10.09.2014 Views

Solving Einstein's Equations the Generalized Harmonic Way

Solving Einstein's Equations the Generalized Harmonic Way

Solving Einstein's Equations the Generalized Harmonic Way

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Solving</strong> Einstein’s <strong>Equations</strong><br />

<strong>the</strong> <strong>Generalized</strong> <strong>Harmonic</strong> <strong>Way</strong><br />

Lee Lindblom<br />

Caltech<br />

Collaborators: Larry Kidder, Keith Mat<strong>the</strong>ws,<br />

Robert Owen, Harald Pfeiffer, Oliver Rinne,<br />

Mark Scheel, Bela Szilagyi, Saul Teukolsky<br />

Center for Computational Relativity and Gravitation Seminar,<br />

Rochester Institute of Technology, October 17, 2008<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 1 / 34


Outline of Talk:<br />

Methods of Specifying Gauge (Coordinates).<br />

<strong>Generalized</strong> <strong>Harmonic</strong> (GH) Einstein <strong>Equations</strong>.<br />

Constraint Damping.<br />

Boundary Conditions.<br />

Constraint Preserving.<br />

Physical.<br />

Moving Black Holes in a Spectral Code.<br />

Dual Coordinate Frame Evolution.<br />

Choosing Coordinates by Feedback Control.<br />

Gauge Drivers in <strong>the</strong> GH Einstein System.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 2 / 34


Traditional ADM Gauge Conditions<br />

Construct a foliation of<br />

spacetime by spatial<br />

slices.<br />

Choose a time function<br />

with t = const. on <strong>the</strong>se<br />

slices.<br />

Choose spatial coordinates,<br />

x k , on each slice.<br />

⃗n = ∂ τ<br />

(t, x k )<br />

Decompose <strong>the</strong> 4-metric ψ ab into its 3+1 parts:<br />

ds 2 = ψ ab dx a dx b = −N 2 dt 2 + g ij (dx i + N i dt)(dx j + N j dt).<br />

The lapse N and shift N i measure how coordinates are laid out on<br />

spacetime: ⃗n = ∂ τ = ∂t<br />

∂τ ∂ t + ∂x k<br />

∂τ ∂ k,<br />

= 1 N ∂ t − Nk<br />

N ∂ k.<br />

Spacetime coordinates are determined in <strong>the</strong> traditional ADM<br />

method by specifying <strong>the</strong> lapse N and shift N i .<br />

∂ k<br />

(t + δt, x k )<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 3 / 34<br />

∂ t


ADM Evolution System<br />

When <strong>the</strong> gauge is determined by specifying <strong>the</strong> lapse N and shift<br />

N k , <strong>the</strong> Einstein system becomes a set of evolution equations for<br />

<strong>the</strong> spatial metric g ij and extrinsic curvature K ij :<br />

∂ t g ij − N k ∂ k g ij = −2NK ij + ∇ i N j + ∇ j N i ,<br />

( )<br />

∂ t K ij − N k ∂ k K ij = N (3)<br />

R ij − 2K k i K kj + KK ij<br />

−∇ i ∇ j N + K ik ∂ j N k + K kj ∂ i N k .<br />

The Einstein equations also include constraints:<br />

0 = Mˆt<br />

≡ (3) R − K ij K ij + K 2 ,<br />

0 = M i ≡ ∇ k K ki − ∇ i K .<br />

This traditional form of <strong>the</strong> Einstein equations is not hyperbolic,<br />

and numerical solutions are found to suffer from generic constraint<br />

violating instabilities.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 4 / 34


<strong>Generalized</strong> <strong>Harmonic</strong> Gauge Conditions<br />

An alternate way to specify <strong>the</strong> gauge (i.e. coordinates) in <strong>the</strong><br />

Einstein equations is through <strong>the</strong> gauge source function H a :<br />

Let H a denote <strong>the</strong> function obtained by <strong>the</strong> action of <strong>the</strong> covariant<br />

scalar wave operator on <strong>the</strong> coordinates x a :<br />

H a ≡ ∇ c ∇ c x a = ψ bc (∂ b ∂ c x a − Γ e bc∂ e x a ) = −Γ a ,<br />

where Γ a = ψ bc Γ a bc and ψ ab is <strong>the</strong> 4-metric.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 5 / 34


<strong>Generalized</strong> <strong>Harmonic</strong> Gauge Conditions<br />

An alternate way to specify <strong>the</strong> gauge (i.e. coordinates) in <strong>the</strong><br />

Einstein equations is through <strong>the</strong> gauge source function H a :<br />

Let H a denote <strong>the</strong> function obtained by <strong>the</strong> action of <strong>the</strong> covariant<br />

scalar wave operator on <strong>the</strong> coordinates x a :<br />

H a ≡ ∇ c ∇ c x a = ψ bc (∂ b ∂ c x a − Γ e bc∂ e x a ) = −Γ a ,<br />

where Γ a = ψ bc Γ a bc and ψ ab is <strong>the</strong> 4-metric.<br />

Specifying coordinates by <strong>the</strong> generalized harmonic (GH) method<br />

can be accomplished by choosing a gauge-source function<br />

H a (x, ψ), and requiring that<br />

(√ )<br />

H a (x, ψ) = −Γ a = ∂ b −ψψ<br />

ab<br />

/ √ −ψ.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 5 / 34


Einstein’s Equation with <strong>the</strong> GH Method<br />

The spacetime Ricci tensor can be written as:<br />

R ab = − 1 2 ψcd ∂ c ∂ d ψ ab + ∇ (a Γ b) + F ab (ψ, ∂ψ),<br />

where ψ ab is <strong>the</strong> 4-metric, and Γ a = ψ bc Γ abc .<br />

The <strong>Generalized</strong> <strong>Harmonic</strong> Einstein equation is obtained by<br />

replacing Γ a with −H a (x, ψ) = −ψ ab H b (x, ψ):<br />

R ab − ∇ (a<br />

[<br />

Γb) + H b)<br />

]<br />

= −<br />

1<br />

2 ψcd ∂ c ∂ d ψ ab − ∇ (a H b) + F ab (ψ, ∂ψ).<br />

The vacuum GH Einstein equation, R ab = 0 with Γ a + H a = 0, is<br />

<strong>the</strong>refore manifestly hyperbolic, having <strong>the</strong> same principal part as<br />

<strong>the</strong> scalar wave equation:<br />

0 = ∇ a ∇ a Φ = ψ ab ∂ a ∂ b Φ + F(∂Φ).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 6 / 34


