
technological ref<strong>in</strong>ement <strong>of</strong> steel cast<strong>in</strong>g<br />
<strong>process</strong>es and <strong>in</strong>vestment <strong>in</strong>to equipment<br />
and environmental protection characterize<br />
the activities <strong>of</strong> Otto Junker’s <strong>in</strong>-house<br />
high-grade steel foundry. As a matter <strong>of</strong><br />
fact, synergy effects are tapped through<br />
the cooperation between equipment<br />
design and manufactur<strong>in</strong>g units and the<br />
own foundry.<br />
INTEGRATED MANAGEMENT<br />
SYSTEM AND TRAINING<br />
The company’s exist<strong>in</strong>g certified quality<br />
<strong>management</strong> system conform<strong>in</strong>g to<br />
applicable ISO standards was expanded<br />
<strong>in</strong> 2013 to comply with environmental,<br />
occupational safety and energy efficiency<br />
requirements under ISO 50001, ISO 14001<br />
and OHSAS 18001. An <strong>in</strong>itial audit conducted<br />
by TÜV Rhe<strong>in</strong>land <strong>in</strong> the summer <strong>of</strong> 2013<br />
confirmed the successful <strong>in</strong>troduction <strong>of</strong><br />
the new <strong>in</strong>tegrated <strong>management</strong> system<br />
and its effectiveness for a qualified <strong>management</strong><br />
<strong>of</strong> <strong>in</strong>-house workflows.<br />
Dedicated and competent employees<br />
are a company’s most important asset, no<br />
doubt. Tra<strong>in</strong><strong>in</strong>g young people for diverse<br />
<strong>in</strong>dustrial trades has a long tradition <strong>in</strong> the<br />
company, and it has been pursu<strong>in</strong>g with<br />
great commitment and success <strong>in</strong> an effort<br />
to uphold high standards. In this way, the<br />
company helps job starters to f<strong>in</strong>d their<br />
way <strong>in</strong>to the employment world while also<br />
secur<strong>in</strong>g its own supply <strong>of</strong> skilled personnel.<br />
Apprentices are tra<strong>in</strong>ed both <strong>in</strong> the<br />
well-equipped teach<strong>in</strong>g workshop under<br />
the guidance <strong>of</strong> qualified supervisors and<br />
through hands-on shopfloor tra<strong>in</strong><strong>in</strong>g “on<br />
the job”. Upon completion <strong>of</strong> their exam<strong>in</strong>ation,<br />
all apprentices are given an employment<br />
contract for at least one year with<br />
the company to help them make a smooth<br />
transition <strong>in</strong>to work<strong>in</strong>g life. Over the last<br />
few years the company has cont<strong>in</strong>ued to<br />
employ more than 30 apprentices on average<br />
at any given time. This figure reflects its<br />
<strong>in</strong>tense commitment to vocational tra<strong>in</strong><strong>in</strong>g.<br />
SUMMARY<br />
Otto Junker rema<strong>in</strong>s dedicated to the company’s<br />
successful basic strategy, which has<br />
rema<strong>in</strong>ed unaltered s<strong>in</strong>ce its foundation:<br />
Cont<strong>in</strong>uous <strong>in</strong>novation rely<strong>in</strong>g on cutt<strong>in</strong>gedge<br />
science and technology <strong>in</strong> the pursuit<br />
<strong>of</strong> new and improved products is supported<br />
by targeted <strong>in</strong>vestment aimed at<br />
strengthen<strong>in</strong>g the manufactur<strong>in</strong>g base at<br />
Lammersdorf as well as the <strong>in</strong>ternational<br />
sites. Plac<strong>in</strong>g the focus on customer benefits<br />
and customer satisfaction, the company<br />
cooperates closely with the users <strong>of</strong><br />
the products.<br />
Author:<br />
Dr. Dietmar Trauzeddel<br />
Contact:<br />
Otto Junker GmbH<br />
Jägerhausstraße 2<br />
52152 Simmerath-Lammersdorf, Germany<br />
Tel.: +49 (0) 2473 / 601-342<br />
tra@otto-junker.de<br />
www.otto-junker.de<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
127
TECHNOLOGY IN PRACTICE<br />
High-precision control <strong>of</strong> metal heat<strong>in</strong>g elements<br />
Constantly ris<strong>in</strong>g electricity costs are a<br />
factor <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g importance <strong>in</strong> the<br />
construction <strong>of</strong> furnaces. Efficient energy<br />
<strong>management</strong> is therefore crucial for bus<strong>in</strong>ess<br />
success. Low-pressure alum<strong>in</strong>ium diecast<strong>in</strong>g<br />
is used to produce <strong>in</strong>telligent heat<strong>in</strong>g<br />
systems consist<strong>in</strong>g <strong>of</strong> modern heat<strong>in</strong>g<br />
elements <strong>in</strong> comb<strong>in</strong>ation with <strong>in</strong>novative<br />
power controllers that reduce energy costs<br />
by 30 % while significantly <strong>in</strong>creas<strong>in</strong>g <strong>process</strong><br />
reliability.<br />
Wheel rims add a special touch to many<br />
cars. They are manufactured from steel or<br />
alum<strong>in</strong>ium alloys. The melt<strong>in</strong>g and hold<strong>in</strong>g<br />
<strong>of</strong> these metals are by nature energy-<strong>in</strong>tensive<br />
<strong>process</strong>es. A new retr<strong>of</strong>ittable heat<strong>in</strong>g<br />
technology developed primarily to save<br />
energy <strong>in</strong> the production <strong>of</strong> alum<strong>in</strong>ium rims<br />
was the goal <strong>of</strong> a jo<strong>in</strong>t research project <strong>of</strong><br />
the companies amTec Furnace Technologies<br />
GmbH (amTec), Sandvik Materials Technology<br />
Deutschland GmbH (Kanthal) and<br />
Gefran Deutschland GmbH (Gefran).<br />
PREVENTION OF ENERGY<br />
LOSSES<br />
