08.09.2014 Views

Liquid Interface at Wafer Test - Semiconductor Wafer Test Workshop

Liquid Interface at Wafer Test - Semiconductor Wafer Test Workshop

Liquid Interface at Wafer Test - Semiconductor Wafer Test Workshop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IBM Microelectronics<br />

<strong>Liquid</strong> <strong>Interface</strong> <strong>at</strong> <strong>Wafer</strong> <strong>Test</strong><br />

Phil Diesing, David Gardell, David Audette<br />

SWTW 2005<br />

P. Diesing 6/4/05


Agenda<br />

• Why liquid thermal interface?<br />

– Existing thermal problems <strong>at</strong> module test<br />

– Thermal roadmap<br />

– Predicted thermal problems <strong>at</strong> wafer test<br />

• Proposed solution<br />

• Predicted benefit from lower resistance<br />

• Results of hardware development effort<br />

1 P, Diesing 6/4/05


CHIP LEAKAGE HOTSPOTS<br />

(microprocessor logic cores)<br />

Source [2]<br />

2 P, Diesing 6/4/05


THERMAL RUNAWAY<br />

• Thermal runaway is a positive feedback phenomena in which<br />

leakage current and temper<strong>at</strong>ure interact in an exponential<br />

fashion with each other<br />

More Current<br />

More Current<br />

More Current<br />

More Current<br />

Higher Temper<strong>at</strong>ure<br />

Higher Temper<strong>at</strong>ure<br />

Higher Temper<strong>at</strong>ure<br />

Higher Temper<strong>at</strong>ure<br />

Initial IC T J<br />

Source [2]<br />

3 P, Diesing 6/4/05


THERMAL RUNAWAY<br />

•View of damaged chip from C4<br />

(solder ball) side<br />

•Failure analysis photo<br />

Source [2]<br />

4 P, Diesing 6/4/05


Thermal Problems <strong>at</strong> <strong>Wafer</strong> <strong>Test</strong><br />

• Sharply increasing power roadmap<br />

– Predicts th<strong>at</strong> module test problems will also be seen <strong>at</strong><br />

wafer test<br />

5 P, Diesing 6/4/05


Module Power Trends<br />

Module He<strong>at</strong> Flux(w<strong>at</strong>ts/cm 2 )<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

IBM ES9000<br />

Fujitsu VP2000<br />

IBM 3090S<br />

NTT<br />

Fujitsu M-780<br />

IBM 3090<br />

Start of W<strong>at</strong>er<br />

CDC Cyber 205<br />

IBM 4381<br />

Cooling<br />

IBM 3081<br />

Fujitsu M380<br />

Vacuum IBM 360 IBM 370 IBM 3033<br />

CMOS<br />

Bipolar<br />

0<br />

1950 1960 1970 1980 1990 2000 2010<br />

Year of Announcement<br />

T-Rex<br />

Mckinley<br />

Squadrons<br />

IBM GP<br />

IBM RY5<br />

IBM RY7<br />

Pentium 4<br />

Pulsar<br />

IBM RY6<br />

IBM RY4<br />

Apache<br />

Merced<br />

Pentium II(DSIP)<br />

Prescott<br />

Jayhawk(dual)<br />

Source [1]<br />

6 P, Diesing 6/4/05


Leakage Current Roadmap<br />

High Performance Microprocessor<br />

Ampere<br />

180 130 90 65 45<br />

Technology node (nm)<br />

7 P, Diesing 6/4/05


Anticip<strong>at</strong>ed Thermal Problems <strong>at</strong> <strong>Wafer</strong> <strong>Test</strong><br />

• Problems from high power levels<br />

– <strong>Wafer</strong> damage<br />

– Unknown wafer sort st<strong>at</strong>us due to incomplete test (overcurrent<br />

shutdown)<br />

– Incorrect speed sorting due to temper<strong>at</strong>ure rise and<br />

resulting speed shift<br />

– Probe card damage<br />

8 P, Diesing 6/4/05


Incomplete <strong>Wafer</strong> <strong>Test</strong>ing<br />

• High leakage parts may exceed power supply<br />

capacity<br />

• These untested parts are passed on to module<br />

test<br />

• Increased number of defective parts causes<br />

higher packaging and test costs<br />

9 P, Diesing 6/4/05


Thermal Problems <strong>at</strong> <strong>Wafer</strong> <strong>Test</strong><br />

