10.09.2014 Views

Uniting Mergers, Quasars, & Elliptical Galaxies - TAPIR Group at ...

Uniting Mergers, Quasars, & Elliptical Galaxies - TAPIR Group at ...

Uniting Mergers, Quasars, & Elliptical Galaxies - TAPIR Group at ...

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Uniting</strong> <strong>Mergers</strong>, <strong>Quasars</strong>, and<br />

<strong>Elliptical</strong> <strong>Galaxies</strong><br />

Philip Hopkins 07/20/06<br />

Lars Hernquist, Volker Springel, Rachel Somerville, TJ Cox,<br />

Brant Robertson, Tiziana Di M<strong>at</strong>teo, Yuexing Li


A (Possible) Big Picture...<br />

gas<br />

inflows<br />

galaxy<br />

mergers<br />

hierarchical<br />

growth<br />

galaxy form<strong>at</strong>ion<br />

and evolution<br />

normal galaxies<br />

(dead quasars)<br />

AGN<br />

feedback<br />

starbursts &<br />

buried quasars<br />

growth of<br />

supermassive black holes<br />

active<br />

quasars


Do Observed Popul<strong>at</strong>ions Bear This Out?<br />

DO THE NATURE & EVOLUTION OF THE CORRESPONDING LUMINOSITY FUNCTIONS<br />

SUPPORT THIS MERGER HYPOTHESIS?<br />

<br />

Many detailed studies on individual objects/transitions & their<br />

correl<strong>at</strong>ions (e.g. Lake & Dressler, Genzel+, Rothberg & Joseph)<br />

<br />

Wh<strong>at</strong> about the popul<strong>at</strong>ions/distributions?


Downsizing Happens<br />

BUT WHAT DOES THAT MEAN?<br />

Assembly?<br />

Form<strong>at</strong>ion<br />

Bundy+ 05<br />

Papovich+ 06<br />

<br />

Dissip<strong>at</strong>ionless (“red”/ “dry”) vs. Gas-rich (“wet”) mergers?


Downsizing Happens<br />

BUT WHAT DOES THAT MEAN?<br />

<strong>Quasars</strong><br />

Richards+ 06 Gallazzi+ 06<br />

Hasinger+ 05<br />

vs. <strong>Galaxies</strong>?<br />

<br />

<br />

Are Quasar Triggering and Spheroid Form<strong>at</strong>ion Linked? <strong>Mergers</strong>?<br />

Are <strong>Quasars</strong> Important for Reddening?


Empirical Comparisons<br />

WHAT CAN WE LEARN BEFORE<br />

INVOKING THE MODELS?<br />

<br />

Global Spheroid & BH<br />

growth co-evolve<br />

<br />

But are the sites of<br />

growth the same?<br />

<br />

How to extend to<br />

mergers?<br />

Merloni+ 04


Empirical Comparisons<br />

HOW ARE SPHEROID POPULATIONS BUILDING UP?<br />

Cim<strong>at</strong>ti+ 05


Red Mass Functions with Redshift<br />

CAN WE OBSERVATIONALLY IDENTIFY WHERE SPHEROIDS ARE BEING FORMED?<br />

Bell+ 03<br />

Pozzetti+ 04<br />

Fontana+ 04<br />

Franceschini+ 06<br />

Bundy+ 05<br />

Borch+ 06<br />

Pannella+ 06<br />

<br />

Downsizing in wh<strong>at</strong>’s being added<br />

to the red sequence


Red Mass Functions with Redshift<br />

CAN WE OBSERVATIONALLY IDENTIFY WHERE SPHEROIDS ARE BEING FORMED?<br />

Red<br />

Low-SSFR<br />

<strong>Elliptical</strong><br />

Hopkins,<br />

Bundy+<br />

2006


Downsizing and the “Transition” Mass<br />

WHAT DOES THIS MASS MEAN?<br />

Xu+ 04<br />

Wolf+ 05<br />

Bundy+ 05<br />

<br />

<br />

Merger mass functions trace the buildup of spheroids<br />

Independent of timescales, r<strong>at</strong>es, etc.<br />

Dry mergers can’t help <strong>at</strong> low-M<br />

<br />

Hopkins,<br />

Bundy+<br />

2006


Downsizing and the “Transition” Mass<br />

WHAT ABOUT MERGER RATES/FRACTIONS?