In the rim manufactur<strong>in</strong>g <strong>process</strong> the alum<strong>in</strong>ium<br />
bars are first melted <strong>in</strong> a shaft furnace.<br />
From there, the molten material is<br />
transported <strong>in</strong> transfer ladles to an impeller<br />
station. Addition <strong>of</strong> additional alloy components<br />
dur<strong>in</strong>g constant stirr<strong>in</strong>g <strong>of</strong> the<br />
molten mass achieves the optimal metal<br />
quality. The completed alloy is then transported<br />
to a low-pressure furnace (Fig. 1),<br />
where the rims are cast. The entire <strong>process</strong><br />
is designed so that the metal flows with<br />
practically no turbulence to m<strong>in</strong>imize the<br />
formation <strong>of</strong> metal oxides to the greatest<br />
extent possible. The low-pressure <strong>process</strong><br />
results <strong>in</strong> cast parts with excellent mechanical<br />
properties. Especially this last <strong>process</strong><br />
step requires a heat<strong>in</strong>g system that can<br />
be operated without transformer equipment.<br />
In the past, heat<strong>in</strong>g elements made<br />
<strong>of</strong> silicon carbide (SiC) were used here.<br />
They withstand high surface loads and<br />
high temperatures, which makes their<br />
use <strong>in</strong> a furnace relatively unproblematic.<br />
S<strong>in</strong>ce they require a voltage <strong>of</strong> only 82 V,<br />
however, the standard ma<strong>in</strong>s voltage <strong>of</strong><br />
230 or 400 V must be adapted by means<br />
<strong>of</strong> transformers or thyristors. The thyristor<br />
operates <strong>in</strong> a phase controlled <strong>process</strong> <strong>in</strong><br />
which part <strong>of</strong> the s<strong>in</strong>e wave is suppressed<br />
and is no longer available as usable energy.<br />
In both cases 100 % <strong>of</strong> the power must be<br />
paid for, although only 40 to 60 % <strong>of</strong> the<br />
current can actually be used. The phase<br />
control <strong>process</strong> also <strong>in</strong>troduces harmonic<br />
components <strong>in</strong>to the power grid, which<br />
has to be compensated by expensive filters.<br />
Accord<strong>in</strong>g to amTech Manag<strong>in</strong>g Director<br />
Dr. Jens Flücklich it makes little sense and<br />
does not <strong>in</strong>crease the efficiency to connect<br />
an expensive energy <strong>management</strong><br />
system to such a system with low efficiency<br />
or high reactive power. He had the idea<br />
that a metal heat conductor with constant<br />
ohmic resistance could be the solution. For<br />
the tests, Kanthal provided suitable heat<strong>in</strong>g<br />
elements with a l<strong>in</strong>ear resistance that<br />
can be operated at 230 V. This elim<strong>in</strong>ates<br />
the need for transformation and the subsequent<br />
energy losses. The result is virtually<br />
100 % efficiency with no harmonic components<br />
requir<strong>in</strong>g compensation (Fig. 2).<br />
POWER CONTROLLERS WITH<br />
OVERCURRENT PROTECTION<br />
The new heat conductors are <strong>in</strong>tegrated<br />
<strong>in</strong> a cascade control system with the onboard<br />
GFW control loop (Fig. 3), which<br />
allows faster control <strong>of</strong> the system –<br />
partly because the metal heat conductors<br />
react much more quickly than SiC<br />
heat<strong>in</strong>g elements to disturbances. This<br />
also means, however, that they require<br />
much more precise and f<strong>in</strong>er control. The<br />
GFW power controllers with overcurrent<br />
protection <strong>of</strong> the Xtra series from Gefran<br />
provide such control (Fig. 4). In addition,<br />
the company <strong>of</strong>fers energy <strong>management</strong><br />
s<strong>of</strong>tware that required only very<br />
little adaptation <strong>of</strong> the parameters for<br />
the specific application. The GFW Xtra<br />
features numerous options for controll<strong>in</strong>g<br />
the <strong>process</strong> as well as programm<strong>in</strong>g<br />
options for fast and easy configuration.<br />
Source: amTec Furnace Technologies GmbH<br />
Fig. 1: Transfer <strong>of</strong> the alum<strong>in</strong>ium alloy <strong>in</strong>to the<br />
low-pressure cast<strong>in</strong>g furnace<br />
Fig. 2: amTec low-pressure cast<strong>in</strong>g furnace with<br />
the new heat<strong>in</strong>g system<br />
Fig. 3: Installation <strong>in</strong> control<br />
cab<strong>in</strong>et<br />
128 heat <strong>process</strong><strong>in</strong>g 3-2014
TECHNOLOGY IN PRACTICE<br />
Source: Gefran Deutschland GmbH<br />
Fig. 4: GFW power controller with overcurrent protection<br />
from the Xtra series<br />
Fig. 5: Graphical display <strong>of</strong> the system with a s<strong>of</strong>t-start ramp<br />
It is completely bus-capable, therefore<br />
enabl<strong>in</strong>g <strong>in</strong>tegration <strong>in</strong> the overall control<br />
system. But the <strong>in</strong>telligent power controller<br />
also <strong>of</strong>fers another decisive advantage:<br />
it uses IGBT (Insulated-Gate Bipolar Transistor)<br />
technology. The s<strong>of</strong>tware quickly<br />
and cont<strong>in</strong>uously measures the current at<br />
the load. If it exceeds a configured value<br />
the circuit is <strong>in</strong>terrupted immediately<br />
before the load or the power component<br />
can be damaged. The power cut<br />
takes place with<strong>in</strong> microseconds. Various<br />
options are available for resum<strong>in</strong>g heat<strong>in</strong>g<br />
operations. Generally, automatic reset<br />