Gauge and Constraints in Electromagnetism<br />

The usual representation of <strong>the</strong> vacuum Maxwell equations split<br />

into evolution equations and constraints:<br />

∂ t<br />

⃗ E = ⃗ ∇ × ⃗ B, ∇ · ⃗ E = 0,<br />

∂ t<br />

⃗ B = − ⃗ ∇ × ⃗ E, ∇ · ⃗ B = 0.<br />

These equations are often written in <strong>the</strong> more compact<br />

4-dimensional notation: ∇ a F ab = 0 and ∇ [a F bc] = 0,<br />

where F ab has components ⃗ E and ⃗ B.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 7 / 34


Gauge and Constraints in Electromagnetism<br />

The usual representation of <strong>the</strong> vacuum Maxwell equations split<br />

into evolution equations and constraints:<br />

∂ t<br />

⃗ E = ⃗ ∇ × ⃗ B, ∇ · ⃗ E = 0,<br />

∂ t<br />

⃗ B = − ⃗ ∇ × ⃗ E, ∇ · ⃗ B = 0.<br />

These equations are often written in <strong>the</strong> more compact<br />

4-dimensional notation: ∇ a F ab = 0 and ∇ [a F bc] = 0,<br />

where F ab has components ⃗ E and ⃗ B.<br />

Maxwell’s equations are often re-expressed in terms of a vector<br />

potential F ab = ∇ a A b − ∇ b A a :<br />

∇ a ∇ a A b − ∇ b ∇ a A a = 0.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 7 / 34


Gauge and Constraints in Electromagnetism<br />

The usual representation of <strong>the</strong> vacuum Maxwell equations split<br />

into evolution equations and constraints:<br />

∂ t<br />

⃗ E = ⃗ ∇ × ⃗ B, ∇ · ⃗ E = 0,<br />

∂ t<br />

⃗ B = − ⃗ ∇ × ⃗ E, ∇ · ⃗ B = 0.<br />

These equations are often written in <strong>the</strong> more compact<br />

4-dimensional notation: ∇ a F ab = 0 and ∇ [a F bc] = 0,<br />

where F ab has components ⃗ E and ⃗ B.<br />

Maxwell’s equations are often re-expressed in terms of a vector<br />

potential F ab = ∇ a A b − ∇ b A a :<br />

∇ a ∇ a A b − ∇ b ∇ a A a = 0.<br />

This form of Maxwell’s equations is manifestly hyperbolic as long<br />

as <strong>the</strong> gauge is chosen correctly, e.g., let ∇ a A a = H(x, t), giving:<br />

∇ a ∇ a A b ≡ ( −∂ 2 t + ∂ 2 x + ∂ 2 y + ∂ 2 z<br />

)<br />

Ab = ∇ b H.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 7 / 34


Constraint Damping<br />

Where are <strong>the</strong> constraints: ∇ a ∇ a A b = ∇ b H?<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 8 / 34


Constraint Damping<br />

Where are <strong>the</strong> constraints: ∇ a ∇ a A b = ∇ b H?<br />

Gauge condition becomes a constraint: 0 = C ≡ ∇ a A a − H.<br />

Maxwell’s equations imply that this constraint is preserved:<br />

∇ a ∇ a C = 0.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 8 / 34


Constraint Damping<br />

Where are <strong>the</strong> constraints: ∇ a ∇ a A b = ∇ b H?<br />

Gauge condition becomes a constraint: 0 = C ≡ ∇ a A a − H.<br />

Maxwell’s equations imply that this constraint is preserved:<br />

∇ a ∇ a C = 0.<br />

Modify evolution equations by adding multiples of <strong>the</strong> constraints:<br />

∇ a ∇ a A b = ∇ b H+γ 0 t b C = ∇ b H+γ 0 t b (∇ a A a − H).<br />

These changes also affect <strong>the</strong> constraint evolution equation,<br />

∇ a ∇ a C−γ 0 t b ∇ b C = 0,<br />

so constraint violations are damped when γ 0 > 0.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 8 / 34


<strong>Generalized</strong> <strong>Harmonic</strong> Evolution System<br />

Frans Pretorius wrote a very nice second order finite difference<br />

AMR code to solve <strong>the</strong> generalized harmonic Einstein equations:<br />

0 = R ab − ∇ (a Γ b) − ∇ (a H b) ,<br />

= R ab − ∇ (a C b) ,<br />

where C a = H a + Γ a . Unfortunately initial code was very unstable.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 9 / 34


<strong>Generalized</strong> <strong>Harmonic</strong> Evolution System<br />

Frans Pretorius wrote a very nice second order finite difference<br />

AMR code to solve <strong>the</strong> generalized harmonic Einstein equations:<br />

0 = R ab − ∇ (a Γ b) − ∇ (a H b) ,<br />

= R ab − ∇ (a C b) ,<br />

where C a = H a + Γ a . Unfortunately initial code was very unstable.<br />

Imposing coordinates using a GH gauge function profoundly<br />

changes <strong>the</strong> constraints. The GH constraint, C a = 0, where<br />

C a = H a + Γ a ,<br />

depends only on first derivatives of <strong>the</strong> metric. The standard<br />

Hamiltonian and momentum constraints, M a = 0, are determined<br />

by <strong>the</strong> derivatives of <strong>the</strong> gauge constraint C a :<br />

M a ≡<br />

[<br />

R ab − 1 2 ψ abR<br />

]<br />

n b =<br />

[∇ (a C b) − 1 2 ψ ab∇ c C c<br />

]<br />

n b .<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 9 / 34


Constraint Damping <strong>Generalized</strong> <strong>Harmonic</strong> System<br />

Pretorius (based on a suggestion from Gundlach, et al.) modified<br />

<strong>the</strong> GH system by adding terms proportional to <strong>the</strong> gauge<br />

constraints:<br />

[<br />

0 = R ab − ∇ (a C b) + γ 0 n (a C b) − 1 2 ψ ab n c C c<br />

],<br />

where n a is a unit timelike vector field. Since C a = H a + Γ a<br />

depends only on first derivatives of <strong>the</strong> metric, <strong>the</strong>se additional<br />

terms do not change <strong>the</strong> hyperbolic structure of <strong>the</strong> system.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 10 / 34


Constraint Damping <strong>Generalized</strong> <strong>Harmonic</strong> System<br />

