06.09.2014 Views

HEAT PROCESSING Report: Knowledge management in maintenance of thermal process plants (Vorschau)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

International Magaz<strong>in</strong>e for Industrial Furnaces<br />

Heat Treatment & Equipment<br />

03 I 2014<br />

ISSN 1611-616X<br />

Vulkan-Verlag<br />

HK Special on pages 37-55<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

The full spectrum<br />

<strong>of</strong> heat treatment<br />

B.M.I. Fours Industriels www.bmi-fours.com<br />

Vacuum Furnaces for harden<strong>in</strong>g, temper<strong>in</strong>g, carburiz<strong>in</strong>g, nitrid<strong>in</strong>g,<br />

s<strong>in</strong>ter<strong>in</strong>g, high and low temperature braz<strong>in</strong>g<br />

IVA Industrieöfen GmbH www.iva-onl<strong>in</strong>e.com<br />

Retort Type Furnaces, Sealed Quench Furnaces, Rotary Hearth<br />

Furnaces, Rotary Drum Type Furnaces, Hood Type Furnaces, Pit<br />

Type Furnaces<br />

LOI Therm<strong>process</strong> GmbH www.tenova.com<br />

Cont<strong>in</strong>uous Carburiz<strong>in</strong>g Furnaces, Bright Anneal<strong>in</strong>g L<strong>in</strong>es for<br />

tubes and rods, Heat Treatment Plants for wire<br />

Mahler GmbH Industrie<strong>of</strong>enbau www.mahler<strong>of</strong>en.de<br />

Cont<strong>in</strong>uous Furnaces with protective gas for bright anneal<strong>in</strong>g,<br />

braz<strong>in</strong>g, harden<strong>in</strong>g, temper<strong>in</strong>g, s<strong>in</strong>ter<strong>in</strong>g <strong>of</strong> powder metal alloys<br />

RIVA Sp. z.o.o. www.riva-furnaces.com<br />

Sealed Quench Furnaces, Forg<strong>in</strong>g Furnaces, Temper<strong>in</strong>g Furnaces,<br />

Nitrid<strong>in</strong>g Furnaces, Carburiz<strong>in</strong>g Furnaces, Endogas Generators<br />

and Wash<strong>in</strong>g Mach<strong>in</strong>es<br />

Schmetz GmbH Vakuumöfen www.schmetz.de<br />

Vacuum Furnaces for harden<strong>in</strong>g, temper<strong>in</strong>g, braz<strong>in</strong>g, anneal<strong>in</strong>g,<br />

s<strong>in</strong>ter<strong>in</strong>g<br />

Cologne Trade Fair<br />

22 – 24 October 2014<br />

Hall 4.1, Booth No. C-060<br />

LOI Therm<strong>process</strong> GmbH - Tenova Metals Division<br />

Am Lichtbogen 29 - 45141 Essen / Germany<br />

Tel. +49 (0)201 1891.1 - Fax +49 (0)201 1891.321<br />

loi@tenova.com - www.tenova.com<br />

ITPS ASIA<br />

Information about the 2 nd<br />

International Therm<strong>process</strong><br />

Summit 2014, Mumbai (India)<br />

REPORT<br />

<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong><br />

ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong><br />

<strong>process</strong> <strong>plants</strong><br />

INTERVIEW<br />

Thomas Brüser about the<br />

future <strong>of</strong> energy <strong>in</strong>dustry and<br />

technological challenges<br />

13002-14 LOI Anz MTH HeatProcess Titel.<strong>in</strong>dd 1 31.07.14 12:30


Read our report on pages 59-62!


EDITORIAL<br />

70 th HeatTreatmentCongress<br />

– for the first time <strong>in</strong> Cologne<br />

See you next time <strong>in</strong> Wiesbaden …” has been the conclusion<br />

<strong>of</strong> many a conversation <strong>in</strong> recent years and, <strong>in</strong>deed, past<br />

decades. “Wiesbaden”, for sixty-n<strong>in</strong>e years the venue for the Heat-<br />

TreatmentColloquium and, later, for the HeatTreatmentCongress,<br />

had come to symbolise the high-level <strong>in</strong>terchange <strong>of</strong> specialist<br />

knowledge <strong>in</strong> the fields <strong>of</strong> heat treatment and materials science.<br />

Many will doubtless look back nostalgically on the years <strong>in</strong><br />

Wiesbaden. World-class technical papers, lively and, <strong>in</strong> some<br />

cases, controversial discussions between colleagues, an ever<br />

larger technical exhibition and, not least <strong>of</strong> all, the even<strong>in</strong>g events<br />

<strong>in</strong> the “Eimer” or “Ratskeller” hostelries, which had not a few<br />

conference participants sett<strong>in</strong>g <strong>of</strong>f back to their hotels only <strong>in</strong><br />

the first glimmer <strong>of</strong> dawn ...<br />

The 70 th HeatTreatmentCongress will be held <strong>in</strong> Cologne (from<br />

22 to 24 October)! Germany’s AWT heat treatment association has<br />

made an extremely good choice <strong>of</strong> venue <strong>in</strong> the great Rh<strong>in</strong>eland<br />

city <strong>of</strong> Cologne. The Cologne trade-fair grounds are located centrally<br />

<strong>in</strong> the city with excellent transport access, and provide all<br />

the opportunities needed to meet the requirements <strong>of</strong> a modern<br />

technical conference with an accompany<strong>in</strong>g specialist exhibition.<br />

Cologne, <strong>in</strong> addition, has the space needed to allow the exhibition<br />

event to grow even further. Here, the technical advisory stands<br />

will all be located for the exhibition <strong>in</strong> a large hall <strong>in</strong> the immediate<br />

vic<strong>in</strong>ity <strong>of</strong> the congress auditorium. Cologne, furthermore, as<br />

a famous German “Karneval” centre, certa<strong>in</strong>ly <strong>of</strong>fers more than<br />

enough <strong>of</strong> the right facilities for f<strong>in</strong>ish<strong>in</strong>g the day <strong>in</strong> a convivial<br />

manner together. The lodge president, Joachim Wüst, will without<br />

doubt impart one or two reflections on his native city on the<br />

open<strong>in</strong>g day <strong>of</strong> the HK, tak<strong>in</strong>g as a “Kölsch” (Cologne dialect) motto<br />

“Hey Cologne, you’re more <strong>of</strong> an emotion than a city”.<br />

And this year’s conference agenda is yet aga<strong>in</strong> an impressive<br />

one! The AWT’s organis<strong>in</strong>g and plann<strong>in</strong>g committee has, once<br />

aga<strong>in</strong>, selected a large number <strong>of</strong> fitt<strong>in</strong>g, high-rank<strong>in</strong>g speakers,<br />

who will focus on “Simulation <strong>of</strong> heat-treatment <strong>process</strong>es”,<br />

“Production and residual stresses”, “High-energy heat treatment”,<br />

“Integration <strong>of</strong> heat-treatment <strong>process</strong>es <strong>in</strong>to production” and<br />

“Innovations <strong>in</strong> materials science, heat treatment, production<br />

methods and <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g”. Worthy <strong>of</strong> special mention<br />

is, above all, Pr<strong>of</strong>. Harry Bhadeshia’s plenary address on “Out-<strong>of</strong>the-ord<strong>in</strong>ary<br />

ba<strong>in</strong>itic steels”.<br />

This year’s event <strong>in</strong> Cologne will aga<strong>in</strong> <strong>in</strong>clude a background<br />

technology sem<strong>in</strong>ar for the heat-treatment “practitioners” dur<strong>in</strong>g<br />

the morn<strong>in</strong>g <strong>of</strong> the first day, thus preced<strong>in</strong>g the open<strong>in</strong>g <strong>of</strong> the<br />

congress itself. Dr. Peter Sommer will report on “Heat treatment<br />

– errors, harm and causes”, and Marco Jost will speak on “Nitrid<strong>in</strong>g<br />

under gas and under plasma – component-specific <strong>process</strong><br />

selection on economic criteria”.<br />

“Noth<strong>in</strong>g, as is well known, is as constant as change.” We are,<br />

therefore, pleased to have found <strong>in</strong> the new Cologne venue not<br />

only a “successor solution” to Wiesbaden<br />

for our heat treatment<br />

<strong>in</strong>dustry, but also at hav<strong>in</strong>g<br />

selected a sett<strong>in</strong>g<br />

which will allow the<br />

“HeatTreatmentCongress<br />

success story”<br />

to cont<strong>in</strong>ue to grow<br />

and develop. So from<br />

now on, it’s “See you<br />

next time <strong>in</strong> Cologne …”.<br />

Dr. Ing. Olaf Irretier<br />

IBW Dr. Irretier GmbH (Industrial Heat<br />

Treatment Consult<strong>in</strong>g)<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

1


International Magaz<strong>in</strong>e for Industrial Furnaces<br />

Heat Treatment & Equipment<br />

“10 years <strong>of</strong> heat <strong>process</strong><strong>in</strong>g magaz<strong>in</strong>e.<br />

<strong>of</strong> high-quality reports about state-<strong>of</strong>-<br />

This means 10 years <strong>of</strong> an impressive<br />

national authors. And this means 10<br />

wide range <strong>of</strong> different technologies<br />

Happy birthday heat <strong>process</strong><strong>in</strong>g!“<br />

Dr. Andreas Seitzer<br />

Manag<strong>in</strong>g Director <strong>of</strong> SMS Elotherm GmbH<br />

2 heat <strong>process</strong><strong>in</strong>g 1-2014


• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />

This means 10 years<br />

the-art products.<br />

variety <strong>of</strong> truly <strong>in</strong>teryears<br />

<strong>of</strong> successful gather<strong>in</strong>g a<br />

<strong>in</strong> a unique communication format.<br />

1-2014 heat <strong>process</strong><strong>in</strong>g<br />

3


TABLE OF CONTENTS 3-2014<br />

10<br />

HOT SHOTS<br />

Multi-frequency harden<strong>in</strong>g<br />

106<br />

REPORTS<br />

Energy efficiency – potential options<br />

<strong>Report</strong>s<br />

Heat Treatment<br />

by Maciej Korecki, Piotr Kula, Emilia Wołowiec, Michał Bazel, Michał Sut<br />

59 Low pressure carburiz<strong>in</strong>g and nitrid<strong>in</strong>g <strong>of</strong> fuel <strong>in</strong>jection nozzles<br />

by Hartmut Steck-W<strong>in</strong>ter, Axel Filounek<br />

63 <strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> the ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong> <strong>process</strong> <strong>plants</strong><br />

Measur<strong>in</strong>g & Process Control<br />

by Karl-Michael W<strong>in</strong>ter<br />

71 Impacts <strong>of</strong> allowed tolerances <strong>in</strong> temperature on nitrid<strong>in</strong>g results<br />

Induction Technology<br />

by Valent<strong>in</strong> Nemkov<br />

79 Magnetic flux control <strong>in</strong> <strong>in</strong>duction systems<br />

by Dirk M. Schibisch, Jochen C. Huljus<br />

87 Modular <strong>in</strong>duction solutions for drive and axle components<br />

Burner & Combustion<br />

by Dirk Mäder, Octavio Schmiel Gamarra, Mario Schulze, René Lohr<br />

91 Efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance <strong>of</strong> heat<strong>in</strong>g systems<br />

by Frank Hammer<br />

95 Sensory combustion optimisation <strong>of</strong> gas combustion systems<br />

4 heat <strong>process</strong><strong>in</strong>g 3-2014


3-2014 heat <strong>process</strong><strong>in</strong>g


TABLE OF CONTENTS 3-2014<br />

52<br />

<strong>HEAT</strong> TREATMENT CONGRESS<br />

All <strong>in</strong>formation about the HK 2014<br />

63<br />

REPORTS<br />

<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance<br />

Energy Management<br />

by Christian Sprung<br />

101 Energy efficiency – potential options for <strong>in</strong>dustrial furnaces<br />

Research & Development<br />

by Jörg Neumeyer, Bernard Nacke<br />

111 Induction assisted hybrid- weld<strong>in</strong>g <strong>process</strong>es to jo<strong>in</strong> heavy-walled steel components<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

39 General Information<br />

40 Basic Data<br />

42 Program<br />

46 Product Preview<br />

6 heat <strong>process</strong><strong>in</strong>g 3-2014


ADVANCING<br />

INDUCTION<br />

TECHNOLOGY<br />

1388 Atlantic Blvd.<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

l Auburn Hills, MI 48326 USA l P: 1.248.393.2000 l 1.800.224.5522 USA l F: 1.248.393.0277 l fluxtrol.com


TABLE OF CONTENTS 3-2014<br />

12 122<br />

NEWS<br />

Vacuum oxygen decarburization plant launched<br />

PROFILE+<br />

Chair <strong>of</strong> Thermodynamics and Combustion<br />

<strong>of</strong> the University Magdeburg<br />

Focus On<br />

115 Edition 11: Thomas Brüser<br />

“The labour shortage is def<strong>in</strong>itely affect<strong>in</strong>g us”<br />

Pr<strong>of</strong>ile+<br />

121 Edition 7: Chair <strong>of</strong> Thermodynamics and Combustion <strong>of</strong> the University Magdeburg<br />

Technology <strong>in</strong> Practice<br />

125 90 th anniversary <strong>of</strong> Otto Junker<br />

128 High-precision control <strong>of</strong> metal heat<strong>in</strong>g elements<br />

130 New kiln and dryer system for terracotta tiles<br />

Companies Pr<strong>of</strong>ile<br />

156 Process-Electronic GmbH<br />

News<br />

12 Trade & Industry<br />

25 Events<br />

28 Diary<br />

32 Personal<br />

36 Media<br />

heat<strong>process</strong><strong>in</strong>g<br />

Stay <strong>in</strong>formed and follow us on Twitter<br />

heat <strong>process</strong><strong>in</strong>g<br />

@heat<strong>process</strong><strong>in</strong>g<br />

heat <strong>process</strong><strong>in</strong>g is the <strong>in</strong>ternational magaz<strong>in</strong>e for <strong>in</strong>dustrial furnaces,<br />

heat treatment & equipment<br />

Essen · http://www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

8 heat <strong>process</strong><strong>in</strong>g 3-2014


SENSOR LOGIC ACTUATOR<br />

117<br />

FOCUS ON<br />

Edition 11: Thomas Brüser<br />

Bus<strong>in</strong>ess Directory<br />

134 I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat<br />

treatment <strong>process</strong>es<br />

144 II. Components, equipment, production and<br />

auxiliary materials<br />

151 III. Consult<strong>in</strong>g, design, service and eng<strong>in</strong>eer<strong>in</strong>g<br />

152 IV. Trade associations, <strong>in</strong>stitutes, universities,<br />

organisations<br />

152 V. Exhibition organizers, tra<strong>in</strong><strong>in</strong>g and education<br />

COLUMN<br />

1 Editorial<br />

10 Hot Shots<br />

132 Index <strong>of</strong> Advertisers<br />

U3 Impr<strong>in</strong>t<br />

Elster Kromschröder has developed tailor-made<br />

solutions for fitt<strong>in</strong>g out thermo<strong>process</strong><strong>in</strong>g <strong>in</strong>stallations<br />

across all sectors such as the iron and steel,<br />

non-ferrous metals, ceramics or glass <strong>in</strong>dustries.<br />

This applies <strong>in</strong> particular for SIL/PL:<br />

our products, design tools, calculation s<strong>of</strong>tware,<br />

example applications and, <strong>of</strong> course, our customer<br />

service department facilitate the safe design and<br />

operation <strong>of</strong> your heat<strong>in</strong>g system.<br />

Visit us!<br />

Härtereikongress 2014, Cologne<br />

22. – 24. October 2014<br />

Hall 4.1, Stand C-089<br />

Elster GmbH<br />

Postfach 2809<br />

49018 Osnabrück<br />

T +49 541 1214-0<br />

F +49 541 1214-370<br />

<strong>in</strong>fo@kromschroeder.com<br />

www.kromschroeder.com<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

Anz_PW2014_SILPL_89x255_de_en.<strong>in</strong>dd 1 07.08.14 15:24


HOT SHOTS<br />

10 heat <strong>process</strong><strong>in</strong>g 3-2014


HOT SHOTS<br />

Multi-frequency harden<strong>in</strong>g <strong>in</strong> action<br />

The simultaneous multi-frequency harden<strong>in</strong>g <strong>process</strong><br />

patented by EFD Induction achieves true contour harden<strong>in</strong>g<br />

<strong>of</strong> small gears <strong>in</strong> far under one second. Notable is the<br />

absence <strong>of</strong> through harden<strong>in</strong>g <strong>in</strong> the teeth.<br />

(Source: EFD Induction GmbH)<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

11


NEWS<br />

Trade & Industry<br />

Vacuum oxygen decarburization plant from Siemens<br />

launched at voestalp<strong>in</strong>e<br />

vacuum oxygen decarburization<br />

A (VOD) plant from Siemens Metals<br />

Techno logies with a capacity <strong>of</strong> 50 t commenced<br />

operation at voestalp<strong>in</strong>e Giesserei<br />

L<strong>in</strong>z GmbH. The Austrian company is<br />

thereby add<strong>in</strong>g to its equipment for secondary<br />

metallurgical treatment <strong>of</strong> steel<br />

cast<strong>in</strong>gs for sophisticated applications <strong>in</strong><br />

the energy and mechanical eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>in</strong>dustries. The plant features electrically<br />

driven mechanical vacuum pumps <strong>in</strong>stead<br />

<strong>of</strong> steam <strong>in</strong>jectors and therefore does not<br />

require any steam generator.<br />

For the new vacuum oxygen decarburization<br />

plant, Siemens handled the<br />

configuration and supplied all the core<br />

components. These <strong>in</strong>cluded, for example,<br />

a special ladle hood made <strong>of</strong> copper-plated<br />

sheet. This m<strong>in</strong>imizes the occurrence <strong>of</strong><br />

baked slag on the upper edge <strong>of</strong> the ladle<br />

and on the vacuum lid. The scope <strong>of</strong> supply<br />

also <strong>in</strong>cluded the vacuum lid, an oxygenblow<strong>in</strong>g<br />

lance system, a gas cooler and a<br />

filter system, mechanical vacuum pumps<br />

and the hydraulic system. The order also<br />

<strong>in</strong>cluded a water <strong>management</strong> system<br />

matched to the overall plant as well as the<br />

complete automation technology and<br />

<strong>in</strong>strumentation.<br />

As one <strong>of</strong> the first VOD systems worldwide,<br />

the plant <strong>in</strong> L<strong>in</strong>z uses a comb<strong>in</strong>ation<br />

<strong>of</strong> electrically driven, mechanical vacuum<br />

pumps to generate a vacuum. This <strong>in</strong>cludes<br />

roots blowers and screw compressors.<br />

Unlike the conventional steam <strong>in</strong>jectors<br />

used <strong>in</strong> secondary metallurgy, these do not<br />

require any <strong>process</strong> steam, so there is no<br />

need for any external steam or the <strong>in</strong>stallation<br />

<strong>of</strong> a separate boiler to generate steam.<br />

voestalp<strong>in</strong>e Giesserei L<strong>in</strong>z GmbH is<br />

complet<strong>in</strong>g its secondary metallurgical<br />

treatment options with the new vacuum<br />

oxygen decarburization plant. This enlarges<br />

the product portfolio and will play a major<br />

part <strong>in</strong> achiev<strong>in</strong>g cost-efficient production.<br />

ABB <strong>in</strong>stalls EFD Induction system for short-circuit r<strong>in</strong>g braz<strong>in</strong>g<br />

Power generation and distribution<br />

company ABB recently <strong>in</strong>stalled the<br />

largest s<strong>in</strong>gle-shot short-circuit r<strong>in</strong>g braz<strong>in</strong>g<br />

system yet developed by EFD Induction.<br />

The system, which was <strong>in</strong>stalled at<br />

the ABB plant <strong>in</strong> Vittuone outside Milan,<br />

Italy, can braze r<strong>in</strong>gs with a diameter up to<br />

1,500 mm. The company’s previous record<br />

for a one-shot short-circuit r<strong>in</strong>g braz<strong>in</strong>g system<br />

was 1,200 mm, so the system developed<br />

for ABB represents quite an <strong>in</strong>crease.<br />

The system comprises customized coils,<br />

an EFD Induction S<strong>in</strong>ac 250/320 power<br />

source, and a mount<strong>in</strong>g table. The system’s<br />

first project was to braze a 1,500 mm<br />

diameter short-circuit r<strong>in</strong>g for a w<strong>in</strong>d tunnel<br />

motor. The end user is one <strong>of</strong> the world’s<br />

most famous sports car manufacturers.<br />

Accord<strong>in</strong>g to Stefano Chieregato <strong>of</strong> ABB,<br />

he and his colleagues exam<strong>in</strong>ed proposals<br />

from six companies before opt<strong>in</strong>g for the<br />

EFD Induction solution. He says that there<br />

were several reasons beh<strong>in</strong>d the choice<br />

<strong>of</strong> EFD Induction for this critical piece <strong>of</strong><br />

equipment. First, their proposal made<br />

technical and economic sense. Second,<br />

the company has deep expertise <strong>in</strong> the<br />

field. And third, ABB <strong>in</strong> Italy has had positive<br />

experiences with EFD Induction heat<strong>in</strong>g<br />

solutions for other applications.<br />

EFD Induction is one <strong>of</strong> the world’s lead<strong>in</strong>g<br />

suppliers <strong>of</strong> <strong>in</strong>duction-based shortcircuit<br />

r<strong>in</strong>g braz<strong>in</strong>g systems. The company<br />

has even devised a specialized <strong>in</strong>duction<br />

coil that equalizes the temperature around<br />

the r<strong>in</strong>g. This coil m<strong>in</strong>imizes energy <strong>in</strong>put<br />

<strong>in</strong>to lam<strong>in</strong>ations, thereby protect<strong>in</strong>g the<br />

shaft from heat and preserv<strong>in</strong>g the r<strong>in</strong>g’s<br />

<strong>in</strong>tegrity.<br />

12 heat <strong>process</strong><strong>in</strong>g 3-2014


Trade & Industry<br />

NEWS<br />

Air Liquide <strong>in</strong>vests <strong>in</strong> a new Research and Technology Center<br />

<strong>in</strong> Ch<strong>in</strong>a<br />

At the end <strong>of</strong> July Air Liquide broke<br />

ground on its new Research and Technology<br />

Center, the Shanghai Research &<br />

Technology Center (SRTC), located <strong>in</strong> the<br />

<strong>in</strong>dustrial park <strong>of</strong> X<strong>in</strong>zhuang, <strong>in</strong> the M<strong>in</strong>hang<br />

district <strong>of</strong> Shanghai, Ch<strong>in</strong>a. This new<br />

center will ultimately house 200 highly<br />

skilled employees – who <strong>in</strong>clude researchers,<br />

experts <strong>in</strong> customer applications, and<br />

bus<strong>in</strong>ess development teams – to contribute<br />

to the acceleration <strong>of</strong> the Group’s<br />

<strong>in</strong>novation <strong>in</strong> Asia-Pacific. The scientific<br />

experts will be work<strong>in</strong>g <strong>in</strong> several different<br />

areas <strong>of</strong> research, such as energy efficiency,<br />

technologies designed to reduce <strong>in</strong>dustrial<br />

emissions <strong>of</strong> CO 2 , water treatment, and <strong>process</strong>es<br />

for preserv<strong>in</strong>g and freez<strong>in</strong>g food.<br />

The center will be operational at the end<br />

<strong>of</strong> 2015.<br />

The company’s new Research and<br />

Technology Center bolsters the group’s<br />

research capabilities <strong>in</strong> Japan and South<br />

Korea. It will be connected with the <strong>in</strong>novation<br />

teams based <strong>in</strong> Europe and <strong>in</strong> North<br />

America. It will first focus on br<strong>in</strong>g<strong>in</strong>g to<br />

market <strong>in</strong>nova tive solutions adapted to the<br />

usages <strong>of</strong> Ch<strong>in</strong>ese customers and consumers.<br />

It will leverage the ma<strong>in</strong> <strong>in</strong>novation<br />

ecosystems <strong>in</strong> Ch<strong>in</strong>a, build<strong>in</strong>g on exist<strong>in</strong>g<br />

partnerships with Shanghai Jiao Tong University,<br />

as well as Zhejiang University and<br />

the research <strong>in</strong>stitutes affiliated with the<br />

Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences.<br />

Cover<strong>in</strong>g 12,000 m 2 , the center represents<br />

an <strong>in</strong>vestment <strong>of</strong> nearly € 25 million. It<br />

will house laboratories as well as large pilot<br />

platforms with equipment for design<strong>in</strong>g<br />

and test<strong>in</strong>g technologies <strong>in</strong> <strong>in</strong>dustrial-scale<br />

conditions for the group’s customers. The<br />

build<strong>in</strong>g is designed <strong>in</strong> compliance with<br />

LEED certification (Leadership <strong>in</strong> Energy<br />

and Environment Design), a global standard<br />

<strong>in</strong> susta<strong>in</strong>able build<strong>in</strong>g that factors <strong>in</strong><br />

the efficient water <strong>management</strong>, good use<br />

<strong>of</strong> energy, and the reduction <strong>of</strong> emissions.<br />

www.burkert.com<br />

All <strong>in</strong>clusive!<br />

What you see here is the essence <strong>of</strong> universality.<br />

Perfect for whenever you require a direct-act<strong>in</strong>g<br />

2/2-way solenoid valve. It’s the one valve you can use<br />

for each and every occasion. Built for both neutral<br />

and slightly aggressive media – powerful enough to<br />

work with dry gases or steam. Three design elements<br />

ensure you get maximum performance: its highest<br />

flow rates, its long service life and its top reliability.<br />

All <strong>of</strong> which come standard. And it’s no problem at all<br />

if your <strong>process</strong><strong>in</strong>g environment demands additional<br />

features – from more pressure and a different supply<br />

voltage, to an Ex version. Simply universal: our<br />

solenoid valve 6027.<br />

We make ideas flow.<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

Solenoid Valves | Process & Control Valves | Pneumatics & Process Interfaces | Sensors | Transmitters & Controllers | MicroFluidics | Mass Flow Controllers | Solenoid Control Valves<br />

13


NEWS<br />

Trade & Industry<br />

Deutsche Edelstahlwerke orders cool<strong>in</strong>g bed from SMS Meer<br />

University orders <strong>in</strong>duction heat<strong>in</strong>g system from Ambrell<br />

Deutsche Edelstahlwerke has ordered<br />

a new rake-type cool<strong>in</strong>g bed from<br />

SMS Meer for its Siegen works <strong>in</strong> Germany<br />

as part <strong>of</strong> the modernization <strong>of</strong><br />

its bar mill. The new cool<strong>in</strong>g bed allows<br />

controlled cool<strong>in</strong>g <strong>of</strong> the bars, surfaceprotect<strong>in</strong>g<br />

transport and very straight<br />

f<strong>in</strong>ished products. Thus, all demands on<br />

quality steel are met. In addition to round<br />

steel bars with dimensions from 21.5 to<br />

90 mm, it will also be possible to cool<br />

hexagonal sections on the cool<strong>in</strong>g bed<br />

<strong>in</strong> future.<br />

Accord<strong>in</strong>g to Jens Eisbach, Manager<br />

Bar Mill, the aim <strong>of</strong> the modernization<br />

Ambrell, a lead<strong>in</strong>g manufacturer <strong>of</strong><br />

<strong>in</strong>duction heat<strong>in</strong>g systems, has<br />

sold an Ekoheat 45-kW/100-kHz <strong>in</strong>duction<br />

heat<strong>in</strong>g system to a large research<br />

university for “superalloy” research. The<br />

application <strong>in</strong>volves melt<strong>in</strong>g up to 20 g<br />

<strong>of</strong> tungsten to 3,500 °C (6,332 °F) <strong>in</strong> a<br />

cold crucible. A cold crucible <strong>in</strong>volves<br />

levitation and requires virtually no contact<br />

between the crucible and melt<strong>in</strong>g<br />

bath. This method maximizes the purity<br />

<strong>of</strong> the melt.<br />

The university, which had previously<br />

used Ambrell <strong>in</strong>duction heat<strong>in</strong>g systems<br />

for research applications, purchased this<br />

system because they needed to melt<br />

larger batches. The Ekoheat enabled them<br />

to meet their objective. Ambrell <strong>of</strong>fers its<br />

is to achieve a homogeneous temperature<br />

distribution <strong>in</strong> the bar layer. That will<br />

enable the company to prevent <strong>in</strong>accuracies<br />

when cutt<strong>in</strong>g the bars and to<br />

improve the productivity and quality <strong>in</strong><br />

the f<strong>in</strong>ish<strong>in</strong>g section.<br />

Deutsche Edelstahlwerke operates the<br />

world’s first 3-roll PSM ® (Precision Siz<strong>in</strong>g<br />

Mill) with hydraulic roll adjustment under<br />

load from SMS Meer. It is additionally<br />

equipped with the Meergauge ® precision<br />

measurement system and a dynamic<br />

monitor control. Commission<strong>in</strong>g <strong>of</strong> the<br />

new cool<strong>in</strong>g bed is scheduled for the<br />

third quarter <strong>of</strong> 2015.<br />

clients complimentary application test<strong>in</strong>g<br />

to ensure their new system will meet their<br />

<strong>process</strong> requirements.<br />

The company <strong>of</strong>fers a full l<strong>in</strong>e <strong>of</strong> <strong>in</strong>duction<br />

power supplies that can be used for<br />

melt<strong>in</strong>g applications. For those that need<br />

complete melt<strong>in</strong>g systems, Induction Technology<br />

Corporation is Ambrell’s melt<strong>in</strong>g<br />

partner.<br />

Sandvik and Tenaris sign new five-year strategic alliance<br />

agreement<br />

Sandvik and Tenaris have signed a new<br />

five-year strategic alliance agreement on<br />

the exclusive jo<strong>in</strong>t supply <strong>of</strong> corrosion resistant<br />

alloy OCTG materials and technology<br />

to the oil and gas <strong>in</strong>dustry. By this agreement<br />

Sandvik and Tenaris look to build on<br />

an already long established and successful<br />

alliance that goes back over a decade.<br />

Accord<strong>in</strong>g to Michael Andersson, Head<br />

<strong>of</strong> the Tube Product Area <strong>of</strong> Sandvik,<br />

this strategic alliance will facilitate closer<br />

co operation on future <strong>in</strong>novations target<strong>in</strong>g<br />

the most demand<strong>in</strong>g applications <strong>in</strong><br />

the market. Together, their research and<br />

development capability will be unmatched<br />

<strong>in</strong> the <strong>in</strong>dustry allow<strong>in</strong>g them to develop<br />

and <strong>of</strong>fer unique solutions for the most<br />

challeng<strong>in</strong>g operational environments<br />

faced by the customers.<br />

The prospect <strong>of</strong> br<strong>in</strong>g<strong>in</strong>g together the<br />

companies’ high-end technologies – with<br />

Sandvik’s corrosion resistant alloy tubes<br />

and TenarisHydril premium connections<br />

with Dopeless ® technology – will br<strong>in</strong>g<br />

many benefits <strong>in</strong>clud<strong>in</strong>g a complete <strong>of</strong>fer<br />

for the market. This is particularly true <strong>in</strong><br />

the most challeng<strong>in</strong>g oil and gas exploration<br />

and production environments, such<br />

as High Pressure/High Temperature and<br />

deep water, where harsh conditions call<br />

for safe operational material solutions while<br />

red uc<strong>in</strong>g environmental impact.<br />

Sebastián Salenave, Sales Manager <strong>of</strong><br />

Tenaris added that the product port folios<br />

<strong>of</strong> both companies complement each<br />

other perfectly and together they can<br />

reach every location with their extensive<br />

global network support<strong>in</strong>g oil and gas<br />

exploration and production worldwide.<br />

14 heat <strong>process</strong><strong>in</strong>g 3-2014


Trade & Industry<br />

NEWS<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

15


NEWS<br />

Trade & Industry<br />

SMS Siemag is expand<strong>in</strong>g the hot strip mill at Xichang<br />

Steel with a slab siz<strong>in</strong>g press<br />

PIETC Panzhihua Co., Ltd. has awarded<br />

SMS Siemag, Germany, the contract<br />

for expand<strong>in</strong>g the rough<strong>in</strong>g mill <strong>in</strong> its hot<br />

strip mill <strong>in</strong> Xichang City, Ch<strong>in</strong>a, through<br />

the addition <strong>of</strong> a slab siz<strong>in</strong>g press. The aim<br />

<strong>of</strong> the revamp is to make the production<br />

<strong>process</strong> more flexible. With an edg<strong>in</strong>g force<br />

<strong>of</strong> up to 22,000 kN, the slab siz<strong>in</strong>g press<br />

will reduce the slab width to the required<br />

dimension, by up to 350 mm <strong>in</strong> one pass. By<br />

cast<strong>in</strong>g slabs with a higher average width<br />

and a reduced number <strong>of</strong> cast<strong>in</strong>g sizes,<br />

Xichang Steel can <strong>in</strong>crease the throughput<br />

rate <strong>of</strong> its cont<strong>in</strong>uous cast<strong>in</strong>g mach<strong>in</strong>e. The<br />

slab siz<strong>in</strong>g press additionally allows more<br />

flexibility <strong>in</strong> the schedul<strong>in</strong>g <strong>of</strong> the roll<strong>in</strong>g<br />

programs.<br />

Xichang Steel produces carbon steels for<br />

pipel<strong>in</strong>es as well as for the construction <strong>of</strong><br />

ships, bridges and build<strong>in</strong>gs, among other<br />

th<strong>in</strong>gs. SMS Siemag already delivered the<br />

hot strip mill for Xichang Steel’s plant <strong>in</strong><br />

2011. The revamp <strong>of</strong> the 2,050-mm-wide<br />

plant will now take place dur<strong>in</strong>g a short<br />

downtime. The major part <strong>of</strong> the preparatory<br />

work will take place parallel to production.<br />

SMS Siemag will manufacture the core<br />

components <strong>of</strong> the slab siz<strong>in</strong>g press, such<br />

as press sleds with drive unit, width adjustment<br />

system and ma<strong>in</strong> gear unit, at its<br />

workshop <strong>in</strong> Hilchenbach, Germany. The<br />

completion <strong>of</strong> the revamp<strong>in</strong>g phase at<br />

Xichang Steel is scheduled for the second<br />

half <strong>of</strong> 2015.<br />

Ipsen delivers vacuum furnace to Mexico<br />

Ipsen recently shipped a horizontal TurboTreater<br />

® <strong>thermal</strong> <strong>process</strong><strong>in</strong>g vacuum<br />

system to an <strong>in</strong>ternational company’s plant<br />

<strong>in</strong> Mexico, where it will function as a substitute<br />

for another Ipsen furnace, substantially<br />

moderniz<strong>in</strong>g their operations. This company<br />

is part <strong>of</strong> the Metal-Cast<strong>in</strong>g <strong>in</strong>dustry,<br />

and they will use this TurboTreater to <strong>process</strong><br />

sta<strong>in</strong>less steel parts for a French car<br />

manufacturer and, eventually, a German<br />

car manufacturer as well. In both cases, the<br />

cars are assembled <strong>in</strong> Mexico and exported<br />

all over the world.<br />

The company has a long history with<br />

Ipsen, hav<strong>in</strong>g purchased multiple furnaces<br />

over the last few decades. In 2013, they<br />

contracted the company for a critical<br />

relocation <strong>of</strong> a large heat-treat<strong>in</strong>g furnace<br />

from one <strong>of</strong> their <strong>plants</strong> <strong>in</strong> Mexico to the<br />

same plant where this new TurboTreater<br />

will be <strong>in</strong>stalled – all to best support their<br />

customers <strong>in</strong> the automotive <strong>in</strong>dustry.<br />

Overall, the order and shipment went<br />

smoothly – the various milestones were<br />

met either ahead <strong>of</strong> schedule or on time,<br />

and the Factory Acceptance Test was<br />

seamless.<br />

This specific TurboTreater features<br />

a 24” x 24” x 36” (610 mm x 610 mm x<br />

914 mm) all-graphite hot zone with a<br />

2,000-pound (907 kg) load capacity. It<br />

utilizes gas cool<strong>in</strong>g to 2-bar absolute pressure<br />

and operates at temperatures <strong>of</strong> 1,000<br />

to 2,400 °F (538 to 1,316 °C). The furnace<br />

is also equipped with a 20-<strong>in</strong>ch Varian<br />

diffusion pump and Ipsen’s CompuVac ®<br />

control system.<br />

The TurboTreater l<strong>in</strong>e operates as a<br />

“build-your-own” furnace, allow<strong>in</strong>g customers<br />

to order heat treatment furnace<br />

systems specified to their unique needs.<br />

Possible modifications <strong>in</strong>clude variations<br />

on features such as the hot zone <strong>in</strong>sulation<br />

package, heat<strong>in</strong>g elements, pump<strong>in</strong>g<br />

systems and control system.<br />

16 heat <strong>process</strong><strong>in</strong>g 3-2014


Trade & Industry<br />

NEWS<br />

TimkenSteel to <strong>in</strong>vest <strong>in</strong> cont<strong>in</strong>uous heat-treat operations<br />

TimkenSteel Corporation, a leader <strong>in</strong><br />

customized alloy steel products and<br />

services, announced plans to open an<br />

additional cont<strong>in</strong>uous heat-treat facility <strong>in</strong><br />

the U.S. to produce more value-added steel<br />

for demand<strong>in</strong>g applications. Shawn J. Seanor,<br />

executive vice president <strong>of</strong> Energy and<br />

Distribution said that many <strong>of</strong> the applications<br />

the company serves require higher<br />

performance steels that give the customers<br />

confidence as they push the limits <strong>of</strong><br />

what’s possible. He added that this <strong>in</strong>vestment<br />

is foundational to the company’s ability<br />

to grow some <strong>of</strong> its most unique and<br />

sophisticated product l<strong>in</strong>es to meet those<br />

needs. Additional cont<strong>in</strong>uous heat-treat<br />

capa bilities provide the flexibility to create<br />

more customized steels to serve energy<br />

and other markets that have a strong longterm<br />

outlook.<br />

The company is evaluat<strong>in</strong>g locations for<br />

the cont<strong>in</strong>uous <strong>thermal</strong> heat-treat operations<br />

and plans to make that decision <strong>in</strong> the<br />

third quarter <strong>of</strong> 2014. The facility would be<br />

fully operational with<strong>in</strong> two years and have<br />

capacity for 50,000 <strong>process</strong>-tons annually <strong>of</strong><br />

4” to 13” bars and tubes. It would be larger<br />

than each <strong>of</strong> the company’s three exist<strong>in</strong>g<br />

<strong>thermal</strong> treatment facilities <strong>in</strong> Canton, OH.<br />

The <strong>in</strong>vestment is approximately $ 40 million.<br />

TimkenSteel’s energy <strong>of</strong>fer<strong>in</strong>gs serve<br />

global equipment manufacturers and service<br />

companies with customized products<br />

and services for their most demand<strong>in</strong>g<br />

applications <strong>in</strong> down-hole tools and top<strong>of</strong>-hole<br />

<strong>in</strong>frastructure.<br />

Heraeus acquires Vulcan Catalytic Systems Ltd.<br />

Heraeus Noblelight, the specialty light<br />

sources bus<strong>in</strong>ess group that is part <strong>of</strong><br />

the Heraeus precious metals and technology<br />

group, has concluded an asset deal to<br />

acquire the bus<strong>in</strong>ess activities <strong>of</strong> US-based<br />

Vulcan Catalytics Systems Ltd. The American<br />

company manufactures gas catalytic<br />

<strong>in</strong>frared systems especially for <strong>in</strong>dustrial<br />

powder coat<strong>in</strong>g <strong>process</strong>es.<br />

Ra<strong>in</strong>er Küchler, Manag<strong>in</strong>g Director <strong>of</strong><br />

Heraeus Noblelight expla<strong>in</strong>ed that with<br />

the acquisition <strong>of</strong> Vulcan Catalytic, Heraeus<br />

Noblelight is expand<strong>in</strong>g its application<br />

know-how <strong>in</strong> the area <strong>of</strong> coat<strong>in</strong>gs as well<br />

as its portfolio <strong>in</strong> the sphere <strong>of</strong> long-wave<br />

light. Vulcan Catalytic has decades <strong>of</strong> experience<br />

<strong>in</strong> the development <strong>of</strong> gas catalytic<br />

systems, which, <strong>in</strong> certa<strong>in</strong> applications, are<br />

an ideal complement to Heraeus’ electric<br />

<strong>in</strong>frared product l<strong>in</strong>e. Us<strong>in</strong>g the comb<strong>in</strong>ed<br />

expertise <strong>of</strong>fers the possibility <strong>of</strong> develop<strong>in</strong>g<br />

new solutions.<br />

Accord<strong>in</strong>g to Michael Chapman, President<br />

<strong>of</strong> Vulcan Catalytic Systems, both<br />

companies share a common goal: to consistently<br />

exceed customer expectations. He<br />

said that jo<strong>in</strong><strong>in</strong>g the Heraeus network will<br />

<strong>of</strong>fer Vulcan Catalytic Systems numerous<br />

opportunities to <strong>in</strong>troduce its products and<br />

expertise to new markets.<br />

ALD Vacuum Technologies<br />

signed a Memorandum <strong>of</strong><br />

Understand<strong>in</strong>g<br />

The AMG Advanced Metallurgical Group N.V. announces that its AMG<br />

Eng<strong>in</strong>eer<strong>in</strong>g unit, ALD Vacuum Technologies GmbH signed a Memorandum<br />

<strong>of</strong> Understand<strong>in</strong>g with Nukem Technologies GmbH, and E.ON<br />

Technologies GmbH to develop a concept for local melt<strong>in</strong>g services to<br />

recycle radioactive metallic wastes from closed nuclear power <strong>plants</strong>.<br />

ALD is a lead<strong>in</strong>g global supplier <strong>of</strong> vacuum furnaces and vacuum<br />

<strong>process</strong>es and holds a patent for the recycl<strong>in</strong>g <strong>of</strong> radioactive metallic<br />

waste treatment. Nukem Technologies GmbH <strong>of</strong> Alzenau, Germany,<br />

is globally active <strong>in</strong> the areas <strong>of</strong> <strong>management</strong> <strong>of</strong> radioactive waste<br />

and spent fuel, decommission<strong>in</strong>g <strong>of</strong> nuclear facilities, eng<strong>in</strong>eer<strong>in</strong>g and<br />

consult<strong>in</strong>g. Nukem Technologies GmbH has been part <strong>of</strong> the Rosatom<br />

Group s<strong>in</strong>ce 2009.<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

17<br />

GFW-Xtra_89x62_07-2014_DEU-ENG.<strong>in</strong>dd 1 01/08/14 10.33


NEWS<br />

Trade & Industry<br />

Edwards’ steel degass<strong>in</strong>g<br />

system br<strong>in</strong>gs benefits to<br />

Italian steel manufacturer<br />

Edwards has <strong>in</strong>stalled a modular steel degass<strong>in</strong>g system <strong>in</strong> a<br />

large steel producer <strong>in</strong> Italy, replac<strong>in</strong>g an exist<strong>in</strong>g steam ejector<br />

system which had high runn<strong>in</strong>g costs and energy usage. The<br />

steel manufacturer, which produces 1.5 million t/a <strong>of</strong> high quality<br />

steel for the automotive and power <strong>in</strong>dustries, has had six Edwards’<br />

mechanical steel degass<strong>in</strong>g modules <strong>in</strong>stalled. Key <strong>in</strong> the decision<br />

to use this steel degass<strong>in</strong>g vacuum equipment was that the system<br />

is modular – its standardized concept provides an easy <strong>in</strong>stallation<br />

and <strong>in</strong>tegration, secur<strong>in</strong>g immediate reduction <strong>of</strong> runn<strong>in</strong>g costs.<br />

The mechanical steel degass<strong>in</strong>g system enables the customer<br />

to enjoy the immediate read<strong>in</strong>ess <strong>of</strong> the system compared<br />

to steam ejectors, which require heat<strong>in</strong>g up time, provid<strong>in</strong>g an<br />

<strong>in</strong>crease <strong>in</strong> productivity, reliability and consistency. In the unlikely<br />

event <strong>of</strong> pump failure the modular design <strong>of</strong> the system ensures<br />

high uptime <strong>in</strong> a simple, reliable way, and provides improved<br />

stability.<br />

The company’s mechanical steel degass<strong>in</strong>g system uses<br />

multi stage mechanical boosters supported by dry screw primary<br />

vacuum pumps. Increas<strong>in</strong>gly mechanical dry pumps are<br />

replac<strong>in</strong>g traditional steam ejectors as the vacuum technology <strong>of</strong><br />

choice. Lower runn<strong>in</strong>g costs, higher pump<strong>in</strong>g speeds, predictable<br />

ma<strong>in</strong>tenance and lower environmental impact all lend weight<br />

to the case for mechanical dry pumps. The sav<strong>in</strong>gs <strong>in</strong> energy<br />

costs from us<strong>in</strong>g dry mechanical pumps are high compared to<br />

steam ejectors.<br />

Outokumpu steel extends<br />

the water heater life for<br />

PVI Industries<br />

P<br />

VI Industries LLC, an American water heaters manufacturer<br />

has chosen Outokumpu’s proprietary lean duplex<br />

grade LDX 2101 ® to replace carbon steel <strong>in</strong> its water heaters.<br />

Us<strong>in</strong>g lean duplex has significantly reduced PVI Industries’<br />

waste stream and <strong>in</strong>creased the useful life <strong>of</strong> its water heaters.<br />

PVI Industries produces water heaters for large commercial<br />

end-users like hotels, restaurants, schools, universities and<br />

hospitals. Water heaters can be as large as 11 x 2 m, and<br />

conta<strong>in</strong> as much as 17,000 l <strong>of</strong> water.<br />

In 2009, PVI Industries built a water heater prototype us<strong>in</strong>g<br />

Outokumpu LDX 2101 ® . The prototype went through an accelerated<br />

life test<strong>in</strong>g equivalent <strong>of</strong> 30 years <strong>of</strong> normal life use at<br />

highly elevated temperatures. Five years after development,<br />

the prototype is still operational. The useful life expectancy<br />

<strong>of</strong> carbon steel water heater tanks was five to fifteen years,<br />

depend<strong>in</strong>g on application. PVI now warranties standard<br />

duplex water heater tanks for up to 25 years.<br />

Previously, the company was us<strong>in</strong>g electroless nickel plat<strong>in</strong>g<br />

to reduce corrosion <strong>in</strong> the carbon steel water heater tanks.<br />

The <strong>process</strong> generated nearly 600,000 kg <strong>of</strong> waste a year. Now<br />

clear sav<strong>in</strong>gs are achieved s<strong>in</strong>ce no ma<strong>in</strong>tenance is required,<br />

because sta<strong>in</strong>less steel does not require any coat<strong>in</strong>g or plat<strong>in</strong>g.<br />

Mov<strong>in</strong>g to duplex sta<strong>in</strong>less steel also reduced PVI’s<br />

waste stream to nearly zero. The efforts were recognized<br />

<strong>in</strong> May 2014 by the State <strong>of</strong> Texas at the 2014 Environmental<br />

Excellence Awards where PVI received the honour for<br />

Pollution Prevention.<br />

New electrical power unit helps ArcelorMittal cut energy use<br />

ArcelorMittal Bottrop <strong>in</strong> Germany has<br />

<strong>in</strong>vested <strong>in</strong> a cutt<strong>in</strong>g-edge electrical<br />

power unit for its coke plant which not only<br />

produces electricity but also doubles up as<br />

a pressure reduc<strong>in</strong>g station. The new technology<br />

has been <strong>in</strong> use s<strong>in</strong>ce September<br />

2013. The electrical power unit – known as<br />

Energy Module and supplied by ENVA Systems<br />

GmbH – partially substitutes a pressure<br />

reduc<strong>in</strong>g station (<strong>in</strong> which the pressure <strong>of</strong><br />

the <strong>in</strong>com<strong>in</strong>g steam is reduced) and uses<br />

the result<strong>in</strong>g energy to produce electricity<br />

for the cok<strong>in</strong>g plant’s wash water treatment.<br />

The energy is also fed <strong>in</strong>to the cok<strong>in</strong>g<br />

plant’s power grid and consumed by various<br />

mach<strong>in</strong>es, plant sections, and pumps.<br />

With a production <strong>of</strong> 80 kWh, the Energy<br />

Module’s annual output would be sufficient<br />

to supply around 100 four-person<br />

households with electricity. Us<strong>in</strong>g the new<br />

electrical power unit also positively impacts<br />

operat<strong>in</strong>g costs, as it elim<strong>in</strong>ates the need<br />

for steam turb<strong>in</strong>es which are significantly<br />

more expensive and require more <strong>in</strong>tensive<br />

ma<strong>in</strong>tenance.<br />

Accord<strong>in</strong>g to ENVA Systems GmbH, when<br />

used at full capacity the Energy Module<br />

allows a return on <strong>in</strong>vestment <strong>in</strong> only three<br />

years. But beyond economic benefits, the<br />

optimised use <strong>of</strong> steam through the new<br />

technology also results <strong>in</strong> CO 2 and primary<br />

energy sav<strong>in</strong>gs – considerably improv<strong>in</strong>g<br />

Bottrop’s environmental footpr<strong>in</strong>t.<br />

18 heat <strong>process</strong><strong>in</strong>g 3-2014


Trade & Industry<br />

NEWS<br />

4<br />

ALUMINIUM 2014<br />

7 – 9 Oct 2014 | Messe Düsseldorf<br />

10th World Trade Fair & Conference<br />

www.alum<strong>in</strong>ium-messe.com<br />

Organised by<br />

Partners<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

19


NEWS<br />

Trade & Industry<br />

Loesche w<strong>in</strong>s the Deutscher Bildungspreis 2014<br />

In the sector category “Production: small<br />

and medium-sized enterprises”, Loesche<br />

managed to come out on top aga<strong>in</strong>st<br />

numerous competitors due to its best<br />

practice tra<strong>in</strong><strong>in</strong>g and talent <strong>management</strong><br />

and has received the Deutscher Bildungspreis<br />

2014. The TÜV Süd Academy and EuPD<br />

Research Susta<strong>in</strong>able Management present<br />

the Deutscher Bildungspreis (German Education<br />

Award) every year under the motto<br />

“Learn<strong>in</strong>g from the best”. In four sector categories,<br />

companies are awarded for best<br />

education and talent <strong>management</strong> under<br />

Andritz to supply new furnace plant for production<br />

<strong>of</strong> railroad tracks<br />

International technology Group Andritz has<br />

been awarded an order to supply a new<br />

walk<strong>in</strong>g beam furnace for the Donawitz plant<br />

<strong>of</strong> voestalp<strong>in</strong>e Schiene GmbH, Austria, one <strong>of</strong><br />

Europe’s lead<strong>in</strong>g suppliers <strong>of</strong> railroad tracks.<br />

Start-up is scheduled for the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />

2016. Andritz Maerz will supply the turnkey<br />

furnace plant with an output <strong>of</strong> 185 t/h,<br />

<strong>in</strong>clud<strong>in</strong>g steel structure, refractory l<strong>in</strong><strong>in</strong>g,<br />

transport system, combustion system, <strong>in</strong>strumentation<br />

and control system, mathematical<br />

furnace model to optimize the various<br />

the auspices <strong>of</strong> the Bundesm<strong>in</strong>isterium für<br />

Bildung und Forschung (Federal M<strong>in</strong>istry <strong>of</strong><br />

Education and Research).<br />

S<strong>in</strong>ce 2012, over 250 companies have<br />

applied for the Deutscher Bildungspreis.<br />

The w<strong>in</strong>ners are selected us<strong>in</strong>g a practiceoriented<br />

and expert-based valuation method,<br />

which was developed <strong>in</strong> collaboration<br />

with personnel and tra<strong>in</strong><strong>in</strong>g experts from<br />

companies <strong>of</strong> different sectors and sizes as<br />

well as scientists <strong>of</strong> different technical fields.<br />

Along with 120 other companies, Loesche<br />

GmbH applied for the Bildungspreis<br />

<strong>thermal</strong> furnace <strong>process</strong>es, buffer bed with<br />

separat<strong>in</strong>g systems, feed conveyor with automatic<br />

billet identification, and a complete<br />

hot water cool<strong>in</strong>g plant with recool<strong>in</strong>g and<br />

emergency cool<strong>in</strong>g systems.<br />

In order to make best possible use <strong>of</strong><br />

the residual heat from the waste gases, a<br />

heat recovery plant is planned to supply<br />

the district heat<strong>in</strong>g system. Thanks to this<br />

heat<strong>in</strong>g technology, heat consumption can<br />

be reduced to a m<strong>in</strong>imum <strong>in</strong> spite <strong>of</strong> the<br />

very uniform temperature ma<strong>in</strong>ta<strong>in</strong>ed, and<br />

2014 and was able to come out on top <strong>of</strong> the<br />

competition <strong>in</strong> the sector category “Production:<br />

small and medium-sized enterprises”.<br />

The award ceremony took place as part <strong>of</strong> a<br />

ceremonial event <strong>in</strong> the historic Munich Künstlerhaus<br />

(House <strong>of</strong> Art). Accord<strong>in</strong>g to Christian<br />

Trzeczak, Loesche Corporate Human<br />

Resources, the company owes this success<br />

to the <strong>in</strong>struments <strong>of</strong> the demand-oriented<br />

personnel development <strong>in</strong>troduced <strong>in</strong> 2008<br />

as well as the close cooperation with the<br />

Loesche Tra<strong>in</strong><strong>in</strong>g Center and the benefits<br />

for the staff associated with this.<br />

maximum reductions can be achieved <strong>in</strong><br />

emissions <strong>of</strong> NO X and CO.<br />

AFC-Holcr<strong>of</strong>t retr<strong>of</strong>its Tier One’s generators for new gas supply<br />

global Tier One automotive supplier has<br />

A placed an order with AFC-Holcr<strong>of</strong>t for a<br />

production gas modernization project <strong>in</strong>volv<strong>in</strong>g<br />

the purchase <strong>of</strong> new multiple-retort E-Z<br />

Series endothermic generators. The facility<br />

receiv<strong>in</strong>g the equipment is located <strong>in</strong> Mexico.<br />

The E-Z Series endothermic generators will<br />

provide the customer with a lower cost<br />

gas production option than their exist<strong>in</strong>g<br />

nitrogen/methanol systems. The return on<br />

<strong>in</strong>vestment for the new endothermic gas<br />

generators is typically less than two years.<br />

Production furnaces <strong>in</strong> the facility will<br />

keep their exist<strong>in</strong>g nitrogen/methanol gas<br />

systems, but the operator will now be able<br />

to switch between nitrogen/methanol<br />

supply or the less expensive endothermic<br />

gas produced by the new E-Z generators.<br />

Multiple furnaces consist<strong>in</strong>g <strong>of</strong> pusher<br />

l<strong>in</strong>es, batch <strong>in</strong>tegral quench units and<br />

mesh belt furnaces will be field retr<strong>of</strong>it<br />

to receive this lower-cost gas option.<br />

AFC-Holcr<strong>of</strong>t will provide two 13,500 CFH<br />

units each equipped with an additional<br />

4,500 CFH expansion module and one<br />

13,500 CFH unit. Each E-Z Series generator<br />

will be equipped with a back-up<br />

mixture and blower. Three endothermic<br />

gas header distribution systems will also<br />

be field <strong>in</strong>stalled for endo supply <strong>in</strong>to the<br />

exist<strong>in</strong>g production furnaces. To m<strong>in</strong>imize<br />

downtime dur<strong>in</strong>g the project, the work is<br />

provided as a “cont<strong>in</strong>uous flow” project,<br />

spread across three phases to provide the<br />

customer with un<strong>in</strong>terrupted project flow<br />

schedule.<br />

20 heat <strong>process</strong><strong>in</strong>g 3-2014


Market breakthrough for Paul Wurth’s<br />

tuyere phenomena detection system<br />

With<strong>in</strong> the past three years, Paul Wurth has<br />

developed a new monitor<strong>in</strong>g technology<br />

for the tuyeres and raceway area <strong>of</strong> blast furnaces.<br />

An <strong>in</strong>tegrated system employ<strong>in</strong>g digital<br />

cameras provides cont<strong>in</strong>uous visualisation <strong>of</strong><br />

all tuyeres on any computer connected to the<br />

network. Mach<strong>in</strong>e vision methods (extraction<br />

<strong>of</strong> <strong>process</strong> relevant <strong>in</strong>formation out <strong>of</strong> pictures)<br />

are applied for automatic phenomena detection,<br />

which is backed-up by an <strong>in</strong>tegrated<br />

mathematic blast furnace model for the raceway<br />

zone. This feature also <strong>in</strong>cludes detection<br />

algorithms especially designed for the use with<br />

tuyere-<strong>in</strong>jected auxiliary reduc<strong>in</strong>g agents like<br />

pulverised coal. Direct l<strong>in</strong>k to the furnace’s automation<br />

system helps to implement additional<br />

emergency measures (for <strong>in</strong>stance, immediate<br />

shut-<strong>of</strong>f <strong>of</strong> PCI) improv<strong>in</strong>g safety for personnel,<br />

equipment and plant. In the course <strong>of</strong> normal<br />

operation, cont<strong>in</strong>uous remote monitor<strong>in</strong>g <strong>of</strong><br />

the tuyere area improves the BF <strong>process</strong> stability<br />

and opens potential for higher PCI rates with,<br />

subsequently, reduced hot metal cost.<br />

Paul Wurth’s new tuyere phenomena detection<br />

system (TPDS) has now been operat<strong>in</strong>g for<br />

more than eight months on four blast furnaces<br />

<strong>in</strong> Belgium and Germany, fully equipped (each<br />

tuyere) with 117 units <strong>in</strong> total. While two <strong>plants</strong><br />

<strong>in</strong> Germany and Spa<strong>in</strong> are currently evaluat<strong>in</strong>g<br />

the system’s benefits on <strong>in</strong>dividual tuyeres, Paul<br />

Wurth has recently received orders for equipp<strong>in</strong>g<br />

four more blast furnaces (<strong>in</strong> the Netherlands<br />

and <strong>in</strong> Germany) completely (128 tuyeres)<br />

with this technology.<br />

Vacuum furnace from Solar Manufactur<strong>in</strong>g<br />

well received by market<br />

The furnace manufacturer Solar Manufac tur<strong>in</strong>g<br />

from Souderton, PA, USA has sold seven<br />

“Mentor” vacuum furnaces over the last twelve<br />

months. This illustrates that this small size furnace<br />

is well received by the market. When William R.<br />

Jones, CEO <strong>of</strong> the Solar Group <strong>of</strong> Companies,<br />

decided to donate a small horizontal vacuum<br />

furnace for use as a teach<strong>in</strong>g tool <strong>in</strong> the ASM International<br />

tra<strong>in</strong><strong>in</strong>g facility <strong>in</strong> Materials Park, Ohio, this<br />

furnace was given the name “The Mentor” as it<br />

would serve to teach and guide students seek<strong>in</strong>g<br />

to advance <strong>in</strong> the metals <strong>process</strong><strong>in</strong>g world.<br />

At the same time that this furnace was<br />

eng<strong>in</strong>eered and manufactured, a second unit<br />

was built for the Solar Atmospheres Plant <strong>in</strong><br />

Hermitage, PA. This furnace proved to be<br />

very useful for test<strong>in</strong>g various materials and<br />

for <strong>process</strong><strong>in</strong>g smaller production loads economically.<br />

Because <strong>of</strong> the usefulness <strong>of</strong> this<br />

smaller furnace <strong>in</strong> handl<strong>in</strong>g many different<br />

needs, Solar Manufactur<strong>in</strong>g elected to <strong>of</strong>fer<br />

this furnace to the general marketplace. Several<br />

companies realized that such a unit could<br />

be a very useful piece <strong>of</strong> equipment.<br />

The furnace is a horizontal model HFL-2018-<br />

2IQ and is mounted on a s<strong>in</strong>gle, portable platform<br />

for easy shipment and manoeuvrability.<br />

The Mentor’s work zone measures 12” x<br />

12” x 18” deep which allows heat treaters the<br />

convenience <strong>of</strong> runn<strong>in</strong>g smaller workloads<br />

more economically. The hot zone design<br />

<strong>in</strong>corpor ates a graphite foil hot face backed<br />

by four layers <strong>of</strong> ½” thick, highly efficient Rayon<br />

graphite felt supported <strong>in</strong> a sta<strong>in</strong>less steel r<strong>in</strong>g<br />

structure. It is rated to a maximum operat<strong>in</strong>g<br />

temperature <strong>of</strong> 3,000 °F and is AMS2750E<br />

compliant with a temperature uniformity <strong>of</strong><br />

+/- 10 °F between 800 °F and 2,400 °F. The<br />

furnace hearth is capable <strong>of</strong> support<strong>in</strong>g loads<br />

up to 250 pounds at 2,150 °F.<br />

22.–24.10.2014<br />

HK Köln 2014,<br />

Hall 4.1,<br />

Booth A-011<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

21


NEWS<br />

Trade & Industry<br />

Praxair builds presence <strong>in</strong> Petrochemical Park <strong>in</strong> Ch<strong>in</strong>a<br />

Praxair, Inc., through a subsidiary, has<br />

signed a long-term contract to supply<br />

<strong>in</strong>dustrial gases to Nanj<strong>in</strong>g J<strong>in</strong>l<strong>in</strong>g Huntsman<br />

New Materials Co., Ltd., a jo<strong>in</strong>t venture<br />

between S<strong>in</strong>opec J<strong>in</strong>l<strong>in</strong>g and Huntsman.<br />

J<strong>in</strong>l<strong>in</strong>g Huntsman will use the gases to help<br />

build a state-<strong>of</strong>-the-art propylene oxide<br />

(PO) and methyl tertiary butyl ether (MTBE)<br />

plant located <strong>in</strong> Nanj<strong>in</strong>g, East Ch<strong>in</strong>a. PO is a<br />

high-quality <strong>in</strong>termediate compound used<br />

to make polyurethane materials, and MTBE<br />

is a clean fuel additive.<br />

Praxair will construct its new air separation<br />

unit (ASU), with a capacity <strong>of</strong> 900 t/d<br />

<strong>of</strong> oxygen, <strong>in</strong> the Phase II area <strong>of</strong> Nanj<strong>in</strong>g<br />

Chemical Industrial Park (NCIP), a lead<strong>in</strong>g,<br />

state-level <strong>in</strong>terconnected chemical<br />

production facility. The company will also<br />

build a pipel<strong>in</strong>e <strong>in</strong> the park to help meet<br />

the <strong>in</strong>dustrial gas requirements <strong>of</strong> J<strong>in</strong>l<strong>in</strong>g<br />

Huntsman and other customers throughout<br />

NCIP. The ASU is expected to start up<br />

<strong>in</strong> 2016.<br />

Accord<strong>in</strong>g to Ju Zhengyu, general<br />

manager <strong>of</strong> Nanj<strong>in</strong>g J<strong>in</strong>l<strong>in</strong>g Huntsman<br />

New Materials Co., Ltd., the company is<br />

very pleased to select Praxair as its <strong>in</strong>dustrial<br />

gas supplier and cooperative partner,<br />

because as a lead<strong>in</strong>g global <strong>in</strong>dustrial gases<br />

company, Praxair has developed a safe and<br />

reliable gas solution for the project.<br />

The air separation plant that the company<br />

will build will establish Praxair as the first<br />

<strong>in</strong>dustrial gases pipel<strong>in</strong>e supplier <strong>in</strong> NCIP,<br />

with great potential to supply more customers<br />

<strong>in</strong> the new phase <strong>of</strong> this top-notch<br />

chemical park. Praxair has a strong track<br />

record <strong>of</strong> develop<strong>in</strong>g <strong>in</strong>dustrial gases supply<br />

networks <strong>in</strong> lead<strong>in</strong>g chemical <strong>in</strong>dustrial<br />

parks such as Shanghai Chemical Industry<br />

Park, Huizhou Daya Bay Chemical Industrial<br />

Park and Yangzhou Chemical Industry Park.<br />

Sciaky to provide EBAM system to major aerospace parts maker<br />

Sciaky, Inc., a subsidiary <strong>of</strong> Phillips Service<br />

Industries, Inc. (PSI) and provider<br />

<strong>of</strong> large-scale additive manufactur<strong>in</strong>g<br />

solutions, announced that it received a<br />

purchase order from a major aerospace<br />

parts maker to provide an electron beam<br />

additive manufactur<strong>in</strong>g (EBAM) system. The<br />

EBAM system will help the manufacturer<br />

save significant time and cost on the production<br />

<strong>of</strong> large, high-value metal parts.<br />

In July Sciaky announced the availability<br />

<strong>of</strong> EBAM systems to the marketplace.<br />

This is the first <strong>of</strong> two multi-million dollar<br />

orders from a major global manufactur<strong>in</strong>g<br />

company s<strong>in</strong>ce the announcement. In addition,<br />

the company is work<strong>in</strong>g with over a<br />

dozen other companies and entities with<strong>in</strong><br />

the aerospace, defence and manufactur<strong>in</strong>g<br />

sectors to provide EBAM systems for their<br />

unique needs.<br />

Sciaky’s EBAM technology comb<strong>in</strong>es<br />

computer-aided design (CAD), electron<br />

beam weld<strong>in</strong>g technology and layer-additive<br />

<strong>process</strong><strong>in</strong>g. Start<strong>in</strong>g with a 3D model<br />

from a CAD program, the fully-articulated,<br />

mov<strong>in</strong>g electron beam weld<strong>in</strong>g gun deposits<br />

metal, layer by layer, until the part reaches<br />

near-net shape. From there, the near-net<br />

shape part requires m<strong>in</strong>or post-production<br />

mach<strong>in</strong><strong>in</strong>g. The 110” x 110” x 110” (L x W x H)<br />

build envelope <strong>of</strong> the EBAM system will<br />

allow the manufacturer to produce large<br />

parts, with virtually no waste.<br />

Besides <strong>of</strong>fer<strong>in</strong>g <strong>in</strong>novative additive<br />

manufactur<strong>in</strong>g solutions for metal parts,<br />

the company provides state-<strong>of</strong>-the-art<br />

electron beam and advanced arc weld<strong>in</strong>g<br />

systems, as well as job shop/contract weld<strong>in</strong>g<br />

services, for manufacturers <strong>in</strong> the aerospace,<br />

defence, automotive, and healthcare<br />

<strong>in</strong>dustries.<br />

22 heat <strong>process</strong><strong>in</strong>g 3-2014


The best <strong>of</strong> 10 years<br />

heat <strong>process</strong><strong>in</strong>g<br />

heat <strong>process</strong><strong>in</strong>g –<br />

10 years – anniversary edition<br />

The anniversary issue celebrat<strong>in</strong>g ten years <strong>of</strong> the “heat <strong>process</strong><strong>in</strong>g“ technical journal<br />

showcases the best articles published dur<strong>in</strong>g the past decade <strong>in</strong> this, the <strong>in</strong>ternational<br />

journal for thermo<strong>process</strong> technology. This edition opens with prefaces<br />

from Dr. Timo Würz, <strong>of</strong> the VDMA (German Eng<strong>in</strong>eer<strong>in</strong>g Association) and Dr. Hermann<br />

Stumpp. The editorial team has selected two articles from each year <strong>of</strong> publication.<br />

Burners & Combustion, Induction Technology, Heat Treatment – the range <strong>of</strong> topics<br />

encompasses the entire thermo<strong>process</strong><strong>in</strong>g field.<br />

The expert articles track, <strong>in</strong> a retrospective, the technological and economic developments<br />

<strong>in</strong> the thermo-<strong>process</strong> <strong>in</strong>dustry. Numerous well-known <strong>in</strong>dustry figures from<br />

the bus<strong>in</strong>ess, <strong>management</strong> and academic worlds have also contributed. Technical articles<br />

with up-to-date contemporary content and an <strong>in</strong>dustry perspective for the future<br />

round <strong>of</strong>f heat <strong>process</strong><strong>in</strong>g‘s anniversary issue. The f<strong>in</strong>al, essential, feature: the Hot Shots<br />

– selected series <strong>of</strong> high-impact images focuss<strong>in</strong>g on fasc<strong>in</strong>at<strong>in</strong>g technological topics.<br />

Edition hp, 1st edition 2014, approx. 180 pages, <strong>in</strong> full colour,<br />

Brochure, DIN A4<br />

ISBN: 978-3-8027-2975-1<br />

Price: € 40.--<br />

Publication: late August 2014<br />

Hot-Hot-Heat<br />

www.vulkan-verlag.de<br />

Events<br />

NEWS<br />

Pre-order now!<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I place a firm order for the technical book. Please send<br />

— copies <strong>of</strong> heat <strong>process</strong><strong>in</strong>g – 10 years – anniversary edition<br />

1 st edition 2014 (ISBN: 978-3-8027-2975-1)<br />

at the price <strong>of</strong> € 40.-- (plus postage and pack<strong>in</strong>g)<br />

Company / <strong>in</strong>stitution<br />

First name and surname <strong>of</strong> recipient<br />

Street/P.O. Box, No.<br />

Country, Postcode, Town<br />

Reply / Antwort<br />

Vulkan Verlag GmbH<br />

Versandbuchhandlung<br />

Postfach 10 39 62<br />

45039 Essen<br />

GERMANY<br />

Phone<br />

E-mail<br />

L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to Vulkan Verlag GmbH, Versandbuchhandlung, Postfach 10 39 62, 45039 Essen, Germany.<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

It is approved 3-2014 that heat this data <strong>process</strong><strong>in</strong>g may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

This approval may be withdrawn at any time.<br />

✘<br />

Date, signature<br />

PAHPAE2014<br />

23


NEW COURSE:<br />

METAL 2015<br />

MIDDLE EAST<br />

INTERNATIONAL TRADE FAIR FOR METALLURGICAL TECHNOLOGY,<br />

THERMO PROCESS TECHNOLOGY, FOUNDRY MACHINERY AND<br />

METAL WORKING<br />

10 – 13 JANUARY 2015<br />

DUBAI INTERNATIONAL<br />

CONVENTION & EXHIBITION CENTRE,<br />

DUBAI, UAE<br />

WWW.METAL-MIDDLE-EAST.COM<br />

SUPPORTED BY:<br />

IN CONJUNCTION WITH:<br />

Foundry Mach<strong>in</strong>ery<br />

Metallurgical Plants and Roll<strong>in</strong>g Mills<br />

Thermo Process Technology<br />

Metallurgy<br />

European<br />

Metallurgical Equipment<br />

Association<br />

5 th INTERNATIONAL<br />

TRADE FAIR FOR<br />

THE TUBE & PIPE<br />

INDUSTRIES<br />

2 nd INTERNATIONAL<br />

TRADE FAIR<br />

JOINING, CUTTING,<br />

SURFACING<br />

IN CO-OPERATION WITH:<br />

Messe Düsseldorf GmbH<br />

P.O. Box 10 10 06 _ 40001 Düsseldorf _ Germany<br />

Phone +49 (0) 2 11/45 60-77 93/-77 07 _ Fax +49 (0) 2 11/45 60-77 40<br />

RyfischD@messe-duesseldorf.de _ BurbullaK@messe-duesseldorf.de<br />

www.messe-duesseldorf.de


Events<br />

NEWS<br />

ITPS 2014 goes Asia<br />

The first ITPS (International Therm<strong>process</strong><br />

Summit) was held successfully<br />

last year <strong>in</strong> Düsseldorf, Germany. 147<br />

participants from 16 different countries<br />

and exhibitors used the conference as a<br />

welcome opportunity to hold <strong>in</strong>-depth<br />

exchanges <strong>of</strong> ideas and <strong>in</strong>formation for<br />

the thermo <strong>process</strong> <strong>in</strong>dustry. This year,<br />

the <strong>in</strong>dustry demanded to hold the ITPS<br />

2014 from 27 to 28 October <strong>in</strong> Mumbai,<br />

India.<br />

The world economy is expected to<br />

bounce back by the year 2015 and emerg<strong>in</strong>g<br />

economies like India are expected to<br />

drive the global economy. With all these<br />

positive vibes around the entire thermo<br />

<strong>process</strong> <strong>in</strong>dustry, the organizers – Messe<br />

Düsseldorf India, CECOF, VDMA and “heat<br />

<strong>process</strong><strong>in</strong>g” – are gear<strong>in</strong>g up to host ITPS<br />

2014 <strong>in</strong> the commercial capital <strong>of</strong> Mumbai.<br />

ITPS 2014 will welcome 150-200 top <strong>in</strong>dustry<br />

experts from 10+ countries worldwide.<br />

Excellent speeches will come from 30+<br />

speakers <strong>in</strong> highly attractive sessions.<br />

Moreover, ITPS exhibition is staged concurrently<br />

to the biggest metal trade fair<br />

platform <strong>in</strong> India, i.e., Wire & Cable India,<br />

Tube India International, Metallurgy India<br />

& India Essen Weld<strong>in</strong>g & Cutt<strong>in</strong>g which<br />

will take place <strong>in</strong> the Bombay Convention<br />

& Exhibition Centre, Goregaon (East),<br />

Mumbai.<br />

In addition to the high-level <strong>in</strong>formation<br />

supplied, the ITPS will also have a network<strong>in</strong>g<br />

function. Contacts between highrank<strong>in</strong>g<br />

representatives <strong>of</strong> the participat<strong>in</strong>g<br />

companies are established and ma<strong>in</strong>ta<strong>in</strong>ed.<br />

Companies have the opportunity to present<br />

themselves to participants at an exhibition<br />

held <strong>in</strong> conjunction with the summit<br />

or to achieve heightened awareness dur<strong>in</strong>g<br />

the event and <strong>in</strong> connection with market<strong>in</strong>g<br />

through various forms <strong>of</strong> sponsorship.<br />

The organizers’ competence guarantees an<br />

event <strong>of</strong> the highest quality with optimum<br />

benefits to participants.<br />

For further <strong>in</strong>formation please visit:<br />

www.itps-asia.com<br />

Composites Europe 2014 with new themes and special areas<br />

Composites are one <strong>of</strong> the key technologies<br />

<strong>in</strong> lightweight construction, and<br />

the Composites Europe trade fair reflects<br />

the grow<strong>in</strong>g market for lightweight materials.<br />

From 7 to 9 October, the Düsseldorf<br />

trade fair will once aga<strong>in</strong> showcase the full<br />

range <strong>of</strong> fibre-re<strong>in</strong>forced plastics. In addition,<br />

the trade fair will provide an outlook<br />

on the future <strong>of</strong> composites through a<br />

number <strong>of</strong> forums and new special areas<br />

such as the “Bio-based Pavilion” and “Industry<br />

meets Science”.<br />

More than 400 exhibitors from 25 nations<br />

– many <strong>in</strong>ternational key players among<br />

them – are expected to present new lightweight<br />

construction concepts, materials,<br />

and the latest production and automation<br />

solutions at the n<strong>in</strong>th edition <strong>of</strong> Composites<br />

Europe. A total <strong>of</strong> 10,000 lightweight construction<br />

experts represent<strong>in</strong>g automotive<br />

eng<strong>in</strong>eer<strong>in</strong>g, aviation and boatbuild<strong>in</strong>g as<br />

well as the w<strong>in</strong>d energy and construction<br />

sectors are expected at the Düsseldorf Exhibition<br />

Centre, a third <strong>of</strong> them from outside<br />

Germany. Solidly booked country pavilions<br />

represent<strong>in</strong>g Italy, the Netherlands, Russia,<br />

Ch<strong>in</strong>a and Hungary further underscore how<br />

important the trade fair has become for the<br />

<strong>in</strong>ternational composites sector.<br />

Thanks to the new special area entitled<br />

“Industry meets Science”, Composites Europe<br />

enables visitors to “grasp” – <strong>in</strong> both senses<br />

<strong>of</strong> the word – the latest developments and<br />

highlights from <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g, dimension<strong>in</strong>g<br />

and quality assurance. The Institute<br />

<strong>of</strong> Plastics Process<strong>in</strong>g (IKV) at RWTH Aachen<br />