is the preferred option. This allows a very<br />
fast restart <strong>of</strong> the system with a s<strong>of</strong>t-start<br />
ramp (Fig. 5). No <strong>in</strong>tervention by a technician<br />
is necessary <strong>in</strong> this case. This sets<br />
the Xtra power controller apart from conventional<br />
thyristor power controllers. If<br />
the fuse is triggered <strong>in</strong> those controllers, a<br />
certified electrician must open the device<br />
and replace the <strong>in</strong>ternal fuse. Dur<strong>in</strong>g this<br />
entire procedure production is not possible.<br />
If this state goes unnoticed, the<br />
downtime can easily last four to six hours<br />
and <strong>in</strong> the worst case scenario no suitable<br />
fuse is <strong>in</strong> stock or no certified electrician<br />
is available. In addition, if the fuse is triggered<br />
the power cut is delayed, s<strong>in</strong>ce the<br />
thyristor is not cleared immediately, but<br />
only <strong>in</strong> the zero cross<strong>in</strong>g. This short time<br />
can already be enough to destroy the<br />
load and the power component.<br />
SHORTER DOWNTIMES, HIGHER<br />
MACHINE AVAILABILITY<br />
The power controllers <strong>of</strong> the Xtra series are<br />
different. The electronic fuse is extremely<br />
easy to operate and a short-circuit – for<br />
example due to condensation or metal<br />
spatter – does not automatically result <strong>in</strong><br />
mach<strong>in</strong>e downtime. On the contrary: the<br />
fuse detects whether the damage is permanent<br />
and signals an alert accord<strong>in</strong>gly. In<br />
the event <strong>of</strong> a temporary disruption such<br />
as a short-circuit through the refractory l<strong>in</strong><strong>in</strong>g,<br />
ma<strong>in</strong>s voltage fluctuations, humidity<br />
or dust at the load, the power controller<br />
restarts the heat<strong>in</strong>g system. It also detects<br />
problems early on and precisely identifies<br />
which components – heat<strong>in</strong>g elements,<br />
transition resistors, etc. – caused the disruption.<br />
In addition, each phase is controlled<br />
separately. Failure <strong>of</strong> one heat<strong>in</strong>g element<br />
therefore does not cause an overload <strong>in</strong><br />
the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tact elements. They rema<strong>in</strong><br />
undamaged. The Xtra power controllers<br />
therefore ensure a high level <strong>of</strong> production<br />
reliability as well as user and ma<strong>in</strong>tenance<br />
friendl<strong>in</strong>ess. The shorter downtimes and<br />
higher mach<strong>in</strong>e availability have a direct<br />
positive effect on productivity and pr<strong>of</strong>it.<br />
Especially <strong>in</strong> the operation <strong>of</strong> cont<strong>in</strong>uously<br />
heated furnaces or <strong>in</strong> two and three-shift<br />
systems, the use <strong>of</strong> Xtra power controllers<br />
significantly reduces the necessity <strong>of</strong> <strong>in</strong>tervention<br />
by a technician. Production is much<br />
more trouble-free.<br />
LONG-TERM TESTS STARTED<br />
The power controller from Gefran also<br />
brought other advantages for the tests:<br />
s<strong>in</strong>ce it not only records the necessary test<br />
data, but also features an <strong>in</strong>tegrated PID<br />
<strong>in</strong>put and analogue <strong>in</strong>puts for the <strong>thermal</strong><br />
elements, a significant reduction <strong>of</strong> the<br />
necessary lab equipment is possible. Initial<br />
tests <strong>in</strong> practice showed that the power<br />
consumption can be drastically reduced<br />
by use <strong>of</strong> the new heat<strong>in</strong>g technology. The<br />
energy costs <strong>of</strong> the new system are up to<br />
30 % lower than those <strong>of</strong> current <strong>process</strong>es.<br />
The elim<strong>in</strong>ation <strong>of</strong> transformers also means<br />
there is no loss <strong>of</strong> efficiency. In addition, the<br />
service life <strong>in</strong>creased, while power losses<br />
decrease. Long-term tests for determ<strong>in</strong><strong>in</strong>g<br />
the reduction <strong>of</strong> reactive power, for<br />
example, have just started. Jens Glücklich<br />
assumes that it will be possible to deliver<br />
the first system with the new heat<strong>in</strong>g technology<br />
before the end <strong>of</strong> this year.<br />
Author:<br />
Katr<strong>in</strong> Broichhausen<br />
Contact:<br />
Gefran Deutschland GmbH<br />
Philipp-Reis-Straße 9a<br />
63500 Seligenstadt, Germany<br />
Tel.: +49 (0) 6182 / 809-0<br />
katr<strong>in</strong>.broichhausen@gefran.de<br />
www.gefran.com<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
129
TECHNOLOGY IN PRACTICE<br />
New kiln and dryer system for terracotta tiles<br />
Fig. 1: The kiln – frontal view<br />
The kiln was designed for a higher productivity<br />
and a good quality <strong>of</strong> terracotta<br />
tiles. Another direction was to reduce the<br />
gas consumption by recovery the flue gas<br />
heat from the kiln. The combustion air fan<br />
and the exhaust fan are operated us<strong>in</strong>g frequency<br />
<strong>in</strong>verters for an accurate control and<br />
energy sav<strong>in</strong>gs. The accuracy <strong>of</strong> the temperature<br />
control <strong>in</strong> the kiln is better than ± 3 °C<br />
by us<strong>in</strong>g the cont<strong>in</strong>uous control at higher<br />
power and On/Off control at low power. The<br />
use <strong>of</strong> the burners for cool<strong>in</strong>g elim<strong>in</strong>ates an<br />