Incorrect Speed Sorting Due to<br />

Temper<strong>at</strong>ure Rise<br />

Power vari<strong>at</strong>ions can cause a<br />

temper<strong>at</strong>ure difference gre<strong>at</strong>er than 30 C<br />

% Change in speed<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 10 20 30 40<br />

Max allowable<br />

speed change<br />

Temper<strong>at</strong>ure Rise (C)<br />

10 P, Diesing 6/4/05


Probe Card Damage<br />

• High currents can damage probe cards<br />

– Expensive to repair or replace<br />

– Delay in shipping tested wafers (if cards in limited supply)<br />

[5]<br />

11 P, Diesing 6/4/05


Solution<br />

• Thermal resistance improvement<br />

– This provides three benefits:<br />

• Reduces the temper<strong>at</strong>ure rise vs. power<br />

• Reduces the die to die temper<strong>at</strong>ure vari<strong>at</strong>ion (due to varying<br />

power levels)<br />

• Reduces the effect of across the chuck resistance vari<strong>at</strong>ion<br />

12 P, Diesing 6/4/05


Speed sorting benefit from reduced thermal resistance<br />

Larger power vari<strong>at</strong>ion without sort error<br />

Temper<strong>at</strong>ure Rise<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.5 C/W<br />

0.25 C/W<br />

0 50 100 150<br />

Power<br />

10 X 10 mm powered area<br />

13 P, Diesing 6/4/05


Assessing the Most Effective Approach to Reduce Thermal<br />

Resistance<br />

• First step is to quantify the contributors to thermal<br />

resistance<br />

14 P, Diesing 6/4/05


Thermal Resistance Components<br />

<strong>Wafer</strong> to chuck resistance (R0+R1) is largest contributor<br />

R0<br />

100%<br />

90%<br />

R1<br />

80%<br />

R2<br />

R3<br />

R4<br />

70%<br />

60%<br />

50%<br />

40%<br />

77.3%<br />

R0+R1<br />

R2<br />

R3+R4+R5<br />

R5<br />

R6<br />

30%<br />

20%<br />

10%<br />

0%<br />

8%<br />

14.7%<br />

R<strong>at</strong>e of thermal 1 resistance<br />

Source: Tokyo Electron<br />

15 P, Diesing 6/4/05


Improving wafer to chuck dry contact<br />

• Theoretically, resistance could be improved by<br />

increasing chuck and wafer smoothness and fl<strong>at</strong>ness<br />

• However, this resistance would be likely be sensitive<br />

to any particles or surface damage<br />

• Measurements showed th<strong>at</strong> it wasn’t possible to<br />

m<strong>at</strong>ch wafer and chuck contours<br />

• Backside polishing of 300 mm wafers gave only 5 to<br />

10% improvement and added processing cost<br />

(D<strong>at</strong>a courtesy of David Audette, IBM)<br />

16 P, Diesing 6/4/05


Chuck top Smoothness<br />

1. Overall chuck fl<strong>at</strong>ness was 2.9um across<br />

more than 300 mm. (High quality surface)<br />

2. However, localized roughness was 1.9 um<br />

(Silicon wafer is about 0.35 um)<br />

10mm<br />

2<br />

Maximum<br />

1.5<br />

3. Conclusion: it is not practical to make<br />

sufficiently smooth m<strong>at</strong>ching surfaces<br />

(chuck to wafer)<br />

Source: Tokyo Electron<br />

1.9um<br />

1<br />

0.5<br />

0<br />

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110<br />

-0.5<br />

-1<br />

-1.5<br />

17 P, Diesing 6/4/05<br />

-2


Thermal Resistance Options<br />

• <strong>Interface</strong> Gas<br />

– Helium would give some improvement but not enough<br />

(approxim<strong>at</strong>ely 20%)<br />

18 P, Diesing 6/4/05


Thermal Resistance Benefit from Wet <strong>Interface</strong><br />

• Main resistance is <strong>at</strong> interface of wafer to chuck<br />

• Fluid replaces air in microscopic gaps<br />

• Note th<strong>at</strong> the he<strong>at</strong> is not carried away by fluid flow;<br />

