Uniting Mergers, Quasars, & Elliptical Galaxies - TAPIR Group at ...
Uniting Mergers, Quasars, & Elliptical Galaxies - TAPIR Group at ...
Uniting Mergers, Quasars, & Elliptical Galaxies - TAPIR Group at ...
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Uniting</strong> <strong>Mergers</strong>, <strong>Quasars</strong>, and<br />
<strong>Elliptical</strong> <strong>Galaxies</strong><br />
Philip Hopkins 07/20/06<br />
Lars Hernquist, Volker Springel, Rachel Somerville, TJ Cox,<br />
Brant Robertson, Tiziana Di M<strong>at</strong>teo, Yuexing Li
A (Possible) Big Picture...<br />
gas<br />
inflows<br />
galaxy<br />
mergers<br />
hierarchical<br />
growth<br />
galaxy form<strong>at</strong>ion<br />
and evolution<br />
normal galaxies<br />
(dead quasars)<br />
AGN<br />
feedback<br />
starbursts &<br />
buried quasars<br />
growth of<br />
supermassive black holes<br />
active<br />
quasars
Do Observed Popul<strong>at</strong>ions Bear This Out?<br />
DO THE NATURE & EVOLUTION OF THE CORRESPONDING LUMINOSITY FUNCTIONS<br />
SUPPORT THIS MERGER HYPOTHESIS?<br />
<br />
Many detailed studies on individual objects/transitions & their<br />
correl<strong>at</strong>ions (e.g. Lake & Dressler, Genzel+, Rothberg & Joseph)<br />
<br />
Wh<strong>at</strong> about the popul<strong>at</strong>ions/distributions?
Downsizing Happens<br />
BUT WHAT DOES THAT MEAN?<br />
Assembly?<br />
Form<strong>at</strong>ion<br />
Bundy+ 05<br />
Papovich+ 06<br />
<br />
Dissip<strong>at</strong>ionless (“red”/ “dry”) vs. Gas-rich (“wet”) mergers?
Downsizing Happens<br />
BUT WHAT DOES THAT MEAN?<br />
<strong>Quasars</strong><br />
Richards+ 06 Gallazzi+ 06<br />
Hasinger+ 05<br />
vs. <strong>Galaxies</strong>?<br />
<br />
<br />
Are Quasar Triggering and Spheroid Form<strong>at</strong>ion Linked? <strong>Mergers</strong>?<br />
Are <strong>Quasars</strong> Important for Reddening?
Empirical Comparisons<br />
WHAT CAN WE LEARN BEFORE<br />
INVOKING THE MODELS?<br />
<br />
Global Spheroid & BH<br />
growth co-evolve<br />
<br />
But are the sites of<br />
growth the same?<br />
<br />
How to extend to<br />
mergers?<br />
Merloni+ 04
Empirical Comparisons<br />
HOW ARE SPHEROID POPULATIONS BUILDING UP?<br />
Cim<strong>at</strong>ti+ 05
Red Mass Functions with Redshift<br />
CAN WE OBSERVATIONALLY IDENTIFY WHERE SPHEROIDS ARE BEING FORMED?<br />
Bell+ 03<br />
Pozzetti+ 04<br />
Fontana+ 04<br />
Franceschini+ 06<br />
Bundy+ 05<br />
Borch+ 06<br />
Pannella+ 06<br />
<br />
Downsizing in wh<strong>at</strong>’s being added<br />
to the red sequence
Red Mass Functions with Redshift<br />
CAN WE OBSERVATIONALLY IDENTIFY WHERE SPHEROIDS ARE BEING FORMED?<br />
Red<br />
Low-SSFR<br />
<strong>Elliptical</strong><br />
Hopkins,<br />
Bundy+<br />
2006
Downsizing and the “Transition” Mass<br />
WHAT DOES THIS MASS MEAN?<br />
Xu+ 04<br />
Wolf+ 05<br />
Bundy+ 05<br />
<br />
<br />
Merger mass functions trace the buildup of spheroids<br />
Independent of timescales, r<strong>at</strong>es, etc.<br />
Dry mergers can’t help <strong>at</strong> low-M<br />
<br />
Hopkins,<br />
Bundy+<br />
2006
Downsizing and the “Transition” Mass<br />
WHAT ABOUT MERGER RATES/FRACTIONS?