additional cool<strong>in</strong>g system. The kiln and the<br />
dryer <strong>process</strong>es can be controlled from the<br />
local HMI and from the computer.<br />
This kiln was built by Electro-Total Bucharest<br />
(Romania) for Macon Deva <strong>in</strong> order to<br />
<strong>in</strong>crease the production capacity and energy<br />
efficiency. The performance criterion requested<br />
by the customer was the productivity, the<br />
specific gas and energy consumption and<br />
the fir<strong>in</strong>g quality <strong>of</strong> the terracotta tiles. The<br />
important condition for the dryer was the<br />
primary recovery <strong>of</strong> flue gas from the kiln.<br />
The kiln is a batch-type with mobile<br />
hearth hav<strong>in</strong>g the <strong>in</strong>ner size <strong>of</strong> 6,900 x 4,810<br />
x 1,500 mm (Fig. 1). The kiln performs the<br />
fir<strong>in</strong>g <strong>of</strong> 7,000 kg <strong>of</strong> terracotta tiles <strong>in</strong> 23 hours.<br />
The fir<strong>in</strong>g curve consists <strong>of</strong> heat<strong>in</strong>g, soak<strong>in</strong>g<br />
and controlled cool<strong>in</strong>g, with the uniformity<br />
condition obta<strong>in</strong>ed on the entire diagram.<br />
The kiln <strong>thermal</strong> <strong>in</strong>sulation is made <strong>of</strong><br />
ceramic fiber modules for walls, ro<strong>of</strong> and<br />
door. The refractory concrete is used for the<br />
fixed and mobile hearth and the ceramic<br />
fiber blankets are used for flue gas pipes<br />
<strong>thermal</strong> <strong>in</strong>sulation. The kiln is provided with<br />
two rows <strong>of</strong> burners mounted on the side<br />
walls. The flue gas exhaust from the lower<br />
level <strong>of</strong> the batch is made via ceramic tubes<br />
mounted <strong>in</strong>side the kiln. The temperature<br />
control system is based upon the <strong>in</strong>formation<br />
received from the six thermocouples<br />
mounted on the side walls <strong>of</strong> the kiln. Two<br />
thermocouples are used for each zone, one<br />
on the left side and one on the right side, for<br />
Fig. 2: BIO Burner<br />
the most accurate <strong>in</strong>formation. The kiln has a<br />
protection for high temperature us<strong>in</strong>g three<br />
thermocouples mounted <strong>in</strong> the ro<strong>of</strong>.<br />
The burn<strong>in</strong>g system was built us<strong>in</strong>g Elster<br />
Kromschroeder equipment with impulse<br />
burners type BIO-80 with low CO and NO X<br />
emissions (Fig. 2). The air/gas ratio is controlled<br />
by pressure regulators with solenoid<br />
valve type VAG mounted on each burner. This<br />
type <strong>of</strong> burner allows the controlled cool<strong>in</strong>g<br />
us<strong>in</strong>g only the burn<strong>in</strong>g system air pipes without<br />
any additional cool<strong>in</strong>g system (Fig. 3).<br />
The combustion air fan and the exhaust fan<br />
are operated us<strong>in</strong>g frequency <strong>in</strong>verters, for an<br />
accurate control and energy sav<strong>in</strong>g. The frequency<br />
<strong>in</strong>verters have an important function,<br />
provid<strong>in</strong>g a synchronized acceleration and<br />
deceleration between the combustion air<br />
fan and the exhaust fan. Large pressure variations<br />
must be avoided <strong>in</strong> the kiln because<br />
this could blow the sand from the hearth<br />
channel on the terracotta tiles lead<strong>in</strong>g to a<br />
rejection <strong>of</strong> the batch.<br />
A 3-way valve is <strong>in</strong>stalled on the exhaust<br />
fan circuit for heat recovery. This valve directs<br />
the flue gas to the dryer, when the flue gas<br />
temperature exceeds 100 °C. The dryer is<br />
tunnel-type and its heat<strong>in</strong>g system works<br />
both <strong>in</strong>dependently and with heat recovery.<br />
The dryer burner has an adequate power to<br />
<strong>in</strong>dependently perform the dry<strong>in</strong>g <strong>process</strong>.<br />
This situation occurs between two batches,<br />
when the kiln is turned <strong>of</strong>f.<br />
130 heat <strong>process</strong><strong>in</strong>g 3-2014
TECHNOLOGY IN PRACTICE<br />
The PLC based <strong>process</strong> control systems<br />
<strong>of</strong> the kiln and the dryer are <strong>in</strong>terconnected<br />
<strong>in</strong> order to work <strong>in</strong> heat recovery mode (for<br />
the dryer). The control system provides constant<br />
temperatures and air flow to the dryer<br />
admission. The control system primarily uses<br />
the heat recovered from the kiln. The kiln<br />
and the dryer <strong>process</strong>es can be controlled<br />
(<strong>in</strong> terms <strong>of</strong> diagrams, alarms, etc.) both<br />
from the local HMI and from the computer<br />
located <strong>in</strong> the control room <strong>of</strong> the plant. The<br />
computer also stores all the records referr<strong>in</strong>g<br />
to batch data, analogue measurements and<br />
gas and energy consumption related to each<br />
batch or over a period <strong>of</strong> time (Fig. 4).<br />
A fir<strong>in</strong>g diagram for terracotta tiles (heat<strong>in</strong>g,<br />
soak<strong>in</strong>g, cool<strong>in</strong>g) is available if needed.<br />
The accuracy <strong>of</strong> the temperature control<br />
is better than ± 3 °C for temperatures<br />
exceed<strong>in</strong>g 300 °C. In order to achieve this<br />
accuracy the cont<strong>in</strong>uous control is used at<br />
high power and the On/Off control is used<br />
at low power.<br />
PERFORMANCE<br />
The kiln can produce 7 t batch <strong>in</strong> a 24 h cycle<br />
