Views
3 years ago

Determination of the Heat Release Distribution in Turbulent Flames ...

Determination of the Heat Release Distribution in Turbulent Flames ...

Determination of the Heat Release Distribution in Turbulent Flames

Technische Universität München Institut für Energietechnik Lehrstuhl für Thermodynamik Determination of the Heat Release Distribution in Turbulent Flames by Chemiluminescence Imaging Martin Rolf Werner Lauer Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Harald Klein Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Thomas Sattelmayer 2. Univ.-Prof. Dr. rer. nat. habil. Rainer Suntz, Karlsruher Institut für Technologie Die Dissertation wurde am 21.03.2011 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.06.2011 angenommen.

  • Page 3: Für Alfred iii
  • Page 7: Abstract Imaging of OH ∗ or CH
  • Page 11 and 12: Contents Danksagung / Acknowledgmen
  • Page 13: 6.4.1 Evaluation of strain rate pdf
  • Page 16 and 17: p pressure [N m −2 ] p(a t ) stra
  • Page 18 and 19: φ ψ equivalence ratio [−] ampli
  • Page 21 and 22: 1 Introduction The world wide consu
  • Page 23 and 24: 1.2 Context of this study the resul
  • Page 25: 1.3 Outline This is followed by an
  • Page 28 and 29: 2 Chemiluminescence to 550nm. In a
  • Page 30 and 31: 2 Chemiluminescence 2.1.1 Schrödin
  • Page 32 and 33: 2 Chemiluminescence states of λ 0
  • Page 34 and 35: 2 Chemiluminescence 60 50 40 30 A 2
  • Page 36 and 37: 2 Chemiluminescence around 309nm or
  • Page 38 and 39: 2 Chemiluminescence The section is
  • Page 40 and 41: 2 Chemiluminescence C 2 H 6 C 2 H 5
  • Page 42 and 43: 2 Chemiluminescence 2.2.2 Equivalen
  • Page 44 and 45: 2 Chemiluminescence Number Reaction
  • Page 46 and 47: 2 Chemiluminescence Vibrational equ
  • Page 48 and 49: 2 Chemiluminescence dN 0 dt = 0 =
  • Page 50 and 51: 2 Chemiluminescence The integral ch
  • Page 52 and 53:

    2 Chemiluminescence Thus, the chemi

  • Page 54 and 55:

    2 Chemiluminescence N 1 i OH = ∗

  • Page 57 and 58:

    3 Basics of turbulence and turbulen

  • Page 59 and 60:

    3.2 Turbulent energy cascade and le

  • Page 61 and 62:

    3.2 Turbulent energy cascade and le

  • Page 63 and 64:

    3.3 Premixed combustion temperature

  • Page 65 and 66:

    3.4 Turbulence-flame interaction

  • Page 67 and 68:

    3.4 Turbulence-flame interaction fl

  • Page 69 and 70:

    4 Experimental setup and measuremen

  • Page 71 and 72:

    4.1 Test rig The inner diameter of

  • Page 73 and 74:

    4.2 Measurement techniques 1.8 1.6

  • Page 75 and 76:

    4.2 Measurement techniques flame le

  • Page 77 and 78:

    4.2 Measurement techniques 1.0 0.8

  • Page 79 and 80:

    4.2 Measurement techniques The two

  • Page 81 and 82:

    4.2 Measurement techniques Addition

  • Page 83 and 84:

    4.2 Measurement techniques and lase

  • Page 85 and 86:

    4.2 Measurement techniques it to 28

  • Page 87 and 88:

    4.3 Data evaluation procedures 1.0

  • Page 89 and 90:

    4.3 Data evaluation procedures manu

  • Page 91 and 92:

    4.3 Data evaluation procedures 1.0

  • Page 93:

    4.3 Data evaluation procedures T (c

  • Page 96 and 97:

    5 Heat release rate measurements Fi

  • Page 98 and 99:

    5 Heat release rate measurements Fu

  • Page 100 and 101:

    5 Heat release rate measurements 3.

  • Page 102 and 103:

    5 Heat release rate measurements 0.

  • Page 104 and 105:

    5 Heat release rate measurements 5.

  • Page 106 and 107:

    5 Heat release rate measurements 1.

  • Page 108 and 109:

    5 Heat release rate measurements Th

  • Page 110 and 111:

    5 Heat release rate measurements 2.

  • Page 113 and 114:

    6 Strain rate correction method In

  • Page 115 and 116:

    6.1 Strain rate measurement and mod

  • Page 117 and 118:

    6.2 Applicability of the Pope model

  • Page 119 and 120:

    6.2 Applicability of the Pope model

  • Page 121 and 122:

    t 6.2 Applicability of the Pope mod

  • Page 123 and 124:

    6.2 Applicability of the Pope model

  • Page 125 and 126:

    6.3 Counterflow flame calculations

  • Page 127 and 128:

    6.3 Counterflow flame calculations

  • Page 129 and 130:

    6.4 OH ∗ chemiluminescence correc

  • Page 131 and 132:

    6.4 OH ∗ chemiluminescence correc

  • Page 133 and 134:

    norm. intensity [-] 6.4 OH ∗ chem

  • Page 135 and 136:

    6.6 Additional counterflow flame si

  • Page 137 and 138:

    6.6 Additional counterflow flame si

  • Page 139 and 140:

    6.6 Additional counterflow flame si

  • Page 141 and 142:

    6.6 Additional counterflow flame si

  • Page 143:

    6.6 Additional counterflow flame si

  • Page 146 and 147:

    7 Summary and conclusions between 3

  • Page 148 and 149:

    7 Summary and conclusions for eleva

  • Page 150 and 151:

    Bibliography [11] U. Brackmann. Lam

  • Page 152 and 153:

    Bibliography [33] Y. Hardalupas and

  • Page 154 and 155:

    Bibliography B-X, C-X, CN B-X, N +

  • Page 156 and 157:

    Bibliography [85] S. Turns. An intr

  • Page 158 and 159:

    List of Figures 2.10 Distribution o

  • Page 160 and 161:

    List of Figures 4.17 Comparison of

  • Page 162 and 163:

    List of Figures 6.4 Dependency of t

  • Page 164 and 165:

    List of Figures A.4 Comparison of t

  • Page 167 and 168:

    Appendix A Heat release measurement

  • Page 169 and 170:

    Appendix A Heat release measurement

  • Page 171:

    Appendix A Heat release measurement

  • Page 174 and 175:

    norm. intensity [-] Appendix B Resu

  • Page 176 and 177:

    norm. intensity [-] Appendix B Resu

  • Page 178 and 179:

    norm. intensity [-] Appendix B Resu

  • Page 180 and 181:

    norm. intensity [-] Appendix B Resu

  • Page 182 and 183:

    Appendix C Reaction mechanism [44]

  • Page 184 and 185:

    Appendix C Reaction mechanism [44]

  • Page 186 and 187:

    Appendix C Reaction mechanism [44]

  • Page 188 and 189:

    Appendix C Reaction mechanism [44]

  • Page 190 and 191:

    Appendix C Reaction mechanism [44]

  • Page 192 and 193:

    Appendix C Reaction mechanism [44]

  • Page 194 and 195:

    Appendix C Reaction mechanism [44]

  • Page 196 and 197:

    Appendix C Reaction mechanism [44]

  • Page 198 and 199:

    Appendix C Reaction mechanism [44]

  • Page 200 and 201:

    Appendix C Reaction mechanism [44]

  • Page 202 and 203:

    Appendix C Reaction mechanism [44]

  • Page 204 and 205:

    Appendix C Reaction mechanism [44]

  • Page 206 and 207:

    Appendix C Reaction mechanism [44]

  • Page 208 and 209:

    Appendix C Reaction mechanism [44]

  • Page 210 and 211:

    Appendix C Reaction mechanism [44]

  • Page 212 and 213:

    Appendix C Reaction mechanism [44]

  • Page 214 and 215:

    Appendix C Reaction mechanism [44]

  • Page 216 and 217:

    Appendix C Reaction mechanism [44]

  • Page 218 and 219:

    Appendix C Reaction mechanism [44]

  • Page 220 and 221:

    Appendix C Reaction mechanism [44]

  • Page 222 and 223:

    Appendix C Reaction mechanism [44]

  • Page 224:

    Appendix C Reaction mechanism [44]

Heat release rate measurement in turbulent flames
Measurement of flame surface density for turbulent premixed flames ...
Measurement of turbulent transport in premixed turbulent flames by ...
Numerical Simulation of the Dynamics of Turbulent Swirling Flames
chapter 5 turbulent diffusion flames - FedOA
Scalar Characteristics of a Premixed Turbulent Stagnating Flame ...
Sensitivity calculations in PDF modelling of turbulent flames
Turbulent combustion (Lecture 3) Non-premixed flames
DNS of Turbulent Nonpremixed Ethylene Flames
Modelling Turbulent Non-premixed Flames Using a Reactant Plan ...
Effects of heat release in laminar diffusion flames - Mechanical ...
Electric Field Control of a Premixed Turbulent Flame at High Pressure
Numerical Simulation of Turbulent Premixed Flames with ...
determination of line-of-sight integrated heat release rate ...
Efficient NOCalculations in Turbulent Non-Premixed Flames Using ...
RANS Study of Hydrogen-Air Turbulent Non-Premixed Flames
investigation of the transient flame development using a ...
Studies of Hydroxyl Distribution and Soot Formation in Turbulent ...
acceleration of flames and transition from deflagration to detonation ...
Identification of low-dimensional manifolds in turbulent flames
Fuel effects on diffusion flames at elevated pressures - Turbulence ...
A revised EBU type model for turbulent premixed flames based on ...
A numerical study of auto-ignition in turbulent lifted flames issuing ...
front evolution and flame stretch in a turbulent premixed bunsen flame
Turbulent Flame Dynamics of Homogeneous Solid Propellant in a ...
Three-Scalar Imaging in Turbulent Flames - Yale University
large eddy simulation of turbulent premixed flames propagation in a ...
Joint PDF Closure of Turbulent Premixed Flames - Italian Section of ...
Experimental and numerical study of a two-phase turbulent flame. C ...
Determination of the Rate of Dissipation of Turbulent Energy near ...