University and add itional partner <strong>in</strong>stitutes<br />

will be responsible for implement<strong>in</strong>g this<br />

special area.<br />

At the Product<br />

Demonstration Area<br />

the trade fair gathers<br />

new high-tech<br />

products and br<strong>in</strong>gs<br />

to life the development<br />

<strong>of</strong> composites<br />

components <strong>in</strong> live<br />

presentations. Exhibitors<br />

will <strong>in</strong>clude Euro-<br />

RTM-Group, Büfa, RH<br />

Schneidtechnik, 3D<br />

Core and Dresden<br />

University <strong>of</strong> Technology.<br />

Natural fibres are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />

important as biocomposites. The<br />

“Bio-based Pavilion”, made possible <strong>in</strong> collaboration<br />

with the nova-Institute <strong>in</strong> Hürth,<br />

showcases the advantages and potential <strong>of</strong><br />

bi<strong>of</strong>ibres. In addition to companies from<br />

the WPC and NFC segments, enterprises<br />

associated with bio-based thermoset plastics<br />

and thermoplastics will also be represented<br />

at the trade fair.<br />

For further <strong>in</strong>formation please visit:<br />

www.composites-europe.com<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

25


NEWS<br />

Events<br />

Premiere: International Forum at ALUMINIUM 2014<br />

From 7 to 9 October, more than 50 nations<br />

will represent the entire world <strong>of</strong> alum<strong>in</strong>ium<br />

at ALUMINIUM 2014 <strong>in</strong> Düsseldorf. With<br />

more than 950 exhibitors and as many as<br />

21,500 visitors at the last event – some 50 %<br />

<strong>of</strong> them from outside Germany – the world<br />

fair provides the most comprehensive overview<br />

<strong>of</strong> the <strong>in</strong>dustry and emerg<strong>in</strong>g markets.<br />

The trade fair’s new “International Forum”<br />

will put the spotlight on two <strong>of</strong> them: Ch<strong>in</strong>a<br />

and India. Held for the first time, the lecture<br />

forum <strong>in</strong> Hall 13 will serve as an <strong>in</strong>formation<br />

exchange for both German and <strong>in</strong>ternational<br />

companies <strong>in</strong>terested <strong>in</strong> expand<strong>in</strong>g their<br />

activities abroad.<br />

How do the Ch<strong>in</strong>ese and Indian markets<br />

function? What opportunities and risks await<br />

European companies when launch<strong>in</strong>g there?<br />

How best to prepare trade fair appearances<br />

abroad? Officials represent<strong>in</strong>g embassies,<br />

regional alum<strong>in</strong>ium associations and corporations<br />

as well as tax pr<strong>of</strong>essionals will provide<br />

answers to these and other questions. The<br />

lecture programme starts <strong>in</strong> the morn<strong>in</strong>g<br />

and concludes with an <strong>in</strong>ternational reception<br />

<strong>in</strong> the afternoon. Trade fair visitors are<br />

welcome to attend the International Forum<br />

without prior registration. Admission is free;<br />

lectures are held <strong>in</strong> English. The International<br />

Forum is presented <strong>in</strong> collaboration with the<br />

German-Ch<strong>in</strong>ese Bus<strong>in</strong>ess Association (DCW)<br />

and Prexma Limited. Thanks to their ties with<br />

organisations such as the Ch<strong>in</strong>a Alum<strong>in</strong>ium<br />

Network, Asia-Pacific Management Consult<strong>in</strong>g<br />

and the German-Indian Chamber <strong>of</strong> Commerce,<br />

both partners have access to a great<br />

network <strong>of</strong> experts <strong>in</strong> both markets.<br />

For further <strong>in</strong>formation please visit:<br />

www.alum<strong>in</strong>ium-messe.com<br />

<strong>in</strong>dometal 2014 – Trade fair for Indonesia’s metal and<br />

steel <strong>in</strong>dustries<br />

The <strong>in</strong>dometal 2014 returns with a greater<br />

focus on the synergistic capabilities<br />

<strong>of</strong> foundry technology, cast<strong>in</strong>g products,<br />

metallurgy and thermo <strong>process</strong> technology<br />

follow<strong>in</strong>g its <strong>in</strong>augural success <strong>in</strong> 2013.<br />

Build<strong>in</strong>g on the global expertise <strong>of</strong> Messe<br />

Düsseldorf’s <strong>in</strong>ternationally renowned<br />

trade fairs Gifa, Metec, Therm<strong>process</strong> and<br />

Newcast, <strong>in</strong>dometal 2014 provides the ideal<br />

launch pad for Asian companies to grow its<br />

regional and <strong>in</strong>ternational market share <strong>of</strong><br />

the metal and steel <strong>in</strong>dustry with<strong>in</strong> Indonesia<br />

and around Asia.<br />

Jo<strong>in</strong>tly organized by Messe Düsseldorf<br />

Asia and local exhibition organizer PT<br />

Wahana Kemalaniaga Makmur (Wakeni),<br />

the trade fair br<strong>in</strong>gs together lead<strong>in</strong>g brand<br />

names <strong>in</strong> the metal and steel <strong>in</strong>dustry from<br />

Indonesia and abroad, provid<strong>in</strong>g the best<br />

exposure for companies with medium and<br />

long-term strategic plans to do bus<strong>in</strong>ess <strong>in</strong><br />

Indonesia and Southeast Asia.<br />

<strong>in</strong>dometal 2014 will be the right platform<br />

to meet key <strong>in</strong>dustry players and<br />

decision-makers, share new concepts and<br />

ideas, establish new relationships and ga<strong>in</strong><br />

critical bus<strong>in</strong>ess leads <strong>in</strong>to Indonesia and<br />

the region.<br />

For further <strong>in</strong>formation please visit:<br />

www.<strong>in</strong>dometal.net<br />

7 th International Scientific Colloquium on MEP<br />

The 7 th International Scientific Colloquium<br />

on Modell<strong>in</strong>g for Electromagnetic<br />

Process<strong>in</strong>g is tak<strong>in</strong>g place <strong>in</strong> Hannover,<br />

Germany from 16 to 19 September 2014. In<br />

tradition <strong>of</strong> the <strong>in</strong>ternational scientific colloquiums<br />

Modell<strong>in</strong>g for Material Process<strong>in</strong>g <strong>in</strong><br />

Riga <strong>in</strong> 1999, 2001, 2006, 2010 and Modell<strong>in</strong>g<br />

for Electromagnetic Process<strong>in</strong>g <strong>in</strong><br />

Hannover <strong>in</strong> 2003 and 2008 the Institute <strong>of</strong><br />

Electrotechnology <strong>of</strong> the Leibniz University<br />

<strong>of</strong> Hannover and the University <strong>of</strong> Latvia<br />

organize the next colloquium Modell<strong>in</strong>g<br />

for Electromagnetic Process<strong>in</strong>g <strong>in</strong> Hannover<br />

2014.<br />

Recent results <strong>of</strong> numerical and experimental<br />

research activities <strong>in</strong> the field <strong>of</strong><br />

<strong>in</strong>dustrial <strong>process</strong><strong>in</strong>g technologies for creat<strong>in</strong>g<br />

new and alternative materials, materials<br />

with highest quality and purity and new<br />

<strong>in</strong>novative products will be presented at<br />

the colloquium.<br />

The organizers k<strong>in</strong>dly <strong>in</strong>vite those who<br />

are <strong>in</strong>terested to participate <strong>in</strong> the <strong>in</strong>ternational<br />

colloquium MEP 2014 “Modell<strong>in</strong>g<br />

for Electromagnetic Process<strong>in</strong>g”. Up<br />

to 100 <strong>in</strong>ternational participants from<br />

universities and research centres as well<br />

as from <strong>in</strong>dustrial suppliers and users <strong>of</strong><br />

electromagnetic and electro<strong>thermal</strong> <strong>process</strong>es<br />

are expected. The colloquium will<br />

take place <strong>in</strong> the Leibnizhaus, the guesthouse<br />

<strong>of</strong> the Leibniz University <strong>of</strong> Hannover,<br />

located <strong>in</strong> the historical centre <strong>of</strong><br />

Hannover.<br />

For further <strong>in</strong>formation please visit:<br />

www.mep2014.uni-hannover.de<br />

26 heat <strong>process</strong><strong>in</strong>g 3-2014


Connect<strong>in</strong>g Global Competence<br />

Events<br />

NEWS<br />

Alum<strong>in</strong>ium Braz<strong>in</strong>g 2014<br />

with record number <strong>of</strong> visitors<br />

F<br />

or the second time, DVS – Deutscher Verband für<br />

Schweißen und verwandte Verfahren e.V., with the<br />

support <strong>of</strong> DVS Media GmbH, had been the organizer<br />

<strong>of</strong> the 8 th International Congress Alum<strong>in</strong>ium Braz<strong>in</strong>g and<br />

Exhibition. From 3 to 5 June 2014, 250 participants and<br />

13 exhibitors from 28 countries had made their way to<br />

Düssel dorf to the Radisson Blu Scand<strong>in</strong>avia Hotel and thus<br />

set a new record number <strong>of</strong> visitors for the event.<br />

22 lectures shed light from different sides on the world <strong>of</strong><br />

braz<strong>in</strong>g <strong>of</strong> alum<strong>in</strong>ium materials. A wide range <strong>of</strong> topics from<br />

research and practice had been <strong>of</strong>fered to <strong>in</strong>terested visitors,<br />

start<strong>in</strong>g from the materials topic through applications,<br />

devices, <strong>process</strong> and quality control, up to research and<br />

development. The participants largely came from <strong>in</strong>dustry,<br />

and they assessed the lectures for the most part as be<strong>in</strong>g<br />

very <strong>in</strong>formative and the majority <strong>of</strong> them also <strong>in</strong>tend to<br />

attend the congress aga<strong>in</strong> <strong>in</strong> 2016.<br />

The accompany<strong>in</strong>g exhibition <strong>of</strong>fered the participants<br />

the opportunity to <strong>in</strong>form themselves <strong>in</strong> detail about the<br />

current product range and service <strong>of</strong>fer <strong>of</strong> the companies<br />

present. At the same time, the overall event was an ideal<br />

platform <strong>in</strong> order to refresh <strong>in</strong>dustry contacts and to establish<br />

new ones. Above all, the <strong>in</strong>ternational aspect <strong>of</strong> the 8 th<br />

International Congress Alum<strong>in</strong>ium Braz<strong>in</strong>g and Exhibition<br />

was <strong>of</strong> particular importance for many visitors and exhibitors.<br />

For <strong>in</strong>stance, one exhibitor commented that the congress<br />

kept gett<strong>in</strong>g more and more <strong>in</strong>ternational <strong>in</strong>terest,<br />

someth<strong>in</strong>g that is important from her perspective.<br />

From April 19 to 21, 2016, the 9 th International Congress<br />

Alum<strong>in</strong>ium Braz<strong>in</strong>g and Exhibition <strong>in</strong>tends to cont<strong>in</strong>ue with<br />

this year’s successful event.<br />

For further <strong>in</strong>formation please visit: www.dvs-ev.de/<br />

alum<strong>in</strong>ium-braz<strong>in</strong>g<br />

The perfect recipe for success.<br />

ceramitec 2015 is the surefire way to<br />

give your bus<strong>in</strong>ess the competitive edge.<br />

Exhibit at this lead<strong>in</strong>g <strong>in</strong>ternational exhibition<br />

and enjoy the benefits <strong>of</strong> a truly<br />

pr<strong>of</strong>essional forum:<br />

∙ Full coverage <strong>of</strong> the ceramics sector.<br />

∙ High-caliber trade audience from<br />

around the world.<br />

∙ Pr<strong>of</strong>essional services for exhibitors.<br />

Don’t delay. Sign up today!<br />

To register:<br />

www.ceramitec.de/application<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

27


NEWS<br />

Events<br />

DIARY<br />

11-13 Sep.<br />

16-19 Sep.<br />

16-19 Sep.<br />

17-19 Sep.<br />

21-24. Sep.<br />

24-25 Sep.<br />

24-27 Sep.<br />

30 Sep. -<br />

1 Oct.<br />

6-8 Oct.<br />

7-9 Oct.<br />

7-9 Oct.<br />

22-24 Oct.<br />

27-28 Oct.<br />

28-30. Oct.<br />

Ankiros / Ann<strong>of</strong>er / Turkcast<br />

<strong>in</strong> Istanbul, Turkey<br />

www.hmankiros.com<br />

7 th MEP – Modell<strong>in</strong>g for Electromagnetic Process<strong>in</strong>g<br />

<strong>in</strong> Hanover, Germany<br />

www.mep2014.uni-hannover.de<br />

Metalurgia 2014<br />

<strong>in</strong> Jo<strong>in</strong>ville, Brazil<br />

www.metalurgia.com.br<br />

KazMet 2014<br />

<strong>in</strong> Almaty, Kazakhstan<br />

www.kazmet.iteca.kz<br />

Euro PM2014<br />

<strong>in</strong> Salzburg, Austria<br />

www.epma.com/pm2014<br />

57 th International Colloquium on Refractories<br />

<strong>in</strong> Aachen, Germany<br />

www.feuerfest-kolloquium.de<br />

wire + Tube Ch<strong>in</strong>a<br />

<strong>in</strong> Shanghai, Ch<strong>in</strong>a<br />

www.wirech<strong>in</strong>a.net<br />

www.tubech<strong>in</strong>a.net<br />

CWIEME<br />

<strong>in</strong> Chicago (IL), United States<br />

www.coilw<strong>in</strong>d<strong>in</strong>gexpo.com<br />

Furnaces North America<br />

In Nashville (TN), United States<br />

www.furnacesnorthamerica.com<br />

Alum<strong>in</strong>ium 2014<br />

<strong>in</strong> Düsseldorf, Germany<br />

www.alum<strong>in</strong>ium-messe.com<br />

Composites Europe<br />

<strong>in</strong> Düsseldorf, Germany<br />

www.composites-europe.com<br />

70 th Heat Treatment Congress<br />

<strong>in</strong> Cologne, Germany<br />

www.hk-awt.de<br />

ITPS Asia – 2 nd International Therm<strong>process</strong> Summit<br />

<strong>in</strong> Mumbai, India<br />

www.itps-asia.com<br />

5 th Metallurgy India / 6 th Tube India / 5 th Wire & Cable India /<br />

6 th Weld<strong>in</strong>g & Cutt<strong>in</strong>g India<br />

<strong>in</strong> Mumbai, India<br />

www.metallurgy-<strong>in</strong>dia.com / www.tube-<strong>in</strong>dia.com /<br />

www.wire-<strong>in</strong>dia.com / www.i-ewc.com<br />

Expansion <strong>of</strong><br />

Metalurgia 2014<br />

T<br />

he metal-mechanic <strong>in</strong>dustry <strong>in</strong> Brazil is<br />

com<strong>in</strong>g out <strong>of</strong> a retraction phase and is<br />

already show<strong>in</strong>g signs <strong>of</strong> recovery, with a forecast<br />

for expansion <strong>in</strong> the com<strong>in</strong>g years. In the<br />

truck <strong>in</strong>dustry alone, six new factories have<br />

begun their activities <strong>in</strong> the country: DAF, JAC,<br />

Foton Aumark, S<strong>in</strong>otruck, Metro-Schacman and<br />

International. While those already <strong>in</strong>stalled are<br />

expand<strong>in</strong>g their l<strong>in</strong>es with heavier models,<br />

show<strong>in</strong>g that there will be strong demand<br />

growth <strong>in</strong> the sector. The northern region <strong>of</strong><br />

Santa Catar<strong>in</strong>a is one <strong>of</strong> Brazil’s most developed<br />

<strong>in</strong> this sector, and is attract<strong>in</strong>g large companies<br />

to <strong>in</strong>stall new <strong>plants</strong>, like GM with its two units<br />

and BMW; add<strong>in</strong>g to those already based here<br />

such as Tupy, Docol, Whirlpool , Embraco, Weg,<br />

Tuper, ArcelorMittal, Marcegaglia, Schulz, Zen,<br />

Wetzel, Altona and others.<br />

At the centre <strong>of</strong> all this expansion is the<br />

Metalurgia fair, which attracts exhibitors and<br />

visitors from Brazil and abroad. For over 15 years<br />

it has <strong>in</strong>tegrated and developed the sector’s<br />

supply cha<strong>in</strong> by present<strong>in</strong>g <strong>in</strong>novative products<br />

with technological advances. By participat<strong>in</strong>g<br />

<strong>in</strong> Metalurgia 2014, visitors have access<br />

to the entire national market <strong>in</strong> its moment <strong>of</strong><br />

recovery.<br />

The Metalurgia – International Fair and<br />

Congress <strong>of</strong> Technology for Cast<strong>in</strong>g, Forg<strong>in</strong>g,<br />

Alum<strong>in</strong>um and Services is the sector’s largest<br />

fair held <strong>in</strong> Brazil. It always takes place <strong>in</strong> even<br />

years and, <strong>in</strong> 2014, will be held from 16 to 19<br />

September 2014.<br />

In the 2012 edition, <strong>in</strong> an area <strong>of</strong> 20,000 m 2 ,<br />

the fair brought together 24,000 visitors, who<br />

conferred the latest news brought by 450<br />

exhibit<strong>in</strong>g companies from Brazil, Germany,<br />

USA, Ch<strong>in</strong>a, Italy and Spa<strong>in</strong>. The trade show<br />

generated approximately R$ 450 million <strong>in</strong> bus<strong>in</strong>ess<br />

dur<strong>in</strong>g the fair itself and with<strong>in</strong> the follow<strong>in</strong>g<br />

six months, due to contacts <strong>in</strong>itiated at the<br />

event. Metalurgia is a realization <strong>of</strong> Brazilian<br />

Foundry Association (Abifa), with organization<br />

by Messe Brasil.<br />

For further <strong>in</strong>formation please visit:<br />

www.metalurgia.com.br<br />

28 heat <strong>process</strong><strong>in</strong>g 3-2014


Events<br />

NEWS<br />

Com<strong>in</strong>g up <strong>of</strong> 6 th wire & Tube Ch<strong>in</strong>a<br />

This year the All Ch<strong>in</strong>a International<br />

Tube and Pipe Industry Trade Fair (Tube<br />

Ch<strong>in</strong>a 2014) and the All Ch<strong>in</strong>a International<br />

Wire & Cable Industry Trade Fair (Wire Ch<strong>in</strong>a<br />

2014) are to be held concurrently for the<br />

sixth time at Shanghai New International<br />

Expo Centre (SNIEC). Organized by Messe<br />

Düsseldorf (Shanghai) Co., Ltd. (MDS) the<br />

two trade fairs will take place from 24 to<br />

27 September 2014.<br />

As an <strong>in</strong>ternational trade fair the Wire<br />

Ch<strong>in</strong>a provides exhibitors and suppliers<br />

<strong>of</strong> wires and cables <strong>in</strong> addition to the latest<br />

technology, specialty products and<br />

<strong>in</strong>novative mach<strong>in</strong>es around the wire and<br />

cable manufactur<strong>in</strong>g, a unique communication<br />

platform. Experts from all over<br />

the world use the trade fair not only as<br />

an <strong>in</strong>formation centre for the developments<br />

and trends <strong>in</strong> wire, cable and wire<strong>process</strong><strong>in</strong>g<br />

<strong>in</strong>dustries: This key fair is the<br />

<strong>in</strong>ternational forum for the purpose <strong>of</strong><br />

sett<strong>in</strong>g up closer bus<strong>in</strong>ess contacts and<br />

for <strong>in</strong>tensify<strong>in</strong>g exist<strong>in</strong>g relations with<br />

customers.<br />

The Tube Ch<strong>in</strong>a is one <strong>of</strong> the world’s<br />

largest trade fairs for tube and pipe technologies.<br />

It has long been recognized as<br />

a forum for cutt<strong>in</strong>g edge technologies<br />

and provides one <strong>of</strong> the best platforms<br />

for trade and exchange. The fair provides<br />

novel materials and<br />

products, <strong>in</strong>novative<br />

mach<strong>in</strong>ery and<br />

production <strong>process</strong>es.<br />

The visitors can<br />

<strong>in</strong>form themselves<br />

about all these<br />

themes comprehensively.<br />

Given the glorious<br />

success <strong>of</strong> the<br />

previous four editions,<br />

the era <strong>of</strong><br />

strong demand <strong>in</strong><br />

tube & pipe, and<br />

great opportunities along with the fast grow<strong>in</strong>g<br />

tube & pipe <strong>in</strong>dustry <strong>in</strong> East Ch<strong>in</strong>a, Tube<br />

Ch<strong>in</strong>a 2014 will cont<strong>in</strong>ue to lead the latest<br />

trend <strong>in</strong> Ch<strong>in</strong>a’s tube and pipe <strong>in</strong>dustry and<br />

establish a trade and exchange platform.<br />

For further <strong>in</strong>formation please visit:<br />

www.wirech<strong>in</strong>a.net or<br />

www.tubech<strong>in</strong>a.net<br />

Ankiros/Ann<strong>of</strong>er/Turkcast 2014 fairs <strong>in</strong> Istanbul<br />

This year’s Ankiros/Ann<strong>of</strong>er/Turkcast will<br />

be organized by Hannover-Messe Ankiros<br />

A.S. from 11 to 13 September at Tuyap Fair<br />

and Congress Center <strong>in</strong> Istanbul, Turkey. The<br />

visit<strong>in</strong>g hours are 9:30 to 19:00 daily. These<br />

fairs have become the largest and most prestigious<br />

metallurgy events <strong>of</strong> Eurasia aim<strong>in</strong>g to<br />

br<strong>in</strong>g together all the key players <strong>of</strong> foundry,<br />

iron & steel and non-ferrous metals <strong>in</strong>dustries<br />

under one ro<strong>of</strong>. Tak<strong>in</strong>g place every two years<br />

s<strong>in</strong>ce 1991, the exhibition size and scale has<br />

expended each year, establish<strong>in</strong>g a reputation<br />

as one <strong>of</strong> the most significant exhibitions<br />

for <strong>in</strong>dustry suppliers. The fairs will form<br />

a cha<strong>in</strong> <strong>of</strong> foundries, iron & steel and nonferrous<br />

metals <strong>in</strong>dustries which will br<strong>in</strong>g a<br />

great convenience to exhibitors and visitors.<br />

The 2012 edition <strong>of</strong> this exhibition trio<br />

was a great success as 850 exhibitors from<br />

39 countries, more than 15,000 <strong>in</strong>dustry pr<strong>of</strong>essionals<br />

from all around the world gathered<br />

<strong>in</strong> the 20,141 m 2 stand area. The 2014<br />

event will have 22,000 m 2 <strong>of</strong> net stand area<br />

to accommodate the expected more than<br />

950 exhibitors and more than 16,000 visitors.<br />

The fairs will play an important role <strong>in</strong> the<br />

metallurgy <strong>in</strong>dustry and br<strong>in</strong>g great bus<strong>in</strong>ess<br />

opportunities aga<strong>in</strong>.<br />

By visit<strong>in</strong>g Ankiros/Ann<strong>of</strong>er 2014, one<br />

will have access to latest products <strong>in</strong>clud<strong>in</strong>g<br />

furnaces, refractory materials, mold<strong>in</strong>g<br />

l<strong>in</strong>es, dust preparatories, foundry mach<strong>in</strong>es,<br />

laboratory and analysis mach<strong>in</strong>es, turnkey<br />

metallurgical facilities, roll<strong>in</strong>g equipment and<br />

all k<strong>in</strong>ds <strong>of</strong> heat <strong>process</strong><strong>in</strong>g products and<br />

materials <strong>in</strong> halls 2, 3, 5 and 6. The exhibitions<br />

will present a full range <strong>of</strong> bus<strong>in</strong>ess<br />

opportunities and smart solutions. In halls<br />

8 and 9 steel producers, steel service centres<br />

and global steel suppliers will exhibit<br />

together. Some <strong>of</strong> the lead<strong>in</strong>g suppliers <strong>of</strong><br />

global metallurgy <strong>in</strong>dustry such as Germany,<br />

Italy, Spa<strong>in</strong>, Ch<strong>in</strong>a, United K<strong>in</strong>gdom and Iran<br />

will be showcas<strong>in</strong>g <strong>in</strong> the country pavilions<br />

which are supported by their governments.<br />

Turkcast 2014 is a unique platform where<br />

the lead<strong>in</strong>g Turkish foundries will exhibit their<br />

latest products and technologies for global<br />

cast<strong>in</strong>gs buyers across various <strong>in</strong>dustries <strong>in</strong><br />

hall 7. The fair will provide a wide rang<strong>in</strong>g<br />

selection <strong>of</strong> cast<strong>in</strong>gs for automotive, heavy<br />

equipment, construction, cement, heavy<br />

mach<strong>in</strong>ery, shipment, agricultural mach<strong>in</strong>ery,<br />

white good, energy, defence, glass and<br />

ceramic <strong>in</strong>dustries.<br />

For further <strong>in</strong>formation please visit:<br />

www.ankiros.com<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

29


NEWS<br />

Events<br />

11 th Furnaces North America<br />

This year will mark the 11 th Furnaces<br />

North America (FNA) produced by<br />

the Metal Treat<strong>in</strong>g Institute and its media<br />

Partner Industrial Heat<strong>in</strong>g Magaz<strong>in</strong>e.<br />

Established <strong>in</strong> 1995, FNA has become<br />

synonymous with br<strong>in</strong>g<strong>in</strong>g top suppliers<br />

and heat treaters, both captive and commercial,<br />

from around the world to one location<br />

for technical education, network<strong>in</strong>g<br />

and the latest developments <strong>in</strong> furnace<br />

equipment, accessories and services.<br />

The Furnaces North America (FNA<br />

2012) will take place <strong>in</strong> Nashville, Tennessee<br />

from 6 to 8 October and it is full <strong>of</strong><br />

technical <strong>in</strong>formation, trends, bus<strong>in</strong>ess and<br />

network<strong>in</strong>g opportunities. The trade fair is<br />

truly a worldwide event with heat treaters<br />

and suppliers attend<strong>in</strong>g from nearly 40+<br />

states and over 15 countries to experience<br />

this 2-day event.<br />

FNA 2014 will be the largest heat treat<br />

show <strong>of</strong> the year <strong>in</strong> North America, <strong>of</strong>fer<strong>in</strong>g<br />

over 30 technical sessions with the<br />

<strong>in</strong>formation to energize your bus<strong>in</strong>ess,<br />

2-day trade show to network with 150+<br />

top suppliers to see the latest trends and<br />

technology.<br />

Bottom l<strong>in</strong>e, everywhere the visitors<br />

turn, there are people who are experienc<strong>in</strong>g<br />

the same challenges and successes as<br />

they do. Attend<strong>in</strong>g FNA gives participants<br />

a wealth <strong>of</strong> <strong>in</strong>formation to help create new<br />

ideas and energize their company back to<br />

record productivity.<br />

For further <strong>in</strong>formation please visit:<br />

www.furnacesnorthamerica.com<br />

Euro PM2014 <strong>in</strong> Austria<br />

Europe’s annual powder metallurgy<br />

congress and exhibition organised<br />

and sponsored by the European Powder<br />

Metallurgy Association, will make its return<br />

to Austria <strong>in</strong> 2014. This will be the first time<br />

the Euro PM event has visited Austria s<strong>in</strong>ce<br />

the World PM2004 <strong>in</strong> Vienna.<br />

The Euro PM2014 Congress and<br />

Exhibition will be held at the Messezentrum<br />

Salzburg <strong>in</strong> Salzburg, a UNESCO World Heritage<br />

Site, from 21 to 24 September 2014.<br />

The comb<strong>in</strong>ation <strong>of</strong> a world class technical<br />

programme and state-<strong>of</strong>-the-art exhibition<br />

will provide the ideal network<strong>in</strong>g opportunity<br />

for suppliers, producers and end-users.<br />

The congress is an all topic powder metallurgy<br />

event featur<strong>in</strong>g:<br />

■■<br />

Additive manufactur<strong>in</strong>g,<br />

■■<br />

Hard materials and diamond tools,<br />

■■<br />

Hot isostatic press<strong>in</strong>g,<br />

■■<br />

New materials and applications,<br />

■■<br />

PM structural parts,<br />

■■<br />

Powder <strong>in</strong>jection mould<strong>in</strong>g.<br />

Follow<strong>in</strong>g the great success <strong>of</strong> Euro PM2013<br />

<strong>in</strong> Gothenburg, the organizers are expect<strong>in</strong>g<br />

a considerable attendance from all over<br />

Europe and beyond, with what will surely<br />

be an outstand<strong>in</strong>g level <strong>of</strong> technical presentations<br />

and key note speeches to share<br />

and promote the latest developments <strong>in</strong><br />

PM technologies and markets.<br />

Salzburg is the perfect location to hold<br />

the next Euro PM event as Austria plays<br />

a great role <strong>in</strong> powder metallurgy with a<br />

number <strong>of</strong> companies <strong>in</strong>volved <strong>in</strong> this field<br />

hav<strong>in</strong>g had a lead<strong>in</strong>g role <strong>in</strong> the development<br />

<strong>of</strong> cemented carbide, hardmetals,<br />

the tungsten <strong>in</strong>dustry, powder metallurgy<br />

refractory metals, and also technologies like<br />

gas powder atomization <strong>process</strong>es.<br />

To improve the onsite experience<br />

EPMA will be launch<strong>in</strong>g a web app.<br />

For further <strong>in</strong>formation please visit:<br />

www.epma.com/pm 2014<br />

Visit us at the HK 2014<br />

Vulkan-Verlag<br />

Hall 4.1 / Booth G 018<br />

22 - 24 October 2014<br />

Koelnmesse, Cologne<br />

Germany<br />

30 heat <strong>process</strong><strong>in</strong>g 3-2014


Personal<br />

NEWS<br />

The future — your future — is on full display at FABTECH. From 1,400+ exhibits with end-to-end<br />

solutions <strong>in</strong> metal form<strong>in</strong>g, fabricat<strong>in</strong>g, weld<strong>in</strong>g and f<strong>in</strong>ish<strong>in</strong>g, to the <strong>in</strong>dustry’s lead<strong>in</strong>g education<br />

and peer-to-peer network<strong>in</strong>g, this is your opportunity to capitalize on the future.<br />

The answers and know-how you need for the challenges <strong>of</strong> tomorrow can be found at FABTECH.<br />

Visit fabtechexpo.com for complete event details. REGISTER TODAY!<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

31


NEWS<br />

Personal<br />

Nucor Executive Vice President<br />

Keith Grass to retire<br />

Nucor Corporation announced that<br />

Keith Grass, Nucor’s Executive Vice<br />

President <strong>of</strong> Raw Materials and Chief<br />

Executive Officer <strong>of</strong> The David J. Joseph<br />

Company (DJJ), plans to retire effective<br />

12 September 2014. Grass jo<strong>in</strong>ed DJJ <strong>in</strong><br />

1978. He began his career as a brokerage<br />

representative and then as district<br />

manager <strong>of</strong> several DJJ trad<strong>in</strong>g <strong>of</strong>fices. He<br />

was appo<strong>in</strong>ted Vice President <strong>of</strong> Trad<strong>in</strong>g<br />

<strong>in</strong> 1992. From 1996 to 1998, he served as<br />

President <strong>of</strong> DJJ’s International Division.<br />

He headed the Metals Recycl<strong>in</strong>g Division<br />

dur<strong>in</strong>g 1999 and served as President <strong>of</strong><br />

DJJ from 2000 until December 2012. Grass<br />

has served as CEO <strong>of</strong> DJJ s<strong>in</strong>ce 2000 and<br />

was appo<strong>in</strong>ted Executive Vice President<br />

<strong>of</strong> Nucor Corporation when DJJ became<br />

part <strong>of</strong> Nucor <strong>in</strong> 2008.<br />

Upon the retirement <strong>of</strong> Keith Grass,<br />

Joe Stratman, who began his Nucor<br />

career <strong>in</strong> 1989 and has served as Executive<br />

Vice President s<strong>in</strong>ce 2007, will<br />

assume EVP responsibilities for the raw<br />

materials group, which, <strong>in</strong> addition to<br />

DJJ, <strong>in</strong>cludes Nucor’s natural gas <strong>in</strong>vestments<br />

and logistics.<br />

Nucor and affiliates are manufacturers<br />

<strong>of</strong> steel products, with operat<strong>in</strong>g<br />

facilities primarily <strong>in</strong> the US and Canada.<br />

Products produced <strong>in</strong>clude: carbon and<br />

alloy steel – <strong>in</strong> bars, beams, sheet and<br />

plate; steel pil<strong>in</strong>g; steel joists and joist<br />

girders; steel deck; fabricated concrete<br />

re<strong>in</strong>forc<strong>in</strong>g steel; cold f<strong>in</strong>ished steel; steel<br />

fasteners; metal build<strong>in</strong>g systems; steel<br />

grat<strong>in</strong>g and expanded metal; and wire<br />

and wire mesh.<br />

Ch<strong>in</strong>a names new<br />

General Manager<br />

for Baosteel Group<br />

Ch<strong>in</strong>a’s Baosteel Group, which owns the<br />

country’s biggest listed steelmaker,<br />

has named Chen Derong as its General<br />

Manager, replac<strong>in</strong>g He Wenbo. Chen (53)<br />

used to be the Vice General Manager <strong>of</strong><br />

Zhejiang Metallurgical Group and the<br />

vice governor <strong>of</strong> eastern Zhejiang prov<strong>in</strong>ce.<br />

Furthermore Chen once worked <strong>in</strong><br />

Hangzhou Iron & Steel Group Company<br />

for many years.<br />

The 59-year-old He Wenbo also resigned<br />

as the chairman <strong>of</strong> Baoshan Iron and Steel<br />

Co Ltd. He, who has been work<strong>in</strong>g for Baosteel<br />

s<strong>in</strong>ce 1982, will be assigned a new job,<br />

the company announced without elaborat<strong>in</strong>g.<br />

The <strong>of</strong>ficial X<strong>in</strong>hua news agency cited<br />

unidentified sources as say<strong>in</strong>g He could be<br />

made the general manager <strong>of</strong> m<strong>in</strong><strong>in</strong>g giant<br />

Ch<strong>in</strong>a M<strong>in</strong>metals Corp.<br />

Michael Majerus new CFO <strong>of</strong> SGL Carbon<br />

The Supervisory Board <strong>of</strong> SGL Carbon<br />

SE has appo<strong>in</strong>ted Dr. Michael Majerus<br />

(photo) as CFO effective 1 July 2014 for a<br />

three year term until 30 June 2017. By mutual<br />

agreement, Jürgen Muth stepped down<br />

from the Board <strong>of</strong> Management as <strong>of</strong> 30<br />

June 2014.<br />

Dr. Michael Majerus was born on 6 February<br />

1961 <strong>in</strong> Cologne and studied bus<strong>in</strong>ess<br />

adm<strong>in</strong>istration at the University <strong>of</strong><br />

Cologne. Follow<strong>in</strong>g his doctorate at the<br />

University <strong>of</strong> Siegen, he commenced his<br />

pr<strong>of</strong>essional career <strong>in</strong> 1989 <strong>in</strong> the f<strong>in</strong>ancial<br />

controll<strong>in</strong>g department at Mannesmann<br />

AG. In the follow<strong>in</strong>g years he held various<br />

executive functions <strong>in</strong> f<strong>in</strong>ance-related areas<br />

with<strong>in</strong> the Mannesmann Group. From 1999<br />

to 2000, as Central Divisional Director, he<br />

had responsibility for f<strong>in</strong>ancial controll<strong>in</strong>g<br />

and account<strong>in</strong>g at the Mannesmann<br />

Group. Follow<strong>in</strong>g the acquisition by Vodafone,<br />

he held the same position for the<br />

<strong>in</strong>dustrial activities under the umbrella <strong>of</strong><br />

ATECS Mannesmann AG. From the end <strong>of</strong><br />

2000 until 2006, he was a member <strong>of</strong> the<br />

divisional <strong>management</strong> board and CFO <strong>of</strong><br />

the Memory Products Division at Inf<strong>in</strong>eon<br />

Technologies AG. After the division became<br />

a legally <strong>in</strong>dependent entity <strong>in</strong>corporated<br />

as Qimonda AG, he was appo<strong>in</strong>ted CFO and<br />

Labor Director <strong>of</strong> the company <strong>in</strong> 2006 and<br />

subsequently prepared the company’s IPO<br />

on the New York Stock Exchange. Follow<strong>in</strong>g<br />

his departure from Qimonda AG, he<br />

became a member <strong>of</strong> the <strong>management</strong><br />

board (CFO) <strong>of</strong> PHOENIX Pharmahandel<br />

GmbH & Co KG from 2009 to 2013.<br />

32 heat <strong>process</strong><strong>in</strong>g 3-2014


Personal<br />

NEWS<br />

Robrecht Himpe elected new Eur<strong>of</strong>er President<br />

Robrecht Himpe (photo), executive<br />

vice president at ArcelorMittal Europe,<br />

has been appo<strong>in</strong>ted as new president <strong>of</strong><br />

Eur<strong>of</strong>er, the European Steel Association. At<br />

European Steel Day he addressed hundreds<br />

<strong>of</strong> delegates <strong>in</strong> his new function. He identified<br />

three targets for his presidency, to<br />

ensure the future <strong>of</strong> the steel <strong>in</strong>dustry <strong>in</strong><br />

Europe: market demand, trade, and energy<br />

and climate. With steel demand <strong>in</strong> Europe<br />

still 25 % below pre-crisis levels – despite<br />

positive signs <strong>of</strong> a moderate recovery <strong>in</strong> the<br />

EU economy – Himpe rem<strong>in</strong>ded delegates<br />

that ris<strong>in</strong>g steel consumption <strong>of</strong> European<br />

steel, together with support from policymakers,<br />

is needed to create an <strong>in</strong>ternationally<br />

competitive environment for the <strong>in</strong>dustry:<br />

“We are all aware that <strong>in</strong>dustry is the<br />

backbone <strong>of</strong> the European economy. Be<strong>in</strong>g<br />

at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the supply cha<strong>in</strong>, the<br />

steel <strong>in</strong>dustry has a special position <strong>in</strong> the<br />

manufactur<strong>in</strong>g <strong>in</strong>dustry <strong>in</strong> Europe, account<strong>in</strong>g<br />

for more than 350,000 direct jobs and<br />

1.5 million <strong>in</strong>direct jobs through the supply<br />

cha<strong>in</strong>.” As such a major employer <strong>in</strong> the<br />

region, Himpe called on the European<br />

Commission (EC) to take the steel <strong>in</strong>dustry<br />

<strong>in</strong>to account, as a strategic sector for the<br />

EU economy.<br />

Eur<strong>of</strong>er was founded <strong>in</strong> 1976 and<br />

has 59 direct member companies and<br />

national associations, represent<strong>in</strong>g 528<br />

production facilities <strong>in</strong> 24 EU member<br />

states. voestalp<strong>in</strong>e CEO Wolfgang Eder<br />

was the previous Eur<strong>of</strong>er president, serv<strong>in</strong>g<br />

for four years.<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

33


NEWS<br />

Personal<br />

Peter Schwab new member <strong>of</strong> the voestalp<strong>in</strong>e<br />

Management Board<br />

In its meet<strong>in</strong>g, the Supervisory Board<br />

<strong>of</strong> voestalp<strong>in</strong>e AG has appo<strong>in</strong>ted former<br />

Head <strong>of</strong> Group Research, DI Dr. Peter<br />

Schwab, to become a member <strong>of</strong> the Management<br />

Board <strong>of</strong> voestalp<strong>in</strong>e AG, with<br />

effect from 1 October 2014. Consequently,<br />

from October 2014 the Management Board<br />

will consist <strong>of</strong> six, rather than five members.<br />

DI Dr. Peter Schwab will become the<br />

Head <strong>of</strong> the Metal Form<strong>in</strong>g Division. The<br />

former Head <strong>of</strong> this Division, DI Herbert<br />

Eibenste<strong>in</strong>er, will become Head <strong>of</strong> the Steel<br />

Division from October 2014. In future, Dr.<br />

Wolfgang Eder, Chairman <strong>of</strong> the Management<br />

Board, and Head <strong>of</strong> the Steel Division<br />

s<strong>in</strong>ce 1999, will be exclusively responsible<br />

for group activities and <strong>in</strong>creas<strong>in</strong>gly focus<br />

on the group’s strategic development.<br />

These changes to the Management Board<br />

and the allocation <strong>of</strong> responsibilities reflect<br />

the growth <strong>of</strong> the voestalp<strong>in</strong>e Group over<br />

the past years. The term <strong>of</strong> <strong>of</strong>fice for each<br />

Management Board member ends on 31<br />

March 2019.<br />

Change <strong>in</strong> Management Board <strong>of</strong> Trumpf<br />

As <strong>of</strong> the end <strong>of</strong> the 2013/14 f<strong>in</strong>ancial<br />

year, Harald Völker stepped down from<br />

the Group Management Board <strong>of</strong> Trumpf<br />

GmbH + Co. KG. Dr. Lars Grünert (photo),<br />

who was already a member <strong>of</strong> the Management<br />

Board <strong>of</strong> the mach<strong>in</strong>e tool and laser<br />

manufacturer <strong>in</strong> Ditz<strong>in</strong>gen, took over his<br />

duties as CFO.<br />

Harald Völker (59) worked for Trumpf<br />

s<strong>in</strong>ce 1990 and held the position as CFO <strong>of</strong><br />

Trumpf GmbH + Co. KG and at the same<br />

time as Chairman <strong>of</strong> the Medical Technology<br />

Division s<strong>in</strong>ce 2001. Accord<strong>in</strong>g to Dr. Nicola<br />

Leib<strong>in</strong>ger-Kammüller, Chairwoman <strong>of</strong> the<br />

Trumpf Management Board, Harald Völker<br />

played a decisive role <strong>in</strong> shap<strong>in</strong>g the success<br />

<strong>of</strong> the company <strong>in</strong> the past two decades. He<br />

made the Medical Technology Division a<br />

highly regarded player <strong>in</strong> the market. Moreover,<br />

it is largely thanks to him that Trumpf as<br />

a company was able to cope with the great<br />

crisis so well after 2008, she added.<br />

Dr. rer. pol. Lars Grünert (46), who has<br />

been work<strong>in</strong>g for Trumpf s<strong>in</strong>ce 2002, is<br />

the new CFO. Dr. Grünert has been Executive<br />

Vice President <strong>of</strong> Trumpf GmbH + Co.<br />

KG s<strong>in</strong>ce 2010 and was up to now CFO <strong>of</strong><br />

the Laser Technology/Electronics Division.<br />

With<strong>in</strong> the Group Management Board he<br />

rema<strong>in</strong>s responsible for organizational<br />

development and <strong>in</strong>formation technology,<br />

among other th<strong>in</strong>gs.<br />

IHEA announces 2014-15 Board <strong>of</strong> Directors and Officers<br />

At IHEA’s 85 th Annual Meet<strong>in</strong>g at the<br />

West<strong>in</strong> Verasa <strong>in</strong> Napa, California, the<br />

Industrial Heat<strong>in</strong>g Equipment Association<br />

announced its 2014-15 Board <strong>of</strong> Directors<br />

and Officers. Serv<strong>in</strong>g a second term<br />

as president is Tim Lee <strong>of</strong> Maxon, a div. <strong>of</strong><br />

Honeywell. B.J. Bernard <strong>of</strong> Surface Combustion<br />

was elected IHEA Vice-President<br />

and Daniel Llaguno <strong>of</strong> Nutec Bickley was<br />

elected Treasurer. Past president, Mike Shay<br />

<strong>of</strong> Elster Kromschröder rema<strong>in</strong>s <strong>in</strong> that role<br />

and cont<strong>in</strong>ues to serve on the Board <strong>of</strong><br />

Directors.<br />

Furthermore IHEA announced the<br />

addition <strong>of</strong> three new board members<br />

to serve three-year terms; Francis Liebens<br />

<strong>of</strong> Solo Swiss; Michael Stowe <strong>of</strong> Advanced<br />

Energy and Aaron Zoeller <strong>of</strong> SCC Combustion<br />

Inc. Appo<strong>in</strong>ted to the IHEA Board<br />

<strong>of</strong> Directors to serve unexpired terms <strong>of</strong><br />

open board seats are Scott Sch<strong>in</strong>dlbeck<br />

<strong>of</strong> Eclipse, Inc. and Jonathan Markley <strong>of</strong><br />

Seco/Warwick. Cont<strong>in</strong>u<strong>in</strong>g their service<br />

on the Board <strong>of</strong> Directors for 2014-2015;<br />

David Bovenizer, Selas Heat Technology<br />

Co.; Mike Chapman, Vulcan Catalytic<br />

Systems; Jay Cherry, Wellman Furnaces;<br />

John Podach, Fostoria Process Equip. –<br />

a Division <strong>of</strong> TPI; and John Stanley, Karl<br />

Dungs, Inc.<br />

34 heat <strong>process</strong><strong>in</strong>g 3-2014


Handbook <strong>of</strong><br />

Alum<strong>in</strong>ium Recycl<strong>in</strong>g<br />

www.vulkan-verlag.de<br />

Personal NEWS<br />

Order now!<br />

Mechanical Preparation | Metallurgical Process<strong>in</strong>g |<br />

Heat Treatment<br />

The Handbook has proven to be helpful to plant designers and operators<br />

for eng<strong>in</strong>eer<strong>in</strong>g and production <strong>of</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g <strong>plants</strong>. The<br />

book deals with alum<strong>in</strong>ium as material and its recovery from bauxite,<br />

the various <strong>process</strong> steps and procedures, melt<strong>in</strong>g and cast<strong>in</strong>g <strong>plants</strong>,<br />

metal treatment facilities, provisions and equipment for environmental<br />

control and workforce safety, cold and hot recycl<strong>in</strong>g <strong>of</strong> alum<strong>in</strong>ium <strong>in</strong>clud<strong>in</strong>g<br />

scrap preparation and remelt<strong>in</strong>g, operation and plant <strong>management</strong>.<br />

Due to more and more str<strong>in</strong>gent regulations for environmental control<br />

and fuel efficiency as well as quality requirements sections about salt<br />

slag recycl<strong>in</strong>g, oxy-fuel heat<strong>in</strong>g and heat treatment <strong>process</strong>es are now <strong>in</strong>corporated<br />

<strong>in</strong> the new edition. The reader is thus provided with a detailed<br />

overview <strong>of</strong> the technology <strong>of</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g.<br />

Editor: Christoph Schmitz<br />

2 nd edition 2014, 556 pages, hardcover,<br />

with <strong>in</strong>teractive e-book (read-onl<strong>in</strong>e access)<br />

ISBN: 978-3-8027-2970-6<br />

Price: € 130,-<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen, Germany<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I place a firm order for the technical book. Please send<br />

— copies <strong>of</strong> Handbook <strong>of</strong> Alum<strong>in</strong>ium Recycl<strong>in</strong>g<br />

2 nd edition 2014 (ISBN: 978-3-8027-2970-6 )<br />

at the price <strong>of</strong> € 130,- (plus postage and pack<strong>in</strong>g)<br />

Company/<strong>in</strong>stitution<br />

First name and surname <strong>of</strong> recipient<br />

Street/P.O. Box, No.<br />

Country, Postcode, Town<br />

Reply / Antwort<br />

Vulkan Verlag GmbH<br />

Versandbuchhandlung<br />

Postfach 10 39 62<br />

45039 Essen<br />

GERMANY<br />

Phone<br />

E-mail<br />

L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to Vulkan Verlag GmbH, Versandbuchhandlung, Friedrich-Ebert-Str. 55, 45127 Essen, Germany.<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

It is approved 3-2014 that heat this data <strong>process</strong><strong>in</strong>g may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

This approval may be withdrawn at any time.<br />

✘<br />

Date, signature<br />

PAHBAR2014<br />

35


t <strong>in</strong>duction technology.<br />

nd easy ma<strong>in</strong>tenance.<br />

erformance.<br />

23.05.2013 15:27:32<br />

2 nd Edition<br />

NEWS<br />

Media<br />

INFO<br />

by K.S.K. Weranga, Sisil<br />

Kumarawadu,<br />

D.P. Chandima<br />

1 st edition 2014<br />

141 pages, s<strong>of</strong>tcover<br />

€ 53.49<br />

ISBN: 978-981-4451-81-9<br />

www.spr<strong>in</strong>ger.com<br />

Smart meter<strong>in</strong>g design and applications<br />

Tak<strong>in</strong>g <strong>in</strong>to account the present day trends<br />

and the requirements, this brief focuses<br />

on smart meter<strong>in</strong>g <strong>of</strong> electricity for next<br />

generation energy efficiency and conservation.<br />

The contents <strong>in</strong>clude discussions on the<br />

smart meter<strong>in</strong>g concepts and exist<strong>in</strong>g technologies<br />

and systems as well as design and<br />

implementation <strong>of</strong> smart meter<strong>in</strong>g schemes<br />

together with detailed examples.<br />

The table <strong>of</strong> contents <strong>in</strong>cludes: smart<br />

grid and smart meter<strong>in</strong>g, evolution <strong>of</strong><br />

electricity meters, basic functionalities<br />

<strong>in</strong>side an energy measurement chip,<br />

smart meter prototype design, shortterm<br />

demand forecast<strong>in</strong>g and warn<strong>in</strong>g<br />

signal generation as well as smart meter<strong>in</strong>g<br />

applications.<br />

UT<br />

ION<br />

m<br />

Erw<strong>in</strong> Dötsch Inductive Melt<strong>in</strong>g and Hold<strong>in</strong>g<br />

2 nd Edition<br />

Erw<strong>in</strong> Dötsch<br />

Inductive Melt<strong>in</strong>g<br />

and Hold<strong>in</strong>g<br />

Fundamentals | Plants and Furnaces | Process Eng<strong>in</strong>eer<strong>in</strong>g<br />

INFO<br />

by Erw<strong>in</strong> Dötsch<br />

2 nd edition 2013<br />

306 pages, hardcover<br />

<strong>in</strong>cl. ebook,<br />

€ 75.00<br />

ISBN: 978-3-8027-2386-5<br />

www.vulkan-verlag.de<br />

Inductive melt<strong>in</strong>g and hold<strong>in</strong>g<br />

The second, revised edition <strong>of</strong> this standard<br />

work for eng<strong>in</strong>eers, technicians<br />

and other practitioners work<strong>in</strong>g <strong>in</strong> melt<strong>in</strong>g<br />

shops and foundries appeared <strong>in</strong> mid-2013.<br />

This new version <strong>of</strong> the title on <strong>in</strong>ductive<br />

melt<strong>in</strong>g and temperature ma<strong>in</strong>tenance<br />

orig<strong>in</strong>ally published <strong>in</strong> 2009 is the result <strong>of</strong><br />

the great demand generated at that time,<br />

and <strong>in</strong>cludes coverage <strong>of</strong> the plant- and<br />

<strong>process</strong>-eng<strong>in</strong>eer<strong>in</strong>g advances achieved<br />

dur<strong>in</strong>g the <strong>in</strong>terven<strong>in</strong>g four years. These<br />

relate, <strong>in</strong> particular, to the use <strong>of</strong> the <strong>in</strong>duction<br />

furnace <strong>in</strong> electric-steel production,<br />

a field <strong>in</strong> which this environmentally and<br />

ma<strong>in</strong>s-friendly melt<strong>in</strong>g system has evolved<br />

<strong>in</strong>to a genu<strong>in</strong>e and advantageous alternative<br />

to the electric arc furnace. Characteristic<br />

<strong>of</strong> this is the recent <strong>in</strong>crease <strong>in</strong> <strong>in</strong>verter<br />

supply power from its maximum <strong>of</strong> 18 MW<br />

at the time <strong>of</strong> publication <strong>of</strong> the first edition<br />

<strong>of</strong> the book to its present 42 MW to permit<br />

supply <strong>of</strong> 65 t crucible furnaces.<br />

INFO<br />

by Cecil L. Smith<br />

1 st edition June 2014<br />

336 pages, hardcover<br />

€ 88.20<br />

ISBN: 978-0-470-38199-1<br />

www.wiley.com<br />

Control <strong>of</strong> batch <strong>process</strong>es<br />

This book gives a real world explanation<br />

<strong>of</strong> how to analyze and troubleshoot a<br />

<strong>process</strong> control system <strong>in</strong> a batch <strong>process</strong><br />

plant. This is important s<strong>in</strong>ce batch<br />

<strong>process</strong><strong>in</strong>g is used extensively <strong>in</strong> the<br />

pharma ceutical, biotechnology, coat<strong>in</strong>gs,<br />

electronic materials etc. <strong>in</strong>dustries, where<br />

new jobs are be<strong>in</strong>g created.<br />

In batch <strong>process</strong>es the product is made<br />

<strong>in</strong> discrete batches sequentially perform<strong>in</strong>g<br />

a number <strong>of</strong> <strong>process</strong><strong>in</strong>g steps on raw<br />

materials and <strong>in</strong>termediate products. For<br />

example, fixed amounts <strong>of</strong> reactants may<br />

be charged to a vessel, mixed and heated<br />

to a reaction temperature, reacted for a<br />

fixed period <strong>of</strong> time, dra<strong>in</strong>ed from the vessel,<br />

separated, dried and packaged. In a<br />

batch <strong>process</strong>, the path followed is state<br />

space is <strong>of</strong>ten important. Consequently,<br />

compared to cont<strong>in</strong>uous <strong>process</strong>, batch<br />

<strong>process</strong> control requires a greater percentage<br />

<strong>of</strong> discrete logic and sequential control<br />

than regulatory control loops. Batch<br />

Control applications must control the tim<strong>in</strong>g<br />

and sequenc<strong>in</strong>g <strong>of</strong> the <strong>process</strong> steps<br />

based on discrete <strong>in</strong>puts and outputs as<br />

well as analog outputs. Batch <strong>process</strong><strong>in</strong>g<br />

is <strong>of</strong>ten used when more precise higher<br />

quality products have to be made therefore<br />

batch <strong>process</strong><strong>in</strong>g is used <strong>in</strong> pharmaceutical<br />

formulations, biotech products, electronic<br />

materials, coat<strong>in</strong>gs, food products. It is also<br />

used <strong>in</strong> beverage <strong>process</strong><strong>in</strong>g, dairy <strong>process</strong><strong>in</strong>g<br />

and soap manufactur<strong>in</strong>g.<br />

36 heat <strong>process</strong><strong>in</strong>g 3-2014


International Magaz<strong>in</strong>e for Industrial Furnaces<br />

Heat Treatment & Equipment<br />

03 I 2014<br />

ISSN 1611-616X<br />

Vulkan-Verlag<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

Halle 4.1/Stand E-040<br />

Hall 4.1/Booth E-040<br />

Energieberater!<br />

Ipsen optimiert die Effizienz se<strong>in</strong>er Öfen und Anlagen. EcoFire, HybridCarb und Endo-<br />

Save s<strong>in</strong>d nur drei unserer Verfahren, die mit diesem Ziel entwickelt wurden. Die mittels<br />

EcoFire optimierte Verbrennung sorgt für e<strong>in</strong>e hocheffiziente Energienutzung während<br />

HybridCarb und EndoSave den Prozessgasverbrauch <strong>in</strong> signifikante Weise reduzieren.<br />

Energy Consultant!<br />

Ipsen is optimiz<strong>in</strong>g the efficiency <strong>of</strong> its furnaces and systems. EcoFire, HybridCarb<br />

and EndoSave are just three <strong>of</strong> our <strong>process</strong>es that have been developed with this goal<br />

<strong>in</strong> m<strong>in</strong>d. Combustion optimized us<strong>in</strong>g the EcoFire system ensures highly efficient energy<br />

use while HybridCarb and EndoSave significantly reduce <strong>process</strong> gas consumption.<br />

www.ipsen.de<br />

INFORMATION<br />

All about the HK 2014 <strong>in</strong><br />

Cologne (Germany)<br />

BASIC DATA<br />

Details and site plan <strong>of</strong> the<br />

new venue<br />

PRODUCT PREVIEW<br />

The latest product highlights<br />

from the HK-Exhibitors


www.vulkan-verlag.de<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

The best <strong>of</strong> 10 years<br />

heat <strong>process</strong><strong>in</strong>g<br />

heat <strong>process</strong><strong>in</strong>g –<br />

10 years – anniversary edition<br />

The anniversary issue celebrat<strong>in</strong>g ten years <strong>of</strong> the “heat <strong>process</strong><strong>in</strong>g“ technical journal<br />

showcases the best articles published dur<strong>in</strong>g the past decade <strong>in</strong> this, the <strong>in</strong>ternational<br />

journal for thermo<strong>process</strong> technology. This edition opens with prefaces<br />

from Dr. Timo Würz, <strong>of</strong> the VDMA (German Eng<strong>in</strong>eer<strong>in</strong>g Association) and Dr. Hermann<br />

Stumpp. The editorial team has selected two articles from each year <strong>of</strong> publication.<br />

Burners & Combustion, Induction Technology, Heat Treatment – the range <strong>of</strong> topics<br />

encompasses the entire thermo<strong>process</strong><strong>in</strong>g field.<br />

The expert articles track, <strong>in</strong> a retrospective, the technological and economic developments<br />

<strong>in</strong> the thermo-<strong>process</strong> <strong>in</strong>dustry. Numerous well-known <strong>in</strong>dustry figures from<br />

the bus<strong>in</strong>ess, <strong>management</strong> and academic worlds have also contributed. Technical articles<br />

with up-to-date contemporary content and an <strong>in</strong>dustry perspective for the future<br />

round <strong>of</strong>f heat <strong>process</strong><strong>in</strong>g‘s anniversary issue. The f<strong>in</strong>al, essential, feature: the Hot Shots<br />

– selected series <strong>of</strong> high-impact images focuss<strong>in</strong>g on fasc<strong>in</strong>at<strong>in</strong>g technological topics.<br />

Edition hp, 1st edition 2014, approx. 180 pages, <strong>in</strong> full colour,<br />

Brochure, DIN A4<br />

ISBN: 978-3-8027-2975-1<br />

Price: € 40.--<br />

Publication: late August 2014<br />

Hot-Hot-Heat<br />

Pre-order now!<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I place a firm order for the technical book. Please send<br />

— copies <strong>of</strong> heat <strong>process</strong><strong>in</strong>g – 10 years – anniversary edition<br />

1 st edition 2014 (ISBN: 978-3-8027-2975-1)<br />

at the price <strong>of</strong> € 40.-- (plus postage and pack<strong>in</strong>g)<br />

Company / <strong>in</strong>stitution<br />

First name and surname <strong>of</strong> recipient<br />

Street/P.O. Box, No.<br />

Country, Postcode, Town<br />

Reply / Antwort<br />

Vulkan Verlag GmbH<br />

Versandbuchhandlung<br />

Postfach 10 39 62<br />

45039 Essen<br />

GERMANY<br />

Phone<br />

E-mail<br />

L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to Vulkan Verlag GmbH, Versandbuchhandlung, Postfach 10 39 62, 45039 Essen, Germany.<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

38<br />

It is approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

This approval may be withdrawn at any time.<br />

✘<br />

Date, signature<br />

heat <strong>process</strong><strong>in</strong>g 3-2014<br />

PAHPAE2014


GENERAL INFORMATION<br />

Heat Treatment Congress 2014<br />

The Heat Treatment Congress’ move to Cologne is <strong>in</strong> full<br />

sw<strong>in</strong>g. Once aga<strong>in</strong>, this year’s l<strong>in</strong>eup <strong>of</strong> high caliber presentations<br />

will <strong>in</strong>clude several that are guaranteed to be the ic<strong>in</strong>g<br />

on the cake. As the plenary speaker visitors will be able to listen<br />

to Pr<strong>of</strong>. Harry Bhadeshia from Cambridge University who will<br />

hold lecture on “Extraord<strong>in</strong>ary ba<strong>in</strong>itic steels”. To report on the<br />

successful evaluation <strong>of</strong> the pre-competitive collective<br />

research program, the organizers have <strong>in</strong>vited Burkhard<br />

Schmidt, Manag<strong>in</strong>g Director <strong>of</strong> the research division <strong>of</strong> the<br />

German Federation <strong>of</strong> Industrial Research Associations (AiF).<br />

Detlef Dauke from the Federal M<strong>in</strong>istry for Economic Affairs<br />

and Energy will make a short welcom<strong>in</strong>g speech <strong>in</strong> the name<br />

<strong>of</strong> the M<strong>in</strong>istry.<br />

The organizers are especially happy to welcome Dr. Joachim<br />

Wüst, Vice-President and Counsel <strong>of</strong> the festival committee <strong>of</strong><br />

the Cologne Carnival and President <strong>of</strong> the “Große Kölner” as a<br />

guest speaker. He will <strong>in</strong>troduce participants to the “kölsche”<br />

way <strong>of</strong> life with the motto: “Hey Kölle do bes e Jeföhl” (Cologne<br />

dialect: Cologne, you are a feel<strong>in</strong>g).<br />

Besides host<strong>in</strong>g the Heat Treatment Congress 2014, the city<br />

<strong>of</strong> Cologne has much more to see. The Cologne Cathedral, built<br />

between 1248 and 1880, is always worth a visit and its towers<br />

<strong>of</strong>fer a fantastic view over one <strong>of</strong> the oldest cities <strong>in</strong> Germany.<br />

Whether visit<strong>in</strong>g the Romano-Germanic Museum, look<strong>in</strong>g<br />

around the Roman Praetorium or tak<strong>in</strong>g a walk past the medieval<br />

city gates – Cologne’s 2,000-year history can be felt everywhere.<br />

Situated directly on the Rh<strong>in</strong>e and marked by narrow<br />

gables and high slated ro<strong>of</strong>s, the Old City <strong>of</strong> Cologne stands out<br />

with its unmistakable, historically appear<strong>in</strong>g character.<br />

Visitors who arrive by car have to note that effective 1 January<br />

2008, Cologne’s downtown area was declared a “low emission<br />

zone”. This means that only vehicles with one <strong>of</strong> the stickers<br />

for Emission Groups 2 to 4 are allowed to enter this area. The<br />

Koelnmesse exhibition centre will rema<strong>in</strong> accessible for all types<br />

<strong>of</strong> vehicles, even if they do not bear one <strong>of</strong> the aforementioned<br />

stickers. All <strong>of</strong> the routes for driv<strong>in</strong>g to and from the exhibition<br />

centre can be found at: www.koelnmesse.de<br />

However, only vehicles that bear the pert<strong>in</strong>ent sticker will be<br />

allowed to drive outside <strong>of</strong> these routes. Trade fair visitors can<br />

apply for a sticker that allows them to drive <strong>in</strong>to the environmental<br />

zone at: www.umwelt-plakette.de<br />

Start<strong>in</strong>g now it is possible to register for the congress and the<br />

exhibition via the new HK ticket shop. The ticket shop provides<br />

all visitors with the opportunity to adm<strong>in</strong>ister their address data<br />

and pr<strong>in</strong>t or download onto their phones their own personal<br />

admission code for the event. The congress will be simultaneously<br />

translated German/English vice versa. In this way the organizer<br />

AWT (Association for Heat Treatment and Materials Technology)<br />

creates a forum for <strong>in</strong>ternational knowledge transfer. This<br />

also addresses a significantly <strong>in</strong>creased demand on the part <strong>of</strong><br />

foreign visitors.<br />

Start<strong>in</strong>g now you can f<strong>in</strong>d the f<strong>in</strong>al program <strong>of</strong> events for the<br />

2014 Heat Treatment Congress and all <strong>in</strong>formation on the exhibition<br />

on the <strong>in</strong>dividual HK website: www.hk-awt.de<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

39


BASIC DATA<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Heat Treatment Congress 2014<br />

Basic Data<br />

Location<br />

Koelmesse<br />

Messeplatz 1<br />

50679 Köln, Germany<br />

Entrance West<br />

Organiser<br />

Arbeitsgeme<strong>in</strong>schaft Wärmebehandlung und Werkst<strong>of</strong>ftechnik<br />

e.V. (AWT)<br />

Paul-Feller-Straße 1<br />

28199 Bremen, Germany<br />

Tel.: +49 (0) 421 / 5229339<br />

Fax: +49 (0) 421 / 5229041<br />

E-Mail: <strong>in</strong>fo@awt-onl<strong>in</strong>e.org<br />

Internet: www.awt-onl<strong>in</strong>e.org<br />

Entdecken Sie die Koelnmesse<br />

Discover the Koelnmesse<br />

A57 Zoobrücke<br />

Open<strong>in</strong>g hours<br />

Wednesday, 22 October 2014, 9.00 - 18.00 h<br />

Thursday, 23 October 2014, 9.00 - 18.00 h<br />

Friday, 24 October 2014, 9.00 - 14.00 h<br />

Fees<br />

Complete program: 690 €<br />

Speakers and university employees: 385 €<br />

1-day-ticket: 460 €<br />

2-day-ticket: 575 €<br />

Transferrable ticket for exhibitors: 320 €<br />

Practitioner’s sem<strong>in</strong>ar (only <strong>in</strong> German language)<br />

- One sem<strong>in</strong>ar: 150 €<br />

- Both sem<strong>in</strong>ars: 290 €<br />

All prices <strong>in</strong>cl. 7 % VAT.<br />

Rhe<strong>in</strong>park<br />

CC Nord<br />

Messeallee Nord<br />

Messeplatz<br />

E<strong>in</strong>gang Nord<br />

Entrance North<br />

Congress-Centrum Nord<br />

Congress Centre North<br />

Boulevard<br />

Messehochhaus<br />

Tanzbrunnen<br />

Rhe<strong>in</strong>terrassen<br />

Theater am<br />

Tanzbrunnen<br />

E<strong>in</strong>gang West<br />

Entrance West<br />

Staatenhaus<br />

am Rhe<strong>in</strong>park<br />

Auenweg<br />

Messeallee West<br />

CC Ost<br />

Messe-Kreisel<br />

3, 4<br />

Pfälzischer R<strong>in</strong>g<br />

A3 /A4<br />

Autobahnkreuz Köln-Ost<br />

A3 Frankfurt/Oberhausen<br />

A4 Olpe<br />

Hauptbahnh<strong>of</strong><br />

Central Station<br />

City<br />

Hohenzollernbrücke<br />

E<strong>in</strong>gang Süd<br />

Entrance South<br />

Messeallee Süd<br />

Barmer Straße<br />

1, 9<br />

Deutz-Mülheimer Straße<br />

E<strong>in</strong>gang Ost<br />

Entrance East<br />

Congress-Centrum Ost<br />

Congress Centre East<br />

Bahnh<strong>of</strong> Köln Messe / Deutz – Sonderhalte ICE- und IC-Züge<br />

Tra<strong>in</strong> Station Köln Messe / Deutz – Special stops rapid tra<strong>in</strong>s<br />

LANXESS arena<br />

40<br />

Dom<br />

Cathedral<br />

Opladener Straße<br />

3, 4<br />

City<br />

heat <strong>process</strong><strong>in</strong>g 3-2014<br />

aße<br />

raße<br />

A4, Aachen


<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Focus on Innovation.<br />

HeatTreatmentCongress Cologne / AICHELIN Group booth E-060.<br />

www.aichel<strong>in</strong>.com<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

41


PROGRAM<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Heat Treatment<br />

Congress 2014<br />

Program<br />

Wednesday, 22 October 2014<br />

PRACTITIONERS’ SEMINAR (only <strong>in</strong> German language)<br />

9:00 - 10:30 h<br />

Nitrieren im Gas und im Plasma – Bauteilbezogene<br />

Verfahrensauswahl unter wirtschaftlichen Gesichtspunkten<br />

Marco Jost<br />

10:30 - 10:45 h<br />

C<strong>of</strong>fee break<br />

10:45 - 12:15 h<br />

Wärmebehandlung – Fehler, Schäden und Ursachen<br />

Peter Sommer<br />

13:50 - 14:30 h<br />

Plenary lecture<br />

Hey Kölle, do bes e Jeföhl<br />

Joachim Wüst<br />

INTEGRATION OF <strong>HEAT</strong> TREATMENT INTO<br />

THE PRODUCTION<br />

Chairmen: Michael Lohrmann, Berthold Scholtes<br />

14:30 - 15:05 h<br />

Survey lecture<br />

Integration <strong>of</strong> heat treatment <strong>in</strong>to the production l<strong>in</strong>e<br />

Wilfried Goy<br />

15:05 - 15:30 h<br />

Integration <strong>of</strong> heat treatment <strong>in</strong>to mechanical large<br />

scale production – based on the example <strong>of</strong> modern<br />

gear production<br />

Karl Ritter<br />

15:30 - 15:55 h<br />

Direct <strong>in</strong>tegration <strong>of</strong> plasma nitrid<strong>in</strong>g <strong>in</strong>to manufactur<strong>in</strong>g<br />

Uwe Huchel<br />

15:55 - 16:15 h<br />

C<strong>of</strong>fee break<br />

LEIGHTWEIGHT<br />

Chairmen: Dieter Liedtke, Marco Jost<br />

or<br />

9:00 - 10:30 h<br />

Wärmebehandlung – Fehler, Schäden und Ursachen<br />

Peter Sommer<br />

10:30 - 10:45 h<br />

C<strong>of</strong>fee break<br />

10:45 - 12:15 h<br />

Nitrieren im Gas und im Plasma – Bauteilbezogene<br />

Verfahrensauswahl unter wirtschaftlichen Gesichtspunkten<br />

Marco Jost<br />

13:30 - 13:40 h<br />

Open<strong>in</strong>g<br />

Michael Lohrmann<br />

16:15 - 16:40 h<br />

Lightweight forg<strong>in</strong>g <strong>in</strong>itiative<br />

Hans-Willi Raedt<br />

THERMOCHEMICAL PROCESSES<br />

Chairmen: Dieter Liedtke, Marco Jost<br />

16:40 - 17:05 h<br />

Recent development on the microstructure and the<br />

mechanical properties <strong>of</strong> carbonitrided parts, part 1:<br />

Heat treatment and microstructure<br />

Matthias Ste<strong>in</strong>bacher<br />

17:05 - 17:30 h<br />

Recent development on the microstructure and the<br />

mechanical properties <strong>of</strong> carbonitrided parts, part 2:<br />

Load capacity <strong>of</strong> spur wheels<br />

Simone Lombardo<br />

13:40 - 13:50 h<br />

Welcome speech <strong>of</strong> the city <strong>of</strong> Cologne<br />

18:00 h<br />

General meet<strong>in</strong>g <strong>of</strong> AWT members<br />

42<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


PROGRAM<br />

Thursday, 23 October 2014<br />

THERMOCHEMICAL PROCESSES<br />

Chairmen: Michael Jung, Hans Werner Zoch<br />

9:00 - 9:25 h<br />

Research on low pressure carbonitrid<strong>in</strong>g with am<strong>in</strong>es<br />

David Koch<br />

9:25 - 9:50 h<br />

Ammonia based closed loop control for def<strong>in</strong>ed<br />

plasma nitrid<strong>in</strong>g and nitrocarburiz<strong>in</strong>g – first results<br />

Sebastian Bisch<strong>of</strong>f<br />

9:50 - 10:15 h<br />

C<strong>of</strong>fee break<br />

10:15 - 10:30 h<br />

Welcom<strong>in</strong>g speech from the Federal M<strong>in</strong>istry for<br />

Economic Affairs and Energy<br />

Detlef Dauke<br />

10:30 - 10:50 h<br />

Plenary lecture<br />

Perfect l<strong>in</strong>k between science and <strong>in</strong>dustry – Results<br />

from the accompany<strong>in</strong>g evaluation <strong>of</strong> the pre-competitive<br />

collective research program<br />

Burkhard Schmidt<br />

10:50 - 11:00 h<br />

Grant<strong>in</strong>g <strong>of</strong> the Paul-Riebensahm-Award 2013 to<br />

Mart<strong>in</strong> Beck<br />

11:00 - 12:00 h<br />

Plenary lecture<br />

Extraord<strong>in</strong>ary ba<strong>in</strong>itic steels<br />

Harry Bhadeshia<br />

12:00 - 13:20 h<br />

Lunch hour<br />

13:55 - 14:20 h<br />

Simulation <strong>of</strong> heat treatment <strong>process</strong>es also for “nonsimulation<br />

experts”<br />

Stefan Braun<br />

14:20 - 14:45 h<br />

From current to structure: FE-simulation <strong>of</strong> <strong>in</strong>duction<br />

harden<strong>in</strong>g <strong>of</strong> a calendar roll<br />

Jörg Neumeyer<br />

14:45 - 15:10 h<br />

New applications <strong>of</strong> numerical simulation <strong>in</strong> <strong>in</strong>duction<br />

surface harden<strong>in</strong>g <strong>process</strong>es<br />

Dirk Schlesselmann<br />

15:10 - 15:30 h<br />

C<strong>of</strong>fee break<br />

15:30 - 15:55 h<br />

Adaptive f<strong>in</strong>ite element simulation for multifrequency<br />

<strong>in</strong>duction harden<strong>in</strong>g <strong>in</strong> 3D<br />

Thomas Petzold<br />

15:55 - 16:20 h<br />

Numerical optimization <strong>of</strong> the carburiz<strong>in</strong>g <strong>process</strong><br />

for function-related construction details <strong>of</strong> steel<br />

components<br />

Andreas Diemar<br />

HIGH ENERGY <strong>HEAT</strong> TREATMENT<br />

Chairmen: Ra<strong>in</strong>er Braun, Olaf Irretier<br />

16:20 - 16:55 h<br />

Survey lecture<br />

High-energy heat treatment – What energy beams<br />

can achieve <strong>in</strong> the field <strong>of</strong> surface treatment today?<br />

Rolf Zenker<br />

16:55 - 17:20 h<br />

A new comb<strong>in</strong>ed surface treatment technology for<br />

tribological-loaded Al alloys<br />

Erik Zaulig<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

SIMULATION OF <strong>HEAT</strong> TREATMENT PROCESSES<br />

Chairmen: Jörg Kleff, Klaus Löser<br />

13:20 - 13:55 h<br />

Survey lecture<br />

Simulation <strong>of</strong> case harden<strong>in</strong>g <strong>process</strong>es – state <strong>of</strong><br />

the art<br />

Matthias Ste<strong>in</strong>bacher<br />

17:20 - 17:45 h<br />

Electron-beam cladd<strong>in</strong>g <strong>of</strong> wear-resistant coat<strong>in</strong>gs on<br />

corrosion-resistant steels<br />

Anne Jung<br />

18:00 h<br />

Reception – Bestowal <strong>of</strong> the<br />

Karl-Wilhelm-Burgdorf-Award<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

43


PROGRAM<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Friday, 24 October 2014<br />

