13.09.2014 Views

Surface Metrology

Surface Metrology

Surface Metrology

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Presented for CMA Analytical Workshop 2012<br />

Neal Leddy


surface metrology<br />

Applications<br />

Roughness<br />

Lay<br />

Waviness<br />

Form<br />

Flatness<br />

3D analysis<br />

Step Height<br />

Film thickness<br />

Feature measurement<br />

Radius of curvature


techniques<br />

Tactile<br />

Stylus<br />

Atomic force microscopy<br />

Optical<br />

White light/Laser interferometry<br />

Confocal microscopy<br />

Ellipsometry<br />

Focus variation


probe<br />

cantilever<br />

Diamond stylus<br />

white light (filtered light)<br />

laser<br />

electron beam


piezo electric actuators<br />

the linear electromechanical interaction<br />

between mechanical and electrical state<br />

in crystalline material.<br />

reversible<br />

examples - lead zirconium titinate,<br />

quartz


detector<br />

laser & photodiode<br />

ccd camera


stylus<br />

Diamond probe contacts sample surface<br />

Tip size: >20nm ~ 25um<br />

Direct measurement<br />

Disadvantages – contact method, generally<br />

single line,<br />

Advantages – fast, widely accepted,<br />

reasonable z resolution


afm<br />

Cantilever tip<br />

Contact mode<br />

Non-contact mode<br />

Tapping mode<br />

Force modulation<br />

Phase imaging<br />

○<br />

○<br />

○<br />

○<br />

○<br />

○<br />

○<br />

Local friction imaging<br />

<strong>Surface</strong> potential imaging<br />

Electrical conductivity imaging<br />

Magnetic and electric field imaging<br />

Thermal conductivity mapping<br />

Temperature mapping<br />

Modulus mapping


Disadvantages – limited sampling area, limited z<br />

range, slow scan speed.<br />

Advantages – high resolution, 3 dimensional, large<br />

sample area and vertical range (>10mm)


Cantilever –<br />

silicon/silicon nitride<br />

Piezoelectric actuator<br />

Laser –<br />

Detector – photodiode


wli<br />

White light source<br />

Resolutiuon – 0.01 nm<br />

Scanning mode<br />

Phase shift mode<br />

Disadvantages – requires reflective surface,<br />

lateral resolution (diffraction limit) ~500nm<br />

Advantages – high resolution, 3 dimensional,<br />

large sample area and vertical range (>10mm)


wli<br />

white light source<br />

Beam-splitter<br />

reference mirror<br />

interference objective<br />

piezo electric stage<br />

ccd camera


confocal<br />

<br />

<br />

<br />

Typical Scan area: 200 mm X 200 mm<br />

X Resolution: 30 nm to 3 um<br />

Z Range: 300 um to 30 mm<br />

Disadvantages – limited z resolution.<br />

Advantages – High vertical scan depth, fast<br />

measurement speed.


ellipsometry<br />

<br />

Change in polarisation of light reflected/transmitted from a<br />

sample structure. response is dependent on optical properties<br />

and thickness of each material.<br />

film thickness<br />

optical constants<br />

characterise composition,<br />

crystallinity,<br />

roughness,<br />

doping concentration,<br />

Disadvantages – limited sample applicability<br />

Advantages – transparent films (resolution 1nm ~ 10-15mm)


Light source<br />

Polarizer<br />

(Optional compensator)<br />

<strong>Surface</strong> reflection<br />

(Optional compensator)<br />

Analyzer (2 nd polariszer)<br />

Detector (voltage)


focus variation<br />

<br />

Using optics with very little depth of field. Realised using<br />

microscopy like optics and a microscope objective.<br />

These objectives have a high numerical aperture which gives<br />

a small depth of field.<br />

sample or optics moved in relation to each other.<br />

at each position the focus over each plane is calculated<br />

the plane with the best focus gives the depth at that position<br />

Disadvantages – resolution (30nm), flat surfaces<br />

(requires form)<br />

Advantages – Large scan range, Good for very<br />

rough surfaces


summary of optical<br />

techniques


other techniques<br />

3D stereoscopic reconstruction<br />

Stereo pair Scanning Electron Microscope<br />

tilted with eucentric stage.<br />

Algorhitm reconstructs 3d image.<br />

Disadvantages – relies on good stereo pairs,<br />

limited z resolution, requires structured surface<br />

Advantages – high magnifications


Isotropic vs. anisotropic<br />

Isotropy<br />

<strong>Surface</strong> presents the same characteristics regardless of the<br />

measurement direction, i.e. surfaces with a random texture<br />

without any distinction or direction<br />

anisotropy<br />

<strong>Surface</strong>s encountered with machined or formed features will<br />

have a direction or periodic structure


Isotropic<br />

anisotropic


oughness<br />

Describes the texture of a surface. It is<br />

measure of the vertical deviations of a<br />

real surface from its ideal form.<br />

Roughness: high frequency and short<br />

wavelength<br />

Largely related to surface interactions.


