14.09.2014 Views

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

Impact of fuel supply impedance and fuel staging on gas turbine ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Technische Universität München<br />

Institut für Energietechnik<br />

Lehrstuhl für Thermodynamik<br />

<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g><br />

<strong>on</strong> <strong>gas</strong> <strong>turbine</strong> combusti<strong>on</strong> stability<br />

Andreas Huber<br />

Vollständiger Abdruck der v<strong>on</strong> der Fakultät für Maschinenwesen der<br />

Technischen Universität München zur Erlangung des akademischen Grades<br />

eines<br />

genehmigten Dissertati<strong>on</strong>.<br />

DOKTOR – INGENIEURS<br />

Vorsitzender:<br />

Univ.-Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr.-Ing. habil. Hartmut Splieth<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Prüfer der Dissertati<strong>on</strong>:<br />

1. Univ.-Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Wolfgang H. Polifke, Ph.D. (CCNY)<br />

2. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Franck Nicoud (Universität M<strong>on</strong>tpellier II,<br />

Frankreich)<br />

Die Dissertati<strong>on</strong> wurde am 18. Mai 2009 bei der Technischen Universität München<br />

eingereicht und durch die Fakultät für Maschinenwesen am 3. September 2009<br />

angenommen.


Danksagung<br />

Die vorliegende Arbeit entst<str<strong>on</strong>g>and</str<strong>on</strong>g> am Lehrstuhl für Thermodynamik der Technischen<br />

Universität München im Rahmen des Verbundprogramms COOR-<br />

EFF - "CO 2 Redukti<strong>on</strong> durch Effizienz" der Arbeitsgemeinschaft AG Turbo.<br />

Sie wurde vom Bundesministerium für Wirtschaft und Technologie und der<br />

Firma Siemens Power Generati<strong>on</strong> gefördert.<br />

Mein ganz bes<strong>on</strong>derer Dank gilt meinem Doktorvater, Herrn Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Wolfgang<br />

H. Polifke, Ph.D. (CCNY) nicht nur für die fachliche Betreuung s<strong>on</strong>dern<br />

auch für sein in mich gesetztes Vertrauen sowie für die Freiheit in der Bearbeitung<br />

der mir gestellten Aufgabe. Bes<strong>on</strong>ders dankbar bin ich für die vielen<br />

anregenden, mitunter auch sp<strong>on</strong>tanen Diskussi<strong>on</strong>en im Bereich der Thermoakustik,<br />

die massgeblich zum Gelingen dieser Arbeit beigetragen haben.<br />

Herrn Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Dr. Franck Nicoud danke ich für die freundliche Übernahme<br />

des Koreferates und dafür, dass er die weite Anreise aus dem s<strong>on</strong>nigen M<strong>on</strong>tpellier<br />

auf sich genommen hat. Herrn Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Dr.–Ing. habil. Hartmut Splieth<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

danke ich für den Vorsitz bei der mündlichen Prüfung.<br />

Mein Dank gilt auch allen meinen Kolleginnen und Kollegen am Lehrstuhl.<br />

Das kollegiale Betriebsklima aber auch die gemeinsamen Aktivitäten werden<br />

mir immer in guter Erinnerung bleiben. Viele Erkenntnisse und so<br />

manches Ergebnis resultieren aus Anregungen und Diskussi<strong>on</strong>en vor allem<br />

innerhalb der Gruppe der Strömungsinstabilitäten. Bes<strong>on</strong>derer Dank gilt<br />

meinen langjährigen Bürokollegen Ludovic Dur<str<strong>on</strong>g>and</str<strong>on</strong>g> und später Martin Lauer<br />

für die überaus schöne Zeit, die freundschaftliche Atmosphäre und die vielen<br />

wertvollen Diskussi<strong>on</strong>en.<br />

Weiterhin danke ich den Semestranten, Diplomanten und wissenschaftlichen<br />

Hilfskräften, die im Rahmen des Projekts wichtige Beiträge geleistet haben, für<br />

ihren motivierten Einsatz und die tatkräftige Unterstützung. Danken möchte<br />

ich auch meiner Kollegin Jutta Pieringer, Helga Bassett und meiner Freundin<br />

Anne Schulz, die diese Arbeit Korrektur gelesen haben.<br />

Meiner Freundin möchte ich zudem für ihre Unterstützung, ihr Verständnis<br />

iii


und ihre Geduld bes<strong>on</strong>ders für die vielen Wochenenden danken, an denen<br />

ich mich mit dem Anfertigen dieser Dissertati<strong>on</strong> beschäftigt habe. Zuletzt<br />

möchte ich mich bei meiner Familie für ihre Unterstützung während meiner<br />

gesamten Ausbildungszeit bedanken, die damit die Vorraussetzung für diese<br />

Arbeit geschaffen haben.<br />

München, im Oktober 2009<br />

Andreas Huber<br />

iv


Abstract – Zusammenfassung<br />

Due to the envir<strong>on</strong>ment-friendly lean premixed combusti<strong>on</strong> <strong>gas</strong> <strong>turbine</strong>s<br />

exhibit an increased risk in generating thermo-acoustically induced combusti<strong>on</strong><br />

oscillati<strong>on</strong>s. These oscillati<strong>on</strong>s can cause damage <str<strong>on</strong>g>of</str<strong>on</strong>g> combustor parts<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> limit the stable operating range. The present work analyses the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g>, the distance between <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> flame<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> <strong>on</strong> the thermo-acoustic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> a combusti<strong>on</strong> system.<br />