MANUFACTURING AND RESIDUAL STRESSES<br />

Chairmen: Brigitte Haase, Peter Krug<br />

9:00 - 9:35 h<br />

Survey lecture<br />

Manufactur<strong>in</strong>g and residual stresses<br />

Volker Schulze<br />

9:35 - 10:00 h<br />

Mechanical surface treatment by micro peen<strong>in</strong>g<br />

Reg<strong>in</strong>a We<strong>in</strong>gärtner<br />

10:00 - 10:25 h<br />

Residual-stress fields as a consequence <strong>of</strong> turn<strong>in</strong>g<br />

operations <strong>of</strong> differently heat treated shafts made <strong>of</strong><br />

steel SAE 6150<br />

Wolfgang Z<strong>in</strong>n<br />

10:25 - 10:50 h<br />

Shell harden<strong>in</strong>g by high speed quench<strong>in</strong>g<br />

Friedhelm Frerichs<br />

10:50 - 11:15 h<br />

Internal <strong>in</strong>tensive quench<strong>in</strong>g<br />

Jürgen H<strong>of</strong>meister<br />

11:15 - 11:35 h<br />

C<strong>of</strong>fee break<br />

QUALITY CONTROL<br />

Chairmen: W<strong>in</strong>fried Gräfen, Hansjürg Stiele<br />

12:00 - 12:25 h<br />

<strong>Report</strong> from the AWT expert-committee 20 “Sensors<br />

<strong>in</strong> heat treatment”: Test bench for qualify<strong>in</strong>g oxygen<br />

probes – first results<br />

He<strong>in</strong>rich Klümper-Westkamp<br />

12:25 - 12:50 h<br />

Heat treatment and nondestructive test<strong>in</strong>g: f<strong>in</strong>d<strong>in</strong>g<br />

surface cracks us<strong>in</strong>g laser-thermography<br />

Matthias Ziegler<br />

LEGISLATION<br />

12:50 - 13:15 h<br />

Brussels: News for our <strong>in</strong>dustry<br />

Franz Beneke<br />

13:15 h<br />

Publication <strong>of</strong> Paul-Riebensahm-Laureate 2014<br />

Peter Krug<br />

13:20 h<br />

Summary<br />

Michael Lohrmann<br />

13:30 h<br />

End <strong>of</strong> the event<br />

11:35 - 12:00 h<br />

Simulation <strong>of</strong> the time-dependent evolution <strong>of</strong> the<br />

hardness and residual stresses <strong>in</strong> <strong>in</strong>ductive heat<br />

treatment procedures<br />

Frank Schweizer<br />

Visit us at the HK 2014<br />

Vulkan-Verlag<br />

Hall 4.1 / Booth G 018<br />

22 - 24 October 2014<br />

Koelnmesse, Cologne<br />

Germany<br />

44<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


Boost PRODUCT PREVIEW productivity.<br />

Cut costs.<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Modernizations for quality and reliability<br />

Excellent eng<strong>in</strong>eer<strong>in</strong>g services stand out from the crowd …<br />

especially when it comes to <strong>in</strong>telligent revamps. It’s about<br />

noth<strong>in</strong>g less than upgrad<strong>in</strong>g exist<strong>in</strong>g <strong>plants</strong> to meet future<br />

market demands – one <strong>of</strong> today’s central challenges.<br />

That’s where our whole wealth <strong>of</strong> experience comes <strong>in</strong>.<br />

After all, our job is to help you <strong>in</strong>crease your productivity<br />

while improv<strong>in</strong>g quality. Equally significant here is smart<br />

plann<strong>in</strong>g, for <strong>in</strong>stance tak<strong>in</strong>g advantage <strong>of</strong> scheduled ma<strong>in</strong>tenance<br />

stoppages and m<strong>in</strong>imiz<strong>in</strong>g production losses.<br />

Your bottom l<strong>in</strong>e: You save time and money.<br />

Countless completed projects prove our quality and<br />

reliability as a global specialist <strong>in</strong> metallurgical plant and<br />

roll<strong>in</strong>g mill technology.<br />

SMS SIEMAG AG<br />

Eduard-Schloemann-Strasse 4 Phone: +49 211 881-0 E-mail: communications@sms-siemag.com<br />

40237 Düsseldorf, Germany<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

Fax: +49 211 881-4902 Internet: www.sms-siemag.com<br />

45


PRODUCT PREVIEW<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Harden<strong>in</strong>g centre for crankshafts<br />

Efficient 4-cyl<strong>in</strong>der eng<strong>in</strong>es form the basis for the passenger<br />

car drive concepts <strong>of</strong> the future. This calls for <strong>in</strong>novative<br />

approaches to the harden<strong>in</strong>g <strong>process</strong> which can be ideally<br />

implemented with Alf<strong>in</strong>g’s BAZ KW600 harden<strong>in</strong>g centre.<br />

The harden<strong>in</strong>g centre is a new addition to the exist<strong>in</strong>g product<br />

range and was developed specially for 4-cyl<strong>in</strong>der<br />

crankshafts. It is designed on the pr<strong>in</strong>ciple <strong>of</strong> mach<strong>in</strong><strong>in</strong>g centres<br />

and is suitable for crankshafts <strong>of</strong> up to 600 mm <strong>in</strong> length.<br />

Emphasis was also placed on good energy efficiency, a high<br />

throughput, low operat<strong>in</strong>g costs and ease <strong>of</strong> operation. The<br />

p<strong>in</strong> bear<strong>in</strong>gs are hardened <strong>in</strong> module 1 and the ma<strong>in</strong> bear<strong>in</strong>gs<br />

<strong>in</strong> module 2 <strong>of</strong> the two-module system. An optional<br />

extension can also be <strong>in</strong>tegrated for the harden<strong>in</strong>g <strong>of</strong> flanges,<br />

journals and gear wheels. The full encapsulation <strong>of</strong> the work<strong>in</strong>g<br />

areas permits complete extraction <strong>of</strong> quench<strong>in</strong>g fumes.<br />

Efficient drive systems and assemblies as well as optimized<br />

<strong>in</strong>ductors guarantee low energy consumption, good <strong>process</strong><br />

reliability and maximum availability. M<strong>in</strong>imum space requirement,<br />

full accessibility on one level and a standard height <strong>of</strong><br />

only 2.3 m are all revolutionary features <strong>of</strong> this type <strong>of</strong> harden<strong>in</strong>g<br />

mach<strong>in</strong>e. Preced<strong>in</strong>g and subsequent <strong>process</strong>es can<br />

easily be <strong>in</strong>tegrated. Connection to portal systems can be<br />

performed <strong>in</strong> the same way as for exist<strong>in</strong>g technologies for<br />

mach<strong>in</strong><strong>in</strong>g centres.<br />

Masch<strong>in</strong>enfabrik Alf<strong>in</strong>g Kessler GmbH<br />

www.alf<strong>in</strong>g.de<br />

Hall 4.1 / Booth B-021<br />

ATEX Certificate for steel degass<strong>in</strong>g vacuum systems<br />

Degass<strong>in</strong>g, especially those with oxygen <strong>in</strong>sufflation, as <strong>in</strong><br />

VOD and RH-OB methods, produce potentially explosive<br />

gases. Vacuum components and equipment with ATEX<br />

approval enable safe and cost-efficient solutions for mechanical<br />

vacuum solutions. Today, the standard mechanical<br />

vacuum pumps already fulfil high requirement for safety.<br />

Nevertheless, <strong>in</strong> case there are uncerta<strong>in</strong>ties regard<strong>in</strong>g the<br />

flammability <strong>of</strong> gas mixtures which need to be handled by<br />

the pump sets, the user will have to conduct a risk analysis <strong>of</strong><br />

the various plant parts to def<strong>in</strong>e the relevant explosion protection<br />

zones. The result will most probably be the def<strong>in</strong>ition<br />

<strong>of</strong> an explosion Zone 1 for the <strong>in</strong>ner part <strong>of</strong> the vacuum system.<br />

For this assessment, components with an ATEX-certificate<br />

Category 2 (<strong>in</strong>side) for gases can be the easy solution.<br />

Thus way the user can reach the highest safety standard for<br />

his employees with relatively low <strong>in</strong>vestment expenditure.<br />

ATEX vacuum solutions from Oerlikon Leybold Vacuum<br />

consist <strong>of</strong> pumps and components that meet the specification<br />

<strong>of</strong> ATEX Cat 2 (i) G IIC T2. This equipment can be comb<strong>in</strong>ed <strong>in</strong>to<br />

ATEX certified vacuum systems. To meet the requirements, an<br />

additional gas cool<strong>in</strong>g and temperature control between the<br />

pumps is provided to prevent gas temperatures from exceed<strong>in</strong>g<br />

the def<strong>in</strong>ed limits. Furthermore, all pumps are controlled<br />

and monitored by a specially programmed frequency converter.<br />

Regard<strong>in</strong>g the vacuum pump set, potential ignition<br />

sources such as overheat<strong>in</strong>g or electrostatic charg<strong>in</strong>g must be<br />

considered, which will be achieved with the usual attention<br />

dur<strong>in</strong>g design and manufactur<strong>in</strong>g <strong>of</strong> ATEX-certified pumps. In<br />

particular, the pumps must be protected efficiently aga<strong>in</strong>st<br />

overload by too high pressure differences <strong>in</strong> order to avoid<br />

excessive temperatures. This is valid for all possible operat<strong>in</strong>g<br />

po<strong>in</strong>t start<strong>in</strong>g with high suction pressures, pass<strong>in</strong>g to medium<br />

operat<strong>in</strong>g pressures, that are to be hold over a longer time as<br />

for example dur<strong>in</strong>g delayed pump down <strong>in</strong> the VD-<strong>process</strong> or<br />

dur<strong>in</strong>g the oxygen blow phase <strong>in</strong> the VOD-<strong>process</strong>, down to<br />

lowest end pressures with its high compression ratios. The<br />

vacuum solutions <strong>of</strong> Oerlikon Leybold Vacuum consist <strong>of</strong> two<br />

different standard pump models only, comb<strong>in</strong>ed <strong>in</strong>to threestage<br />

vacuum systems. Such three-stage designs allow highest<br />

suction speed comb<strong>in</strong>ed with lowest power consumption.<br />

Oerlikon Leybold Vacuum GmbH<br />

www.oerlikon.de<br />

Hall 4.1 / Booth F-058 - G-059<br />

46<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


PRODUCT PREVIEW<br />

Digital pyrometry re<strong>in</strong>vented<br />

Sensortherm <strong>in</strong>troduces another Metis sensor to its Metis<br />

series product l<strong>in</strong>e. Known as the Metis M3, it has an<br />

advanced design, customization, and adaptability. The sensor<br />

has the ability to be used <strong>in</strong> ambient temperatures up to<br />

80 °C, with fibre optic versions on the optical head rated up to<br />

250 °C. The <strong>in</strong>tegrated keypad and 10-digit display enable all<br />

sett<strong>in</strong>gs to be easily manipulated by the user for a variety <strong>of</strong><br />

applications.<br />

The device <strong>of</strong>fers manually adjustable focus optics, fixed<br />

focus optics, or remote motorized focus options. The precise<br />

alignment <strong>of</strong> the target is accomplished by laser, through lens<br />

sight<strong>in</strong>g, or real-time colour video. It is available <strong>in</strong> either s<strong>in</strong>gle<br />

wavelength or two colour pyrometer versions. Superior to<br />

analogue technology and based on the latest electronic and<br />

digital signal <strong>process</strong><strong>in</strong>g, the M3 provides convenient universal<br />

configur<strong>in</strong>g. Equipped with many new features, such as<br />

digital <strong>in</strong>puts and outputs as well as an <strong>in</strong>creased accuracy <strong>of</strong><br />

0.25 %, it meets the highest <strong>in</strong>dustry demands. The sensor’s<br />

built-<strong>in</strong> video chip <strong>of</strong>fers the ability to view <strong>in</strong> real time a<br />

colour composite video that can be displayed on a video<br />

monitor or PC us<strong>in</strong>g a standard <strong>of</strong>f-the-shelf video to USB<br />

frame grabber.<br />

The high-speed serial digital <strong>in</strong>terface and two high-resolution<br />

16-bit analogue current outputs are adjustable and<br />

configurable for a precise output <strong>of</strong> temperature measured<br />

values. Optionally, a PID controller can be <strong>in</strong>tegrated or the<br />

pyrometer can be equipped with Pr<strong>of</strong><strong>in</strong>et, Pr<strong>of</strong>ibus or Ethernet<br />

to couple to a master controller.<br />

Sensortherm GmbH<br />

www.sensortherm.de<br />

Hall 4.1 / Booth A-002<br />

AFC-Holcr<strong>of</strong>t:<br />

Strength and Innovation s<strong>in</strong>ce 1916.<br />

Powerful Solutions for the Future.<br />

As a privately owned company with thousands <strong>of</strong> <strong>in</strong>stallations worldwide,<br />

AFC-Holcr<strong>of</strong>t is a worldwide leader <strong>in</strong> the heat treat equipment <strong>in</strong>dustry.<br />

One <strong>of</strong> the most diverse product l<strong>in</strong>es <strong>in</strong> the heat treat equipment<br />

<strong>in</strong>dustry: Pusher Furnaces, Cont<strong>in</strong>uous Belt Furnaces,<br />

Rotary Hearth Furnaces, Universal Batch Quench (UBQ)<br />

Furnaces and Endothermic Generators.<br />

Robust construction and long service life,<br />

designed for ease <strong>of</strong> ma<strong>in</strong>tenance.<br />

Various global facilities <strong>in</strong> North America, Europe<br />

and Asia for fastest local delivery, service and support.<br />

HK 2014 Cologne<br />

October 22–24, 2014<br />

UBQ: Universal Batch Quench Furnace.<br />

Ultimate <strong>in</strong> flexibility and versatility.<br />

Modularly constructed universal batch system<br />

with state-<strong>of</strong>-the-art technology.<br />

Delivers consistently high quality with predicable<br />

and repeatable results.<br />

Hall 4.1, Stand E-038<br />

Get <strong>in</strong> touch with us today to learn more about how<br />

we can improve your production <strong>process</strong>es and<br />

how we can give you the edge over the competition.<br />

For further <strong>in</strong>formation please visit<br />

www.afc-holcr<strong>of</strong>t.com<br />

AFC-Holcr<strong>of</strong>t USA · Wixom, Michigan AFC-Holcr<strong>of</strong>t Europe · Boncourt, Switzerland AFC-Holcr<strong>of</strong>t Asia · Shanghai, Ch<strong>in</strong>a<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

Phone: +1-248-624-8191 Phone: +41 32 475 56 16 Phone: +86-21-58999100<br />

47


PRODUCT PREVIEW<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Hybrid charg<strong>in</strong>g stick for <strong>thermal</strong> treatments<br />

The GTD Graphit Technologie GmbH <strong>of</strong>fers patent-registered<br />

hybrid-systems for <strong>thermal</strong> treatments. The latest<br />

product development is the GTD hybrid charg<strong>in</strong>g stick for all<br />

charges, that are hardened <strong>in</strong> a hang<strong>in</strong>g or upright way. The<br />

stick has an <strong>in</strong>lay made <strong>of</strong> C/C (Carbon-fibre-re<strong>in</strong>forced Carbon)<br />

which is surrounded by steel. C/C as a high-strength<br />

composite material consist<strong>in</strong>g <strong>of</strong> carbon-fibre provides a<br />

heat-resistance <strong>of</strong> the charg<strong>in</strong>g stick <strong>in</strong> <strong>in</strong>ert gas or vacuum<br />

Boron-free and copper-free stop-<strong>of</strong>f pa<strong>in</strong>ts<br />

new labell<strong>in</strong>g requirement for stop-<strong>of</strong>f pa<strong>in</strong>ts will take<br />

A effect on 15 June 2015. Stop-<strong>of</strong>f pa<strong>in</strong>ts will then be subject<br />

to the GHS, the Globally Harmonised System <strong>of</strong> Classification<br />

and Labell<strong>in</strong>g <strong>of</strong> Chemicals. Stop-<strong>of</strong>f pa<strong>in</strong>ts conta<strong>in</strong><strong>in</strong>g<br />

boron can easily be removed by wash<strong>in</strong>g and are made <strong>of</strong> the<br />

raw materials boron trioxide, borax and boric acid. Copperbased<br />

stop-<strong>of</strong>f pa<strong>in</strong>ts can mostly be removed by sandblast<strong>in</strong>g<br />

and conta<strong>in</strong> copper, copper(I) oxide or copper(II) oxide.<br />

While the first version will, <strong>in</strong> future, be labelled as toxic for<br />

reproduction with<strong>in</strong> this classification, the version conta<strong>in</strong><strong>in</strong>g<br />

copper will be classified as environmentally dangerous. That<br />

means that the new labell<strong>in</strong>g will clarify one th<strong>in</strong>g: All stop-<strong>of</strong>f<br />

pastes currently used <strong>in</strong> the <strong>in</strong>dustry or <strong>in</strong> the market pose a<br />

risk not only to the environment <strong>in</strong> general but also to the<br />

<strong>in</strong>dividual person.<br />

For more than 20 years, DAM Härtetechnik GmbH has<br />

been a worldwide active and lead<strong>in</strong>g company which specialises<br />

<strong>in</strong> the development and manufactur<strong>in</strong>g <strong>of</strong> stop-<strong>of</strong>f pa<strong>in</strong>ts<br />

for the heat treatment <strong>of</strong> steel.<br />

The company reacted to the new GHS regulation with<br />

new developments. These products are used like traditional<br />

stop-<strong>of</strong>f pa<strong>in</strong>ts for gas carburis<strong>in</strong>g and vacuum carburis<strong>in</strong>g,<br />

nitrid<strong>in</strong>g and nitrocarburis<strong>in</strong>g, for plasmanitrid<strong>in</strong>g, anneal<strong>in</strong>g<br />

and oxidation, for <strong>in</strong>duction harden<strong>in</strong>g and braz<strong>in</strong>g. The<br />

furnaces at temperatures up to more than 1,200 °C. In that<br />

way it prevents any deformations <strong>of</strong> the stick long-term. The<br />

steel cover saves the <strong>in</strong>lay from abrasion <strong>of</strong> sharp-edged<br />

components and covers the charge aga<strong>in</strong>st carbon contam<strong>in</strong>ation.<br />

Individual braces prevent equable charg<strong>in</strong>g <strong>of</strong> the<br />

components, for example r<strong>in</strong>gs.<br />

The new hybrid charg<strong>in</strong>g stick is part <strong>of</strong> the patent-registered<br />

GTD hybrid system, which also <strong>in</strong>cludes a hybrid grid<br />

that employs a comb<strong>in</strong>ation <strong>of</strong> C/C and ceramic parts. Decisive<br />

arguments for the use <strong>of</strong> carbon materials are the high<br />

load capacity comb<strong>in</strong>ed with tensile and flectional resistance<br />

especially when used <strong>in</strong> automated <strong>process</strong>es. The low density<br />

and the light weight <strong>of</strong> C/C makes handl<strong>in</strong>g much easier<br />

and also ensures an excellent energy balance<br />

GTD Graphit Technologie GmbH<br />

www.gtd-graphit.de<br />

Hall 4.1. / Booth D-079<br />

name <strong>of</strong> these new stop-<strong>of</strong>f products is Luiso®. What is new is<br />

the fact that these products are both boron-free and copperfree<br />

and ensure optimal protection properties. They have, <strong>in</strong><br />

addition, a neutral odour and do not conta<strong>in</strong> any solvents.<br />

Any residues rema<strong>in</strong><strong>in</strong>g after the heat treatment can be<br />

removed easily by wash<strong>in</strong>g with water. Even their viscosity<br />

and flow can be controlled by water. The objective beh<strong>in</strong>d<br />

the development <strong>of</strong> these new stop-<strong>of</strong>f pastes was to<br />

strongly improve their environmental performance.<br />

Three additional products (Luiso W30, W34 und W36) are<br />

<strong>of</strong>fered for gas carburis<strong>in</strong>g for case depths <strong>of</strong> up to 6 mm. And<br />

the new product l<strong>in</strong>e also <strong>in</strong>cludes two products for nitrid<strong>in</strong>g<br />

and nitrocarburis<strong>in</strong>g: Luiso W21 which is ceramic-based and<br />

the Luiso W25 paste which can be used both for nitrid<strong>in</strong>g and<br />

nitrocarburis<strong>in</strong>g. The product portfolio conta<strong>in</strong>s, <strong>in</strong> addition,<br />

two hardness protection pa<strong>in</strong>ts each for vacuum carburis<strong>in</strong>g<br />

(W44 and W45) and anneal<strong>in</strong>g (W61) as well as two pastes<br />

which cover the field <strong>of</strong> plasmanitrid<strong>in</strong>g (W51 and W53). The<br />

product <strong>of</strong>fer is rounded <strong>of</strong>f by a kneadable protection mass<br />

(W63) to seal <strong>of</strong>f harden<strong>in</strong>g boxes, small or large holes.<br />

DAM Härtetechnik GmbH<br />

www.dam-gmbh.de<br />

Hall 4.1 / Booth A-071<br />

48<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


PRODUCT PREVIEW<br />

A modular approach to production<br />

global rise <strong>in</strong> component production has <strong>in</strong>creased demand<br />

A for heat treatment systems capable <strong>of</strong> meet<strong>in</strong>g production<br />

needs today, yet scalable for future production. AFC-Holcr<strong>of</strong>t<br />

<strong>of</strong>fers many <strong>thermal</strong> <strong>process</strong><strong>in</strong>g solutions, and highlights one <strong>of</strong><br />

the most flexible heat treat<strong>in</strong>g furnace designs available – the<br />

UBQ (Universal Batch Quench) system. The UBQ is capable <strong>of</strong><br />

runn<strong>in</strong>g a variety <strong>of</strong> metallurgical <strong>process</strong>es, and can be delivered<br />

as a s<strong>in</strong>gle unit or as a complete, fully automated cell <strong>in</strong>tegrated<br />

with companion equipment such as temper<strong>in</strong>g furnaces,<br />

pre-heat furnaces, spray-dunk washers, forced air cool stations<br />

and more. With its modular design, additional cells can be<br />

added for maximum productivity with consistent, repeatable<br />

metallurgical results.<br />

Another modular, flexible product featured is AFC-Holcr<strong>of</strong>t’s<br />

EZ-Series endothermic gas generator, <strong>of</strong>fer<strong>in</strong>g a ma<strong>in</strong>tenance-<br />

and operator-friendly design. A 5:1 turn down ratio<br />

provides substantial sav<strong>in</strong>gs <strong>in</strong> operat<strong>in</strong>g costs vs. nitrogen<br />

methanol; <strong>of</strong>ten with return on <strong>in</strong>vestment less than one year.<br />

Units can be provided <strong>in</strong>dividually, or up to three units<br />

grouped <strong>in</strong>to an array; each unit hav<strong>in</strong>g standalone plug-andplay<br />

type control.<br />

When consistent high volume production is needed, the<br />

company <strong>of</strong>fers its classic pusher-style furnace for cont<strong>in</strong>uous<br />

throughput under protective gas atmosphere. The pusher-style<br />

furnace design allows the furnace chambers to be comb<strong>in</strong>ed<br />

<strong>in</strong>to one, or separated <strong>in</strong>to multiple chambers for <strong>in</strong>dependent<br />

control over temperature and atmosphere.<br />

AFC-Holcr<strong>of</strong>t<br />

www.afc-holcr<strong>of</strong>t.com<br />

Hall 4.1 / Booth E-038<br />

Innovative Heat Treatment Systems<br />

Visit us at HK 2014:<br />

Hall 4.1, Stand E 078<br />

For hot-form harden<strong>in</strong>g,<br />

harden<strong>in</strong>g, anneal<strong>in</strong>g,<br />

s<strong>in</strong>ter<strong>in</strong>g and braz<strong>in</strong>g etc.<br />

Also under protective and<br />

reactive atmospheres<br />

schwartz GmbH<br />

Edisonstrasse 5<br />

D-52152 Simmerath<br />

Germany<br />

schwartz Heat Treatment Systems<br />

Asia (Kunshan) Co. Ltd.<br />

278 JuJ<strong>in</strong> Road<br />

Zhangpu Town Kunshan City<br />

Jiangsu Prov<strong>in</strong>ce<br />

215321, P.R. Ch<strong>in</strong>a<br />

For more <strong>in</strong>formation visit: www.schwartz-wba.com<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

schwartz, Inc.<br />

2015 J. Route 34<br />

Oswego IL 60543<br />

USA<br />

49


PRODUCT PREVIEW<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Industrial furnaces made <strong>in</strong> Germany<br />

Nolzen Industrie<strong>of</strong>enbau produces <strong>in</strong> the fourth generation<br />

“made <strong>in</strong> Germany” – s<strong>in</strong>ce 1919 – <strong>in</strong>dustrial furnaces<br />

and heat treatment <strong>plants</strong> for anneal<strong>in</strong>g and harden<strong>in</strong>g <strong>of</strong><br />

metals. With own cas<strong>in</strong>g and <strong>in</strong>sulat<strong>in</strong>g construction, retorts<br />

manufactur<strong>in</strong>g as well as switchgear production, the company<br />

located <strong>in</strong> Wuppertal <strong>of</strong>fers competence <strong>in</strong> consultation,<br />

construction and manufactur<strong>in</strong>g solutions for economically<br />

and <strong>in</strong>dividually designed heat treatment <strong>process</strong>es.<br />

Nolzen delivers energy-efficient standard furnaces and<br />

customised solutions <strong>in</strong> electric- and gas-heated version for<br />

temperatures up to 1,300 °C. Pit type furnaces, boogie hearth<br />

and chamber furnaces belong to the core bus<strong>in</strong>ess for largevolume<br />

components and heavy load weights. Pit type<br />

furnaces for nitrid<strong>in</strong>g, case harden<strong>in</strong>g and anneal<strong>in</strong>g have<br />

already been realised up to a diameter <strong>of</strong> 4,500 mm or a<br />

depth <strong>of</strong> 11,000 mm. Boogie hearth and chamber furnaces<br />

Precision temperature control to <strong>in</strong>crease efficiency<br />

and pr<strong>of</strong>itability<br />

Invensys Eurotherm, a global supplier <strong>of</strong> measurement and<br />

<strong>in</strong>strumentation for <strong>process</strong> and mach<strong>in</strong>e control applications,<br />

has launched a family <strong>of</strong> new precision PLC products<br />

aimed at significantly <strong>in</strong>creas<strong>in</strong>g the pr<strong>of</strong>itability and efficiency<br />

<strong>of</strong> heat treatment and <strong>thermal</strong> <strong>process</strong><strong>in</strong>g. The new<br />

E+PLC series comb<strong>in</strong>es precision measurement and control,<br />

secure data record<strong>in</strong>g, and a variety <strong>of</strong> visualisation solutions.<br />

Previously to obta<strong>in</strong> optimum performance and meet<br />

accurate pyrometry specifications (e.g. AMS2750E), companies<br />

needed to separate products for temperature control,<br />

data record<strong>in</strong>g and visualisation. This was costly and <strong>in</strong>efficient.<br />

Comb<strong>in</strong><strong>in</strong>g all these products <strong>in</strong>to one easy to use, flexible<br />

and highly function<strong>in</strong>g precision PLC platform simplifies<br />

commission<strong>in</strong>g and reduces eng<strong>in</strong>eer<strong>in</strong>g time. The E+PLC<br />

also targets operational efficiency and makes regulatory compliance<br />

much easier.<br />

The high precision temperature control ensures the correct<br />

temperature is obta<strong>in</strong>ed quicker and stays at the optimum<br />

level required without deviation, ensur<strong>in</strong>g high quality results<br />

first time without wast<strong>in</strong>g time wait<strong>in</strong>g for operat<strong>in</strong>g temperature<br />

to be reached. This <strong>in</strong>creases throughput <strong>of</strong> a furnace or<br />

<strong>thermal</strong> treat<strong>in</strong>g mach<strong>in</strong>e <strong>in</strong> comparison with traditional PLC<br />

based control. Fast act<strong>in</strong>g PID with overshoot <strong>in</strong>hibition can<br />

enable an extra furnace batch cycle to be completed with<strong>in</strong><br />

any 24 hour period. By elim<strong>in</strong>at<strong>in</strong>g damp<strong>in</strong>g <strong>of</strong> PID sets and<br />

rely<strong>in</strong>g on Eurotherm’s overshoot <strong>in</strong>hibition customers can<br />

are designed <strong>in</strong> all dimensions, up to 50 m 3 volumes and load<br />

weights <strong>of</strong> more than 100 t.<br />

The company <strong>of</strong>fers “everyth<strong>in</strong>g out <strong>of</strong> one hand”. Beside<br />

the development <strong>of</strong> new furnace design its special ma<strong>in</strong> focus is<br />

on engaged after sales service which encloses the servic<strong>in</strong>g and<br />

ma<strong>in</strong>tenance as well as modernisation and the <strong>process</strong> optimisation<br />

<strong>of</strong> furnaces. On account <strong>of</strong> the nearly 100-year-old experience<br />

<strong>in</strong> <strong>in</strong>dustrial furnace design, the high manufactur<strong>in</strong>g depth<br />

<strong>in</strong> production as well as the robust construction method <strong>of</strong> the<br />

furnaces Nolzen stands for efficiency <strong>of</strong> specially developed<br />

and produced furnaces. Today the company grants a guarantee<br />

from up to 5 years on <strong>in</strong>dustrial furnaces to its customers.<br />

Artur Nolzen Industrie<strong>of</strong>enbau GmbH + Co. KG<br />

www.nolzen.de<br />

Hall 10 / Booth A-005<br />

heat aggressively up to temperature with the confidence <strong>of</strong><br />

keep<strong>in</strong>g with<strong>in</strong> the required set po<strong>in</strong>t temperature tolerances.<br />

The E+PLC range also <strong>in</strong>cludes secure data logg<strong>in</strong>g designed<br />

to meet the requirements <strong>of</strong> <strong>thermal</strong> treatment standards such<br />

as CQI-9 and AMS2750E. The precision measurement circuitry<br />

also assures compliance with accuracy specifications, aids conformance<br />

to System Accuracy Tests (SAT) and improves the output<br />

from Temperature Uniformity Surveys (TUS).<br />

Key features and benefits <strong>of</strong> E+PLC <strong>in</strong>clude:<br />

■■<br />

Easy to commission precision PID control blocks with<br />

auto tun<strong>in</strong>g.<br />

■■<br />

Set po<strong>in</strong>t programmer.<br />

■■<br />

Precision measurement <strong>of</strong> <strong>process</strong> variables to give accurate,<br />

repeatable results which translates to m<strong>in</strong>imum<br />

energy usage.<br />

■■<br />

Total data <strong>in</strong>tegrity and secure record<strong>in</strong>g, keep<strong>in</strong>g valuable<br />

<strong>process</strong> records safe by us<strong>in</strong>g highly robust file storage<br />

strategies to protect aga<strong>in</strong>st power and network failures.<br />

■■<br />

An open Codesys platform, a de facto <strong>in</strong>dustry standard.<br />

■■<br />

Integrated HMI s<strong>of</strong>tware platform with a variety <strong>of</strong> visualisation<br />

options.<br />

Invensys Systems GmbH Eurotherm<br />

www.eurotherm.de<br />

Hall 4.1 / Booth E-091<br />

50<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


PRODUCT PREVIEW<br />

c\aaa\anzeigen\vulkan\EW HP 13.qxd<br />

Elektrowärme; Heat <strong>process</strong><strong>in</strong>g 2014<br />

182 x 31 1/8 4c<br />

Tube<br />

furnaces<br />

Heat <strong>process</strong><strong>in</strong>g 3 /14<br />

Induction harden<strong>in</strong>g systems<br />

Rohröfen<br />

Induktions-Härteanlagen<br />

Schutzgasöfen<br />

Team solutions from a s<strong>in</strong>gle source<br />

The KompetenzTeam, a materials eng<strong>in</strong>eer<strong>in</strong>g division <strong>of</strong><br />

MWS Dr. Schre<strong>in</strong>er VDI at Munich, is preoccupied with the<br />

formation <strong>of</strong> work<strong>in</strong>g groups for project implementation,<br />

accumulate knowledge, researches, develop<strong>in</strong>g and organizes<br />

symposia, sem<strong>in</strong>ars and workshops. An annual symposium<br />

<strong>in</strong> Munich, for over 30 years, provides pr<strong>of</strong>essionals a<br />

Elektrowärme 3 /14<br />

platform for exchange among colleagues, access to expertise<br />

and specific <strong>in</strong>formation from the work areas. The next meet<strong>in</strong>g<br />

<strong>of</strong> “Härterei 2015” takes place between 19 and 20 March<br />

2015 <strong>in</strong> Munich <strong>in</strong>stead.<br />

In addition to the focus on the German speak<strong>in</strong>g countries<br />

(D, A, CH), the team <strong>of</strong> experts, <strong>in</strong> materials technology, also<br />

ma<strong>in</strong>ta<strong>in</strong>s contacts throughout Europe and demonstrated<br />

experience <strong>in</strong> Ch<strong>in</strong>a and overseas. Together with partners<br />

they <strong>of</strong>fer analysis, systems eng<strong>in</strong>eer<strong>in</strong>g and heat treatment<br />

Protective gas furnaces<br />

as a service, which expands on the workpiece- and partsclean<strong>in</strong>g.<br />

The Central Association <strong>of</strong> Surface Technology (ZVO) and<br />

the Association <strong>of</strong> Industrial Parts Clean<strong>in</strong>g e.V. (FIT) will host<br />

together with the KompetenzTeam, Induktionserwärmung<br />

the 24 th Fachtagung<br />

Industrielle Teilere<strong>in</strong>igung on 12 and 13 March 2015 <strong>in</strong> Munich.<br />

On the HeatTreatment Congress 2014 <strong>in</strong> Cologne provides<br />

the KomptetenzTeam the companies Ahotec eK, Graphite<br />

Materials GmbH, Spectro Analytical Instruments GmbH, TAZ<br />

GmbH and Uttis srl. Here, <strong>in</strong>terested visitors can meet the<br />

booth makers <strong>of</strong> these companies and get <strong>in</strong>formation about<br />

news, facts and scope.<br />

Universal-Induktions-<br />

Härteanlage.<br />

MWS Dr. Schre<strong>in</strong>er VDI<br />

www.kompetenzteam.com<br />

Hall 4.1 / Booth A-021<br />

Induction heat<strong>in</strong>g<br />

www.l<strong>in</strong>n.de<br />

www.l<strong>in</strong>n.de<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

New controller generation<br />

Based on the successful carbon, nitrid<strong>in</strong>g, dew po<strong>in</strong>t<br />

and temperature controllers Mesa Electronic GmbH is<br />

<strong>in</strong>troduc<strong>in</strong>g a new family <strong>of</strong> MCon controllers to the market.<br />

The new generation <strong>of</strong> controllers provides controllers<br />

for any application. MCon type Carbo is the new C-level<br />

controller with a total <strong>of</strong> three different control loops enabl<strong>in</strong>g<br />

the customer to regulate the C-level, furnace temperature<br />

and oil bath temperature. MCon type Nitro regulates<br />

the nitrid<strong>in</strong>g factor Kn and furnace temperature. MCon<br />

type TP is used for dew po<strong>in</strong>t control <strong>of</strong> an endogas generator,<br />

MCon type Uni is a universal controller used to control<br />

up to three different <strong>process</strong> factors. All controllers are<br />

equipped with the latest technologies such as touchscreen<br />

colour display, multiple analogue <strong>in</strong>puts and outputs<br />

as well as a wide variety <strong>of</strong> communication protocols.<br />

Complex <strong>process</strong>es can be carried out with the program<br />

controller option. By means <strong>of</strong> control tracks all MCon controllers<br />

can control the <strong>process</strong> without SPS and thus<br />

reduce costs. MCon controllers provide the ability to communicate<br />

with different automation systems via communication<br />

protocols such as Modbus RTU, TCP, Ethernet and<br />

Pr<strong>of</strong>ibus. An <strong>in</strong>tegrated data logger allows the record<strong>in</strong>g <strong>of</strong><br />

<strong>process</strong> data dur<strong>in</strong>g the entire <strong>process</strong>. To be flexible, the<br />

customer can order and configure each controller with a<br />

desired number <strong>of</strong> analogue or digital <strong>in</strong>puts and outputs.<br />

Mesa Electronic GmbH<br />

www.mesa-<strong>in</strong>ternational.de<br />

Hall 4.1 / Booth D-029<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

51


PRODUCT PREVIEW<br />

<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Chamber furnace heat treatment plant for big size r<strong>in</strong>gs<br />

Recently a customer <strong>in</strong> Mexico expanded his production<br />

facility with the IOB chamber heat treatment furnace<br />

plant system consist<strong>in</strong>g out <strong>of</strong> four chamber furnaces, one<br />

charg<strong>in</strong>g mach<strong>in</strong>e and two quench<strong>in</strong>g baths. In this furnace<br />

plant system it is possible to heat treat r<strong>in</strong>gs up to a diameter<br />

<strong>of</strong> 4,300 mm. Follow<strong>in</strong>g <strong>process</strong>es can be executed: harden<strong>in</strong>g,<br />

temper<strong>in</strong>g and normaliz<strong>in</strong>g. For the quench<strong>in</strong>g baths the<br />

choice is between water or polymer quench<strong>in</strong>g.<br />

The properties after heat treatment to be achieved are:<br />

homogeneous hardness at 90° <strong>of</strong> 300-330 HBN, distortion<br />

(oval) less than 6 mm, charpy impact above 30-35 lbft at ¼"<br />

thickness and Ferrite at the core < 5 %. To guarantee the temperature<br />

uniformity and operat<strong>in</strong>g the furnace plant economically<br />

the furnaces were equipped with natural gas operated<br />

high velocity recuperator burners. The uniformity <strong>in</strong>side<br />

the furnaces: 530-950 °C = ± 5 °C; 450-529 °C = ± 7.5 °C.<br />

The quench<strong>in</strong>g baths are equipped with rotat<strong>in</strong>g, lift<strong>in</strong>g<br />

and lower<strong>in</strong>g lift<strong>in</strong>g tables. In addition to the <strong>in</strong>stalled agitation<br />

and cool<strong>in</strong>g pumps IOB also <strong>in</strong>stalled stationary <strong>in</strong>side<br />

the bath and on to the movable lift<strong>in</strong>g table so-called liquid<br />

jet mix<strong>in</strong>g nozzles for <strong>in</strong>tense agitation. The load<strong>in</strong>g/unload<strong>in</strong>g<br />

<strong>of</strong> the furnaces, baths and deposit tables is done us<strong>in</strong>g<br />

the charg<strong>in</strong>g mach<strong>in</strong>e. In automatic mode the plant here<br />

achieves transit times <strong>of</strong> approx. 25-30 s between furnace and<br />

bath. A modern measur<strong>in</strong>g and control system with material<br />

trac<strong>in</strong>g and connection to further <strong>process</strong><strong>in</strong>g l<strong>in</strong>e equipment<br />

will complete the furnace plant system.<br />

IOB Industrie-Ofen-Bau GmbH<br />

www.<strong>in</strong>dustrial-furnaces.com<br />

Hall 4.1 / Booth F-091<br />

Heat treatment specialist <strong>in</strong>vests <strong>in</strong> state-<strong>of</strong>-the-art<br />

plant technology<br />

For the last 78 years, the Hauck Group has been active as a<br />

powerful system supplier to customers throughout<br />

Europe <strong>in</strong> key sectors such as the automobile <strong>in</strong>dustry,<br />

mechanical eng<strong>in</strong>eer<strong>in</strong>g, electrical eng<strong>in</strong>eer<strong>in</strong>g, medical<br />

technology, jo<strong>in</strong>t<strong>in</strong>g and fasten<strong>in</strong>g technology and many<br />

others. At seven locations <strong>in</strong> Germany, a wide variety <strong>of</strong> components<br />

are <strong>process</strong>ed with almost all the heat treatment<br />

<strong>process</strong>es <strong>in</strong> common use (<strong>thermal</strong> and thermo-chemical),<br />

different surface treatments and galvanic <strong>process</strong>es. All company<br />

locations comb<strong>in</strong>e experience and precise production<br />

<strong>process</strong>es with consistent quality <strong>management</strong>, quality assurance<br />

through <strong>in</strong>-house <strong>in</strong>spection procedures, state-<strong>of</strong>-theart<br />

plant technology with backup options, certification <strong>in</strong><br />

accordance with all relevant <strong>in</strong>ternational quality, environment<br />

and energy standards and a close relationship with our<br />

customers <strong>in</strong> the regions.<br />

This year, Hauck has further extended its service and has<br />

<strong>in</strong>vested even more than usual <strong>in</strong> new plant technology. The<br />

highlight is the new semi-automatic charg<strong>in</strong>g system at the<br />

Remscheid site, which is unique <strong>in</strong> its construction and<br />

design. Significant <strong>in</strong>vestments have also been made <strong>in</strong> the<br />

expansion <strong>of</strong> nitrid<strong>in</strong>g facilities. Fifteen large furnaces are currently<br />

<strong>in</strong> operation, functionally treat<strong>in</strong>g more than 40 t <strong>of</strong><br />

products per day.<br />

Härterei Hauck GmbH<br />

www.haerterei-hauck.de<br />

Hall 4.1 / Booth E-030<br />

52<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


PRODUCT PREVIEW<br />

Simultaneous crack and structure test<strong>in</strong>g<br />

with eddy current<br />

S<strong>in</strong>ce its found<strong>in</strong>g <strong>in</strong> the year 1977, Rohmann GmbH has<br />

specialised <strong>in</strong> non-destructive test<strong>in</strong>g by means <strong>of</strong> eddy<br />

current. The comprehensive product range extends from<br />

sensors to coils, rotors and universal hand-held devices, to<br />

tailor-made test<strong>in</strong>g systems. Customers from the most varied<br />

branches such as aviation, automotive <strong>in</strong>dustry, rail transport<br />

and the steel <strong>in</strong>dustry value the work <strong>of</strong> this family-managed<br />

company.<br />

The basis for successful eddy current test<strong>in</strong>g lies <strong>in</strong> the<br />

<strong>in</strong>teraction between highly sensitive sensors and the latest<br />

equipment technology. Here, and <strong>in</strong> addition to a wide range<br />

<strong>of</strong> standard sensors, Rohmann GmbH <strong>of</strong>fers a wide range <strong>of</strong><br />

customized sensors for the most varied test<strong>in</strong>g tasks, supported<br />

by a flexibly configurable, fully digital equipment<br />

platform. One component <strong>of</strong> this equipment platform is the<br />

Elotest IS500 family. It is available as a 19” module or as a separate<br />

box-variant for <strong>in</strong>tegration <strong>in</strong>to the production l<strong>in</strong>e. The<br />

series has a wide range <strong>of</strong> configuration possibilities up to a<br />

maximum <strong>of</strong> two test channels. This enables comb<strong>in</strong>ed crack<br />

test<strong>in</strong>g, with simultaneous structure and material identification<br />

test<strong>in</strong>g. In the case <strong>of</strong> structure test<strong>in</strong>g, the user can<br />

choose between simple 1-frequency sort<strong>in</strong>g, fast sort<strong>in</strong>g at<br />

several hundred parts per second, or multi-frequency test<strong>in</strong>g<br />

as a solution for complex sort<strong>in</strong>g tasks. The product series can<br />

optionally also be equipped with a multiplex option for the<br />

connection <strong>of</strong> up to eight sensors per test channel, and can<br />

therefore cover a broad range <strong>of</strong> test<strong>in</strong>g applications <strong>in</strong> the<br />

course <strong>of</strong> the production <strong>process</strong>. If the Elotest IS500 family is<br />

not enough, a universal multi-channel equipment family is<br />

available as an alternative <strong>in</strong> the form <strong>of</strong> the Elotest PL500 l<strong>in</strong>e.<br />

Rohmann GmbH<br />

www.rohmann.de<br />

Hall 4.1 / Booth E-070<br />

Visit us<br />

at the HK <strong>in</strong> Cologne,<br />

hall 04.1, booth C-031!<br />

SyncroTherm ®<br />

© appeal 098 406<br />

Efficient and ecological heat treatment<br />

ALD Vacuum Technologies latest development SyncroTherm ® <strong>of</strong>fers the highest flexibility for heat<br />

treatment. Harden<strong>in</strong>g and caseharden<strong>in</strong>g <strong>of</strong> small batches is possible <strong>in</strong> stand-alone units and <strong>in</strong><br />

one-piece-flow production with full <strong>in</strong>tegration <strong>in</strong>to the manufactur<strong>in</strong>g l<strong>in</strong>e. Charg<strong>in</strong>g <strong>in</strong> s<strong>in</strong>gle<br />

layers leads to short <strong>process</strong> times and m<strong>in</strong>imum distortion.<br />

For 3-2014 more <strong>in</strong>formation heat <strong>process</strong><strong>in</strong>g please contact us!<br />

ALD Vacuum Technologies GmbH<br />

Wilhelm-Rohn-Strasse 35<br />

63450 Hanau, GERMANY<br />

Phone +49 (0) 6181 307-0<br />

Email <strong>in</strong>fo@ald-vt.com<br />

Internet www.ald-vt.com


<strong>HEAT</strong> TREATMENT CONGRESS 2014 – SPECIAL<br />

Protective system control with bus communication<br />

With the protective system control FCU 500, Elster Kromschröder<br />

is <strong>of</strong>fer<strong>in</strong>g a comprehensive all-round<br />

package for the implementation <strong>of</strong> current safety standards.<br />

The unit performs the essential functions <strong>of</strong> a central protective<br />

system pursuant to EN 746-2:2010 <strong>in</strong> multiple burner<br />

applications.<br />

The protective system control monitors various safety<br />

conditions (such as m<strong>in</strong>imum and maximum gas pressure<br />

and air pressure) and carries out a standard-compliant prepurge.<br />

The ma<strong>in</strong> valves undergo an extended tightness test<br />

<strong>in</strong> parallel to purge. This tightness test function checks the<br />

system for leaks dur<strong>in</strong>g system start. A special algorithm saves<br />

time <strong>in</strong> the case <strong>of</strong> large test volumes. As an option and <strong>in</strong><br />

conjunction with Kromschröder burner control units, an <strong>in</strong>ternal<br />

safety temperature limiter (STL) or a safety temperature<br />

monitor (STM) for monitor<strong>in</strong>g the maximum furnace/flue gas<br />

temperature or for high temperature monitor<strong>in</strong>g guarantee<br />

<strong>in</strong>creased operational safety.<br />

The functions comb<strong>in</strong>ed <strong>in</strong> the FCU 500 can be precisely<br />

adapted to the requirements <strong>of</strong> the respective heat<strong>in</strong>g equipment<br />

us<strong>in</strong>g parameters. For this, the FCU features an optical<br />

<strong>in</strong>terface via which the parameters can be adjusted us<strong>in</strong>g the<br />

PC s<strong>of</strong>tware BCS<strong>of</strong>t and data for diagnosis can be read.<br />

The system has been developed for <strong>in</strong>stallation <strong>in</strong> control<br />

cab<strong>in</strong>ets. It features tried-and-tested operat<strong>in</strong>g controls on<br />

the front <strong>of</strong> the unit or can be controlled directly from the<br />

control cab<strong>in</strong>et door us<strong>in</strong>g the external operator-control unit<br />

OCU. Thanks to the Pr<strong>of</strong><strong>in</strong>et bus module BCM 500, the<br />

FCU 500 can be easily <strong>in</strong>tegrated <strong>in</strong> the <strong>process</strong> automation<br />

system. This opens up a wide range <strong>of</strong> options as regards<br />

<strong>process</strong> control and visualization. The automation system<br />

(controller) and the connected units <strong>of</strong> the FCU 500 series<br />

(device) communicate via the bus module BCM 500 on two<br />

levels.<br />

The acyclic communication allows <strong>in</strong>formation on the<br />

parameters and statistics <strong>of</strong> the FCU 500 as controlled by the<br />

program to be read. The device master data required for system<br />

eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> the bus module BCM 500 can be read<br />

from the GSD file <strong>of</strong> the FCU 500. The Internet-based knowledge<br />

platform KST (Kromschröder System Technology) is<br />

available as plann<strong>in</strong>g support for the protective system as<br />

well as for the design <strong>of</strong> the entire heat<strong>in</strong>g equipment. KST<br />

<strong>of</strong>fers many tools for the effective and safe project plann<strong>in</strong>g<br />

<strong>of</strong> heat<strong>in</strong>g equipment.<br />

Elster GmbH<br />

www.kromschroeder.com<br />

Hall 4.1 / Booth C-089<br />

Hardware and s<strong>of</strong>tware solution for more efficiency<br />

The Ipsen EcoFire system burns natural gas<br />

and protective gas for highly efficient<br />

energy usage – with almost no loss. The system<br />

is an <strong>in</strong>telligent solution, which allows the gas<br />

fired heat<strong>in</strong>g system already <strong>in</strong>stalled<br />

<strong>in</strong> your furnace to burn<br />

protective gas. It <strong>in</strong>creases<br />

the efficiency <strong>of</strong> <strong>in</strong>dustrial<br />

furnace systems<br />

through <strong>in</strong>telligent<br />

hardware and s<strong>of</strong>tware,<br />

sav<strong>in</strong>g money and protect<strong>in</strong>g<br />

the environment<br />

susta<strong>in</strong>ably.<br />

Normally, the protective<br />

gas used <strong>in</strong> a<br />

furnace must be burnt <strong>of</strong>f safely. But with the EcoFire system<br />

the protective gas needed <strong>in</strong> atmospheric heat treatment<br />

furnaces is used for the gas fired heat<strong>in</strong>g system. In this way,<br />

the energy content <strong>of</strong> the protective gas is available for the<br />

heat<strong>in</strong>g system. In addition, it’s used to heat the halls <strong>in</strong> w<strong>in</strong>ter<br />

– this saves money and protects the environment at the same<br />

time!<br />

With EcoFire, one not only can use the energy content <strong>of</strong><br />

the otherwise useless burnt protective gas, <strong>in</strong>creas<strong>in</strong>g plant<br />

efficiency, but also lower the cost <strong>of</strong> the natural gas consumption<br />

and lower the CO 2 emissions.<br />

Ipsen International GmbH<br />

www.ipsen.de<br />

Hall 4.1 / Booth E-040<br />

54<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


Heat treatment us<strong>in</strong>g ceramic matrix composites<br />

The WPX Faserkeramik GmbH develops and manufactures<br />

heat treatment components made <strong>of</strong> <strong>in</strong>novative Whipox®<br />

oxide ceramic matrix composite (OCMC). Whipox® OCMC<br />

consists <strong>of</strong> pure alum<strong>in</strong>ium oxide fibre ceramic Nextel®<br />

embedded <strong>in</strong> a pure alum<strong>in</strong>ium oxide matrix. Due to its excellent<br />

properties like extreme stability aga<strong>in</strong>st <strong>thermal</strong> and<br />

mechanical shocks, <strong>thermal</strong> <strong>in</strong>sulation, low <strong>thermal</strong> load,<br />

m<strong>in</strong>imal warp<strong>in</strong>g, and good tensile and bend<strong>in</strong>g strength, the<br />

material is well suited for charge carriers and furnace l<strong>in</strong><strong>in</strong>g for<br />

heat treatment <strong>process</strong>es <strong>in</strong> the temperature range from 750-<br />

1,300 °C (1,380-2,370 °F). As it is oxidation- and corrosionresistant,<br />

it can be used <strong>in</strong> atmospheric <strong>process</strong>es.<br />

In particular, its open grid structures can be used as systems,<br />

components and parts for fast temperature change and<br />

homogeneous temperature distribution. Whipox® allows<br />

improved energy efficiency by significant reduction <strong>of</strong> carrier<br />

weight, improved product properties by precise temperature<br />

control, <strong>in</strong>creased furnace equipment uptime through noncatastrophic<br />

failure, and less rejects due to Carbon contam<strong>in</strong>ation.<br />

USPs are documented through <strong>in</strong>dustrial applications.<br />

WPX Faserkeramik GmbH<br />

www.whipox.com<br />

Hall 4.1 / Booth C-101<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

55


International Magaz<strong>in</strong>e for Industrial Furnaces<br />

Heat Treatment & Equipment<br />

“One heat <strong>process</strong><strong>in</strong>g world – with<br />

But only one, heat <strong>process</strong><strong>in</strong>g, covers<br />

from a truly unique <strong>in</strong>ternational<br />

Congratulations on 10 years and<br />

all the best for the future.”<br />

Paweł Wyrzykowski<br />

CEO <strong>of</strong> Seco Warwick Group


• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />

so many magaz<strong>in</strong>es.<br />

the whole <strong>in</strong>dustry<br />

perspective.


Handbook <strong>of</strong><br />

Thermo<strong>process</strong><strong>in</strong>g<br />

Technologies<br />

www.vulkan-verlag.de<br />

Order now!<br />

Volume 1: Fundamentals | Processes | Calculations<br />

This Handbook provides a detailed overview <strong>of</strong> the entire thermo<strong>process</strong><strong>in</strong>g<br />

sector, structured on practical criteria, and will be <strong>of</strong> particular assistance<br />

to manufacturers and users <strong>of</strong> thermo<strong>process</strong><strong>in</strong>g equipment.<br />

In Europe thermo<strong>process</strong><strong>in</strong>g is the third largest energy consumption<br />

sector with a very diversified and complex structure. Therefore it is split<br />

<strong>in</strong>to a large number <strong>of</strong> subdivisions, each hav<strong>in</strong>g a high importance<br />

for the <strong>in</strong>dustrial economy. Accord<strong>in</strong>gly we f<strong>in</strong>d the application knowhow<br />

for the design and the execution <strong>of</strong> respective equipment represented<br />

by a multitude <strong>of</strong> small but very specialized companies and their experts.<br />

So this second edition is based on the contribution <strong>of</strong> many highly<br />

experienced eng<strong>in</strong>eers work<strong>in</strong>g <strong>in</strong> this fi eld. The book’s ma<strong>in</strong> <strong>in</strong>tention is<br />

the presentation <strong>of</strong> practical <strong>thermal</strong> <strong>process</strong><strong>in</strong>g for the improvement <strong>of</strong><br />

materials and parts <strong>in</strong> <strong>in</strong>dustrial application. Additionally it <strong>of</strong>fers a summary<br />

<strong>of</strong> respective <strong>thermal</strong> and material science fundamentals. Further it<br />

covers the basic fuel-related and electrical eng<strong>in</strong>eer<strong>in</strong>g knowledge and<br />

design aspects, components and safety requirements for the necessary<br />

heat<strong>in</strong>g <strong>in</strong>stallations.<br />

Editors: Franz Beneke, Bernhard Nacke, Herbert Pfeifer<br />

2 nd edition 2012, 674 pages with additional media files<br />

and e-book on DVD, hardcover<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I place a firm order for the technical book. Please send<br />

— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />

(ISBN: 978-3-8027-2966-9) at the price <strong>of</strong> € 200,- (plus postage and pack<strong>in</strong>g)<br />

— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />

(ISBN: 978-3-8027-2966-9) at the special price <strong>of</strong> € 180,- (plus postage and pack<strong>in</strong>g)<br />

for subscribers <strong>of</strong> heat <strong>process</strong><strong>in</strong>g<br />

Company/<strong>in</strong>stitution<br />

First name and surname <strong>of</strong> recipient<br />

Street/P.O. Box, No.<br />

Country, Postcode, Town<br />

Reply / Antwort<br />

Vulkan Verlag GmbH<br />

Versandbuchhandlung<br />

Postfach 10 39 62<br />

45039 Essen<br />

GERMANY<br />

Phone<br />

E-mail<br />

L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to Vulkan Verlag GmbH, Versandbuchhandlung, Friedrich-Ebert-Str.11, 45127 Essen, Germany.<br />

Date, signature<br />

PAHBTT2014<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

It is<br />

58<br />

approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

heat <strong>process</strong><strong>in</strong>g 2-2014<br />

This approval may be withdrawn at any time.<br />


Heat Treatment<br />

REPORTS<br />

Low pressure carburiz<strong>in</strong>g and<br />

nitrid<strong>in</strong>g <strong>of</strong> fuel <strong>in</strong>jection nozzles<br />

by Maciej Korecki, Piotr Kula, Emilia Wołowiec, Michał Bazel, Michał Sut<br />

The article describes the newest achievements <strong>in</strong> heat treatment <strong>of</strong> fuel <strong>in</strong>jection nozzles made <strong>of</strong> hot work<strong>in</strong>g tool steel<br />

applied <strong>in</strong> diesel eng<strong>in</strong>es. Different methods <strong>of</strong> improv<strong>in</strong>g surface properties have been applied by means <strong>of</strong> vacuum<br />

carburiz<strong>in</strong>g and vacuum nitrid<strong>in</strong>g, especially suitable for elements characterized by difficult shape geometry such as<br />

bl<strong>in</strong>d holes. Variable <strong>process</strong> parameters have been considered <strong>in</strong> terms <strong>of</strong> sequence and temperature as well as their<br />

<strong>in</strong>fluence on surface microstructure, hardness and case layer uniformity. A complex technology was <strong>in</strong>vented <strong>in</strong>volv<strong>in</strong>g<br />

thermo-chemical <strong>process</strong> supplemented by high pressure gas quench<strong>in</strong>g (HPGQ), deep freez<strong>in</strong>g and temper<strong>in</strong>g. All<br />

technological steps were performed <strong>in</strong> a s<strong>in</strong>gle chamber vacuum furnace equipped with LPC, LPN and HPGQ.<br />

Fuel <strong>in</strong>jection nozzles (Fig. 1) are a key element <strong>of</strong><br />

a diesel eng<strong>in</strong>e which <strong>in</strong>fluences its performance<br />

properties, <strong>in</strong>clud<strong>in</strong>g fuel consumption and reliability.<br />

Furthermore, they play a major role <strong>in</strong> emission <strong>of</strong> harmful<br />

substances. In the course <strong>of</strong> cyclic operation they withstand<br />

various loads, they work at raised temperatures under high<br />

pressures (1,500-3,000 bar) and withstand <strong>in</strong>tense streams<br />

<strong>of</strong> liquids (above 100 m/s) [1]. Due to these factors, nozzles<br />

are prone to accelerated wear and defects (Fig. 2) [2]. The<br />

design <strong>of</strong> fuel <strong>in</strong>jection nozzles must ensure appropriate<br />

strength, impact as well as fatigue resistance and abrasion<br />

<strong>of</strong> passage channels.<br />

Nozzles are made <strong>of</strong> medium and high alloy steels featur<strong>in</strong>g<br />

additionally hardened surface. Typically, the tensile<br />

strength <strong>of</strong> the core rema<strong>in</strong>s with<strong>in</strong> the range <strong>of</strong> 1,000-<br />

1,500 MPa for steel grades 20MnCr5, 17CrNiMo6, EN39B,<br />

18CrNi8, while extended surface hardness (above 60 HRC) is<br />

obta<strong>in</strong>ed through the harden<strong>in</strong>g which follows carburiz<strong>in</strong>g.<br />

Adequate heat treatment is performed <strong>in</strong> vacuum furnaces<br />

featur<strong>in</strong>g vacuum carburiz<strong>in</strong>g (LPC) and high pressure<br />

gas quench<strong>in</strong>g (15 bar and above). Vacuum carburiz<strong>in</strong>g<br />

enables obta<strong>in</strong><strong>in</strong>g case uniformity <strong>in</strong> the th<strong>in</strong> nozzle channels<br />

<strong>of</strong> complicated shapes, <strong>in</strong>accessible to conventional<br />

carburiz<strong>in</strong>g atmospheres. On the other hand, gas quench<br />

elim<strong>in</strong>ates the <strong>in</strong>convenience <strong>of</strong> clean<strong>in</strong>g after quench<strong>in</strong>g<br />

<strong>in</strong> oil. In some solutions, nitrid<strong>in</strong>g is applied <strong>in</strong> place <strong>of</strong><br />

carburiz<strong>in</strong>g to harden the surface.<br />

For certa<strong>in</strong> applications, <strong>in</strong>jection nozzles are made<br />

<strong>of</strong> even more durable steels, e.g. hot work<strong>in</strong>g tool steels.<br />

In such events, the strength <strong>in</strong>creases decidedly (over<br />

2,000 MPa), although the surface still requires additional<br />

re<strong>in</strong>forcement. This article presents the complex <strong>process</strong>es<br />

and results <strong>of</strong> <strong>thermal</strong> and thermo-chemical treatment<br />

<strong>of</strong> fuel <strong>in</strong>jection nozzles made <strong>of</strong> hot work<strong>in</strong>g tool steel<br />

carried out <strong>in</strong> a vacuum furnace. The <strong>process</strong>es applied<br />

<strong>in</strong>cluded vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g (LPC and LPN),<br />

gas quench<strong>in</strong>g, deep freez<strong>in</strong>g and temper<strong>in</strong>g.<br />

Fig. 1: Fuel <strong>in</strong>jection nozzle (Bosch)<br />

Fig. 2: Typical nozzle defects: crack<strong>in</strong>g (left) and abrasive wear (right)<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

59


REPORTS<br />

Heat Treatment<br />

Fig. 3: Fuel <strong>in</strong>jection nozzle used<br />

Fig. 4: Standard s<strong>in</strong>gle chamber vacuum furnace Seco/Warwick<br />

model 15.0VPT-4035/36IQCN Vector – Vacuum Furnaces L<strong>in</strong>e<br />

Fig. 5: Uniformly carburized case layer <strong>in</strong> a nozzle crosssection<br />

follow<strong>in</strong>g LPC 920 <strong>process</strong><br />

THE OBJECT AND OBJECTIVE<br />

OF TESTS AND RESEARCH<br />

The object <strong>of</strong> test<strong>in</strong>g were <strong>in</strong>jection nozzles made <strong>of</strong> X37Cr-<br />

MoV5-1 (1.2343, H11) steel shaped as presented <strong>in</strong> Fig. 3.<br />

The objective <strong>of</strong> test<strong>in</strong>g was to create upon the nozzle surfaces<br />

(<strong>in</strong> particular upon the <strong>in</strong>ternal surfaces) a uniformly<br />

hardened case layer while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g appropriate core<br />

hardness. The required case layers were created through<br />

vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g.<br />

TESTING EQUIPMENT<br />

Applied for the tests was a standard Seco/Warwick s<strong>in</strong>gle<br />

chamber vacuum furnace model 15.0VPT-4035/36IQCN<br />

(Fig. 4) <strong>of</strong> work<strong>in</strong>g area 600/600/900 mm, equipped with<br />

a vacuum carburiz<strong>in</strong>g (LPC) and nitrid<strong>in</strong>g (LPN) systems<br />

and high pressure gas quench system (15 bar).<br />

Carburiz<strong>in</strong>g was performed with a gas mixture <strong>of</strong> acetylene<br />

(C 2 H 2 ), ethylene (C 2 H 4 ) and hydrogen (H 2 ), while<br />

ammonia (NH 3 ) was used for nitrid<strong>in</strong>g. The 250 kg workload<br />

consisted <strong>of</strong> ballast rods among which the tested <strong>in</strong>jection<br />

nozzles were placed. The workload reflected typical conditions<br />

found <strong>in</strong> <strong>in</strong>dustrial heat treatment.<br />

Fig. 6: Hardness pr<strong>of</strong>iles obta<strong>in</strong>ed at selected po<strong>in</strong>ts M1-5 <strong>in</strong> LPC<br />

<strong>process</strong>es<br />

LPC PROCESSES<br />

Four heat treat<strong>in</strong>g series based on vacuum carburiz<strong>in</strong>g were<br />

conducted. Carburiz<strong>in</strong>g was preceded with pre-nitrid<strong>in</strong>g<br />

us<strong>in</strong>g the PreNitLPC® [3] technology <strong>in</strong> order to restrict<br />

the growth <strong>of</strong> austenite gra<strong>in</strong> at high temperature. The<br />

entire <strong>process</strong> sequence consisted <strong>of</strong>: pre-nitrid<strong>in</strong>g, vacuum<br />

carburiz<strong>in</strong>g (us<strong>in</strong>g the F<strong>in</strong>eCarb® [4] technology) at various<br />

temperatures, which was followed by the repeated for all<br />

sequence <strong>of</strong> (direct) quench<strong>in</strong>g <strong>in</strong> 5 bar nitrogen, deep<br />

freez<strong>in</strong>g at -75 °C for 2 h and temper<strong>in</strong>g for 2 h at the temperature<br />

<strong>of</strong> 200 °C. Carburiz<strong>in</strong>g treatments were performed<br />

at four temperatures: 860, 920, 950 and 1,020 °C, <strong>in</strong> each<br />

60 heat <strong>process</strong><strong>in</strong>g 3-2014


Heat Treatment<br />

REPORTS<br />

case targeted at the surface concentration <strong>of</strong> carbon <strong>in</strong><br />

the range <strong>of</strong> 0.60 % and predef<strong>in</strong>ed case depth <strong>of</strong> approx.<br />

0.4 mm.<br />

Total times <strong>in</strong> the sequence <strong>of</strong> carburiz<strong>in</strong>g and diffusion<br />

for <strong>in</strong>dividual treatments were as follows:<br />

LPC 860 C = 10 m<strong>in</strong>, D = 70 m<strong>in</strong><br />

LPC 920 C = 4 m<strong>in</strong>, D = 40 m<strong>in</strong><br />

LPC 950 C = 4 m<strong>in</strong>, D = 20 m<strong>in</strong><br />

LPC 1020 C = 2 m<strong>in</strong>, D = 6 m<strong>in</strong><br />

Fig. 5 presents a longitud<strong>in</strong>al cross-section through a<br />

nozzle follow<strong>in</strong>g LPC carburization at the temperature <strong>of</strong><br />

920 °C. A uniform case was obta<strong>in</strong>ed both on the outer and<br />

<strong>in</strong> the <strong>in</strong>ner channels <strong>of</strong> the nozzle, which is characteristic<br />

for vacuum carburiz<strong>in</strong>g. The uniformity <strong>of</strong> the case layers<br />

obta<strong>in</strong>ed at <strong>in</strong>dividual treatments was presented <strong>in</strong> Fig. 6<br />

as hardness pr<strong>of</strong>iles at selected M1-5 po<strong>in</strong>ts.<br />

After the LPC 860 treatment a uniformly hardened<br />

case layer was obta<strong>in</strong>ed on the outer and <strong>in</strong>ner surfaces<br />

<strong>of</strong> the nozzle. The surface hardness was approx. 850 HV (at<br />

0.05 mm) and the core hardness was 500 HV, at predef<strong>in</strong>ed<br />

case layer depth <strong>of</strong> 0.35 mm for core hardness +50 HV. The<br />

LPC 920 treatment yielded a uniform case layer <strong>of</strong> surface<br />

hardness 820 HV and case layer depth <strong>of</strong> 0.30 mm for core<br />

hardness <strong>of</strong> 590 HV.<br />

Also carburiz<strong>in</strong>g at 950 °C (LPC 950) resulted <strong>in</strong> appropriate<br />

uniformity and case layer parameters: depth 0.35 mm,<br />

surface harness 850 HV and core hardness 620 HV.<br />

It was only the LPC 1020 <strong>process</strong> that failed to provide<br />

satisfactory outcomes. The case layer appeared only on<br />

the outer surfaces <strong>of</strong> the nozzle while none <strong>of</strong> it appeared<br />

<strong>in</strong>side. Maximum hardness was 850 HV at the surface and<br />

680 HV at the core. The hardness pr<strong>of</strong>ile <strong>in</strong> the outer layer<br />

<strong>in</strong>dicates a drop right at the surface, which is suggestive<br />

<strong>of</strong> improper microstructure.<br />

Fig. 7 presents a comparison <strong>of</strong> the case layer microstructure<br />

after the <strong>in</strong>dividual treatments. Globular carbides<br />

are a characteristic feature <strong>in</strong> the matrix <strong>of</strong> martensite. Their<br />

size and number <strong>in</strong>creases parallel to the <strong>in</strong>crease <strong>of</strong> <strong>process</strong><br />

temperature. At higher temperatures they tend to create<br />

dist<strong>in</strong>ct structures, a network at boundaries <strong>of</strong> austenite<br />

gra<strong>in</strong>s, as <strong>in</strong> the LPC 1020 <strong>process</strong>.<br />

LPN PROCESS<br />

The nitrided layer was created as a result <strong>of</strong> a complex<br />

<strong>process</strong> composed <strong>of</strong> the follow<strong>in</strong>g phases: austenitization<br />

at 1,030 °C, quench<strong>in</strong>g <strong>in</strong> 5 bar nitrogen, temper<strong>in</strong>g<br />

at 580 °C for 2 h and vacuum nitrid<strong>in</strong>g at the temperature<br />

<strong>of</strong> 560 °C for 4 h. The results <strong>of</strong> the <strong>process</strong> are presented<br />

<strong>in</strong> Fig. 8 as hardness pr<strong>of</strong>iles measured at selected spots<br />

on the <strong>in</strong>side and outside surfaces <strong>of</strong> the nozzle (M1-5).<br />

In the course <strong>of</strong> nitrid<strong>in</strong>g a very uniform hardened case<br />

was obta<strong>in</strong>ed <strong>of</strong> surface hardness <strong>in</strong> excess <strong>of</strong> 900 HV at<br />

the depth <strong>of</strong> 0.05 mm and case depth <strong>of</strong> nearly 0.2 mm<br />

at core hardness <strong>of</strong> 530 HV. The results shown <strong>in</strong> Table 1<br />

were obta<strong>in</strong>ed <strong>in</strong> the <strong>process</strong>es performed:<br />

LPC 1,580 °F (860 °C)<br />

LPC 1,688 °F (920 °C)<br />

LPC 1,742 °F (950 °C)<br />

LPC 1,868 °F (1,020 °C)<br />

Fig. 7: Surface microstructure after LPC <strong>process</strong><strong>in</strong>g at various<br />

temperatures<br />

Fig. 8: Hardness pr<strong>of</strong>ile and case layer microstructure follow<strong>in</strong>g<br />

LPN treatment<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

61


REPORTS<br />

Heat Treatment<br />

Table 1: Results <strong>of</strong> the performed <strong>process</strong>es<br />

Process<br />

Surface<br />

hardness<br />

[HV/HRC]<br />

CONCLUSION<br />

The <strong>process</strong>es <strong>of</strong> vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g enable<br />

to obta<strong>in</strong> uniformly hardened case layers on hardly accessible<br />

surfaces <strong>of</strong> fuel <strong>in</strong>jection nozzles made <strong>of</strong> X37CrMoV5-1<br />

tool steel. In the event <strong>of</strong> vacuum carburiz<strong>in</strong>g the surface<br />

hardness accessible exceeds 800 HV for temper<strong>in</strong>g<br />

temperature <strong>of</strong> 200 °C (hardness decreases as temper<strong>in</strong>g<br />

temperature rises). The core hardness depends on the<br />

quench<strong>in</strong>g temperature and is the higher parallel to the<br />

rise <strong>in</strong> temperature; <strong>in</strong> the tests from 49 to 59 HRC and also<br />

depends on temper<strong>in</strong>g temperature.<br />

Carburiz<strong>in</strong>g at 1,020 °C failed to create proper uniformity<br />

and microstructure (carbides network) due to high <strong>in</strong>tensity<br />

<strong>of</strong> treatment (<strong>in</strong>controllable) and the tendency to create<br />

carbides <strong>in</strong> the steel at higher temperature. LPC <strong>process</strong>es<br />

at that temperature need to be ref<strong>in</strong>ed.<br />

Promis<strong>in</strong>g results were atta<strong>in</strong>ed for the vacuum nitrid<strong>in</strong>g<br />

<strong>process</strong>: case layer uniformity and the highest surface<br />

hardness <strong>in</strong> excess <strong>of</strong> 900 HV as well as stability <strong>of</strong> case layer<br />

parameters at high temperatures exceed<strong>in</strong>g 500 °C. In the<br />

light <strong>of</strong> the study it should be claimed that the case harden<strong>in</strong>g<br />

technology <strong>of</strong> the fuel <strong>in</strong>jection nozzles made <strong>of</strong> tool steel by<br />

vacuum carburiz<strong>in</strong>g and nitrid<strong>in</strong>g has been developed, tested<br />

and is ready for <strong>in</strong>dustrial implementation. Further research<br />

will focus on improvement <strong>of</strong> LPC <strong>process</strong>es at high temperatures<br />

and on us<strong>in</strong>g hybrid: carburized and nitrided case layers.<br />

LITERATURE<br />

Core<br />

hardness<br />

[HV/<br />

HRC]<br />

[1] Blau, P.J.; Yang, N.: Materials for high pressure fuel <strong>in</strong>jection<br />

systems, US Dept. <strong>of</strong> Energy, poster presentation May 10, 2011<br />

[2] http://www.dieselpowermag.com/tech/1211dp_why_diesel_<br />

fuel_<strong>in</strong>jectors_fail/viewall.html<br />

Case depth<br />

[mm]<br />

LPC 860 850/66 500/49 0.35 good<br />

Case uniformity<br />

LPC 920 820/65 590/55 0.30 very good<br />

LPC 950 850/66 620/56 0.35 good<br />

LPC 1020 850/66 680/59 0-0.40 <strong>in</strong>sufficient<br />

LPN >900/67 530/51 0.18 very good<br />

[3] Kula, P.; Pietrasik, R.; Dybowski, K.; Korecki, M.; Olejnik, J.:<br />

Prenit LPC – the modern technology for automotive, New<br />

Challenges. In: Heat Treatment and Surface Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Dubrownik-Cavtat, Croatia, 2009, pp. 165-170<br />

[4] Kula, P.; Korecki, M.; Pietrasik, R.; Wołowiec, E.; Dybowski, K.;<br />

Kołodziejczyk, Ł.; Atraszkiewicz, R.; Krasowski, M. F<strong>in</strong>eCarb ®<br />

– the flexible system for low pressure carburiz<strong>in</strong>g. New<br />

options and performance, The Japan Society for Heat Treatment<br />

2009, 49 (1), pp. 133-136<br />

AUTHORS<br />

Ph. D. Eng. Maciej Korecki<br />

Seco/Warwick<br />

Swiebodz<strong>in</strong>, Poland<br />

Tel.: +48 (0) 683820506<br />

maciej.korecki@secowarwick.com<br />

Pr<strong>of</strong>. Piotr Kula Ph. D.<br />

Technical University <strong>of</strong> Lodz<br />

Institute <strong>of</strong> Materials,<br />

Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Lodz, Poland<br />

Tel.: +48 (0) 426312279<br />

piokula@p.lodz.pl<br />

Ph. D. Emilia Wołowiec<br />

Technical University <strong>of</strong> Lodz<br />

Institute <strong>of</strong> Materials,<br />

Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Lodz, Poland<br />

Tel.: +48 (0) 426312269<br />

emilia.wolowiec@p.lodz.pl<br />

Michał Bazel<br />

Seco/Warwick<br />

Swiebodz<strong>in</strong>, Poland<br />

Tel.: +48 (0) 68-4111632<br />

Michal.sut@secowarwick.com<br />

Michał Sut<br />

Seco/Warwick<br />

Swiebodz<strong>in</strong>, Poland<br />

Tel.: +48 (0) 68-4111632<br />

michal.bazel@secowarwick.com<br />

62 heat <strong>process</strong><strong>in</strong>g 3-2014


Heat Treatment<br />

REPORTS<br />

<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong><br />

the ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong><br />

<strong>process</strong> <strong>plants</strong><br />

by Hartmut Steck-W<strong>in</strong>ter, Axel Filounek<br />

<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance has become a critical success factor. System availability requirements, cost pressures,<br />

<strong>in</strong>creas<strong>in</strong>g complexity <strong>of</strong> systems and, especially, knowledge-<strong>in</strong>tensive ma<strong>in</strong>tenance strategies are just some <strong>of</strong> the<br />

reasons why the systematic <strong>management</strong> <strong>of</strong> knowledge is becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly important. The knowledge <strong>management</strong><br />

solutions ma<strong>in</strong>ly used <strong>in</strong> practice today are – like a library – focused on the archiv<strong>in</strong>g and retrieval <strong>of</strong> <strong>in</strong>formation. Meanwhile,<br />

the progressive transformation <strong>of</strong> ma<strong>in</strong>tenance <strong>in</strong>to an eng<strong>in</strong>eer<strong>in</strong>g discipl<strong>in</strong>e receives rather less attention. Us<strong>in</strong>g the example<br />