Pretorius (based on a suggestion from Gundlach, et al.) modified<br />

<strong>the</strong> GH system by adding terms proportional to <strong>the</strong> gauge<br />

constraints:<br />

[<br />

0 = R ab − ∇ (a C b) + γ 0 n (a C b) − 1 2 ψ ab n c C c<br />

],<br />

where n a is a unit timelike vector field. Since C a = H a + Γ a<br />

depends only on first derivatives of <strong>the</strong> metric, <strong>the</strong>se additional<br />

terms do not change <strong>the</strong> hyperbolic structure of <strong>the</strong> system.<br />

Evolution of <strong>the</strong> constraints C a follow from <strong>the</strong> Bianchi identities:<br />

0 = ∇ c ∇ c C a −2γ 0 ∇ c[ n (c C a)<br />

]<br />

+ C c ∇ (c C a) − 1 2 γ 0 n a C c C c .<br />

This is a damped wave equation for C a , that drives all small<br />

short-wavelength constraint violations toward zero as <strong>the</strong> system<br />

evolves (for γ 0 > 0).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 10 / 34


First-Order Einstein Evolution System<br />

Introduce new fields Π ab and Φ iab representing <strong>the</strong> time and space<br />

derivatives of <strong>the</strong> metric ψ ab .<br />

Our code solves a first-order representation of <strong>the</strong> GH Einstein<br />

evolution system:<br />

∂ t ψ ab = −NΠ ab + N i Φ iab ,<br />

∂ t Π ab − N k ∂ k Π ab + Ng ki ∂ k Φ iab + γ 2 N k ∂ k ψ ab ≃ 0,<br />

∂ t Φ iab − N k ∂ k Φ iab + N∂ i Π ab − γ 2 N∂ i Ψ ab ≃ 0.<br />

Violations of <strong>the</strong> additional constraint, C iab = Φ iab − ∂ i ψ ab , are<br />

suppressed on <strong>the</strong> timescale 1/γ 2 by this evolution system.<br />

This evolution system can be written very abstractly as:<br />

∂ t u α + A k α β(u)∂ k u β = F α (u), where u α = {ψ ab , Π ab , Φ iab }.<br />

This system is symmetric hyperbolic because <strong>the</strong>re exists a<br />

positive definite symmetric S αβ that symmetrizes <strong>the</strong><br />

characteristic matrices: A k αβ = Ak βα = S αγA k γ β.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 11 / 34


Numerical Tests of <strong>the</strong> First-Order GH System<br />

3D numerical evolutions of static black-hole spacetimes illustrate<br />

<strong>the</strong> constraint damping properties of <strong>the</strong> GH evolution system.<br />

These evolutions are stable and convergent when γ 0 = γ 2 = 1.<br />

|| C ||<br />

10 -4<br />

10 -6<br />

10 -2 t/M<br />

γ 0<br />

= γ 2<br />

= 0.0<br />

γ 0<br />

= 1.0,<br />

γ 2<br />

= 0.0<br />

γ 0<br />

= 0.0, γ 2<br />

= 1.0<br />

|| C ||<br />

10 -4<br />

10 -6<br />

10 -2 t/M<br />

{N r<br />

, L max<br />

} = {9, 7}<br />

{11, 7}<br />

10 -8<br />

γ 0<br />

= γ 2<br />

= 1.0<br />

10 -8<br />

{13, 7}<br />

10 -10<br />

0 100 200<br />

10 -10<br />

0 5000 10000<br />

The boundary conditions used for this simple test problem freeze<br />

<strong>the</strong> incoming characteristic fields to <strong>the</strong>ir initial values.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 12 / 34


Outline of Talk:<br />

Methods of Specifying Gauge (Coordinates).<br />

<strong>Generalized</strong> <strong>Harmonic</strong> (GH) Einstein <strong>Equations</strong>.<br />

Constraint Damping.<br />

Boundary Conditions.<br />

Constraint Preserving.<br />

Physical.<br />

Moving Black Holes in a Spectral Code.<br />

Dual Coordinate Frame Evolution.<br />

Choosing Coordinates by Feedback Control.<br />

Gauge Drivers in <strong>the</strong> GH Einstein System.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 13 / 34


Boundary Conditions<br />

Boundary conditions are straightforward to formulate for first-order<br />

hyperbolic evolutions systems,<br />

∂ t u α + A k α β(u)∂ k u β = F α (u).<br />

For <strong>the</strong> GH system u α = {ψ ab , Π ab , Φ kab }.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 14 / 34


Boundary Conditions<br />

Boundary conditions are straightforward to formulate for first-order<br />

hyperbolic evolutions systems,<br />

∂ t u α + A k α β(u)∂ k u β = F α (u).<br />

For <strong>the</strong> GH system u α = {ψ ab , Π ab , Φ kab }.<br />

Find <strong>the</strong> eigenvectors of <strong>the</strong> characteristic matrix s k A k α β at each<br />

boundary point:<br />

e ˆα α s k A k α β = v (ˆα) e ˆα β,<br />

where s k is <strong>the</strong> outward directed unit normal to <strong>the</strong> boundary.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 14 / 34


Boundary Conditions<br />

Boundary conditions are straightforward to formulate for first-order<br />

hyperbolic evolutions systems,<br />

∂ t u α + A k α β(u)∂ k u β = F α (u).<br />

For <strong>the</strong> GH system u α = {ψ ab , Π ab , Φ kab }.<br />

Find <strong>the</strong> eigenvectors of <strong>the</strong> characteristic matrix s k A k α β at each<br />

boundary point:<br />

e ˆα α s k A k α β = v (ˆα) e ˆα β,<br />

where s k is <strong>the</strong> outward directed unit normal to <strong>the</strong> boundary.<br />

For hyperbolic evolution systems <strong>the</strong> eigenvectors e ˆα α are<br />

complete: det e ˆα α ≠ 0. So we define <strong>the</strong> characteristic fields:<br />

u ˆα = e ˆα αu α .<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 14 / 34


Boundary Conditions<br />

Boundary conditions are straightforward to formulate for first-order<br />

hyperbolic evolutions systems,<br />

∂ t u α + A k α β(u)∂ k u β = F α (u).<br />

For <strong>the</strong> GH system u α = {ψ ab , Π ab , Φ kab }.<br />

Find <strong>the</strong> eigenvectors of <strong>the</strong> characteristic matrix s k A k α β at each<br />

boundary point:<br />

e ˆα α s k A k α β = v (ˆα) e ˆα β,<br />

where s k is <strong>the</strong> outward directed unit normal to <strong>the</strong> boundary.<br />