The flame-acoustic interacti<strong>on</strong>s are represented in form <str<strong>on</strong>g>of</str<strong>on</strong>g> a “multiple-input<br />

single-output” (MISO) model. The model coefficients are determined using<br />

transient Computati<strong>on</strong>al Fluid Dynamics (CFD) simulati<strong>on</strong>s with acoustic<br />

broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> system identificati<strong>on</strong>. The results obtained are<br />

implemented into an acoustic network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system to<br />

analyze the different impacts <strong>on</strong> the thermo-acoustic stability, especially the<br />

fluctuating mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> air <str<strong>on</strong>g>and</str<strong>on</strong>g> the flame fr<strong>on</strong>t kinematics.<br />

Stati<strong>on</strong>äre Gas<strong>turbine</strong>n mit emissi<strong>on</strong>sarmer, magerer Vormischverbrennung<br />

neigen zu thermoakustisch induzierten Brennkammerschwingungen, die zur<br />

Zerstörung v<strong>on</strong> Bauteilen führen können. In der vorliegenden Arbeit wird<br />

der Einfluss der akustischen Impedanz der Brennst<str<strong>on</strong>g>of</str<strong>on</strong>g>fleitungen, der relativen<br />

Lage der Brennst<str<strong>on</strong>g>of</str<strong>on</strong>g>feindüsung zur Flamme, und der Brennst<str<strong>on</strong>g>of</str<strong>on</strong>g>fstufung<br />

auf das thermoakustische Verhalten eines Verbrennungssystems untersucht.<br />

Die Wechselwirkungen v<strong>on</strong> Flamme und Akustik werden als ”multipleinput<br />

single-output” (MISO) Modell dargestellt, die Modellkoeffizienten werden<br />

mittels numerischer Strömungssimulati<strong>on</strong> mit akustischer Breitb<str<strong>on</strong>g>and</str<strong>on</strong>g>anregung<br />

und Systemidentifikati<strong>on</strong> ermittelt. Die Ergebnisse werden in ein<br />

akustisches Netzwerkmodell des Verbrennungssystems integriert, um die<br />

Auswirkungen der verschiedenen Effekte, insbes<strong>on</strong>dere Schwankungen des<br />

Brennst<str<strong>on</strong>g>of</str<strong>on</strong>g>f-Luftgemisches und Flammenkinematik, auf die Systemstabilität<br />

zu untersuchen.<br />

v


C<strong>on</strong>tents<br />

1 Introducti<strong>on</strong> 1<br />

1.1 Technology background: Electrical energy, efficiency <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

protecti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.2 Thermo-acoustic instabilities . . . . . . . . . . . . . . . . . . . . . 3<br />

1.3 C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities . . . . . . . . . . . . . . . 7<br />

1.4 Intenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> this work . . . . . . . . . . . . . . . . . 10<br />

1.5 Terminology <str<strong>on</strong>g>and</str<strong>on</strong>g> specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work . . . . . . . . 12<br />

2 Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities 17<br />

2.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for thermo-acoustic stability analysis . . . 17<br />

2.2 Flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system . . 24<br />

2.2.1 Flame resp<strong>on</strong>se to velocity fluctuati<strong>on</strong>s . . . . . . . . . . . 25<br />

2.2.2 Flame resp<strong>on</strong>se to equivalence ratio fluctuati<strong>on</strong>s . . . . . 28<br />

2.2.3 MISO model structure for practical premixed flames . . . 30<br />

2.3 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s . . . . . . . . . . . . . . 33<br />

2.3.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> methods to determine flame transfer functi<strong>on</strong>s 34<br />

2.3.2 Identificati<strong>on</strong> strategy . . . . . . . . . . . . . . . . . . . . . 37<br />

3 Acoustics 43<br />

3.1 Basic acoustic equati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.2 Linear acoustic equati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . 46<br />

3.2.1 Sound propagati<strong>on</strong> in a quiescent medium . . . . . . . . . 47<br />

3.2.2 Sound propagati<strong>on</strong> in a moving medium . . . . . . . . . . 50<br />

3.3 Acoustic network model . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

3.3.1 Matrices <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic elements . . . . . . . . 53<br />

3.3.1.1 Simple ducts or tubes . . . . . . . . . . . . . . . . 55<br />

3.3.1.2 Compact elements . . . . . . . . . . . . . . . . . . 55<br />

vii


CONTENTS<br />

3.3.1.3 Boundary c<strong>on</strong>diti<strong>on</strong>s . . . . . . . . . . . . . . . . 62<br />

3.3.2 Numerical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model . . . . 64<br />

4 Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows using CFD 69<br />

4.1 Theory <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence . . . . . . . . . . 69<br />

4.1.1 Basic equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent flows . . . . . . . . . . . . . . 69<br />

4.1.2 Modeling turbulence with RANS . . . . . . . . . . . . . . . 71<br />

4.2 Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical combusti<strong>on</strong> . . . . . . . . . . . . . . . 74<br />