<strong>of</strong> condition-based ma<strong>in</strong>tenance <strong>of</strong> <strong>thermal</strong> <strong>process</strong> <strong>plants</strong>, this article will describe how knowledge <strong>management</strong> and<br />

ma<strong>in</strong>tenance methods can complement each other, without neglect<strong>in</strong>g practical ma<strong>in</strong>tenance, with knowledge managers<br />

form<strong>in</strong>g the l<strong>in</strong>k to operational practice. Document <strong>management</strong> cont<strong>in</strong>ues to play an important role, but even more emphasis<br />

is given to the use and creation <strong>of</strong> knowledge. After all, what good is a great library if no one reads the books?<br />

If our company only knew how much it knew, then…<br />

Who hasn’t heard this sentence 1 ? For the ma<strong>in</strong>tenance <strong>of</strong><br />

<strong>in</strong>dustrial <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> (ITP), we could complete<br />

the sentence as follows: If our ma<strong>in</strong>tenance department only<br />

knew how much it knew, then the availability, reliability and<br />

safety <strong>of</strong> our <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> would be better than the<br />

competition, then our cost-efficiency would be better, and<br />

we would make fewer mistakes and never repeat them [1].<br />

So why don’t we <strong>in</strong>vest more <strong>in</strong> knowledge <strong>management</strong>?<br />

The answer, which will be demonstrated <strong>in</strong> this article,<br />

is that knowledge <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance is a complex<br />

matter that imposes considerable organisational requirements,<br />

demonstrat<strong>in</strong>g once aga<strong>in</strong> the transformation <strong>of</strong><br />

ma<strong>in</strong>tenance <strong>in</strong>to an eng<strong>in</strong>eer<strong>in</strong>g discipl<strong>in</strong>e.<br />

WHAT IS KNOWLEDGE?<br />

In this <strong>in</strong>troductory chapter we will first def<strong>in</strong>e a few key<br />

terms <strong>in</strong> knowledge <strong>management</strong>.<br />

<strong>Knowledge</strong> as production factor and company asset<br />

Fig. 1 shows how the most important resources <strong>of</strong> almost any<br />

1 This say<strong>in</strong>g is attributed to Siemens CEO He<strong>in</strong>rich von Pierer. At a press conference,<br />

von Pierer lamented the fact that Siemens was always „re<strong>in</strong>vent<strong>in</strong>g<br />

the wheel“ and wast<strong>in</strong>g a lot <strong>of</strong> resources <strong>in</strong> the <strong>process</strong>. However, the say<strong>in</strong>g<br />

was already <strong>in</strong> use <strong>in</strong>ternally much earlier than this.<br />

company – labour, capital and knowledge – have changed<br />

over the years. Even <strong>in</strong> agrarian societies, people tried to<br />

acquire, keep and re-apply knowledge. Early techniques<br />

<strong>in</strong>cluded storytell<strong>in</strong>g or picture stories. With the progress <strong>of</strong><br />

<strong>in</strong>dustrialisation, knowledge became <strong>in</strong>creas<strong>in</strong>gly important,<br />

overtak<strong>in</strong>g the production factors <strong>of</strong> labour and capital. More<br />

and more specialised knowledge was needed, for example to<br />

build new mach<strong>in</strong>ery or provide special services.<br />

In a knowledge society, the value <strong>of</strong> knowledge as a production<br />

factor <strong>in</strong>creases further still. <strong>Knowledge</strong> became the<br />

most important resource <strong>in</strong> production and services. Today,<br />

Importance<br />

Labor<br />

Agrarian<br />

society<br />

Capital<br />

Industrial<br />

society<br />

<strong>Knowledge</strong><br />

<strong>Knowledge</strong><br />

society<br />

Fig. 1: Importance <strong>of</strong> the production factor knowledge<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

63


REPORTS<br />

Heat Treatment<br />

knowledge <strong>management</strong> is <strong>of</strong> existential importance <strong>in</strong> many<br />

sectors <strong>of</strong> <strong>in</strong>dustry. Today, knowledge as an <strong>in</strong>dependent<br />

production factor is so important that it must be actively managed<br />

– which is why we talk about ‘knowledge <strong>management</strong>’.<br />

Data, <strong>in</strong>formation, knowledge –<br />

the knowledge pyramid<br />

Data, <strong>in</strong>formation and knowledge form a pyramid. <strong>Knowledge</strong><br />

is the tip <strong>of</strong> the pyramid and data forms the base. Data refers<br />

to facts about events or <strong>process</strong>es, for example vibration<br />

measurements. When data is placed <strong>in</strong> context and given<br />

mean<strong>in</strong>g, it becomes <strong>in</strong>formation – for example the permissible<br />

vibration limit values for a specific part. P. Drucker, a<br />

pioneer <strong>of</strong> modern <strong>management</strong> theory, said, “Information<br />

is data with relevance and an <strong>in</strong>tended purpose.”<br />

<strong>Knowledge</strong>, on the other hand, is goal-oriented, networked<br />

<strong>in</strong>formation that <strong>in</strong>cludes expert op<strong>in</strong>ions and experience,<br />

for example how a vibration will probably develop<br />

<strong>in</strong>to a problem. <strong>Knowledge</strong> is always personal and usually<br />

problem-oriented. The difference between knowledge and<br />

<strong>in</strong>formation is not ultimately the most important question,<br />

but rather which data, <strong>in</strong>formation and knowledge is useful<br />

for an organisation and which is not.<br />

Explicit vs. tacit knowledge<br />

In literature, a dist<strong>in</strong>ction is made between explicit and tacit<br />

knowledge. The metaphor <strong>of</strong>ten used to expla<strong>in</strong> this is that<br />

<strong>of</strong> an iceberg. The part <strong>of</strong> the iceberg above water is explicit<br />

knowledge, and the part below water is tacit knowledge.<br />

Explicit knowledge is found <strong>in</strong> documents, books, forms,<br />

photos or draw<strong>in</strong>gs, for example. It can be stored, <strong>process</strong>ed<br />

and transmitted us<strong>in</strong>g any type <strong>of</strong> media. It can be logically<br />

expla<strong>in</strong>ed and practically applied. It would probably be more<br />

accurate to speak <strong>of</strong> ‘explicit <strong>in</strong>formation’, because it exists<br />

<strong>in</strong>dependently <strong>of</strong> a person.<br />

Tacit knowledge, on the other hand, has a personal quality.<br />

It is always l<strong>in</strong>ked to personal experience and personal skills.<br />

Core competencies are conta<strong>in</strong>ed with<strong>in</strong> tacit knowledge.<br />

On average, 80-90 % <strong>of</strong> the knowledge <strong>in</strong> a company is tacit.<br />

One <strong>of</strong> the ma<strong>in</strong> functions <strong>of</strong> knowledge <strong>management</strong> is<br />

the transformation <strong>of</strong> tacit knowledge <strong>in</strong>to explicit knowledge<br />

[2]. However, this is easier said than done. Michael Polanyi,<br />

known for his work <strong>in</strong> theory <strong>of</strong> knowledge, said <strong>in</strong> 1985,<br />

“We know more than we can tell.” Tacit knowledge can be<br />

<strong>in</strong>ternalised <strong>in</strong> such a way that it is no longer (consciously)<br />

accessible. For example, service technicians may be able to<br />

<strong>in</strong>tuitively assess the condition <strong>of</strong> a gas circulation fan and<br />

the repairs required by the runn<strong>in</strong>g noise, but be unable to<br />

expla<strong>in</strong> exactly how they do it. There are many publications<br />

deal<strong>in</strong>g with this problem, <strong>in</strong>clud<strong>in</strong>g methods for stor<strong>in</strong>g<br />

and transmitt<strong>in</strong>g knowledge, and especially for safeguard<strong>in</strong>g<br />

knowledge us<strong>in</strong>g storytell<strong>in</strong>g, m<strong>in</strong>d mapp<strong>in</strong>g, competence<br />

matrices and so on.<br />

Relevant knowledge<br />

Obviously, knowledge is only relevant to a company if it allows<br />

the company to solve problems or create someth<strong>in</strong>g new. It<br />

doesn’t matter whether this knowledge is tacit or explicit.<br />

The question <strong>of</strong> relevance is the most important one. Only<br />

when this question has been answered can we proceed to<br />

ask what knowledge is relevant.<br />

Probst et al. [3] def<strong>in</strong>e knowledge as the entirety <strong>of</strong> <strong>in</strong>sights<br />

and skills that <strong>in</strong>dividuals use to solve problems. This def<strong>in</strong>ition<br />

<strong>in</strong>cludes both theoretical knowledge and practical everyday<br />

rules and <strong>in</strong>structions.<br />

Accord<strong>in</strong>g to another, equally popular, def<strong>in</strong>ition, there is<br />

knowledge about why you do someth<strong>in</strong>g (know why), what<br />

you do (know what) and how to do it correctly (know how).<br />

Two additional factors are <strong>of</strong>ten added: know<strong>in</strong>g where to f<strong>in</strong>d<br />

<strong>in</strong>formation for a specific purpose (know where) and when<br />

what <strong>in</strong>formation is needed (know when). So knowledge is<br />

more than what is <strong>of</strong>ten referred to as ‘know-how’.<br />

Ma<strong>in</strong>tenance knowledge<br />

Ma<strong>in</strong>tenance demands specialised knowledge. It needs to be<br />

embedded <strong>in</strong> practical activity without neglect<strong>in</strong>g the transformation<br />

to an eng<strong>in</strong>eer<strong>in</strong>g discipl<strong>in</strong>e. A good ma<strong>in</strong>tenance<br />

department used to be one that fixed problems quickly, but<br />

now it is measured by its ability to prevent problems (breakdowns<br />

or faults) occurr<strong>in</strong>g <strong>in</strong> the first place. So a modern<br />

ma<strong>in</strong>tenance department must have an understand<strong>in</strong>g <strong>of</strong><br />

damage mechanisms and scientific methods relat<strong>in</strong>g to the<br />

changes caused by wear and tear. In other words, <strong>in</strong> addition<br />

to practical knowledge, it is <strong>in</strong>creas<strong>in</strong>gly important to know<br />

why someth<strong>in</strong>g is done <strong>in</strong> the way it is done.<br />

The role <strong>of</strong> the experts<br />

Experts are the ma<strong>in</strong> knowledge holders <strong>in</strong> a company. They<br />

have specialist knowledge and technical authority. They have<br />

experience and the ability to apply their knowledge to new<br />

situations. In other words, they are not just knowledge holders,<br />

but knowledge developers. This characteristic cannot<br />

necessarily be attributed to other knowledge holders, for<br />

example pure practitioners.<br />

When experts leave a company, their tacit <strong>in</strong>dividual knowledge<br />

is lost to the organisation. Some <strong>of</strong> their explicit knowledge<br />

rema<strong>in</strong>s, for example <strong>in</strong> the form <strong>of</strong> records, but as the<br />

metaphor <strong>of</strong> the iceberg shows, this is only the smaller part.<br />

The volatility <strong>of</strong> knowledge<br />

<strong>Knowledge</strong> is tied to people. There is always the risk that a<br />

knowledge holder will leave the company, for example due<br />

to retirement. Demographic change therefore plays an important<br />

role <strong>in</strong> ma<strong>in</strong>tenance pr<strong>of</strong>essions, where experience and<br />

knowledge are so important. We also shouldn’t forget that<br />

knowledge, too, becomes obsolete. The average half-life <strong>of</strong><br />

pr<strong>of</strong>essional technical knowledge is approximately five years,<br />

64 heat <strong>process</strong><strong>in</strong>g 3-2014


Heat Treatment<br />

REPORTS<br />

and considerably less for automation eng<strong>in</strong>eers and computer<br />

scientists. As paradoxical as this may sound, it is because our<br />

knowledge is currently explod<strong>in</strong>g – and therefore loses its<br />

value ever more quickly as a result <strong>of</strong> technological change.<br />

So sometimes it is important to forget what you know, get<br />

rid <strong>of</strong> ballast and be open to new ideas.<br />

WHAT IS KNOWLEDGE MANAGEMENT?<br />

Albert E<strong>in</strong>ste<strong>in</strong> is credited with say<strong>in</strong>g, “<strong>Knowledge</strong> means<br />

know<strong>in</strong>g where it’s written down.” He was probably th<strong>in</strong>k<strong>in</strong>g<br />

along similar l<strong>in</strong>es to the problem outl<strong>in</strong>ed at the start, “If<br />

my company only knew how much it knew”. For this reason,<br />

knowledge <strong>management</strong> is commonly discussed <strong>in</strong> the context<br />

<strong>of</strong> locat<strong>in</strong>g <strong>in</strong>formation or creat<strong>in</strong>g databases, and is <strong>of</strong>ten<br />

reduced to simply that. But merely build<strong>in</strong>g a database isn’t<br />

knowledge <strong>management</strong>. Databases are tools for <strong>in</strong>formation<br />

<strong>process</strong><strong>in</strong>g; sometimes data graveyards. At the beg<strong>in</strong>n<strong>in</strong>g a<br />

database is like a library without books – empty.<br />

The most familiar example <strong>of</strong> an external database is the<br />

Internet. To someone look<strong>in</strong>g for knowledge, the Internet is<br />

like a vast unsorted library without librarians to impose any<br />

k<strong>in</strong>d <strong>of</strong> order. Information stored on the web can be found<br />

with the help <strong>of</strong> search eng<strong>in</strong>es. A search turns up a huge<br />

amount <strong>of</strong> irrelevant and unverified <strong>in</strong>formation, to name just<br />

the two biggest problems, and the user must decide for themselves<br />

what is relevant and what is not, which <strong>in</strong>formation can<br />

be trusted and which cannot. There is no librarian to help.<br />

By contrast, document <strong>management</strong> systems represent<br />

an attempt to reproduce a more or less structured company<br />

memory. One <strong>of</strong> the ma<strong>in</strong> purposes <strong>of</strong> a document <strong>management</strong><br />

system is to store text documents (such as <strong>in</strong>stallation<br />

<strong>in</strong>structions, troubleshoot<strong>in</strong>g guides or criteria lists), draw<strong>in</strong>gs,<br />

pictures and so on <strong>in</strong> a central place and make them accessible<br />

to employees. Information is generally made available<br />

on a company <strong>in</strong>tranet. However, the documents must first<br />

be classified <strong>in</strong> order for the knowledge they conta<strong>in</strong> to be<br />

located quickly and <strong>in</strong> context. This sometimes <strong>in</strong>volves a lot<br />

<strong>of</strong> work and is only worth it if the ‘keyworded’ knowledge is<br />

<strong>of</strong> permanent relevance. This is rarely the case.<br />

Elements <strong>of</strong> knowledge <strong>management</strong><br />

We have seen so far that knowledge <strong>management</strong> is much<br />

more than just know<strong>in</strong>g where it’s written down. Probst et al.<br />

[3] go considerably further by def<strong>in</strong><strong>in</strong>g knowledge <strong>management</strong><br />

as a systematic <strong>process</strong> <strong>of</strong> organisational knowledge<br />

use and creation with<strong>in</strong> a company. In the authors’ view, the<br />

<strong>process</strong> proposed by Probst et al., shown <strong>in</strong> Fig. 2, is a good<br />

theoretical basis for knowledge <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance.<br />

The <strong>in</strong>dividual elements are briefly expla<strong>in</strong>ed below.<br />

<strong>Knowledge</strong> goals<br />

Corporate knowledge <strong>management</strong> beg<strong>in</strong>s with the def<strong>in</strong>ition<br />

<strong>of</strong> knowledge goals as part <strong>of</strong> the company strategy.<br />

Strategic<br />

level<br />

Operational<br />

level<br />

<strong>Knowledge</strong><br />

acquisition<br />

<strong>Knowledge</strong><br />

goals<br />

<strong>Knowledge</strong><br />

identification<br />

<strong>Knowledge</strong><br />

development<br />

<strong>Knowledge</strong><br />

assessment<br />

<strong>Knowledge</strong><br />

preservation<br />

<strong>Knowledge</strong><br />

distribution<br />

Fig. 2: Build<strong>in</strong>g blocks <strong>of</strong> knowledge <strong>management</strong><br />

These goals can be used both for plann<strong>in</strong>g and as a basis<br />

for implementation and performance monitor<strong>in</strong>g. This<br />

<strong>in</strong>cludes, for example, the direction <strong>in</strong> which the company<br />

wants to develop its knowledge and the fields <strong>in</strong> which it<br />

wants to achieve superior knowledge over competitors.<br />

<strong>Knowledge</strong> identification<br />

<strong>Knowledge</strong> identification creates transparency as to <strong>in</strong>ternally<br />

and externally available knowledge. This <strong>in</strong>cludes an<br />

analysis <strong>of</strong> the state <strong>of</strong> knowledge <strong>in</strong> the accessible environment<br />

(customers, suppliers, <strong>in</strong>dustry associations, etc.). A<br />

deficient analysis may result <strong>in</strong> <strong>in</strong>efficiency, <strong>in</strong>adequately<br />

justified decisions and duplications. <strong>Knowledge</strong> identification<br />

also entails the systematic evaluation <strong>of</strong> customer<br />

compla<strong>in</strong>ts, error analyses and customer surveys and the<br />

identification <strong>of</strong> employees with specific competencies.<br />

Not all knowledge needs to be with<strong>in</strong> the company itself,<br />

as long as it is accessible <strong>in</strong> some way.<br />

<strong>Knowledge</strong> acquisition<br />

Much <strong>of</strong> the knowledge a company needs is imported from<br />

external sources. External tra<strong>in</strong><strong>in</strong>g courses and sem<strong>in</strong>ars<br />

are the traditional sources, as well as <strong>in</strong>ternal tra<strong>in</strong><strong>in</strong>g and<br />

development programmes. There is also considerable and<br />

<strong>of</strong>ten untapped potential for knowledge acquisition <strong>in</strong> l<strong>in</strong>ks<br />

with customers, suppliers, competitors and cooperation<br />

partners.<br />

<strong>Knowledge</strong> development<br />

<strong>Knowledge</strong> development is complementary to knowledge<br />

acquisition. It revolves around develop<strong>in</strong>g new skills, products,<br />

new and better ideas and more effective <strong>process</strong>es.<br />

Much <strong>in</strong>ternal knowledge is tacit (remember the iceberg)<br />

and consists <strong>of</strong> experience and special skills not accessible<br />

to other employees. The essential aim is to pass this<br />

knowledge on to colleagues.<br />

<strong>Knowledge</strong><br />

utilization<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

65


REPORTS<br />

Heat Treatment<br />

<strong>Knowledge</strong> distribution<br />

<strong>Knowledge</strong> must be shared and distributed with<strong>in</strong> a company<br />

so that the entire organisation can use it. The distribution <strong>of</strong><br />

exist<strong>in</strong>g knowledge with<strong>in</strong> the company must be put <strong>in</strong>to<br />

practice and upheld. Shar<strong>in</strong>g <strong>in</strong>formation with colleagues<br />

and supervisors, as well as people outside the company at<br />

meet<strong>in</strong>gs, conferences and forums such as the Aichel<strong>in</strong> Ma<strong>in</strong>tenance<br />

Forum, is very important. Even a very good technical<br />

<strong>in</strong>frastructure cannot by itself satisfy the requirements <strong>of</strong><br />

knowledge shar<strong>in</strong>g and distribution. This is an opportunity<br />

for knowledge managers to play a key role.<br />

<strong>Knowledge</strong> utilisation<br />

The ultimate aim <strong>of</strong> knowledge <strong>management</strong> is to make<br />

productive use <strong>of</strong> knowledge for the benefit <strong>of</strong> the company.<br />

However, the successful identification and shar<strong>in</strong>g/distribution<br />

<strong>of</strong> knowledge will not by themselves ensure that knowledge<br />

is used effectively <strong>in</strong> everyday operations. The utilisation <strong>of</strong><br />

available knowledge must be accompanied and ensured by<br />

organisational measures, such as service plans.<br />

<strong>Knowledge</strong> preservation<br />

Once it has been acquired and developed, perhaps with great<br />

effort, knowledge must be reta<strong>in</strong>ed and kept up to date.<br />

Both the technical <strong>in</strong>frastructure (databases or document<br />

<strong>management</strong> systems) and the retention <strong>of</strong> experts with<strong>in</strong><br />

the company play the most important roles <strong>in</strong> this respect.<br />

There are plenty <strong>of</strong> ways <strong>in</strong> which available knowledge can<br />

be quickly lost aga<strong>in</strong>, for example when employees leave<br />

the company.<br />

<strong>Knowledge</strong> assessment<br />

F<strong>in</strong>ally, the measures taken must be assessed. Have the <strong>in</strong>vestments<br />

<strong>in</strong> knowledge <strong>management</strong> paid <strong>of</strong>f? Are they mov<strong>in</strong>g<br />

<strong>in</strong> the right direction? Have the def<strong>in</strong>ed objectives been<br />

achieved? This evaluation is not at all easy because there are<br />

no standard measurements for knowledge.<br />

Cont<strong>in</strong>uous improvement <strong>process</strong><br />

The connect<strong>in</strong>g l<strong>in</strong>es between the various elements <strong>in</strong> Fig. 2<br />

show the <strong>in</strong>terdependencies at work. It is not sufficient to<br />

focus on one particular element to the exclusion <strong>of</strong> the rest.<br />

<strong>Knowledge</strong> <strong>management</strong> is a <strong>process</strong> without an explicit start<br />

and end, a <strong>process</strong> <strong>of</strong> cont<strong>in</strong>uous improvement. However, this<br />

wider def<strong>in</strong>ition <strong>of</strong> knowledge <strong>management</strong> is not yet evident<br />

<strong>in</strong> many organisations. Exist<strong>in</strong>g knowledge is not utilised, for<br />

example because <strong>in</strong>ternal knowledge is not valued enough<br />

and knowledge is acquired externally at high cost. Employees<br />

are sent on po<strong>in</strong>tless tra<strong>in</strong><strong>in</strong>g courses, the content <strong>of</strong> which<br />

they cannot apply <strong>in</strong> their jobs. Expensive document <strong>management</strong><br />

systems are <strong>of</strong>ten useless because the system does not<br />

conta<strong>in</strong> any relevant <strong>in</strong>formation. So there are many reasons<br />

to cont<strong>in</strong>ually re-implement the elements <strong>of</strong> knowledge <strong>management</strong><br />

and take appropriate corrective action.<br />

KNOWLEDGE MANAGEMENT<br />

IN MAINTENANCE<br />

<strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance is associated with<br />

very specific requirements and problems. When it comes to<br />

the ma<strong>in</strong>tenance <strong>of</strong> complex mach<strong>in</strong>es and <strong>plants</strong>, ma<strong>in</strong>tenance<br />

knowledge has always been shared between a number<br />

<strong>of</strong> different pr<strong>of</strong>essions. Designers, operators, ma<strong>in</strong>tenance<br />

departments and external service teams need to pool their<br />

specific experience to come up with solutions to problems.<br />

Ma<strong>in</strong>tenance demands multidiscipl<strong>in</strong>ary knowledge – a<br />

comb<strong>in</strong>ation <strong>of</strong> mechanics, automation and <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g.<br />

The breadth and depth <strong>of</strong> knowledge required today can<br />

no longer be held by a s<strong>in</strong>gle <strong>in</strong>dividual. A modern ma<strong>in</strong>tenance<br />

department will carry out key <strong>process</strong>es cooperatively,<br />

i.e. <strong>in</strong> close collaboration with relevant specialists [4].<br />

The ma<strong>in</strong>tenance <strong>of</strong> complex <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> can<br />

only be achieved through a close <strong>in</strong>terl<strong>in</strong>k<strong>in</strong>g <strong>of</strong> theoretical<br />

knowledge, experience and practical activity. The extent to<br />

which ma<strong>in</strong>tenance has already developed <strong>in</strong>to an eng<strong>in</strong>eer<strong>in</strong>g<br />

discipl<strong>in</strong>e will be described us<strong>in</strong>g the example <strong>of</strong> knowledge<br />

<strong>management</strong> at Aichel<strong>in</strong> Service GmbH.<br />

Data base<br />

• Wear <strong>process</strong><br />

symptoms e.g.<br />

vibration, etc.<br />

• Wear <strong>process</strong> marks<br />

e.g. abrasion, etc.<br />

• Characteristic life-time<br />

data (MTBF)<br />

• Runn<strong>in</strong>g times or<br />

cycles<br />

• Repair times (MTTR)<br />

• Failure statistics<br />

• Limit values<br />

• …<br />

<strong>Knowledge</strong> goals<br />

• Service plans with<br />

ideal ma<strong>in</strong>tenance<br />

strategies<br />

• Functional wear<br />

models<br />

• Best practice guides<br />

• Lifetime data<br />

• Weak-po<strong>in</strong>ts<br />

• Hazards<br />

• Failure probabilities<br />

• FMEA, PFMEA<br />

• …<br />

Key <strong>process</strong>es<br />

• Inspection<br />

• Ma<strong>in</strong>tenance<br />

• Repair<br />

• CIP e.g. on energy,<br />

efficiency<br />

• Spare parts<br />

<strong>management</strong><br />

• Change <strong>management</strong><br />

• Remote services<br />

utilization<br />

• Cooperation<br />

• …<br />

<strong>Knowledge</strong> objectives <strong>in</strong> ma<strong>in</strong>tenance<br />

As a general rule, every ma<strong>in</strong>tenance key <strong>process</strong> requires<br />

several knowledge objectives. As shown <strong>in</strong> Fig. 3, knowledge<br />

objectives must be def<strong>in</strong>ed and the data basis or knowledge<br />

status must be assessed at a strategic level on the basis <strong>of</strong><br />

the key <strong>process</strong>es.<br />

The most important knowledge objectives <strong>in</strong> ma<strong>in</strong>tenance<br />

<strong>in</strong>clude a plant-specific service plan and an optimum<br />

ma<strong>in</strong>tenance strategy 2 for critical parts (for example<br />

a condition-based ma<strong>in</strong>tenance strategy). This requires the<br />

procurement <strong>of</strong> a lot <strong>of</strong> knowledge about the parts used, for<br />

Fig. 3: <strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance – Strategic level<br />

2 Ultimately, the ma<strong>in</strong>tenance strategy def<strong>in</strong>es what k<strong>in</strong>d <strong>of</strong> measure is carried<br />

out on def<strong>in</strong>ed ma<strong>in</strong>tenance objects and how <strong>of</strong>ten. [DIN EN 13306:<br />

Ma<strong>in</strong>tenance terms]<br />

66 heat <strong>process</strong><strong>in</strong>g 3-2014


Heat Treatment<br />

REPORTS<br />

example characteristic lifetime data. Other<br />

important knowledge objectives <strong>in</strong>clude<br />

best practice procedures, the identification<br />

<strong>of</strong> weak po<strong>in</strong>ts, failure mode and effects<br />

analyses and guides.<br />

Key ma<strong>in</strong>tenance <strong>process</strong>es<br />

Though, before the def<strong>in</strong>ition <strong>of</strong> knowledge<br />

objectives comes the question <strong>of</strong> relevance:<br />

we are talk<strong>in</strong>g primarily about ma<strong>in</strong>tenance<br />

key <strong>process</strong>es. This refers to the four basic<br />

measures named <strong>in</strong> DIN 31051 [5]: ma<strong>in</strong>tenance,<br />

<strong>in</strong>spection, repair and improvement.<br />

However, an optimum ma<strong>in</strong>tenance plan is<br />

not limited to these activities but <strong>in</strong>cludes<br />

further key <strong>process</strong>es such as efficiency<br />

enhancement, cost-optimised parts procurement<br />

and change <strong>management</strong>.<br />

Service<br />

plan<br />

Def<strong>in</strong>ition <strong>of</strong><br />

plant<br />

structure<br />

and ma<strong>in</strong>tenance<br />

strategies<br />

Functional wear<br />

model<br />

(1) (2.1) (2.3) (3.1)<br />

(7)<br />

Create a<br />

functional<br />

model <strong>of</strong><br />

wear<br />

<strong>process</strong><br />

conditions<br />

(2.2) (2.4)<br />

Determ<strong>in</strong>e<br />

wear<br />

<strong>process</strong><br />

limits<br />

Determ<strong>in</strong>e<br />

wear<br />

<strong>process</strong><br />

marks or<br />

symptoms<br />

Select a<br />

measurement<br />

technique<br />

Inspection, wear prediction<br />

and ma<strong>in</strong>tenance measures<br />

Def<strong>in</strong>ition <strong>of</strong><br />

specified<br />

conditions<br />

& detection<br />

<strong>of</strong> actual<br />

conditions<br />

(3.2)<br />

Readjust<br />

marks or<br />

symptoms<br />

<strong>of</strong> wear<br />

(4.1)<br />

(4.2)<br />

Document<strong>in</strong>g and archiv<strong>in</strong>g<br />

Evaluation<br />

and failure<br />

prediction<br />

Lifetime<br />

data<br />

statistics,<br />

e.g. MTBF<br />

(5.1)<br />

Determ<strong>in</strong>e<br />

ma<strong>in</strong>tenance<br />

measures<br />

(5.2)<br />

Adjust<br />

operat<strong>in</strong>g<br />

<strong>in</strong>structions<br />

CIP<br />

Weak po<strong>in</strong>t<br />

analysis<br />

(6.2)<br />

(6.1)<br />

Optimisation<br />

Data basis and knowledge evaluation<br />

In order to achieve the strategic knowledge<br />

objectives, the data basis and the<br />

atta<strong>in</strong>ed knowledge status must be regularly<br />

evaluated. A potential stick<strong>in</strong>g po<strong>in</strong>t<br />

is feedback from ma<strong>in</strong>tenance employees,<br />

for example after a condition assessment.<br />

Ma<strong>in</strong>tenance technicians are not writers,<br />

and if <strong>in</strong>formation is conveyed at all, it<br />

tends to be verbal. If data and <strong>in</strong>formation are not documented,<br />

they are not available for evaluation purposes etc.<br />

– either now or <strong>in</strong> the future. Not documented is like not<br />

been done!<br />

<strong>Knowledge</strong> managers are a critical success factor<br />

In the authors’ experience, a knowledge manager must<br />

be someone who holds the re<strong>in</strong>s for a particular knowledge<br />

area, an expert who proactively manages their own<br />

knowledge area. <strong>Knowledge</strong> managers ensure through<br />

effective personal communication that colleagues share<br />

their knowledge with one another. They motivate people<br />

to cooperate and make clear that it is the knowledge<br />

<strong>in</strong>side their heads that keeps the company competitive.<br />

They create organisationally embedded (explicit) action<br />

rout<strong>in</strong>es and rules, for example service plans or condition<br />

assessment checklists.<br />

<strong>Knowledge</strong> managers also form a l<strong>in</strong>k between those<br />

who possess knowledge and those who are try<strong>in</strong>g to f<strong>in</strong>d<br />

it. To return to the library metaphor, they are the librarians.<br />

They make sure that knowledge reaches the ma<strong>in</strong>tenance<br />

technician’s workplace and therefore produces a benefit.<br />

Hence, knowledge managers are much more than just<br />

adm<strong>in</strong>istrators <strong>of</strong> knowledge. They must have knowledge<br />

<strong>of</strong> their own and act as role models. Their success is also<br />

<strong>Knowledge</strong> goals <strong>Knowledge</strong> acquisition<br />

<strong>Knowledge</strong> identification <strong>Knowledge</strong> utilization<br />

<strong>Knowledge</strong> preservation<br />

dependent on their personal credibility and honesty, especially<br />

<strong>in</strong> the handl<strong>in</strong>g <strong>of</strong> other people’s <strong>in</strong>tellectual property.<br />

Practical example at operational level: knowledge<br />

<strong>management</strong> <strong>in</strong> condition-based ma<strong>in</strong>tenance<br />

Few ma<strong>in</strong>tenance strategies are so frequently mis<strong>in</strong>terpreted,<br />

or not fully <strong>in</strong>terpreted, as condition-based ma<strong>in</strong>tenance.<br />

Condition-based ma<strong>in</strong>tenance depends on recognisable<br />

wear <strong>of</strong> a unit detected dur<strong>in</strong>g an <strong>in</strong>spection 3 . The wear<br />

must be measurable and closely l<strong>in</strong>ked with the failure <strong>of</strong> the<br />

unit. For many components this is not the case, or cannot<br />

be formulated <strong>in</strong> a practically relevant way. Strictly speak<strong>in</strong>g,<br />

condition-based ma<strong>in</strong>tenance is not possible <strong>in</strong> this case.<br />

The basic idea <strong>of</strong> condition-based ma<strong>in</strong>tenance is to<br />

predict the rema<strong>in</strong><strong>in</strong>g lifetime <strong>of</strong> a part by compar<strong>in</strong>g a<br />

theoretical wear model and an <strong>in</strong>spection, as described<br />

<strong>in</strong> VDI guidel<strong>in</strong>e 2888 [6]. For reasons <strong>of</strong> economy, worn<br />

parts should cont<strong>in</strong>ue to be used for as long as possible<br />

before the part is replaced. Both, knowledge <strong>management</strong><br />

and practical ma<strong>in</strong>tenance activities with<strong>in</strong> this key <strong>process</strong><br />

are based on the <strong>process</strong> shown <strong>in</strong> Fig. 4, which <strong>in</strong> turn is<br />

based on VDI guidel<strong>in</strong>e 2888.<br />

3 Accord<strong>in</strong>g to DIN 31051, a unit is “any part, element, device, subsystem,<br />

functional unit, piece <strong>of</strong> equipment or system that can be considered on its<br />

own”.<br />

<strong>Knowledge</strong> development<br />

<strong>Knowledge</strong> assessment<br />

Fig. 4: <strong>Knowledge</strong> <strong>management</strong> <strong>in</strong> condition-based ma<strong>in</strong>tenance – Operational level<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

67


REPORTS<br />

Heat Treatment<br />

100 %<br />

± 5 mm<br />

Wear marg<strong>in</strong><br />

Bulg<strong>in</strong>g <strong>of</strong> tube<br />

Wear marg<strong>in</strong> limit<br />

(maximum bulg<strong>in</strong>g <strong>of</strong> tube)<br />

+ 15 mm<br />

0 %<br />

Characteristic wear marks <strong>in</strong> the wear <strong>process</strong> model<br />

3 4<br />

5 Years<br />

Fig. 5: Example <strong>of</strong> a multi-purpose chamber furnace<br />

Fig. 6: Wear characteristic mark: Bulg<strong>in</strong>g <strong>of</strong> a radiant tube<br />

Ma<strong>in</strong>tenance tasks and knowledge <strong>management</strong> elements<br />

cannot be simply matched up because they usually<br />

overlap. Instead, the technical <strong>process</strong>es <strong>of</strong> ma<strong>in</strong>tenance and<br />

the organisational <strong>process</strong>es <strong>of</strong> knowledge <strong>management</strong><br />

are <strong>in</strong>terl<strong>in</strong>ked <strong>in</strong> a matrix. For clarity, <strong>in</strong> Fig. 4 the numbers<br />

<strong>in</strong> round brackets are referenced <strong>in</strong> the description below.<br />

Service plan<br />

To start with, for every plant there is an <strong>in</strong>dividual service plan<br />

(1), agreed with the customer, for example a service plan for<br />

a multi-purpose chamber furnace (Fig. 5). All elements <strong>of</strong><br />

knowledge <strong>management</strong> are <strong>in</strong>corporated <strong>in</strong> the service<br />

plan. For example, the knowledge objectives and knowledge<br />

identification are def<strong>in</strong>ed by the ma<strong>in</strong>tenance strategies. A<br />

well-designed service plan <strong>in</strong>cludes a list <strong>of</strong> system parts or<br />

sections requir<strong>in</strong>g ma<strong>in</strong>tenance and the associated ma<strong>in</strong>tenance<br />

activities. The allocation <strong>of</strong> ma<strong>in</strong>tenance activities<br />

<strong>in</strong>cludes the chosen ma<strong>in</strong>tenance strategy for the section or<br />

part (event-oriented, time-oriented or condition-oriented),<br />

<strong>in</strong>spection f<strong>in</strong>d<strong>in</strong>gs, and if necessary possible improvements.<br />

A service plan also <strong>in</strong>cludes the ma<strong>in</strong>tenance cycle and<br />

planned duration <strong>of</strong> activities. The <strong>in</strong>tervals for ma<strong>in</strong>tenance<br />

jobs are cont<strong>in</strong>ually reviewed and must be empirically<br />

adjusted to avoid too little or too much ma<strong>in</strong>tenance.<br />

Provid<strong>in</strong>g scheduled times for ma<strong>in</strong>tenance activities allows<br />

the required capacity to be predicted for both, staff plann<strong>in</strong>g<br />

and ma<strong>in</strong>tenance duration.<br />

All measures carried out are documented <strong>in</strong> the service<br />

plan. The proper documentation <strong>of</strong> ma<strong>in</strong>tenance is not only<br />

a legal requirement but also an important element <strong>of</strong> knowledge<br />

<strong>management</strong>, both for the ma<strong>in</strong>tenance department<br />

and even more for the operator.<br />

Def<strong>in</strong><strong>in</strong>g a wear model<br />

When it comes to produc<strong>in</strong>g a theoretical wear model,<br />

the biggest knowledge <strong>management</strong> problem is probably<br />

knowledge acquisition, because for furnace parts there are<br />

typically only a few examples to provide orientation. To<br />

produce the wear model we can avail ourselves <strong>of</strong> the wear<br />

marg<strong>in</strong> def<strong>in</strong>ed <strong>in</strong> DIN 31051 [5]. In this model a part has a<br />

limited wear marg<strong>in</strong>, which is reduced cont<strong>in</strong>ually through<br />

normal use and abruptly by extreme stress until it reaches<br />

the end <strong>of</strong> its useful life. Wear behaviour is described by<br />

the wear curve (2.1). The difficulty arises firstly from the<br />

determ<strong>in</strong>ation <strong>of</strong> the wear curve and secondly from the<br />

def<strong>in</strong>ition <strong>of</strong> the wear limit or optimum time at which the<br />

piece <strong>of</strong> equipment is preventatively replaced (2.2), which<br />

should be just before the time <strong>of</strong> failure. The closer the optimum<br />

date is to the time <strong>of</strong> failure, the greater the potential<br />

sav<strong>in</strong>gs compared with periodic, non-condition-based<br />

ma<strong>in</strong>tenance.<br />

As a further difficulty, wear is usually a comb<strong>in</strong>ation <strong>of</strong><br />

very different chemical and/or physical <strong>process</strong>es caused<br />

by various types <strong>of</strong> stress, such as friction, corrosion, fatigue,<br />

age<strong>in</strong>g, cavitation, fracture and temperature. Ma<strong>in</strong>tenance<br />

therefore tends to concentrate on the symptoms <strong>of</strong> wear,<br />

for example vibration. The symptoms <strong>of</strong> wear are different<br />

from wear per se. The best way to expla<strong>in</strong> the difference is<br />

by us<strong>in</strong>g an analogy. A viral <strong>in</strong>fection is caused by a virus,<br />

but because viruses themselves are very difficult to detect,<br />

we focus on the symptoms, such as fever, which are more<br />

easily measurable.<br />

As can be seen <strong>in</strong> Fig. 6, it is by no means straightforward<br />

to def<strong>in</strong>e measurable condition-based features or<br />

symptoms (2.3) for furnace parts, such as a radiant tube.<br />

However, without them it is impossible to def<strong>in</strong>e measurement<br />

variables and a measurement method for <strong>in</strong>spection<br />

purposes (2.4). Usually, a solution can be found. For<br />

example, the bulg<strong>in</strong>g <strong>of</strong> a radiant tube may appear to be<br />

‘only’ a qualitative wear characteristic, but it can be made<br />

measurable with relatively little effort – <strong>in</strong> this example<br />

us<strong>in</strong>g hole templates <strong>of</strong> different diameters. The measur-<br />

68 heat <strong>process</strong><strong>in</strong>g 3-2014


Heat Treatment<br />

REPORTS<br />

able characteristic wear marks can then be assigned a limit<br />

(the wear marg<strong>in</strong> limit). Most parts will have more than one<br />

wear characteristic, each with its own wear limit.<br />

Inspection<br />

In accordance with DIN 31051 [5], the <strong>in</strong>spection <strong>in</strong>cludes<br />

all measures designed to establish and evaluate the current<br />

condition, <strong>in</strong>clud<strong>in</strong>g the identification <strong>of</strong> causes<br />

<strong>of</strong> wear and the def<strong>in</strong>ition <strong>of</strong> necessary consequences<br />

for future use. With condition-based ma<strong>in</strong>tenance the<br />

<strong>in</strong>spected condition must be correlated with the theoretical<br />

wear curve and wear characteristics def<strong>in</strong>ed <strong>in</strong> the<br />

wear model (3.1). This is the key characteristic <strong>of</strong> conditionbased<br />

ma<strong>in</strong>tenance. Because wear (friction, corrosion,<br />

fatigue, age<strong>in</strong>g etc.) is <strong>of</strong>ten very difficult to measure<br />

directly if at all, ma<strong>in</strong>tenance and <strong>in</strong>spection criteria are<br />

primarily concerned with the symptoms <strong>of</strong> wear, such<br />

as unbalance, <strong>in</strong>creased temperature or noise, which are<br />

more easily measurable.<br />

Sometimes more suitable wear characteristics or symptoms<br />

only become apparent through experience. In this<br />

case the def<strong>in</strong>ed target and actual characteristics may<br />

have to be adjusted (3.2). Only a very few furnace parts<br />

can be constantly monitored with a condition monitor<strong>in</strong>g<br />

system (CMS), for example to measure the unbalance <strong>of</strong> a<br />

gas circulation fan. All other parts, particularly <strong>in</strong>side the<br />

furnace, require <strong>in</strong>spection by a suitably qualified person.<br />

The possibilities <strong>of</strong> CMS <strong>in</strong> <strong>thermal</strong> <strong>process</strong> <strong>plants</strong> are<br />

<strong>of</strong>ten seriously overestimated. Dur<strong>in</strong>g the <strong>in</strong>spection it<br />

is essential to utilise and develop exist<strong>in</strong>g knowledge. In<br />

other words, the condition assessment should always be<br />

carried out with reference to a checklist <strong>of</strong> criteria – otherwise<br />

the results <strong>of</strong> an <strong>in</strong>spection are just the personal<br />

op<strong>in</strong>ion <strong>of</strong> the <strong>in</strong>spector.<br />

Forecast<br />

If we assume that the unit is still <strong>in</strong>tact at the present time,<br />

then the forecast concerns the rema<strong>in</strong><strong>in</strong>g time until probable<br />

failure. Based on a comparison <strong>of</strong> the theoretical wear<br />

model and the practical <strong>in</strong>spection, the task is to predict<br />

whether a part can cont<strong>in</strong>ue to be used until the next<br />

ma<strong>in</strong>tenance, needs to be repaired, or needs to be replaced<br />

immediately (4.1).<br />

If the wear is approximately proportional to the service<br />

life <strong>in</strong> the relevant time period <strong>of</strong> the wear model, the<br />

forecast is very straightforward. The probable time <strong>of</strong><br />

failure can then be mentally extrapolated us<strong>in</strong>g the rule<br />

<strong>of</strong> proportion. Although <strong>in</strong> many cases the wear marg<strong>in</strong><br />

cannot be assumed to be l<strong>in</strong>ear, it is usually possible, on<br />

the basis <strong>of</strong> experience, to estimate the failure risk <strong>of</strong> a<br />

part before the next ma<strong>in</strong>tenance. Failure rates and the<br />

characteristic lifetime <strong>of</strong> a unit <strong>of</strong> this k<strong>in</strong>d are also taken<br />

<strong>in</strong>to account (4.2).<br />

Reliability forecasts based on failure rates<br />

If condition-based ma<strong>in</strong>tenance is not possible because<br />

no measurements or qualitative wear characteristics can<br />

be noted, we can revert to (time-based) predictive ma<strong>in</strong>tenance<br />

with MTBF values, or the technical failure rate. For<br />

this purpose it is assumed that identical parts always wear<br />

<strong>in</strong> the same way every time. The failure rate (<strong>of</strong>ten shown<br />

as a bathtub curve) can be mathematically calculated very<br />

easily us<strong>in</strong>g a Weibull distribution 4 . To calculate a reliability<br />

forecast us<strong>in</strong>g the Weibull distribution, we simply need<br />

to know the characteristic lifetime and the form factor<br />

that characterises the failure behaviour [7, 8]. However, this<br />

alternative will not be discussed further here; the quoted<br />

sources should be consulted for more <strong>in</strong>formation.<br />

Measures (ma<strong>in</strong>tenance and repairs)<br />

The necessary ma<strong>in</strong>tenance or repairs are then carried<br />

out <strong>in</strong> accordance with the forecast (5.1). These measures<br />

typically <strong>in</strong>clude clean<strong>in</strong>g, lubrication and the replacement<br />

or repair <strong>of</strong> parts. The operat<strong>in</strong>g <strong>in</strong>structions may also be<br />

updated if necessary (5.2).<br />

Cont<strong>in</strong>uous improvement<br />

The aim <strong>of</strong> cont<strong>in</strong>uous improvement <strong>in</strong> condition-based<br />

ma<strong>in</strong>tenance is to cont<strong>in</strong>ually improve the quality <strong>of</strong> ma<strong>in</strong>tenance<br />

<strong>process</strong>es through small <strong>in</strong>cremental changes.<br />

Cont<strong>in</strong>uous improvement is a central <strong>process</strong> <strong>in</strong> both<br />

knowledge <strong>management</strong> and condition-based ma<strong>in</strong>tenance,<br />

requir<strong>in</strong>g errors and weak po<strong>in</strong>ts to be cont<strong>in</strong>ually<br />

re-analysed (6.1) and optimised (6.2).<br />

Documentation<br />

Documentation is a central <strong>process</strong> with<strong>in</strong> knowledge<br />

<strong>management</strong> (7). Protect<strong>in</strong>g acquired knowledge is vital<br />

to the success <strong>of</strong> a company. Useful improvement cannot<br />

be achieved without documentation. Only once a relevant<br />

volume <strong>of</strong> data has been evaluated can weak po<strong>in</strong>ts be<br />

clearly identified and probability statements be made as<br />

to the failure behaviour <strong>of</strong> particular parts.<br />

In day-to-day operations, however, ma<strong>in</strong>tenance documentation<br />

is <strong>of</strong>ten given secondary importance or neglected<br />

altogether. As a result, the results <strong>of</strong> <strong>in</strong>spections and<br />

measures carried out <strong>of</strong>ten go unrecorded, and no record<br />

rema<strong>in</strong>s <strong>of</strong> the quantitative or qualitative measurements <strong>of</strong><br />

the actual condition or the forecasts and measures based<br />

on them. If someth<strong>in</strong>g is not documented, it is like not been<br />

done. Quite apart from the requirements <strong>of</strong> knowledge<br />

<strong>management</strong>, it should be borne <strong>in</strong> m<strong>in</strong>d that the test<strong>in</strong>g,<br />

ma<strong>in</strong>tenance and upkeep <strong>of</strong> safety equipment is required<br />

by law, and records must be kept for this reason alone. The<br />

4 The supplementary use <strong>of</strong> mathematical methods is characteristic <strong>of</strong> predictive<br />

ma<strong>in</strong>tenance.<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

69


REPORTS<br />

Heat Treatment<br />

crucial importance <strong>of</strong> documentation cannot therefore be<br />

over-emphasised.<br />

CONCLUSION<br />

A few years ago knowledge <strong>management</strong> <strong>in</strong> ma<strong>in</strong>tenance<br />

was still the exception, but it has now become an essential<br />

component <strong>of</strong> forward-look<strong>in</strong>g strategies <strong>in</strong> pr<strong>of</strong>essional<br />

ma<strong>in</strong>tenance organisations. Good knowledge <strong>management</strong><br />

enables these organisations to exploit the full potential<br />

<strong>of</strong> ma<strong>in</strong>tenance. Condition-based ma<strong>in</strong>tenance is an<br />

organisationally and technically complex task. In few areas<br />

<strong>of</strong> ma<strong>in</strong>tenance theory and practice are so closely l<strong>in</strong>ked.<br />

Condition-based ma<strong>in</strong>tenance is not possible without<br />

knowledge <strong>management</strong>, because the prediction <strong>of</strong> service<br />

life always requires a comparison <strong>of</strong> the <strong>in</strong>spection<br />

(practice) with the previously def<strong>in</strong>ed wear characteristics<br />

(theory). <strong>Knowledge</strong> managers play a central role <strong>in</strong> this<br />

<strong>process</strong>, particularly as they represent the l<strong>in</strong>k between<br />

theory and practice.<br />

<strong>Knowledge</strong> <strong>management</strong> is an ongo<strong>in</strong>g <strong>process</strong> that<br />

depends on the team performance <strong>of</strong> the organisation as<br />

a whole. When it comes to knowledge development and<br />

application <strong>in</strong> the key <strong>process</strong> <strong>of</strong> condition-based ma<strong>in</strong>tenance,<br />

manufacturers’ service teams can contribute their<br />

additional knowledge (e.g. design knowledge, <strong>process</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g, possession <strong>of</strong> the technical documentation or<br />

<strong>in</strong>formation dur<strong>in</strong>g the warranty period). This has enormous<br />

benefits for the customer, too.<br />

LITERATURE<br />

[1] Filounek, A.: <strong>Knowledge</strong> Management <strong>in</strong> the Ma<strong>in</strong>tenance <strong>of</strong><br />

Thermal Process Plants. Presentation at Aichel<strong>in</strong> Ma<strong>in</strong>tenance<br />

Forum 2013. Korntal-Münch<strong>in</strong>gen, 2013<br />

[2] Nonaka, I.; Takeuchi, H.: Die Organisation des Wissens: Wie<br />

japanische Unternehmen e<strong>in</strong>e brachliegende Ressource<br />

nutzbar machen. Frankfurt am Ma<strong>in</strong>, 1997<br />

[3] Probst, G.; Raub, S.; Romhardt, K.: Wissen managen: wie<br />

Unternehmen ihre wertvollste Ressource optimal nutzen.<br />

Gabler, Wiesbaden, 2006<br />

[4] Hiller, M.; Steck-W<strong>in</strong>ter, H.: Kooperative Instandhaltung von<br />

Thermoprozessanlagen. gwi – gaswärme <strong>in</strong>ternational<br />

3-2013, Vulkan-Verlag, Essen, 2013<br />

[5] DIN 31051:2012-09. Grundlagen der Instandhaltung. Beuth<br />

Verlag Berl<strong>in</strong>, 2012<br />

[6] VDI: Richtl<strong>in</strong>ie 2888, Zustandsorientierte Instandhaltung.<br />

Beuth Verlag, Berl<strong>in</strong>, 1999<br />

[7] Steck-W<strong>in</strong>ter, H.: Instandhaltungskennzahlen. Gaswärme<br />

International Nr. 3/2012, Vulkan Verlag Essen, 2012<br />

[8] Steck-W<strong>in</strong>ter, H.: Vorausschauende Instandhaltung von<br />

Thermoprozessanlagen. Gaswärme International Nr. 3/2011,<br />

Vulkan Verlag Essen, 2011<br />

AUTHORS<br />

Dr. Hartmut Steck-W<strong>in</strong>ter<br />

Aichel<strong>in</strong> Service GmbH<br />

Ludwigsburg, Germany<br />

Tel.: +49 (0) 7141 / 6437 106<br />

hartmut.steck-w<strong>in</strong>ter@aichel<strong>in</strong>.com<br />

Dr.-Ing. Axel Filounek<br />

Aichel<strong>in</strong> Service GmbH<br />

Ludwigsburg, Germany<br />

Tel.: +49 (0) 7141 / 6437 528<br />

axel.filounek@aichel<strong>in</strong>.com<br />

Visit us at the HK 2014<br />

Vulkan-Verlag<br />

Hall 4.1 / Booth G 018<br />

22 - 24 October 2014<br />

Koelnmesse, Cologne<br />

Germany<br />

70 heat <strong>process</strong><strong>in</strong>g 3-2014


Measur<strong>in</strong>g & Process Control<br />

REPORTS<br />

Impacts <strong>of</strong> allowed tolerances <strong>in</strong><br />

temperature on nitrid<strong>in</strong>g results<br />

by Karl-Michael W<strong>in</strong>ter<br />

In recent years, nitrid<strong>in</strong>g and nitrocarburiz<strong>in</strong>g have ga<strong>in</strong>ed more and more importance <strong>in</strong> the heat treatment <strong>of</strong> components.<br />

While only a few years ago, it has been common to perform these <strong>process</strong>es with fixed set temperatures and gas<br />

flows, today so-called potential control became state <strong>of</strong> the art. Consequently, besides appropriate temperature uniformity<br />

nowadays also permissible tolerances <strong>in</strong> atmosphere potential control are required. The article uses the example <strong>of</strong><br />

the American aerospace specifications SAE AMS2759/10 and 2750D on the extent to how the there<strong>in</strong> required tolerance<br />

bands allow for stay<strong>in</strong>g with<strong>in</strong> the specified tolerances <strong>of</strong> given compound layer thickness. Intensive experiments were<br />

conducted us<strong>in</strong>g pure iron, carbon steels AISI 1018 and 1070 , the high-tensile steel AISI 4140 and the hot work tool steel<br />

AISI H13, where potentials and temperatures have been varied over a wide range <strong>in</strong> order to make qualified conclusions.<br />

As a follow up on an article about the impact <strong>of</strong> measurement errors on nitrid<strong>in</strong>g and nitrocarburiz<strong>in</strong>g results (Gaswärme<br />

International (60) No. 3/2011 and Heat Process<strong>in</strong>g (9) No. 3/2011) requirements for measurement <strong>in</strong>struments and furnace<br />

equipment are additionally considered. In a second series <strong>of</strong> experiments, <strong>process</strong> setup has been varied, <strong>in</strong> order to<br />

quantify the <strong>in</strong>fluence <strong>of</strong> heat<strong>in</strong>g and cool<strong>in</strong>g with <strong>in</strong>ert gas or <strong>process</strong> gas and nitrogen diluted atmospheres.<br />

Goal <strong>of</strong> a classical nitrid<strong>in</strong>g / nitrocarburiz<strong>in</strong>g treatment<br />

is to <strong>in</strong>duce nitrogen / nitrogen and carbon<br />

<strong>in</strong>to the surface <strong>of</strong> a part <strong>in</strong> order to enhance its<br />

mechanical and chemical properties. The treatment is<br />

typically performed <strong>in</strong> a temperature range between 490<br />

and 590 °C. At this temperature nitrogen / nitrogen and<br />

carbon will diffuse <strong>in</strong>to the ferritic structure <strong>of</strong> the material.<br />

Because <strong>of</strong> the comparably low temperature (below<br />

A C1 <strong>in</strong> the iron – nitrogen system <strong>of</strong> ferritic steels) there<br />

will be no phase change forced <strong>in</strong> the base material and<br />

the hardness <strong>in</strong>crease is given by lattice distortion created<br />

by <strong>in</strong>terstitially placed nitrogen / nitrogen and carbon<br />

but mostly by formation <strong>of</strong> nitrides / carbonitrides with<br />

nitride form<strong>in</strong>g alloy<strong>in</strong>g elements such as chromium,<br />

alum<strong>in</strong>um, titanium etc. In addition, nitrogen also has a<br />

high aff<strong>in</strong>ity to iron which may also evolve <strong>in</strong>to the formation<br />

<strong>of</strong> a so-called compound layer (CL), also known<br />

as white layer. This very hard ceramic layer <strong>of</strong>fers very<br />

low friction and high resistivity to chemical aggression<br />

and may consist <strong>of</strong> Fe 4 N γ‘-nitrides, Fe 2-3 N[C] ε-(carbo)-<br />

nitrides or a mixture <strong>of</strong> both. Depend<strong>in</strong>g on material and<br />

the planned for stress scenario once the parts are <strong>in</strong> use,<br />

either the nitrogen diffusion depth and with it the effective<br />

hardness depth or the dimension and composition<br />

<strong>of</strong> the compound layer will be <strong>in</strong> the focus <strong>of</strong> the treatment.<br />

The temperature and atmosphere dependence <strong>of</strong><br />

the formation <strong>of</strong> such iron (carbo)-nitrides for pure iron<br />

is shown <strong>in</strong> the Lehrer Diagram (Fig. 1).<br />

Fig. 1: Fe-N Lehrer Diagram with iso-concentration-l<strong>in</strong>es<br />

for Nitrogen <strong>in</strong> the Epsilon phase [1, 2], nitrid<strong>in</strong>g<br />

potential K N <strong>in</strong> bar -0.5<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

71


REPORTS<br />

Measur<strong>in</strong>g & Process Control<br />

Fig. 2: K N ranges for AISI 4140 versus temperature for white layer thickness<br />

classes 0, 1 and 2<br />

Specified parameters for nitrided and nitrocarburized<br />

parts are [3]:<br />

■■<br />

Surface hardness,<br />

■■<br />

Core hardness,<br />

■■<br />

Case depth (NHD for nitrid<strong>in</strong>g hardness depth), either<br />

effective (<strong>in</strong> relation to a given reference hardness) or<br />

core hardness plus 50 HV,<br />

■■<br />

Compound layer thickness (CLT).<br />

Often, there might be additional requirements such as:<br />

■■<br />

Compound layer composition,<br />

■■<br />

Thickness <strong>of</strong> allowed for porous layer respectively percentage<br />

<strong>of</strong> porosity.<br />

The nitrid<strong>in</strong>g <strong>process</strong>es discussed <strong>in</strong> the article will ma<strong>in</strong>ly<br />

focus on a comparably deep diffusion depth to <strong>in</strong>crease<br />

load resistance. In this <strong>process</strong> the formation <strong>of</strong> a compound<br />

layer is rather unwanted as this layer is very brittle<br />

and tends to break out; consequently the thickness <strong>of</strong> the<br />

compound layer should not exceed a given limit.<br />

SPECIFICATIONS<br />

As early as <strong>in</strong> 1987, the SAE International, an <strong>in</strong>ternationally<br />

active U.S. American organization for standardization <strong>of</strong><br />

automotive and aerospace part manufactur<strong>in</strong>g <strong>in</strong>troduced<br />

a specification for nitrid<strong>in</strong>g <strong>of</strong> aerospace parts, giv<strong>in</strong>g a classification<br />

<strong>of</strong> the treated parts <strong>in</strong> relation to the maximum<br />

allowed for compound layer thickness. In the document,<br />

nitrid<strong>in</strong>g parameters temperature and dissociation degree<br />

are specified [4]. Classified are: nitrid<strong>in</strong>g to a maximum<br />

compound layer thickness <strong>of</strong> either 12.7 microns (Class 1)<br />

or 23 microns (Class 2). In order to achieve the given classes,<br />

the specification also requires good temperature uniformity<br />

(+/- 8 °C) and a tight control <strong>of</strong> the dissociation (+/- 5 % <strong>of</strong><br />

setpo<strong>in</strong>t). The <strong>process</strong> may be performed <strong>in</strong> one or two<br />

stages, the stages differ<strong>in</strong>g <strong>in</strong> temperature, dissociation<br />

or both. Typically the first stage starts at low temperature<br />

and low dissociation followed by a second stage at<br />

higher temperature and high dissociation. The first stage<br />

(nucleation) is aim<strong>in</strong>g for a very little closed compound<br />

layer, later used as a diffusion reservoir, while the second<br />

stage uses the higher temperature to produce the desired<br />

case depth without excessively <strong>in</strong>creas<strong>in</strong>g the compound<br />

layer thickness.<br />

The dissociation degree is given by the <strong>thermal</strong> dissociation<br />

<strong>of</strong> ammonia (1) <strong>in</strong>to nitrogen and hydrogen and<br />

describes the percentage <strong>in</strong> the exhaust gas no longer<br />

be<strong>in</strong>g ammonia. Dissociation can easily be measured us<strong>in</strong>g<br />

a water burette.<br />

(1) Thermal dissociation<br />

Unfortunately, this specification is not applicable to nitrogen<br />

diluted atmospheres as the ratio between ammonia<br />

and dissociated ammonia cannot be determ<strong>in</strong>ed correctly.<br />

Partially out <strong>of</strong> this reason, the requirements have been<br />

modified <strong>in</strong> 1999 by launch<strong>in</strong>g the AMS2759/10 [5]. In this<br />

specification the atmosphere control parameter dissociation<br />

has been replaced by the nitrid<strong>in</strong>g potential K N , better<br />

describ<strong>in</strong>g nitrid<strong>in</strong>g phenomena and not affected by<br />

nitrogen dilution. In addition to the two classes specified<br />

<strong>in</strong> AMS2759/6 a new class has been added aim<strong>in</strong>g for no<br />

compound layer at all (Class 0). The limits for classes one<br />

and two have been slightly changed to 13 microns and<br />

25 microns.<br />

From the nitrid<strong>in</strong>g reaction (2) can be observed that the<br />

nitrogen uptake is proportional to the partial pressure ratio<br />

<strong>of</strong> ammonia to hydrogen; establish<strong>in</strong>g equilibrium between<br />

atmosphere and nitrogen percentage <strong>in</strong> the very surface<br />

<strong>of</strong> the material which can be described by the nitrid<strong>in</strong>g<br />

potential (3) and the actual <strong>process</strong> conditions, given by<br />

temperature and percentages <strong>of</strong> alloy<strong>in</strong>g elements.<br />

(2) Nitrid<strong>in</strong>g reaction<br />

(3) Nitrid<strong>in</strong>g potential<br />

In atmosphere consist<strong>in</strong>g exclusively <strong>of</strong> ammonia and dissociated<br />

ammonia both atmosphere parameters can easily<br />

be converted <strong>in</strong>to each other (4).<br />

(4) with D = Dissociation /<br />

100 %<br />

Like the older specification, the newer AMS2759/10 is giv<strong>in</strong>g<br />

tolerances for the <strong>process</strong> parameters.<br />

72 heat <strong>process</strong><strong>in</strong>g 3-2014


Measur<strong>in</strong>g & Process Control<br />

REPORTS<br />

Table 1: Recommended ranges <strong>of</strong> nitrid<strong>in</strong>g potential <strong>in</strong> AMS2759/10A (Excerpt)<br />

Steel Class 0 (no CL) Class 1 (max. 13 μm) Class 2 (max. 25 μm)<br />

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2<br />

AISI 4140 4-12 0.25-0.7 4-15 0.6-2.6 4-15 1.2-4.5<br />

Carbon Steel N/A N/A 5-12 0.8-2.6 1.2-4.0 N/A<br />

PROCESS PARAMETERS AND TOLERANCES<br />

AMS2759/10 is def<strong>in</strong><strong>in</strong>g setpo<strong>in</strong>ts for the controlled nitrid<strong>in</strong>g<br />

potential depend<strong>in</strong>g on compound layer class and steel<br />

grade, for one and two stage <strong>process</strong>es (see Table 1). As<br />

the allowed for temperature range is set between 490 and<br />

590 °C, the table is <strong>in</strong>terpreted <strong>in</strong> such a way that at 490 °C<br />

the higher nitrid<strong>in</strong>g potential has to be applied and at<br />

590 °C the lower. In between the two extremes the potential<br />

is determ<strong>in</strong>ed by l<strong>in</strong>ear <strong>in</strong>terpolation. If, for example, an<br />

AISI 4140 shall be nitrided without formation <strong>of</strong> a compound<br />

layer at 548 °C, <strong>in</strong> the first stage a nitrid<strong>in</strong>g potential <strong>of</strong> 7.3<br />

(range 4-12) has to be applied. In the second stage, at the<br />

same temperature, the nitrid<strong>in</strong>g potential has to be reduced<br />

to 0.44 (range 0.25-0.7). Fig. 2 displays K N ranges versus<br />

temperature for this particular steel and all three classes. The<br />

black dashed l<strong>in</strong>es represent the phase boundaries towards<br />

Fe4N and Fe2-3N <strong>in</strong> the Lehrer Diagram.<br />

The atmosphere controller has to be able to ma<strong>in</strong>ta<strong>in</strong><br />

an actual nitrid<strong>in</strong>g potential stay<strong>in</strong>g with<strong>in</strong> +/- 10 % <strong>of</strong> the<br />

setpo<strong>in</strong>t. The maximum allowed for tolerances <strong>in</strong> our example<br />

come to 7.3 +/- 0.73 <strong>in</strong> stage one and 0.44 +/- 0.044 <strong>in</strong><br />

stage two.<br />

REQUIREMENTS ON MEASUREMENT<br />

EQUIPMENT<br />

Assum<strong>in</strong>g the <strong>process</strong> gas is consist<strong>in</strong>g <strong>of</strong> ammonia and<br />

dissociated ammonia only, the setpo<strong>in</strong>ts for nitrid<strong>in</strong>g<br />

potential can be converted <strong>in</strong>to volume percentages <strong>of</strong><br />

ammonia and hydrogen <strong>in</strong> exhaust. Dur<strong>in</strong>g stage one,<br />

residual ammonia has to be ma<strong>in</strong>ta<strong>in</strong>ed between 70.2<br />

and 73.0 %, the accord<strong>in</strong>g hydrogen percentage range<br />

comes to 20.2 to 22.4 %. For stage two, the ammonia<br />

percentage comes to 19.1 and 21.9 % and the hydrogen<br />

percentage comes to 60.7 and 58.6 %. Consequently, the<br />

measurement <strong>of</strong> ammonia requires a m<strong>in</strong>imum accuracy<br />

<strong>of</strong> 1.8 %, the measurement <strong>of</strong> hydrogen requires an accuracy<br />

<strong>of</strong> 2.1 %; both numbers related to a full scale (FS) <strong>of</strong><br />

100 %. These requirements, per se, should not cause any<br />

problems for commercially available measurement technique<br />

but the conditions will change over a range from<br />

zero to full scale and behave reciprocal for ammonia and<br />

hydrogen. If only one <strong>in</strong>strument is used to determ<strong>in</strong>e the<br />

nitrid<strong>in</strong>g potential and the correspond<strong>in</strong>g partial pressure<br />

is calculated, this will result <strong>in</strong> non-negligible errors. Fig. 3<br />

illustrates the relative error <strong>in</strong> calculated nitrid<strong>in</strong>g potential<br />

determ<strong>in</strong>ed by a<br />

hydrogen measurement<br />

and allow<strong>in</strong>g<br />

for vary<strong>in</strong>g allowed<br />

for tolerances on<br />

the full scale error.<br />

The deviations <strong>in</strong><br />

the hydrogen measurement<br />

are given<br />

<strong>in</strong> absolute volume<br />

percentages.<br />

Table 2: Furnace classes accord<strong>in</strong>g<br />

to AMS2750 D [7]<br />

(Excerpt)<br />

Furnace class<br />

Temperature<br />

uniformity<br />

1 +/- 3 °C<br />

2 +/- 6 °C<br />

3 +/- 8 °C<br />

4 +/- 10 °C<br />

REQUIREMENTS ON<br />

TEMPERATURE UNIFORMITY<br />

Nitrid<strong>in</strong>g equipment respectively heat treat<strong>in</strong>g furnaces<br />

are classified accord<strong>in</strong>g to their temperature uniformity.<br />

E.g. AMS2750D [7], orig<strong>in</strong>ally serv<strong>in</strong>g as basis for CQI-9, differentiates<br />

furnaces <strong>in</strong> an order shown <strong>in</strong> Table 2.<br />

Allow<strong>in</strong>g for a tolerance <strong>in</strong> temperature throughout the<br />

load automatically results <strong>in</strong> a variation <strong>in</strong> nitrid<strong>in</strong>g potential,<br />

as this number is a function <strong>of</strong> temperature accord<strong>in</strong>g<br />

to AMS2759/10. Consequently this raises the question at<br />

what allowed for temperature deviation the derived nitrid-<br />

Fig. 3: Relative error <strong>in</strong> the calculated nitrid<strong>in</strong>g potential<br />

<strong>of</strong> Ammonia – dissociated Ammonia atmosphere<br />

when us<strong>in</strong>g a Hydrogen analyzer [6]<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

73


REPORTS<br />

Measur<strong>in</strong>g & Process Control<br />

In addition, it is possible to set a higher surface nitrogen<br />

content (8), also <strong>in</strong>creas<strong>in</strong>g the growth rate.<br />

(6) Influence <strong>of</strong> diffusion coefficient on<br />

layer growth<br />

(7) Influence <strong>of</strong> temperature on diffusion<br />

coefficient<br />

(8) Influence <strong>of</strong> surface nitrogen<br />

content (cs) on layer growth<br />

referenced to specified<br />

nitrogen content (cx)<br />

Fig. 4: K N ranges for AISI 4140 versus temperature for white layer thickness<br />

classes 0, 1 and 2<br />

<strong>in</strong>g number will stay with<strong>in</strong> the given tolerances. Fig. 4<br />

shows a part <strong>of</strong> Fig. 2 at a temperature setpo<strong>in</strong>t <strong>of</strong> 548 °C<br />

and a maximum deviation <strong>of</strong> +/- 8 °C (furnace class 3). It<br />

can be seen that up to this furnace class the graph <strong>of</strong> the<br />

temperature dependent nitrid<strong>in</strong>g number is still with<strong>in</strong> the<br />

allowed for tolerance at set temperature. If a <strong>process</strong> would<br />

be performed <strong>in</strong> a higher furnace class, the <strong>process</strong> would<br />

not be longer comply<strong>in</strong>g with the specification. Based on<br />

a temperature setpo<strong>in</strong>t <strong>of</strong> 548 °C, the diagram displays a<br />

temperature range represent<strong>in</strong>g furnaces classes 1 through<br />

3. Nitrid<strong>in</strong>g potentials are shown with<strong>in</strong> the allowed for<br />

tolerances. The black dashed l<strong>in</strong>es represent the phase<br />

boundaries towards Fe 4 N and Fe 2-3 N <strong>in</strong> the Lehrer Diagram.<br />

PARAMETERS INFLUENCING<br />

COMPOUND LAYER GROWTH<br />

Hav<strong>in</strong>g a look on the allowed for tolerances presented up<br />

to this po<strong>in</strong>t <strong>in</strong> the article raises the question on how these<br />

deviations <strong>in</strong> temperature and potential will <strong>in</strong>fluence the<br />

growth <strong>of</strong> the compound layer and if it will still be possible<br />

to reach the required results. First <strong>of</strong> all, the growth <strong>of</strong> the<br />

compound layer is follow<strong>in</strong>g a square root <strong>of</strong> time law (5).<br />

(5) Diffusion controlled growth rate<br />

But this is only valid if a) the temperature and with it the<br />

diffusion coefficient and b) the expected percentage <strong>of</strong><br />

nitrogen <strong>in</strong> the surface <strong>in</strong> equilibrium with the atmosphere<br />

are constant. As an analogy, Fig. 5 is display<strong>in</strong>g the growth<br />

<strong>of</strong> a carbon pr<strong>of</strong>ile depend<strong>in</strong>g on time, temperature and<br />

carbon potential, achieved <strong>in</strong> a carburiz<strong>in</strong>g <strong>process</strong>. With<br />

<strong>in</strong>creas<strong>in</strong>g temperature the diffusion speed is <strong>in</strong>creas<strong>in</strong>g<br />

and consequently the growth <strong>of</strong> the layer is <strong>in</strong>creased (6, 7).<br />

NITRIDING TESTS<br />

A series <strong>of</strong> heat treatments has been performed on various<br />

steels <strong>in</strong> order to validate the <strong>in</strong>fluence <strong>of</strong> <strong>process</strong> parameters<br />

temperature and nitrid<strong>in</strong>g potential. Samples made<br />

from iron, carbon steels AISI 1018 and 1070, low alloy steel<br />

AISI 4140 and hot work<strong>in</strong>g steel AISI H13 were nitrided for<br />

4.5, 5 and 5.5 hours soak time at temperatures <strong>of</strong> 550 °C<br />

+/- 10 °C and a nitrid<strong>in</strong>g potential <strong>of</strong> K N = 3.5. Parts have<br />

been loaded <strong>in</strong>to the cold furnace, heated to 360 °C <strong>in</strong><br />

air and held for 5 m<strong>in</strong>utes. Afterwards the furnace was<br />

purged with nitrogen, filled with <strong>process</strong> gas and heated to<br />

<strong>process</strong> temperature <strong>in</strong> about 30 m<strong>in</strong>utes. After soak time,<br />

parts were cooled down to about 100 °C with nitrogen<br />

flow, with<strong>in</strong> approximately one hour. Test results <strong>in</strong>clud<strong>in</strong>g<br />

expected (calculated) results are listed <strong>in</strong> Table 3.<br />

It is clearly to observe that the measured results for the<br />

lower tolerance limit <strong>of</strong> temperature (550 °C - 10 °C) show<br />

good agreement with the calculated values, except for the<br />

hot work<strong>in</strong>g steel H13. However, at the upper tolerance limit<br />

(550 °C + 10 °C) measured compound layer thicknesses<br />

were significantly higher than expected. Fig. 6 illustrates<br />

this effect with the example <strong>of</strong> iron. A possible explanation<br />

for these differences is the higher effective nitrid<strong>in</strong>g<br />

potential <strong>in</strong> the phase diagram at the higher temperature<br />

and a longer heat<strong>in</strong>g time. Both effects have not been<br />

considered <strong>in</strong> the calculation.<br />

Table 3: Average measured and [expected] CL thicknesses<br />

for 550 °C, K N = 3.5, 5.5 hrs.<br />

Material<br />

Temperature<br />

540 °C 550 °C 560 °C<br />

Iron 12.5 [13.5] 15 23 [16.7]<br />

1018 8.5 [7.7] 10 20 [11.1]<br />

1070 13 [12.6] 14 18 [15.1]<br />

4140 9 [7.2] 8 15 [8.9]<br />

H13 2 [6.3] 7 7.5 [7.8]<br />

74 heat <strong>process</strong><strong>in</strong>g 3-2014


Measur<strong>in</strong>g & Process Control<br />

REPORTS<br />

Fig. 5: Parameters time (left), temperature (center) and temperature and carbon potential (right)<br />

INFLUENCE OF NITRIDING POTENTIAL ON<br />

THE GROWTH OF THE COMPOUND LAYER<br />

In a second series <strong>of</strong> tests performed at 550 °C, the nitrid<strong>in</strong>g<br />

potential was raised to K N = 10. The expected results were<br />

estimated us<strong>in</strong>g data from an extensive study conducted<br />

by the Stiftung Institut für Werkst<strong>of</strong>ftechnik (IWT) <strong>in</strong> Bremen<br />

[8] several years ago. Fig. 7 is based on data from this<br />

study, which was presented by Dr. Klümper-Westkamp<br />

dur<strong>in</strong>g a nitrid<strong>in</strong>g conference <strong>in</strong> Canada. The black dashed<br />

l<strong>in</strong>es show the phase boundaries towards Fe 4 N (left) and<br />

Fe 2-3 N (right) for iron. The red dashed l<strong>in</strong>e represents the<br />

phase boundary towards Fe 2-3 N[C] corrected for the carbon<br />

content <strong>of</strong> the steel.<br />

Us<strong>in</strong>g the square root <strong>of</strong> time relation and tak<strong>in</strong>g the<br />

change <strong>in</strong> diffusion speed and the temperature dependent<br />

displacement <strong>of</strong> the phase boundaries <strong>in</strong>to account, it is possible<br />

to transfer the diagram shown <strong>in</strong> Fig. 7 to the actual test<br />

conditions (550 °C, 5.5 hours soak time). The calculation for<br />

the Ck15 performed with HT-Tools Nitrid<strong>in</strong>g Simulation results<br />