For hyperbolic evolution systems <strong>the</strong> eigenvectors e ˆα α are<br />

complete: det e ˆα α ≠ 0. So we define <strong>the</strong> characteristic fields:<br />

u ˆα = e ˆα αu α .<br />

A boundary condition must be imposed on each incoming<br />

characteristic field (i.e. every field with v (ˆα) < 0), and must not be<br />

imposed on any outgoing field (i.e. any field with v (ˆα) > 0).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 14 / 34


Evolutions of a Perturbed Schwarzschild Black Hole<br />

A black-hole spacetime is<br />

perturbed by an incoming<br />

gravitational wave that excites<br />

quasi-normal oscillations.<br />

Use boundary conditions that<br />

Freeze <strong>the</strong> remaining<br />

incoming characteristic fields.<br />

{N r<br />

, L } =<br />

{11, 9}<br />

10 -6<br />

|| C ||<br />

{13, 11}<br />

10 -10<br />

{17, 15}<br />

{21, 19}<br />

10 -14<br />

0 50 100<br />

10 -2 max<br />

t/M<br />

The resulting outgoing waves<br />

interact with <strong>the</strong> boundary of<br />

<strong>the</strong> computational domain and<br />

produce constraint violations.<br />

Lapse Movie<br />

Constraint Movie<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 15 / 34


Constraint Evolution for <strong>the</strong> First-Order GH System<br />

The evolution of <strong>the</strong> constraints,<br />

c A = {C a , C kab , M a ≈ n c ∂ c C a , C ka ≈ ∂ k C a , C klab = ∂ [k Φ l]ab } are<br />

determined by <strong>the</strong> evolution of <strong>the</strong> fields u α = {ψ ab , Π ab , Φ kab }:<br />

∂ t c A + A k A B(u)∂ k c B = F A B(u, ∂u) c B .<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 16 / 34


Constraint Evolution for <strong>the</strong> First-Order GH System<br />

The evolution of <strong>the</strong> constraints,<br />

c A = {C a , C kab , M a ≈ n c ∂ c C a , C ka ≈ ∂ k C a , C klab = ∂ [k Φ l]ab } are<br />

determined by <strong>the</strong> evolution of <strong>the</strong> fields u α = {ψ ab , Π ab , Φ kab }:<br />

∂ t c A + A k A B(u)∂ k c B = F A B(u, ∂u) c B .<br />

This constraint evolution system is symmetric hyperbolic with<br />

principal part:<br />

∂ t C a ≃ 0,<br />

∂ t M a − N k ∂ k M a − Ng ij ∂ i C ja ≃ 0,<br />

∂ t C ia − N k ∂ k C ia − N∂ i M a ≃ 0,<br />

∂ t C iab − (1 + γ 1 )N k ∂ k C iab ≃ 0,<br />

∂ t C ijab − N k ∂ k C ijab ≃ 0.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 16 / 34


Constraint Evolution for <strong>the</strong> First-Order GH System<br />

The evolution of <strong>the</strong> constraints,<br />

c A = {C a , C kab , M a ≈ n c ∂ c C a , C ka ≈ ∂ k C a , C klab = ∂ [k Φ l]ab } are<br />

determined by <strong>the</strong> evolution of <strong>the</strong> fields u α = {ψ ab , Π ab , Φ kab }:<br />

∂ t c A + A k A B(u)∂ k c B = F A B(u, ∂u) c B .<br />

This constraint evolution system is symmetric hyperbolic with<br />

principal part:<br />

∂ t C a ≃ 0,<br />

∂ t M a − N k ∂ k M a − Ng ij ∂ i C ja ≃ 0,<br />

∂ t C ia − N k ∂ k C ia − N∂ i M a ≃ 0,<br />

∂ t C iab − (1 + γ 1 )N k ∂ k C iab ≃ 0,<br />

∂ t C ijab − N k ∂ k C ijab ≃ 0.<br />

An analysis of this system shows that all of <strong>the</strong> constraints are<br />

damped in <strong>the</strong> WKB limit when γ 0 > 0 and γ 2 > 0. So, this<br />

system has constraint suppression properties that are similar to<br />

those of <strong>the</strong> Pretorius (and Gundlach, et al.) system.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 16 / 34


Constraint Preserving Boundary Conditions<br />

Construct <strong>the</strong> characteristic fields, ĉÂ = eÂAc A , associated with<br />

<strong>the</strong> constraint evolution system, ∂ t c A + A k A B∂ k c B = F A Bc B .<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 17 / 34


Constraint Preserving Boundary Conditions<br />

Construct <strong>the</strong> characteristic fields, ĉÂ = eÂAc A , associated with<br />

<strong>the</strong> constraint evolution system, ∂ t c A + A k A B∂ k c B = F A Bc B .<br />

Split <strong>the</strong> constraints into incoming and outgoing characteristics:<br />

ĉ = {ĉ − , ĉ + }.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 17 / 34


Constraint Preserving Boundary Conditions<br />

Construct <strong>the</strong> characteristic fields, ĉÂ = eÂAc A , associated with<br />

<strong>the</strong> constraint evolution system, ∂ t c A + A k A B∂ k c B = F A Bc B .<br />

Split <strong>the</strong> constraints into incoming and outgoing characteristics:<br />

ĉ = {ĉ − , ĉ + }.<br />

The incoming characteristic fields mush vanish on <strong>the</strong> boundaries,<br />

ĉ − = 0, if <strong>the</strong> influx of constraint violations is to be prevented.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 17 / 34


Constraint Preserving Boundary Conditions<br />

Construct <strong>the</strong> characteristic fields, ĉÂ = eÂAc A , associated with<br />

<strong>the</strong> constraint evolution system, ∂ t c A + A k A B∂ k c B = F A Bc B .<br />

Split <strong>the</strong> constraints into incoming and outgoing characteristics:<br />

ĉ = {ĉ − , ĉ + }.<br />

The incoming characteristic fields mush vanish on <strong>the</strong> boundaries,<br />

ĉ − = 0, if <strong>the</strong> influx of constraint violations is to be prevented.<br />

The constraints depend on <strong>the</strong> primary evolution fields (and <strong>the</strong>ir<br />

derivatives). We find that ĉ − for <strong>the</strong> GH system can be expressed:<br />

ĉ − = d ⊥ û − + ˆF(u, d ‖ u).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 17 / 34