Downsizing and the “Transition” Mass<br />

WHAT DOES THIS MASS MEAN?<br />

<br />

Extend this to where we just have merger mass densities...<br />

Red-sequence buildup<br />

<strong>Mergers</strong>


Downsizing and the “Transition” Mass<br />

COMPARISON TO QUASAR EVOLUTION<br />

Hopkins,<br />

Richards,<br />

& Hernquist


Downsizing and the “Transition” Mass<br />

COMPARISON TO QUASAR EVOLUTION<br />

Red-sequence buildup<br />

<strong>Quasars</strong>


Clustering of <strong>Quasars</strong>, <strong>Mergers</strong>, & “Transition” Mass <strong>Galaxies</strong><br />

AN INDEPENDENT TEST


Future Tests<br />

(BESIDES BETTER MERGER DATA)<br />

High-z clustering<br />

AGN Fractions<br />

E+A’s


More Detailed Comparisons<br />

GETTING MORE OUT OF THE DATA<br />

<br />

<br />

If spheroids & quasars are formed in mergers,<br />

the full mass/luminosity functions of all three<br />

popul<strong>at</strong>ions must be self-consistent!<br />

Wh<strong>at</strong>’s the best approach? SAMs?<br />

<br />

<br />

How to “map”?<br />

Quasar Luminosities/Accretion R<strong>at</strong>es<br />

Galaxy Luminosities: Star Form<strong>at</strong>ion & Dust<br />

Observability<br />

Morphology<br />

<br />

<br />

<br />

<br />

Galaxy Merger Simul<strong>at</strong>ions


The Simul<strong>at</strong>ions<br />

Generally spiral-spiral major mergers<br />

Gadget-2 (Springel et al. 2005)<br />

<br />

<br />

Bondi-Hoyle accretion: 20 pc resolution<br />

~5% radi<strong>at</strong>ed energy couples to local ISM<br />

Multi-phase ISM for star form<strong>at</strong>ion<br />

(Springel & Hernquist 2003)<br />

<br />

<br />

Variable equ<strong>at</strong>ion of st<strong>at</strong>e: increase/decrease thermal impact of SF<br />

feedback<br />

+/- Stellar winds<br />

Several hundred simul<strong>at</strong>ions<br />

(Robertson et al. 2005, Cox 2004):<br />

<br />

Progenitor masses, velocities, orbits, orient<strong>at</strong>ions, redshifts, gas<br />

fractions, ISM EOS, mass r<strong>at</strong>ios, feedback coupling, bulge<br />

fractions, gas physics


<strong>Mergers</strong> Drive Strong Gas Inflows, Fueling Starbursts and BH Growth<br />

SYSTEM CHANGES RAPIDLY; BUT STATISTICS ARE WELL-BEHAVED<br />

NGC 6240 (Keel 1990)


<strong>Quasars</strong> Are Self-Consistently Gener<strong>at</strong>ed<br />

LIKEWISE, QUANTIFY THEIR STATISTICS & OBSERVABILITY<br />

QSO =<br />

1000xHost<br />

QSO =<br />

Host<br />

QSO =<br />

0.1xHost


Feedback Can Have Important Effects<br />

ALTER COLOR EVOLUTION; CHANGE AGN LIGHT CURVE/SELF-REGULATION<br />

Springel et al. 2005<br />

No feedback<br />

No AGN<br />

Feedback<br />

With AGN<br />

Feedback


Given the Conditional Quasar Lifetime, De-Convolve the QLF<br />

QUANTIFIED IN THIS MANNER, UNIQUELY DETERMINES THE RATE OF “TRIGGERING”<br />

Log(Time <strong>at</strong> L)<br />

Simple quasar<br />

lifetimes<br />

Observed<br />

luminosity<br />

function<br />

Active mass function<br />

or Merger R<strong>at</strong>e vs. Mass<br />

Log(L/L sun<br />

)<br />

Log(L/L sun<br />

)<br />

<br />

If lightcurves/lifetimes were trivial, this would be a simple<br />

rescaling of units


Log(Time <strong>at</strong> L)<br />

Simul<strong>at</strong>ed quasar<br />

lifetimes<br />

Form<strong>at</strong>ion r<strong>at</strong>e<br />

vs. M<br />

Observed<br />

QLF<br />

Log(L/L sun<br />

)<br />

Log(L/L sun<br />

)<br />

<br />

<br />

<br />

Feedback-regul<strong>at</strong>ed lifetime drives a given QSO to lower L after<br />

blowout, and spends more time <strong>at</strong> low-L<br />

Much stronger turnover in form<strong>at</strong>ion/merger r<strong>at</strong>e<br />

Same process, but distributions have different shapes


Start From Observed Quasar Popul<strong>at</strong>ions<br />

CAN MOVE “ALONG” THE EVOLUTIONARY SEQUENCE<br />

galaxy<br />

mergers<br />

hierarchical<br />

growth<br />

normal galaxies<br />

(dead quasars)<br />

gas<br />

inflows<br />

galaxy form<strong>at</strong>ion<br />

and evolution<br />

AGN<br />

feedback<br />

starbursts &<br />

buried quasars<br />

growth of<br />

supermassive black holes<br />

active<br />

quasars<br />

<br />

Self consistently reproduce QLF in different<br />

bands; XRB, BHMF


A Simple Example: Quasar Host Luminosities<br />

GIVEN QUASAR LF & SIMULATION QSO-HOST CORRELATIONS<br />

Quasar LF<br />

Quasar Host LF<br />

galaxy<br />

mergers<br />

hierarchical<br />

growth<br />

normal galaxies<br />

(dead quasars)<br />

gas<br />

inflows<br />

galaxy form<strong>at</strong>ion<br />

and evolution<br />

AGN<br />

feedback<br />

starbursts &<br />

buried quasars<br />

growth of<br />

supermassive black holes<br />

Bahcall+ 97; Hamilton+ 02;<br />

Van den Berk+ 06<br />

active<br />

quasars<br />

Hopkins, Somerville+ 06


Testing These Mappings<br />

<br />

Also, e.g.:<br />

colors, M/L r<strong>at</strong>ios, Eddington<br />

r<strong>at</strong>ios, clustering, etc.