while the gas consumption is 1,120 Nm 3 /<br />
batch. Furthermore the kiln consumes<br />
230 kWh/batch <strong>of</strong> electrical energy. The<br />
control accuracy is ± 3 °C dur<strong>in</strong>g the entire<br />
heat<strong>in</strong>g and cool<strong>in</strong>g cycle.<br />
The dryer achieves a productivity <strong>of</strong> 14.2 t<br />
batch <strong>in</strong> 24 h. The dry<strong>in</strong>g time is about 36 h.<br />
With<strong>in</strong> 24 h the gas consumption is 320 Nm 3<br />
with heat recovery gas. Before the modernization<br />
the dryer consumed 1,000 Nm 3 /24 h.<br />
Thus, the reduction <strong>of</strong> the energy consumption<br />
and, vice versa, the <strong>in</strong>crease <strong>in</strong> efficiency<br />
is evident.<br />
CONCLUSION<br />
The whole system comb<strong>in</strong><strong>in</strong>g the performance<br />
<strong>of</strong> the kiln and the heat recovery for<br />
the dryer generates important gas sav<strong>in</strong>gs.<br />
The temperature uniformity is achieved both<br />
through the kiln design and also by comb<strong>in</strong><strong>in</strong>g<br />
the two control modes (cont<strong>in</strong>uous and<br />
On/Off) <strong>of</strong> the burners. A superior uniformity<br />
<strong>of</strong> the temperature is achieved us<strong>in</strong>g the<br />
thermocouples mounted on the left and<br />
right sides <strong>of</strong> the kiln walls. The use <strong>of</strong> the<br />
burners for cool<strong>in</strong>g elim<strong>in</strong>ates the need for an<br />
additional cool<strong>in</strong>g system (separate pip<strong>in</strong>g,<br />
fan, etc.) and reduces the total cost <strong>of</strong> the kiln.<br />
Authors:<br />
Dr.-Ing. George Velichi<br />
Ing. Flor<strong>in</strong> Parlog<br />
Ing. Mar<strong>in</strong> Gurgu<br />
Ing. Cristi Mitroi<br />
Ing. Andrei Suciu<br />
Ing. Alexandru Voicu<br />
Fig. 3: The burn<strong>in</strong>g system (air /gas pipes)<br />
Contact:<br />
Electro-Total<br />
Str. Mecet nr. 42-44,<br />
Sector 2<br />
024086 Bucuresti, Romania<br />
Tel.: +40-21-252-57-81 /-83<br />
<strong>of</strong>fice@electro-total.com<br />
www.electro-total.com<br />
Fig. 4: The kiln –<br />
synoptic diagram<br />
3-2014 heat <strong>process</strong><strong>in</strong>g<br />
131
INDEX OF ADVERTISERS<br />
INDEX OF ADVERTISERS<br />
Company Page Company Page<br />
AFC-HOLCROFT, Wixom, Michigan, USA 47<br />
AICHELIN Hold<strong>in</strong>g GmbH, Mödl<strong>in</strong>g, Austria 41<br />
ITPS Asia 2014, Mumbai, India 15<br />
L<strong>in</strong>n High Therm GmbH, Eschenfelden, Germany 51<br />
ALD Vacuum Technologies GmbH, Hanau, Germany 53<br />
LOI Therm<strong>process</strong> GmbH, Essen, Germany<br />
front cover<br />
ALUMINIUM 2014, Düsseldorf, Germany<br />
S. 19, <strong>in</strong>sert<br />
METAL MIDDLE EAST 2015, Dubai, United Arab Emirates 24<br />
Bürkert GmbH & Co. KG, Ingelf<strong>in</strong>gen, Germany 13<br />
ceramitec 2015, München, Germany 27<br />
Elster GmbH, Osnabrück, Germany 9<br />
EMC European Metallurgical Conference 2015, Düsseldorf, Germany 120<br />
Optris GmbH, Berl<strong>in</strong>, Germany 21<br />
Process-Electronic GmbH, He<strong>in</strong><strong>in</strong>gen, Germany 77<br />
Schwartz GmbH, Simmerath, Germany 49<br />
SECO / Warwick Europe S.A., Swiebodz<strong>in</strong>, Poland <strong>in</strong>side front cover, 5<br />
FABTECH 2014, Atlanta, GA USA 31<br />
SMS Elotherm GmbH, Remscheid, Germany<br />
back cover<br />
FLUXTROL, Auburn Hilss, Michigan, USA 7<br />
GEFRAN Deutschland GmbH, Seligenstadt, Germany 17<br />
SMS Siemag AG, Düsseldorf, Germany 45<br />
Tube India International 2014, Mumbai, India 78<br />
Graphite Materials GmbH, Zirndorf, Germany 55<br />
Heat Treatment 2014, Moscow, Russia 33<br />
Bus<strong>in</strong>ess Directory 133 - 152<br />
IPSEN International GmbH, Kleve, Germany 37<br />
International Magaz<strong>in</strong>e for Industrial Furnaces,<br />
Heat Treatment & Equipment<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
your contact to the<br />
heat <strong>process</strong><strong>in</strong>g team<br />
Manag<strong>in</strong>g Editor:<br />
Dipl.-Ing. Stephan Schalm<br />
Phone: +49 201 82002 12<br />
Fax: +49 201 82002 40<br />
E-Mail: s.schalm@vulkan-verlag.de<br />
Editorial Office:<br />
Annamaria Frömgen<br />
Phone: +49 201 82002 91<br />
Fax: +49 201 82002 40<br />
E-Mail: a.froemgen@vulkan-verlag.de<br />
Advertis<strong>in</strong>g Sales:<br />
Bett<strong>in</strong>a Schwarzer-Hahn<br />
Phone: +49 201 82002 24<br />
Fax: +49 201 82002 40<br />
E-Mail: b.schwarzer-hahn@vulkan-verlag.de<br />
Advertis<strong>in</strong>g Adm<strong>in</strong>istration:<br />
Mart<strong>in</strong>a Mittermayer<br />
Phone: +49 89 203 5366 16<br />
Fax: +49 89 203 5366 66<br />
E-Mail: mittermayer@di-verlag.de<br />
Editor:<br />
Thomas Schneidew<strong>in</strong>d<br />
Phone: +49 201 82002 36<br />
Fax: +49 201 82002 40<br />
E-Mail: t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />
Editor (Tra<strong>in</strong>ee):<br />
Sabr<strong>in</strong>a F<strong>in</strong>ke<br />
Phone: +49 201 82002 15<br />
Fax: +49 201 82002 40<br />
E-Mail: s.f<strong>in</strong>ke@vulkan-verlag.de<br />
132 heat <strong>process</strong><strong>in</strong>g 4-2013<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com
International Magaz<strong>in</strong>e for Industrial Furnaces<br />
Heat Treatment & Equipment<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
2014<br />
Bus<strong>in</strong>ess Directory<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial<br />
heat treatment <strong>process</strong>es ......................................................................................... 134<br />
II.<br />