Constraint Preserving Boundary Conditions<br />

Construct <strong>the</strong> characteristic fields, ĉÂ = eÂAc A , associated with<br />

<strong>the</strong> constraint evolution system, ∂ t c A + A k A B∂ k c B = F A Bc B .<br />

Split <strong>the</strong> constraints into incoming and outgoing characteristics:<br />

ĉ = {ĉ − , ĉ + }.<br />

The incoming characteristic fields mush vanish on <strong>the</strong> boundaries,<br />

ĉ − = 0, if <strong>the</strong> influx of constraint violations is to be prevented.<br />

The constraints depend on <strong>the</strong> primary evolution fields (and <strong>the</strong>ir<br />

derivatives). We find that ĉ − for <strong>the</strong> GH system can be expressed:<br />

ĉ − = d ⊥ û − + ˆF(u, d ‖ u).<br />

Set boundary conditions on <strong>the</strong> fields û − by requiring<br />

d ⊥ û − = −ˆF(u, d ‖ u).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 17 / 34


More Boundary Condition Issues<br />

Constraints can not provide BCs for all incoming fields.<br />

Physical gravitational-wave degrees-of-freedom must have BCs<br />

determined by <strong>the</strong> physics of <strong>the</strong> situation:<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 18 / 34


More Boundary Condition Issues<br />

Constraints can not provide BCs for all incoming fields.<br />

Physical gravitational-wave degrees-of-freedom must have BCs<br />

determined by <strong>the</strong> physics of <strong>the</strong> situation:<br />

Isolated systems (no incoming gravitational waves) are modeled by<br />

imposing a BC that sets <strong>the</strong> time-dependent part of <strong>the</strong> incoming<br />

components of <strong>the</strong> Weyl tensor to zero: ∂ t Ψ 0 = 0.<br />

This condition is translated into a BC by expressing Ψ 0 in terms of<br />

<strong>the</strong> incoming characteristic fields: Ψ 0 = d ⊥ û − + ˆF(u, d ‖ u).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 18 / 34


More Boundary Condition Issues<br />

Constraints can not provide BCs for all incoming fields.<br />

Physical gravitational-wave degrees-of-freedom must have BCs<br />

determined by <strong>the</strong> physics of <strong>the</strong> situation:<br />

Isolated systems (no incoming gravitational waves) are modeled by<br />

imposing a BC that sets <strong>the</strong> time-dependent part of <strong>the</strong> incoming<br />

components of <strong>the</strong> Weyl tensor to zero: ∂ t Ψ 0 = 0.<br />

This condition is translated into a BC by expressing Ψ 0 in terms of<br />

<strong>the</strong> incoming characteristic fields: Ψ 0 = d ⊥ û − + ˆF(u, d ‖ u).<br />

Initial-boundary problem for first-order GH evolution system is<br />

well-posed for algebraic boundary conditions on û α .<br />

Constraint preserving and physical boundary conditions involve<br />

derivatives of û α , and standard well-posedness proofs fail.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 18 / 34


More Boundary Condition Issues<br />

Constraints can not provide BCs for all incoming fields.<br />

Physical gravitational-wave degrees-of-freedom must have BCs<br />

determined by <strong>the</strong> physics of <strong>the</strong> situation:<br />

Isolated systems (no incoming gravitational waves) are modeled by<br />

imposing a BC that sets <strong>the</strong> time-dependent part of <strong>the</strong> incoming<br />

components of <strong>the</strong> Weyl tensor to zero: ∂ t Ψ 0 = 0.<br />

This condition is translated into a BC by expressing Ψ 0 in terms of<br />

<strong>the</strong> incoming characteristic fields: Ψ 0 = d ⊥ û − + ˆF(u, d ‖ u).<br />

Initial-boundary problem for first-order GH evolution system is<br />

well-posed for algebraic boundary conditions on û α .<br />

Constraint preserving and physical boundary conditions involve<br />

derivatives of û α , and standard well-posedness proofs fail.<br />

Oliver Rinne (2006) used Fourier-Laplace analysis to show that<br />

<strong>the</strong>se BC satisfy <strong>the</strong> Kreiss (1970) condition which is necessary<br />

for well-posedness (but not sufficient for this type of BC).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 18 / 34


Numerical Tests of Boundary Conditions<br />

Compare <strong>the</strong> solution obtained on a “small” computational domain<br />

with a reference solution obtained on a “large” domain where <strong>the</strong><br />

boundary is not in causal contact with <strong>the</strong> comparison region.<br />

Solution Differences<br />

Constraints<br />

Solutions using “Freezing” BC (dashed curves) have differences<br />

and constraints that do not converge to zero.<br />

Solutions using constraint preserving and physical BC (solid<br />

curves) have much smaller differences and constraints that<br />

converge to zero.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 19 / 34


Outline of Talk:<br />

Methods of Specifying Gauge (Coordinates).<br />

<strong>Generalized</strong> <strong>Harmonic</strong> (GH) Einstein <strong>Equations</strong>.<br />

Constraint Damping.<br />

Boundary Conditions.<br />

Constraint Preserving.<br />

Physical.<br />

Moving Black Holes in a Spectral Code.<br />

Dual Coordinate Frame Evolution.<br />

Choosing Coordinates by Feedback Control.<br />

Gauge Drivers in <strong>the</strong> GH Einstein System.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 20 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Problems:<br />

Re-gridding/interpolation is expensive.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Problems:<br />

Re-gridding/interpolation is expensive.<br />

Difficult to get smooth extrapolation at trailing edge of horizon.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Problems:<br />

Re-gridding/interpolation is expensive.<br />

Difficult to get smooth extrapolation at trailing edge of horizon.<br />

Causality trouble at leading edge of horizon.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Problems:<br />

Re-gridding/interpolation is expensive.<br />

Difficult to get smooth extrapolation at trailing edge of horizon.<br />

Causality trouble at leading edge of horizon.<br />

t<br />

Horizon<br />

Outside<br />

Horizon<br />

x<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Problems:<br />

Re-gridding/interpolation is expensive.<br />

Difficult to get smooth extrapolation at trailing edge of horizon.<br />

Causality trouble at leading edge of horizon.<br />

t<br />

Horizon<br />

Outside<br />

Horizon<br />

x<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Moving Black Holes in a Spectral Code<br />