it is conducted through the fluid into the chuck<br />

• Thermal uniformity is less sensitive to surface<br />

finish or particles, since fluid fills any gaps.<br />

19 P, Diesing 6/4/05


<strong>Liquid</strong> <strong>Interface</strong> Chuck System<br />

• Goal : achieve the minimum thermal resistance and<br />

maximum thermal uniformity.<br />

• At least 600 W capability<br />

• Approach must be consistent with the following guidelines<br />

– Avoid radical change to the tool<br />

• Avoid large development costs, and reduce lead time<br />

• Upgrade must be retrofittable to minimize the cost<br />

– Minimize additional processing cost<br />

– Dry or wet mode oper<strong>at</strong>ion (same prober, with minimal<br />

transition time)<br />

– 200 and 300 mm<br />

20 P, Diesing 6/4/05


Concept<br />

a) The wafer is pulled tightly onto the dry chuck by vacuum.<br />

b) Fluid is supplied under pressure on the supply side and pulled by<br />

vacuum <strong>at</strong> the recovery side.<br />

c) The fluid seeps between the supply and recovery sides via the<br />

wafer / chuck interface.<br />

<strong>Wafer</strong><br />

Vacuum<br />

Fluid<br />

Chuck top<br />

Source: Tokyo Electron<br />

21 P, Diesing 6/4/05


Fluid Under Glass <strong>Wafer</strong> (Prototype Chuck)<br />

Note th<strong>at</strong> the wafer is lifted up on the pins, <strong>at</strong> which point the fluid is normally<br />

completely recovered.<br />

Source: Tokyo Electron<br />

22 P, Diesing 6/4/05


LTI <strong>Test</strong>ing Results<br />

1,21<br />

3,20<br />

0,17<br />

1,18<br />

4,15<br />

-5,15<br />

-2,15<br />

1,15<br />

7,15<br />

Thermal resistance (dC/W)<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

1,15<br />

7,15<br />

3,20<br />

1,21<br />

Wet<br />

Wet<br />

-5,15<br />

1,8<br />

-2,15<br />

1,18<br />

4,15<br />

0,17<br />

1,8<br />

Die loc<strong>at</strong>ion<br />

0.13 C/W (Avg)<br />

Front<br />

Die Loc<strong>at</strong>ion<br />

Source: Tokyo Electron<br />

23 P, Diesing 6/4/05


Thermal Resistance vs. Die size<br />

Experimental d<strong>at</strong>a<br />

Current chuck<br />

0.7<br />

0.6<br />

8*8mm<br />

Thermal resistance (dC/W)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Dry Chuck<br />

20*20mm<br />

Wet Chuck<br />

20*40mm<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

Area (mm2)<br />

Source: Tokyo Electron<br />

24 P, Diesing 6/4/05


Installed System<br />

Circul<strong>at</strong>or for liquid interface with TEL P12XLn and Teradyne J973<br />

25 P, Diesing 6/4/05


Current St<strong>at</strong>us<br />

• System meets all specific<strong>at</strong>ions<br />

– Reduces thermal resistance by 50%<br />

– Uniformity is better by 70 %<br />

– Maintains performance <strong>at</strong> 600 W or more<br />

• <strong>Liquid</strong> thermal interface system has been installed and has<br />

run engineering wafers<br />

– Wet vs. dry oper<strong>at</strong>ion is transparent to oper<strong>at</strong>ors (part of<br />

product file)<br />

– No wafer handling issues<br />

26 P, Diesing 6/4/05


Predicted Benefit<br />

This chuck will be an essential tool for<br />

– Preventing thermal runaway<br />

– Improving speed sorting accuracy<br />

– Reducing probe card damage<br />

27 P, Diesing 6/4/05


ACKNOWLEDGEMENTS<br />

This liquid interface system was a joint<br />

development project between IBM and Tokyo<br />

Electron<br />

Principal Contributors<br />

– IBM: Phil Diesing, David Audette, David Gardell<br />

– TEL: Yutaka Akaike, Glen Lansman, Shane Pudvah,<br />

Yoshinao Kono<br />

28 P, Diesing 6/4/05


References:<br />

1. New York D<strong>at</strong>a Center Facilities and Engineering, Conference /<br />

Expo 2005. Roger Schmidt, IBM<br />

2. IC Power: the Influence and Impact of <strong>Semiconductor</strong> Technology.<br />

Marc Knox, IBM Microelectronics, BiTS 2004<br />

3. Dean Percy, IBM Microelectronics<br />

4. Steven Duda, IBM Microelectronics<br />

29 P, Diesing 6/4/05

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!