Apply This Mapping to Ongoing <strong>Mergers</strong><br />

TEST STATISTICS OF QUASAR, RED GALAXY, & MERGER POPULATIONS<br />

Merger LF Quasar LF Quasar LF Merger LF<br />

Tight<br />

constraints<br />

Full Model<br />

Simplified (no<br />

feedback) lifetimes<br />

Loose<br />

constraints,<br />

but break<br />

(luminosity<br />

density)<br />

is tight<br />

Xu+;Wolf+;<br />

Ueda+


Ongoing <strong>Mergers</strong>: Luminosity Density<br />

USE QUASARS TO PREDICT THE MERGER LUMINOSITY DENSITY<br />

Also, e.g.:<br />

- number densities<br />

- color-magnitude rel<strong>at</strong>ions<br />

- color-color rel<strong>at</strong>ions<br />

- dust distributions<br />

Quasar LF<br />

Merger Lum.<br />

Density<br />

Xu+;Wolf+;Brinchmann & Ellis; Conselice+; Hamilton+


Ongoing <strong>Mergers</strong>: Merger-Induced Star Form<strong>at</strong>ion R<strong>at</strong>es<br />

APPLY AN IDENTICAL FORMALISM TO THE SFR DISTRIBUTION TO MAP FROM QUASARS<br />

Bauer+; Feulner+; Perez-Gonzalez+<br />

Bell+05; Brinchmann+98;<br />

Perez-Gonzalez+05


The Remnant Popul<strong>at</strong>ion<br />

INTEGRATE FORWARD TO GET ELLIPTICAL POPULATIONS<br />

galaxy<br />

mergers<br />

hierarchical<br />

growth<br />

normal galaxies<br />

(dead quasars)<br />

Every merger/QSO leaves a<br />

remnant spheroid<br />

<br />

Hosts follow M-sigma (Di M<strong>at</strong>teo et al.), BH-bulge<br />

mass, Fundamental Plane (Robertson et al.),<br />

Kinem<strong>at</strong>ic/Morphological/Gas Properties (Cox et al.)<br />

gas<br />

inflows<br />

starbursts &<br />

buried quasars<br />

galaxy form<strong>at</strong>ion<br />

and evolution<br />

growth of<br />

supermassive black holes<br />

active<br />

quasars<br />

AGN<br />

feedback<br />

Integr<strong>at</strong>e inferred merger MF >> red galaxy MF<br />

Bell+ 03<br />

Hopkins et al. 2006c


Spheroid Buildup Mapped out By <strong>Quasars</strong><br />

BACK TO WHERE WE STARTED<br />

10.0 11.0 12


Luminosity Function (NUV,U,B,V,R,I,K; 0


Multiple Age & Structure Measurements to Compare<br />

Jorgensen+; Kelson+; Van der Wel+; Holden+; Van Dokkum+; Wuyts+<br />

Age-sigma<br />

M/L R<strong>at</strong>ios<br />

Size-Luminosity<br />

Shen+; Trujillo+; McIntosh+<br />

Color-Magnitude<br />

(Bell+; Giallongo+)


Extend to High Redshifts & New Wavelengths<br />

PROBING THE EPOCHS OF MAJOR INTERACTIONS<br />

Li et al. (in prep)<br />

Narayanan et al.<br />

(in prep)


Summary<br />

<strong>Quasars</strong>, <strong>Mergers</strong>, and the Buildup of Spheroid<br />

MFs appear to trace one other<br />

• Extend to higher redshifts<br />

• Better merger st<strong>at</strong>istics<br />

• Independent tests<br />

The st<strong>at</strong>istics of these distributions are self-consistent<br />

as predicted by the “strong” merger hypothesis<br />

• It is possible to “map” between popul<strong>at</strong>ions<br />

• QLF >> Merger LF/MF >> Spheroid MFs >> QLF<br />

• A large number of properties can be predicted with these<br />

mappings; conversely, used to test this self-consistency<br />

Much to do:<br />

• Extend to IR popul<strong>at</strong>ions : ULIRGs/SMGs/SCUBA<br />

• Full cosmological models<br />

• Test different feedback/accretion/star form<strong>at</strong>ion models<br />

Thanks!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!