Views
3 years ago

Numerical Simulation of the Dynamics of Turbulent Swirling Flames

Numerical Simulation of the Dynamics of Turbulent Swirling Flames

Numerical Simulation of the Dynamics of Turbulent Swirling

Technische Universität München Institut für Energietechnik Lehrstuhl für Thermodynamik Numerical Simulation of the Dynamics of Turbulent Swirling Flames Luis Roberto Tay Wo Chong Hilares Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines genehmigten Dissertation. DOKTOR – INGENIEURS Vorsitzender: Univ.-Prof. Rafael Macián-Juan, Ph.D. Prüfer der Dissertation: 1. Univ.-Prof. Wolfgang Polifke, Ph.D. (CCNY) 2. Assoc. Prof. Thierry Schuller, Ph.D. École Centrale Paris / Frankreich Die Dissertation wurde am 06.12.2011 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 23.01.2012 angenommen.

  • Page 3 and 4: Acknowledgments The present work wa
  • Page 5 and 6: Abstract The flame dynamics of a pe
  • Page 7 and 8: Contents 1 Introduction 1 1.1 Combu
  • Page 9 and 10: CONTENTS 5.6 Influence of Combustor
  • Page 11 and 12: List of Figures 1.1 Left: Worldwide
  • Page 13 and 14: LIST OF FIGURES 5.10 Mean axial vel
  • Page 15 and 16: LIST OF FIGURES 5.32 Area averaged
  • Page 17 and 18: LIST OF FIGURES A.9 Flame Transfer
  • Page 19 and 20: Nomenclature Latin Characters A Pre
  • Page 21 and 22: Nomenclature ψ Model constant of t
  • Page 23 and 24: Nomenclature P2 Position 2 R AN S R
  • Page 25 and 26: 1 Introduction Gas turbines have be
  • Page 27 and 28: 1.1 Combustion Instabilities Figure
  • Page 29 and 30: 1.1 Combustion Instabilities be use
  • Page 31 and 32: 1.2 Overview of the Thesis 1.2 Over
  • Page 33 and 34: 2 Turbulent Reacting Flows In turbu
  • Page 35 and 36: 2.2 The Energy Spectrum and Turbule
  • Page 37 and 38: 2.2 The Energy Spectrum and Turbule
  • Page 39 and 40: 2.2 The Energy Spectrum and Turbule
  • Page 41 and 42: 2.3 Turbulent Premixed Combustion
  • Page 43 and 44: 2.3 Turbulent Premixed Combustion F
  • Page 45 and 46: 2.4 Turbulent Premixed Combustion M
  • Page 47 and 48: 2.4 Turbulent Premixed Combustion M
  • Page 49 and 50: 2.4 Turbulent Premixed Combustion M
  • Page 51 and 52: 2.4 Turbulent Premixed Combustion M
  • Page 53 and 54:

    2.4 Turbulent Premixed Combustion M

  • Page 55 and 56:

    2.4 Turbulent Premixed Combustion M

  • Page 57 and 58:

    2.4 Turbulent Premixed Combustion M

  • Page 59 and 60:

    3.1 The Flame Transfer Function Fig

  • Page 61 and 62:

    3.2 Determination of the Flame Tran

  • Page 63 and 64:

    3.2 Determination of the Flame Tran

  • Page 65 and 66:

    3.3 Additional Parameters Influenci

  • Page 67 and 68:

    3.3 Additional Parameters Influenci

  • Page 69 and 70:

    3.3 Additional Parameters Influenci

  • Page 71 and 72:

    3.3 Additional Parameters Influenci

  • Page 73 and 74:

    3.4 Model of Impulse and Frequency

  • Page 75 and 76:

    4 System Identification The Flame T

  • Page 77 and 78:

    4.1 Background Figure 4.1: Differen

  • Page 79 and 80:

    4.1 Background quences by [166]:

  • Page 81 and 82:

    4.2 The Wiener Filter • The auto-

  • Page 83 and 84:

    4.2 The Wiener Filter Considering t

  • Page 85 and 86:

    4.3 The LES/SI Method Figure 4.4: L

  • Page 87 and 88:

    5 Identification of Flame Transfer

  • Page 89 and 90:

    5.2 Reference Case with 30 kW of Po

  • Page 91 and 92:

    5.2 Reference Case with 30 kW of Po

  • Page 93 and 94:

    5.2 Reference Case with 30 kW of Po

  • Page 95 and 96:

    5.2 Reference Case with 30 kW of Po

  • Page 97 and 98:

    5.2 Reference Case with 30 kW of Po

  • Page 99 and 100:

    5.3 Influence of Variation in Power

  • Page 101 and 102:

    5.3 Influence of Variation in Power

  • Page 103 and 104:

    5.3 Influence of Variation in Power

  • Page 105 and 106:

    5.3 Influence of Variation in Power

  • Page 107 and 108:

    5.3 Influence of Variation in Power

  • Page 109 and 110:

    5.3 Influence of Variation in Power

  • Page 111 and 112:

    5.3 Influence of Variation in Power

  • Page 113 and 114:

    5.4 Influence of Thermal Boundary C

  • Page 115 and 116:

    5.4 Influence of Thermal Boundary C

  • Page 117 and 118:

    5.4 Influence of Thermal Boundary C

  • Page 119 and 120:

    5.5 Influence of Swirler Position o

  • Page 121 and 122:

    5.5 Influence of Swirler Position o

  • Page 123 and 124:

    5.5 Influence of Swirler Position o

  • Page 125 and 126:

    5.5 Influence of Swirler Position o

  • Page 127 and 128:

    5.5 Influence of Swirler Position o

  • Page 129 and 130:

    5.6 Influence of Combustor Confinem

  • Page 131 and 132:

    5.6 Influence of Combustor Confinem

  • Page 133 and 134:

    5.6 Influence of Combustor Confinem

  • Page 135 and 136:

    5.7 Flame Transfer Function Model f

  • Page 137 and 138:

    5.7 Flame Transfer Function Model T

  • Page 139 and 140:

    5.7 Flame Transfer Function Model F

  • Page 141 and 142:

    5.7 Flame Transfer Function Model F

  • Page 143 and 144:

    5.7 Flame Transfer Function Model T

  • Page 145 and 146:

    5.7 Flame Transfer Function Model A

  • Page 147 and 148:

    6.1 Linear Acoustic 1D Equations wh

  • Page 149 and 150:

    6.2 Low-order Network Models Figure

  • Page 151 and 152:

    6.2 Low-order Network Models acoust

  • Page 153 and 154:

    6.3 Stability Analysis of the Syste

  • Page 155 and 156:

    6.4 Results of the Stability Analys

  • Page 157 and 158:

    6.4 Results of the Stability Analys

  • Page 159 and 160:

    7 Summary and Conclusions The flame

  • Page 161 and 162:

    in the experimental work of Hauser

  • Page 163 and 164:

    8 Outlook The present study shows t

  • Page 165 and 166:

    Bibliography [1] U.S. Energy Inform

  • Page 167 and 168:

    BIBLIOGRAPHY [17] N. Bunce, J.G. Le

  • Page 169 and 170:

    BIBLIOGRAPHY [37] A.P. Dowling. The

  • Page 171 and 172:

    BIBLIOGRAPHY for Single-Input, Sing

  • Page 173 and 174:

    BIBLIOGRAPHY [74] W. L. H. Hallett

  • Page 175 and 176:

    BIBLIOGRAPHY [92] S. Kaplan. Power

  • Page 177 and 178:

    BIBLIOGRAPHY [112] L. Langston. The

  • Page 179 and 180:

    BIBLIOGRAPHY [132] V. Moureau, G. L

  • Page 181 and 182:

    BIBLIOGRAPHY [152] T. Poinsot and D

  • Page 183 and 184:

    BIBLIOGRAPHY [174] P. Schmitt. Simu

  • Page 185 and 186:

    BIBLIOGRAPHY [191] G. Staffelbach,

  • Page 187 and 188:

    BIBLIOGRAPHY [212] S. Wang and V. Y

  • Page 189 and 190:

    A Appendices A.1 The Rayleigh Crite

  • Page 191 and 192:

    A.2 Laminar Flame Reaction Kinetics

  • Page 193 and 194:

    A.4 Derivation of the Turbulent Kin

  • Page 195 and 196:

    A.5 Generation of Signals for LES/S

  • Page 197 and 198:

    A.6 Derivation of the Linearized Ac

  • Page 199 and 200:

    A.7 Description of Elements in the

  • Page 201 and 202:

    A.7 Description of Elements in the

  • Page 203 and 204:

    A.7 Description of Elements in the

  • Page 205 and 206:

    A.8 FTF at Different Velocity Refer

  • Page 207 and 208:

    A.9 Confidence Analysis of Flame Tr

  • Page 209 and 210:

    A.10 Post-processing Tool for Line-

  • Page 211:

    A.10 Post-processing Tool for Line-

Experimental and LES Study of Low Swirl Flame
Modelling of turbulent flows applied to numerical simulations of ...
Direct Numerical Simulation of Turbulence with a PC/Linux Cluster ...
Numerical Simulation of Turbulent Premixed Flames with ...
Turbulent Flames and Their Numerical Simulation
Simulation of Engine Flow with Swirl Using Re-Stress Turbulence ...
Large Eddy Simulation of Turbulent Swirling Flows and Turbulent ...
direct numerical simulation of co − h 2 premixed turbulent flame
An experimental and numerical study of turbulent swirling #ow in ...
Dynamic motion of lean swirling premixed flame generated by ...
A numerical study of auto-ignition in turbulent lifted flames issuing ...
Compressible Large Eddy Simulation of turbulent ... - cerfacs
numerical analysis of laminar and turbulent swirl flows lami̇ner ve ...
Large-eddy simulations of turbulent swirling flows injected into a ...
Swirl stabilized premixed flame analysis using LES and POD
Numerical Simulation of Laminar and Turbulent Two- Phase Flow in ...
Large Eddy Simulations of gaseous flames in gas turbine ...
Numerical simulation and analysis of plasma turbulence the Large ...
large eddy simulation of turbulent premixed flames propagation in a ...
The response of swirling premixed flames to velocity perturbations P ...
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
Effects of Magnetic Field on Swirling Flame
Numerical Simulation of Turbulent Combustion on ... - ResearchGate
Unsteady Numerical Simulations of Transcritical Turbulent ...
Numerical Simulation of Gas-Liquid Flow in a Stirred Tank with Swirl ...
Turbulent Flame Dynamics of Homogeneous Solid Propellant in a ...
Measurement of flame surface density for turbulent premixed flames ...
large eddy simulation of turbulent premixed flames propagation in a ...
Measurement of turbulent transport in premixed turbulent flames by ...
Electric Field Control of a Premixed Turbulent Flame at High Pressure