Components, equipment, production<br />
and auxiliary materials ................................................................................................ 144<br />
III. Consult<strong>in</strong>g, design, service<br />
and eng<strong>in</strong>eer<strong>in</strong>g ............................................................................................................ 151<br />
IV. Trade associations, <strong>in</strong>stitutes,<br />
universities, organisations ......................................................................................... 152<br />
V. Exhibition organizers,<br />
tra<strong>in</strong><strong>in</strong>g and education .............................................................................................. 152<br />
Contact:<br />
Mrs. Bett<strong>in</strong>a Schwarzer-Hahn<br />
Tel.: +49 (0)201 / 82002-24<br />
Fax: +49 (0)201 / 82002-40<br />
E-mail: b.schwarzer-hahn@vulkan-verlag.de<br />
4-2013 heat <strong>process</strong><strong>in</strong>g<br />
www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />
133
Bus<strong>in</strong>ess Directory 3-2014<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
<strong>thermal</strong> production<br />
Melt<strong>in</strong>g, Pour<strong>in</strong>g, cast<strong>in</strong>g<br />
134 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
3-2014 Bus<strong>in</strong>ess Directory<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
Heat<strong>in</strong>g<br />
Powder metallurgy<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
135
Bus<strong>in</strong>ess Directory 3-2014<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
Heat<strong>in</strong>g<br />
136 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
Heat treatment<br />
3-2014 Bus<strong>in</strong>ess Directory<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
137
Bus<strong>in</strong>ess Directory 3-2014<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
Heat treatment<br />
138 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
3-2014 Bus<strong>in</strong>ess Directory<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
More <strong>in</strong>formation available:<br />
www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
139
Bus<strong>in</strong>ess Directory 3-2014<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
Heat treatment<br />
140 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
3-2014 Bus<strong>in</strong>ess Directory<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
cool<strong>in</strong>g and Quench<strong>in</strong>g<br />
surface treatment<br />
Jo<strong>in</strong><strong>in</strong>g<br />
More <strong>in</strong>formation available:<br />
www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
141
Bus<strong>in</strong>ess Directory 3-2014<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
Jo<strong>in</strong><strong>in</strong>g<br />
142 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
3-2014 Bus<strong>in</strong>ess Directory<br />
I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />
recycl<strong>in</strong>g<br />
energy efficiency<br />
retr<strong>of</strong>it<br />
More <strong>in</strong>formation available:<br />
www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
143
Bus<strong>in</strong>ess Directory 3-2014<br />
II. Components, equipment, production and auxiliary materials<br />
Quench<strong>in</strong>g equipment<br />
Fitt<strong>in</strong>gs<br />
Burners<br />
transport equipment<br />
Your contact to<br />
<strong>HEAT</strong> <strong>PROCESSING</strong><br />
Bett<strong>in</strong>a Schwarzer-Hahn<br />
Tel. +49(0)201-82002-24<br />
Fax +49(0)201-82002-40<br />
b.schwarzer-hahn@vulkan-verlag.de<br />
144 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
3-2014 Bus<strong>in</strong>ess Directory<br />
II. Components, equipment, production and auxiliary materials<br />
Your contact to<br />
<strong>HEAT</strong> <strong>PROCESSING</strong><br />
Bett<strong>in</strong>a Schwarzer-Hahn<br />
Tel. +49(0)201-82002-24<br />
Fax +49(0)201-82002-40<br />
b.schwarzer-hahn@vulkan-verlag.de<br />
More <strong>in</strong>formation available:<br />
www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
145
Bus<strong>in</strong>ess Directory 3-2014<br />
II. Components, equipment, production and auxiliary materials<br />
Burners<br />
Burner equipment<br />
Burner applications<br />
Your contact to<br />
<strong>HEAT</strong> <strong>PROCESSING</strong><br />
Bett<strong>in</strong>a Schwarzer-Hahn<br />
Tel. +49(0)201-82002-24<br />
Fax +49(0)201-82002-40<br />
b.schwarzer-hahn@vulkan-verlag.de<br />
146 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
3-2014 Bus<strong>in</strong>ess Directory<br />
II. Components, equipment, production and auxiliary materials<br />
resistance heat<strong>in</strong>g<br />
elements<br />
More <strong>in</strong>formation available:<br />
www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
147
Bus<strong>in</strong>ess Directory 3-2014<br />
II. Components, equipment, production and auxiliary materials<br />
Forg<strong>in</strong>g accessories<br />
<strong>in</strong>ductors<br />
148 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
3-2014 Bus<strong>in</strong>ess Directory<br />
II. Components, equipment, production and auxiliary materials<br />
Measur<strong>in</strong>g and automation<br />
More <strong>in</strong>formation available:<br />
www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
149
Bus<strong>in</strong>ess Directory 3-2014<br />
II. Components, equipment, production and auxiliary materials<br />
Power supply<br />
refractories<br />
150 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
III. Consult<strong>in</strong>g, design, service and eng<strong>in</strong>eer<strong>in</strong>g<br />