<strong>in</strong> a compound layer thickness <strong>of</strong> 9 microns at K N = 3.5 and<br />

12 microns at K N = 10. The measured values for the AISI 1018,<br />

with very similar chemical composition, showed an average<br />

<strong>of</strong> 10 microns at K N = 3.5 and 12 microns for K N = 10.<br />

INFLUENCE OF TOLERANCE LIMITS ON THE<br />

ABILITY TO REACH THE SPECIFIED CLT<br />

In the same manner the expected variations were also estimated<br />

for the other steels and compared with the experimental<br />

results. From the results summarized <strong>in</strong> Table 4 can<br />

be seen that it is possible to meet the specification given<br />

for class 2 (13-25 microns CLT) for all the steels tested, with<br />

the exception <strong>of</strong> AISI 4140, and allow<strong>in</strong>g for a tolerance<br />

<strong>of</strong> +/- 10 °C <strong>in</strong> temperature and +/- 10 % variation <strong>in</strong> the<br />

nitrid<strong>in</strong>g potential.<br />

INFLUENCE OF PROCESS SETUP ON THE<br />

ABILITY TO REACH THE SPECIFIED CLT<br />

In another series <strong>of</strong> experiments, changes were made <strong>in</strong> the<br />

<strong>process</strong> setup. The aim was to determ<strong>in</strong>e the role played by<br />

heat<strong>in</strong>g with nitrogen as opposed to heat<strong>in</strong>g with <strong>process</strong><br />

Fig. 6: Calculated (red) und measured (blue) white layer<br />

thickness at constant K N and soak time for temperature<br />

deviation <strong>of</strong> +/- 10 °C<br />

Fig. 7: Measured white layer thickness for a Ck15, nitrided at 570 °C,<br />

10 hours soak time with vary<strong>in</strong>g nitrid<strong>in</strong>g potentials<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

75


REPORTS<br />

Measur<strong>in</strong>g & Process Control<br />

Table 4: Achievable tolerances <strong>in</strong> CLT when treated to class 2<br />

(13-25 μm WL) with allowed for +/- 10 % <strong>in</strong> nitrid<strong>in</strong>g<br />

potential <strong>in</strong> furnaces <strong>of</strong> classes 1 through 4<br />

Furnace class<br />

Material<br />

1: +/- 3 °C 2: +/- 6 °C 3: +/- 8 °C 4: +/- 10 °C<br />

Iron 17-21 16-22 16-22 15-23<br />

1018 18-20 17-21 17-21 16-22<br />

1070 17-20 16-20 16-21 16-21<br />

4140 10-21 10-22 10-23 10-23<br />

H13 16-20 15-21 15-21 15-22<br />

Table 5: White layer thickness μm after 5 hours at 550 °C and K N = 10<br />

Material Iron 1018 1070 4140 H13<br />

Nitrogen 22-23 N/A 16-25 12-16 9-13<br />

Ammonia 23-25 10-15 15-20 17-24 7-12<br />

gas and the use <strong>of</strong> nitrogen diluted atmospheres on layer<br />

formation and composition.<br />

For the heat<strong>in</strong>g experiments a <strong>process</strong> at 550 °C and<br />

K N = 10 was performed for 5 hours soak time, then cooled<br />

under nitrogen with<strong>in</strong> about one hour to 100 °C. The heat<strong>in</strong>g<br />

was carried out <strong>in</strong> a time span <strong>of</strong> about 1.5 hours, first with<br />

ammonia, next with nitrogen. Table 5 shows the achieved<br />

compound layer thicknesses. As might be expected, the<br />

compound layer thicknesses reached for heat<strong>in</strong>g with<br />

ammonia where slightly above the ones reached for heat<strong>in</strong>g<br />

with nitrogen. Heat<strong>in</strong>g was performed dur<strong>in</strong>g 1.5 hours with<br />

ammonia and with nitrogen. The parts have been cooled<br />

down with nitrogen for about one hour. Interest<strong>in</strong>g at this<br />

po<strong>in</strong>t is that for the AISI H13 little difference <strong>in</strong> the compound<br />

layer thickness was found, but the diffusion zone<br />

was significantly affected. While for heat<strong>in</strong>g under ammonia<br />

100 microns diffusion layer was achieved, for heat<strong>in</strong>g under<br />

nitrogen this was reduced to only 90 microns.<br />

Theoretically, AMS2759/10 should allow for diluted atmospheres,<br />

s<strong>in</strong>ce <strong>in</strong> this <strong>process</strong> the nitrid<strong>in</strong>g potential is controlled.<br />

However, <strong>in</strong> the past already Zimdars [9] proved that<br />

the results are strongly <strong>in</strong>fluenced with <strong>in</strong>creas<strong>in</strong>g dilution<br />

and the concomitant decrease <strong>in</strong> residual ammonia, despite<br />

constant nitrid<strong>in</strong>g potential, when reach<strong>in</strong>g a certa<strong>in</strong> dilution.<br />

From Table 6 it can be seen that a nitrogen dilution results<br />

<strong>in</strong> lower CLT. This is especially true for the higher alloyed H13,<br />

where no compound layer was observed at 90 % dilution. In<br />

addition, start<strong>in</strong>g with 70 % dilution the diffusion zone was<br />

not provided with sufficient nitrogen flow. This is expla<strong>in</strong>ed<br />

by the fact that no perfect nucleation on the surface has<br />

taken place, which results <strong>in</strong> an <strong>in</strong>sufficient and very irregular<br />

nitrid<strong>in</strong>g by itself.<br />

CONCLUSION<br />

The test results have shown that both, variations <strong>in</strong> temperature<br />

(+/- 10 °C) and variations <strong>in</strong> nitrid<strong>in</strong>g potential (+/- 10 %)<br />

have a non-negligible <strong>in</strong>fluence on the growth <strong>of</strong> the compound<br />

layer. The result<strong>in</strong>g too low nitrid<strong>in</strong>g potentials at the<br />

lower end <strong>of</strong> the temperature band as well as the too high<br />

nitrid<strong>in</strong>g potentials at the upper end <strong>of</strong> the temperature<br />

band, assum<strong>in</strong>g constant gas conditions, lead to a greater<br />

difference <strong>in</strong> CLT than expected from temperature deviation<br />

affect<strong>in</strong>g the diffusion speed only.<br />

Both allowed for tolerance bands require controll<strong>in</strong>g the<br />

nitrid<strong>in</strong>g potential to a value far enough away from the phase<br />

boundaries; the distance also reflect<strong>in</strong>g the capabilities <strong>of</strong> the<br />

measurement system and control deviations; this is taken <strong>in</strong>to<br />

account <strong>in</strong> the AMS2759/10. A treatment to class 1 and class 2<br />

(≤ 13 microns / ≤ 25 microns) can theoretically be performed<br />

<strong>in</strong> a furnace <strong>of</strong> class 3 (+/- 8 °C) and class 4 (+/- 10 °C).<br />

The steel AISI 4140 showed unexpected deviations for<br />

all tests performed and this will be <strong>in</strong>vestigated <strong>in</strong>to <strong>in</strong> a<br />

separate study. A treatment to class 0 (no compact layer<br />

permitted) requires the use <strong>of</strong> measurement devices with<br />

a maximum FS error <strong>of</strong> 0.5 % or better due to the very little<br />

distance to the phase boundaries.<br />

Process setup also has a tremendous <strong>in</strong>fluence on the<br />

nitrid<strong>in</strong>g result; e.g. heat<strong>in</strong>g with nitrogen requires longer<br />

nitrid<strong>in</strong>g times compared to heat<strong>in</strong>g <strong>in</strong> ammonia. As a consequence,<br />

parts with geometrical variations, such as a solid<br />

block with attached f<strong>in</strong>s, where the f<strong>in</strong>s will be heated faster<br />

Table 6: White layer thickness <strong>in</strong> μm after performed with vary<strong>in</strong>g nitrogen dilution<br />

Material<br />

N 2 Dilution<br />

Iron 1018 1070 4140 H13<br />

0 % 23-25 10-15 15-20 17-24 7-12 100<br />

20 % 19-21 26-32 14-25 13-16 8-9 100<br />

45 % 20-21 10-12 23 15-25 8-10 100<br />

70 % 17-19 16-19 20-27 12-17 7-9 95<br />

90 % 13-14 8-10 14-20 8-15 0 10-60<br />

H13 Diffusion<br />

Zone<br />

76 heat <strong>process</strong><strong>in</strong>g 3-2014


Measur<strong>in</strong>g & Process Control<br />

REPORTS<br />

compared to the solid block, should be heated <strong>in</strong> nitrogen<br />

and temperature stabilized prior to start <strong>in</strong>ject<strong>in</strong>g the nitrid<strong>in</strong>g<br />

atmosphere, <strong>in</strong> order not to risk non-uniform nitrid<strong>in</strong>g.<br />

Nitrogen dilution eventually will result <strong>in</strong> non-uniformly<br />

nitrided layers even if the nitrid<strong>in</strong>g potential is controlled<br />

perfectly to the setpo<strong>in</strong>t.<br />

ACKNOWLEDGEMENTS<br />

I would like to thank my colleagues Dimitri Koshel and Paulo<br />

Abrantes from Nitrex Montreal who performed the tests and<br />

evaluated the samples.<br />

[5] S.A.E. Aerospace: AMS2759/10A, Automated Gaseous Nitrid<strong>in</strong>g<br />

Controlled by Nitrid<strong>in</strong>g Potential<br />

[6] W<strong>in</strong>ter, K.-M.: Auswirkungen von Messfehlern auf das Behandlungsergebnis<br />

beim Nitrieren und Nitrocarburieren. Gaswärme<br />

International (60) Nr. 3/2011 and Heat Process<strong>in</strong>g (9) Nr. 3/2011<br />

[7] S.A.E. Aerospace: AMS2750D, Pyrometry<br />

[8] Klümper-Westkamp, H.: Multi Sensor Controlled Gas Nitrocarburiz<strong>in</strong>g<br />

for Optimized Properties <strong>of</strong> Component Parts and<br />

Tools, Vortrag auf dem Nitriersem<strong>in</strong>ar <strong>in</strong> Montreal, 2005<br />

[9] Zimdars, H.: Technologische Grundlagen für die Erzeugung<br />

nitridhaltiger Schichten <strong>in</strong> stickst<strong>of</strong>fangereicherten Nitrieratmosphären,<br />

Dissertation, TU Freiberg 1987<br />

LITERATURE<br />

[1] Lehrer, E.: Über das Eisen-Wasserst<strong>of</strong>f-Ammoniak-Gleichgewicht.<br />

Zeitschrift für Elektrochemie 36, 1930, p. 383-392<br />

[2] Spies, H.-J.; Berg, H.-J.; Zimdars, H.: Fortschritte beim sensorkontrollierten<br />

Gasnitrieren und -nitrocarburieren. Zeitschrift für<br />

Werkst<strong>of</strong>fe, Wärmebehandlung, Fertigung - HTM, 58, 4/2003, p.<br />

189-197<br />

[3] DIN ISO 15787: Technische Produktdokumentation - Wärmebehandelte<br />

Teile aus Eisenwerkst<strong>of</strong>fen - Darstellung und Angaben<br />

[4] S.A.E. Aerospace: AMS2759/6A, Gas Nitrid<strong>in</strong>g and Heat Treatment<br />

<strong>of</strong> Low-Alloy Steel Parts<br />

AUTHOR<br />

Dipl.-Ing. (FH) Karl-Michael W<strong>in</strong>ter<br />

Process-Electronic GmbH<br />

He<strong>in</strong><strong>in</strong>gen, Germany<br />

Tel.: +49 (0) 7161 / 94888-0<br />

km.w<strong>in</strong>ter@<strong>process</strong>-electronic.com<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

77


6th All Indian Exhibition<br />

& Conference for the<br />

Tube and Pipe Industries<br />

www.tube-<strong>in</strong>dia.com<br />

28 – 30 October 2014<br />

5th International Exhibition<br />

& Conference on Metallurgical<br />

Technology, Material Handl<strong>in</strong>g<br />

and Services<br />

www.metallurgy-<strong>in</strong>dia.com<br />

Bombay Convention & Exhibition Centre, Mumbai, India<br />

Held <strong>in</strong> conjunction with:<br />

WELDING<br />

Messe Düsseldorf GmbH<br />

CUTTING<br />

P.O. Box 10 10 06 _ 40001 Düsseldorf _ Germany<br />

&<br />

Phone +49 (0) 2 11/45 60-77 62 _ Fax +49 (0) 2 11/45 60-77 40<br />

SchreiberG@messe-duesseldorf.de<br />

78 heat <strong>process</strong><strong>in</strong>g 3-2014<br />

www.messe-duesseldorf.de


Induction Technology<br />

REPORTS<br />

Magnetic flux control <strong>in</strong><br />

<strong>in</strong>duction systems<br />

by Valent<strong>in</strong> Nemkov<br />

Magnetic flux controllers are widely used <strong>in</strong> <strong>in</strong>duction heat<strong>in</strong>g systems for concentration, shield<strong>in</strong>g or redistribution <strong>of</strong><br />

the magnetic field which generates power <strong>in</strong> the part to be heated. Controllers, made <strong>of</strong> S<strong>of</strong>t Magnetic Composites<br />

(SMC), provide accurate heat pattern control, improve parameters <strong>of</strong> <strong>in</strong>ductors and performance <strong>of</strong> the entire <strong>in</strong>stallation.<br />

In melt<strong>in</strong>g systems, especially <strong>in</strong> the case <strong>of</strong> vacuum furnaces, cold crucible and other specialty furnaces, the magnetic<br />

control can provide large energy sav<strong>in</strong>gs, magnetic field shield<strong>in</strong>g, shorter melt<strong>in</strong>g cycles and optimized field distribution<br />

for enhancement <strong>of</strong> the metallurgical <strong>process</strong>es. Due to the diversity <strong>of</strong> applications, service conditions <strong>of</strong> controllers<br />

are very different <strong>in</strong>clud<strong>in</strong>g very severe cases. Mechanical, magnetic, electrical, <strong>thermal</strong> and other properties must be<br />

considered <strong>in</strong> design and application <strong>of</strong> SMC. This article describes properties and performance <strong>of</strong> SMC typically used<br />

<strong>in</strong> <strong>in</strong>duction heat<strong>in</strong>g technology. Several presented case stories are based on more than 20 years <strong>of</strong> R&D and practical<br />

experience <strong>of</strong> scientists and practitioners at Fluxtrol, Inc. Presented material may be <strong>in</strong>terest<strong>in</strong>g not only for <strong>in</strong>duction<br />

heat<strong>in</strong>g community but also for all people us<strong>in</strong>g AC magnetic fields <strong>in</strong> technological <strong>process</strong>es.<br />

Magnetic flux control, i.e. modification <strong>of</strong> the<br />

magnetic field distribution and <strong>in</strong>tensity may<br />

be accomplished by variation <strong>of</strong> shape and<br />

position<strong>in</strong>g <strong>of</strong> the <strong>in</strong>duction coil turns, by <strong>in</strong>sertion <strong>of</strong><br />

the non-magnetic shields or the magnetic templates<br />

that may be all called the magnetic controllers. Each<br />

method <strong>of</strong> magnetic control has its own advantages,<br />

drawbacks and limitations.<br />

Induction coil designers pay ma<strong>in</strong> attention to optimisation<br />

<strong>of</strong> active conductors, their size, number and<br />

position. They try to avoid us<strong>in</strong>g additional components<br />

for the magnetic flux control <strong>in</strong> order to simplify<br />

design, reduce cost and possibility <strong>of</strong> the potential coil<br />

life time reduction. This approach is understandable<br />

but it is only partially correct. In today’s competitive<br />

market with new materials and technologies, more<br />

strict demands to the product quality and ergonomic<br />

requirements force us to review the exist<strong>in</strong>g guidel<strong>in</strong>es<br />

and make corrections to the design procedure. The<br />

ma<strong>in</strong> tool for that is computer simulation which can<br />

predict not only the <strong>process</strong> parameters but also life<br />

time <strong>of</strong> tool<strong>in</strong>g (<strong>in</strong>ductors) and service properties <strong>of</strong><br />

the f<strong>in</strong>al products [1]. Different methods <strong>of</strong> magnetic<br />

flux control must be considered <strong>in</strong> the <strong>process</strong> <strong>of</strong> new<br />

system development and modification <strong>of</strong> the exist<strong>in</strong>g<br />

equipment.<br />

Non-magnetic controllers (shields), typically made<br />

<strong>in</strong> the form <strong>of</strong> copper r<strong>in</strong>gs (Faraday r<strong>in</strong>gs), sheets or<br />

massive copper blocks, are <strong>of</strong>ten called “Robber R<strong>in</strong>gs”.<br />

Their use leads to <strong>in</strong>crease <strong>in</strong> the coil current, reduction<br />

<strong>in</strong> the <strong>in</strong>duction coil power factor and efficiency. However<br />

they may be less expensive and give good results<br />

<strong>in</strong> the case <strong>of</strong> shield<strong>in</strong>g. Magnetic flux concentration<br />

and accurate control <strong>of</strong> the power distribution by us<strong>in</strong>g<br />

Faraday r<strong>in</strong>gs are very problematic and require significant<br />

power adjustment.<br />

Use <strong>of</strong> magnetic flux controllers, made <strong>of</strong> s<strong>of</strong>t magnetic<br />

materials (steel lam<strong>in</strong>ations, ferrites and magnetic composites),<br />

is addressed <strong>in</strong> this paper. Application <strong>of</strong> magnetic<br />

controllers can <strong>in</strong>crease field <strong>in</strong>tensity <strong>in</strong> required areas<br />

(field concentration), change field distribution, shield certa<strong>in</strong><br />

areas from un<strong>in</strong>tended heat<strong>in</strong>g and strongly reduce<br />

magnetic field <strong>in</strong> external space. Typically several effects<br />

are be<strong>in</strong>g achieved simultaneously and a reasonable<br />

compromise must be found <strong>in</strong> the <strong>process</strong> <strong>of</strong> design.<br />

In some cases it is difficult or even impossible to meet<br />

specifications <strong>of</strong> heat<strong>in</strong>g without application <strong>of</strong> magnetic<br />

controllers. Effects <strong>of</strong> us<strong>in</strong>g magnetic controllers, design<br />

guidel<strong>in</strong>es and results prediction with the help <strong>of</strong> computer<br />

simulation are described <strong>in</strong> multiple publications [1-3].<br />

This presentation is focused on performance <strong>of</strong> materials<br />

used for magnetic flux control <strong>in</strong> different applications.<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

79


REPORTS<br />

Induction Technology<br />

MATERIALS FOR MAGNETIC FLUX CONTROL<br />

Ferrites<br />

Use <strong>of</strong> ferrites for magnetic flux control <strong>in</strong> <strong>in</strong>duction systems<br />

is limited to high frequency applications (typically<br />

above 100 kHz) such as impeders for HF tube weld<strong>in</strong>g,<br />

<strong>in</strong>ductors for seal<strong>in</strong>g and plastic weld<strong>in</strong>g, small braz<strong>in</strong>g<br />

coils, etc. Advantages <strong>of</strong> ferrites are: possibility to work at<br />

high frequencies (up to 13.56 MHz <strong>in</strong> some cases <strong>of</strong> <strong>in</strong>duction<br />

heat<strong>in</strong>g), high permeability <strong>in</strong> weak fields, high electrical<br />

resistivity (not for all grades <strong>of</strong> ferrites) and chemical<br />

resistance. However they have low saturation flux density<br />

(below 0.3-0.4 T), low Curie po<strong>in</strong>t (typically below 200-<br />

250 °C with up to 350 °C for some types). Ferrites are sensitive<br />

to <strong>thermal</strong> shocks, brittle and very hard, which makes<br />

manufactur<strong>in</strong>g the complex geometries by mach<strong>in</strong><strong>in</strong>g very<br />

challeng<strong>in</strong>g. Variety <strong>of</strong> <strong>in</strong>duction coil designs is very big but<br />

quantity <strong>of</strong> the coils <strong>of</strong> any particular type is usually rather<br />

small and it isn’t economical to make “net shape” concentrators<br />

<strong>of</strong> optimal size and geometry. Designers <strong>of</strong> <strong>in</strong>duction<br />

tool<strong>in</strong>g try to use the standard shapes (plates, rods,<br />

C and E forms, etc.) and “adapt” the coil design to these<br />

limits. Of course there are some cases when a required<br />

number <strong>of</strong> controllers may be very big and it is effective<br />

to manufacture special net shape ferrites, e.g. ferrite rods<br />

for the impeders for high frequency tube weld<strong>in</strong>g. In traditional<br />

<strong>in</strong>duction heat<strong>in</strong>g applications the use <strong>of</strong> ferrites is<br />

limited to relatively simple shape controllers for small high<br />

frequency <strong>in</strong>duction coils.<br />

Lam<strong>in</strong>ations<br />

Lam<strong>in</strong>ations are the ma<strong>in</strong> material for low and middle frequencies<br />

(up to 30 kHz and even up to 50 kHz <strong>in</strong> some<br />

special cases). They are used for match<strong>in</strong>g transformers (up<br />

to 20 kHz), shunts and cores for <strong>in</strong>duction melt<strong>in</strong>g furnaces,<br />

forge heat<strong>in</strong>g furnaces, large heat treat<strong>in</strong>g coils. Advantages<br />

<strong>of</strong> lam<strong>in</strong>ations: very large components <strong>of</strong> simple geometry<br />

may be made (such as big furnace shunts which may reach<br />

a length <strong>of</strong> several meters), high saturation flux density<br />

(1.7 T), high permeability, low losses at low frequencies,<br />

high Curie po<strong>in</strong>t and good temperature resistance. The<br />

drawbacks <strong>of</strong> lam<strong>in</strong>ations are: bad performance <strong>in</strong> 3D magnetic<br />

fields, limited mach<strong>in</strong>ability, laborious assembl<strong>in</strong>g,<br />

frequency limits and complicated <strong>thermal</strong> <strong>management</strong><br />

(cool<strong>in</strong>g). Stamp<strong>in</strong>g and laser cutt<strong>in</strong>g simplify manufactur<strong>in</strong>g<br />

<strong>of</strong> sheets but some manual clean<strong>in</strong>g <strong>of</strong> burr and other<br />

defects is still required.<br />

SMC<br />

SMC is a class <strong>of</strong> materials that was significantly improved<br />

dur<strong>in</strong>g the last two decades [2, 3]. SMCs are made from<br />

ferrous particles (iron or its alloys), covered with a th<strong>in</strong> <strong>in</strong>sulation<br />

layer, mixed with organic or <strong>in</strong>organic b<strong>in</strong>der, pressed<br />

at high pressure (up to 720 MPa and even higher) and<br />

cured or s<strong>in</strong>tered. Majority <strong>of</strong> SMC that are be<strong>in</strong>g used <strong>in</strong><br />

<strong>in</strong>duction <strong>in</strong>dustry has organic b<strong>in</strong>der, which provides good<br />

mach<strong>in</strong>ability. Long term experience <strong>in</strong> <strong>in</strong>duction bus<strong>in</strong>ess<br />

shows that mechanical properties are very important for<br />

the magnetic flux controll<strong>in</strong>g materials. Possibility to work<br />

<strong>in</strong> 3D fields and good mach<strong>in</strong>ability are highly valued by<br />

the <strong>in</strong>duction coil manufacturers.<br />

Different types <strong>of</strong> SMC can work <strong>in</strong> the whole range <strong>of</strong><br />

frequencies used <strong>in</strong> <strong>in</strong>duction heat<strong>in</strong>g (50 Hz-13.56 MHz).<br />

Losses <strong>of</strong> SMC at low frequency may be comparable to<br />

losses <strong>in</strong> lam<strong>in</strong>ations and at high frequencies – to losses<br />

<strong>in</strong> ferrites. Temperature resistance is lower than for lam<strong>in</strong>ations<br />

but usually sufficient for <strong>in</strong>duction applications. High<br />

<strong>thermal</strong> conductivity (up to 0.2 W/cmK) and possibility <strong>of</strong><br />

effective <strong>thermal</strong> <strong>management</strong> us<strong>in</strong>g external or <strong>in</strong>ternal<br />

cool<strong>in</strong>g can keep the controllers safe <strong>in</strong> heavy loaded cases<br />

[3]. The drawbacks <strong>of</strong> SMC are limited dimensions (up to<br />

220 mm long plates at present time) and higher price than<br />

for lam<strong>in</strong>ations. However with account for labour cost and<br />

possible improvement <strong>in</strong> performance, use <strong>of</strong> SMC <strong>in</strong> many<br />

cases is cheaper than for lam<strong>in</strong>ations. Technical and economic<br />

analyses show that <strong>in</strong> some cases a comb<strong>in</strong>ation <strong>of</strong><br />

different materials will give excellent results. For example,<br />

lam<strong>in</strong>ations may be used for the regular part <strong>of</strong> controllers<br />

and SMC for areas with complex shape and 3D field, such<br />

as the end zones <strong>of</strong> seam anneal<strong>in</strong>g coils.<br />

PROPERTIES OF SELECTED SMC MATERIALS<br />

SMCs are very versatile materials. Wide and always grow<strong>in</strong>g<br />

variety <strong>of</strong> applications sets new demands to the material<br />

properties [2, 4]. These applications <strong>in</strong>clude biomedical<br />

treatment, food packag<strong>in</strong>g, electronic clean room <strong>process</strong><strong>in</strong>g,<br />

crystal growth, traditional heat treat<strong>in</strong>g, metals and<br />

non-metals melt<strong>in</strong>g, and many others. Typically the follow<strong>in</strong>g<br />

groups <strong>of</strong> properties must be considered: mechanical,<br />

magnetic, electrical, <strong>thermal</strong> and chemical. For special<br />

applications the magnetostriction and acoustic properties<br />

may be also important. A significant number <strong>of</strong> SMC types<br />

are be<strong>in</strong>g used <strong>in</strong> <strong>in</strong>dustry. Three materials: Fluxtrol 100,<br />

Ferrotron 559H and Alphaform MF are selected for further<br />

description as representatives <strong>of</strong> different groups <strong>of</strong> SMCs<br />

[2, 3]. The first two materials are manufactured by press<strong>in</strong>g<br />

technology and the third one is formable. Some magnetic,<br />

<strong>thermal</strong> and mechanical properties <strong>of</strong> these materials are<br />

presented <strong>in</strong> Table 1.<br />

All pressed materials have certa<strong>in</strong> anisotropy with<br />

lower <strong>thermal</strong> conductivity and permeability <strong>in</strong> direction<br />

<strong>of</strong> press<strong>in</strong>g. Magnetic and <strong>thermal</strong> properties <strong>in</strong> the table<br />

correspond to the favourable direction, i.e. for a plane perpendicular<br />

to direction <strong>of</strong> press<strong>in</strong>g. Anisotropy must be<br />

taken <strong>in</strong>to account <strong>in</strong> design <strong>of</strong> <strong>in</strong>duction coils and stock<br />

material orientation <strong>in</strong> the <strong>process</strong> <strong>of</strong> magnetic controller<br />

manufactur<strong>in</strong>g. In spite <strong>of</strong> anisotropy all pressed materials<br />

80 heat <strong>process</strong><strong>in</strong>g 3-2014


Induction Technology<br />

REPORTS<br />

Table 1: Ma<strong>in</strong> properties <strong>of</strong> selected s<strong>of</strong>t magnetic composites<br />

Material<br />

Frequency<br />

Range,<br />

kHz<br />

Density,<br />

g/cm3<br />

Initial<br />

Permeability<br />

Max<br />

Permeability<br />

Saturation,<br />

Bs, T<br />

Thermal<br />

Cond-ty,<br />

W/cmK<br />

Flexural<br />

Strength,<br />

MPa<br />

Flexural<br />

Modulus,<br />

GPa<br />

Fluxtrol 100 Up to 50 6.8 80 130 1.8 0.22 75-80 9-10


REPORTS<br />

Induction Technology<br />

practical tests showed that for majority <strong>of</strong> <strong>in</strong>duction systems<br />

permeability <strong>of</strong> 20-40 is sufficient for good performance<br />

<strong>of</strong> magnetic controllers [3]. It is because almost all<br />

<strong>in</strong>duction systems have open magnetic circuit and above<br />

a certa<strong>in</strong> limit the value <strong>of</strong> permeability ceases to <strong>in</strong>fluence<br />

the system parameters. Major improvements take<br />

place when permeability <strong>in</strong>creases from 1 to approximately<br />

10. Further <strong>in</strong>crease <strong>in</strong> permeability causes lower effects<br />

and improvements disappear at permeability higher than<br />

30-50 depend<strong>in</strong>g on particular case. Moreover, computer<br />

simulation shows that when permeability <strong>of</strong> C-shaped<br />

concentrator is too high, there is no improvement <strong>in</strong> the<br />

power concentration, coil efficiency and power factor, while<br />

power density concentration <strong>in</strong> the corners <strong>of</strong> the coil<br />

tub<strong>in</strong>g grows. It leads to local overheat<strong>in</strong>g <strong>of</strong> copper and<br />

formation <strong>of</strong> cracks due to <strong>thermal</strong> stresses. This effect was<br />

confirmed <strong>in</strong> crankshaft harden<strong>in</strong>g when switch<strong>in</strong>g from<br />

lam<strong>in</strong>ations to Fluxtrol material significantly extended the<br />

copper life time [6].<br />

The above evaluations <strong>of</strong> the permeability <strong>in</strong>fluence<br />

were made for the service conditions. Under heavy load<strong>in</strong>g<br />

conditions which are typical for example for surface<br />

harden<strong>in</strong>g at low frequencies (up to 3-5 kHz) the concentrator<br />

permeability must be still high enough. It means that<br />

low frequency materials must have high saturation flux<br />

density and their maximum permeability must be much<br />

higher than 40.<br />

In high frequency applications flux density is much<br />

lower and high maximum permeability isn’t necessary. In<br />

some high frequency applications such as <strong>in</strong>duction weld<strong>in</strong>g<br />

<strong>of</strong> small diameter tubes, flux density <strong>in</strong> the impeder<br />

may be high, the ferrite core saturates and the <strong>process</strong><br />

efficiency drops. Use <strong>of</strong> SMCs with high Bs can improve<br />

the situation. It is important to underl<strong>in</strong>e that SMCs are<br />

quasi-l<strong>in</strong>ear materials. Permeability <strong>of</strong> Ferrotron is almost<br />

constant <strong>in</strong> a wide range <strong>of</strong> the magnetic field strengths<br />

with <strong>in</strong>itial and maximum permeabilities equal to 16 and<br />

Fig. 2: Fluxtrol 100 with zirconia coat<strong>in</strong>g<br />

Fig. 3: CNC mach<strong>in</strong>ed set <strong>of</strong> parts with th<strong>in</strong> walls<br />

18. L<strong>in</strong>ear properties are favourable for some <strong>in</strong>duction<br />

<strong>process</strong>es because the l<strong>in</strong>ear magnetic controller does not<br />

generate higher harmonics <strong>in</strong> the coil voltage and current.<br />

Electrical properties<br />

Electrical resistivity and strength are two parameters important<br />

for SMCs. Electrical strength may be measured for HF<br />

materials only. Ferrotron 559H has break strength <strong>of</strong> around<br />

100 V for a 1 mm thick plate at frequencies 100-400 kHz.<br />

For Alphaform MF it is app. 350-400 V. These values are very<br />

small for real dielectric materials but are sufficient for majority<br />

<strong>of</strong> <strong>in</strong>duction heat<strong>in</strong>g applications and the live parts can<br />

touch the magnetic controllers. For example, Alphaform<br />

may be applied to bare turns <strong>of</strong> the coil without danger <strong>of</strong><br />

short-circuit<strong>in</strong>g. Fluxtrol 100 has much lower resistivity and<br />

there is a <strong>thermal</strong>, not electrical break <strong>in</strong> tests. Therefore<br />

the parts made <strong>of</strong> this material must not touch two live<br />

parts with a difference <strong>of</strong> potentials. Insulation coat<strong>in</strong>gs<br />

must be applied to the copper or <strong>in</strong>sulation tape such as<br />

Kapton glued to the controller.<br />

Electrical resistivity <strong>of</strong> SMCs is a tricky parameter. In the<br />

<strong>process</strong> <strong>of</strong> material press<strong>in</strong>g or mach<strong>in</strong><strong>in</strong>g <strong>of</strong> the components<br />

there is always smear<strong>in</strong>g <strong>of</strong> the surface, which creates<br />

an additional path for current to flow. Surface resistivity <strong>of</strong><br />

smeared layer depends upon the material composition<br />

and structure, manufactur<strong>in</strong>g <strong>process</strong> (gr<strong>in</strong>d<strong>in</strong>g, mill<strong>in</strong>g,<br />

turn<strong>in</strong>g, saw cutt<strong>in</strong>g), tool quality and regime <strong>of</strong> operation.<br />

Its value can vary from several Ohms to several hundred<br />

Ohm. Remov<strong>in</strong>g <strong>of</strong> smeared layer by etch<strong>in</strong>g helps but<br />

does not give reliable results. Etch<strong>in</strong>g agent penetrates <strong>in</strong>to<br />

the material pores and <strong>in</strong>fluences the electrical resistivity.<br />

Special technique for evaluation <strong>of</strong> volumetric resistivity<br />

has been developed and used for different materials. More<br />

<strong>in</strong>formation about resistivity <strong>of</strong> considered SMCs may be<br />

found <strong>in</strong> [3]. Alphaform samples for measur<strong>in</strong>g resistivity<br />

may be made with no surface smear<strong>in</strong>g and traditional<br />

4-po<strong>in</strong>t technique may be used.<br />

Ferrotron 559H and<br />

Alphaform have very<br />

high resistivity, exceed<strong>in</strong>g<br />

1 MOhm·cm. In <strong>in</strong>duction<br />

applications it may be<br />

considered as <strong>in</strong>f<strong>in</strong>itely<br />

high. For low and middle<br />

frequency materials<br />

<strong>in</strong>clud<strong>in</strong>g Fluxtrol 100,<br />

the situation is more<br />

complicated. Fluxtrol 100<br />

has resistivity around<br />

12 kOhm·cm. This level <strong>of</strong><br />

resistivity is sufficient for<br />

keep<strong>in</strong>g the <strong>in</strong>duced eddy<br />

currents <strong>in</strong> the controller<br />

82 heat <strong>process</strong><strong>in</strong>g 3-2014


Induction Technology<br />

REPORTS<br />

volume at a negligible level. However one<br />

needs to prevent application <strong>of</strong> external voltage<br />

to the concentrator body.<br />

(a)<br />

(b)<br />

Chemical resistance<br />

In Alphaform all the iron particles are encapsulated<br />

<strong>in</strong> epoxy and the material is resistant<br />

to the environmental conditions <strong>of</strong> <strong>in</strong>duction<br />

<strong>process</strong>es. Fluxtrol 100 and Ferrotron 559H<br />

are resistant to traditionally used quenchants<br />

except <strong>of</strong> a smeared surface layer where the<br />

iron particles may be exposed to atmosphere<br />

and the surface rust<strong>in</strong>g can happen. Additional<br />

treatment <strong>of</strong> mach<strong>in</strong>ed controllers can<br />

elim<strong>in</strong>ate the problem. For traditional heat<br />

treat<strong>in</strong>g and braz<strong>in</strong>g application it is sufficient<br />

to etch the parts <strong>in</strong> CrysCoat or similar agents.<br />

Etch<strong>in</strong>g removes smeared layer and loose<br />

particles and prepares the parts for additional treatments<br />

if it’s necessary.<br />

Coat<strong>in</strong>g and other treatments<br />

Several treatment technologies may be used <strong>in</strong> order to<br />

meet special requirements. Some <strong>of</strong> them are described<br />

below:<br />

■■<br />

■■<br />

■■<br />

■■<br />

Teflon coat<strong>in</strong>g may be used to meet requirements <strong>of</strong><br />

clean rooms, food packag<strong>in</strong>g and other special applications.<br />

After etch<strong>in</strong>g the parts are coated by a th<strong>in</strong> layer <strong>of</strong><br />

a special Teflon coat<strong>in</strong>g accord<strong>in</strong>g to a patented DuPont<br />

technology. Coat<strong>in</strong>g penetrates <strong>in</strong>to the porous material<br />

and forms a firm surface cohesion. Coat<strong>in</strong>g thickness<br />

may be 4-6 microns. This coat<strong>in</strong>g is FDA approved and<br />

is be<strong>in</strong>g used <strong>in</strong> packag<strong>in</strong>g <strong>in</strong>dustry for many years.<br />

Alum<strong>in</strong>a, zirconia or other ceramic coat<strong>in</strong>gs may be<br />

applied to both Fluxtrol 100 and Ferrotron 559H us<strong>in</strong>g<br />

traditional flame spray technique. Of course special<br />

attention must be paid to the <strong>process</strong> setup <strong>in</strong> order to<br />

prevent <strong>thermal</strong> damage <strong>of</strong> SMC. A consistent ceramic<br />

layer may be formed with excellent cohesion with the<br />

substrate (Fig. 2). Ceramic coat<strong>in</strong>g may be applied also<br />

to the whole assembly <strong>of</strong> <strong>in</strong>duction coil. This coat<strong>in</strong>g<br />

can prevent wear<strong>in</strong>g and electrical ground<strong>in</strong>g <strong>of</strong> the<br />

coil <strong>in</strong> the case <strong>of</strong> occasional touch to the mov<strong>in</strong>g part<br />

<strong>in</strong> the <strong>process</strong> <strong>of</strong> heat<strong>in</strong>g.<br />

Other coat<strong>in</strong>gs such as electrostatic plastic powder<br />

coat<strong>in</strong>g may be used when required for less demand<strong>in</strong>g<br />

applications.<br />

Impregnation may be successfully used to fill the material<br />

pores and prevent outgass<strong>in</strong>g, improve chemical<br />

resistance and mechanical strength. Impregnation<br />

with anaerobic epoxy accord<strong>in</strong>g to Henkel technology<br />

showed very good results. Depth <strong>of</strong> impregnation<br />

depends upon the material type. Impregnated pieces<br />

Fig. 4: Clamshell <strong>in</strong>ductors for non-rotational harden<strong>in</strong>g <strong>of</strong> crankshafts (a)<br />

and simulated temperature distribution (b)<br />

may be glued to each other or to copper. Th<strong>in</strong> impregnated<br />

parts <strong>of</strong> Ferrotron passed severe down-hole tests<br />

for oil and gas drill<strong>in</strong>g application.<br />

Material mach<strong>in</strong><strong>in</strong>g<br />

Fluxtrol 100 and Ferrotron may be easily mach<strong>in</strong>ed us<strong>in</strong>g<br />

sharp standard tools or coated carbide tools. Materials may<br />

be mach<strong>in</strong>ed us<strong>in</strong>g various methods (drill<strong>in</strong>g, mill<strong>in</strong>g, turn<strong>in</strong>g,<br />

gr<strong>in</strong>d<strong>in</strong>g, saw cutt<strong>in</strong>g, etc.). It is recommended to use<br />

higher speed and slower feed than for mach<strong>in</strong><strong>in</strong>g s<strong>of</strong>t steel.<br />

Multiple passes are recommended <strong>in</strong> mach<strong>in</strong><strong>in</strong>g <strong>of</strong> th<strong>in</strong>wall<br />

parts. With some experience parts with wall thickness<br />

less than 1 mm may be produced by turn<strong>in</strong>g or mill<strong>in</strong>g (Fig.<br />

3). Drill<strong>in</strong>g must be made on a strong support (wooden or<br />

plastic block) to avoid chipp<strong>in</strong>g and pilot holes are required<br />

for mak<strong>in</strong>g large bores. It is not necessary to use cool<strong>in</strong>g<br />

or lubricat<strong>in</strong>g fluids.<br />

Threaded bores may be made directly <strong>in</strong> Fluxtrol or<br />

Ferrotron parts but for higher strength and multiple use it<br />

is better to <strong>in</strong>stall brass or sta<strong>in</strong>less steel <strong>in</strong>serts. Ferrotron<br />

559H has low coefficient <strong>of</strong> friction and it is recommended<br />

to use a small droplet <strong>of</strong> epoxy when <strong>in</strong>stall<strong>in</strong>g <strong>in</strong>serts Flat<br />

parts may be produced by water jet cutt<strong>in</strong>g from disks<br />

or plates.<br />

EXAMPLES OF USE OF SMC<br />

IN INDUCTION <strong>HEAT</strong> TREATING<br />

Crankshaft harden<strong>in</strong>g<br />

Crankshafts were the first parts <strong>in</strong> mass production [5]<br />

hardened by <strong>in</strong>duction us<strong>in</strong>g clam-shell <strong>in</strong>ductors (1934-35).<br />

Heat<strong>in</strong>g was static, i.e. the crankshaft did not rotate <strong>in</strong> the<br />

<strong>process</strong> <strong>of</strong> heat<strong>in</strong>g. U-shaped <strong>in</strong>duction coils have been<br />

<strong>in</strong>troduced later (1940-42) by Elotherm company; <strong>in</strong> this<br />

case the crankshaft was rotat<strong>in</strong>g. Both types <strong>of</strong> <strong>in</strong>ductors<br />

are still be<strong>in</strong>g used until today. In spite <strong>of</strong> almost 80 years <strong>of</strong><br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

83


REPORTS<br />

Induction Technology<br />

Fig. 5: Inductor for rotational harden<strong>in</strong>g <strong>of</strong> crankshaft<br />

Fig. 6: Inductor for simultaneous harden<strong>in</strong>g <strong>of</strong> four cams<br />

production history, there are new tasks (more complicated<br />

geometry and hardness pattern, reliability, lifetime, etc.)<br />

that require technology improvement. Ma<strong>in</strong> improvements<br />

are connected with <strong>in</strong>novative applications <strong>of</strong> magnetic<br />

controllers [6].<br />

In clam-shell <strong>in</strong>ductors, th<strong>in</strong> plates <strong>of</strong> magnetic controllers<br />

made <strong>of</strong> SMC Fluxtrol 100 applied to the sides <strong>of</strong> the<br />

coil (Fig. 4). Magnetic plates are accurately positioned<br />

<strong>in</strong> place by p<strong>in</strong>s and glued to the coil for effective heat<br />

transfer. They provide precise control <strong>of</strong> heat pattern and<br />

simultaneously improve the system parameters. Fig. 4b<br />

shows temperature distribution <strong>in</strong> the crankshaft at the<br />

end <strong>of</strong> heat<strong>in</strong>g cycle generated by program Flux2D. When<br />

there are no side plates (top half <strong>of</strong> picture), significant<br />

heat<strong>in</strong>g <strong>of</strong> the crankshaft web (side portions <strong>of</strong> the shaft)<br />

take place. This un<strong>in</strong>tended heat<strong>in</strong>g results <strong>in</strong> energy waste<br />

and additional distortion <strong>of</strong> the part. Practical experience<br />

showed reliable performance <strong>of</strong> SMC shields.<br />

Flux controllers made <strong>of</strong> lam<strong>in</strong>ations are traditionally<br />

used on U-shaped crankshaft harden<strong>in</strong>g coils <strong>in</strong> order to<br />

distribute power <strong>in</strong> such a way that results <strong>in</strong> required heat<br />

pattern, <strong>in</strong>clud<strong>in</strong>g the patterns that extend onto the fillet.<br />

U-shaped coils are much more loaded because the coils<br />

cover only a small part <strong>of</strong> the p<strong>in</strong> surface (Fig. 5). One <strong>of</strong><br />

the drawbacks <strong>of</strong> such coils is <strong>in</strong>sufficient lifetime due to<br />

copper crack<strong>in</strong>g under the concentrators. It was found<br />

that replacement <strong>of</strong> lam<strong>in</strong>ations with SMC material led<br />

to a significant <strong>in</strong>crease <strong>in</strong> the coil life and to a possibil-<br />

Fig. 7: a) Magnetic l<strong>in</strong>es and temperature distribution <strong>in</strong> a tube heated by 4-turn <strong>in</strong>ductor; b) ID coil with moldable Alphaform core;<br />

c) Mach<strong>in</strong>ed <strong>in</strong>ductor with SMC core for ID harden<strong>in</strong>g <strong>of</strong> hub (courtesy <strong>of</strong> Eldec Induction)<br />

84 heat <strong>process</strong><strong>in</strong>g 3-2014


Induction Technology<br />

REPORTS<br />

ity <strong>of</strong> better heat pattern control. This application is very<br />

demand<strong>in</strong>g and big attention must be paid to material<br />

selection and concentrator <strong>in</strong>stallation technique. High<br />

<strong>thermal</strong> conductivity <strong>of</strong> Fluxtrol 100 provides effective heat<br />

transfer between the coil copper and the concentrator.<br />

Fluxtrol concentrator is made <strong>of</strong> a set <strong>of</strong> blocks <strong>in</strong> order to<br />

m<strong>in</strong>imize <strong>in</strong>fluence <strong>of</strong> difference <strong>in</strong> <strong>thermal</strong> expansion <strong>of</strong><br />

the copper and concentrator.<br />

Another example <strong>of</strong> <strong>in</strong>ductor with SMC controllers is<br />

presented <strong>in</strong> Fig. 6. This assembly conta<strong>in</strong>s 4 s<strong>in</strong>gle-turn<br />

coils separated by Fluxtrol r<strong>in</strong>gs. These r<strong>in</strong>gs shield the coils,<br />

elim<strong>in</strong>at<strong>in</strong>g their mutual <strong>in</strong>fluence and improve treatment<br />

quality and efficiency.<br />

Internal <strong>in</strong>ductors<br />

Internal Diameter (ID) <strong>in</strong>ductors are widely used for braz<strong>in</strong>g,<br />

cur<strong>in</strong>g, heat treat<strong>in</strong>g and other operations. Application <strong>of</strong><br />

magnetic controllers is especially important for ID coils<br />

because magnetic flux must flow <strong>in</strong> closed loop around<br />

the turns through the narrow space <strong>in</strong>side the coil. For this<br />

reason the current demand for ID coils without core is high<br />

and their parameters (efficiency, power factor) are much<br />

lower than for the external coils. The core “magnetically”<br />

expands the area <strong>in</strong>side the <strong>in</strong>ductor thus strongly reduc<strong>in</strong>g<br />

additional coil current required to push the magnetic flux<br />

around the turns (Fig. 7a). Results <strong>of</strong> computer simulation<br />

for one <strong>of</strong> typical ID heat<strong>in</strong>g cases are presented <strong>in</strong><br />

Table 2. The part is a sta<strong>in</strong>less steel tube with ID 55 mm<br />

and wall thickness 6.4 mm; <strong>in</strong>ductor has ID 30 mm and,<br />

length 30 mm. W<strong>in</strong>d<strong>in</strong>g is made <strong>of</strong> 4 turns <strong>of</strong> square tub<strong>in</strong>g<br />

6.4 x 6.4 mm. Frequency is 15 kHz and power transferred<br />

<strong>in</strong>to the part 10 kW [7]. One can see that magnetic core<br />

reduced the coil current and reactive power more than 2<br />

times with approximately the same coil voltage. Efficiency<br />

<strong>in</strong>creased from 70 to 84 %. For smaller parts effects will be<br />

even higher.<br />

Both mach<strong>in</strong>ed and moldable SMC materials may be<br />

effectively used for ID coils. Small ID coils are <strong>of</strong>ten made by<br />

bend<strong>in</strong>g copper tub<strong>in</strong>g (Fig. 7b). This case is very favorable<br />

for us<strong>in</strong>g Alphaform. Moldable material fills the whole space<br />

<strong>in</strong>side the w<strong>in</strong>d<strong>in</strong>g <strong>in</strong> spite <strong>of</strong> some irregularities <strong>in</strong> dimensions<br />

and provides excellent <strong>thermal</strong> contact to the copper.<br />

Mach<strong>in</strong>ed <strong>in</strong>duction coils are used for harden<strong>in</strong>g larger<br />

parts such as automotive hubs (Fig. 7c). In this coil quench<strong>in</strong>g<br />

fluid is supplied onto the part surface through the<br />

orifices both <strong>in</strong> copper and <strong>in</strong> mach<strong>in</strong>ed concentrator made<br />

<strong>of</strong> Fluxtrol material.<br />

TEMPERATURE PREDICTION AND CONTROL<br />

The ma<strong>in</strong> problem that can appear when SMC controller<br />

is not applied properly is its overheat<strong>in</strong>g. There might be<br />

three sources <strong>of</strong> heat: magnetic losses <strong>in</strong> the controller,<br />

convection and radiation from the heated part and, <strong>in</strong><br />

Table 2: ID coil parameters with and without core<br />

Core Ui, V Ii, A Pi, kW Pw, kW Eff-cy, % Coil kVA<br />

Yes 46 875 12.0 10.0 84 40<br />

No 44 1,850 14.3 10.0 70 81<br />

some cases, heat transfer from the locally overheated coil<br />

copper. Temperature prediction <strong>of</strong> magnetic controllers<br />

is a complex task, which requires consideration <strong>of</strong> electromagnetic<br />

and <strong>thermal</strong> phenomena and material characteristics.<br />

When magnetic controllers are cooled by contact<br />

to the coil turns, coil temperature must be considered<br />

simultaneously with the concentrator. There are many cases<br />

when the concentrator fails due to too hot coil copper.<br />

Computer simulation is the most accurate way to study<br />

and predict temperature distribution. Flux 2D program is<br />

a proven tool for this task [8]. With some additional procedures<br />

the simulation can account for the magnetic losses<br />

and external heat sources, properties <strong>of</strong> material and glue<br />

as well as heat transfer from the copper wall to cool<strong>in</strong>g<br />

water. An example <strong>of</strong> simulation is presented <strong>in</strong> Fig. 8. It<br />

shows a map <strong>of</strong> temperature <strong>in</strong> the coil copper and <strong>in</strong> the<br />

concentrator for a s<strong>in</strong>gle-turn scann<strong>in</strong>g <strong>in</strong>ductor. Selection<br />

<strong>of</strong> the concentrator material and glue between the copper<br />

and concentrator plays a big role <strong>in</strong> temperature control.<br />

There are many methods <strong>of</strong> the concentrator temperature<br />

control. One <strong>of</strong> them is an <strong>in</strong>ternal cool<strong>in</strong>g <strong>of</strong> material<br />

by means <strong>of</strong> water channels milled or drilled <strong>in</strong>side the<br />

concentrator.<br />

Fig. 8: Concentrator temperature prediction us<strong>in</strong>g computer simulation;<br />

temperature scales are different for the part and coil<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

85


• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />

REPORTS<br />

Induction Technology<br />

CONCLUSION<br />

Theoretical studies and practical experience demonstrate<br />

that magnetic flux control is a very important component<br />

<strong>of</strong> optimal design <strong>of</strong> <strong>in</strong>duction systems. Magnetic flux controllers<br />

can improve heat pattern, prevent un<strong>in</strong>tended heat<strong>in</strong>g<br />

<strong>of</strong> the part, harden<strong>in</strong>g mach<strong>in</strong>e or furnace structure,<br />

improve <strong>in</strong>duction coil parameters and performance <strong>of</strong> the<br />

whole <strong>in</strong>duction <strong>in</strong>stallation and shield the external space<br />

from strong magnetic fields. S<strong>of</strong>t magnetic composites can<br />

give new opportunities for <strong>in</strong>duction system optimisation<br />

with account for magnetic flux control. They are very versatile<br />

materials and may be custom modified for special<br />

applications. Different types <strong>of</strong> SMC can cover the need<br />

<strong>in</strong> magnetic controllers for all range <strong>of</strong> frequencies used<br />

for <strong>in</strong>duction heat<strong>in</strong>g (up to 13.56 MHz).<br />

One <strong>of</strong> the most valuable features <strong>of</strong> SMC with organic<br />

b<strong>in</strong>der is their good mach<strong>in</strong>ability, which allows the users<br />

to make magnetic controllers <strong>of</strong> various shape and size.<br />

Additional treatment <strong>of</strong> SMC controllers (impregnation,<br />

coat<strong>in</strong>gs) expands their application to food packag<strong>in</strong>g, electronic,<br />

etc. Computer simulation makes possible to forecast<br />

their effectiveness and optimize the heat<strong>in</strong>g <strong>process</strong> and<br />

coil design. It can predict also temperature distribution<br />

<strong>in</strong>side the controller and evaluate life time <strong>of</strong> the <strong>in</strong>ductor.<br />

[1] Goldste<strong>in</strong>, R.; Nemkov, V.; Jackowski, J.: Virtual Prototyp<strong>in</strong>g <strong>of</strong><br />

Induction Heat Treat<strong>in</strong>g, Proc. <strong>of</strong> the 25 th Conf. ASM Heat<br />

Treat<strong>in</strong>g Society, Indianapolis, September 2009<br />

[2] Ruff<strong>in</strong>i, R.; Vysh<strong>in</strong>skaya, N.; Nemkov, V.; Goldste<strong>in</strong>, R.; Yakey, C.:<br />

Innovations <strong>in</strong> S<strong>of</strong>t Magnetic Composites and their Applications<br />

<strong>in</strong> Induction Systems, Proc. <strong>of</strong> the 25 th Conf. ASM Heat<br />

Treat<strong>in</strong>g Society, Indianapolis, September 2013<br />

[3] Website www.fluxtrol.com<br />

[4] Nemkov, V.: Magnetic Flux Control <strong>in</strong> Induction Installations,<br />

Proc. <strong>of</strong> the Int. Symp. HES13, Heat<strong>in</strong>g by Electromagnetic<br />

Sources, Padua, Italy, 2013<br />

[5] Muehlbauer, A.: History <strong>of</strong> Induction Heat<strong>in</strong>g and Melt<strong>in</strong>g,<br />

Vulkan-Verlag, 2008<br />

[6] Myers, C.; Osborn, J.; Tiell, C. et al.: Optimiz<strong>in</strong>g Performance <strong>of</strong><br />

Crankshaft Harden<strong>in</strong>g Inductors,” Industrial Heat<strong>in</strong>g, December,<br />

2006<br />

[7] Nemkov, V.; Goldste<strong>in</strong>, R.: Optimal Design <strong>of</strong> Internal Induction<br />

Coils, Proc. <strong>of</strong> the Int. Symp. HES04, Heat<strong>in</strong>g by Electromagnetic<br />

Sources, Padua, Italy, 2004<br />

[8] Nemkov, V.; Goldste<strong>in</strong>, R.; Jackowski, J.; Vysh<strong>in</strong>skaya, N.; Yakey,<br />

C.: Temperature Prediction and Thermal Management for<br />

Composite Magnetic Controllers <strong>of</strong> Induction Coils, Proc. <strong>of</strong><br />

the Int. Symp. HES10, Heat<strong>in</strong>g by Electromagnetic Sources,<br />

Padua, Italy, 2010<br />

LITERATURE<br />

AUTHOR<br />

Pr<strong>of</strong>. Dr.-Ing. Valent<strong>in</strong> Nemkov<br />

Fluxtrol, Inc.<br />

Auburn Hills, MI, USA<br />

Tel.: +1 248-393-2000<br />

vsnemkov@fluxtrol.com<br />

Get your copy <strong>of</strong> the<br />

anniversary issue now!<br />

10<br />

Anniversary Issue<br />

Years<br />

• 10 Ye<br />

0 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />

86 heat <strong>process</strong><strong>in</strong>g 3-2014


Induction Technology<br />

REPORTS<br />

Modular <strong>in</strong>duction solutions for<br />

drive and axle components<br />

by Dirk M. Schibisch, Jochen C. Huljus<br />

The automobile <strong>in</strong>dustry cont<strong>in</strong>uously roles out more models while simultaneously shorten<strong>in</strong>g new model launch<br />

<strong>in</strong>tervals. Meanwhile, worldwide car sales are boom<strong>in</strong>g, particularly with the emerg<strong>in</strong>g demand from Ch<strong>in</strong>a and India.<br />

To drive over pot holes and rough roads at speed without damage, and yet give the driver a sensitive road feel would<br />

seem to be mutually exclusive goals. Powertra<strong>in</strong> and suspension components require toughness to handle the worst<br />

<strong>of</strong> everyday driv<strong>in</strong>g, and also high-precision mechanical characteristics to accurately transmit road conditions and driv<strong>in</strong>g<br />

dynamics to the driver. This paradox can be resolved with <strong>in</strong>duction hardened modern automotive components.<br />

The manufactur<strong>in</strong>g <strong>of</strong> these high-performance components is accomplished by a sophisticated <strong>in</strong>duction harden<strong>in</strong>g<br />

mach<strong>in</strong>e with the flexibility to harden a variety <strong>of</strong> disparate parts.<br />

Today’s <strong>in</strong>duction harden<strong>in</strong>g mach<strong>in</strong>es handle a<br />

dynamic and cont<strong>in</strong>uously grow<strong>in</strong>g product spectrum<br />

while sett<strong>in</strong>g new records for shorter cycle<br />

times and higher throughputs. Fast, reliable, and reproducible<br />

setup and change-over from one product run to<br />

the next is critical, particularly with today’s smaller lot sizes<br />

and flexible run schedul<strong>in</strong>g.<br />

Essential mach<strong>in</strong>e performance requirements <strong>in</strong>clude:<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

A good price/performance ratio,<br />

Fast and reliable setup,<br />

Short mach<strong>in</strong>e delivery times,<br />

Simple and quick <strong>in</strong>stallation and commission<strong>in</strong>g on<br />

the production floor,<br />

Optimal, appropriate solutions for each application.<br />

with one or more workstations for harden<strong>in</strong>g and temper<strong>in</strong>g.<br />

These mach<strong>in</strong>es feature an elegant modern design that<br />

meets all the requirements regard<strong>in</strong>g <strong>process</strong> visibility and<br />

ma<strong>in</strong>tenance access. Selected example configurations are<br />

described below.<br />

Elotherm has developed a manual mach<strong>in</strong>e with two<br />

double workstations for harden<strong>in</strong>g drive shafts (Fig. 1) with<br />

a length <strong>of</strong> 1,000 mm. In each station, two shafts are hardened<br />

simultaneously, while the other station is unloaded<br />

and reloaded. Both stations are supplied by a s<strong>in</strong>gle power<br />

supply. Thus, the time for load<strong>in</strong>g and unload<strong>in</strong>g does not<br />

MODULAR MACHINE DESIGN<br />

Induction harden<strong>in</strong>g mach<strong>in</strong>es meet these diverse requirements<br />

by <strong>in</strong>corporat<strong>in</strong>g modular mach<strong>in</strong>e designs, where<br />

a base system can be configured with various modules<br />

for fast and easy adaptation to a variety <strong>of</strong> harden<strong>in</strong>g jobs.<br />

Standard hardware and s<strong>of</strong>tware <strong>in</strong>terfaces (analogous to<br />

object oriented programm<strong>in</strong>g) facilitate a plug-and-play<br />

approach to the mach<strong>in</strong>e configuration <strong>process</strong>, streaml<strong>in</strong><strong>in</strong>g<br />

the eng<strong>in</strong>eer<strong>in</strong>g, manufactur<strong>in</strong>g, <strong>in</strong>stallation, and<br />

commission<strong>in</strong>g <strong>of</strong> these mach<strong>in</strong>es.<br />

BASIC MACHINE VARIANTS<br />

Depend<strong>in</strong>g on the requirements, mach<strong>in</strong>es are available<br />

both with manual and automated load<strong>in</strong>g and unload<strong>in</strong>g,<br />

Fig. 1: Examples <strong>of</strong> a few drive shafts <strong>in</strong> solid design<br />

and surface<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

87


REPORTS<br />

Induction Technology<br />

Fig. 2: Harden<strong>in</strong>g depths on a longitud<strong>in</strong>al cross section <strong>of</strong> <strong>in</strong>duction-hardened<br />

drive shafts<br />

Fig. 3: Various ball hubs and jo<strong>in</strong>ts<br />

Fig. 4: Harden<strong>in</strong>g depth on a ball hub (right) and a jo<strong>in</strong>t part (left)<br />

<strong>in</strong>crease the cycle time. Depend<strong>in</strong>g on customer requirements,<br />

harden<strong>in</strong>g depths <strong>in</strong> a range from 3 to 8 mm can be<br />

achieved by adjust<strong>in</strong>g the relevant parameters like power,<br />

feed rate, and frequency (Fig. 2).<br />

The EloFlex Inl<strong>in</strong>e is an automatically-cha<strong>in</strong>ed mach<strong>in</strong>e<br />

with one workstation for harden<strong>in</strong>g ball hubs, jo<strong>in</strong>ted parts<br />

(see Fig. 3 and 4) or similar workpieces with a harden<strong>in</strong>g<br />

zone. The harden<strong>in</strong>g can be performed <strong>in</strong> a s<strong>in</strong>gle shot<br />

or alternatively <strong>in</strong> the scann<strong>in</strong>g <strong>process</strong>. The workpieces<br />

go <strong>in</strong>to the mach<strong>in</strong>e by way <strong>of</strong> a plate conveyor with a<br />

separat<strong>in</strong>g device. From there, the mach<strong>in</strong>e transports<br />

them to the harden<strong>in</strong>g station and (if needed) to cool<strong>in</strong>g<br />

and/or blow-<strong>of</strong>f stations, before they are placed on a plate<br />

conveyor aga<strong>in</strong> at the mach<strong>in</strong>e outlet.<br />

The automatically-cha<strong>in</strong>ed mach<strong>in</strong>e is also available<br />

with two workstations for harden<strong>in</strong>g workpieces with two<br />

harden<strong>in</strong>g zones, e.g. axle journals or tripods (see Fig. 5-7).<br />

For these workpieces, usually a shaft and the bear<strong>in</strong>g races<br />

(contact surfaces) are hardened <strong>in</strong> the bell and/or <strong>in</strong> the<br />

tulip. These areas can be hardened with a s<strong>in</strong>gle shot or<br />

a scann<strong>in</strong>g <strong>process</strong>. Optionally, the two stations can be<br />

used for harden<strong>in</strong>g and subsequent temper<strong>in</strong>g. Here as<br />

well, the <strong>in</strong>termediate positions are available for cool<strong>in</strong>g<br />

and/or blow-<strong>of</strong>f.<br />

MODULAR STRUCTURE<br />

The harden<strong>in</strong>g system is modular, mean<strong>in</strong>g that the appropriate<br />

hardware for the customer’s special requirements<br />

can be selected for each <strong>in</strong>dividual mach<strong>in</strong>e module.<br />

With standardized <strong>in</strong>terfaces, plug-and-play modules can<br />

be selected to make multiple configurations. This also<br />

applies to the <strong>in</strong>dividual workstations so, for example,<br />

dur<strong>in</strong>g the harden<strong>in</strong>g <strong>of</strong> axle journals or tripods, the harden<strong>in</strong>g<br />

sequence for the shaft and bell/tulip can be freely<br />

selected. Also bells/tulips can be hardened from below or<br />

from above (with workpiece turn<strong>in</strong>g) <strong>in</strong> the s<strong>in</strong>gle shot or<br />

scann<strong>in</strong>g <strong>process</strong>. The transport direction <strong>of</strong> the workpieces<br />

through the harden<strong>in</strong>g mach<strong>in</strong>e can be <strong>in</strong> either direction.<br />

Different options for transport systems with<strong>in</strong> the<br />

mach<strong>in</strong>e <strong>of</strong>fer solutions for short or long workpieces. With<br />

options for two different control systems and multiple<br />

converter sizes, the base mach<strong>in</strong>e is quickly adapted to a<br />

given application. Fig. 8 shows the <strong>in</strong>dividual modules <strong>in</strong><br />

the mach<strong>in</strong>e, emphasized <strong>in</strong> color, which can be expanded<br />

with further modules and various option packages.<br />

Process know-how and energy efficiency<br />

Synergies are realized through a systems eng<strong>in</strong>eer<strong>in</strong>g<br />

approach to mach<strong>in</strong>e and <strong>process</strong> development. This starts<br />

with the converter technology for optimal and energyefficient<br />

heat<strong>in</strong>g <strong>of</strong> workpieces, selective application <strong>of</strong><br />

the current exactly at the po<strong>in</strong>t <strong>in</strong> the workpiece to be<br />

heated by precisely adjusted <strong>in</strong>ductors and not least, by<br />

exact parameter sett<strong>in</strong>g for the entire <strong>process</strong>.<br />

The current generation <strong>of</strong> the digitally-controlled frequency<br />

converter (power supply) features:<br />

■■<br />

■■<br />

■■<br />

■■<br />

Patented control algorithms for the converter for an<br />

automatic adaptation <strong>of</strong> the converter to various loads<br />

and for reduc<strong>in</strong>g losses <strong>in</strong> the converter [1],<br />

Fast reaction times for extremely short heat<strong>in</strong>g times<br />

< 1 s,<br />

The ability to run cont<strong>in</strong>uously at 100 % <strong>of</strong> rated power,<br />

A larger frequency range,<br />

88 heat <strong>process</strong><strong>in</strong>g 3-2014


Induction Technology<br />

REPORTS<br />

Fig. 6: Micrograph <strong>of</strong> a tripod<br />

Fig. 5: Various sizes and designs <strong>of</strong> axle journals<br />

Fig. 7: Micrograph <strong>of</strong> an axle journal<br />

■■<br />

■■<br />

Short-circuit-resistance due to <strong>in</strong>tegrated overcurrent<br />

and overvoltage protection,<br />

Robust monitor<strong>in</strong>g and diagnostic capabilities.<br />

Energy efficiency has been improved by optimiz<strong>in</strong>g the medium-frequency<br />

equipment (better placement <strong>of</strong> <strong>in</strong>dividual<br />

components with respect to each other, better bus bar and<br />

cable connections to the capacitors, more precise match<strong>in</strong>g<br />

<strong>of</strong> the transformer to the <strong>in</strong>ductor). Optimized <strong>in</strong>ductors are<br />

essential for a reproducible and energy-efficient harden<strong>in</strong>g<br />

<strong>process</strong>. For further reduction <strong>of</strong> the energy consumption, if<br />

there are no workpieces at the load<strong>in</strong>g position, the mach<strong>in</strong>es<br />

automatically switch to standby mode <strong>in</strong> which all pumps and<br />

auxiliary equipment are shut <strong>of</strong>f.<br />

Accessibility and ma<strong>in</strong>tenance-friendl<strong>in</strong>ess<br />

Large doors <strong>in</strong> the front allow good observation <strong>of</strong> the<br />

<strong>process</strong> and also good access for ma<strong>in</strong>tenance work. A<br />

reduced work space depth improves component access.<br />

Another safety door permits access from the rear.<br />

Reduced floor space<br />

The complete mach<strong>in</strong>e, together with the control, the converter,<br />

the network transformer and the capacitor cab<strong>in</strong>et,<br />

is set up on a common base frame. The mach<strong>in</strong>e footpr<strong>in</strong>t<br />

is reduced, and complete, fully-assembled mach<strong>in</strong>es can<br />

be transported to the plant.<br />

Quality<br />

Patented net workpiece energy monitor<strong>in</strong>g performs 100 %<br />

onl<strong>in</strong>e quality control <strong>of</strong> the harden<strong>in</strong>g <strong>process</strong> <strong>in</strong> these<br />

mach<strong>in</strong>es [2]. Power generated by the IGBT power supply<br />

is necessarily subject to heat losses <strong>in</strong> the converter, <strong>in</strong> the<br />

busbars, capacitors, transformers, and f<strong>in</strong>ally <strong>in</strong> the <strong>in</strong>ductor.<br />

The net heat<strong>in</strong>g energy applied to the workpiece is less<br />

than the power supply output energy. Conventional energy<br />

monitor<strong>in</strong>g schemes have monitored only to the power<br />

output by the converter and therefore do not account<br />

for system losses. The SMS Elotherm patent describes a<br />

method with which the frequency-dependent losses are<br />

measured and considered so ultimately the power actually<br />

applied to the workpiece is <strong>in</strong>tegrated over the complete<br />

heat<strong>in</strong>g time (energy) and recorded as a curve and<br />

monitored <strong>in</strong> real time. In this case, the energy applied to<br />

the workpiece is an absolutely reliable measurement for<br />

check<strong>in</strong>g the quality <strong>of</strong> the heat<strong>in</strong>g. The smallest changes<br />

<strong>of</strong> the coupl<strong>in</strong>g gap between <strong>in</strong>ductor and workpiece<br />

lead to clearly measurable changes <strong>in</strong> the energy values,<br />

and tolerance limits are user-adjustable. Changes <strong>of</strong> the<br />

coupl<strong>in</strong>g cap could, on one hand, be due to deformations<br />

<strong>of</strong> the <strong>in</strong>ductor. On the other hand, these changes<br />

could be caused by tolerance deviations or cracks <strong>in</strong> the<br />

workpiece surface.<br />

In addition to the heat<strong>in</strong>g (austenitiz<strong>in</strong>g), the harden<strong>in</strong>g<br />

<strong>process</strong> consists <strong>of</strong> quench<strong>in</strong>g with cool<strong>in</strong>g medium.<br />

Dur<strong>in</strong>g quench<strong>in</strong>g, it is a matter <strong>of</strong> runn<strong>in</strong>g through a fast<br />

cool<strong>in</strong>g curve by us<strong>in</strong>g adequate cool<strong>in</strong>g medium supply,<br />

which leads to the desired harden<strong>in</strong>g microstructure <strong>in</strong><br />

the material (martensitic microstructure). Monitor<strong>in</strong>g <strong>of</strong> the<br />

quench<strong>in</strong>g <strong>process</strong> occurs us<strong>in</strong>g measurement <strong>of</strong> the exact<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

89


REPORTS<br />

Induction Technology<br />

frequently-chang<strong>in</strong>g harden<strong>in</strong>g tasks and designed costeffectively<br />

accord<strong>in</strong>g to this. Us<strong>in</strong>g net workpiece energy<br />

measurement and other systems for quality monitor<strong>in</strong>g,<br />

out-<strong>of</strong>-spec parts recognized and rejected automatically,<br />

ensur<strong>in</strong>g cont<strong>in</strong>uous operation without <strong>in</strong>terruption.<br />

LITERATURE<br />

[1] SMS Elotherm Patent DE 101 15 326 B4, Method for actuat<strong>in</strong>g<br />

a resonant circuit converter and controller<br />

[2] SMS Elotherm Patent EP 0 427 879 B1, Device and method for<br />

<strong>in</strong>ductive heat<strong>in</strong>g <strong>of</strong> workpieces<br />

Fig. 8: Modules <strong>of</strong> the EloFlex Inl<strong>in</strong>e<br />

AUTHORS<br />

spray flow quantity and an appropriate temperature control<br />

for the quench<strong>in</strong>g medium. Together with the net workpiece<br />

energy monitor, the complete harden<strong>in</strong>g <strong>process</strong> is<br />

therefore monitored and recorded for each and every part.<br />

CONCLUSION<br />

With modular <strong>in</strong>duction systems for harden<strong>in</strong>g automotive<br />

components, manufacturers are set up for both current<br />

and future product requirements. This is true for complex<br />

and also simple components, with high reproducibility<br />

and <strong>process</strong> control us<strong>in</strong>g patented <strong>process</strong> technologies.<br />

Modular system solutions are conceived for users with<br />

Dipl.-Wirtsch.-Ing. Dirk M. Schibisch<br />

SMS Elotherm GmbH<br />

Remscheid, Germany<br />

Tel.: +49 (0) 2191 / 891-300<br />

d.schibisch@sms-elotherm.de<br />

Dipl.-Ing. Jochen C. Huljus<br />

SMS Elotherm GmbH<br />

Remscheid, Germany<br />

Tel.: +49 (0) 2191 / 891-331<br />

j.huljus@sms-elotherm.de<br />

HOTLINE Meet the team<br />

Manag<strong>in</strong>g Editor: Dipl.-Ing. Stephan Schalm +49(0)201/82002-12 s.schalm@vulkan-verlag.de<br />

Editorial Office: Annamaria Frömgen +49(0)201/82002-91 a.froemgen@vulkan-verlag.de<br />

Editor: Thomas Schneidew<strong>in</strong>d +49(0)201/82002-36 t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />

Editor (Tra<strong>in</strong>ee): Sabr<strong>in</strong>a F<strong>in</strong>ke +49(0)201/82002-15 s.f<strong>in</strong>ke@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Sales: Ute Perkovic +49(0)201/82002-24 u.perkovic@vulkan-verlag.de<br />

Subscription: Marcus Zepmeisel +49(0)931/4170-459 leserservice@vulkan-verlag.de<br />

90 heat <strong>process</strong><strong>in</strong>g 3-2014


Burner & Combustion<br />

REPORTS<br />

Efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance<br />

<strong>of</strong> heat<strong>in</strong>g systems<br />

by Dirk Mäder, Octavio Schmiel Gamarra, Mario Schulze, René Lohr<br />

As a matter <strong>of</strong> fact, the heat<strong>in</strong>g system engenders a major part <strong>of</strong> current operat<strong>in</strong>g and servic<strong>in</strong>g costs <strong>of</strong> a thermo<strong>process</strong><strong>in</strong>g<br />

<strong>in</strong>stallation. It is not rare that sav<strong>in</strong>g potentials are latent there<strong>in</strong> which cannot be immediately detected by<br />

the end user. As regards fir<strong>in</strong>g efficiency, the <strong>in</strong>dex for combustion efficiency, this is not only attributable to the burner<br />

but also to other central components <strong>of</strong> heat<strong>in</strong>g system; contrary to the widespread belief. The present article shows<br />

various ma<strong>in</strong>tenance concepts and describes, on the basis <strong>of</strong> examples, where and who optimisation potentials can be<br />

opened-up by simple measures, for <strong>in</strong>stance, <strong>in</strong> terms <strong>of</strong> efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance.<br />

As to thermo<strong>process</strong><strong>in</strong>g equipment (TPE), the heat<strong>in</strong>g<br />

system is also <strong>of</strong> fundamental importance as the<br />

eng<strong>in</strong>e for a car. In both cases, optimal results and a<br />

long lifetime can be achieved only by good care or, <strong>in</strong> other<br />

words, by <strong>in</strong>telligent ma<strong>in</strong>tenance (IM).<br />

When purchas<strong>in</strong>g a TPE, numerous options for potential<br />

energy sav<strong>in</strong>gs usually recede <strong>in</strong>to the background dur<strong>in</strong>g<br />

price negotiations at the latest due to their extra price and<br />

are discarded aga<strong>in</strong> aga<strong>in</strong>st all common sense due to the<br />

enormous cost pressure. As compared to the purchase costs,<br />

the costs for runn<strong>in</strong>g operation <strong>of</strong> TPE are rather treated as<br />

someth<strong>in</strong>g <strong>of</strong> secondary importance. Costs for ma<strong>in</strong>tenance<br />

only <strong>in</strong>curred <strong>in</strong> the third step are very <strong>of</strong>ten completely<br />

neglected at that moment. This carelessness may have negative<br />

impacts for the end user afterwards. If said carelessness<br />

is accompanied by a no longer up-to-date, exclusively reactive<br />

ma<strong>in</strong>tenance accord<strong>in</strong>g to the motto “Rather wait than<br />

ma<strong>in</strong>ta<strong>in</strong>”, <strong>in</strong>creas<strong>in</strong>gly occurr<strong>in</strong>g faults, <strong>in</strong> the worst case,<br />

even unplanned breakdowns and, thus, production failures<br />

are pre-programmed. The TPE performance is ever more<br />

reduced over the period <strong>of</strong> time <strong>in</strong> use, thus mak<strong>in</strong>g the<br />

operation <strong>of</strong> equipment more and more <strong>in</strong>efficient. Predictive<br />

ma<strong>in</strong>tenance is also <strong>of</strong> particular importance which<br />

counteracts the decrease <strong>of</strong> equipment performance due<br />

to <strong>in</strong>creased wear and tear and, <strong>in</strong> the ideal case, keeps it<br />

constant over the entire time <strong>of</strong> use, as shown <strong>in</strong> Fig. 1. The<br />