Spectral: Excision boundary is a smooth analytic surface.<br />

Cannot add/remove individual grid points.<br />

Straightforward method: re-grid when holes move too far.<br />

Problems:<br />

Re-gridding/interpolation is expensive.<br />

Difficult to get smooth extrapolation at trailing edge of horizon.<br />

Causality trouble at leading edge of horizon.<br />

Solution:<br />

t<br />

Choose coordinates that smoothly<br />

track <strong>the</strong> location of <strong>the</strong> black hole.<br />

For a black hole binary this means<br />

using coordinates that rotate with<br />

respect to inertial frames at infinity.<br />

Horizon<br />

Outside<br />

Horizon<br />

x<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 21 / 34


Evolving Black Holes in Rotating Frames<br />

Coordinates that rotate with respect to <strong>the</strong> inertial frames at<br />

infinity are needed to track <strong>the</strong> horizons of orbiting black holes.<br />

Evolutions of Schwarzschild in rotating coordinates are unstable.<br />

10 -8 Ω = 0.2/Μ<br />

10 -10<br />

|| C ||<br />

10 -12<br />

10 -14<br />

Ω = 0.02/Μ<br />

Ω = 0.0002/Μ<br />

Ω = 0.002/Μ<br />

10 -5 10 -3 10 -1 10 1 10 3<br />

t / M<br />

Evolutions shown use a<br />

computational domain that<br />

extends to r = 1000M.<br />

Angular velocity needed to<br />

track <strong>the</strong> horizons of an equal<br />

mass binary at merger is<br />

about Ω ≈ 0.2/M.<br />

Problem caused by asymptotic<br />

behavior of metric in rotating<br />

coordinates: ψ tt ∼ ρ 2 Ω 2 ,<br />

ψ ti ∼ ρΩ, ψ ij ∼ 1.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 22 / 34


Dual-Coordinate-Frame Evolution Method<br />

Single-coordinate frame method uses <strong>the</strong> one set of coordinates,<br />

x ā = {¯t, x ī}, to define field components, uᾱ = {ψā¯b, Πā¯b, Φīā¯b},<br />

and <strong>the</strong> same coordinates to determine <strong>the</strong>se components by<br />

solving Einstein’s equation for uᾱ = uᾱ(x ā):<br />

∂¯tuᾱ + A¯k ᾱ ¯β∂¯ku ¯β = F ᾱ.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 23 / 34


Dual-Coordinate-Frame Evolution Method<br />

Single-coordinate frame method uses <strong>the</strong> one set of coordinates,<br />

x ā = {¯t, x ī}, to define field components, uᾱ = {ψā¯b, Πā¯b, Φīā¯b},<br />

and <strong>the</strong> same coordinates to determine <strong>the</strong>se components by<br />

solving Einstein’s equation for uᾱ = uᾱ(x ā):<br />

∂¯tuᾱ + A¯k ᾱ ¯β∂¯ku ¯β = F ᾱ.<br />

Dual-coordinate frame method uses basis vectors of one<br />

coordinate system to define components of fields, and a second<br />

set of coordinates, x a = {t, x i } = x a (x ā), to represent <strong>the</strong>se<br />

components as functions, uᾱ = uᾱ(x a ).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 23 / 34


Dual-Coordinate-Frame Evolution Method<br />

Single-coordinate frame method uses <strong>the</strong> one set of coordinates,<br />

x ā = {¯t, x ī}, to define field components, uᾱ = {ψā¯b, Πā¯b, Φīā¯b},<br />

and <strong>the</strong> same coordinates to determine <strong>the</strong>se components by<br />

solving Einstein’s equation for uᾱ = uᾱ(x ā):<br />

∂¯tuᾱ + A¯k ᾱ ¯β∂¯ku ¯β = F ᾱ.<br />

Dual-coordinate frame method uses basis vectors of one<br />

coordinate system to define components of fields, and a second<br />

set of coordinates, x a = {t, x i } = x a (x ā), to represent <strong>the</strong>se<br />

components as functions, uᾱ = uᾱ(x a ).<br />

These functions are determined by solving <strong>the</strong> transformed<br />

Einstein equation:<br />

[ ∂x<br />

i<br />

∂ t uᾱ +<br />

∂¯t δᾱ ¯β + ∂x ]<br />

i<br />

A¯k ᾱ<br />

∂x ¯k ¯β ∂ i u ¯β = F ᾱ.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 23 / 34


Testing Dual-Coordinate-Frame Evolutions<br />

Single-frame evolutions of Schwarzschild in rotating coordinates<br />

are unstable, while dual-frame evolutions are stable:<br />

Dual Frame Evolution Single Frame Evolution<br />

N r<br />

= 9<br />

10 -8 Ω = 0.2/Μ<br />

10 -6<br />

|| C ||<br />

10 -8<br />

N r<br />

= 11<br />

10 -10<br />

|| C ||<br />

Ω = 0.02/Μ<br />

N r<br />

= 13<br />

Ω = 0.0002/Μ<br />

10 -10 N r<br />

= 15<br />

10 -12<br />

N r<br />

= 17<br />

Ω = 0.002/Μ<br />

10 -12<br />

0 200 400 600 800 1000<br />

10 -14<br />

10 -4 t / M<br />

Dual-frame evolution shown here uses a comoving frame with<br />

Ω = 0.2/M on a domain with outer radius r = 1000M.<br />

10 -5 10 -3 10 -1 10 1 10 3<br />

t / M<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 24 / 34


Horizon Tracking Coordinates<br />

Coordinates must be used that track <strong>the</strong> motions of <strong>the</strong> holes.<br />

A coordinate transformation from inertial coordinates, (¯x, ȳ, ¯z), to<br />

co-moving coordinates (x, y, z), consisting of a rotation followed<br />

by an expansion,<br />

⎛<br />

⎝<br />

x<br />

y<br />

z<br />

⎞<br />

⎛<br />

⎠ = e a(¯t) ⎝<br />

cos ϕ(¯t) − sin ϕ(¯t) 0<br />

sin ϕ(¯t) cos ϕ(¯t) 0<br />

0 0 1<br />

⎞ ⎛<br />

⎠ ⎝<br />

with t = ¯t, is general enough to keep <strong>the</strong> holes fixed in co-moving<br />

coordinates for suitably chosen functions a(¯t) and ϕ(¯t).<br />

Since <strong>the</strong> motions of <strong>the</strong> holes are not known a priori, <strong>the</strong><br />

functions a(¯t) and ϕ(¯t) must be chosen dynamically and<br />

adaptively as <strong>the</strong> system evolves.<br />

¯x<br />

ȳ<br />

¯z<br />

⎞<br />

⎠ ,<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 25 / 34


Horizon Tracking Coordinates II<br />

δϕ<br />

x<br />

c<br />

y<br />

c<br />

Measure <strong>the</strong> comoving centers of <strong>the</strong> holes: x c (t) and y c (t), or<br />

equivalently Q x (t) = [x c (t) − x c (0)]/x c (0) and Q y (t) = y c (t)/x c (t).<br />