waviness<br />

Describes the surface form.<br />

Waviness: low frequency and usually<br />

long wavelength<br />

Generally a result of manufacture


oughness standards<br />

ASME B46<br />

ISO 4287 – profile<br />

ISO 12085<br />

ISO 13565<br />

ISO 25178 – aeral surface<br />

Geometrical Product Specifications and<br />

Verification


surface amplitude<br />

Symbol Name 2D Unit 3D<br />

Sa Roughness Average DIN 4768 ASME B46.1 [nm] ISO/DIS 25178-2<br />

Sq<br />

Root Mean Square<br />

(RMS)<br />

Ssk <strong>Surface</strong> Skewness ISO 4287/1<br />

ASME B46.1<br />

Sku <strong>Surface</strong> Kurtosis ANSI B.46.1<br />

ASME B46.1<br />

ASME B46.1<br />

ISO 4287/1 ASME B46.1 [nm] ISO/DIS 25178-2<br />

ASME B46.1<br />

ISO/DIS 25178-2<br />

ASME B46.1<br />

ISO/DIS 25178-2<br />

ASME B46.1<br />

Sz Peak-Peak ISO 4287/1 [nm] ISO/DIS 25178-2<br />

St Peak-Peak ASME B46.1 [nm] ASME B46.1<br />

Sy Peak-Peak [nm]<br />

S10z Ten Point Height ANSI B.46.1 [nm] ISO/DIS 25178-2<br />

ASME B46.1<br />

Sv Max Valley Depth ASME B46.1 ISO/DIS 25178-2<br />

ASME<br />

Sp Max Peak Height ASME B46.1 ISO/DIS 25178-2<br />

ASME B46.1


surface hybrid<br />

Symbol Name 2D Unit 3D<br />

Ssc Mean Summit Curvature [1/nm]<br />

Sti<br />

Texture Index<br />

Sdq<br />

Sdq6<br />

Root Mean Square<br />

Gradient<br />

Area Root Mean Square<br />

Slope<br />

ISO/DIS 25178-2<br />

ASME B46.1<br />

Sdr <strong>Surface</strong> Area Ratio ISO/DIS 25178-2<br />

S2A Projected Area nm^2<br />

S3A <strong>Surface</strong> Area nm^2


Functional parameters<br />

Symbol Name 2D Unit 3D<br />

Sbi<br />

<strong>Surface</strong> Bearing Index<br />

Sci<br />

Svi<br />

Core Fluid Retention<br />

Index<br />

Valley Fluid Retention<br />

Index<br />

Spk Reduced Summit Height DIN 4776 [nm]<br />

Sk Core Roughness Depth DIN 4776 [nm]<br />

Svk Reduced Valley Depth DIN 4776 [nm]<br />

Sδcl-h<br />

l-h% height intervals of<br />

Bearing Curve<br />

ISO 4287<br />

[nm]


Spatial parameters<br />

Symbol Name 2D Unit 3D<br />

Sds Density of Summits ASME B46.1<br />

Std Texture Direction [deg] [6]<br />

[6]<br />

Stdi Texture Direction Index [7]<br />

Srw<br />

Dominant Radial Wave<br />

Length<br />

[nm] [7]<br />

Srwi Radial Wave Index [7]<br />

dShw Mean Half Wavelength [nm]<br />

Sfd<br />

Fractal Dimension<br />

Scl20<br />

Scl37<br />

Str20<br />

Str37<br />

Correlation Length at<br />

20%<br />

Correlation Length at<br />

37%<br />

Texture Aspect Ratio at<br />

20%<br />

Texture Aspect Ratio at<br />

37%<br />

Symbol Name 2D Unit 3D


earing ratio<br />

Mathematically it is the cumulative<br />

probability density function of the<br />

surface profile height<br />

calculated by integrating the profile trace


White light interferometry


omniscan microXam


Scanning wli


<strong>Surface</strong> roughness<br />

Shot Peened Steel:<br />

<strong>Surface</strong> map<br />

3D <strong>Surface</strong>


Profile through origin<br />

Profile roughness (2d)<br />

Rq/Ra = 1.22<br />

<strong>Surface</strong> roughness (3d)<br />

Rq/Ra = 1.25


Rq is more sensitive to peaks and<br />

valleys than Ra, as amplitudes are<br />

squared.<br />

Typically for classic surface<br />

Rq = 1.1(Ra)


surface filtering<br />

Primary surface waviness roughness


Primary surface profile waviness profile roughness profile<br />

primary surface waviness surface roughness surface<br />

primary profile waviness profile roughness profile


step height


Step height standard:<br />

•Nominal : 8.18 um<br />

•Actual : 8.181um


film thickness


advanced feature analysis<br />

Vickers indent:


vickers indent profile<br />

vickers indent calculated hardness


phase mode<br />

<br />

Phase mode utilizes narrowly filtered light to perform a<br />

phase shifting of light fringes for acquisition<br />

<br />

Achieved by phase shifting one of the interfering beams<br />

along the optical axis.<br />

<br />

Reduces system noise and gives best results for very flat<br />

samples.


phase mode


3D Stereoscopic reconstruction


2d sem image of shot peened steel<br />

• ± 5°tilt<br />

• @ working distance<br />

~10mm


mex vs wli<br />

3d SEM reconstruction<br />

White light interferometry


Nettle leaf<br />

Nettle leaf – reconstructed tilt series


Flower detail<br />

Flower detail – reconstructed tilt series

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!