Downsizing and the “Transition” Mass<br />
WHAT DOES THIS MASS MEAN?<br />
<br />
Extend this to where we just have merger mass densities...<br />
Red-sequence buildup<br />
<strong>Mergers</strong>
Downsizing and the “Transition” Mass<br />
COMPARISON TO QUASAR EVOLUTION<br />
Hopkins,<br />
Richards,<br />
& Hernquist
Downsizing and the “Transition” Mass<br />
COMPARISON TO QUASAR EVOLUTION<br />
Red-sequence buildup<br />
<strong>Quasars</strong>
Clustering of <strong>Quasars</strong>, <strong>Mergers</strong>, & “Transition” Mass <strong>Galaxies</strong><br />
AN INDEPENDENT TEST
Future Tests<br />
(BESIDES BETTER MERGER DATA)<br />
High-z clustering<br />
AGN Fractions<br />
E+A’s
More Detailed Comparisons<br />
GETTING MORE OUT OF THE DATA<br />
<br />
<br />
If spheroids & quasars are formed in mergers,<br />
the full mass/luminosity functions of all three<br />
popul<strong>at</strong>ions must be self-consistent!<br />
Wh<strong>at</strong>’s the best approach? SAMs?<br />
<br />
<br />
How to “map”?<br />
Quasar Luminosities/Accretion R<strong>at</strong>es<br />
Galaxy Luminosities: Star Form<strong>at</strong>ion & Dust<br />
Observability<br />
Morphology<br />
<br />
<br />
<br />
<br />
Galaxy Merger Simul<strong>at</strong>ions
The Simul<strong>at</strong>ions<br />
Generally spiral-spiral major mergers<br />
Gadget-2 (Springel et al. 2005)<br />
<br />
<br />
Bondi-Hoyle accretion: 20 pc resolution<br />
~5% radi<strong>at</strong>ed energy couples to local ISM<br />
Multi-phase ISM for star form<strong>at</strong>ion<br />
(Springel & Hernquist 2003)<br />
<br />
<br />
Variable equ<strong>at</strong>ion of st<strong>at</strong>e: increase/decrease thermal impact of SF<br />
feedback<br />
+/- Stellar winds<br />
Several hundred simul<strong>at</strong>ions<br />
(Robertson et al. 2005, Cox 2004):<br />
<br />
Progenitor masses, velocities, orbits, orient<strong>at</strong>ions, redshifts, gas<br />
fractions, ISM EOS, mass r<strong>at</strong>ios, feedback coupling, bulge<br />
fractions, gas physics
<strong>Mergers</strong> Drive Strong Gas Inflows, Fueling Starbursts and BH Growth<br />
SYSTEM CHANGES RAPIDLY; BUT STATISTICS ARE WELL-BEHAVED<br />
NGC 6240 (Keel 1990)
<strong>Quasars</strong> Are Self-Consistently Gener<strong>at</strong>ed<br />
LIKEWISE, QUANTIFY THEIR STATISTICS & OBSERVABILITY<br />
QSO =<br />
1000xHost<br />
QSO =<br />
Host<br />
QSO =<br />
0.1xHost
Feedback Can Have Important Effects<br />
ALTER COLOR EVOLUTION; CHANGE AGN LIGHT CURVE/SELF-REGULATION<br />
Springel et al. 2005<br />
No feedback<br />
No AGN<br />
Feedback<br />
With AGN<br />
Feedback
Given the Conditional Quasar Lifetime, De-Convolve the QLF<br />
QUANTIFIED IN THIS MANNER, UNIQUELY DETERMINES THE RATE OF “TRIGGERING”<br />
Log(Time <strong>at</strong> L)<br />
Simple quasar<br />
lifetimes<br />
Observed<br />
luminosity<br />
function<br />
Active mass function<br />
or Merger R<strong>at</strong>e vs. Mass<br />
Log(L/L sun<br />
)<br />
Log(L/L sun<br />
)<br />
<br />
If lightcurves/lifetimes were trivial, this would be a simple<br />
rescaling of units
Log(Time <strong>at</strong> L)<br />
Simul<strong>at</strong>ed quasar<br />
lifetimes<br />
Form<strong>at</strong>ion r<strong>at</strong>e<br />
vs. M<br />
Observed<br />
QLF<br />
Log(L/L sun<br />
)<br />
Log(L/L sun<br />
)<br />
<br />
<br />
<br />
Feedback-regul<strong>at</strong>ed lifetime drives a given QSO to lower L after<br />
blowout, and spends more time <strong>at</strong> low-L<br />
Much stronger turnover in form<strong>at</strong>ion/merger r<strong>at</strong>e<br />
Same process, but distributions have different shapes
Start From Observed Quasar Popul<strong>at</strong>ions<br />
CAN MOVE “ALONG” THE EVOLUTIONARY SEQUENCE<br />
galaxy<br />
mergers<br />
hierarchical<br />
growth<br />
normal galaxies<br />
(dead quasars)<br />
gas<br />
inflows<br />
galaxy form<strong>at</strong>ion<br />
and evolution<br />
AGN<br />
feedback<br />
starbursts &<br />
buried quasars<br />
growth of<br />
supermassive black holes<br />
active<br />
quasars<br />
<br />
Self consistently reproduce QLF in different<br />
bands; XRB, BHMF
A Simple Example: Quasar Host Luminosities<br />
GIVEN QUASAR LF & SIMULATION QSO-HOST CORRELATIONS<br />
Quasar LF<br />
Quasar Host LF<br />
galaxy<br />
mergers<br />
hierarchical<br />
growth<br />
normal galaxies<br />
(dead quasars)<br />
gas<br />
inflows<br />
galaxy form<strong>at</strong>ion<br />
and evolution<br />
AGN<br />
feedback<br />
starbursts &<br />
buried quasars<br />
growth of<br />
supermassive black holes<br />
Bahcall+ 97; Hamilton+ 02;<br />
Van den Berk+ 06<br />
active<br />
quasars<br />
Hopkins, Somerville+ 06
Testing These Mappings<br />
<br />
Also, e.g.:<br />
colors, M/L r<strong>at</strong>ios, Eddington<br />
r<strong>at</strong>ios, clustering, etc.