Choose <strong>the</strong> map parameters a(t) and ϕ(t) to keep Q x (t) and<br />

Q y (t) small.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 26 / 34


Horizon Tracking Coordinates II<br />

δϕ<br />

x<br />

c<br />

y<br />

c<br />

Measure <strong>the</strong> comoving centers of <strong>the</strong> holes: x c (t) and y c (t), or<br />

equivalently Q x (t) = [x c (t) − x c (0)]/x c (0) and Q y (t) = y c (t)/x c (t).<br />

Choose <strong>the</strong> map parameters a(t) and ϕ(t) to keep Q x (t) and<br />

Q y (t) small.<br />

Changing <strong>the</strong> map parameters by <strong>the</strong> small amounts, δa and δϕ,<br />

results in associated small changes in δQ x and δQ y :<br />

δQ x = −δa,<br />

δQ y = −δϕ.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 26 / 34


Horizon Tracking Coordinates II<br />

δϕ<br />

x<br />

c<br />

y<br />

c<br />

Measure <strong>the</strong> comoving centers of <strong>the</strong> holes: x c (t) and y c (t), or<br />

equivalently Q x (t) = [x c (t) − x c (0)]/x c (0) and Q y (t) = y c (t)/x c (t).<br />

Choose <strong>the</strong> map parameters a(t) and ϕ(t) to keep Q x (t) and<br />

Q y (t) small.<br />

Changing <strong>the</strong> map parameters by <strong>the</strong> small amounts, δa and δϕ,<br />

results in associated small changes in δQ x and δQ y :<br />

δQ x = −δa,<br />

δQ y = −δϕ.<br />

Measure <strong>the</strong> quantities Q y (t), dQ y (t)/dt, d 2 Q y (t)/dt 2 , and set<br />

d 3 ϕ<br />

dt 3 = λ3 Q y + 3λ 2 dQ y<br />

+ 3λ d 2 Q y<br />

dt dt 2 = − d 3 Q y<br />

dt 3 .<br />

The solutions to this “closed-loop” equation for Q y have <strong>the</strong> form<br />

Q y (t) = (At 2 + Bt + C)e −λt , so Q y always decreases as t → ∞.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 26 / 34


Horizon Tracking Coordinates III<br />

In practice <strong>the</strong> coordinate maps are adjusted only at a prescribed<br />

set of adjustment times t = t i .<br />

In <strong>the</strong> time interval t i < t < t i+1 we set:<br />

ϕ(t) = ϕ i + (t − t i ) dϕ i<br />

(<br />

dt<br />

+ (t − t i) 3<br />

2<br />

λ d 2 Q y<br />

i<br />

dt 2<br />

+ (t − t i) 2<br />

2<br />

d 2 ϕ i<br />

dt 2<br />

+ λ 2 dQ y<br />

i<br />

dt<br />

+ λ 3 Q y<br />

i<br />

3<br />

where Q x , Q y , and <strong>the</strong>ir derivatives are measured at t = t i , so<br />

<strong>the</strong>se maps satisfy <strong>the</strong> closed loop<br />

equation at t = t i .<br />

)<br />

,<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 27 / 34


Horizon Tracking Coordinates III<br />

In practice <strong>the</strong> coordinate maps are adjusted only at a prescribed<br />

set of adjustment times t = t i .<br />

In <strong>the</strong> time interval t i < t < t i+1 we set:<br />

ϕ(t) = ϕ i + (t − t i ) dϕ i<br />

(<br />

dt<br />

+ (t − t i) 3<br />

2<br />

λ d 2 Q y<br />

i<br />

dt 2<br />

+ (t − t i) 2<br />

2<br />

d 2 ϕ i<br />

dt 2<br />

+ λ 2 dQ y<br />

i<br />

dt<br />

+ λ 3 Q y<br />

i<br />

3<br />

where Q x , Q y , and <strong>the</strong>ir derivatives are measured at t = t i , so<br />

2×10<br />

<strong>the</strong>se maps satisfy <strong>the</strong> closed loop<br />

-4 Q y y c<br />

(t)<br />

=<br />

x<br />

equation at t = t i .<br />

c<br />

(t)<br />

This works! We are now able<br />

to evolve binary black holes using<br />

horizon tracking coordinates until<br />

just before merger.<br />

1×10 -4<br />

-1×10 -4 0<br />

Q x =<br />

)<br />

t / M ADM<br />

-2×10 -4<br />

0 1000 2000 3000 4000<br />

,<br />

x c<br />

(t) - x c<br />

(0)<br />

x c<br />

(0)<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 27 / 34


Outline of Talk:<br />

Methods of Specifying Gauge (Coordinates).<br />

<strong>Generalized</strong> <strong>Harmonic</strong> (GH) Einstein <strong>Equations</strong>.<br />

Constraint Damping.<br />

Boundary Conditions.<br />

Constraint Preserving.<br />

Physical.<br />

Moving Black Holes in a Spectral Code.<br />

Dual Coordinate Frame Evolution.<br />

Choosing Coordinates by Feedback Control.<br />

Gauge Drivers in <strong>the</strong> GH Einstein System.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 28 / 34


Gauge Conditions and Hyperbolicity<br />

The GH Einstein equations may be written (abstractly) as<br />

ψ cd ∂ c ∂ d ψ ab = ∇ a H b + ∇ b H a + Q ab (ψ, ∂ψ).<br />

These equations are manifestly hyperbolic when H a is specified<br />

as a function of x a and ψ ab : H a = H a (x, ψ).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 29 / 34


Gauge Conditions and Hyperbolicity<br />

The GH Einstein equations may be written (abstractly) as<br />

ψ cd ∂ c ∂ d ψ ab = ∇ a H b + ∇ b H a + Q ab (ψ, ∂ψ).<br />

These equations are manifestly hyperbolic when H a is specified<br />

as a function of x a and ψ ab : H a = H a (x, ψ).<br />

Unfortunately, most gauge conditions found useful in numerical<br />

relativity are conditions on ψ ab and ∂ c ψ ab .<br />

The GH Einstein equations are typically not hyperbolic for gauge<br />

conditions of this type: H a = H a (x, ψ, ∂ψ).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 29 / 34