“free exercise” here is undoubtedly the efficiency-enhanc<strong>in</strong>g<br />

ma<strong>in</strong>tenance where weak po<strong>in</strong>ts and/or reserve capacities<br />

are, for <strong>in</strong>stance, systematically detected by a check <strong>of</strong> heat<strong>in</strong>g<br />

system [1]. Thanks to their elim<strong>in</strong>ation and/or activation,<br />

the production capacity <strong>of</strong> TPE can be noticeably <strong>in</strong>creased<br />

by partially simple optimisation measures. On the other hand,<br />

the costs for runn<strong>in</strong>g operation can be discernibly reduced<br />

to a similar extent.<br />

REACTIVE MAINTENANCE IS<br />

A THING OF THE PAST<br />

When design<strong>in</strong>g TPEs, it was usual for a long time to provide<br />

higher reserve capacities and to operate such central<br />

components as, for <strong>in</strong>stance, burners not cont<strong>in</strong>uously near<br />

their load limits. As a consequence there<strong>of</strong>, the lifetimes<br />

<strong>of</strong> numerous components were accord<strong>in</strong>gly high. Fig. 2<br />

shows a Noxmat burner <strong>of</strong> the first production series that<br />

was operated between 1991 and 1998 <strong>in</strong> cont<strong>in</strong>uous duty<br />

with almost no failures without the need to perform significant<br />

ma<strong>in</strong>tenance work thereon.<br />

Not least because <strong>of</strong> such high lifetimes, it was mostly<br />

common practice to perform purely reactive ma<strong>in</strong>tenance<br />

Fig. 1: Impacts <strong>of</strong> various ma<strong>in</strong>tenance concepts on equipment<br />

performance [1]<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

91


REPORTS<br />

Burner & Combustion<br />

Fig. 2: Noxmat recuperator burner<br />

operated <strong>in</strong> cont<strong>in</strong>uous<br />

duty from 1991<br />

Fig. 3: Damage on a steel-jacket tube/<br />

recuperator burner<br />

work restricted to repair and/or replacement <strong>of</strong> defective components.<br />

If, however, further consequential damages occur <strong>in</strong><br />

such cases, the repair expenditure is generally much higher<br />

and damages on affected components are partially irreparable.<br />

Fig. 3 shows a typical damage on a steel-jacket tube/<br />

recuperator burner to be attributed to overheat<strong>in</strong>g <strong>in</strong> the<br />

area <strong>of</strong> burner mouth. In this case, the flame gases were not<br />

led through the flame tube to the bottom <strong>of</strong> jacket tube, as<br />

provided, and redirected there. As a consequence there<strong>of</strong>,<br />

they could not transmit their energy conta<strong>in</strong>ed uniformly<br />

over the surface <strong>of</strong> jacket tube to the furnace atmosphere<br />

<strong>in</strong> the backdraught but were redirected <strong>in</strong>to the waste-gas<br />

chamber without cool<strong>in</strong>g directly after exit<strong>in</strong>g the burner.<br />

The resultant partial overheat<strong>in</strong>g destroyed both the jacket<br />

radiant tube and the recuperator <strong>of</strong> burner. A typical reason<br />

for such a failure is the negligence <strong>of</strong> regular clean<strong>in</strong>g <strong>of</strong><br />

steel-jacket tube. Unlike ceramic jacket tubes, scale will<br />

normally settle there <strong>in</strong> the bottom area which more and<br />

more obstructs the normal way <strong>of</strong> flame gases as described<br />

above. This damage became obvious by combustion gases<br />

exit<strong>in</strong>g the jacket tube due to a steadily ris<strong>in</strong>g pollution <strong>of</strong><br />

furnace atmosphere and associated quality deficits on the<br />

material to be heated. Other consequences for the end user<br />

<strong>in</strong>cluded the replacement <strong>of</strong> destroyed components and<br />

unplanned furnace breakdown with production failure.<br />

PREVENTIVE MAINTENANCE MAINTAINS<br />

EQUIPMENT PERFORMANCE<br />

As to preventive ma<strong>in</strong>tenance, components are replaced<br />

<strong>in</strong> regular <strong>in</strong>tervals the failure there<strong>of</strong> may adversely affect<br />

flawless operation. This takes place irrespectively <strong>of</strong> their<br />

condition and represents the m<strong>in</strong>imum level <strong>of</strong> basic ma<strong>in</strong>tenance<br />

further to some other actions to be performed. As to<br />

ma<strong>in</strong>tenance-friendly burners, as shown <strong>in</strong> Fig. 4, wear parts<br />

(W) cover only very few and cost-effective components. In<br />

this case, only some seals as well as the ignition and monitor<strong>in</strong>g<br />

electrode are concerned. If this is equally done with other<br />

comparably cost-<strong>in</strong>tensive components, the so-called spare<br />

parts (S), that are also subject to some wear and tear, it is quite<br />

obvious that unnecessary costs may <strong>in</strong>cur to the end user as<br />

replacement would take place already well before reach<strong>in</strong>g<br />

the maximum possible lifetime <strong>in</strong> many cases. Therefore,<br />

these components are renewed <strong>in</strong> terms <strong>of</strong> ma<strong>in</strong>tenance<br />

only when reach<strong>in</strong>g a def<strong>in</strong>ed wear limit where the function is<br />

not yet necessarily affected. This is called “condition-oriented<br />

(preventive) ma<strong>in</strong>tenance”. A precondition therefore is that<br />

the wear <strong>of</strong> associated component is measurable. In case<br />

<strong>of</strong> a burner, this refers e.g. to the recuperator. The circular<br />

burner exit port <strong>in</strong> new condition is checked for roundness<br />

and diameter errors and the ribbed segments <strong>in</strong> the front<br />

<strong>thermal</strong>ly stressed area for wear and tear. If the wear limits<br />

to be def<strong>in</strong>ed by the manufacturer have been reached, the<br />

component is replaced and/or can be recovered <strong>in</strong> many<br />

cases to save costs.<br />

As to ma<strong>in</strong>tenance work performed <strong>in</strong> regular <strong>in</strong>tervals,<br />

it is meanwhile possible to pre-def<strong>in</strong>e spare parts required<br />

<strong>in</strong> addition to wear parts with sufficiently high accuracy. In<br />

this way, time and cost expenditure can be estimated very<br />

precisely <strong>in</strong> advance, <strong>of</strong>fer<strong>in</strong>g relevant plann<strong>in</strong>g reliability to<br />

the end user. The special benefits <strong>of</strong> recuperator burners<br />

designed ma<strong>in</strong>tenance-friendly will accord<strong>in</strong>gly contribute<br />

thereto. However, not only the burner itself but also the<br />

design <strong>of</strong> upstream air-gas proportion<strong>in</strong>g application plays<br />

a decisive part <strong>in</strong> whether a fault-resistant, energy-efficient<br />

and, thus, susta<strong>in</strong>ably cost-efficient configuration is obta<strong>in</strong>ed<br />

for the end user or not. The superior design <strong>in</strong> the most<br />

cases <strong>in</strong>cludes separate feed <strong>of</strong> supply media through quickopen<strong>in</strong>g<br />

gas and air valves characterised by simplest and<br />

most precise mix adjustment due to the cease <strong>of</strong> comb<strong>in</strong>ed<br />

air-gas control. However, it makes also special demands on<br />

the ignition behaviour <strong>of</strong> burner. Special advantages become<br />

evident <strong>in</strong> gas consumption, emissions, easy and, thus, timesav<strong>in</strong>g<br />

burner adjustment as well as temperature uniformity<br />

<strong>in</strong> the combustion chamber <strong>of</strong> TPE but also <strong>in</strong> easily feasible<br />

monitor<strong>in</strong>g <strong>of</strong> volumetric flow rates required by standard <strong>in</strong><br />

any condition <strong>of</strong> operation as they are always constant [2]. It<br />

is mandatory to consider here that a recuperator burner must<br />

be set at operat<strong>in</strong>g temperature. The burner sett<strong>in</strong>g records<br />

will provide <strong>in</strong>formation there<strong>of</strong>. In cold condition, <strong>in</strong>creased<br />

volumetric flow rates are existent due to the absence <strong>of</strong> air<br />

preheat<strong>in</strong>g and, thus, completely different pressure conditions.<br />

If one considers this, optimal sett<strong>in</strong>g <strong>of</strong> such a burner<br />

can be normally performed without any problems.<br />

92 heat <strong>process</strong><strong>in</strong>g 3-2014


Burner & Combustion<br />

REPORTS<br />

Fig. 4: Overview <strong>of</strong> spare and wear parts <strong>of</strong> a Noxmat RHGB recuperator burner<br />

Each ma<strong>in</strong>tenance procedure should be f<strong>in</strong>alised by a<br />

detailed service report on which the end user can clearly see<br />

and comprehend the actions and checks carried out such<br />

as, for <strong>in</strong>stance, waste-gas measurement on the burners at<br />

different operat<strong>in</strong>g conditions, annual leak test <strong>of</strong> solenoid<br />

gas valves, <strong>of</strong> gas l<strong>in</strong>e belong<strong>in</strong>g to the thermo<strong>process</strong><strong>in</strong>g<br />

equipment and, as far as provided, <strong>of</strong> jacket radiant tubes.<br />

COST PRESSURE CAUSES WEAK POINTS<br />

In order to withstand the enormous cost pressure, it is nowadays<br />

rather usual to choose central components such as, for<br />

<strong>in</strong>stance, radiant tubes, combustion-air fans, valves, pipel<strong>in</strong>es<br />

etc. as small as possible, however, to pressurise them with<br />

maximum possible loads just as the burners. Although the<br />

quality <strong>of</strong> many burner components has been cont<strong>in</strong>uously<br />

improved, much shorter lifetimes unlike the example shown<br />

<strong>in</strong> Fig. 1 are normally achieved. The failure to reach the optimal<br />

fir<strong>in</strong>g efficiency possible for the relevant burner type is<br />

another negative effect result<strong>in</strong>g therefrom.<br />

Many circumstances adversely affect<strong>in</strong>g energy-efficient<br />

operation <strong>of</strong> a burner which rema<strong>in</strong> undetected unless be<strong>in</strong>g<br />

visualised by the burner itself and/or by burner or furnace<br />

controls can be very <strong>of</strong>ten attributed to the periphery <strong>of</strong> heat<strong>in</strong>g<br />

system. Tightly dimensioned or unfavourably arranged<br />

components <strong>of</strong> the gas-pressure control and safety system<br />

may cause, for <strong>in</strong>stance, undesired pressure fluctuations <strong>in</strong><br />

the gas supply <strong>of</strong> burner so that the burner is operated with<br />

a too high air ratio [3]. Another consequence is the decrease<br />

<strong>of</strong> equipment performance, thus caus<strong>in</strong>g unnecessary costs<br />

to the end user <strong>in</strong> two respects. The same applies analogously<br />

to the combustion-air fan <strong>of</strong> a heat<strong>in</strong>g system. A too tightly<br />

dimensioned fan effects <strong>in</strong>creased pressure drop <strong>in</strong> full-load<br />

operation. Understoichiometric combustion, <strong>in</strong>admissible<br />

CO-concentrations <strong>in</strong> waste-gas and considerable excess<br />

consumptions come <strong>in</strong>to question as potential consequences.<br />

MAINTENANCE AND <strong>HEAT</strong>ING CHECKS<br />

REVEAL OPTIMISING POTENTIALS<br />

As already mentioned before, efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance<br />

is, further to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the <strong>in</strong>stallation, also focussed<br />

on the optimisation there<strong>of</strong>, contrary to reactive and preventive<br />

ma<strong>in</strong>tenance. This may <strong>in</strong>clude <strong>in</strong>crease <strong>of</strong> production,<br />

more efficient operation as well as enhancement <strong>of</strong> plant<br />

safety. On a more detailed analysis <strong>of</strong> the heat<strong>in</strong>g system <strong>of</strong> a<br />

TPE by accord<strong>in</strong>gly skilled personnel, optimisation potentials<br />

can be revealed <strong>in</strong> astonish<strong>in</strong>gly many cases. The demands<br />

made on the qualification level <strong>of</strong> ma<strong>in</strong>tenance personnel<br />

are accord<strong>in</strong>gly high and reach meanwhile far beyond purely<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

93


REPORTS<br />

Burner & Combustion<br />

purposefully searched for. This applies both to the thermo<strong>process</strong><strong>in</strong>g<br />

equipment as a whole and the section <strong>of</strong> heat<strong>in</strong>g<br />

system which naturally causes the major part <strong>of</strong> operat<strong>in</strong>g<br />

costs <strong>in</strong>curred. However, potentials <strong>of</strong> this k<strong>in</strong>d cannot be<br />

exclusively found on old systems but are frequently tacitly<br />

tolerated on new systems due to the <strong>in</strong>creased cost pressure<br />

as the costs for runn<strong>in</strong>g operation and ma<strong>in</strong>tenance mostly<br />

recede <strong>in</strong>to the background as compared to the purchase<br />

price. Heat<strong>in</strong>g checks and up-to-date ma<strong>in</strong>tenance concepts<br />

demonstrate to the end user weak po<strong>in</strong>ts <strong>of</strong> his system thanks<br />

to the elim<strong>in</strong>ation there<strong>of</strong> potential reserve capacities can be<br />

activated to <strong>in</strong>crease safety and to enhance energy efficiency<br />

<strong>of</strong> the whole thermo<strong>process</strong><strong>in</strong>g equipment.<br />

Fig. 5: Optimisation action on a combustion-air manifold to reduce pressure<br />

fluctuations (LH before, RH after)<br />

mechanical/electrical knowledge <strong>of</strong> the <strong>in</strong>dividual components<br />

that has been sufficient for such jobs over many years.<br />

In the ideal case, such heat<strong>in</strong>g checks should take place <strong>in</strong><br />

close co-operation with the end user who knows the system<br />

very well and can give important advice on the basis <strong>of</strong> his<br />

observations.<br />

Fluctuations <strong>in</strong> the operat<strong>in</strong>g pressures <strong>of</strong> supply media are<br />

frequently encountered here. The end user generally notices<br />

this only <strong>in</strong>directly by higher gas consumption which, however,<br />

appears to him as normal and, <strong>in</strong> extreme cases, by<br />

failures occurred such as, for <strong>in</strong>stance, breakdown <strong>of</strong> burner<br />

flame. Pipel<strong>in</strong>es unfavourably dimensioned <strong>in</strong> terms <strong>of</strong> fluid<br />

technology have the same effect as undersized combustionair<br />

fans. Fig. 5 shows such a pipel<strong>in</strong>e LH before and RH after<br />

the optimisation action. Pressure fluctuations <strong>in</strong> air supply<br />

could be considerably reduced, emission values improved,<br />

burner failures reduced, and system efficiency <strong>in</strong>creased.<br />

In terms <strong>of</strong> efficiency-enhanc<strong>in</strong>g ma<strong>in</strong>tenance, a service<br />

report should <strong>in</strong>clude a check <strong>of</strong> heat<strong>in</strong>g system and<br />

demonstrate to the end user those or similar weak po<strong>in</strong>ts<br />

<strong>of</strong> his system along with potential countermeasures as well<br />

as potentials for improvement result<strong>in</strong>g therefrom. A check<br />

with regard to meet<strong>in</strong>g the currently valid safety regulations,<br />

for <strong>in</strong>stance, DIN EN 746-2 should also be <strong>in</strong>cluded <strong>in</strong> this<br />

respect. As, however, this really takes place rather seldom <strong>in</strong><br />

terms <strong>of</strong> ma<strong>in</strong>tenance by an externally contracted company,<br />

efficiency enhancement <strong>in</strong> this form is <strong>in</strong> a way the “free exercise”<br />

<strong>of</strong> ma<strong>in</strong>tenance.<br />

CONCLUSION<br />

Exclusively reactive methods for care and ma<strong>in</strong>tenance<br />

accord<strong>in</strong>g to the motto “Rather wait than ma<strong>in</strong>ta<strong>in</strong>” are<br />

nowadays a th<strong>in</strong>g <strong>of</strong> the past. In terms <strong>of</strong> efficiency-enhanc<strong>in</strong>g<br />

ma<strong>in</strong>tenance that is naturally the supreme discipl<strong>in</strong>e <strong>of</strong><br />

ma<strong>in</strong>tenance, weak po<strong>in</strong>ts and optimisation potentials are<br />

LITERATURE<br />

[1] Hiller, M. and Steck-W<strong>in</strong>ter, H.: Co-operative ma<strong>in</strong>tenance <strong>of</strong><br />

thermo<strong>process</strong><strong>in</strong>g equipment. gwi – gaswärme <strong>in</strong>ternational<br />

No. 3/2013, Vulkan Verlag Essen, 2013<br />

[2] Mäder, D.; Lohr, R. and Schmiel Gamarra, O.: Practical burner<br />

applications <strong>in</strong> consideration <strong>of</strong> DIN EN 746-2. gwi – gaswärme<br />

<strong>in</strong>ternational No. 2/2013, Vulkan Verlag Essen, 2013<br />

[3] Mäder, D.; Rakette, R. and Lohr, R.: Energy-efficient operation<br />

<strong>of</strong> natural-gas burners. gwi – gaswärme <strong>in</strong>ternational, No.<br />

5/2009, Vulkan Verlag Essen, 2009<br />

AUTHORS<br />

Dipl.-Eng. (FH) Dirk Mäder<br />

Noxmat GmbH<br />

Hagen, Germany<br />

Tel.: +49 (0) 2334 / 442358<br />

maeder@noxmat.de<br />

Octavio Schmiel Gamarra<br />

Noxmat GmbH<br />

Oederan, Germany<br />

Tel.: +49 (0) 37292 / 650361<br />

schmiel@noxmat.de<br />

Dipl.-Eng. Mario Schulze<br />

Noxmat GmbH<br />

Oederan, Germany<br />

Tel.: +49 (0) 37292 / 650369<br />

m.schulze@noxmat.de<br />

René Lohr<br />

Noxmat GmbH<br />

Oederan, Germany<br />

Tel.: +49 (0) 37292 / 650343<br />

lohr@noxmat.de<br />

94 heat <strong>process</strong><strong>in</strong>g 3-2014


Burner & Combustion<br />

REPORTS<br />

Sensory combustion optimisation<br />

<strong>of</strong> gas combustion systems<br />

by Frank Hammer<br />

Today, the quality <strong>of</strong> gas is already subjected to non-negligible fluctuations <strong>in</strong> the natural gas grid. New repositories, an<br />

altered distribution structure, and, especially, the supply <strong>of</strong> regenerative gases such as biogas and w<strong>in</strong>d-hydrogen <strong>in</strong>creas<strong>in</strong>gly<br />

alter the concentrations <strong>of</strong> hydrocarbon, hydrogen, and <strong>in</strong>ert gas components <strong>in</strong> the gas and thus its combustion<br />

properties. This has an effect on the combustion <strong>process</strong> and therefore on the efficiency and emissions <strong>of</strong> gas furnaces.<br />

A combustion control system to compensate for these gas quality variations and other disturbances on the <strong>process</strong> is<br />

therefore essential. In particular, the use <strong>of</strong> robust exhaust gas sensors for the measurement <strong>of</strong> oxygen (O 2 ) and for the<br />

detection <strong>of</strong> unburned gas components such as CO, H 2 , and HC (CO e ) allow simple control strategies for the self-adaptive<br />

optimisation <strong>of</strong> combustion and <strong>in</strong>creases the reliability and operational safety <strong>of</strong> the gas combustion system.<br />

The objective <strong>of</strong> any combustion control system<br />

should be the maximisation <strong>of</strong> efficiency at the simultaneous<br />

m<strong>in</strong>imisation <strong>of</strong> pollutants. The <strong>in</strong>fluence <strong>of</strong><br />

the air value l or rather, the rema<strong>in</strong><strong>in</strong>g oxygen content on<br />

the efficiency and the pollut<strong>in</strong>g emissions <strong>of</strong> a combustion<br />

plant is fundamentally shown <strong>in</strong> Fig. 1. Too much excess<br />

air leads to exhaust gas heat loss, whilst a lack <strong>of</strong> air leads<br />

to efficiency losses due to <strong>in</strong>complete combustion. Ideally,<br />

the plant is operated at the optimum air value, which may<br />

lie at l opt = 1.02 <strong>in</strong> the case <strong>of</strong> today’s <strong>plants</strong>, shortly <strong>in</strong> front<br />

<strong>of</strong> the so-called emission edge.<br />

Challenges for every combustion <strong>process</strong> are presented<br />

by gradually chang<strong>in</strong>g conditions and quick, externally<br />

active disturbance variables, such as:<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

Combustion air (temperature, pressure, humidity),<br />

Fuel (calorific value, temperature, viscosity),<br />

Contam<strong>in</strong>ation (burner, combustion chamber, boiler,<br />

exhaust gas duct),<br />

Chimney (w<strong>in</strong>d, temperature, draught),<br />

Mechanics (play, hysteresis, component failure).<br />

Typical fluctuations <strong>in</strong> air temperature <strong>of</strong> ± 20 °C lead to<br />

O 2 changes <strong>of</strong> ± 1.5 % by volume O 2 . Table 1 shows the<br />

<strong>in</strong>fluence <strong>of</strong> additional disturbance variables on the O 2<br />

content <strong>in</strong> furnace exhaust gas. If a combustion <strong>process</strong> is<br />

adjusted to a certa<strong>in</strong> po<strong>in</strong>t, it is “bl<strong>in</strong>dly” exposed to these<br />

O 2 fluctuations without sensor monitor<strong>in</strong>g. An <strong>in</strong>crease<br />

<strong>in</strong> O 2 accord<strong>in</strong>g to Fig. 1, leads to an efficiency loss due<br />

to an <strong>in</strong>crease <strong>in</strong> the amount <strong>of</strong> exhaust gas because <strong>of</strong><br />

excess air. A reduction <strong>in</strong> O 2 , especially <strong>in</strong> case <strong>of</strong> a lack<br />

Table 1: Typical disturbance variables and their effect on the O 2 content <strong>in</strong><br />

furnace exhaust gas<br />

Fig. 1: Typical curve <strong>of</strong> the pollutant emissions and<br />

efficiency depend<strong>in</strong>g on excess air<br />

Disturbance variable for<br />

combustion<br />

Typical fluctuation <strong>of</strong> the<br />

disturbance variable<br />

O 2 change <strong>in</strong> Vol.%<br />

Ambient temperature ± 20 °C ± 1.5 Vol.%<br />

Ambient pressure ± 25 mbar ± 0.8 Vol.%<br />

Calorific value ± 10 % ± 2.0 Vol.%<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

95


REPORTS<br />

Burner & Combustion<br />

<strong>of</strong> oxygen, leads to a risk <strong>of</strong> <strong>in</strong>complete combustion with<br />

high pollut<strong>in</strong>g emissions <strong>of</strong> CO e when exceed<strong>in</strong>g the emission<br />

edge. The efficiency drops drastically s<strong>in</strong>ce unburned<br />

combustible gas gets unused outside through the flue.<br />

A monitor<strong>in</strong>g and safe adjustment <strong>of</strong> the combustion<br />

for the compensation <strong>of</strong> such disturbance variables is thus<br />

unavoidable for both environmental and safety reasons. In<br />

the follow, the exhaust gas sensor required for this purpose,<br />

the classic O 2 control and the even more efficient CO e /<br />

O 2 optimisation that can be implemented as a result are<br />

<strong>in</strong>troduced.<br />

THE SENSORS<br />

For monitor<strong>in</strong>g the dynamic combustion <strong>process</strong> and for<br />

the compensation <strong>of</strong> disturbances, quickly react<strong>in</strong>g sensors<br />

must be placed ideally directly <strong>in</strong>to the exhaust gas duct <strong>of</strong><br />

the combustion plant. These <strong>in</strong>-situ exhaust gas sensors are<br />

exposed to high loads <strong>in</strong> flue gas. In addition to the known<br />

combustion products, these loads <strong>in</strong>clude temperature,<br />

pressure, humidity, water steam, additives, HF, SO 2 , SO 3 ,<br />

H 2 SO, ash, dust, heavy metals, boiler abrasion, vibrations,<br />

and so on. Robust, highly dynamic gas sensors based on<br />

solid electrolyte ceramics are thus used for this task. The<br />

best known example <strong>of</strong> a solid electrolyte sensor is the<br />

l-probe, which is ma<strong>in</strong>ly used <strong>in</strong> automobile applications.<br />

Lamtec develops and produces its own solid electrolyte<br />

sensors for measur<strong>in</strong>g O 2 and detect<strong>in</strong>g CO e . Fig. 2 shows an<br />

example <strong>of</strong> the comb<strong>in</strong>ation probe KS1D for the simultaneous<br />

measurement <strong>of</strong> O 2 and CO e with relevant data and facts<br />

(from left to right: top: thimble-like sensor element/sensor/<br />

<strong>in</strong>stallation situation <strong>of</strong> the probe; middle: KS1D probe with<br />

measur<strong>in</strong>g gas extraction and built-<strong>in</strong> fitt<strong>in</strong>g/<strong>in</strong>stallation<br />

situation <strong>of</strong> the probe; bottom: technical data <strong>of</strong> KS1D)<br />

Fig. 3 conta<strong>in</strong>s a pr<strong>in</strong>ciple draw<strong>in</strong>g <strong>of</strong> the thimble-like<br />

structure <strong>of</strong> the KS1D probe. It is located <strong>in</strong> the exhaust<br />

gas duct <strong>of</strong> the combustion plant. The functional ceramics<br />

(yttria-stabilised zirconia) separates the reference gas<br />

chamber (ambient) from the measur<strong>in</strong>g gas chamber (flue)<br />

<strong>in</strong> a gastight manner. The “<strong>in</strong>side” <strong>of</strong> the functional ceramics<br />

conta<strong>in</strong>s a reference electrode made <strong>of</strong> plat<strong>in</strong>um, whilst<br />

both measur<strong>in</strong>g electrodes for O 2 and CO e are located on<br />

the “outside” <strong>of</strong> the ceramics <strong>in</strong> the measur<strong>in</strong>g gas. The<br />

O 2 electrode 1 made <strong>of</strong> plat<strong>in</strong>um and the CO e electrode 2<br />

made <strong>of</strong> a plat<strong>in</strong>um/noble metal alloy differ only <strong>in</strong> regard<br />

to material. The different catalytic and electrochemical<br />

properties <strong>of</strong> the electrodes are what permit the detection<br />

<strong>of</strong> CO e . By means <strong>of</strong> an <strong>in</strong>tegrated heater, the probe is<br />

heated to and regulated at temperatures <strong>of</strong> T = 650 °C. At<br />

this temperature, the solid electrolyte ceramics is a good<br />

oxygen ion conductor which allows form<strong>in</strong>g both sensor<br />

signal voltages U S1 between electrode 1 and the reference<br />

electrode and U S2 between electrode 2 and the reference<br />

electrode that can be measured.<br />

The sensor voltage at both electrodes U Si with i = 1,2<br />

<strong>in</strong>itially correspond with the known Nernstian voltage,<br />

USi = U0,i + R Ti/4F · ln (pO2,ref / pO2,meas) (1)<br />

which depends on the partial oxygen pressure p O2,meas <strong>in</strong><br />

the exhaust gas. The oxygen partial pressure <strong>of</strong> the environment<br />

is known as a reference and lies at a constant <strong>of</strong> p O2,ref<br />

= 21 Vol.%. The universal gas constant R and the Faraday<br />

constant F are also known. A simple 1-po<strong>in</strong>t calibration <strong>in</strong><br />

air where p O2,meas = p O2,ref = 21 Vol.% results <strong>in</strong> U Si =U 0,i and<br />

thus directly the sensor-specific <strong>of</strong>fset voltage U 0,i at the<br />

set sensor temperature T i .<br />

In the presence <strong>of</strong> combustible CO e gases, a non-Nernstian<br />

sensor voltage U COe forms at the second measur<strong>in</strong>g<br />

electrode, which is added to the pure Nernstian oxygen<br />

signal voltage. The result<strong>in</strong>g sensor signal at electrode 2,<br />

thus results <strong>in</strong><br />

U S2 =U S1 + U COe (2)<br />

For the combustible CO e components, the follow<strong>in</strong>g results:<br />

U COe =U S2 - U S1 (3)<br />

Fig. 2: Comb<strong>in</strong>ation probe KS1D for the simultaneous measurement <strong>of</strong> O 2<br />

and CO e<br />

In Fig. 4, both signals U S1 and U S2 <strong>of</strong> KS1D are shown with<br />

respect to the O 2 content <strong>in</strong> the exhaust gas <strong>of</strong> a typical<br />

combustion plant. In addition, the concentration <strong>of</strong> the<br />

unburned CO e components is shown <strong>in</strong> ppm on the second<br />

y axis.<br />

96 heat <strong>process</strong><strong>in</strong>g 3-2014


Burner & Combustion<br />

REPORTS<br />

Fig. 3: Functional pr<strong>in</strong>ciple <strong>of</strong> KS1D<br />

Fig. 4: Pr<strong>in</strong>ciple signal curve <strong>of</strong> both KS1D sensor voltages<br />

depend<strong>in</strong>g on excess air<br />

A typical CO e curve when slowly reduc<strong>in</strong>g O 2 and hence<br />

head<strong>in</strong>g towards <strong>in</strong>complete/bad combustion shows a<br />

significant <strong>in</strong>crease <strong>of</strong> combustibles CO e at the emission<br />

edge due to a lack <strong>of</strong> combustion air (also refer to Fig. 1).<br />

In the excess air range <strong>in</strong> the case <strong>of</strong> clean, CO e -free<br />

combustion, both sensor signals U S1 and U S2 are identical<br />

to each other and show the current percentage <strong>of</strong> oxygen<br />

<strong>in</strong> the exhaust gas duct accord<strong>in</strong>g to Nernst. In the vic<strong>in</strong>ity<br />

<strong>of</strong> the emission edge, however, the sensor signal <strong>of</strong> the<br />

second electrode U S2 rises disproportionally due to the<br />

cumulative non-Nernstian CO e signal. For the locat<strong>in</strong>g <strong>of</strong><br />

the emission edge, both the absolute sensor signals U S1<br />

and U S2 and the relative sensor signal change accord<strong>in</strong>g<br />

to time dU S2 /dt, i.e., the signal dynamics, especially <strong>of</strong> the<br />

CO e electrode, are used.<br />

O 2 CONTROL<br />

To prevent the risk <strong>of</strong> an <strong>in</strong>complete combustion, most<br />

<strong>in</strong>dustrial combustion <strong>plants</strong> are set to an air value λ with<br />

sufficient safety distance to the emission edge us<strong>in</strong>g<br />

classic O 2 control accord<strong>in</strong>g to today’s technological<br />

standards. Fig. 1 shows the result<strong>in</strong>g, nom<strong>in</strong>al operat<strong>in</strong>g<br />

range, which can extend to l nom = 1.3 and beyond.<br />

The safety distance to the emission edge must be<br />

selected to be larger, the greater the measur<strong>in</strong>g <strong>in</strong>accuracy<br />

and measur<strong>in</strong>g error <strong>of</strong> the O 2 measurement,<br />

e.g., due to false air, and the greater and more dynamic<br />

the fluctuations are, especially <strong>in</strong> regard to chang<strong>in</strong>g gas<br />

quality. Depend<strong>in</strong>g on the <strong>process</strong>, this safety distance is<br />

necessary but unfavourably affects the efficiency s<strong>in</strong>ce<br />

the optimisation potential up to the plant and fuel specific<br />

combustion optimum <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> the emission<br />

edge is not used.<br />

The classic O 2 control adjust<strong>in</strong>g to a constant O 2 value<br />

mostly compensates these fluctuations. With a loaddependent<br />

O 2 sett<strong>in</strong>g, the efficiency <strong>of</strong> the plant can be<br />

<strong>in</strong>creased even further. Beyond the O 2 control, the emission<br />

edge strategy for combustion optimisation described <strong>in</strong><br />

the follow<strong>in</strong>g enables to settle much closer to the emission<br />

edge up to the operat<strong>in</strong>g po<strong>in</strong>t with maximum efficiency.<br />

CO e /O 2 OPTIMISATION (EMISSION EDGE<br />

STRATEGY)<br />

For the locat<strong>in</strong>g <strong>of</strong> the emission edge, the fuel/air ratio is<br />

reduced dynamically towards a smaller air value l without<br />

<strong>in</strong>fluenc<strong>in</strong>g the burner-fir<strong>in</strong>g rate until the CO e sensor signal<br />

U S2 spreads from the O 2 signal U S1 at the emission edge<br />

(Fig. 4) and both the absolute sensor signal U S2 and the<br />

sensor signal dynamics dU S2 /dt <strong>in</strong>crease significantly due<br />

to the <strong>in</strong>cipient bad combustion. A small <strong>in</strong>crease <strong>of</strong> the air<br />

value ultimately results <strong>in</strong> the optimum work<strong>in</strong>g po<strong>in</strong>t l opt<br />

<strong>of</strong> the system right <strong>in</strong> front <strong>of</strong> the emission edge. This cyclic<br />

procedure is repeated cont<strong>in</strong>uously <strong>in</strong> order to be able to<br />

guarantee operation close to optimum combustion, even<br />

<strong>in</strong> case <strong>of</strong> changed conditions or burner loads that lead to<br />

a shift <strong>in</strong> the emission edge.<br />

Fast changes or disturbances <strong>in</strong> a plant that is already optimally<br />

set are detected immediately due to the permanent<br />

monitor<strong>in</strong>g <strong>of</strong> the CO e emissions. Additional system <strong>in</strong>formation<br />

regard<strong>in</strong>g the current O 2 content <strong>in</strong> the exhaust gas<br />

and supplemental plausibility considerations may be used, if<br />

desired. Us<strong>in</strong>g these <strong>in</strong>formation, the plant will immediately<br />

be brought back <strong>in</strong>to a “safe” operat<strong>in</strong>g mode with sufficient<br />

excess air and then, start<strong>in</strong>g from a safe characteristic curve<br />

us<strong>in</strong>g the rout<strong>in</strong>e described above, led up to its optimum<br />

operat<strong>in</strong>g po<strong>in</strong>t under the changed conditions aga<strong>in</strong>.<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

97


REPORTS<br />

Burner & Combustion<br />

Fig. 5: Boiler with dual-fuel burner equipped with BurnerTronic BT300, speed control, <strong>in</strong>-situ gas sensor and sensor<br />

electronics for optimise CO e /O 2<br />

The CO e /O 2 optimisation has been used successfully<br />

worldwide for over 10 years. The most important advantages<br />

<strong>of</strong> the CO e /O 2 optimisation <strong>in</strong> comparison with an<br />

O 2 control are as follows:<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

Higher energy sav<strong>in</strong>gs through cont<strong>in</strong>uous self-optimisation<br />

<strong>in</strong> every load po<strong>in</strong>t,<br />

Better control performance through significantly shorter<br />

sett<strong>in</strong>g times,<br />

Independent <strong>of</strong> false air,<br />

Failsafe,<br />

Robust,<br />

Ma<strong>in</strong>tenance-free.<br />

SAVINGS CALCULATION<br />

For combustion control, a complete range <strong>of</strong> electronic<br />

burner control devices, fuel/air ratio controllers, IR/UV sensors,<br />

flame monitors, and CO e /O 2 measur<strong>in</strong>g devices with<br />

the pert<strong>in</strong>ent sensor systems is available on the market.<br />

For medium-sized <strong>plants</strong> from 0.3-5 MW, the BurnerTronic<br />

BT300 is the first device worldwide <strong>in</strong> its price class that<br />

can be used for both O 2 control and CO e /O 2 optimisation<br />

(Fig. 5). It comb<strong>in</strong>es all advantages <strong>of</strong> an electronic fuel/<br />

air ratio control with an electronic burner control device.<br />

S<strong>in</strong>ce the market <strong>in</strong>troduction about 3 years ago, more than<br />

3,000 <strong>plants</strong> per year and ris<strong>in</strong>g have been equipped and<br />

Table 2: Conservative sav<strong>in</strong>gs calculation for the modernised 5 MW dual-fuel burner <strong>in</strong> Fig. 6<br />

Sav<strong>in</strong>gs for burner 1: Low load Medium load High load<br />

Operat<strong>in</strong>g hours h/a 800 800 6,400<br />

Fuel costs (assumed) €/h 46 105 159<br />

O 2 reduction through O 2 control Vol.% 1.28 1.46 1.33<br />

Sav<strong>in</strong>gs through O 2 control €/a 464 1,223 13,598 15,286<br />

Additional O 2 reduction due to CO e /O 2 optimisation Vol.% 0.33 0.22 0.33<br />

Additional O 2 reduction due to CO e /O 2 optimisation €/a 120 186 3,353 3,660<br />

Sav<strong>in</strong>gs due to speed controlled fan €/a 2,974<br />

Total sav<strong>in</strong>gs €/a 21,920<br />

98 heat <strong>process</strong><strong>in</strong>g 3-2014


Burner & Combustion<br />

REPORTS<br />

Fig. 6: 5 MW dual-fuel burner converted for CO e /O 2 optimisation<br />

with LT3F sensor electronics and switch<br />

cab<strong>in</strong>et with <strong>in</strong>tegrated BT300, speed control, etc.<br />

Fig. 7: Comparison <strong>of</strong> the energy consumption <strong>of</strong> the unregulated<br />

and speed-controlled combustion air fan via the burner<br />

load<br />

optimally operated with this component – for the sake <strong>of</strong><br />

a clean environment!<br />

Fig. 6 shows one <strong>of</strong> the boilers <strong>of</strong> a <strong>thermal</strong> <strong>process</strong><strong>in</strong>g<br />

plant for the food <strong>in</strong>dustry with a 5 MW dual-fuel burner<br />

(oil/gas). All boilers <strong>of</strong> the plant were recently equipped<br />

with a CO e /O 2 optimisation and a load-dependent speed<br />

control <strong>of</strong> the combustion air fan. To estimate the pr<strong>of</strong>it <strong>of</strong><br />

the conversion measures, the plant and operation specific<br />

boundary conditions and some <strong>of</strong> the measurement data<br />

from before and after the conversion are <strong>in</strong>cluded <strong>in</strong> the<br />

sav<strong>in</strong>gs calculation.<br />

As a boundary condition, typical fluctuations accord<strong>in</strong>g<br />

to Table 1 are <strong>in</strong>cluded <strong>in</strong> the sav<strong>in</strong>gs calculation. The<br />

exhaust gas temperature was measured at 150 °C at high<br />

load and at 120 °C at low load. The combustion air temperatures<br />

typically lie at 35 °C <strong>in</strong> the summer and at 10 °C<br />

<strong>in</strong> the w<strong>in</strong>ter. To calculate the sav<strong>in</strong>gs, fuel costs <strong>of</strong> € 0.35/<br />

kWh gas are assumed.<br />

Through the use <strong>of</strong> a speed-controlled combustion air<br />

fan <strong>in</strong>stead <strong>of</strong> a fan with valve control operated at constant<br />

speed, an additional sav<strong>in</strong>g <strong>in</strong> electrical power is achieved<br />

accord<strong>in</strong>g to Fig. 7. For the calculation <strong>of</strong> the electrical sav<strong>in</strong>gs,<br />

energy costs <strong>of</strong> € 0.12/kWh el are assumed.<br />

In Table 2, the results <strong>of</strong> the mostly conservative sav<strong>in</strong>gs<br />

calculation based on the well-known Siegert formula are<br />

briefly <strong>in</strong>troduced. Accord<strong>in</strong>g to this table, the annual sav<strong>in</strong>gs<br />

due to O 2 control reach up to € 15,286 for each boiler <strong>of</strong><br />

this plant. The additional ga<strong>in</strong> due to CO e /O 2 optimisation<br />

amounts to € 3,660. The CO e /O 2 optimisation us<strong>in</strong>g a s<strong>in</strong>gle<br />

probe (KS1D) is an additional benefit and comparable with<br />

a pure O 2 control <strong>in</strong> regard to expense. For this reason, it<br />

is easy to use for all <strong>plants</strong>, <strong>in</strong>creas<strong>in</strong>gly <strong>of</strong> <strong>in</strong>terest for boilers<br />

with medium-sized output, and recently available as<br />

well. The sav<strong>in</strong>gs due to speed control amount to another<br />

€ 2,974 per year. This results <strong>in</strong> a total sav<strong>in</strong>gs <strong>of</strong> € 21,920<br />

a year per boiler! In addition to these fuel or cost sav<strong>in</strong>gs<br />

for plant operators, the environment also benefits from an<br />

annual CO 2 reduction <strong>of</strong> about 130 t per boiler <strong>in</strong> this plant.<br />

AUTHOR<br />

Dr.-Ing. Frank Hammer<br />

Lamtec Meß- und Regeltechnik für<br />

Feuerungen GmbH & Co. KG<br />

Walldorf, Germany<br />

Tel.: +49 (0) 6227 / 6052-0<br />

hammer@lamtec.de<br />

+++ www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com +++ www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com +++<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

99


Handbook <strong>of</strong><br />

Thermo<strong>process</strong><strong>in</strong>g<br />

Technologies<br />

www.vulkan-verlag.de<br />

Order now!<br />

Volume 1: Fundamentals | Processes | Calculations<br />

This Handbook provides a detailed overview <strong>of</strong> the entire thermo<strong>process</strong><strong>in</strong>g<br />

sector, structured on practical criteria, and will be <strong>of</strong> particular assistance<br />

to manufacturers and users <strong>of</strong> thermo<strong>process</strong><strong>in</strong>g equipment.<br />

In Europe thermo<strong>process</strong><strong>in</strong>g is the third largest energy consumption<br />

sector with a very diversified and complex structure. Therefore it is split<br />

<strong>in</strong>to a large number <strong>of</strong> subdivisions, each hav<strong>in</strong>g a high importance<br />

for the <strong>in</strong>dustrial economy. Accord<strong>in</strong>gly we f<strong>in</strong>d the application knowhow<br />

for the design and the execution <strong>of</strong> respective equipment represented<br />

by a multitude <strong>of</strong> small but very specialized companies and their experts.<br />

So this second edition is based on the contribution <strong>of</strong> many highly<br />

experienced eng<strong>in</strong>eers work<strong>in</strong>g <strong>in</strong> this fi eld. The book’s ma<strong>in</strong> <strong>in</strong>tention is<br />

the presentation <strong>of</strong> practical <strong>thermal</strong> <strong>process</strong><strong>in</strong>g for the improvement <strong>of</strong><br />

materials and parts <strong>in</strong> <strong>in</strong>dustrial application. Additionally it <strong>of</strong>fers a summary<br />

<strong>of</strong> respective <strong>thermal</strong> and material science fundamentals. Further it<br />

covers the basic fuel-related and electrical eng<strong>in</strong>eer<strong>in</strong>g knowledge and<br />

design aspects, components and safety requirements for the necessary<br />

heat<strong>in</strong>g <strong>in</strong>stallations.<br />

Editors: Franz Beneke, Bernhard Nacke, Herbert Pfeifer<br />

2 nd edition 2012, 674 pages with additional media files<br />

and e-book on DVD, hardcover<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen<br />

KNOWLEDGE FOR THE<br />

FUTURE<br />

Order now by fax: +49 201 / 82002-34 or send <strong>in</strong> a letter<br />

Deutscher Industrieverlag GmbH | Arnulfstr. 124 | 80636 München<br />

Yes, I place a firm order for the technical book. Please send<br />

— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />

(ISBN: 978-3-8027-2966-9) at the price <strong>of</strong> € 200,- (plus postage and pack<strong>in</strong>g)<br />

— copies <strong>of</strong> Handbook <strong>of</strong> Thermo<strong>process</strong><strong>in</strong>g Technologies 2nd edition 2012<br />

(ISBN: 978-3-8027-2966-9) at the special price <strong>of</strong> € 180,- (plus postage and pack<strong>in</strong>g)<br />

for subscribers <strong>of</strong> heat <strong>process</strong><strong>in</strong>g<br />

Company/<strong>in</strong>stitution<br />

First name and surname <strong>of</strong> recipient<br />

Street/P.O. Box, No.<br />

Country, Postcode, Town<br />

Reply / Antwort<br />

Vulkan Verlag GmbH<br />

Versandbuchhandlung<br />

Postfach 10 39 62<br />

45039 Essen<br />

GERMANY<br />

Phone<br />

E-mail<br />

L<strong>in</strong>e <strong>of</strong> bus<strong>in</strong>ess<br />

Fax<br />

Please note: Accord<strong>in</strong>g to German law this request may be withdrawn with<strong>in</strong> 14 days after order date <strong>in</strong> writ<strong>in</strong>g<br />

to Vulkan Verlag GmbH, Versandbuchhandlung, Friedrich-Ebert-Str.11, 45127 Essen, Germany.<br />

Date, signature<br />

PAHBTT2014<br />

In order to accomplish your request and for communication purposes your personal data are be<strong>in</strong>g recorded and stored.<br />

It is<br />

100<br />

approved that this data may also be used <strong>in</strong> commercial ways by mail, by phone, by fax, by email, none.<br />

heat <strong>process</strong><strong>in</strong>g 3-2014<br />

This approval may be withdrawn at any time.<br />


Energy Management<br />

REPORTS<br />

Energy efficiency – potential<br />

options for <strong>in</strong>dustrial furnaces<br />

by Christian Sprung<br />

The subject <strong>of</strong> energy efficiency, and how to <strong>in</strong>crease it, is becom<strong>in</strong>g more and more significant for <strong>in</strong>dustry and will be<br />

one <strong>of</strong> the challenges fac<strong>in</strong>g it <strong>in</strong> the com<strong>in</strong>g years. This applies <strong>in</strong> particular to the energy-<strong>in</strong>tensive sectors. The driv<strong>in</strong>g<br />

forces beh<strong>in</strong>d this development are social and political pressure on the one hand, while on the other hand, ever-<strong>in</strong>creas<strong>in</strong>g<br />

energy costs are also fuell<strong>in</strong>g the subject. For this reason, energy costs are <strong>in</strong>creas<strong>in</strong>gly becom<strong>in</strong>g a substantial location<br />

factor. The ma<strong>in</strong> obstacle when it comes to implement<strong>in</strong>g concrete measures for <strong>in</strong>creas<strong>in</strong>g efficiency is presented by<br />

the high <strong>in</strong>vestment costs associated with them. However, the complexity <strong>in</strong>volved <strong>in</strong> analyz<strong>in</strong>g <strong>in</strong>terl<strong>in</strong>ked systems <strong>in</strong> a<br />

production plant also makes it more difficult to search for the optimal solution. In many cases though, even small measures<br />

requir<strong>in</strong>g correspond<strong>in</strong>gly small <strong>in</strong>vestments can br<strong>in</strong>g about a measurable improvement. The follow<strong>in</strong>g article attempts<br />

to illustrate the wide range <strong>of</strong> technical options available specifically for gas-fired <strong>in</strong>dustrial furnaces. At the same time it<br />

should be po<strong>in</strong>ted out that there is no ready-made solution. Individual and comprehensive <strong>in</strong>vestigation must always be<br />

carried out to determ<strong>in</strong>e which approach <strong>of</strong>fers the best results <strong>in</strong> terms <strong>of</strong> costs and benefits for each <strong>in</strong>dividual case.<br />

Energy-<strong>in</strong>tensive <strong>in</strong>dustries <strong>in</strong> Germany can for the<br />

moment breathe a sigh <strong>of</strong> relief. This applies <strong>in</strong><br />

particular to companies active <strong>in</strong> the fields <strong>of</strong> steel<br />

and NF metals production. The Federal German government<br />

has come to an agreement with the EU Commission<br />

and has achieved the dismissal <strong>of</strong> the subsidy<br />

proceed<strong>in</strong>gs brought aga<strong>in</strong>st Germany. This removes<br />

the obstacles to the reform <strong>of</strong> the Renewable Energy Act<br />

(EEG) already adopted on April 8 th by the Federal Cab<strong>in</strong>et.<br />

From the viewpo<strong>in</strong>t <strong>of</strong> the energy-<strong>in</strong>tensive <strong>in</strong>dustries <strong>in</strong><br />

Germany, one <strong>of</strong> the most crucial aspects <strong>of</strong> the act is<br />

that such branches <strong>of</strong> <strong>in</strong>dustry shall cont<strong>in</strong>ue to receive<br />

rebates under the EEG levy. Furthermore, the companies<br />

own generation <strong>of</strong> electrical power shall cont<strong>in</strong>ue to be<br />

accepted from the levy. The withhold<strong>in</strong>g <strong>of</strong> these privileges,<br />

as had been demanded by a number <strong>of</strong> political<br />

parties and associations, would have signified enormous<br />

problems <strong>of</strong> competition on the global market for steel<br />

and alum<strong>in</strong>ium producers <strong>in</strong> Germany. Thus, for example,<br />

dur<strong>in</strong>g the “Steel Market 2014” conference, Hans Jürgen<br />

Kerkh<strong>of</strong>f, President <strong>of</strong> the German Steel Federation, estimated<br />

that the annual additional burden on the German<br />

steel <strong>in</strong>dustry would have been at least € 1 billion [1]. It<br />

would have been difficult, or even impossible, to cope<br />

with such additional costs <strong>in</strong> what is <strong>in</strong> any case a stra<strong>in</strong>ed<br />

market environment.<br />

WHY IS ENERGY EFFICIENCY<br />

BECOMING INCREASINGLY IMPORTANT<br />

IN GERMANY?<br />

Follow<strong>in</strong>g the rul<strong>in</strong>gs <strong>of</strong> April 8 th and 9 th , can one now<br />

say that topics such as the “change <strong>in</strong> energy policies and<br />

attitudes”, CO 2 emissions and energy efficiency have disappeared<br />

from the list <strong>of</strong> pend<strong>in</strong>g challenges? This is def<strong>in</strong>itely<br />

not the case! Thus, irrespective <strong>of</strong> these one-<strong>of</strong>f rul<strong>in</strong>gs,<br />

noth<strong>in</strong>g has changed <strong>in</strong> the long-term framework conditions<br />

with<strong>in</strong> Europe. Also the two ma<strong>in</strong> factors fuell<strong>in</strong>g all<br />

<strong>of</strong> the developments and efforts be<strong>in</strong>g made <strong>in</strong> this sphere<br />

thus rema<strong>in</strong> unaffected or are likely to be aggravated.<br />

One <strong>of</strong> these factors is the constantly <strong>in</strong>creas<strong>in</strong>g external<br />

pressure on <strong>in</strong>dustry: The so-called 3 X 20 resolutions were<br />

adopted at the 2007 Environment and Climate Change<br />

Summit. Under these resolutions, the member states <strong>of</strong><br />

the EU undertake to reduce greenhouse gas emissions and<br />

energy consumption by 20 % <strong>in</strong> each case and to <strong>in</strong>crease<br />

the proportion <strong>of</strong> renewable energies by 20 % by 2020 (all<br />

percentage values relat<strong>in</strong>g to 1990). The national objectives<br />

<strong>in</strong> Germany even go over and above these values.<br />

On March 3, 2014, the Group <strong>of</strong> Environment and Energy<br />

M<strong>in</strong>isters from 13 EU member countries issued a jo<strong>in</strong>t declaration<br />

on an ambitious climate and energy framework for<br />

the European Union by 2030. The declaration <strong>in</strong>cluded for<br />

example an appeal to the European Council to ensure a<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

101


REPORTS<br />

Energy Management<br />

Fig. 1: Energy flow diagram (2012) for the Federal Republic <strong>of</strong> Germany<br />

<strong>in</strong> petajoules [2]<br />

Fig. 2: For the <strong>process</strong><strong>in</strong>g <strong>in</strong>dustries: a) Share <strong>of</strong> energy costs <strong>in</strong><br />

gross value-added for 2008, b) <strong>in</strong>crease <strong>in</strong> energy costs<br />

between 2003 and 2008 <strong>in</strong> % [4]<br />

reduction <strong>in</strong> greenhouse gases <strong>of</strong> at least 40 % compared<br />

to 1990 by 2030, and to aim at an expansion <strong>of</strong> renewable<br />

energies by at least 27 % by 2030. Here too, the German<br />

demands <strong>in</strong> respect <strong>of</strong> climate protection, renewable energies<br />

and energy efficiency go significantly further than the<br />

contents <strong>of</strong> the declaration.<br />

This list could be extended at random. One need only<br />

open the newspaper, switch on the television or enter the<br />

requisite search words <strong>in</strong>to the <strong>in</strong>ternet. In all <strong>of</strong> the above<br />

endeavours, German <strong>in</strong>dustry is very much <strong>in</strong> the foreground<br />

with an energy consumption <strong>of</strong> 2,599 petajoules [2]<br />

<strong>in</strong> 2012 (ahead <strong>of</strong> traffic: 2,571 PJ and households: 2,431 PJ)<br />

(Fig. 1; [2]). This applies above all to the energy-<strong>in</strong>tensive<br />

sectors such as chemicals, glass, NF metals, steel, paper<br />

and cement.<br />

For the steel <strong>in</strong>dustry it is only a slight consolation that<br />

<strong>in</strong> an <strong>in</strong>ternational comparison <strong>of</strong> specific emissions (per<br />

ton <strong>of</strong> crude steel <strong>in</strong> each case) and energy consumption,<br />

Germany lies well below the figures for Russia and<br />

Ch<strong>in</strong>a, for example. On the contrary: This signifies a further<br />

strengthen<strong>in</strong>g <strong>of</strong> the pressure <strong>of</strong> <strong>in</strong>ternational competition<br />

already exist<strong>in</strong>g.<br />

A second driv<strong>in</strong>g force for developments <strong>in</strong> the field<br />

<strong>of</strong> energy efficiency is the ris<strong>in</strong>g pressure <strong>of</strong> costs: Thus,<br />

the average energy costs for German <strong>in</strong>dustry rose from<br />

approx. € 20 billion <strong>in</strong> 1997 to approx. € 45 billion [3] <strong>in</strong><br />

2011. The average share <strong>of</strong> energy costs <strong>in</strong> gross valueadded<br />

dur<strong>in</strong>g the same period <strong>in</strong>creased from 4.8 % to<br />

7.2 % [3]. On diversify<strong>in</strong>g these costs further and tak<strong>in</strong>g a<br />

quick look at the costs for the <strong>in</strong>dividual sectors and the<br />

development <strong>of</strong> these over the past few years (Fig. 2; [4]),<br />

it quickly becomes clear that this pool <strong>of</strong> costs is becom<strong>in</strong>g<br />

an <strong>in</strong>creas<strong>in</strong>gly important location factor, for <strong>in</strong>stance for<br />

the German steel <strong>in</strong>dustry.<br />

But also a comparison <strong>of</strong> energy costs with<strong>in</strong> the EU<br />

illustrates the significance <strong>of</strong> this factor for German <strong>in</strong>dustry.<br />

Thus, <strong>in</strong> 2011, the prices for <strong>in</strong>dustrial electricity <strong>in</strong> Germany<br />

were around 115 €/MWh [3], whereby Germany occupied a<br />

somewhat undesirable third place among the then 27 EU<br />

countries (average EU27: 95 €/MWh). Prices for natural gas<br />

take fourth place at 50 €/MWh (average EU27: 38 €/MWh)<br />

[3].<br />

FACTORS INHIBITING THE ACHIEVEMENT<br />

OF AN INCREASE IN ENERGY EFFICIENCY<br />

The various figures <strong>in</strong>dicated as examples are very succ<strong>in</strong>ct:<br />

The improvement <strong>of</strong> energy efficiency is becom<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>gly important and will be one <strong>of</strong> the challenges<br />

102 heat <strong>process</strong><strong>in</strong>g 3-2014


Energy Management<br />

REPORTS<br />

for the future. A large variety <strong>of</strong> technical solutions are<br />

already available today for enhanc<strong>in</strong>g efficiency. Even so,<br />

the implementation <strong>of</strong> concrete measures is still a rarity. As<br />

before, when it comes to new <strong>in</strong>vestments, it is usually the<br />

<strong>in</strong>vestment volume itself and criteria such as productivity,<br />

product quality and specific location factors that occupy<br />

the top place <strong>in</strong> the list <strong>of</strong> priorities. Energy efficiency <strong>of</strong>ten<br />

plays a rather subord<strong>in</strong>ate role. What is the reason for this?<br />

An <strong>in</strong>direct answer to this question has already been<br />

given: Technical solutions that make possible higher energy<br />

efficiency cost money, or at least more money than conventional<br />

technologies! Even if this is not a completely new<br />

revelation, this aspect def<strong>in</strong>itely cannot be quoted <strong>of</strong>ten<br />

enough. This then clearly highlights the dilemma which<br />

an <strong>in</strong>dustrial firm faces. To survive on the market, it always<br />

has to f<strong>in</strong>d a balanced compromise between the burdens<br />

<strong>of</strong> <strong>in</strong>vestments on the one hand, and the operat<strong>in</strong>g costs<br />

on the other, these latter naturally <strong>in</strong>volv<strong>in</strong>g energy needs<br />

and the pressures imposed by various <strong>of</strong>ficial requirements.<br />

The logical conclusion here is that this is a subject where<br />

global agreements are def<strong>in</strong>itely needed, s<strong>in</strong>ce “push<strong>in</strong>g<br />

ahead” on a national or regional basis will necessarily lead<br />

to distortions <strong>in</strong> competition.<br />

It is confirmed by various <strong>in</strong>vestigations [5-7] that it is the<br />

<strong>in</strong>vestment costs which represent the ma<strong>in</strong> obstacle to the<br />

implementation and <strong>in</strong>troduction <strong>of</strong> the relevant measures<br />

for enhanc<strong>in</strong>g <strong>of</strong> efficiency. A further important factor that<br />

h<strong>in</strong>ders concrete energy-sav<strong>in</strong>g measures is the extreme<br />

complexity, <strong>in</strong> many cases, <strong>of</strong> the range <strong>of</strong> tasks to be performed.<br />

For example, on consider<strong>in</strong>g the flow quantities<br />

<strong>of</strong> gas, electricity and other utilities <strong>in</strong> an <strong>in</strong>tegrated metallurgical<br />

works, <strong>in</strong>volv<strong>in</strong>g a coke-oven plant, blast furnace,<br />

converter, roll<strong>in</strong>g mill and “<strong>in</strong>-house”<br />

power station, it rapidly becomes clear<br />

that a systematic and comprehensive<br />

analysis <strong>of</strong> all relevant utilities and their<br />

consumption figures cannot be dealt<br />

with as a matter <strong>of</strong> course. Thus, an<br />

answer to the question “Do you know<br />

what is the largest consumer <strong>of</strong> energy<br />

<strong>in</strong> your works?” will quickly turn <strong>in</strong>to a<br />

scientific treatise. A further difficult factor<br />

here is that most <strong>of</strong> the utilities and<br />

energy sources are conducted through<br />

the works <strong>in</strong> circuits, and this results <strong>in</strong><br />

the mutual <strong>in</strong>teraction <strong>of</strong> the <strong>in</strong>dividual<br />

systems. Individual isolated solutions<br />

should therefore be exam<strong>in</strong>ed critically<br />

before they are <strong>in</strong>troduced, s<strong>in</strong>ce<br />

improvements at one po<strong>in</strong>t may well<br />

cause deterioration at another location.<br />

The follow<strong>in</strong>g can be regarded as a<br />

general rule <strong>in</strong> the discussion on <strong>in</strong>troduc<strong>in</strong>g<br />

concrete measures for the <strong>in</strong>creas<strong>in</strong>g <strong>of</strong> energy<br />

efficiency: Patent solutions do not exist, and nor does the<br />

“best technology for all situations”. It is more the case that <strong>in</strong><br />

each concrete <strong>in</strong>dividual <strong>in</strong>stance and under consideration<br />

<strong>of</strong> the respective <strong>in</strong>frastructure, a search must always be<br />

made for an <strong>in</strong>tegrated optimum approach.<br />

What is good for one <strong>in</strong>dustrial firm may by no means<br />

be the best solution <strong>in</strong> another firm, particularly as the cost<br />

aspects for each concrete case must always be <strong>in</strong>cluded<br />

<strong>in</strong> the considerations. Plant owners, plantmakers and also<br />

consult<strong>in</strong>g firms have to make equally strong efforts here.<br />

Modern energy <strong>management</strong> systems can assist with<br />

the complex analysis <strong>of</strong> an entire <strong>in</strong>dustrial firm or works. As<br />

a plantmaker active worldwide <strong>in</strong> the field <strong>of</strong> metallurgical<br />

plant and roll<strong>in</strong>g mill technology, SMS Siemag makes its<br />

Energy Advisor available as an energy <strong>management</strong> system<br />

accord<strong>in</strong>g to ISO 50001, and this also performs energy<br />

data <strong>management</strong> over and above mere monitor<strong>in</strong>g. It is<br />

thus able to be used already <strong>in</strong> the plann<strong>in</strong>g phase <strong>of</strong> a<br />

new plant. Fig. 3 shows the essential modules and the<br />

structure <strong>of</strong> the system. Its ma<strong>in</strong> task is primarily to systematically<br />

record and archive all relevant measured data<br />

from the <strong>in</strong>dividual units. This gigantic data stock is then<br />

evaluated and displayed <strong>in</strong> a very wide variety <strong>of</strong> ways at<br />

the next level. This also makes it possible to display large<br />

and complex works systems <strong>in</strong> a structured manner and<br />

to create the necessary transparency, which <strong>in</strong> turn is the<br />

basic prerequisite for a fully comprehensive analysis. S<strong>in</strong>ce<br />

this is not a one-<strong>of</strong>f procedure but <strong>in</strong>volves the permanent<br />

record<strong>in</strong>g <strong>of</strong> data, trend analyses and boundary-value<br />

alarms can be employed to provide further <strong>in</strong>formation on<br />

the ongo<strong>in</strong>g production and on the condition <strong>of</strong> <strong>in</strong>dividual<br />

Fig. 3: Modules and functions <strong>of</strong> the SMS Siemag energy <strong>management</strong> system, “Energy Advisor”<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

103


REPORTS<br />

Energy Management<br />

Fig. 4: Categories <strong>of</strong> possible measures for <strong>in</strong>creas<strong>in</strong>g the energy efficiency <strong>in</strong> gas-fired <strong>in</strong>dustrial furnaces<br />

plant units, thus enabl<strong>in</strong>g early <strong>in</strong>tervention and tak<strong>in</strong>g <strong>of</strong><br />

countermeasures. This system thus also supplies important<br />

data for the plann<strong>in</strong>g <strong>of</strong> systematic ma<strong>in</strong>tenance.<br />

INCREASING OF ENERGY EFFICIENCY<br />

USING THE EXAMPLE OF GAS-FIRED<br />

INDUSTRIAL FURNACES<br />

Us<strong>in</strong>g the example <strong>of</strong> gas-fired <strong>in</strong>dustrial furnaces for the<br />

heat<strong>in</strong>g and heat-treatment <strong>of</strong> steel, a number <strong>of</strong> fundamental<br />

aspects relat<strong>in</strong>g to improvement <strong>of</strong> efficiency are<br />

expla<strong>in</strong>ed below (without claim<strong>in</strong>g to be complete). As<br />

Fig. 5: Defective roller seal<strong>in</strong>g <strong>in</strong> a roller hearth furnace<br />

already mentioned, the list <strong>of</strong> technologies which enable<br />

sav<strong>in</strong>gs to be made <strong>in</strong> energy consumption is long. This is<br />

true above all also for the field <strong>of</strong> <strong>in</strong>dustrial furnaces. There<br />

is hardly a specialist journal or publication that does not<br />

deal <strong>in</strong> one way or another with this subject, illustrat<strong>in</strong>g<br />

the advantageous technical features <strong>of</strong> special plant and<br />

equipment. The present article will refra<strong>in</strong> from list<strong>in</strong>g and<br />

analyz<strong>in</strong>g all <strong>of</strong> these solutions <strong>in</strong>dividually. Instead, an overall<br />

view is to be provided, which will also conta<strong>in</strong> smaller<br />

and (<strong>in</strong> respect <strong>of</strong> expenditure) medium-sized measures.<br />

A system supplier has the task <strong>of</strong> tak<strong>in</strong>g <strong>in</strong>to consideration<br />

all technical possibilities with<strong>in</strong> a concrete project <strong>in</strong><br />

order thus to achieve an <strong>in</strong>tegrated solution which is also<br />

optimum for each <strong>in</strong>dividual case, <strong>in</strong> other words, to analyze<br />

the costs and benefits relat<strong>in</strong>g to the possible plant and<br />

equipment variants and to elaborate the best solution on<br />

this basis.<br />

If it is wished to assess the expenditure <strong>in</strong>volved by<br />

measures for improv<strong>in</strong>g efficiency, these measures can be<br />

roughly divided <strong>in</strong>to three categories <strong>in</strong> accordance with<br />

the magnitude <strong>of</strong> the required <strong>in</strong>vestments. Fig. 4 shows<br />

such a classification with the correspond<strong>in</strong>g examples. This<br />

figure, <strong>of</strong> course, cannot as yet make any statements on the<br />

amount <strong>of</strong> the respective potential sav<strong>in</strong>gs. This can only be<br />

assessed on a project-specific basis, i.e. accord<strong>in</strong>g to concrete<br />

cases. The only rule <strong>of</strong> thumb that can be employed<br />

<strong>in</strong> this context is that if a higher proportion <strong>of</strong> energy can<br />

be reta<strong>in</strong>ed <strong>in</strong> the <strong>process</strong> or even, wherever possible, does<br />

not have to be <strong>in</strong>troduced <strong>in</strong> the first place, this will always<br />

be preferable to the recovery <strong>of</strong> energy, s<strong>in</strong>ce the latter<br />

necessarily always <strong>in</strong>volves losses <strong>in</strong> operat<strong>in</strong>g efficiency.<br />

104 heat <strong>process</strong><strong>in</strong>g 3-2014


Energy Management<br />

REPORTS<br />

MEASURES INVOLVING<br />

LOW INVESTMENT COSTS<br />

The fist category, i.e. measures <strong>in</strong>volv<strong>in</strong>g low additional<br />

<strong>in</strong>vestment costs, <strong>in</strong>cludes for example the raised awareness<br />

<strong>of</strong> all employees who work each day with the furnace<br />

equipment. If, for example, a furnace door is left<br />

open unnecessarily, the heat<strong>in</strong>g system will only be able<br />

to keep the furnace at operat<strong>in</strong>g temperature by additionally<br />

supply<strong>in</strong>g a substantial quantity <strong>of</strong> heat which<br />

will at the same time be escap<strong>in</strong>g <strong>in</strong>to the furnace bay.<br />

Someth<strong>in</strong>g like this can be avoided without any need<br />

for <strong>in</strong>vestments.<br />

But a large amount <strong>of</strong> energy-sav<strong>in</strong>g can <strong>of</strong>ten also be<br />

atta<strong>in</strong>ed via the ma<strong>in</strong>tenance <strong>of</strong> a furnace system, <strong>in</strong>volv<strong>in</strong>g<br />

little expenditure. Here, primarily, the condition <strong>of</strong> the<br />

refractory l<strong>in</strong><strong>in</strong>g and its regular improvement should be<br />

mentioned. In Fig. 5 a damaged roller seal can be seen.<br />

At this location, the heat can escape <strong>in</strong>to the bay virtually<br />

unimpeded. This effect is all the more serious the higher<br />

the furnace chamber temperature is set, whereby the heat<br />

radiation <strong>in</strong>to the bay <strong>in</strong>creases at a disproportionate rate. If<br />

such effects occur <strong>in</strong> conjunction with a defective furnace<br />

pressure control system, which may result <strong>in</strong> a slight negative<br />

pressure, the unnecessary losses will be multiplied yet<br />

further because the <strong>in</strong>filtrat<strong>in</strong>g air enter<strong>in</strong>g will also have<br />

to be warmed up by the heat<strong>in</strong>g system.<br />

Thus, under the key head<strong>in</strong>g <strong>of</strong> “ma<strong>in</strong>tenance”, a further<br />

aspect can now be <strong>in</strong>dicated: A large amount <strong>of</strong> energy<br />

can be wasted if the measurement and control equipment<br />

is not work<strong>in</strong>g properly or if its sett<strong>in</strong>gs<br />

have become distorted over time. For<br />

example, a deficiently measur<strong>in</strong>g air or<br />

gas orifice may cause the real air factor,<br />

lambda, to be <strong>in</strong>creased. A 10 % deviation<br />

<strong>in</strong> the air factor will already lead to<br />

a rise <strong>in</strong> the specific gas consumption <strong>of</strong><br />

the plant <strong>in</strong> the range <strong>of</strong> 2-3 %.<br />

Another factor which must also not<br />

be underestimated <strong>in</strong> ensur<strong>in</strong>g the best<br />

possible operation <strong>of</strong> a furnace system<br />

is the optimum utilization <strong>of</strong> the hearth,<br />

i.e. to be as complete as possible. This is<br />

because a system which has been set to<br />

a given temperature will consume energy<br />

even if no material is be<strong>in</strong>g heated<br />

<strong>in</strong> the furnace. Purely on the computational<br />

level, such a situation will result <strong>in</strong><br />

an <strong>in</strong>f<strong>in</strong>itely high specific consumption.<br />

Consequently, if the furnace system is<br />

be<strong>in</strong>g poorly utilized, a higher specific<br />

consumption will arise <strong>in</strong> comparison<br />

with a system <strong>in</strong> which the hearth is<br />

fully utilized.<br />

Incomplete utilization will be the case, for example,<br />

when there are large gaps between the <strong>in</strong>dividual pieces<br />

<strong>of</strong> material be<strong>in</strong>g heated. This could be caused by us<strong>in</strong>g<br />

small batches with constant changes <strong>in</strong> the geometry and<br />

required heat<strong>in</strong>g times or constant <strong>in</strong>terruptions <strong>in</strong> the<br />

feed <strong>of</strong> material to the furnace. For the sake <strong>of</strong> completeness,<br />

it must be mentioned that if the furnace operation is<br />

impeded due to the material be<strong>in</strong>g discharged too slowly<br />

after be<strong>in</strong>g <strong>process</strong>ed <strong>in</strong> the furnace, this will also result<br />

<strong>in</strong> a considerable <strong>in</strong>crease <strong>in</strong> the specific consumption,<br />

even if no unnecessary gaps are present <strong>in</strong> the material<br />

<strong>in</strong> the furnace.<br />

The extent to which sub-optimal hearth utilization<br />

affects the specific consumption <strong>of</strong> the system depends<br />

on the type <strong>of</strong> furnace <strong>in</strong>volved. The decisive factor here is<br />

how high the proportion <strong>of</strong> no-load losses <strong>of</strong> a system is <strong>in</strong><br />

relation to the overall energy balance. This becomes clear<br />

<strong>in</strong> Fig. 6. Thus, if the hearth utilization <strong>in</strong> a walk<strong>in</strong>g-beam<br />

furnace for the heat<strong>in</strong>g <strong>of</strong> slabs is reduced, this will result<br />

<strong>in</strong> a steep rise <strong>in</strong> the specific excess consumption. On the<br />

other hand, the effects on a roller hearth furnace with noncooled<br />

furnace rollers will not be so serious. The reason<br />

for this different curve characteristic is the fact that <strong>in</strong> a<br />

walk<strong>in</strong>g-beam furnace, the proportion <strong>of</strong> no-load losses <strong>in</strong><br />

the overall balance, particularly due to the water or steamcooled<br />

rail system, is considerably higher than <strong>in</strong> a roller<br />

hearth furnace without actively cooled components <strong>in</strong> the<br />

furnace chamber. This effect is re<strong>in</strong>forced if the walk<strong>in</strong>gbeam<br />

furnace is assumed to have a partially damaged<br />

Fig. 6: Influence <strong>of</strong> hearth area utilization on specific gas consumption for various furnace types<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

105


REPORTS<br />

Energy Management<br />

Fig. 7: a) Batch-type furnaces for heat treatment <strong>of</strong> plates with roller table and plate-handl<strong>in</strong>g<br />

mach<strong>in</strong>es; b) Possible means <strong>of</strong> subdivid<strong>in</strong>g the furnace chamber <strong>in</strong>to two areas to be operated<br />

<strong>in</strong>dependently<br />

Fig. 8: a) Quench harden<strong>in</strong>g equipment for heat-treatment <strong>of</strong> plates; b) Procedural pr<strong>in</strong>ciple for<br />

model-assisted stopp<strong>in</strong>g <strong>of</strong> plate cool<strong>in</strong>g and self-anneal<strong>in</strong>g<br />

rail <strong>in</strong>sulation. However, if the roller hearth furnace is now<br />

imag<strong>in</strong>ed to have water-cooled rollers, the <strong>in</strong>crease <strong>in</strong> specific<br />

excess consumption will be even more abrupt than <strong>in</strong><br />

the walk<strong>in</strong>g-beam furnace with damaged rail <strong>in</strong>sulation.<br />

An additional reason for sub-optimum hearth utilization<br />

may already appear dur<strong>in</strong>g the plann<strong>in</strong>g <strong>of</strong> a new furnace<br />

system. If the design is unduly burdened with “exotic” product<br />

dimensions, this sub-optimum<br />

hearth utilization will be predeterm<strong>in</strong>ed<br />

and become apparent later.<br />

Such “exotic” sizes are considered<br />

to mean the dimension<strong>in</strong>g <strong>of</strong> the<br />

system for products with extreme<br />

geometrical dimensions which, however,<br />

only represent a very small portion<br />

<strong>of</strong> the overall product mix. As<br />

a consequence, the furnace will be<br />

underutilized for a large proportion<br />

<strong>of</strong> the production and will operate<br />

<strong>in</strong>efficiently.<br />

In such cases it may make sense to<br />

split up the overall production. The<br />

major part <strong>of</strong> the production will<br />

then take place via a cont<strong>in</strong>uously<br />

operat<strong>in</strong>g roller hearth furnace, while<br />

special products will be relocated<br />

to a furnace system that is operated<br />

batch-wise. In Fig. 7, such a system<br />

is shown with two batch-type furnaces<br />

for the solution heat treatment<br />

<strong>of</strong> special-steel plates. The roller table<br />

upstream <strong>of</strong> the furnace is directly<br />

coupled with the hot roll<strong>in</strong>g mill via a<br />

cool<strong>in</strong>g and transfer bed, which enables<br />

the energy-sav<strong>in</strong>g hot-charg<strong>in</strong>g<br />

<strong>of</strong> the plates. Operat<strong>in</strong>g parallel to<br />

this l<strong>in</strong>e <strong>in</strong> the neighbour<strong>in</strong>g bay is<br />

a cont<strong>in</strong>uous roller hearth furnace<br />

which is arranged directly <strong>in</strong> l<strong>in</strong>e with<br />

the roll<strong>in</strong>g mill.<br />

The batch-type furnaces are<br />

designed for particularly wide and/<br />

or thick plates from the overall product<br />

range and can be operated at<br />

temperatures <strong>of</strong> up to 1,250 °C. It is<br />

precisely these parameter comb<strong>in</strong>ations<br />

which are not possible on the<br />

roller hearth furnace, or this furnace<br />

is not designed for this. To keep the<br />

hearth utilization <strong>of</strong> the two batchtype<br />

furnaces themselves also at a<br />

high level, the furnace chamber can<br />

be subdivided by an <strong>in</strong>termediate<br />

door <strong>in</strong>to two chambers to be operated separately. This<br />

special equipment arrangement makes it possible, for each<br />

furnace, either to treat two plates <strong>of</strong> length between 3 and<br />