Apply This Mapping to Ongoing <strong>Mergers</strong><br />
TEST STATISTICS OF QUASAR, RED GALAXY, & MERGER POPULATIONS<br />
Merger LF Quasar LF Quasar LF Merger LF<br />
Tight<br />
constraints<br />
Full Model<br />
Simplified (no<br />
feedback) lifetimes<br />
Loose<br />
constraints,<br />
but break<br />
(luminosity<br />
density)<br />
is tight<br />
Xu+;Wolf+;<br />
Ueda+
Ongoing <strong>Mergers</strong>: Luminosity Density<br />
USE QUASARS TO PREDICT THE MERGER LUMINOSITY DENSITY<br />
Also, e.g.:<br />
- number densities<br />
- color-magnitude rel<strong>at</strong>ions<br />
- color-color rel<strong>at</strong>ions<br />
- dust distributions<br />
Quasar LF<br />
Merger Lum.<br />
Density<br />
Xu+;Wolf+;Brinchmann & Ellis; Conselice+; Hamilton+
Ongoing <strong>Mergers</strong>: Merger-Induced Star Form<strong>at</strong>ion R<strong>at</strong>es<br />
APPLY AN IDENTICAL FORMALISM TO THE SFR DISTRIBUTION TO MAP FROM QUASARS<br />
Bauer+; Feulner+; Perez-Gonzalez+<br />
Bell+05; Brinchmann+98;<br />
Perez-Gonzalez+05
The Remnant Popul<strong>at</strong>ion<br />
INTEGRATE FORWARD TO GET ELLIPTICAL POPULATIONS<br />
galaxy<br />
mergers<br />
hierarchical<br />
growth<br />
normal galaxies<br />
(dead quasars)<br />
Every merger/QSO leaves a<br />
remnant spheroid<br />
<br />
Hosts follow M-sigma (Di M<strong>at</strong>teo et al.), BH-bulge<br />
mass, Fundamental Plane (Robertson et al.),<br />
Kinem<strong>at</strong>ic/Morphological/Gas Properties (Cox et al.)<br />
gas<br />
inflows<br />
starbursts &<br />
buried quasars<br />
galaxy form<strong>at</strong>ion<br />
and evolution<br />
growth of<br />
supermassive black holes<br />
active<br />
quasars<br />
AGN<br />
feedback<br />
Integr<strong>at</strong>e inferred merger MF >> red galaxy MF<br />
Bell+ 03<br />
Hopkins et al. 2006c
Spheroid Buildup Mapped out By <strong>Quasars</strong><br />
BACK TO WHERE WE STARTED<br />
10.0 11.0 12
Luminosity Function (NUV,U,B,V,R,I,K; 0
Multiple Age & Structure Measurements to Compare<br />
Jorgensen+; Kelson+; Van der Wel+; Holden+; Van Dokkum+; Wuyts+<br />
Age-sigma<br />
M/L R<strong>at</strong>ios<br />
Size-Luminosity<br />
Shen+; Trujillo+; McIntosh+<br />
Color-Magnitude<br />
(Bell+; Giallongo+)
Extend to High Redshifts & New Wavelengths<br />
PROBING THE EPOCHS OF MAJOR INTERACTIONS<br />
Li et al. (in prep)<br />
Narayanan et al.<br />
(in prep)
Summary<br />
<strong>Quasars</strong>, <strong>Mergers</strong>, and the Buildup of Spheroid<br />
MFs appear to trace one other<br />
• Extend to higher redshifts<br />
• Better merger st<strong>at</strong>istics<br />
• Independent tests<br />
The st<strong>at</strong>istics of these distributions are self-consistent<br />
as predicted by the “strong” merger hypothesis<br />
• It is possible to “map” between popul<strong>at</strong>ions<br />
• QLF >> Merger LF/MF >> Spheroid MFs >> QLF<br />
• A large number of properties can be predicted with these<br />
mappings; conversely, used to test this self-consistency<br />
Much to do:<br />
• Extend to IR popul<strong>at</strong>ions : ULIRGs/SMGs/SCUBA<br />
• Full cosmological models<br />
• Test different feedback/accretion/star form<strong>at</strong>ion models<br />
Thanks!