Solution: Gauge Driver <strong>Equations</strong><br />

Elevate H a to <strong>the</strong> status of a dynamical field (Pretorius) and evolve<br />

it along with <strong>the</strong> spacetime metric ψ ab :<br />

Gauge Driver : ψ cd ∂ c ∂ d H a = Q a (x, H, ∂H, ψ, ∂ψ),<br />

GH Einstein : ψ cd ∂ c ∂ d ψ ab = Q ab (x, H, ∂H, ψ, ∂ψ).<br />

Any gauge driver of this form makes <strong>the</strong> combined<br />

Einstein–Gauge system hyperbolic.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 30 / 34


Solution: Gauge Driver <strong>Equations</strong><br />

Elevate H a to <strong>the</strong> status of a dynamical field (Pretorius) and evolve<br />

it along with <strong>the</strong> spacetime metric ψ ab :<br />

Gauge Driver : ψ cd ∂ c ∂ d H a = Q a (x, H, ∂H, ψ, ∂ψ),<br />

GH Einstein : ψ cd ∂ c ∂ d ψ ab = Q ab (x, H, ∂H, ψ, ∂ψ).<br />

Any gauge driver of this form makes <strong>the</strong> combined<br />

Einstein–Gauge system hyperbolic.<br />

Choose Q a so that H a evolves toward <strong>the</strong> desired gauge target F a<br />

as <strong>the</strong> system evolves: H a → F a .<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 30 / 34


Solution: Gauge Driver <strong>Equations</strong><br />

Elevate H a to <strong>the</strong> status of a dynamical field (Pretorius) and evolve<br />

it along with <strong>the</strong> spacetime metric ψ ab :<br />

Gauge Driver : ψ cd ∂ c ∂ d H a = Q a (x, H, ∂H, ψ, ∂ψ),<br />

GH Einstein : ψ cd ∂ c ∂ d ψ ab = Q ab (x, H, ∂H, ψ, ∂ψ).<br />

Any gauge driver of this form makes <strong>the</strong> combined<br />

Einstein–Gauge system hyperbolic.<br />

Choose Q a so that H a evolves toward <strong>the</strong> desired gauge target F a<br />

as <strong>the</strong> system evolves: H a → F a .<br />

We have shown that <strong>the</strong> simple gauge driver:<br />

ψ cd ∂ c ∂ d H a = Q a = µ 2 (H a − F a ) + 2µN −1 ∂ t H a + ...<br />

drives H a → F a for some of <strong>the</strong> standard numerical relativity<br />

gauges: Phys. Rev. D 77 084001 (2008).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 30 / 34


Recent Gauge Driver Improvements<br />

Replace <strong>the</strong> wave operator in <strong>the</strong> gauge driver by a flat-space<br />

wave operator:<br />

η cd ∂ c ∂ d H a = Q a (x, H, ∂H, ψ, ∂ψ).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 31 / 34


Recent Gauge Driver Improvements<br />

Replace <strong>the</strong> wave operator in <strong>the</strong> gauge driver by a flat-space<br />

wave operator:<br />

η cd ∂ c ∂ d H a = Q a (x, H, ∂H, ψ, ∂ψ).<br />

Use improved boundary conditions for <strong>the</strong> gauge fields, e.g.<br />

∂ t H a = −µ(H a − F a ).<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 31 / 34


Recent Gauge Driver Improvements<br />

Replace <strong>the</strong> wave operator in <strong>the</strong> gauge driver by a flat-space<br />

wave operator:<br />

η cd ∂ c ∂ d H a = Q a (x, H, ∂H, ψ, ∂ψ).<br />

Use improved boundary conditions for <strong>the</strong> gauge fields, e.g.<br />

∂ t H a = −µ(H a − F a ).<br />

The gauge field H a transforms like <strong>the</strong> trace of a connection.<br />

Evolutions done in a co-moving reference frame need an<br />

appropriate Hessian term added to F a :<br />

∂ 2 x b<br />

F a → F a − ψ ab<br />

∂x ¯b∂x ψ¯b¯c . ¯c<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 31 / 34


Testing <strong>the</strong> Improved Gauge Driver System:<br />

Initial Data: use Schwarzschild with perturbed lapse and shift.<br />

Gauge Driver: use F a representing one of <strong>the</strong> Bona-Masso slicing<br />

conditions and one of <strong>the</strong> Γ-driver shift conditions.<br />

VMinusFNorm Sep12A<br />

10 0<br />

10 -2 Sep12A GhCe and VwCe<br />

|| C ||<br />

|| H - F || / || F ||<br />

10 -3<br />

10 -1<br />

10 -4<br />

10 -2<br />

10 -5<br />

t / M<br />

0 500 1000 1500 2000<br />

10 -3<br />

t / M<br />

0 500 1000 1500 2000<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 32 / 34


In Progress: Binary Black Hole Evolutions<br />

Our gauge driver system is now robust enough to perform binary<br />

black hole evolutions.<br />

Which gauge conditions are both stable and effective for<br />

performing BBH mergers?<br />

BBH mergers have been performed using driver versions of <strong>the</strong><br />

following gauge conditions,<br />

∂ t N − N k ∂ k N = −λNK ,<br />

[ ]<br />

∂ t N i = ν<br />

(3)˜Γi − ηΥ i ,<br />

∂ t Υ i + ηΥ i = (3)˜Γi .<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 33 / 34


Summary<br />

<strong>Generalized</strong> <strong>Harmonic</strong> method produces manifestly hyperbolic<br />

representations of <strong>the</strong> Einstein equations for any choice of<br />

coordinates (when imposed in <strong>the</strong> appropriate way).<br />

Constraint damping makes <strong>the</strong> modified GH equations stable for<br />

numerical simulations.<br />

Constraint preserving and physical boundary conditions ensure<br />

that waves propagate through computational boundaries without<br />

(much) reflection.<br />

Dual coordinate frame evolution makes evolutions stable in<br />

coordinates that track <strong>the</strong> black hole motions.<br />

Feedback control systems can be used to construct co-moving<br />

coordinates that accurately track <strong>the</strong> black hole motions.<br />

Gauge drivers allow a wide range of useful gauge conditions in<br />

<strong>the</strong> generalized harmonic framework.<br />

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 34 / 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!