3-2014 Bus<strong>in</strong>ess Directory<br />
4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />
151
Bus<strong>in</strong>ess Directory 3-2014<br />
IV. Trade associations, <strong>in</strong>stitutes, universities, organisations<br />
V. Exhibition organizers, tra<strong>in</strong><strong>in</strong>g and education<br />
152 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013
4-2013 heat <strong>process</strong><strong>in</strong>g<br />
153
International Magaz<strong>in</strong>e for Industrial Furnaces,<br />
Heat Treatment & Equipment<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
BRAND NEW<br />
Already shopped<br />
Know-how today?<br />
The new web presence <strong>of</strong> hp<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
Vulkan-Verlag<br />
154 heat <strong>process</strong><strong>in</strong>g 4-2013
4-2013 heat <strong>process</strong><strong>in</strong>g<br />
155
COMPANIES PROFILE<br />
Process-Electronic GmbH<br />
Process-Electronic GmbH<br />
COMPANY:<br />
Process-Electronic GmbH<br />
Dürnauer Weg 30<br />
73092 He<strong>in</strong><strong>in</strong>gen<br />
Germany<br />
BOARD OF MANAGEMENT:<br />
Jens Baumann, Edgar Falkowski, Karl-Michael W<strong>in</strong>ter<br />
HISTORY:<br />
Founded <strong>in</strong> 1974, Process-Electronic Analyse- und Regelgeräte<br />
GmbH specialised <strong>in</strong> the development <strong>of</strong> oxygen probes and<br />
measur<strong>in</strong>g and control devices <strong>in</strong> combustion and heat treat<strong>in</strong>g<br />
atmospheres. In 2004 the company entered <strong>in</strong>to a partnership with<br />
Nitrex Metal Inc., now major shareholder <strong>in</strong> PE.<br />
GROUP:<br />
Acquisitions <strong>in</strong> North America and the foundation <strong>of</strong> Process-Electronic<br />
Poland lead to the <strong>in</strong>ternationally active United Process Controls<br />
Group <strong>in</strong> 2007, with sites <strong>in</strong> the US, Canada, Europe and Ch<strong>in</strong>a<br />
as well as a network <strong>of</strong> affiliated companies throughout the world:<br />
Furnace Control Corp., Marathon Monitors Inc., Process-Electronic<br />
GmbH, Waukee Eng<strong>in</strong>eer<strong>in</strong>g Company Inc.<br />
SHAREHOLDINGS:<br />
Process-Electronic GmbH is owner <strong>of</strong> Process-Electronic France<br />
SARL, Besançon / France, formerly Selma Electronique.<br />
COOPERATION:<br />
The company is <strong>in</strong> close contact with universities and <strong>in</strong>stitutes and<br />
has a cooperation with the IWT Stiftung Institut für Werkst<strong>of</strong>ftechnik.<br />
NUMBER OF STAFF:<br />
Approx. 25<br />
EXPORT QUOTA:<br />
Approx. 40 %<br />
Contact:<br />
Jens Baumann<br />
Sales Manager<br />
Tel.: +49 (0) 7161 / 94888-0<br />
j.baumann@<strong>process</strong>-electronic.com<br />
PRODUCT RANGE:<br />
Oxygen and hydrogen probes and IR and dewpo<strong>in</strong>t analysers<br />
for the metalwork<strong>in</strong>g; high temperature applications and<br />
environmental technology; electronic measur<strong>in</strong>g and control<br />
systems for heat treatment <strong>in</strong>stallations; <strong>process</strong> control and<br />
data <strong>process</strong><strong>in</strong>g systems, automation technology, quality assurance<br />
and commercial s<strong>of</strong>tware systems; consult<strong>in</strong>g, tra<strong>in</strong><strong>in</strong>g and<br />
ma<strong>in</strong>tenance services.<br />
PRODUCTION:<br />
PE manufactures oxygen probes, hydrogen sensors, temperature<br />
and atmosphere controllers, programmable controllers as well as<br />
gas and electrical panels and cab<strong>in</strong>ets and all related s<strong>of</strong>tware for<br />
simulation, automation and <strong>process</strong> control.<br />
COMPETITIVE ADVANTAGES:<br />
The company has 40 years experience <strong>in</strong> all aspects <strong>of</strong> metal heat<br />
treat<strong>in</strong>g and is a work<strong>in</strong>g member <strong>in</strong> various materials and heat<br />
<strong>process</strong><strong>in</strong>g committees.<br />
CERTIFICATION:<br />
DIN EN ISO 9001: 2008.<br />
SERVICE POTENTIALS:<br />
Consult<strong>in</strong>g, tra<strong>in</strong><strong>in</strong>g and support <strong>in</strong> <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g, <strong>process</strong><br />
technology, safety (accord<strong>in</strong>g to DIN EN 746 /1-3 <strong>of</strong> <strong>in</strong>dustrial furnaces),<br />
automation concepts, and computer hardware and s<strong>of</strong>tware<br />
concepts.<br />
INTERNET ADDRESS:<br />
www.<strong>process</strong>-electronic.com<br />
156<br />
heat <strong>process</strong><strong>in</strong>g 3-2014
3-2014 IMPRINT<br />
www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />
Volume 12 · Issue 3 · September 2014<br />
Official Publication<br />
Editors<br />
Advisory Board<br />
Publish<strong>in</strong>g House<br />
Manag<strong>in</strong>g Editor<br />
Editorial Office<br />
CECOF – European Committee <strong>of</strong> Industrial Furnace and Heat<strong>in</strong>g Equipment Associations<br />
H. Berger, AICHELIN Ges.m.b.H., Mödl<strong>in</strong>g, Pr<strong>of</strong>. Dr.-Ing. A. von Starck, Appo<strong>in</strong>ted Pr<strong>of</strong>essor for Electric Heat<strong>in</strong>g at RWTH<br />
Aachen, Dr. H. Stumpp, Chairman <strong>of</strong> the Association for Thermal Process Technology with<strong>in</strong> VDMA, CTO Tenova Iron &<br />
Steel Group<br />
Dr. H. Altena, Aichel<strong>in</strong> Ges.m.b.H., Pr<strong>of</strong>. Dr.-Ing. E. Baake, Institute for Electro<strong>thermal</strong> Processes, Leibniz University <strong>of</strong><br />