8 m <strong>in</strong>dependently <strong>of</strong> one another or to charge one long<br />

plate (8 to 16 m). This will enable efficient operation <strong>of</strong> the<br />

system. If utilization is low, furthermore, one <strong>of</strong> the two<br />

furnaces can be switched <strong>of</strong>f altogether. This would not<br />

106 heat <strong>process</strong><strong>in</strong>g 3-2014


Energy Management<br />

REPORTS<br />

be possible with one s<strong>in</strong>gle large, cont<strong>in</strong>uously operated<br />

furnace which caters for the entire production.<br />

MEASURES INVOLVING<br />

MEDIUM INVESTMENT COSTS<br />

This category would comprise smaller <strong>in</strong>vestments and<br />

modernizations. Examples here are the utilization <strong>of</strong><br />

electric motors with an improved efficiency class. Here,<br />

above all <strong>in</strong> the lower power range (< 30 kW) considerable<br />

<strong>in</strong>creases <strong>in</strong> efficiency can be achieved. Especially<br />

for pumps or fans, significant energy sav<strong>in</strong>gs can be<br />

obta<strong>in</strong>ed by us<strong>in</strong>g frequency converters for speed control.<br />

The ability to set the drive speed to the delivery<br />

requirements makes it possible to do without “energygobbl<strong>in</strong>g”<br />

guide vane controls or throttl<strong>in</strong>g controls.<br />

Moreover, the <strong>in</strong>stallation <strong>of</strong> a waste-heat boiler for<br />

generation <strong>of</strong> steam or hot water <strong>in</strong> the <strong>of</strong>fgas flow <strong>of</strong><br />

a furnace allows energy to be reused which would otherwise<br />

be discharged to the surround<strong>in</strong>gs via the stack.<br />

Such <strong>in</strong>stallations, however, only make sense if the correspond<strong>in</strong>g<br />

network and the requisite <strong>in</strong>frastructure<br />

are present <strong>in</strong>side the works and the respective energy<br />

source can be fed <strong>in</strong> to these without problems.<br />

A further type <strong>of</strong> measures <strong>in</strong>volv<strong>in</strong>g medium <strong>in</strong>vestment<br />

costs is the use <strong>of</strong> <strong>in</strong>telligent computer-based calculation<br />

models. An example from this area, the <strong>in</strong>troduction<br />

<strong>of</strong> an energy <strong>management</strong> system, was already<br />

expla<strong>in</strong>ed <strong>in</strong> the third section. A somewhat different<br />

approach is followed by the so-called <strong>process</strong> models.<br />

Such systems help to record all <strong>of</strong> the relevant data on<br />

what are <strong>of</strong>ten highly complex systems, to analyze these<br />

data onl<strong>in</strong>e and to derive from them, likewise onl<strong>in</strong>e,<br />

optimized operat<strong>in</strong>g practices and reference values.<br />

Among these, the furnace control systems should be<br />

mentioned. The use <strong>of</strong> such s<strong>of</strong>tware is to be recommended<br />

<strong>in</strong> virtually all cases <strong>in</strong>volv<strong>in</strong>g medium to large<br />

<strong>in</strong>dustrial furnaces. For smaller furnace systems, on the<br />

other hand, the costs and benefits need to be exam<strong>in</strong>ed<br />

more precisely. It should naturally be considered here<br />

that not only optimization as regards an energy-sav<strong>in</strong>g<br />

operat<strong>in</strong>g practice but also other optimization strategies<br />

can be catered for by such a system <strong>of</strong> models.<br />

However, a considerable amount <strong>of</strong> energy can also<br />

be saved <strong>in</strong>directly dur<strong>in</strong>g the cool<strong>in</strong>g or quench<strong>in</strong>g <strong>of</strong><br />

plates. Thus, the classical sequence <strong>in</strong> the harden<strong>in</strong>g and<br />

temper<strong>in</strong>g <strong>of</strong> plates is the quench<strong>in</strong>g <strong>of</strong> the material from<br />

temperature ranges <strong>in</strong> which an austenitic microstructure<br />

is present, comb<strong>in</strong>ed with a subsequent, separate<br />

renewed temper<strong>in</strong>g <strong>of</strong> the plate <strong>in</strong> order to atta<strong>in</strong> the<br />

f<strong>in</strong>al properties. Powerful onl<strong>in</strong>e models for the cool<strong>in</strong>g<br />

<strong>process</strong> enable the quench <strong>process</strong> to be controlled <strong>in</strong><br />

such a manner that only the near-surface regions <strong>of</strong><br />

the plate need to be cooled <strong>in</strong>to the martensite range.<br />

Here, cool<strong>in</strong>g is stopped <strong>in</strong> a controlled manner before<br />

the core zones <strong>of</strong> the plate have reached the martensitic<br />

transformation temperature. The rema<strong>in</strong><strong>in</strong>g heat <strong>in</strong> the<br />

core that will re-heat the near-surface zones after the<br />

water cool<strong>in</strong>g has been stopped then leads to a k<strong>in</strong>d <strong>of</strong><br />

self-temper<strong>in</strong>g or recovery (Fig. 8) <strong>of</strong> the plate. It is thus<br />

possible to do completely without separate anneal<strong>in</strong>g<br />

<strong>of</strong> the plate, i.e. reheat<strong>in</strong>g to temper<strong>in</strong>g temperatures<br />

as a further <strong>process</strong> step. Of course, such elim<strong>in</strong>ation <strong>of</strong><br />

a complete <strong>process</strong> stage is only possible with certa<strong>in</strong><br />

products and grades but, <strong>in</strong> these cases, it represents<br />

an enormous sav<strong>in</strong>gs potential.<br />

MEASURES INVOLVING<br />

HIGH INVESTMENT COSTS<br />

As mentioned at the beg<strong>in</strong>n<strong>in</strong>g, this article refra<strong>in</strong>s from<br />

mak<strong>in</strong>g a detailed <strong>in</strong>vestigation, and list<strong>in</strong>g the advantages<br />

and disadvantages, <strong>of</strong> all modern energy-efficient burner<br />

systems or, for example, the substitution <strong>of</strong> combustion air<br />

by oxygen. Nevertheless, a general note should be permitted<br />

at this stage: The benefit (i.e. the possible energy-sav<strong>in</strong>g<br />

potential) <strong>of</strong> a special item <strong>of</strong> equipment <strong>in</strong> relation to the<br />

higher <strong>in</strong>vestments normally associated with this may <strong>in</strong> all<br />

cases only be considered for a concrete overall system with<br />

all <strong>of</strong> its operat<strong>in</strong>g parameters. If this <strong>in</strong>tegrative type <strong>of</strong><br />

consideration is performed, it may well be possible that the<br />

results deviate from those supplied by a purely theoretical<br />

consideration <strong>of</strong> stand-alone equipment items. As also <strong>in</strong><br />

everyday areas <strong>of</strong> life, it is true that the more expensive variant<br />

does not automatically represent the better solution.<br />

Here is a brief example: In an open-heated roller hearth furnace,<br />

plates are to be heated up to temperatures <strong>of</strong> 920 °C<br />

at a given hourly productive output. Towards the entry, the<br />

furnace chamber temperatures are slightly reduced (e.g.<br />

800 °C) as is usual for such furnaces. For this reason, it is<br />

not possible anyway to promptly reach an average furnace<br />

chamber temperature <strong>of</strong> e.g. 900 °C <strong>in</strong> the entry section if<br />

the furnace is charged with a plate at room temperature.<br />

If nonetheless a correspond<strong>in</strong>gly high setpo<strong>in</strong>t is selected<br />

for heat<strong>in</strong>g, this results <strong>in</strong> strong permanent fluctuations<br />

<strong>of</strong> the load conditions with extreme load peaks <strong>in</strong> the<br />

entry section. These substantially <strong>in</strong>crease the <strong>in</strong>evitable<br />

<strong>thermal</strong> shock to which the hearth rollers are subjected. It<br />

is absolutely recommended to reduce the temperatures<br />

<strong>in</strong> the entry section <strong>in</strong> order to m<strong>in</strong>imize breakage <strong>of</strong> the<br />

furnace rollers and <strong>in</strong>crease their service life.<br />

For heat<strong>in</strong>g <strong>of</strong> the system described previously, it is now<br />

necessary to clarify the question <strong>of</strong> whether use should<br />

be made <strong>of</strong> normal high-speed burners comb<strong>in</strong>ed with a<br />

central recuperator or recuperative burner. The <strong>in</strong>vestment<br />

for a heat<strong>in</strong>g system with recuperative burners is normally<br />

higher than for a solution <strong>in</strong>volv<strong>in</strong>g a central recuperator.<br />

On the other hand, higher air-preheat<strong>in</strong>g temperatures<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

107


REPORTS<br />

Energy Management<br />

Table 1: Comparison <strong>of</strong> the advantages and disadvantages <strong>of</strong> a recuperative burner and a central recuperator<br />

Recuperative Burner<br />

Central recuperator<br />

+ Efficient heat recovery directly <strong>in</strong> the burner / no loss <strong>of</strong> energy<br />

en route<br />

+ Simple and ma<strong>in</strong>tenance-friendly design<br />

+ Burner can be supplied with cold air + Size can be adapted <strong>in</strong>dividually<br />

- Due to the eductor air additionally required, the air consumption<br />

amounts to a value which is approx. 2.5 times that <strong>of</strong> a conventional<br />

burner<br />

- Only standard sizes available / large power rat<strong>in</strong>gs (> 500 kW)<br />

cannot be implemented.<br />

- In case <strong>of</strong> exhaust gas temperatures > 1,000 °C, ceramic recuperators<br />

must be used<br />

- High <strong>in</strong>vestment costs<br />

+ Investment costs are lower than for a<br />

recuperative burner system<br />

- Energy losses <strong>in</strong> the air and exhaust<br />

ducts<br />

- Air valves and fitt<strong>in</strong>gs must be designed<br />

for operation with hot air<br />

can usually be achieved with recuperative burners. A brief<br />

comparison <strong>of</strong> the advantages and disadvantages <strong>of</strong> both<br />

configurations is provided <strong>in</strong> Table 1.<br />

As already expla<strong>in</strong>ed, it is not sufficient to decide <strong>in</strong><br />

favour <strong>of</strong> one <strong>of</strong> the two systems on the basis <strong>of</strong> these fundamental<br />

<strong>in</strong>terrelationships. Instead, an <strong>in</strong>tegrated energy<br />

balance must be drawn up for the furnace system with all <strong>of</strong><br />

the relevant parameters. In Fig. 9 the results <strong>of</strong> this energy<br />

balance are displayed for both variants <strong>of</strong> the heat<strong>in</strong>g system.<br />

Calculation was made for plates with a thickness <strong>of</strong><br />

50 mm and a length <strong>of</strong> 10 m with fully cont<strong>in</strong>uous operation.<br />

The width <strong>of</strong> the plates was varied between 1,000 and<br />

Fig. 9: Results <strong>of</strong> the energy balance when utiliz<strong>in</strong>g recuperative burners or a central recuperator<br />

at a roller hearth furnace<br />

2,000 mm, with the parameters otherwise rema<strong>in</strong><strong>in</strong>g the<br />

same, with vary<strong>in</strong>g throughput rates and hearth utilizations<br />

be<strong>in</strong>g obta<strong>in</strong>ed as a result. As already expla<strong>in</strong>ed above,<br />

the effect <strong>of</strong> this variation on the specific consumption is<br />

such that these consumption rates fall as the throughput<br />

rates <strong>in</strong>crease. When discuss<strong>in</strong>g costs result<strong>in</strong>g from the<br />

consumption, it should be noted that the costs <strong>of</strong> electricity<br />

are currently more than three times those <strong>of</strong> natural gas (for<br />

the calculation <strong>of</strong> assumed values): Natural gas: 3 Cent/kWh;<br />

electricity: 10 Cent/kWh) This leads to differences between<br />

the bars shown <strong>in</strong> the diagram (energy consumption <strong>in</strong><br />

kWh/t) and the respective perta<strong>in</strong><strong>in</strong>g curve values (costs<br />

<strong>in</strong> € per 1,000 t).<br />

It becomes clear from the diagram<br />

that the heat<strong>in</strong>g system with a central<br />

recuperator supplies better results,<br />

even though it is the supposedly less<br />

energy-efficient solution. Even though<br />

the difference <strong>in</strong> consumption dim<strong>in</strong>ishes<br />

towards low throughput rates,<br />

the higher proportion <strong>of</strong> electricity for<br />

the recuperative burners means that <strong>in</strong><br />

respect <strong>of</strong> costs the central recuperator<br />

is the “front runner” here.<br />

The reason for this is to be found <strong>in</strong><br />

the slight lower<strong>in</strong>g <strong>of</strong> furnace chamber<br />

temperature towards the furnace entry<br />

section. This means that <strong>in</strong> the case <strong>of</strong><br />

a central recuperator all <strong>of</strong> the furnace<br />

<strong>of</strong>fgases leave the furnace at somewhat<br />

lower temperatures <strong>in</strong> comparison with<br />

a decentralized exhaustion system<br />

<strong>in</strong>stalled at the <strong>in</strong>dividual recuperative<br />

burners. Thus, already before the heat<br />

recovery takes place via air preheat<strong>in</strong>g,<br />

more heat can be reta<strong>in</strong>ed directly <strong>in</strong> the<br />

108 heat <strong>process</strong><strong>in</strong>g 3-2014


Energy Management<br />

REPORTS<br />

<strong>process</strong>. This example is <strong>in</strong>tended<br />

to illustrate that when evaluat<strong>in</strong>g<br />

the optimum solution, a pure comparison<br />

<strong>of</strong> the performance data<br />

<strong>of</strong> <strong>in</strong>dividual plant components is<br />

not sufficient.<br />

The f<strong>in</strong>al example <strong>of</strong> possibilities<br />

for enhanc<strong>in</strong>g the energy efficiency,<br />

taken from the field <strong>of</strong> CSP®<br />

technology, is <strong>in</strong>tended to illustrate<br />

the potential possibilities for sav<strong>in</strong>gs<br />

that are available if, besides<br />

the plant technology utilized, the<br />

<strong>process</strong> control itself is optimized<br />

from the po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> energy<br />

consumption.<br />

CSP® stands for Compact Strip<br />

Production, the cast<strong>in</strong>g <strong>of</strong> steel<br />

<strong>in</strong>to th<strong>in</strong> slabs which after a slight<br />

temperature <strong>in</strong>crease and equalization<br />

<strong>in</strong> a roller hearth furnace are<br />

rolled down directly. The fact that<br />

the slabs are hot-charged directly<br />

<strong>in</strong>to the furnace means that this is<br />

a highly efficient technology from<br />

the outset. For further enhancement<br />

<strong>of</strong> the efficiency, a package<br />

<strong>of</strong> measures has been developed<br />

for the complete CSP® facility. Here,<br />

the furnace has a key function.<br />

Typically, <strong>in</strong> this furnace, the slabs<br />

are heated up to roll<strong>in</strong>g temperatures<br />

<strong>of</strong> 1,150 °C. For many products,<br />

however, 1,100 °C upstream<br />

<strong>of</strong> the roll<strong>in</strong>g mill is already fully<br />

adequate. It was therefore seen<br />

to be feasible to lower the furnace<br />

temperatures as the first<br />

step towards energy-sav<strong>in</strong>g. To<br />

be able nevertheless to heat up<br />

<strong>in</strong>dividual slabs to temperatures<br />

<strong>of</strong> 1,150 °C whenever necessary,<br />

the furnace was comb<strong>in</strong>ed with<br />

<strong>in</strong>ductive heat<strong>in</strong>g modules on its<br />

exit side, which are switched on<br />

<strong>in</strong> a highly flexible manner as and<br />

when required and thus be able to<br />

provide the temperature <strong>in</strong>crease<br />

still needed (Fig. 10).<br />

In conjunction with the reduction <strong>of</strong> chamber temperatures<br />

<strong>in</strong> the roller heath furnace, the water-cooled rollers,<br />

which are otherwise customary <strong>in</strong> these furnaces, can be<br />

substituted by so-called “dry” rollers which are uncooled.<br />

Fig. 10: a) Basic overview <strong>of</strong> the components <strong>of</strong> a CSP® facility; b) Detailed view <strong>of</strong> the area at the<br />

furnace exit with <strong>in</strong>ductive heat<strong>in</strong>g equipment<br />

Fig. 11: Specific energy consumption <strong>of</strong> a CSP® roller hearth furnace with differ<strong>in</strong>g furnace chamber<br />

temperatures and roller designs<br />

This results <strong>in</strong> a further clear reduction <strong>in</strong> the energies that<br />

need to be supplied for operation <strong>of</strong> the furnace, particularly<br />

as no effects result<strong>in</strong>g from the wear <strong>of</strong> refractory materials<br />

arise on an uncooled furnace roller. The water-cooled<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

109


• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />

REPORTS<br />

Energy Management<br />

pipe used with the rollers otherwise customarily employed<br />

for this <strong>process</strong> is usually <strong>in</strong>sulated with refractory concrete.<br />

This <strong>in</strong>sulation is exposed to extreme stresses due to the<br />

permanent slab transport, which means that parts <strong>of</strong> this<br />

<strong>in</strong>sulation may become worn or even fall <strong>of</strong>f completely.<br />

This causes the heat dissipation via the water-cool<strong>in</strong>g <strong>of</strong><br />

the rollers to become <strong>in</strong>creased to a considerable extent.<br />

If both measures are implemented, i.e. lower<strong>in</strong>g <strong>of</strong> the<br />

furnace chamber temperatures by 50 °C and substitution<br />

<strong>of</strong> the water-cooled rollers by dry rollers, the specific consumption<br />

can be reduced by approx. 50-70 %, depend<strong>in</strong>g<br />

on the actual operat<strong>in</strong>g po<strong>in</strong>t (Fig. 11). The reference variables<br />

here are the values for the non-worn water-cooled<br />

rollers. If, on the other hand, defects occur on the <strong>in</strong>sulation,<br />

even more dramatic results are obta<strong>in</strong>ed as regards sav<strong>in</strong>gs.<br />

CONCLUSION<br />

On the subject <strong>of</strong> enhancement <strong>of</strong> energy efficiency, patent<br />

solutions do not exist, and nor does the “best technology<br />

for all situations”. An assessment as to which <strong>in</strong>dividual<br />

measures represent a favourable approach also from the<br />

po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> the costs <strong>in</strong>volved is to a large degree<br />

dependent on the details <strong>of</strong> the project-specific, <strong>in</strong>dividual<br />

set <strong>of</strong> tasks to be dealt with. For this, the application <strong>of</strong><br />

concrete technologies must always be considered <strong>in</strong> an<br />

<strong>in</strong>tegrative manner. The list <strong>of</strong> possible solutions for <strong>in</strong>creas<strong>in</strong>g<br />

the energy efficiency is a long one. Here, it is not always<br />

necessary to make the largest <strong>in</strong>vestments that are <strong>in</strong>volved<br />

with these solutions. To some extent, even small measures<br />

may result <strong>in</strong> visible progress.<br />

LITERATURE<br />

[1] Kerkh<strong>of</strong>f, H. J.: Tagung Stahlmarkt 2014, published <strong>in</strong> stahl<br />

und eisen 134 (2014) Nr. 3<br />

[2] Arbeitsgeme<strong>in</strong>schaft Energiebilanzen, September 2013<br />

[3] Bundesm<strong>in</strong>isterium für Wirtschaft und Technologie, Energie<br />

<strong>in</strong> Deutschland – Trends und H<strong>in</strong>tergründe zur Energieversorgung,<br />

aktualisierte Ausgabe Februar 2013<br />

[4] Rhe<strong>in</strong>isch-Westfälisches Institut für Wirtschaftsforschung,<br />

Energieeffizienz <strong>in</strong> der energie<strong>in</strong>tensiven Industrie <strong>in</strong><br />

Deutschland, Projektbericht November 2010, Quelle: Statistisches<br />

Bundesamt FS4R4.3<br />

[5] KfW Bankengruppe, Abteilung Volkswirtschaft, KfW-Befragung<br />

zu den Hemmnissen und Erfolgsfaktoren von Energieeffizienz<br />

<strong>in</strong> Unternehmen, Dezember 2005<br />

[6] Institut für Ressourceneffizienz und Energiestrategien GmbH,<br />

Fraunh<strong>of</strong>er-Institut für System-und Innovationsforschung ISI,<br />

Evaluation des Förderprogramms “Energieeffizienzberatung“<br />

als e<strong>in</strong>e Komponente des Sonderfonds Energieeffizienz<br />

<strong>in</strong> kle<strong>in</strong>en und mittleren Unternehmen (KMU), Schlussbericht<br />

November 2010<br />

[7] Prognos AG, Rolle und Bedeutung von Energieeffizienz und<br />

Energiedienstleistungen <strong>in</strong> KMU, Endbericht Februar 2010<br />

AUTHOR<br />

Dr. Christian Sprung<br />

SMS Siemag AG<br />

Düsseldorf, Germany<br />

Tel.: +49 (0) 211 / 881-6724<br />

christian.sprung@sms-siemag.com<br />

Get your copy <strong>of</strong> the<br />

anniversary issue now!<br />

10<br />

Anniversary Issue<br />

Years<br />

• 10 Ye<br />

0 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />

110 heat <strong>process</strong><strong>in</strong>g 3-2014


Research & Development<br />

REPORTS<br />

Induction assisted hybridweld<strong>in</strong>g<br />

<strong>process</strong>es to jo<strong>in</strong> heavywalled<br />

steel components<br />

by Jörg Neumeyer, Bernard Nacke<br />

So far jo<strong>in</strong><strong>in</strong>g <strong>of</strong> heavy-walled steel components hav<strong>in</strong>g a sheet thickness above 10 mm is executed by multilayer submerged<br />

arc weld<strong>in</strong>g. The <strong>in</strong>creas<strong>in</strong>g demand for high-strength f<strong>in</strong>e gra<strong>in</strong>ed steel requires an enhanced productivity that<br />

can only be realized by robust and high-performance <strong>process</strong>es with<strong>in</strong> a s<strong>in</strong>gle <strong>process</strong> step.<br />

Workpieces made <strong>of</strong> f<strong>in</strong>e gra<strong>in</strong>ed steel <strong>of</strong>fer very<br />

high solidity at low material effort and are suited<br />

excellent at the production <strong>of</strong> crane vehicles<br />

and for weight reduction at shipbuild<strong>in</strong>g. Especially, these<br />

materials enable the construction <strong>of</strong> higher w<strong>in</strong>d energy<br />

<strong>plants</strong> to cover the rais<strong>in</strong>g energy-demand <strong>of</strong> the world<br />

population, particularly <strong>in</strong> Ch<strong>in</strong>a, India and Brazil. The politically<br />

forced climate aims postulate a ratio <strong>of</strong> 35 % <strong>of</strong> the<br />

whole electric current generated by renewables. To realize<br />

this objectives on the one hand exist<strong>in</strong>g w<strong>in</strong>d energy <strong>plants</strong><br />

have to be upgraded (“Repower<strong>in</strong>g”), on the other hand<br />

new <strong>plants</strong> on- and <strong>of</strong>fshore require higher steel-based<br />

towers and basements.<br />

PROBLEM APPROACH<br />

The approach to raise the fabrication rate and production<br />

capacity <strong>of</strong> welded heavy plates made <strong>of</strong> f<strong>in</strong>e gra<strong>in</strong>ed<br />

steel is provided by the hybrid weld<strong>in</strong>g technology that<br />

facilitates high output power to jo<strong>in</strong> plate thicknesses<br />

above 10 mm. An application that uses a laser <strong>process</strong><br />

and a metal-arc weld<strong>in</strong>g <strong>process</strong> simultaneously <strong>in</strong> a s<strong>in</strong>gle<br />

common melt<strong>in</strong>g bath enables high weld<strong>in</strong>g penetration<br />

depths and speeds as well as <strong>in</strong>creased gap bridg<strong>in</strong>g [1].<br />

The limits <strong>of</strong> the weld<strong>in</strong>g <strong>process</strong> are def<strong>in</strong>ed by<br />

extremely tight temperature tolerances. The demanded<br />

temperature regime <strong>of</strong> a weld<strong>in</strong>g <strong>process</strong> can be ideally<br />

<strong>in</strong>fluenced and controlled by an <strong>in</strong>duction preheat<strong>in</strong>g. By<br />

means <strong>of</strong> the so far implemented applications the demand<br />

<strong>of</strong> a homogeneously preheated seam at thick-walled sheets<br />

can be met only <strong>in</strong>sufficiently. A bifid beam assignment first<br />

produces a mechanical and therefore electrical connection<br />

<strong>of</strong> both sheets. Subsequent, a perpendicular arranged<br />

<strong>in</strong>ductor causes an <strong>in</strong>duced current that flows along the<br />

weld flanks and through the connection to achieve an<br />

optimal preheat<strong>in</strong>g <strong>in</strong> the relevant areas. The follow<strong>in</strong>g<br />

hybrid-weld<strong>in</strong>g <strong>process</strong>, that conta<strong>in</strong>s the second stronger<br />

laser-beam part and the metal arc weld<strong>in</strong>g <strong>process</strong>, jo<strong>in</strong>s<br />

and f<strong>in</strong>ally fills up the weldseam (Fig. 1). The described concept<br />

targets the robust applicability at <strong>of</strong>ten used weld<strong>in</strong>g<br />

Laserbeam-<br />

Source<br />

Weld<strong>in</strong>g direction<br />

Oscillat<strong>in</strong>g<br />

scanner or double<br />

focus optics<br />

10 %<br />

Mirror<br />

Weld pool 1<br />

(contact<strong>in</strong>g)<br />

Induction<br />

coil<br />

Scanner<br />

Induction<br />

preheat<strong>in</strong>g<br />

100 %<br />

Mirror<br />

Weld pool 2<br />

(clos<strong>in</strong>g and<br />

fill<strong>in</strong>g)<br />

Oscillat<strong>in</strong>g<br />

MAG arc tube<br />

Fig. 1: Induction assisted laser-metal-arc hybrid weld<strong>in</strong>g <strong>process</strong><br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

111


REPORTS<br />

Research & Development<br />

Fig. 2: Test rig for <strong>in</strong>vestigation <strong>of</strong> an <strong>in</strong>duction heat<strong>in</strong>g unit<br />

positions and clearances. At the same time the production<br />

speed shall raise and so-called middle rip defects have to<br />

be avoided.<br />

Beside the s<strong>in</strong>gle consideration <strong>of</strong> the electromagnetic<strong>thermal</strong><br />

coupled <strong>in</strong>duction heat<strong>in</strong>g <strong>process</strong> also knowledge<br />

<strong>of</strong> structure-mechanic properties <strong>of</strong> the welded components<br />

and characteristics <strong>of</strong> the coupled hybrid-weld<strong>in</strong>g<br />

<strong>process</strong> are essential. Therefore an <strong>in</strong>terdiscipl<strong>in</strong>ary team<br />

(hybrid weld<strong>in</strong>g, steel construction, electrical eng<strong>in</strong>eer<strong>in</strong>g)<br />

was arranged to accomplish the postulated objectives.<br />

OPTIMIZATION BY SIMULATION<br />

For the design <strong>of</strong> the <strong>in</strong>duction heat<strong>in</strong>g application that<br />

shall be adapted especially to this problem extensive FEAsimulations<br />

and parametric studies by use <strong>of</strong> the commercial<br />

s<strong>of</strong>tware package ANSYS ® are executed. Dur<strong>in</strong>g the<br />

development the claimed temperature regime along the<br />

weld flanks must be considered. The geometric dimensions<br />

<strong>of</strong> the <strong>in</strong>ductor and the electromagnetic values are<br />

optimized keep<strong>in</strong>g the acceptable maximum temperature<br />

and the temperature distribution at the start <strong>of</strong> the weld<strong>in</strong>g<br />

<strong>process</strong> <strong>in</strong> m<strong>in</strong>d.<br />

The <strong>in</strong>duction assistance already demonstrated its<br />

capability to <strong>in</strong>crease the productivity and to improve the<br />

microstructure at beam weld<strong>in</strong>g <strong>process</strong>es <strong>of</strong> sheets with<br />

a thickness up to 10 mm [2, 3]. Thick-walled components<br />

between 10 and 23 mm <strong>of</strong>ten exhibit solidification cracks<br />

and therefore low weld<strong>in</strong>g qualities at one-layered weld<strong>in</strong>g<br />

procedures.<br />

To counter this difficulty the employment <strong>of</strong> an assist<strong>in</strong>g<br />

<strong>in</strong>duction heat<strong>in</strong>g application is <strong>in</strong>vestigated that pre-heats<br />

the weld<strong>in</strong>g region optimally by use <strong>of</strong> a special arrangement.<br />

In contrast to the already successful implemented<br />

<strong>in</strong>ductors here the current is driven perpendicular to the<br />

10<br />

43<br />

42<br />

350<br />

Messung Measurement<br />

Simulation<br />

Power Leistung <strong>in</strong> kW <strong>in</strong> kW<br />

8<br />

6<br />

4<br />

2<br />

41<br />

40<br />

39<br />

38<br />

37<br />

36<br />

35<br />

34<br />

Temperaturerhöhung raise <strong>in</strong> <strong>in</strong> K/3,000 K/3000 W<br />

Temperature <strong>in</strong> °C<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1 3 5 7 10 20 30 40 50<br />

Frequency Frequenz <strong>in</strong> kHz<br />

33<br />

0<br />

7 10 13 16 19 22 25<br />

Time Zeit <strong>in</strong> <strong>in</strong> s s<br />

Fig. 3: Visualisation <strong>of</strong> the analyses results for determ<strong>in</strong>ation <strong>of</strong> the<br />

optimal frequency<br />

Fig. 4: Comparison <strong>of</strong> simulation and measurement<br />

1<br />

112 heat <strong>process</strong><strong>in</strong>g 3-2014


250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 50000 100000 150000 200000<br />

Research & Development<br />

REPORTS<br />

scann<strong>in</strong>g direction to generate a direct heat<strong>in</strong>g<br />

with<strong>in</strong> the weld flanks. Dur<strong>in</strong>g first feasibility<br />

studies that were executed by FEA-simulations<br />

and physical heat<strong>in</strong>g trials the fundamental<br />

functionality <strong>of</strong> this procedure was affirmed<br />

(Fig. 2).<br />

Us<strong>in</strong>g numerical parametric studies as well<br />

as self-developed analytical correlations the<br />

geometric parameters <strong>of</strong> the <strong>in</strong>ductor were<br />

optimized at which the <strong>in</strong>ductor’s length and<br />

its width were the most focused values. These<br />

two quantities are directly <strong>in</strong>fluenc<strong>in</strong>g the width<br />

<strong>of</strong> the heated area that especially def<strong>in</strong>es the<br />

temperature gradients subsequent to the <strong>in</strong>duction<br />

heat<strong>in</strong>g part and the length <strong>of</strong> the heated<br />

area that def<strong>in</strong>es the required electrical power<br />

and the concentration <strong>of</strong> the heat generation.<br />

The frequency <strong>of</strong> the <strong>in</strong>ductor current and<br />

hence <strong>of</strong> the <strong>in</strong>duced eddy current has a strong<br />

effect onto the distribution <strong>of</strong> the heat sources,<br />

the electromagnetic efficiency and the <strong>process</strong><br />

efficiency. By numerical <strong>in</strong>vestigations the frequency<br />

that realizes a high and coevally homogenous<br />

temperature was estimated (Fig. 3).<br />

The comparatively weak contact<strong>in</strong>g <strong>process</strong><br />

that is performed before the <strong>in</strong>duction heat<strong>in</strong>g<br />

leads to an electrical and mechanical contact <strong>of</strong> both<br />

components. Additional it effects a heat dump<strong>in</strong>g <strong>in</strong> the<br />

workpiece. The <strong>in</strong>duction heat<strong>in</strong>g <strong>process</strong> is highly depend<strong>in</strong>g<br />

on the specific material properties which aga<strong>in</strong> are<br />

depend<strong>in</strong>g on the temperature. The quantitative and qualitative<br />

impacts <strong>of</strong> the laser energy onto the temperature are<br />

<strong>in</strong>vestigated with<strong>in</strong> these studies.<br />

Start conditions<br />

pos blank = 0<br />

ϑ = f(x 1 ,y 1 ,z 1 )<br />

v = Δpos / Δt<br />

Geometry preparation<br />

Harmonic Analysis<br />

ρ = f(ϑ), μ = f(ϑ, H)<br />

H (x n<br />

, y n<br />

, z n<br />

)<br />

Transient Analysis<br />

λ = f(ϑ), c p = f(ϑ)<br />

Electromagnetic calculation<br />

Magnetic field distribution<br />

μ m<br />

(x, y, z) ≈ μ m→∞<br />

(x, y, z)?<br />

p (x n<br />

, y n<br />

, z n<br />

) yes<br />

Adjustment <strong>of</strong> the permeability<br />

Heat generation distribution<br />

Thermal calculation<br />

Fig. 5: Executed simulation procedure<br />

no → m = m + 1<br />

Temperature distribution<br />

ϑ ( x n<br />

, y n<br />

, z n<br />

)<br />

Start<br />

New Position<br />

pos blank = pos blank + Δpos<br />

t = tend?<br />

F<strong>in</strong>ish<br />

EXPERIMENTAL INVESTIGATION<br />

By the def<strong>in</strong>ition <strong>of</strong> all required geometric and electric<br />

parameters the <strong>in</strong>ductor could be built at the Institute<br />

<strong>of</strong> Electrotechnology and provided to the Laserzentrum<br />

Hannover for the execution <strong>of</strong> physical tests. The comparison<br />

<strong>of</strong> measured data that were extracted with thermocouples<br />

and optical measurement procedures shows<br />

a high accordance between simulation and experiment<br />

and therefore verifies the calculated results. To achieve an<br />

even better congruence the consequences <strong>of</strong> the material<br />

properties (heat conductivity, heat capacity) are analyzed<br />

by numerical parametric studies (Fig. 4). The evaluation <strong>of</strong><br />

the physical experiments also shows the relation between<br />

applied electrical power and head<strong>in</strong>g speed and reassures<br />

the assumptions.<br />

After completion <strong>of</strong> the physical weld<strong>in</strong>g tests <strong>in</strong>vestigations<br />

concern<strong>in</strong>g the result<strong>in</strong>g microstructure were<br />

conducted at the Institute for Steel Construction/Leibniz<br />

Universität Hannover and at the Laserzentrum Hannover.<br />

Regard<strong>in</strong>g a thermomechanical rolled f<strong>in</strong>e gra<strong>in</strong>ed<br />

steel “S700MC” hav<strong>in</strong>g a sheet thickness <strong>of</strong> 10 mm the<br />

<strong>in</strong>duction assistance enables a good controll<strong>in</strong>g <strong>of</strong> the<br />

hardness distribution with<strong>in</strong> the basic material, the heat<br />

affected zone and the welded area. Further <strong>in</strong>vestigations<br />

at a “X70”-steel hav<strong>in</strong>g a sheet thickness <strong>of</strong> 13.2 mm show<br />

that a huge implemented <strong>in</strong>duction power results <strong>in</strong> large<br />

excess penetration. This problem can be solved by us<strong>in</strong>g<br />

the productivity-<strong>in</strong>creas<strong>in</strong>g effect <strong>of</strong> higher <strong>process</strong> velocities.<br />

By use <strong>of</strong> a weld<strong>in</strong>g consumable with a high content<br />

<strong>of</strong> manganese and by use <strong>of</strong> <strong>in</strong>duction assistance the analyzed<br />

sheets could be jo<strong>in</strong>ed without middle rip defects.<br />

Beside the <strong>thermal</strong> dependency the permeability also<br />

possesses a dependency <strong>of</strong> the magnetic field strength [4].<br />

So far the property-distribution was only implemented with<br />

a temperature dependency <strong>in</strong> the FEA-simulation tool at<br />

which the quantitative values are bas<strong>in</strong>g on empiric studies.<br />

An additional algorithm <strong>in</strong> the simulation considers<br />

the dependency <strong>of</strong> the magnetic field strength. The algorithm<br />

is based on a self-developed function and enables<br />

the adaption <strong>of</strong> the material specific values accord<strong>in</strong>g the<br />

present field strength <strong>in</strong> f<strong>in</strong>e sub-divisions (Fig. 5). Generally<br />

a high conformance <strong>of</strong> the temperature curves <strong>of</strong> the<br />

previous results and the calculations that were done tak<strong>in</strong>g<br />

the field strength <strong>in</strong>to account was ascerta<strong>in</strong>ed.<br />

An important criterion <strong>of</strong> the <strong>in</strong>vestigations was the<br />

focused energy <strong>in</strong>sertion <strong>in</strong> the seam to assist the hybrid<br />

Temperature distribution<br />

ϑ (x n-1 , y n-1 , z n-1 )<br />

μ (x n<br />

, y n<br />

, z n<br />

)<br />

Relative Permeabilität<br />

Datenblatt<br />

Funktion<br />

Magnetische Feldstärke H [A/m]<br />

Permeability distribution<br />

yes<br />

no → n = n + 1<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

113


REPORTS<br />

Research & Development<br />

weld<strong>in</strong>g <strong>process</strong>. To accomplish this claim special geometry<br />

variants with engraved <strong>in</strong>ductors and tubular workpieces<br />

are developed and <strong>in</strong>terpreted with numerical simulations.<br />

Compared to the reference system this analyzed<br />

<strong>in</strong>ductors lead to the aspired <strong>in</strong>crease <strong>of</strong> the current and<br />

heat generation <strong>in</strong> the weld flanks and therefore <strong>of</strong> the<br />

temperature raise.<br />

To differentiate between the developed <strong>in</strong>ductor and<br />

the so far applied <strong>in</strong>ductors for weld<strong>in</strong>g <strong>process</strong>es up to<br />

10 mm comparative calculations were executed. The simulation<br />

results could expose the advantages <strong>of</strong> the perpendicular<br />

<strong>in</strong>ductor relat<strong>in</strong>g to focused power <strong>in</strong>sertion and<br />

high temperature homogeneity <strong>in</strong> the weld seam for the<br />

smallest thickness <strong>of</strong> 10 mm and for the highest thickness<br />

<strong>of</strong> 23 mm as well.<br />

CONCLUSION<br />

The performed studies are able to show that the demand<br />

on the s<strong>in</strong>ge-layered production <strong>of</strong> heavy-walled steel<br />

sheets can be fulfilled by support <strong>of</strong> an optimized <strong>in</strong>duction<br />

heat<strong>in</strong>g assistance. The adjustment <strong>of</strong> the laser and<br />

metal-arc parameters with the <strong>in</strong>duction unit leads to a<br />

save and powerful jo<strong>in</strong><strong>in</strong>g <strong>process</strong> with high velocities<br />

while respect<strong>in</strong>g high qualities <strong>of</strong> the weld seam.<br />

LITERATURE<br />

[1] Dilthey, U.: Pilotstudie zum E<strong>in</strong>satz des Laser-MSG-Hybridprozesses<br />

zum Hochleistungsschweißen von Stahl. Studiengesellschaft<br />

Stahlanwendung Düsseldorf, 2011<br />

[2] Mach, M.: Modell<strong>in</strong>g and Application <strong>of</strong> Induction-Assisted<br />

Laser and Laser-Hybrid-Weld<strong>in</strong>g Processes, Sierke Verlag,<br />

2012, ISBN 978-3-86844-450-6<br />

[3] Meier, O.: Laserstrahlschweißen hochfester Stahlfe<strong>in</strong>bleche<br />

mit prozess<strong>in</strong>tegrierter <strong>in</strong>duktiver Wärmebehandlung, Dissertation,<br />

PZH Produktionstechnisches Zentrum Hannover,<br />

2005, ISBN 3-936888-93-0<br />

[4] Nacke, B.: E<strong>in</strong> Verfahren zur numerischen Simulation <strong>in</strong>duktiver<br />

Erwärmungsprozesse und dessen technische Anwendung,<br />

Dissertation, Fakultät für Masch<strong>in</strong>enwesen der Universität<br />

Hannover, 1987<br />

AUTHORS<br />

Dr.-Ing. Jörg Neumeyer<br />

Institute <strong>of</strong> Electrotechnology<br />

Leibniz Unversität Hannover, Germany<br />

Tel.: +49 (0) 511 / 762-2872<br />

etp@etp.uni-hannover.de<br />

Pr<strong>of</strong>. Dr.-Ing. Bernard Nacke<br />

Institute <strong>of</strong> Electrotechnology<br />

Leibniz Unversität Hannover, Germany<br />

Tel.: +49 (0) 511 / 762-5533<br />

nacke@etp.uni-hannover.de<br />

Visit us at the HK 2014<br />

Vulkan-Verlag<br />

Hall 4.1 / Booth G 018<br />

22 - 24 October 2014<br />

Koelnmesse, Cologne<br />

Germany<br />

114 heat <strong>process</strong><strong>in</strong>g 3-2014


Edition 11<br />

FOCUS ON<br />

“The labour shortage is<br />

def<strong>in</strong>itely affect<strong>in</strong>g us”<br />

Thomas Brüser is Manag<strong>in</strong>g Director <strong>of</strong> Gefran Deutschland GmbH with headquarters<br />

<strong>in</strong> Seligenstadt. In this <strong>in</strong>terview with heat <strong>process</strong><strong>in</strong>g he talks about the future <strong>of</strong><br />

the energy <strong>in</strong>dustry and technological challenges and tells us about his personal contribution<br />

to sav<strong>in</strong>g energy.<br />

Read all<br />

<strong>in</strong>terviews onl<strong>in</strong>e<br />

The energy mix <strong>of</strong> the future: would you venture a<br />

forecast?<br />

Brüser: In the next 30 years, development <strong>of</strong> regenerative<br />

energies will certa<strong>in</strong>ly reach a share <strong>of</strong> more than 90 %.<br />

Fossil and nuclear energy sources <strong>in</strong> the future will be <strong>of</strong><br />

only secondary importance <strong>in</strong> the energy mix. This development<br />

is already apparent today <strong>in</strong> many <strong>in</strong>novations<br />

and is essential <strong>in</strong> the long run if we want to ma<strong>in</strong>ta<strong>in</strong> our<br />

standard <strong>of</strong> liv<strong>in</strong>g.<br />

Germany <strong>in</strong> the year 2020: how will everyday life have<br />

changed as a result <strong>of</strong> the changes <strong>in</strong> the energy <strong>in</strong>dustry?<br />

What will people use to fuel their cars? How will<br />

they heat their houses? How will they generate light?<br />

Describe a possible scenario.<br />

Brüser: Modern houses with solar <strong>in</strong>stallations and optimal<br />

<strong>thermal</strong> <strong>in</strong>sulation today already generate more<br />

energy than their <strong>in</strong>habitants need. Ris<strong>in</strong>g energy prices<br />

<strong>in</strong> the com<strong>in</strong>g years will cause a trend toward energyoriented<br />

renovations <strong>of</strong> build<strong>in</strong>gs. As a result, old build<strong>in</strong>gs<br />

will be brought up to the aforementioned energy<br />

standard. In 2020 a critical mass <strong>of</strong> people will live <strong>in</strong><br />

energy-efficient houses and this trend will cont<strong>in</strong>ue at an<br />

accelerated pace. Presumably the change <strong>in</strong> mobility will<br />

be much more pronounced. Transportation <strong>in</strong> the year<br />

2020 will be dom<strong>in</strong>ated by electromobility, where there<br />

will be rapid progress, reduction <strong>of</strong> <strong>in</strong>dividual transport<br />

through the use <strong>of</strong> flexible traffic systems, such as a<br />

comb<strong>in</strong>ation <strong>of</strong> rail, car shar<strong>in</strong>g and bicycle rentals. This<br />

will presumably be achieved by easy-to-use identification<br />

systems (“mobility credit cards”).<br />

Sun, w<strong>in</strong>d, water, geo<strong>thermal</strong> heat, etc.: which regenerative<br />

energy source do you th<strong>in</strong>k will be most important<br />

<strong>in</strong> the future?<br />

Brüser: In the future all regenerative energy sources will<br />

ga<strong>in</strong> <strong>in</strong> importance. The important challenges are decentralisation,<br />

energy storage and <strong>in</strong>telligent networks. The<br />

technical problem <strong>of</strong> actual power generation is long<br />

s<strong>in</strong>ce solved, even if great progress is still be<strong>in</strong>g made with<br />

respect to efficiency and costs <strong>in</strong> the area <strong>of</strong> PV modules.<br />

But with present-day technology it would already easily<br />

be possible to implement autonomous power supply <strong>in</strong><br />

residential build<strong>in</strong>gs.<br />

In which <strong>of</strong> the technologies currently under development<br />

would you <strong>in</strong>vest today?<br />

Brüser: Certa<strong>in</strong>ly <strong>in</strong> energy storage technologies, such<br />

as battery systems or energy conversion. Another good<br />

<strong>in</strong>vestment with high potential would be power-to-gas<br />

technology, <strong>in</strong> which excess electricity from photovoltaic<br />

systems, for example, is used dur<strong>in</strong>g lunchtime to manufacture<br />

gas.<br />

What is your estimate <strong>of</strong> the future importance <strong>of</strong> fossil<br />

fuels such as oil, coal and gas?<br />

Brüser: Fossil energy sources will become less important<br />

simply due to dw<strong>in</strong>dl<strong>in</strong>g availability and therefore ris<strong>in</strong>g<br />

costs. Also, the direct negative effect on the quality <strong>of</strong><br />

human life due to <strong>in</strong>creas<strong>in</strong>g air pollution will cause fossil<br />

fuels to gradually disappear from the energy mix.<br />

And nuclear power? What effects can be expected<br />

based on Germany’s current standpo<strong>in</strong>t?<br />

Brüser: Nuclear energy, aside from political discussions, will<br />

also no longer play a role <strong>in</strong> the relatively near future, simply<br />

due to its <strong>in</strong>efficiency. For a recently approved nuclear<br />

power plant <strong>in</strong> England, for example, the stipulated feed-<strong>in</strong><br />

tariff is higher than for new PV systems.<br />

On the subject <strong>of</strong> energy transition: what changes will<br />

have to take place at the (world) political, social and<br />

ecological level to realistically be able to speak <strong>of</strong> a<br />

transition?<br />

Brüser: A complex topic such as the energy transition is<br />

not conceivable with the current political options, sim-<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

115


FOCUS ON Edition 11<br />

RESUME<br />

Thomas Brüser<br />

Born on 22 July 1960 <strong>in</strong> Munich<br />

Married, four children<br />

Education<br />

1982 – 1985 Study <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g at TH Nürnberg<br />

Georg Simon Ohm<br />

1986 – 1990 Study <strong>of</strong> Communications Eng<strong>in</strong>eer<strong>in</strong>g at<br />

TH Nürnberg Georg Simon Ohm<br />

Degree:<br />

Eng<strong>in</strong>eer (University <strong>of</strong> Applied Sciences)<br />

Career<br />

1990 – 1995 Product Development and Market<strong>in</strong>g<br />

at He<strong>in</strong>z Kleiber Optische Temperaturmeßtechnik<br />

1995 – 1997 Project and Quality Management at Telefunken<br />

microelectronic GmbH<br />

1997 – 1999 Product Manager and Branch Manager at<br />

Cor<strong>in</strong>s Deutschland GmbH<br />

1999 – 2012 Branch Manager and Sales Manager at<br />

Gefran GmbH Deutschland<br />

2008 – today Works Manager <strong>of</strong> Siei-Areg GmbH<br />

2013 – today Area Manager for Germany, Austria and<br />

Switzerland at Gefran GmbH Deutschland<br />

ply because politicians have neither the stay<strong>in</strong>g power<br />

nor the necessary expertise. But there is at least a latent<br />

ecological consciousness among the population. At the<br />

latest when a critical number <strong>of</strong> people worldwide have<br />

understood that regenerative energies are the only and<br />

simultaneously most economical possibility for susta<strong>in</strong><strong>in</strong>g<br />

an environment worth liv<strong>in</strong>g, also <strong>in</strong> the future, the<br />

energy transition will organise itself, “despite politics”<br />

so to speak.<br />

What is your challenge to the federal government <strong>in</strong><br />

this context?<br />

Brüser: Fundamentally I would wish for more reliability and<br />

constancy <strong>in</strong> measures to br<strong>in</strong>g about the energy transition,<br />

<strong>in</strong>stead <strong>of</strong> the current disconnected attempts that only<br />

have the goal <strong>of</strong> postpon<strong>in</strong>g real change. I am critical <strong>of</strong> the<br />

massive support <strong>of</strong> a few protagonists through exemption<br />

from the EEG levy. For one th<strong>in</strong>g, that helps companies<br />

that benefit from the lower market electricity prices as a<br />

result <strong>of</strong> renewable energies. For another, it puts SMEs at<br />

a strong disadvantage. The imm<strong>in</strong>ent EEG levy on private<br />

consumption would make it difficult especially for these<br />

companies to benefit from modern technologies. The most<br />

important th<strong>in</strong>g, however, would be an honest and logical<br />

<strong>in</strong>formation policy, preferably start<strong>in</strong>g with children and<br />

youths <strong>in</strong> school.<br />

There are at least two problems with renewable energies:<br />

the lack <strong>of</strong> an <strong>in</strong>frastructure and the stagnation<br />

on the part <strong>of</strong> established companies by rely<strong>in</strong>g on<br />

conventional forms <strong>of</strong> energy. Will that change <strong>in</strong> the<br />

foreseeable future?<br />

Brüser: I see no problem with the lack <strong>of</strong> <strong>in</strong>frastructure.<br />

It will presumably occur only if centralised energy supply<br />

concepts, such as <strong>of</strong>f-shore w<strong>in</strong>d turb<strong>in</strong>es are to ga<strong>in</strong><br />

acceptance and be reta<strong>in</strong>ed. In a well-planned decentralised<br />

energy supply there is no lack <strong>of</strong> <strong>in</strong>frastructure. The<br />

problem <strong>of</strong> stagnation on the part <strong>of</strong> a few established<br />

companies is <strong>in</strong> fact more serious. But there will be many<br />

changes here as well <strong>in</strong> the com<strong>in</strong>g years, due to a change<br />

<strong>in</strong> the way people th<strong>in</strong>k and due to better <strong>in</strong>formation<br />

channels, result<strong>in</strong>g <strong>in</strong> a future worth liv<strong>in</strong>g, with affordable<br />

energy.<br />

Regardless <strong>of</strong> the energy form and the technology,<br />

many people th<strong>in</strong>k that “energy efficiency” is the key<br />

to the energy issues <strong>of</strong> the future. What is your view on<br />

this? What do you th<strong>in</strong>k is the most important development<br />

<strong>in</strong> this area?<br />

Brüser: Not to need energy <strong>in</strong> the first place is better than<br />

to generate it, because there are negative aspects even to<br />

the best regenerative energy technologies. A great deal has<br />

already been achieved, for example passive houses or elec-<br />

116 heat <strong>process</strong><strong>in</strong>g 3-2014


Edition 11<br />

FOCUS ON<br />

tric cars, so that our standard <strong>of</strong> liv<strong>in</strong>g can be safeguarded<br />

with a fraction <strong>of</strong> the energy consumption.<br />

What are the advantages <strong>of</strong> electric <strong>process</strong> heat technology,<br />

<strong>in</strong> your op<strong>in</strong>ion?<br />

Brüser: Very precise controllability and efficiency. Infrared<br />

radiators, for example, can be used to put heat exactly<br />

where it is needed, without significant losses. This is possible<br />

only with electrical <strong>process</strong>es.<br />

What is your attitude towards the heat treatment<br />

<strong>in</strong>dustry?<br />

Brüser: Heat treatment for me is simply a production <strong>process</strong><br />

that is necessary to give a material certa<strong>in</strong> properties.<br />

Like all other production <strong>process</strong>es, it should make the<br />

most efficient possible use <strong>of</strong> resources.<br />

How do you assess the development toward <strong>in</strong>creased<br />

efficiency?<br />

Brüser: Increased efficiency and productivity are a natural<br />

part <strong>of</strong> any economic activity. The aspect <strong>of</strong> conservation<br />

<strong>of</strong> resources <strong>in</strong> addition to productivity <strong>of</strong> capital and the<br />

workforce seems to me a “natural” development.<br />

How will energy consumption change, <strong>in</strong> your op<strong>in</strong>ion?<br />

Brüser: The primary energy consumption, at least <strong>in</strong> highly<br />

developed <strong>in</strong>dustrial nations, will most probably decrease<br />

<strong>in</strong> the com<strong>in</strong>g years. However, consumption <strong>of</strong> electricity<br />

will <strong>in</strong>crease due to electromobility.<br />

What is the role <strong>of</strong> your company on the energy market<br />

today?<br />

Brüser: Certa<strong>in</strong>ly a secondary role, s<strong>in</strong>ce our products <strong>in</strong>fluence<br />

the energy market only <strong>in</strong>directly. “Energy efficiency”<br />

is relevant for us, however, due to our <strong>in</strong>novative drive systems<br />

with <strong>in</strong>tegrated energy recovery and our <strong>in</strong>novative<br />

automation technology.<br />

What will be the role <strong>of</strong> your company on the energy<br />

market <strong>in</strong> 20 years?<br />

Brüser: There will be no significant change here. Our contributions<br />

will be primarily <strong>in</strong> the area <strong>of</strong> “energy efficiency”<br />

<strong>in</strong> the future, as well.<br />

What will be your company’s most important <strong>in</strong>novation<br />

/ most important project?<br />

Brüser: We see our role as support<strong>in</strong>g our customers for<br />

example <strong>in</strong> the construction <strong>of</strong> furnaces or mach<strong>in</strong>es for<br />

plastics extrusion. Innovations at our company therefore<br />

are always based on the requirements <strong>of</strong> our OEMs and are<br />

very difficult to plan. There will certa<strong>in</strong>ly be an <strong>in</strong>creased<br />

focus on the s<strong>of</strong>tware content <strong>of</strong> our products – with a<br />

view toward Industry 4.0 – as well as research projects <strong>in</strong><br />

the field <strong>of</strong> sensor elements, for example.<br />

What economic, technological and social challenges<br />

do you expect?<br />

Brüser: Meet<strong>in</strong>g economical and technological challenges<br />

for me is simply a part <strong>of</strong> what we have to do as a company.<br />

The social aspects are different than 10 or 20 years ago, due<br />

to demographic changes. Important issues <strong>in</strong> this respect<br />

<strong>in</strong>clude adapt<strong>in</strong>g the company to an age<strong>in</strong>g workforce<br />

and prepar<strong>in</strong>g young people for “lifelong learn<strong>in</strong>g”. Even if<br />

these tasks might seem to be self-evident, they represent<br />

a genu<strong>in</strong>e challenge <strong>in</strong> real life.<br />

How do EU expansion and globalisation affect your<br />

bus<strong>in</strong>ess?<br />

Brüser: As with many changes, both present a risk as well<br />

an opportunity. Above all we try to see<br />

the aspect <strong>of</strong> opportunity and<br />

creativity with the assumption<br />

<strong>of</strong> a positive effect on<br />

our company.<br />

How important is<br />

the brand name<br />

for product success<br />

<strong>in</strong> the <strong>in</strong>dustrial<br />

sector?<br />

Brüser: The<br />

brand is becom<strong>in</strong>g<br />

more important<br />

also <strong>in</strong> the<br />

<strong>in</strong>dustrial sector,<br />

because brands<br />

provide orienta-<br />

“The energy transition is not<br />

conceivable with the current<br />

political options.”<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

117


FOCUS ON Edition 11<br />

tion <strong>in</strong> the flood <strong>of</strong> <strong>in</strong>formation. We have been work<strong>in</strong>g<br />

<strong>in</strong>tensively on our brand image the past few years.<br />

Has the labour shortage prevented or delayed your implementation<br />

<strong>of</strong> developments <strong>in</strong> Germany?<br />

Brüser: The labour shortage is def<strong>in</strong>itely affect<strong>in</strong>g us. We<br />

need six to n<strong>in</strong>e months to fill a position for a technician<br />

or eng<strong>in</strong>eer.<br />

Does a <strong>management</strong> team need more media competence<br />

to conv<strong>in</strong>ce <strong>in</strong>vestors?<br />

Brüser: Although I am not directly familiar with this, I would<br />

say that this is the case.<br />

What would you like to change <strong>in</strong> your company?<br />

Brüser: I would <strong>in</strong>troduce even more systematic hir<strong>in</strong>g<br />

and advancement <strong>of</strong> talented employees, because <strong>in</strong> the<br />

end, the employees are decisive for all other factors <strong>in</strong> a<br />

company.<br />

How important are foreign expansions to your company?<br />

Brüser: Very important. We are cont<strong>in</strong>uously open<strong>in</strong>g subsidiaries<br />

and have <strong>plants</strong> on four cont<strong>in</strong>ents.<br />

Is your company open for renewable energies?<br />

Brüser: Gefran is very open for renewable energies. Our<br />

products <strong>in</strong>clude, for example, converters for PV systems.<br />

Does your company already use renewable energies?<br />

Brüser: Yes, we have a large PV <strong>in</strong>stallation at one <strong>of</strong> our<br />

factories <strong>in</strong> Italy.<br />

How open is your company for new technologies?<br />

Brüser: As a technological enterprise we are not only open for<br />

new technologies, we live from them. For example, we cooperate<br />

closely with lead<strong>in</strong>g universities and research <strong>in</strong>stitutes.<br />

What was/is your biggest contribution to sav<strong>in</strong>g energy<br />

as a private person?<br />

Brüser: In 2005 we built a house with excellent energy<br />

standards (triple glaz<strong>in</strong>g, a ventilation system with heat<br />

recovery, etc.). Back then the contractors thought we were<br />

crazy; today, all <strong>of</strong> these th<strong>in</strong>gs are standard.<br />

How could one describe your relationship with the<br />

employees?<br />

Brüser: Tough <strong>in</strong> action, gentle at heart.<br />

What do others especially value about you?<br />

Brüser: You would have to ask the others about that. But<br />

I hope that dependability is a trait that people attribute<br />

to me.<br />

What moral values are especially relevant for you at<br />

present?<br />

Brüser: The same ones that already applied thousands <strong>of</strong><br />

years ago. The Ten Commandments or the Sermon on the<br />

Mount are just as relevant as ever.<br />

Do you have any role models?<br />

Brüser: Mahatma Gandhi for his humanity, several entrepreneurs<br />

who have achieved great th<strong>in</strong>gs, and Miguel<br />

Indura<strong>in</strong> (a former rac<strong>in</strong>g cyclist) for his elegance.<br />

How were you brought up?<br />

Brüser: As was usual <strong>in</strong> the 70s – very tolerant.<br />

How should children be brought up today?<br />

Brüser: By sett<strong>in</strong>g examples!<br />

What good cause would you give your last shirt for?<br />

Brüser: Abolish<strong>in</strong>g hunger, especially among children. This<br />

is possible <strong>in</strong> the long run only through better education.<br />

What do you wish for the next generation?<br />

Brüser: A life just as good as the one our generation has.<br />

From a historic perspective, we live <strong>in</strong> times <strong>of</strong> paradise.<br />

What is your life motto?<br />

Brüser: To help make the world the way I would like it to<br />

be for my children.<br />

What was the most important <strong>in</strong>vention <strong>of</strong> the 20 th century<br />

<strong>in</strong> your op<strong>in</strong>ion?<br />

Brüser: Information technology, <strong>in</strong> all <strong>of</strong> its forms.<br />

118 heat <strong>process</strong><strong>in</strong>g 3-2014


• 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary • 10 Years Anniversary<br />

Edition 11<br />

FOCUS ON<br />

What character traits are important to you personally?<br />

Brüser: Integrity and honesty.<br />

Whose career has impressed you most?<br />

Brüser: That <strong>of</strong> David Packard. He made the transition<br />

from a gifted eng<strong>in</strong>eer with visions<br />

to a genu<strong>in</strong>e pioneer <strong>of</strong> modern<br />

entrepreneurship.<br />

When do you not th<strong>in</strong>k about<br />

your work?<br />

Brüser: When I am with my wife<br />

and family, while hik<strong>in</strong>g <strong>in</strong> the mounta<strong>in</strong>s, climb<strong>in</strong>g on rocks<br />

or <strong>in</strong>doors and while listen<strong>in</strong>g to music.<br />

What is your personal advice for future generations?<br />

Brüser: Preserve this beautiful world and do whatever it<br />

takes to ensure that everyone can live happily <strong>in</strong> it.<br />

What contributed especially to your development?<br />

Brüser: A happy childhood and adolescence.<br />

“Not to need energy <strong>in</strong><br />

the first place is better<br />

than to generate it.”<br />

Where do you see yourself <strong>in</strong> 10 years?<br />

Brüser: In 10 years my career will gradually be com<strong>in</strong>g to an<br />

end. By then, I would like to have helped with the advancement<br />

<strong>of</strong> as many young talented people as possible.<br />

What is the mean<strong>in</strong>g <strong>of</strong> life, <strong>in</strong><br />

your op<strong>in</strong>ion?<br />

Brüser: That is a very personal<br />

question, but religion and spirituality<br />

play a part.<br />

What would you do differently<br />

<strong>in</strong> life if you had the choice?<br />

Brüser: I would spend more time with my family and get<br />

<strong>in</strong>volved <strong>in</strong> social projects. The only real bottleneck is my<br />

time budget.<br />

What do you wish for the world?<br />

Brüser: Above all peace and then I wish that all people<br />

can have everyth<strong>in</strong>g they need for a happy life – no more<br />

and no less.<br />

What can you absolutely not do without?<br />

Brüser: First <strong>of</strong> all, my wife and family. Then perhaps several<br />

books, a few music CDs and the opportunity to spend<br />

time <strong>in</strong> nature.<br />

What career would you like to pursue if you had the<br />

choice?<br />

Brüser: Exactly the career I now have.<br />

What country would you like to live <strong>in</strong>?<br />

Brüser: I like liv<strong>in</strong>g <strong>in</strong> Germany, but I could also imag<strong>in</strong>e<br />

liv<strong>in</strong>g <strong>in</strong> almost any other country <strong>of</strong> the world.<br />

What country would you emigrate to?<br />

Brüser: I have no preference.<br />

Thank you for this <strong>in</strong>terview.<br />

Get your copy <strong>of</strong> the<br />

anniversary issue now!<br />

10<br />

Anniversary Issue<br />

Years<br />

• 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />

10<br />

Anniversary Issue<br />

Years<br />

• 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue • 10 Years Anniversary Issue<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

119


International Symposium on Lead and Z<strong>in</strong>c Process<strong>in</strong>g<br />

held <strong>in</strong> conjunction with<br />

Lead-Z<strong>in</strong>c 2015 is the 6th symposium that is devoted to the theory and practice <strong>of</strong> the extractive metallurgy<br />

<strong>of</strong> lead and z<strong>in</strong>c. It is organized by GDMB Society <strong>of</strong> Metallurgists and M<strong>in</strong>ers, and co-organized by the M<strong>in</strong>erals,<br />

Metals and Materials Society (TMS), the Metallurgical Society <strong>of</strong> the Canadian Institute <strong>of</strong> M<strong>in</strong><strong>in</strong>g, Metals<br />

and Petroleum (MetSoc), the M<strong>in</strong><strong>in</strong>g and Materials Process<strong>in</strong>g Institute <strong>of</strong> Japan (MMIJ), and will be held <strong>in</strong><br />

conjunction with the 2015 European Metallurgical Conference (EMC 2015). Lead-Z<strong>in</strong>c 2015 will br<strong>in</strong>g together<br />

plant operators, eng<strong>in</strong>eers and researchers to discuss all aspects <strong>of</strong> the hydrometallurgical, electrometallurgical<br />

and pyrometallurgical <strong>process</strong><strong>in</strong>g <strong>of</strong> these commercially important metals. At the operations level, the<br />

<strong>in</strong>tent is to outl<strong>in</strong>e benchmark<strong>in</strong>g technologies as well as present plant operations and recent commercial developments.<br />

The recycl<strong>in</strong>g <strong>of</strong> lead and z<strong>in</strong>c from a wide range <strong>of</strong> sources will be extensively discussed. At the<br />

research level, the emphasis will be placed on the understand<strong>in</strong>g <strong>of</strong> exist<strong>in</strong>g technologies and the development<br />

<strong>of</strong> new <strong>process</strong><strong>in</strong>g concepts. Environmental concerns associated with the <strong>process</strong><strong>in</strong>g <strong>of</strong> both metals will be<br />

considered. The Lead-Z<strong>in</strong>c 2015 Symposium is expected to attract participants from around the world.


Edition 7<br />

PROFILE+<br />

This is where we focus <strong>in</strong> regular <strong>in</strong>tervals on the ma<strong>in</strong> <strong>in</strong>stitutions and organisations active <strong>in</strong><br />

the field <strong>of</strong> thermo<strong>process</strong><strong>in</strong>g technology. This issue spotlights the Chair <strong>of</strong> Thermodynamics<br />

and Combustion <strong>of</strong> the Otto-von-Guericke University Magdeburg.<br />

Chair <strong>of</strong> Thermodynamics and Combustion<br />

The research work <strong>of</strong> the Chair <strong>of</strong> Thermodynamics<br />

and Combustion is focused<br />

on the analysis, mathematical model<strong>in</strong>g and<br />

simulation <strong>of</strong> thermo<strong>process</strong>es <strong>in</strong> Industrial<br />

furnaces and <strong>of</strong> quench<strong>in</strong>g <strong>process</strong>es <strong>in</strong><br />

cont<strong>in</strong>uous cast<strong>in</strong>g and harden<strong>in</strong>g <strong>of</strong> metals.<br />

The <strong>process</strong>es researched are summarized<br />

<strong>in</strong> the lower part <strong>of</strong> Fig. 1. For f<strong>in</strong>e and<br />

granular materials rotary kilns are used, for<br />

the <strong>thermal</strong> treatment <strong>of</strong> lumpy materials and<br />

stones shaft kilns, for the melt<strong>in</strong>g <strong>of</strong> granular<br />

materials and scrap cupola furnaces, for the<br />

<strong>thermal</strong> treatment <strong>of</strong> shaped materials tunnel<br />

kilns and for flat shaped material roller kilns.<br />

All <strong>in</strong>dustrial kiln <strong>process</strong>es are pr<strong>in</strong>cipally<br />

counter current flow heat exchanger. The<br />

one flow is the solid material and the other<br />

flow the gas. To simulate the temperature<br />

pr<strong>of</strong>iles, the energy generation, the heat<br />

transfer and the gas-solid-reactions must be<br />

known as summarized <strong>in</strong> the upper part <strong>of</strong><br />

the figure. To heat up the material, <strong>in</strong> a special<br />

zone heat is generated by combustion <strong>of</strong><br />

a fossil fuel. The combustion behavior, the<br />

flow and the mix<strong>in</strong>g <strong>of</strong> flows are simulated<br />

us<strong>in</strong>g computational fluid dynamics (CFD).<br />

The k<strong>in</strong>d <strong>of</strong> heat transfer is different <strong>in</strong> every<br />

kiln. Therefore various laboratory kilns exist<br />

<strong>in</strong> which the heat transfer can be measured.<br />

To measure the thermophysical properties a<br />

lot <strong>of</strong> equipment is available. To analyze the<br />

gas-solid-reactions a special thermo-gravimetric-apparatus<br />

was developed for samples<br />

up to 1,000 g <strong>of</strong> weight. In thermo<strong>process</strong>es<br />

the axial pr<strong>of</strong>iles <strong>of</strong> the gas temperature, the<br />

materials temperature, the wall temperature,<br />

the gas concentrations and the solid reaction<br />

are calculated us<strong>in</strong>g special numerical solvers.<br />

Therewith, the impact <strong>of</strong> the lot <strong>of</strong> <strong>in</strong>fluenc<strong>in</strong>g<br />

parameters can be visualized and quantified.<br />

The aim <strong>of</strong> the simulations is on the one<br />

hand a faster and safer design <strong>of</strong> furnaces<br />

and on the other hand to optimize the production<br />

for better quality and lower energy<br />

consumption. Basic <strong>of</strong> the model<strong>in</strong>g is the<br />

local energy generation (combustion), the<br />

local heat transfer and the reaction behavior<br />

<strong>of</strong> the materials. For the energy generation<br />

the combustion is calculated us<strong>in</strong>g CFD.<br />

Fig. 2 shows a combustion chamber with<br />

radial <strong>in</strong>jections, which is used e.g. for the<br />

combustion <strong>of</strong> lean gases [1]. The combustion<br />

behavior <strong>of</strong> lumpy coke and anthracite<br />

is measured <strong>in</strong> special laboratory kilns. In<br />

these kilns also the reaction behaviour <strong>of</strong><br />

solid materials can be measured <strong>in</strong> def<strong>in</strong>ed<br />

adjusted gas atmosphere.<br />

ROTARY KILNS<br />

For the <strong>process</strong> model<strong>in</strong>g <strong>in</strong> rotary kilns<br />

the motion behavior <strong>of</strong> the materials [2-4],<br />

the heat transfer [5-7] and the flames [8, 9]<br />

were researched. The transport <strong>of</strong> materials<br />

is <strong>in</strong>fluenced by roll<strong>in</strong>g motion, slump<strong>in</strong>g,<br />

slid<strong>in</strong>g, segregation, axial dispersion, dams<br />

Energy generation<br />

- Flame and flow<br />

simulation us<strong>in</strong>g CFD<br />

- Measur<strong>in</strong>g combustion<br />

behavior <strong>of</strong> lumpy coke<br />

particles<br />

Heat transfer<br />

- Measur<strong>in</strong>g heat transfer,<br />

e.g. quench<strong>in</strong>g <strong>of</strong> hot<br />

metals us<strong>in</strong>g water<br />

sprays and jets, contact<br />

heat transfer between<br />

particles and walls<br />

- Measur<strong>in</strong>g conductivity<br />

specific heat capacity<br />

and expansion up to<br />

1,600 °C<br />

Model<strong>in</strong>g and simulation <strong>of</strong> <strong>process</strong>es for<br />

and flights. Fig. 3 shows as an example the<br />

mov<strong>in</strong>g behavior <strong>in</strong> a drum with flights for<br />

<strong>in</strong>creas<strong>in</strong>g rotational speed. The heat transfer<br />

is coupled by different mechanisms. The heat<br />

is transferred by radiation and convection to<br />

the wall and the free board surface <strong>of</strong> the<br />

material. Enthalpy is transported <strong>in</strong> the wall<br />

by rotation under the material and transferred<br />

by contact through the covered area to the<br />

material. The heat transfer and the temperatures<br />

<strong>in</strong> the mov<strong>in</strong>g bed are measured <strong>in</strong><br />

special laboratory kilns. For the validation <strong>of</strong><br />

the model and for <strong>in</strong>vestigation <strong>of</strong> materials<br />

reaction behavior a laboratory rotary kiln <strong>of</strong><br />

5 m length and 400 mm <strong>in</strong>ternal diameter<br />

is used, <strong>in</strong> which at five axial positions the<br />

temperature pr<strong>of</strong>ile <strong>in</strong> the bed and the gas<br />

concentrations can be measured. With the<br />

simulations can be demonstrated <strong>in</strong> which<br />

way the <strong>process</strong> is <strong>in</strong>fluenced by the design<br />

Gas-solid-reactions<br />

- Limestone calc<strong>in</strong>ation<br />

- Dolomite calc<strong>in</strong>ation<br />

- Ore reduction<br />

- Coke gasification<br />

- Thermal treatment <strong>of</strong> solids <strong>in</strong> <strong>in</strong>dustrial furnaces, e.g. rotary kilns, shaft kilns, cupola<br />

furnaces, tunnel kilns, roller kilns<br />

- Cast<strong>in</strong>g and harden<strong>in</strong>g <strong>of</strong> ferrous and non-ferrous metals, e.g. DC-, EMC, Mould-, Hazelett-<br />

Caster<br />

Fig. 1: Overview<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

121


PROFILE+ Edition 7<br />

Fig. 2: Combustion chamber with two row radial <strong>in</strong>jection [1]<br />

Fig. 3: Particle flow <strong>in</strong> drums with flights for <strong>in</strong>creas<strong>in</strong>g rotational speed<br />

parameters (length, diameter, <strong>in</strong>cl<strong>in</strong>ation<br />

angle <strong>of</strong> the kiln), the operation parameters<br />

(rotational speed, throughput, energy <strong>in</strong>put,<br />

k<strong>in</strong>d <strong>of</strong> fuel, flame lengths) and the material<br />

parameters (particle size distribution, angle <strong>of</strong><br />

response, conductivity, density, specific heat<br />

capacity, reaction enthalpy) [10]. A program<br />

is available for companies to simulate their<br />

<strong>process</strong>es. For react<strong>in</strong>g materials the specific<br />

chemical k<strong>in</strong>etics and equilibrium conditions<br />

has to be implemented. The program can<br />

be used:<br />

■■<br />

■■<br />

To optimize the production <strong>process</strong><br />

(reduction <strong>of</strong> energy, improvement <strong>of</strong><br />

quality),<br />

Tra<strong>in</strong><strong>in</strong>g <strong>of</strong> personal for better understand<strong>in</strong>g<br />

the <strong>process</strong> with the <strong>in</strong>teraction<br />

<strong>of</strong> the various <strong>in</strong>fluenc<strong>in</strong>g parameters and<br />

■■<br />

To reduce work<strong>in</strong>g time to design kilns<br />

for new <strong>process</strong>es.<br />

SHAFT KILNS<br />

In shaft kilns ma<strong>in</strong>ly the burn<strong>in</strong>g <strong>of</strong> lime<br />

is researched. Dependent on the requirement<br />

on quality and reactivity normal shaft<br />

kilns, parallel flow regenerative kilns, annular<br />

shaft kilns and mixed feed kilns are used.<br />

Fig. 4 shows as an example the normal<br />

shaft kiln. For these kilns the axial pr<strong>of</strong>iles<br />

<strong>of</strong> solid temperature, gas temperature, gas<br />

concentration, calc<strong>in</strong>ation degree and pressure<br />

drop are calculated [11-13]. The mix<strong>in</strong>g<br />

<strong>of</strong> the cool<strong>in</strong>g air with the <strong>in</strong>jected fuel is<br />

researched us<strong>in</strong>g CFD [14]. Based on the<br />

simulation the <strong>in</strong>fluence on the <strong>process</strong> <strong>of</strong><br />

the design parameters (diameter, height),<br />

the operation parameters (throughput,<br />

energy <strong>in</strong>put, k<strong>in</strong>d <strong>of</strong> fuel, excess air) and<br />

the material parameters (size distribution,<br />

conductivity, pore diffusity, reaction coefficient,<br />

etc.) can be researched. For these<br />

kiln programs are available for companies<br />

to simulate their <strong>process</strong>es. The aim<br />

is f<strong>in</strong>d<strong>in</strong>g the conditions for optimal kiln<br />

<strong>process</strong>es e.g. if throughput, k<strong>in</strong>d <strong>of</strong> fuel,<br />

k<strong>in</strong>d <strong>of</strong> material etc. has to be changed.<br />

Companies design<strong>in</strong>g the refractory l<strong>in</strong><strong>in</strong>g<br />

can use the programs to calculate the<br />

pr<strong>of</strong>iles <strong>of</strong> the wall temperature.<br />

TUNNEL KILNS<br />

The burn<strong>in</strong>g <strong>of</strong> ceramic products <strong>in</strong> tunnel<br />

kilns such as bricks, tiles, vitrified clay, porcela<strong>in</strong><br />

and sanitary ware has a low fir<strong>in</strong>g<br />

efficiency. For <strong>in</strong>creas<strong>in</strong>g the efficiency new<br />

tunnel kiln concepts are required. In cooperation<br />

with the Brick and Tile Research Institute<br />

<strong>in</strong> Essen (Germany) such concepts are developed.<br />

Therefore, the dryers must be operated<br />

separately. In this way they can be optimized<br />

with a higher <strong>in</strong>put temperature <strong>of</strong> the dry<strong>in</strong>g<br />

air [15-17]. The cool<strong>in</strong>g air <strong>of</strong> the product<br />

must be used <strong>in</strong> the kiln <strong>process</strong> itself [18].<br />

Do<strong>in</strong>g this the heat transfer <strong>in</strong> the kiln have<br />

to be <strong>in</strong>creased us<strong>in</strong>g ventilators and optimally<br />

arranged burners with low range <strong>of</strong> the<br />

burn<strong>in</strong>g zone [19, 20]. The flow <strong>in</strong> the kiln and<br />

between the ware is calculated us<strong>in</strong>g CFD. It<br />

is researched <strong>in</strong> which way the flow can be<br />

<strong>in</strong>fluenced by ventilators and by gas <strong>in</strong>jection<br />

us<strong>in</strong>g jets. With <strong>in</strong>creas<strong>in</strong>g the heat transfer<br />

the gas flow can be reduced and therewith<br />

the flue gas losses.<br />

QUENCHING OF METALS<br />

The quench<strong>in</strong>g <strong>of</strong> metals with sprays, nozzle<br />

jets, mould jets, etc. is researched with a laboratory<br />

plant. Sheets <strong>of</strong> different metals are<br />

heated up to temperatures until 900 °C and<br />

quenched from one side. The temperature<br />

field on the other side is measured us<strong>in</strong>g an<br />

Infrared thermocamera with a local resolution<br />

<strong>of</strong> 0.2 mm with one thousand pictures<br />

per second. Fig. 5 shows as an example the<br />

temperature field <strong>of</strong> four nozzles. With oneand<br />

two-dimensional <strong>in</strong>verse temperature<br />

analysis the heat flux <strong>in</strong> dependence on<br />

surface temperature, the Leidenfrost temperature<br />

and the DNB-temperature are deter-<br />

122 heat <strong>process</strong><strong>in</strong>g 3-2014


Edition 7<br />

PROFILE+<br />

Fig. 5:Infrared image <strong>of</strong> the wett<strong>in</strong>g front <strong>in</strong> a field <strong>of</strong> four nozzles<br />

Fig. 4: Normal shaft kiln<br />

m<strong>in</strong>ed. The <strong>in</strong>fluence <strong>of</strong> the water impact,<br />

the k<strong>in</strong>d <strong>of</strong> nozzle, the k<strong>in</strong>d <strong>of</strong> metal, the<br />

water quality and the surface roughness are<br />

researched [19, 21-25]. The quality <strong>of</strong> water is<br />

an important parameter <strong>in</strong>fluenc<strong>in</strong>g the heat<br />

transfer which is not known <strong>in</strong> a lot <strong>of</strong> companies.<br />

Cool<strong>in</strong>g water <strong>of</strong> 13 different companies<br />

has been tested under the same conditions.<br />

The cool<strong>in</strong>g rate differed by a factor <strong>of</strong> two.<br />

The more salts are <strong>in</strong>cluded <strong>in</strong> the water the<br />

faster is the quench<strong>in</strong>g impact. A measure <strong>of</strong><br />

the amount <strong>of</strong> salts <strong>in</strong> water is the electrical<br />

conductivity which can be easily measured.<br />

Salts are dissociated <strong>in</strong> water which affects<br />

the electrical conductivity. For time constant<br />

cool<strong>in</strong>g conditions the temperature and the<br />

electrical conductivity should kept constant.<br />

STRESSES AND DISTORTION<br />

IN QUENCHING PROCESSES<br />

The <strong>in</strong>fluence <strong>of</strong> the quench<strong>in</strong>g on the structure,<br />

the stresses and the distortion <strong>in</strong> cont<strong>in</strong>uous<br />

cast<strong>in</strong>g <strong>process</strong>es and harden<strong>in</strong>g <strong>process</strong>es<br />

are simulated us<strong>in</strong>g own developed<br />

codes [26-30]. The advantage is the short<br />

comput<strong>in</strong>g time, the easy usage for <strong>in</strong>dustrial<br />

eng<strong>in</strong>eers and the temperature dependence<br />

<strong>of</strong> the material properties. With the simulation<br />

program it is researched <strong>in</strong> which way <strong>thermal</strong><br />

stresses and distortion can be reduced<br />

adjust<strong>in</strong>g a locally def<strong>in</strong>ed pr<strong>of</strong>ile <strong>of</strong> the heat<br />

transfer. It is shown that the mass lumped<br />

regions have to be cooled <strong>in</strong>tensively and<br />

edges and cores only s<strong>of</strong>tly. In cont<strong>in</strong>uous<br />

cast<strong>in</strong>g <strong>process</strong>es for steel and alum<strong>in</strong>um<br />

(DC cast<strong>in</strong>g) the development <strong>of</strong> the shell<br />

and the result<strong>in</strong>g stresses are calculated. It is<br />

researched <strong>in</strong> which way with an optimized<br />

local pr<strong>of</strong>ile <strong>of</strong> the heat transfer coefficient<br />

the maximum stresses can be reduced for<br />

chang<strong>in</strong>g cast<strong>in</strong>g speeds and metal alloys.<br />

MEASURING THERMOPHYSI-<br />

CAL MATERIAL PROPERTIES<br />

UP TO 1,600 °C<br />

All theoretical calculations and simulations<br />

are as accurate as accurate the material<br />

properties are known, especially <strong>in</strong> the high<br />

temperature range. Therefore, the <strong>thermal</strong><br />

conductivity is measured us<strong>in</strong>g a Laser-<br />

Flash-Apparatus (LFA). A laser beam hits<br />

the upper side <strong>of</strong> a disk shaped sample. The<br />

temperature <strong>in</strong>crease <strong>of</strong> the bottom side<br />

is measured us<strong>in</strong>g <strong>in</strong>frared thermography.<br />

From the one-dimensional analytic solution<br />

<strong>of</strong> the Fourier differential equation the <strong>thermal</strong><br />

diffusity and therewith the conductivity<br />

can be calculated. The specific heat capacity<br />

is measured us<strong>in</strong>g DSC and the <strong>thermal</strong><br />

expansion us<strong>in</strong>g a dilatometer. Reaction<br />

enthalpies and phase change enthalpies<br />

are measured with a standard DTA.<br />

For analyz<strong>in</strong>g the reaction behavior <strong>of</strong><br />

granular materials a special differential thermo<br />

gravimetric is developed. A cyl<strong>in</strong>der <strong>of</strong><br />

60 mm <strong>in</strong> diameter and 120 mm <strong>in</strong> length<br />

are filled with the material and heated up<br />

<strong>in</strong> an electrically heated tube furnace with<br />

regulated temperature pr<strong>of</strong>iles. The maximum<br />

temperature is 1,200 °C. The weight<br />

is measured and the <strong>in</strong>side temperatures <strong>in</strong><br />

the core and near the surface. The tube is<br />

flown through with a gas <strong>of</strong> given composition,<br />

e.g. N 2 , CO 2 , or O 2 /N 2 mixtures. The wall<br />

<strong>of</strong> the cyl<strong>in</strong>der is porous so that gas can also<br />

flow through the material.<br />

LITERATURE<br />

[1] Nirmolo, A.: Gas Mix<strong>in</strong>g <strong>in</strong> Cyl<strong>in</strong>drical Chambers<br />

after Radial Jet Injection with and without<br />

Combustion. Dissertation OvG Universität<br />

Magdeburg, 2007<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

123


PROFILE+ Edition 7<br />

[2] Liu, X.: Experimental and theoretical study<br />

<strong>of</strong> transverse solids motion <strong>in</strong> rotary kilns.<br />

Dissertation OvG Universität Magdeburg,<br />

2005<br />

[3] Shi, Y.: The outflow behaviour <strong>of</strong> particles<br />

at the discharge end <strong>of</strong> rotary kilns.<br />

Dissertation OvG Universität Magdeburg,<br />

2009<br />

[4] Sunkara, K.R.: Granular Flow and Design<br />

Studies <strong>in</strong> Flighted Rotat<strong>in</strong>g Drums. Disseration<br />

OvG Universität Magdeburg, 2013<br />

[5] Queck, A.: Untersuchung des gas- und<br />

wandseitigen Wärmetransportes <strong>in</strong> die<br />

Schüttung von Drehrohröfen. Dissertation<br />

OvG Universität Magdeburg, 2002<br />

[6] Agust<strong>in</strong>i, S.: Regenerative action <strong>of</strong> the wall<br />

on the heat transfer for directly and <strong>in</strong>directly<br />

heated rotary kilns. Dissertation OvG<br />

Universität Magdeburg, 2006<br />

[7] Yogesh, S.: Influence <strong>of</strong> the Wall on the Heat<br />

Transfer Process <strong>in</strong> Rotary Kiln. Dissertation<br />

OvG Universität Magdeburg, 2010<br />

[8] Giese, A.: Numerische Untersuchungen zur<br />

Bestimmung der Flammenlänge <strong>in</strong><br />

Drehrohröfen. Dissertation OvG Universität<br />

Magdeburg, 2003<br />

[9] Elattar, H.F.M.: Flame Simulation <strong>in</strong> Rotary<br />

Kilns Us<strong>in</strong>g Computational Fluid Dynamics.<br />

Dissertation OvG Universität Magdeburg,<br />

2011<br />

[10] Herz, F.: Entwicklung e<strong>in</strong>es mathematischen<br />

Modells zur Simulation thermischer<br />

Prozesse <strong>in</strong> Drehrohröfen. Dissertation<br />

OvG Universität Magdeburg, 2012<br />

[11] Schwertmann, T.: Untersuchung des Optimierungspotentials<br />

des R<strong>in</strong>gschacht<strong>of</strong>ens<br />

zum Brennen von karbonatischem Geste<strong>in</strong>.<br />

Dissertation OvG Universität Magdeburg,<br />

2007<br />

[12] El-Fakharany, M.: Process Simulation <strong>of</strong><br />

Lime Calc<strong>in</strong>ation <strong>in</strong> Mixed Feed Shaft Kilns.<br />

Dissertation OvG Universität Magdeburg,<br />

2012<br />

[13] Do, D.H.: Simulation <strong>of</strong> Lime Calc<strong>in</strong>ations <strong>in</strong><br />

Normal Shaft and Parallel-Flow-Regenerative<br />

Kilns. Dissertation OvG Universität<br />

Magdeburg, 2012<br />

[14] Xu, Z.: Reduced Model for Flow Simulation<br />

<strong>in</strong> the Burner Region <strong>of</strong> Lime Shaft Kilns.<br />

Dissertation OvG Universität Magdeburg,<br />

2010<br />

[15] Deppe, D.: Mechanismus und Bee<strong>in</strong>flussung<br />

von Trockenausblühungen aus Kalziumsulfat<br />

bei der Konvektionstrocknung<br />

von Ziegelrohl<strong>in</strong>gen. Dissertation OvG Universität<br />

Magdeburg, 2005<br />

[16] Telljohann, U.: Theoretische und experimentelle<br />

Untersuchung der Trocknung<br />

plastisch geformter Ziegelrohl<strong>in</strong>ge. Dissertation<br />

OvG Universität Magdeburg, 2004<br />

[17] Tretau, A.: E<strong>in</strong>fluss der Prozessführung auf<br />

den thermischen Energiebedarf von Konvektionstrocknern<br />

<strong>in</strong> der Ziegel<strong>in</strong>dustrie.<br />

Dissertation OvG Universität Magdeburg,<br />

2008<br />

[18] Meng, P.: Solid-Solid Recuperation to<br />

Improve the Energy Efficiency <strong>of</strong> Tunnel<br />

Kilns. Dissertation OvG Universität Magdeburg,<br />

2011<br />

[19] Specht, E.: Wärme- und St<strong>of</strong>fübertragung <strong>in</strong><br />

der Thermoprozesstechnik. Vulkan Verlag<br />

2014<br />

[20] Becker, F.; Gelbe, H.; Mörl, L.; Specht, E.:<br />

Thermischer Apparatebau und Industrieöfen.<br />

Dubbel 23. Auflage, 2011, Spr<strong>in</strong>ger<br />

Verlag<br />

[21] Bleiker, G.: Filmverdampfung von E<strong>in</strong>zeltropfen<br />

auf heißen Oberflächen. Dissertation<br />

OvG Universität Magdeburg, 2000<br />

[22] Puschmann, F.: Experimentelle Untersuchung<br />

der Spraykühlung zur Qualitätsverbesserung<br />

durch def<strong>in</strong>ierte E<strong>in</strong>stellung des<br />

Wärmeübergangs. Dissertation OvG Universität<br />

Magdeburg, 2003<br />

[23] Attalla, M.A.M.: Experimental Investigation<br />

<strong>of</strong> Heat Transfer Characteristics from Arrays<br />

<strong>of</strong> Free Imp<strong>in</strong>g<strong>in</strong>g Circular Jets and Hole<br />

Channels. Dissertation OvG Universität<br />

Magdeburg, 2005<br />

[24] Abd-Alrahman, K.H.M.: Influence <strong>of</strong> water<br />

quality and k<strong>in</strong>d <strong>of</strong> metal <strong>in</strong> the secondary<br />

cool<strong>in</strong>g zone <strong>of</strong> cast<strong>in</strong>g <strong>process</strong>. Dissertation<br />

OvG Universität Magdeburg, 2012<br />

[25] Alam, U.: Experimental Study <strong>of</strong> Local Heat<br />

Transfer dur<strong>in</strong>g Quench<strong>in</strong>g <strong>of</strong> Metals by<br />

Spray and Multiple Jets. Dissertation OvG<br />

Universität Magdeburg, 2011<br />

[26] Pietzsch, R.: Simulation und M<strong>in</strong>imierung<br />

des Verzuges von Stahlpr<strong>of</strong>ilen bei der<br />

Abkühlung. Dissertation OvG Universität<br />

Magdeburg, 2000<br />

[27] Brzoza, M.: Reduzierung von Eigenspannungen<br />

und Verzug von Stahlbauteilen<br />

durch örtliche Bee<strong>in</strong>flussung der Abkühlung.<br />

Dissertation OvG Universität Magdeburg,<br />

2006<br />

[28] Kaymak, Y.: Simulation <strong>of</strong> Metal Quench<strong>in</strong>g<br />

Processes for the M<strong>in</strong>imization <strong>of</strong> Distortion<br />

and Stresses. Dissertation OvG Universität<br />

Magdeburg, 2007<br />

[29] Nallathambi, A.K.: Thermomechanical Simulation<br />

<strong>of</strong> Direct Chill Cast<strong>in</strong>g. Dissertation<br />

OvG Universität Magdeburg, 2010<br />

[30] Silva González, M.: Experimental <strong>in</strong>vestigation<br />

<strong>of</strong> the thermophysical properties <strong>of</strong><br />

new and representative materials from<br />

room temperature up to 1,300 °C. Dissertation<br />

OvG Universität Magdeburg, 2009<br />

Author:<br />

Pr<strong>of</strong>. Dr.-Ing. Eckehard Specht<br />

Contact:<br />

Otto-von-Guericke University<br />

Magdeburg – Chair <strong>of</strong> Thermodynamics<br />

and Combustion<br />

Universitätsplatz 2<br />

39106 Magdeburg, Germany<br />

Tel.: +49 (0) 391 / 67-18765<br />

eckehard.specht@ovgu.de<br />

www.ltv.ovgu.de<br />

124 heat <strong>process</strong><strong>in</strong>g 3-2014


TECHNOLOGY IN PRACTICE<br />

90 th anniversary <strong>of</strong> Otto Junker<br />

For more than 90 years, Otto Junker has<br />

been defend<strong>in</strong>g its lead<strong>in</strong>g <strong>in</strong>ternational<br />

role <strong>in</strong> the manufacture <strong>of</strong> sophisticated<br />

<strong>in</strong>dustrial furnace systems for metallurgical<br />

applications and as a supplier <strong>of</strong> ‘ready<br />

for <strong>in</strong>stallation’ special-steel cast<strong>in</strong>gs. This<br />

is good reason for celebrat<strong>in</strong>g the 90-year<br />

anniversary with partners, customers and<br />

staff dur<strong>in</strong>g a Junker Furnace Conference<br />

on September 4 and 5, 2014.<br />

Today, several thousand <strong>in</strong>dustrial furnaces<br />

built by Otto Junker are <strong>in</strong> use all over the<br />

world. They are needed wherever demand<br />

exists for dimensionally accurate forg<strong>in</strong>gs,<br />

cast<strong>in</strong>gs and high-quality semi-f<strong>in</strong>ished<br />

products such as plates, strips, foils, sections<br />

or tubes consist<strong>in</strong>g <strong>of</strong> diverse metals.<br />

The equipment is used for melt<strong>in</strong>g, cast<strong>in</strong>g<br />

and heat treat<strong>in</strong>g metals. Through all these<br />

years the company has not only ma<strong>in</strong>ta<strong>in</strong>ed<br />

but even expanded its technological market<br />

leadership cont<strong>in</strong>uously.<br />

Founded <strong>in</strong> 1924 at Lammersdorf <strong>in</strong> the<br />

Eifel region, the company has dedicated<br />

itself to metal <strong>process</strong><strong>in</strong>g from its earliest<br />

days. Otto Junker established his enterprise<br />

to market the water-cooled mould <strong>in</strong>vented<br />

by his father for cast<strong>in</strong>g roll<strong>in</strong>g slabs <strong>of</strong><br />

brass. In the years that followed the company’s<br />

founder dedicated his efforts to the<br />

development and production <strong>of</strong> <strong>in</strong>novative<br />

mach<strong>in</strong>ery and equipment, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

close relations with the Technical University<br />

<strong>of</strong> Aachen (RWTH) all the time <strong>in</strong> the awareness<br />

that cont<strong>in</strong>uous technical development<br />

is <strong>in</strong>dispensable for a company’s success.<br />

Thus, it was only logical that the foundation<br />

he set up <strong>in</strong> 1970 and which became<br />

the sole owner <strong>of</strong> the company after Dr. Otto<br />

Junker’s death should def<strong>in</strong>e the promotion<br />

<strong>of</strong> science and technology and the support<br />

<strong>of</strong> young eng<strong>in</strong>eers at RWTH as its ma<strong>in</strong><br />

objective. S<strong>in</strong>ce the start <strong>of</strong> its sponsorship<br />

programme <strong>in</strong> the mid-80s, the Foundation<br />

has f<strong>in</strong>anced well over 100 research projects<br />

and every year a considerable amount <strong>of</strong><br />

money was spent on scholarships and for<br />

the Otto Junker Awards conferred to outstand<strong>in</strong>g<br />

academic degree work. The close<br />

cooperation with the University <strong>of</strong> Aachen’s<br />

departments <strong>of</strong> electrical eng<strong>in</strong>eer<strong>in</strong>g and<br />

metallurgy has rema<strong>in</strong>ed the basis for key<br />

<strong>in</strong>novations until this day. A long-term and<br />

fruitful cooperation has also been pursued<br />

with the Aachen University <strong>of</strong> Applied<br />

Sciences.<br />

FURNACE MANUFACTURING<br />

Industrial furnace build<strong>in</strong>g faces exact<strong>in</strong>g<br />

demands. Apart from the need to meet<br />

<strong>process</strong> parameters ever more rigorously<br />

and to address pressures for more powerful<br />

and reliable equipment all the time,<br />

issues <strong>of</strong> power efficiency <strong>in</strong>creas<strong>in</strong>gly take<br />

centre stage. After all, <strong>in</strong>dustrial furnaces<br />

account for approx. 40 % <strong>of</strong> today’s <strong>in</strong>dustrial<br />

energy consumption, and almost 70 %<br />

<strong>of</strong> the energy demand <strong>of</strong> every foundry<br />

or casthouse is expended on the melt<strong>in</strong>g<br />

operation. Through its development<br />

and use <strong>of</strong> energy sav<strong>in</strong>g furnace technology<br />

for both melt<strong>in</strong>g and heat treatment<br />

needs Otto Junker has helped to<br />

improve energy efficiency. Compared to<br />

conventional technology and equipment,<br />

the sav<strong>in</strong>gs thus ga<strong>in</strong>ed may amount to as<br />

much as 30 %.<br />

As a driver <strong>of</strong> <strong>in</strong>novative designs and<br />

development <strong>in</strong> automatic <strong>process</strong> <strong>management</strong><br />

and control solutions, the company<br />

has contributed <strong>in</strong> a major way to today’s<br />

high standard <strong>of</strong> furnace technology. Today’s<br />

products <strong>of</strong>ten call for new metals or materials<br />

hav<strong>in</strong>g greatly improved properties. For<br />

the production <strong>of</strong> such materials, special<br />

<strong>in</strong>dustrial furnaces are necessary. The company<br />

addresses these requirements via a<br />

number <strong>of</strong> successful developments, e.g.,<br />

<strong>in</strong>duction furnaces for ref<strong>in</strong><strong>in</strong>g silicon for<br />

photovoltaic applications and equipment<br />

Photo: S. Dobler<br />

Fig. 1: Pull-through type cont<strong>in</strong>uous furnace for brass strip<br />

dur<strong>in</strong>g assembly<br />

Fig. 2: Strip anneal<strong>in</strong>g furnace<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

125


TECHNOLOGY IN PRACTICE<br />

Fig. 3: Graphite rod resistor furnace <strong>in</strong> foundry service<br />

Fig. 4: Complete medium-frequency melt<strong>in</strong>g plant<br />

for the high-quality heat treatment <strong>of</strong> components<br />

made <strong>of</strong> novel alum<strong>in</strong>ium alloys.<br />

EXTENSIVE PORTFOLIO OF<br />

<strong>HEAT</strong> TREATMENT EQUIPMENT<br />

As early as <strong>in</strong> 1929, Otto Junker developed<br />

an electrically heated pull-through type<br />

cont<strong>in</strong>uous anneal<strong>in</strong>g furnace for brass strip<br />

which <strong>in</strong>cluded the entire strip handl<strong>in</strong>g<br />

system and the equipment for simultaneous<br />

pickl<strong>in</strong>g. The system proved highly<br />

successful so that over 200 <strong>in</strong>stallations <strong>of</strong><br />

this type were built by 1963 (Fig. 1). Subsequent<br />

developments resulted <strong>in</strong> the launch<br />

<strong>of</strong> complex cont<strong>in</strong>uous strip treatment l<strong>in</strong>es<br />

based on strip flotation furnaces, which<br />

rank among the company’s most successful<br />

products today.<br />

In the years that followed, the product<br />

range was steadily expanded. Today it also<br />

comprises heat treatment systems for nonferrous<br />

metals for<br />

■■<br />

Homogenis<strong>in</strong>g <strong>of</strong> slabs and bar stock,<br />

■■<br />

Reheat<strong>in</strong>g <strong>of</strong> roll<strong>in</strong>g slabs and extrusion<br />

billets,<br />

■■<br />

Intermediate and f<strong>in</strong>al anneal<strong>in</strong>g <strong>of</strong><br />

plate, strip and coils,<br />

■■<br />

Heat treatment <strong>of</strong> plate, strip, cast<strong>in</strong>gs<br />

and forg<strong>in</strong>gs,<br />

■■<br />

Bright anneal<strong>in</strong>g <strong>of</strong> strip and coils<br />

us<strong>in</strong>g primarily<br />

■■<br />

Strip flotation furnace,<br />

■■<br />

Pit furnace,<br />

■■<br />

Pusher furnace,<br />

■■<br />

Chamber furnace,<br />

■■<br />

■■<br />

■■<br />

■■<br />

■■<br />

Roller hearth furnace,<br />

Induction furnace,<br />

Walk<strong>in</strong>g beam furnace,<br />

Cha<strong>in</strong> conveyor furnace as well as<br />

Surface treatment <strong>in</strong>stallations.<br />

By way <strong>of</strong> example, Fig. 2 illustrates an<br />

energy-efficient strip anneal<strong>in</strong>g furnace<br />

us<strong>in</strong>g an operat<strong>in</strong>g regime optimized by<br />

means <strong>of</strong> mathematical modell<strong>in</strong>g.<br />

SUCCESSFUL DEVELOPMENT<br />

OF INDUCTION FURNACE<br />

TECHNOLOGY<br />

The design <strong>of</strong> a graphite rod resistor furnace<br />

<strong>in</strong> 1937, which became hugely successful<br />

as a melt<strong>in</strong>g source throughout the<br />

foundry <strong>in</strong>dustry, marked the start <strong>of</strong> the<br />

company’s success story as a manufacturer<br />

<strong>of</strong> melt<strong>in</strong>g and pour<strong>in</strong>g furnaces (Fig. 3).<br />

Further developments gave rise to<br />

<strong>in</strong>novative <strong>in</strong>duction furnace systems for<br />

melt<strong>in</strong>g, hold<strong>in</strong>g and pour<strong>in</strong>g a diversity<br />

<strong>of</strong> metals, specifically the follow<strong>in</strong>g:<br />

■■<br />

Coreless medium-frequency <strong>in</strong>duction<br />

furnaces,<br />

■■<br />

Vacuum <strong>in</strong>duction furnaces,<br />

■■<br />

Channel-type <strong>in</strong>duction furnaces,<br />

■■<br />

Pressurized pour<strong>in</strong>g furnaces as well as<br />

■■<br />

Plann<strong>in</strong>g and eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> complete<br />

melt<strong>in</strong>g and pour<strong>in</strong>g plant.<br />

S<strong>in</strong>ce the early days <strong>of</strong> <strong>in</strong>dustrial use <strong>of</strong><br />

<strong>in</strong>duction furnaces for melt<strong>in</strong>g metals <strong>in</strong><br />

the 1950s, the energy consumption could<br />

be reduced and melt<strong>in</strong>g rates <strong>in</strong>creased<br />

substantially thanks to the R&D efforts <strong>of</strong><br />

Otto Junker. The <strong>in</strong>troduction <strong>of</strong> mediumfrequency<br />

technology based on electronically<br />

controlled frequency converter<br />

systems contributed substantially to this<br />

successful development.<br />

For the melt<strong>in</strong>g <strong>of</strong> grey cast iron the<br />

energy consumption dropped by about<br />

25 %. Due to the reduced energy consumption<br />

and greatly enhanced power density<br />

(kW/t) <strong>of</strong> modern furnaces, the maximum<br />

melt<strong>in</strong>g rate <strong>in</strong>creased to as much as 485 %.<br />

And this trend has not stopped there: Overall<br />

efficiencies <strong>in</strong> excess <strong>of</strong> 80 % are targeted<br />

thanks to the use <strong>of</strong> enhanced energy-sav<strong>in</strong>g<br />

coils. Fig. 4 shows the configuration <strong>of</strong><br />

an advanced medium-frequency melt<strong>in</strong>g<br />

<strong>in</strong>stallation with key peripheral equipment.<br />

FROM A TRIAL FOUNDRY TO A<br />

MARKET LEADERSHIP IN<br />

HIGH-GRADE STEEL CASTING<br />

Orig<strong>in</strong>ally planned exclusively as a test<strong>in</strong>g<br />

and demonstration facility, the high-grade<br />

steel foundry has evolved, start<strong>in</strong>g <strong>in</strong> the<br />

1940s, <strong>in</strong>to an advanced high-performance<br />

contract foundry for high-grade steels.<br />

Extensive <strong>in</strong>vestment <strong>in</strong> foundry equipment,<br />

mach<strong>in</strong>e tools, environmental protection<br />

and occupational safety technology, supported<br />

by the use <strong>of</strong> modern order <strong>process</strong><strong>in</strong>g<br />

and quality control procedures, have<br />

strengthened and expanded the company’s<br />

position as a lead<strong>in</strong>g manufacturer <strong>of</strong> highalloyed<br />

steel cast<strong>in</strong>gs. The approval <strong>of</strong> lead<strong>in</strong>g<br />

companies and classification societies<br />

126 heat <strong>process</strong><strong>in</strong>g 3-2014


TECHNOLOGY IN PRACTICE<br />

Fig. 5: R<strong>in</strong>g bowl after mach<strong>in</strong><strong>in</strong>g<br />

confirm this high quality standard. Its product<br />

range comprises f<strong>in</strong>ished, ready-for<strong>in</strong>stallation<br />

steel cast<strong>in</strong>gs made chiefly <strong>of</strong><br />

corrosion, heat and wear-resistant grades <strong>in</strong><br />

small-to-medium series, as well as one-<strong>of</strong>f<br />

cast<strong>in</strong>gs measur<strong>in</strong>g up to 6 m <strong>in</strong> diameter<br />

(Fig. 5). Key products specifically <strong>in</strong>clude<br />

r<strong>in</strong>g bowls for automatic bottl<strong>in</strong>g systems,<br />

grates for waste <strong>in</strong>c<strong>in</strong>eration <strong>plants</strong>,<br />

and valves and fitt<strong>in</strong>gs for the chemical<br />

<strong>in</strong>dustry. Otto Junker’s mach<strong>in</strong>e beds for<br />

lithographic systems for the production<br />

<strong>of</strong> microchips account for 30 % <strong>of</strong> global<br />

market volume.<br />

The exploration <strong>of</strong> new applications, the<br />

technological ref<strong>in</strong>ement <strong>of</strong> steel cast<strong>in</strong>g<br />

<strong>process</strong>es and <strong>in</strong>vestment <strong>in</strong>to equipment<br />

and environmental protection characterize<br />

the activities <strong>of</strong> Otto Junker’s <strong>in</strong>-house<br />

high-grade steel foundry. As a matter <strong>of</strong><br />

fact, synergy effects are tapped through<br />

the cooperation between equipment<br />

design and manufactur<strong>in</strong>g units and the<br />

own foundry.<br />

INTEGRATED MANAGEMENT<br />

SYSTEM AND TRAINING<br />

The company’s exist<strong>in</strong>g certified quality<br />

<strong>management</strong> system conform<strong>in</strong>g to<br />

applicable ISO standards was expanded<br />

<strong>in</strong> 2013 to comply with environmental,<br />

occupational safety and energy efficiency<br />

requirements under ISO 50001, ISO 14001<br />

and OHSAS 18001. An <strong>in</strong>itial audit conducted<br />

by TÜV Rhe<strong>in</strong>land <strong>in</strong> the summer <strong>of</strong> 2013<br />

confirmed the successful <strong>in</strong>troduction <strong>of</strong><br />

the new <strong>in</strong>tegrated <strong>management</strong> system<br />

and its effectiveness for a qualified <strong>management</strong><br />

<strong>of</strong> <strong>in</strong>-house workflows.<br />

Dedicated and competent employees<br />

are a company’s most important asset, no<br />

doubt. Tra<strong>in</strong><strong>in</strong>g young people for diverse<br />

<strong>in</strong>dustrial trades has a long tradition <strong>in</strong> the<br />

company, and it has been pursu<strong>in</strong>g with<br />

great commitment and success <strong>in</strong> an effort<br />

to uphold high standards. In this way, the<br />

company helps job starters to f<strong>in</strong>d their<br />

way <strong>in</strong>to the employment world while also<br />

secur<strong>in</strong>g its own supply <strong>of</strong> skilled personnel.<br />

Apprentices are tra<strong>in</strong>ed both <strong>in</strong> the<br />

well-equipped teach<strong>in</strong>g workshop under<br />

the guidance <strong>of</strong> qualified supervisors and<br />

through hands-on shopfloor tra<strong>in</strong><strong>in</strong>g “on<br />

the job”. Upon completion <strong>of</strong> their exam<strong>in</strong>ation,<br />

all apprentices are given an employment<br />

contract for at least one year with<br />

the company to help them make a smooth<br />

transition <strong>in</strong>to work<strong>in</strong>g life. Over the last<br />

few years the company has cont<strong>in</strong>ued to<br />

employ more than 30 apprentices on average<br />

at any given time. This figure reflects its<br />

<strong>in</strong>tense commitment to vocational tra<strong>in</strong><strong>in</strong>g.<br />

SUMMARY<br />

Otto Junker rema<strong>in</strong>s dedicated to the company’s<br />

successful basic strategy, which has<br />

rema<strong>in</strong>ed unaltered s<strong>in</strong>ce its foundation:<br />

Cont<strong>in</strong>uous <strong>in</strong>novation rely<strong>in</strong>g on cutt<strong>in</strong>gedge<br />

science and technology <strong>in</strong> the pursuit<br />

<strong>of</strong> new and improved products is supported<br />

by targeted <strong>in</strong>vestment aimed at<br />

strengthen<strong>in</strong>g the manufactur<strong>in</strong>g base at<br />

Lammersdorf as well as the <strong>in</strong>ternational<br />

sites. Plac<strong>in</strong>g the focus on customer benefits<br />

and customer satisfaction, the company<br />

cooperates closely with the users <strong>of</strong><br />

the products.<br />

Author:<br />

Dr. Dietmar Trauzeddel<br />

Contact:<br />

Otto Junker GmbH<br />

Jägerhausstraße 2<br />

52152 Simmerath-Lammersdorf, Germany<br />

Tel.: +49 (0) 2473 / 601-342<br />

tra@otto-junker.de<br />

www.otto-junker.de<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

127


TECHNOLOGY IN PRACTICE<br />

High-precision control <strong>of</strong> metal heat<strong>in</strong>g elements<br />

Constantly ris<strong>in</strong>g electricity costs are a<br />

factor <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g importance <strong>in</strong> the<br />

construction <strong>of</strong> furnaces. Efficient energy<br />

<strong>management</strong> is therefore crucial for bus<strong>in</strong>ess<br />

success. Low-pressure alum<strong>in</strong>ium diecast<strong>in</strong>g<br />

is used to produce <strong>in</strong>telligent heat<strong>in</strong>g<br />

systems consist<strong>in</strong>g <strong>of</strong> modern heat<strong>in</strong>g<br />

elements <strong>in</strong> comb<strong>in</strong>ation with <strong>in</strong>novative<br />

power controllers that reduce energy costs<br />

by 30 % while significantly <strong>in</strong>creas<strong>in</strong>g <strong>process</strong><br />

reliability.<br />

Wheel rims add a special touch to many<br />

cars. They are manufactured from steel or<br />

alum<strong>in</strong>ium alloys. The melt<strong>in</strong>g and hold<strong>in</strong>g<br />

<strong>of</strong> these metals are by nature energy-<strong>in</strong>tensive<br />

<strong>process</strong>es. A new retr<strong>of</strong>ittable heat<strong>in</strong>g<br />

technology developed primarily to save<br />

energy <strong>in</strong> the production <strong>of</strong> alum<strong>in</strong>ium rims<br />

was the goal <strong>of</strong> a jo<strong>in</strong>t research project <strong>of</strong><br />

the companies amTec Furnace Technologies<br />

GmbH (amTec), Sandvik Materials Technology<br />

Deutschland GmbH (Kanthal) and<br />

Gefran Deutschland GmbH (Gefran).<br />

PREVENTION OF ENERGY<br />

LOSSES<br />

In the rim manufactur<strong>in</strong>g <strong>process</strong> the alum<strong>in</strong>ium<br />

bars are first melted <strong>in</strong> a shaft furnace.<br />

From there, the molten material is<br />

transported <strong>in</strong> transfer ladles to an impeller<br />

station. Addition <strong>of</strong> additional alloy components<br />

dur<strong>in</strong>g constant stirr<strong>in</strong>g <strong>of</strong> the<br />

molten mass achieves the optimal metal<br />

quality. The completed alloy is then transported<br />

to a low-pressure furnace (Fig. 1),<br />

where the rims are cast. The entire <strong>process</strong><br />

is designed so that the metal flows with<br />

practically no turbulence to m<strong>in</strong>imize the<br />

formation <strong>of</strong> metal oxides to the greatest<br />

extent possible. The low-pressure <strong>process</strong><br />

results <strong>in</strong> cast parts with excellent mechanical<br />

properties. Especially this last <strong>process</strong><br />

step requires a heat<strong>in</strong>g system that can<br />

be operated without transformer equipment.<br />

In the past, heat<strong>in</strong>g elements made<br />

<strong>of</strong> silicon carbide (SiC) were used here.<br />

They withstand high surface loads and<br />

high temperatures, which makes their<br />

use <strong>in</strong> a furnace relatively unproblematic.<br />

S<strong>in</strong>ce they require a voltage <strong>of</strong> only 82 V,<br />

however, the standard ma<strong>in</strong>s voltage <strong>of</strong><br />

230 or 400 V must be adapted by means<br />

<strong>of</strong> transformers or thyristors. The thyristor<br />

operates <strong>in</strong> a phase controlled <strong>process</strong> <strong>in</strong><br />

which part <strong>of</strong> the s<strong>in</strong>e wave is suppressed<br />

and is no longer available as usable energy.<br />

In both cases 100 % <strong>of</strong> the power must be<br />

paid for, although only 40 to 60 % <strong>of</strong> the<br />

current can actually be used. The phase<br />

control <strong>process</strong> also <strong>in</strong>troduces harmonic<br />

components <strong>in</strong>to the power grid, which<br />

has to be compensated by expensive filters.<br />

Accord<strong>in</strong>g to amTech Manag<strong>in</strong>g Director<br />

Dr. Jens Flücklich it makes little sense and<br />

does not <strong>in</strong>crease the efficiency to connect<br />

an expensive energy <strong>management</strong><br />

system to such a system with low efficiency<br />

or high reactive power. He had the idea<br />

that a metal heat conductor with constant<br />

ohmic resistance could be the solution. For<br />

the tests, Kanthal provided suitable heat<strong>in</strong>g<br />

elements with a l<strong>in</strong>ear resistance that<br />

can be operated at 230 V. This elim<strong>in</strong>ates<br />

the need for transformation and the subsequent<br />

energy losses. The result is virtually<br />

100 % efficiency with no harmonic components<br />

requir<strong>in</strong>g compensation (Fig. 2).<br />

POWER CONTROLLERS WITH<br />

OVERCURRENT PROTECTION<br />

The new heat conductors are <strong>in</strong>tegrated<br />

<strong>in</strong> a cascade control system with the onboard<br />

GFW control loop (Fig. 3), which<br />

allows faster control <strong>of</strong> the system –<br />

partly because the metal heat conductors<br />

react much more quickly than SiC<br />

heat<strong>in</strong>g elements to disturbances. This<br />

also means, however, that they require<br />

much more precise and f<strong>in</strong>er control. The<br />

GFW power controllers with overcurrent<br />

protection <strong>of</strong> the Xtra series from Gefran<br />

provide such control (Fig. 4). In addition,<br />

the company <strong>of</strong>fers energy <strong>management</strong><br />

s<strong>of</strong>tware that required only very<br />

little adaptation <strong>of</strong> the parameters for<br />

the specific application. The GFW Xtra<br />

features numerous options for controll<strong>in</strong>g<br />

the <strong>process</strong> as well as programm<strong>in</strong>g<br />

options for fast and easy configuration.<br />

Source: amTec Furnace Technologies GmbH<br />

Fig. 1: Transfer <strong>of</strong> the alum<strong>in</strong>ium alloy <strong>in</strong>to the<br />

low-pressure cast<strong>in</strong>g furnace<br />

Fig. 2: amTec low-pressure cast<strong>in</strong>g furnace with<br />

the new heat<strong>in</strong>g system<br />

Fig. 3: Installation <strong>in</strong> control<br />

cab<strong>in</strong>et<br />

128 heat <strong>process</strong><strong>in</strong>g 3-2014


TECHNOLOGY IN PRACTICE<br />

Source: Gefran Deutschland GmbH<br />

Fig. 4: GFW power controller with overcurrent protection<br />

from the Xtra series<br />

Fig. 5: Graphical display <strong>of</strong> the system with a s<strong>of</strong>t-start ramp<br />

It is completely bus-capable, therefore<br />

enabl<strong>in</strong>g <strong>in</strong>tegration <strong>in</strong> the overall control<br />

system. But the <strong>in</strong>telligent power controller<br />

also <strong>of</strong>fers another decisive advantage:<br />

it uses IGBT (Insulated-Gate Bipolar Transistor)<br />

technology. The s<strong>of</strong>tware quickly<br />

and cont<strong>in</strong>uously measures the current at<br />

the load. If it exceeds a configured value<br />

the circuit is <strong>in</strong>terrupted immediately<br />

before the load or the power component<br />

can be damaged. The power cut<br />

takes place with<strong>in</strong> microseconds. Various<br />

options are available for resum<strong>in</strong>g heat<strong>in</strong>g<br />

operations. Generally, automatic reset<br />

is the preferred option. This allows a very<br />

fast restart <strong>of</strong> the system with a s<strong>of</strong>t-start<br />

ramp (Fig. 5). No <strong>in</strong>tervention by a technician<br />

is necessary <strong>in</strong> this case. This sets<br />

the Xtra power controller apart from conventional<br />

thyristor power controllers. If<br />

the fuse is triggered <strong>in</strong> those controllers, a<br />

certified electrician must open the device<br />

and replace the <strong>in</strong>ternal fuse. Dur<strong>in</strong>g this<br />

entire procedure production is not possible.<br />

If this state goes unnoticed, the<br />

downtime can easily last four to six hours<br />

and <strong>in</strong> the worst case scenario no suitable<br />

fuse is <strong>in</strong> stock or no certified electrician<br />

is available. In addition, if the fuse is triggered<br />

the power cut is delayed, s<strong>in</strong>ce the<br />

thyristor is not cleared immediately, but<br />

only <strong>in</strong> the zero cross<strong>in</strong>g. This short time<br />

can already be enough to destroy the<br />

load and the power component.<br />

SHORTER DOWNTIMES, HIGHER<br />

MACHINE AVAILABILITY<br />

The power controllers <strong>of</strong> the Xtra series are<br />

different. The electronic fuse is extremely<br />

easy to operate and a short-circuit – for<br />

example due to condensation or metal<br />

spatter – does not automatically result <strong>in</strong><br />

mach<strong>in</strong>e downtime. On the contrary: the<br />

fuse detects whether the damage is permanent<br />

and signals an alert accord<strong>in</strong>gly. In<br />

the event <strong>of</strong> a temporary disruption such<br />

as a short-circuit through the refractory l<strong>in</strong><strong>in</strong>g,<br />

ma<strong>in</strong>s voltage fluctuations, humidity<br />

or dust at the load, the power controller<br />

restarts the heat<strong>in</strong>g system. It also detects<br />

problems early on and precisely identifies<br />

which components – heat<strong>in</strong>g elements,<br />

transition resistors, etc. – caused the disruption.<br />

In addition, each phase is controlled<br />

separately. Failure <strong>of</strong> one heat<strong>in</strong>g element<br />

therefore does not cause an overload <strong>in</strong><br />

the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tact elements. They rema<strong>in</strong><br />

undamaged. The Xtra power controllers<br />

therefore ensure a high level <strong>of</strong> production<br />

reliability as well as user and ma<strong>in</strong>tenance<br />

friendl<strong>in</strong>ess. The shorter downtimes and<br />

higher mach<strong>in</strong>e availability have a direct<br />

positive effect on productivity and pr<strong>of</strong>it.<br />

Especially <strong>in</strong> the operation <strong>of</strong> cont<strong>in</strong>uously<br />

heated furnaces or <strong>in</strong> two and three-shift<br />

systems, the use <strong>of</strong> Xtra power controllers<br />

significantly reduces the necessity <strong>of</strong> <strong>in</strong>tervention<br />

by a technician. Production is much<br />

more trouble-free.<br />

LONG-TERM TESTS STARTED<br />

The power controller from Gefran also<br />

brought other advantages for the tests:<br />

s<strong>in</strong>ce it not only records the necessary test<br />

data, but also features an <strong>in</strong>tegrated PID<br />

<strong>in</strong>put and analogue <strong>in</strong>puts for the <strong>thermal</strong><br />

elements, a significant reduction <strong>of</strong> the<br />

necessary lab equipment is possible. Initial<br />

tests <strong>in</strong> practice showed that the power<br />

consumption can be drastically reduced<br />

by use <strong>of</strong> the new heat<strong>in</strong>g technology. The<br />

energy costs <strong>of</strong> the new system are up to<br />

30 % lower than those <strong>of</strong> current <strong>process</strong>es.<br />

The elim<strong>in</strong>ation <strong>of</strong> transformers also means<br />

there is no loss <strong>of</strong> efficiency. In addition, the<br />

service life <strong>in</strong>creased, while power losses<br />

decrease. Long-term tests for determ<strong>in</strong><strong>in</strong>g<br />

the reduction <strong>of</strong> reactive power, for<br />

example, have just started. Jens Glücklich<br />

assumes that it will be possible to deliver<br />

the first system with the new heat<strong>in</strong>g technology<br />

before the end <strong>of</strong> this year.<br />

Author:<br />

Katr<strong>in</strong> Broichhausen<br />

Contact:<br />

Gefran Deutschland GmbH<br />

Philipp-Reis-Straße 9a<br />

63500 Seligenstadt, Germany<br />

Tel.: +49 (0) 6182 / 809-0<br />

katr<strong>in</strong>.broichhausen@gefran.de<br />

www.gefran.com<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

129


TECHNOLOGY IN PRACTICE<br />

New kiln and dryer system for terracotta tiles<br />

Fig. 1: The kiln – frontal view<br />

The kiln was designed for a higher productivity<br />

and a good quality <strong>of</strong> terracotta<br />

tiles. Another direction was to reduce the<br />

gas consumption by recovery the flue gas<br />

heat from the kiln. The combustion air fan<br />

and the exhaust fan are operated us<strong>in</strong>g frequency<br />

<strong>in</strong>verters for an accurate control and<br />

energy sav<strong>in</strong>gs. The accuracy <strong>of</strong> the temperature<br />

control <strong>in</strong> the kiln is better than ± 3 °C<br />

by us<strong>in</strong>g the cont<strong>in</strong>uous control at higher<br />

power and On/Off control at low power. The<br />

use <strong>of</strong> the burners for cool<strong>in</strong>g elim<strong>in</strong>ates an<br />

additional cool<strong>in</strong>g system. The kiln and the<br />

dryer <strong>process</strong>es can be controlled from the<br />

local HMI and from the computer.<br />

This kiln was built by Electro-Total Bucharest<br />

(Romania) for Macon Deva <strong>in</strong> order to<br />

<strong>in</strong>crease the production capacity and energy<br />

efficiency. The performance criterion requested<br />

by the customer was the productivity, the<br />

specific gas and energy consumption and<br />

the fir<strong>in</strong>g quality <strong>of</strong> the terracotta tiles. The<br />

important condition for the dryer was the<br />

primary recovery <strong>of</strong> flue gas from the kiln.<br />

The kiln is a batch-type with mobile<br />

hearth hav<strong>in</strong>g the <strong>in</strong>ner size <strong>of</strong> 6,900 x 4,810<br />

x 1,500 mm (Fig. 1). The kiln performs the<br />

fir<strong>in</strong>g <strong>of</strong> 7,000 kg <strong>of</strong> terracotta tiles <strong>in</strong> 23 hours.<br />

The fir<strong>in</strong>g curve consists <strong>of</strong> heat<strong>in</strong>g, soak<strong>in</strong>g<br />

and controlled cool<strong>in</strong>g, with the uniformity<br />

condition obta<strong>in</strong>ed on the entire diagram.<br />

The kiln <strong>thermal</strong> <strong>in</strong>sulation is made <strong>of</strong><br />

ceramic fiber modules for walls, ro<strong>of</strong> and<br />

door. The refractory concrete is used for the<br />

fixed and mobile hearth and the ceramic<br />

fiber blankets are used for flue gas pipes<br />

<strong>thermal</strong> <strong>in</strong>sulation. The kiln is provided with<br />

two rows <strong>of</strong> burners mounted on the side<br />

walls. The flue gas exhaust from the lower<br />

level <strong>of</strong> the batch is made via ceramic tubes<br />

mounted <strong>in</strong>side the kiln. The temperature<br />

control system is based upon the <strong>in</strong>formation<br />

received from the six thermocouples<br />

mounted on the side walls <strong>of</strong> the kiln. Two<br />

thermocouples are used for each zone, one<br />

on the left side and one on the right side, for<br />

Fig. 2: BIO Burner<br />

the most accurate <strong>in</strong>formation. The kiln has a<br />

protection for high temperature us<strong>in</strong>g three<br />

thermocouples mounted <strong>in</strong> the ro<strong>of</strong>.<br />

The burn<strong>in</strong>g system was built us<strong>in</strong>g Elster<br />

Kromschroeder equipment with impulse<br />

burners type BIO-80 with low CO and NO X<br />

emissions (Fig. 2). The air/gas ratio is controlled<br />

by pressure regulators with solenoid<br />

valve type VAG mounted on each burner. This<br />

type <strong>of</strong> burner allows the controlled cool<strong>in</strong>g<br />

us<strong>in</strong>g only the burn<strong>in</strong>g system air pipes without<br />

any additional cool<strong>in</strong>g system (Fig. 3).<br />

The combustion air fan and the exhaust fan<br />

are operated us<strong>in</strong>g frequency <strong>in</strong>verters, for an<br />

accurate control and energy sav<strong>in</strong>g. The frequency<br />

<strong>in</strong>verters have an important function,<br />

provid<strong>in</strong>g a synchronized acceleration and<br />

deceleration between the combustion air<br />

fan and the exhaust fan. Large pressure variations<br />

must be avoided <strong>in</strong> the kiln because<br />

this could blow the sand from the hearth<br />

channel on the terracotta tiles lead<strong>in</strong>g to a<br />

rejection <strong>of</strong> the batch.<br />

A 3-way valve is <strong>in</strong>stalled on the exhaust<br />

fan circuit for heat recovery. This valve directs<br />

the flue gas to the dryer, when the flue gas<br />

temperature exceeds 100 °C. The dryer is<br />

tunnel-type and its heat<strong>in</strong>g system works<br />

both <strong>in</strong>dependently and with heat recovery.<br />

The dryer burner has an adequate power to<br />

<strong>in</strong>dependently perform the dry<strong>in</strong>g <strong>process</strong>.<br />

This situation occurs between two batches,<br />

when the kiln is turned <strong>of</strong>f.<br />

130 heat <strong>process</strong><strong>in</strong>g 3-2014


TECHNOLOGY IN PRACTICE<br />

The PLC based <strong>process</strong> control systems<br />

<strong>of</strong> the kiln and the dryer are <strong>in</strong>terconnected<br />

<strong>in</strong> order to work <strong>in</strong> heat recovery mode (for<br />

the dryer). The control system provides constant<br />

temperatures and air flow to the dryer<br />

admission. The control system primarily uses<br />

the heat recovered from the kiln. The kiln<br />

and the dryer <strong>process</strong>es can be controlled<br />

(<strong>in</strong> terms <strong>of</strong> diagrams, alarms, etc.) both<br />

from the local HMI and from the computer<br />

located <strong>in</strong> the control room <strong>of</strong> the plant. The<br />

computer also stores all the records referr<strong>in</strong>g<br />

to batch data, analogue measurements and<br />

gas and energy consumption related to each<br />

batch or over a period <strong>of</strong> time (Fig. 4).<br />

A fir<strong>in</strong>g diagram for terracotta tiles (heat<strong>in</strong>g,<br />

soak<strong>in</strong>g, cool<strong>in</strong>g) is available if needed.<br />

The accuracy <strong>of</strong> the temperature control<br />

is better than ± 3 °C for temperatures<br />

exceed<strong>in</strong>g 300 °C. In order to achieve this<br />

accuracy the cont<strong>in</strong>uous control is used at<br />

high power and the On/Off control is used<br />

at low power.<br />

PERFORMANCE<br />

The kiln can produce 7 t batch <strong>in</strong> a 24 h cycle<br />

while the gas consumption is 1,120 Nm 3 /<br />

batch. Furthermore the kiln consumes<br />

230 kWh/batch <strong>of</strong> electrical energy. The<br />

control accuracy is ± 3 °C dur<strong>in</strong>g the entire<br />

heat<strong>in</strong>g and cool<strong>in</strong>g cycle.<br />

The dryer achieves a productivity <strong>of</strong> 14.2 t<br />

batch <strong>in</strong> 24 h. The dry<strong>in</strong>g time is about 36 h.<br />

With<strong>in</strong> 24 h the gas consumption is 320 Nm 3<br />

with heat recovery gas. Before the modernization<br />

the dryer consumed 1,000 Nm 3 /24 h.<br />

Thus, the reduction <strong>of</strong> the energy consumption<br />

and, vice versa, the <strong>in</strong>crease <strong>in</strong> efficiency<br />

is evident.<br />

CONCLUSION<br />

The whole system comb<strong>in</strong><strong>in</strong>g the performance<br />

<strong>of</strong> the kiln and the heat recovery for<br />

the dryer generates important gas sav<strong>in</strong>gs.<br />

The temperature uniformity is achieved both<br />

through the kiln design and also by comb<strong>in</strong><strong>in</strong>g<br />

the two control modes (cont<strong>in</strong>uous and<br />

On/Off) <strong>of</strong> the burners. A superior uniformity<br />

<strong>of</strong> the temperature is achieved us<strong>in</strong>g the<br />

thermocouples mounted on the left and<br />

right sides <strong>of</strong> the kiln walls. The use <strong>of</strong> the<br />

burners for cool<strong>in</strong>g elim<strong>in</strong>ates the need for an<br />

additional cool<strong>in</strong>g system (separate pip<strong>in</strong>g,<br />

fan, etc.) and reduces the total cost <strong>of</strong> the kiln.<br />

Authors:<br />

Dr.-Ing. George Velichi<br />

Ing. Flor<strong>in</strong> Parlog<br />

Ing. Mar<strong>in</strong> Gurgu<br />

Ing. Cristi Mitroi<br />

Ing. Andrei Suciu<br />

Ing. Alexandru Voicu<br />

Fig. 3: The burn<strong>in</strong>g system (air /gas pipes)<br />

Contact:<br />

Electro-Total<br />

Str. Mecet nr. 42-44,<br />

Sector 2<br />

024086 Bucuresti, Romania<br />

Tel.: +40-21-252-57-81 /-83<br />

<strong>of</strong>fice@electro-total.com<br />

www.electro-total.com<br />

Fig. 4: The kiln –<br />

synoptic diagram<br />

3-2014 heat <strong>process</strong><strong>in</strong>g<br />

131


INDEX OF ADVERTISERS<br />

INDEX OF ADVERTISERS<br />

Company Page Company Page<br />

AFC-HOLCROFT, Wixom, Michigan, USA 47<br />

AICHELIN Hold<strong>in</strong>g GmbH, Mödl<strong>in</strong>g, Austria 41<br />

ITPS Asia 2014, Mumbai, India 15<br />

L<strong>in</strong>n High Therm GmbH, Eschenfelden, Germany 51<br />

ALD Vacuum Technologies GmbH, Hanau, Germany 53<br />

LOI Therm<strong>process</strong> GmbH, Essen, Germany<br />

front cover<br />

ALUMINIUM 2014, Düsseldorf, Germany<br />

S. 19, <strong>in</strong>sert<br />

METAL MIDDLE EAST 2015, Dubai, United Arab Emirates 24<br />

Bürkert GmbH & Co. KG, Ingelf<strong>in</strong>gen, Germany 13<br />

ceramitec 2015, München, Germany 27<br />

Elster GmbH, Osnabrück, Germany 9<br />

EMC European Metallurgical Conference 2015, Düsseldorf, Germany 120<br />

Optris GmbH, Berl<strong>in</strong>, Germany 21<br />

Process-Electronic GmbH, He<strong>in</strong><strong>in</strong>gen, Germany 77<br />

Schwartz GmbH, Simmerath, Germany 49<br />

SECO / Warwick Europe S.A., Swiebodz<strong>in</strong>, Poland <strong>in</strong>side front cover, 5<br />

FABTECH 2014, Atlanta, GA USA 31<br />

SMS Elotherm GmbH, Remscheid, Germany<br />

back cover<br />

FLUXTROL, Auburn Hilss, Michigan, USA 7<br />

GEFRAN Deutschland GmbH, Seligenstadt, Germany 17<br />

SMS Siemag AG, Düsseldorf, Germany 45<br />

Tube India International 2014, Mumbai, India 78<br />

Graphite Materials GmbH, Zirndorf, Germany 55<br />

Heat Treatment 2014, Moscow, Russia 33<br />

Bus<strong>in</strong>ess Directory 133 - 152<br />

IPSEN International GmbH, Kleve, Germany 37<br />

International Magaz<strong>in</strong>e for Industrial Furnaces,<br />

Heat Treatment & Equipment<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

your contact to the<br />

heat <strong>process</strong><strong>in</strong>g team<br />

Manag<strong>in</strong>g Editor:<br />

Dipl.-Ing. Stephan Schalm<br />

Phone: +49 201 82002 12<br />

Fax: +49 201 82002 40<br />

E-Mail: s.schalm@vulkan-verlag.de<br />

Editorial Office:<br />

Annamaria Frömgen<br />

Phone: +49 201 82002 91<br />

Fax: +49 201 82002 40<br />

E-Mail: a.froemgen@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Sales:<br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Phone: +49 201 82002 24<br />

Fax: +49 201 82002 40<br />

E-Mail: b.schwarzer-hahn@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Adm<strong>in</strong>istration:<br />

Mart<strong>in</strong>a Mittermayer<br />

Phone: +49 89 203 5366 16<br />

Fax: +49 89 203 5366 66<br />

E-Mail: mittermayer@di-verlag.de<br />

Editor:<br />

Thomas Schneidew<strong>in</strong>d<br />

Phone: +49 201 82002 36<br />

Fax: +49 201 82002 40<br />

E-Mail: t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />

Editor (Tra<strong>in</strong>ee):<br />

Sabr<strong>in</strong>a F<strong>in</strong>ke<br />

Phone: +49 201 82002 15<br />

Fax: +49 201 82002 40<br />

E-Mail: s.f<strong>in</strong>ke@vulkan-verlag.de<br />

132 heat <strong>process</strong><strong>in</strong>g 4-2013<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com


International Magaz<strong>in</strong>e for Industrial Furnaces<br />

Heat Treatment & Equipment<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

2014<br />

Bus<strong>in</strong>ess Directory<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial<br />

heat treatment <strong>process</strong>es ......................................................................................... 134<br />

II.<br />

Components, equipment, production<br />

and auxiliary materials ................................................................................................ 144<br />

III. Consult<strong>in</strong>g, design, service<br />

and eng<strong>in</strong>eer<strong>in</strong>g ............................................................................................................ 151<br />

IV. Trade associations, <strong>in</strong>stitutes,<br />

universities, organisations ......................................................................................... 152<br />

V. Exhibition organizers,<br />

tra<strong>in</strong><strong>in</strong>g and education .............................................................................................. 152<br />

Contact:<br />

Mrs. Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel.: +49 (0)201 / 82002-24<br />

Fax: +49 (0)201 / 82002-40<br />

E-mail: b.schwarzer-hahn@vulkan-verlag.de<br />

4-2013 heat <strong>process</strong><strong>in</strong>g<br />

www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />

133


Bus<strong>in</strong>ess Directory 3-2014<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

<strong>thermal</strong> production<br />

Melt<strong>in</strong>g, Pour<strong>in</strong>g, cast<strong>in</strong>g<br />

134 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


3-2014 Bus<strong>in</strong>ess Directory<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

Heat<strong>in</strong>g<br />

Powder metallurgy<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

135


Bus<strong>in</strong>ess Directory 3-2014<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

Heat<strong>in</strong>g<br />

136 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


Heat treatment<br />

3-2014 Bus<strong>in</strong>ess Directory<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

137


Bus<strong>in</strong>ess Directory 3-2014<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

Heat treatment<br />

138 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


3-2014 Bus<strong>in</strong>ess Directory<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

More <strong>in</strong>formation available:<br />

www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

139


Bus<strong>in</strong>ess Directory 3-2014<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

Heat treatment<br />

140 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


3-2014 Bus<strong>in</strong>ess Directory<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

cool<strong>in</strong>g and Quench<strong>in</strong>g<br />

surface treatment<br />

Jo<strong>in</strong><strong>in</strong>g<br />

More <strong>in</strong>formation available:<br />

www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

141


Bus<strong>in</strong>ess Directory 3-2014<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

Jo<strong>in</strong><strong>in</strong>g<br />

142 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


3-2014 Bus<strong>in</strong>ess Directory<br />

I. Furnaces and <strong>plants</strong> for <strong>in</strong>dustrial heat treatment <strong>process</strong>es<br />

recycl<strong>in</strong>g<br />

energy efficiency<br />

retr<strong>of</strong>it<br />

More <strong>in</strong>formation available:<br />

www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

143


Bus<strong>in</strong>ess Directory 3-2014<br />

II. Components, equipment, production and auxiliary materials<br />

Quench<strong>in</strong>g equipment<br />

Fitt<strong>in</strong>gs<br />

Burners<br />

transport equipment<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

144 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


3-2014 Bus<strong>in</strong>ess Directory<br />

II. Components, equipment, production and auxiliary materials<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

More <strong>in</strong>formation available:<br />

www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

145


Bus<strong>in</strong>ess Directory 3-2014<br />

II. Components, equipment, production and auxiliary materials<br />

Burners<br />

Burner equipment<br />

Burner applications<br />

Your contact to<br />

<strong>HEAT</strong> <strong>PROCESSING</strong><br />

Bett<strong>in</strong>a Schwarzer-Hahn<br />

Tel. +49(0)201-82002-24<br />

Fax +49(0)201-82002-40<br />

b.schwarzer-hahn@vulkan-verlag.de<br />

146 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


3-2014 Bus<strong>in</strong>ess Directory<br />

II. Components, equipment, production and auxiliary materials<br />

resistance heat<strong>in</strong>g<br />

elements<br />

More <strong>in</strong>formation available:<br />

www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

147


Bus<strong>in</strong>ess Directory 3-2014<br />

II. Components, equipment, production and auxiliary materials<br />

Forg<strong>in</strong>g accessories<br />

<strong>in</strong>ductors<br />

148 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


3-2014 Bus<strong>in</strong>ess Directory<br />

II. Components, equipment, production and auxiliary materials<br />

Measur<strong>in</strong>g and automation<br />

More <strong>in</strong>formation available:<br />

www.heat<strong>process</strong><strong>in</strong>g-directory.com<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

149


Bus<strong>in</strong>ess Directory 3-2014<br />

II. Components, equipment, production and auxiliary materials<br />

Power supply<br />

refractories<br />

150 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


III. Consult<strong>in</strong>g, design, service and eng<strong>in</strong>eer<strong>in</strong>g<br />

3-2014 Bus<strong>in</strong>ess Directory<br />

4-2013 3-2014 heat <strong>process</strong><strong>in</strong>g<br />

151


Bus<strong>in</strong>ess Directory 3-2014<br />

IV. Trade associations, <strong>in</strong>stitutes, universities, organisations<br />

V. Exhibition organizers, tra<strong>in</strong><strong>in</strong>g and education<br />

152 heat <strong>process</strong><strong>in</strong>g 3-2014 4-2013


4-2013 heat <strong>process</strong><strong>in</strong>g<br />

153


International Magaz<strong>in</strong>e for Industrial Furnaces,<br />

Heat Treatment & Equipment<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

BRAND NEW<br />

Already shopped<br />

Know-how today?<br />

The new web presence <strong>of</strong> hp<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

Vulkan-Verlag<br />

154 heat <strong>process</strong><strong>in</strong>g 4-2013


4-2013 heat <strong>process</strong><strong>in</strong>g<br />

155


COMPANIES PROFILE<br />

Process-Electronic GmbH<br />

Process-Electronic GmbH<br />

COMPANY:<br />

Process-Electronic GmbH<br />

Dürnauer Weg 30<br />

73092 He<strong>in</strong><strong>in</strong>gen<br />

Germany<br />

BOARD OF MANAGEMENT:<br />

Jens Baumann, Edgar Falkowski, Karl-Michael W<strong>in</strong>ter<br />

HISTORY:<br />

Founded <strong>in</strong> 1974, Process-Electronic Analyse- und Regelgeräte<br />

GmbH specialised <strong>in</strong> the development <strong>of</strong> oxygen probes and<br />

measur<strong>in</strong>g and control devices <strong>in</strong> combustion and heat treat<strong>in</strong>g<br />

atmospheres. In 2004 the company entered <strong>in</strong>to a partnership with<br />

Nitrex Metal Inc., now major shareholder <strong>in</strong> PE.<br />

GROUP:<br />

Acquisitions <strong>in</strong> North America and the foundation <strong>of</strong> Process-Electronic<br />

Poland lead to the <strong>in</strong>ternationally active United Process Controls<br />

Group <strong>in</strong> 2007, with sites <strong>in</strong> the US, Canada, Europe and Ch<strong>in</strong>a<br />

as well as a network <strong>of</strong> affiliated companies throughout the world:<br />

Furnace Control Corp., Marathon Monitors Inc., Process-Electronic<br />

GmbH, Waukee Eng<strong>in</strong>eer<strong>in</strong>g Company Inc.<br />

SHAREHOLDINGS:<br />

Process-Electronic GmbH is owner <strong>of</strong> Process-Electronic France<br />

SARL, Besançon / France, formerly Selma Electronique.<br />

COOPERATION:<br />

The company is <strong>in</strong> close contact with universities and <strong>in</strong>stitutes and<br />

has a cooperation with the IWT Stiftung Institut für Werkst<strong>of</strong>ftechnik.<br />

NUMBER OF STAFF:<br />

Approx. 25<br />

EXPORT QUOTA:<br />

Approx. 40 %<br />

Contact:<br />

Jens Baumann<br />

Sales Manager<br />

Tel.: +49 (0) 7161 / 94888-0<br />

j.baumann@<strong>process</strong>-electronic.com<br />

PRODUCT RANGE:<br />

Oxygen and hydrogen probes and IR and dewpo<strong>in</strong>t analysers<br />

for the metalwork<strong>in</strong>g; high temperature applications and<br />

environmental technology; electronic measur<strong>in</strong>g and control<br />

systems for heat treatment <strong>in</strong>stallations; <strong>process</strong> control and<br />

data <strong>process</strong><strong>in</strong>g systems, automation technology, quality assurance<br />

and commercial s<strong>of</strong>tware systems; consult<strong>in</strong>g, tra<strong>in</strong><strong>in</strong>g and<br />

ma<strong>in</strong>tenance services.<br />

PRODUCTION:<br />

PE manufactures oxygen probes, hydrogen sensors, temperature<br />

and atmosphere controllers, programmable controllers as well as<br />

gas and electrical panels and cab<strong>in</strong>ets and all related s<strong>of</strong>tware for<br />

simulation, automation and <strong>process</strong> control.<br />

COMPETITIVE ADVANTAGES:<br />

The company has 40 years experience <strong>in</strong> all aspects <strong>of</strong> metal heat<br />

treat<strong>in</strong>g and is a work<strong>in</strong>g member <strong>in</strong> various materials and heat<br />

<strong>process</strong><strong>in</strong>g committees.<br />

CERTIFICATION:<br />

DIN EN ISO 9001: 2008.<br />

SERVICE POTENTIALS:<br />

Consult<strong>in</strong>g, tra<strong>in</strong><strong>in</strong>g and support <strong>in</strong> <strong>process</strong> eng<strong>in</strong>eer<strong>in</strong>g, <strong>process</strong><br />

technology, safety (accord<strong>in</strong>g to DIN EN 746 /1-3 <strong>of</strong> <strong>in</strong>dustrial furnaces),<br />

automation concepts, and computer hardware and s<strong>of</strong>tware<br />

concepts.<br />

INTERNET ADDRESS:<br />

www.<strong>process</strong>-electronic.com<br />

156<br />

heat <strong>process</strong><strong>in</strong>g 3-2014


3-2014 IMPRINT<br />

www.heat<strong>process</strong><strong>in</strong>g-onl<strong>in</strong>e.com<br />

Volume 12 · Issue 3 · September 2014<br />

Official Publication<br />

Editors<br />

Advisory Board<br />

Publish<strong>in</strong>g House<br />

Manag<strong>in</strong>g Editor<br />

Editorial Office<br />

CECOF – European Committee <strong>of</strong> Industrial Furnace and Heat<strong>in</strong>g Equipment Associations<br />

H. Berger, AICHELIN Ges.m.b.H., Mödl<strong>in</strong>g, Pr<strong>of</strong>. Dr.-Ing. A. von Starck, Appo<strong>in</strong>ted Pr<strong>of</strong>essor for Electric Heat<strong>in</strong>g at RWTH<br />

Aachen, Dr. H. Stumpp, Chairman <strong>of</strong> the Association for Thermal Process Technology with<strong>in</strong> VDMA, CTO Tenova Iron &<br />

Steel Group<br />

Dr. H. Altena, Aichel<strong>in</strong> Ges.m.b.H., Pr<strong>of</strong>. Dr.-Ing. E. Baake, Institute for Electro<strong>thermal</strong> Processes, Leibniz University <strong>of</strong><br />

Hanover, Dr.-Ing. F. Beneke, VDMA, Pr<strong>of</strong>. Y. Bl<strong>in</strong>ov, St. Petersburg State Electrotechnical University “Leti“, Russia, René<br />

Branders, President <strong>of</strong> CECOF, Mike Debier, CECOF, Dr.-Ing. F. Kühn, LOI Therm<strong>process</strong> GmbH, Dipl.-Ing. W. Liere-Netheler,<br />

Elster GmbH, H. Lochner, EBNER Industrie<strong>of</strong>enbau GmbH, Pr<strong>of</strong>. S. Lupi, University <strong>of</strong> Padova, Dept. <strong>of</strong> Electrical Eng., Italy,<br />

Pr<strong>of</strong>. Dr.-Ing. H. Pfeifer, RWTH Aachen, Dipl.-Phys. M. R<strong>in</strong>k, Ipsen International GmbH, Dipl.-Ing. St. Schalm, Vulkan-Verlag<br />

GmbH, M.Sc. S. Segerberg, Heattec Värmebehandl<strong>in</strong>g AB, Sweden, Dr.-Ing. A. Seitzer, SMS Elotherm GmbH, Dr.-Ing. P. Wendt,<br />

LOI Therm<strong>process</strong> GmbH, Dr.-Ing. J. G. Wünn<strong>in</strong>g, WS Wärmeprozesstechnik GmbH, Dr.-Ing. T. Würz, CECOF<br />

Vulkan-Verlag GmbH, Friedrich-Ebert-Straße 55, 45127 Essen, Germany<br />

P.O. Box 103962, 45039 Essen<br />

Manag<strong>in</strong>g Directors: Carsten Augsburger, Jürgen Franke<br />

Dipl.-Ing. Stephan Schalm, Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-12, Fax: + 49 201 820 02-40<br />

E-Mail: s.schalm@vulkan-verlag.de<br />

Annamaria Frömgen, Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-91, Fax: + 49 201 820 02-40<br />

E-Mail: a.froemgen@vulkan-verlag.de<br />

Editorial Department Thomas Schneidew<strong>in</strong>d, Vulkan-Verlag GmbH Sabr<strong>in</strong>a F<strong>in</strong>ke (Tra<strong>in</strong>ee), Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-36, Fax: + 49 201 820 02-40 Tel. + 49 201 820 02-15, Fax: + 49 201 820 02-40<br />

E-Mail: t.schneidew<strong>in</strong>d@vulkan-verlag.de<br />

E-Mail: s.f<strong>in</strong>ke@vulkan-verlag.de<br />

Advertis<strong>in</strong>g Sales<br />

Bett<strong>in</strong>a Schwarzer-Hahn, Vulkan-Verlag GmbH<br />

Tel. + 49 201 820 02-24, Fax: + 49 201 820 02-40<br />

E-Mail: b.schwarzer-hahn@vulkan-verlag.de<br />

Advertis<strong>in</strong>g<br />

Mart<strong>in</strong>a Mittermayer, Vulkan-Verlag GmbH / DIV Deutscher Industrieverlag GmbH<br />

Adm<strong>in</strong>istration Tel. + 49 89 203 53 66-16, Fax: + 49 89 203 53 66-66<br />

E-Mail: mittermayer@di-verlag.de<br />

Layout<br />

Terms <strong>of</strong> subscription:<br />

Daniel Klunkert, Vulkan-Verlag GmbH<br />

heat <strong>process</strong><strong>in</strong>g is published four times a year.<br />

Rates: Subscription Pr<strong>in</strong>t: € 184,-<br />

S<strong>in</strong>gle copy: € 52,50<br />

Subscription with access to onl<strong>in</strong>e archive: € 235,-<br />

Subscription ePaper: € 170,-<br />

Subscription ePaper & access to onl<strong>in</strong>e archive: € 221,-<br />

Subscription Pr<strong>in</strong>t & ePaper: € 235,-<br />

Subscription Pr<strong>in</strong>t & ePaper & access to onl<strong>in</strong>e archive: € 286,-<br />

Students: 50% reduction on normal subscription rate (pro<strong>of</strong> <strong>of</strong> entitlement)<br />

Orders may be placed at any time. Please address directly to our customer service or your local book shop. Subscriptions<br />

cont<strong>in</strong>ue for another year unless term<strong>in</strong>ated <strong>in</strong> writ<strong>in</strong>g 2 months prior to the end <strong>of</strong> each year.<br />

Subscriptions/<br />

Leserservice heat <strong>process</strong><strong>in</strong>g . Postfach 91 61 . 97091 Würzburg<br />

S<strong>in</strong>gle Copy Sales Tel. +49 931 4170-459, Fax: +49 931 4170-494<br />

E-Mail: leserservice@vulkan-verlag.de<br />

Pr<strong>in</strong>ted by<br />

The magaz<strong>in</strong>e and all the contributions and illustrations conta<strong>in</strong>ed there<strong>in</strong> are secured by copyright. With the exception<br />

<strong>of</strong> the legally permitted <strong>in</strong>stances, any utilisation without the express permission <strong>of</strong> the publisher will be punished at law.<br />

The op<strong>in</strong>ions conta<strong>in</strong>ed <strong>in</strong> signed articles do not necessarily reflect the op<strong>in</strong>ion <strong>of</strong> the publisher.<br />

Druckerei Chmielorz GmbH<br />

Ostr<strong>in</strong>g 13 · 65205 Wiesbaden-Nordenstadt<br />

© 2003 Vulkan-Verlag GmbH<br />

Friedrich-Ebert-Straße 55 · 45127 Essen (Germany)<br />

Tel. + 49 201 820 02-0, Fax + 49 201 820 02-40<br />

ISSN 1611-616X<br />

Mitglied der Informationsgeme<strong>in</strong>schaft zur<br />

Feststellung der Verbreitung von Werbeträgern e.V. (IVW)


500,000<br />

500<br />

1<br />

HARDENED CRANKSHAFTS<br />

PER YEAR<br />

SATISFIED ELOCRANK<br />

USERS<br />

MORE !<br />

Visit us:<br />

22.–24.10.2014, HeatTreatmentCongress<br />

Cologne/Germany, Hall 4.1/Booth E-029<br />

The EloCrank by SMS Elotherm is the<br />

<strong>in</strong>ternational benchmark for car and truck<br />

crankshaft harden<strong>in</strong>g mach<strong>in</strong>es. Designed<br />

for small or large series production, flexibly<br />

and fully automatically various workpiece<br />

geometries can be surface hardened –<br />

with constant high quality and with<strong>in</strong><br />

smallest tolerances. The success speaks<br />

for itself!<br />

With their developments and system<br />

solutions SMS Elotherm and the associated<br />

IAS have set new standards <strong>in</strong><br />

<strong>in</strong>duction technology for decades. The<br />

medium-sized <strong>in</strong>ternationally operat<strong>in</strong>g<br />

companies are part <strong>of</strong> the SMS group.<br />

As technology leaders, SMS Elotherm<br />

and IAS comb<strong>in</strong>e all competences when<br />

it comes to <strong>in</strong>duction.<br />

www.sms-elotherm.com<br />

www.ias-<strong>in</strong>duction.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!