Hanover, Dr.-Ing. F. Beneke, VDMA, Pr<strong>of</strong>. Y. Bl<strong>in</strong>ov, St. Petersburg State Electrotechnical University “Leti“, Russia, René<br />
Branders, President <strong>of</strong> CECOF, Mike Debier, CECOF, Dr.-Ing. F. Kühn, LOI Therm<strong>process</strong> GmbH, Dipl.-Ing. W. Liere-Netheler,<br />
Elster GmbH, H. Lochner, EBNER Industrie<strong>of</strong>enbau GmbH, Pr<strong>of</strong>. S. Lupi, University <strong>of</strong> Padova, Dept. <strong>of</strong> Electrical Eng., Italy,<br />
Pr<strong>of</strong>. Dr.-Ing. H. Pfeifer, RWTH Aachen, Dipl.-Phys. M. R<strong>in</strong>k, Ipsen International GmbH, Dipl.-Ing. St. Schalm, Vulkan-Verlag<br />
GmbH, M.Sc. S. Segerberg, Heattec Värmebehandl<strong>in</strong>g AB, Sweden, Dr.-Ing. A. Seitzer, SMS Elotherm GmbH, Dr.-Ing. P. Wendt,<br />
LOI Therm<strong>process</strong> GmbH, Dr.-Ing. J. G. Wünn<strong>in</strong>g, WS Wärmeprozesstechnik GmbH, Dr.-Ing. T. Würz, CECOF<br />
Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen, Germany<br />
P.O. Box 103962, 45039 Essen<br />
Manag<strong>in</strong>g Directors: Carsten Augsburger, Jürgen Franke<br />
Dipl.-Ing. Stephan Schalm, Vulkan-Verlag GmbH<br />
Tel. + 49 201 820 02-12, Fax: + 49 201 820 02-40<br />
E-Mail: s.schalm@vulkan-verlag.de<br />
Annamaria Frömgen, Vulkan-Verlag GmbH<br />
Tel. + 49 201 820 02-91, Fax: + 49 201 820 02-40<br />
E-Mail: a.froemgen@vulkan-verlag.de<br />
Editorial Department Thomas Schneidew<strong>in</strong>d, Vulkan-Verlag GmbH Sabr<strong>in</strong>a F<strong>in</strong>ke (Tra<strong>in</strong>ee), Vulkan-Verlag GmbH<br />
Tel. + 49 201 820 02-36, Fax: + 49 201 820 02-40 Tel. + 49 201 820 02-15, Fax: + 49 201 820 02-40<br />
E-Mail: t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />
E-Mail: s.f<strong>in</strong>ke@vulkan-verlag.de<br />
Advertis<strong>in</strong>g Sales<br />
Bett<strong>in</strong>a Schwarzer-Hahn, Vulkan-Verlag GmbH<br />
Tel. + 49 201 820 02-24, Fax: + 49 201 820 02-40<br />
E-Mail: b.schwarzer-hahn@vulkan-verlag.de<br />
Advertis<strong>in</strong>g<br />
Mart<strong>in</strong>a Mittermayer, Vulkan-Verlag GmbH / DIV Deutscher Industrieverlag GmbH<br />
Adm<strong>in</strong>istration Tel. + 49 89 203 53 66-16, Fax: + 49 89 203 53 66-66<br />
E-Mail: mittermayer@di-verlag.de<br />
Layout<br />
Terms <strong>of</strong> subscription:<br />
Daniel Klunkert, Vulkan-Verlag GmbH<br />
heat <strong>process</strong><strong>in</strong>g is published four times a year.<br />
Rates: Subscription Pr<strong>in</strong>t: € 184,-<br />
S<strong>in</strong>gle copy: € 52,50<br />
Subscription with access to onl<strong>in</strong>e archive: € 235,-<br />
Subscription ePaper: € 170,-<br />
Subscription ePaper & access to onl<strong>in</strong>e archive: € 221,-<br />
Subscription Pr<strong>in</strong>t & ePaper: € 235,-<br />
Subscription Pr<strong>in</strong>t & ePaper & access to onl<strong>in</strong>e archive: € 286,-<br />
Students: 50% reduction on normal subscription rate (pro<strong>of</strong> <strong>of</strong> entitlement)<br />
Orders may be placed at any time. Please address directly to our customer service or your local book shop. Subscriptions<br />
cont<strong>in</strong>ue for another year unless term<strong>in</strong>ated <strong>in</strong> writ<strong>in</strong>g 2 months prior to the end <strong>of</strong> each year.<br />
Subscriptions/<br />
Leserservice heat <strong>process</strong><strong>in</strong>g . Postfach 91 61 . 97091 Würzburg<br />
S<strong>in</strong>gle Copy Sales Tel. +49 931 4170-459, Fax: +49 931 4170-494<br />
E-Mail: leserservice@vulkan-verlag.de<br />
Pr<strong>in</strong>ted by<br />
The magaz<strong>in</strong>e and all the contributions and illustrations conta<strong>in</strong>ed there<strong>in</strong> are secured by copyright. With the exception<br />
<strong>of</strong> the legally permitted <strong>in</strong>stances, any utilisation without the express permission <strong>of</strong> the publisher will be punished at law.<br />
The op<strong>in</strong>ions conta<strong>in</strong>ed <strong>in</strong> signed articles do not necessarily reflect the op<strong>in</strong>ion <strong>of</strong> the publisher.<br />
Druckerei Chmielorz GmbH<br />
Ostr<strong>in</strong>g 13 · 65205 Wiesbaden-Nordenstadt<br />
© 2003 Vulkan-Verlag GmbH<br />
Friedrich-Ebert-Straße 55 · 45127 Essen (Germany)<br />
Tel. + 49 201 820 02-0, Fax + 49 201 820 02-40<br />
ISSN 1611-616X<br />
Mitglied der Informationsgeme<strong>in</strong>schaft zur<br />
Feststellung der Verbreitung von Werbeträgern e.V. (IVW)
500,000<br />
500<br />
1<br />
HARDENED CRANKSHAFTS<br />
PER YEAR<br />
SATISFIED ELOCRANK<br />
USERS<br />
MORE !<br />
Visit us:<br />
22.–24.10.2014, HeatTreatmentCongress<br />
Cologne/Germany, Hall 4.1/Booth E-029<br />
The EloCrank by SMS Elotherm is the<br />
<strong>in</strong>ternational benchmark for car and truck<br />
crankshaft harden<strong>in</strong>g mach<strong>in</strong>es. Designed<br />
for small or large series production, flexibly<br />
and fully automatically various workpiece<br />
geometries can be surface hardened –<br />
with constant high quality and with<strong>in</strong><br />
smallest tolerances. The success speaks<br />
for itself!<br />
With their developments and system<br />
solutions SMS Elotherm and the associated<br />
IAS have set new standards <strong>in</strong><br />
<strong>in</strong>duction technology for decades. The<br />
medium-sized <strong>in</strong>ternationally operat<strong>in</strong>g<br />
companies are part <strong>of</strong> the SMS group.<br />
As technology leaders, SMS Elotherm<br />
and IAS comb<strong>in</strong>e all competences when<br />
it comes to <strong>in</strong>duction.<br />
www.sms-elotherm.com<br />
www.ias-<strong>in</strong>duction.com