4.2.1 Combusti<strong>on</strong> theory . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.2.2 Practical premixed combusti<strong>on</strong> model . . . . . . . . . . . 77<br />

5 System Identificati<strong>on</strong> 81<br />

5.1 Model structures <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>se filters . . . . . . . . . . . . . . . . 82<br />

5.2 System Identificati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

5.3 Excitati<strong>on</strong> signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

5.4 A posteriori validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results . . . . . . . . . . . 89<br />

5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame model 92<br />

5.5.1 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> model structure <strong>on</strong> identificati<strong>on</strong> results . . . . 95<br />

5.5.2 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> excitati<strong>on</strong> signal types in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise 96<br />

5.5.3 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured time series length . . . . . . . . . 102<br />

6 Numerical simulati<strong>on</strong> 105<br />

6.1 Practical premixed combustor c<strong>on</strong>figurati<strong>on</strong> . . . . . . . . . . . . 105<br />

6.1.1 Design <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector . . . . . . . . . . . . . . . . . . . 108<br />

6.1.2 Numerical setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system . . . . . . . . 110<br />

6.2 Steady-state simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor c<strong>on</strong>figurati<strong>on</strong>s . . . . 115<br />

6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s . . . . . . . . . . . . 119<br />

6.3.1 Combustor c<strong>on</strong>figurati<strong>on</strong> with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages . 120<br />

6.3.2 Combustor c<strong>on</strong>figurati<strong>on</strong> with three <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages 124<br />

6.3.3 Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results . . . . 128<br />

6.4 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler . . . . 134<br />

7 Acoustic analysis 139<br />

7.1 Setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model . . . . . . . . . . . . . . . . 139<br />

7.2 Acoustic network model results . . . . . . . . . . . . . . . . . . . . 143<br />

7.2.1 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage <str<strong>on</strong>g>impedance</str<strong>on</strong>g> . . . . . . . 144<br />

viii


CONTENTS<br />

7.2.2 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> nozzle locati<strong>on</strong> . . . . . . . . . 158<br />

7.2.3 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . 162<br />

8 Summary <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>clusi<strong>on</strong>s 167<br />

A Appendix 186<br />

A.1 Transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pu, f g transfer matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> scattering (sr ) matrix<br />

notati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186<br />

A.2 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the optimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> circumferential injecti<strong>on</strong><br />

holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

A.3 Main flow parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network<br />

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

ix


Nomenclature<br />

Latin letters<br />

A area [m 2 ]<br />

aCFL acoustic Courant-Friedrichs-Lewy number [-]<br />

c speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound [m/s]<br />

c reacti<strong>on</strong> progress variable [-]<br />

ci c<strong>on</strong>fidence intervall [-]<br />

c p specific heat capacity (c<strong>on</strong>stant pressure) [J/kg-K]<br />

c v specific heat capacity (c<strong>on</strong>stant volume) [J/kg-K]<br />

C cross-correlati<strong>on</strong> vector [-]<br />

C r crest factor [-]<br />

C I cycle increment [-]<br />

CFL Courant-Friedrichs-Lewy number [-]<br />

d diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> burner mouth [m]<br />

d j diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube [m]<br />

D diffusi<strong>on</strong> coefficient [m 2 /s]<br />

Da Damköhler number [-]<br />

e internal energy per unit mass [J/kg]<br />

e n noise term [-]<br />

f Riemann invariant (in positive directi<strong>on</strong>) [m/s]<br />

f frequency [1/s]<br />

f c cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequency [1/s]<br />

f N Nyquist frequency [1/s]<br />

F w weighted reacti<strong>on</strong> progress [-]<br />

F flame transfer functi<strong>on</strong> [-]<br />

g Riemann invariant (in negative directi<strong>on</strong>) [m/s]<br />

x


Nomenclature<br />

G stretch factor [-]<br />

h unit impulse resp<strong>on</strong>se vector [-]<br />

h s specific enthalpy per unit mass [J/kg]<br />

h t total enthalpy per unit mass [J/kg]<br />

He Helmholtz number [-]<br />

△H enthalpy per unit mass [J/kg]<br />

J impulse ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> main stream [-]<br />

k turbulent kinetic energy [m 2 /s 2 ]<br />

k b Boltzmann c<strong>on</strong>stant [J/K]<br />

k x wave number (in x-directi<strong>on</strong>) [1/m]<br />

Ka Karlowitz number [-]<br />

l f laminar flame thickness [m]<br />

L length [m]<br />

L f axial distance between <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> burner mouth [m]<br />

L R length <str<strong>on</strong>g>of</str<strong>on</strong>g> res<strong>on</strong>ator tube [m]<br />

l t turbulent integral length scale [m]<br />

Le Lewis number [-]<br />

m mass [kg]<br />

M molar mass [kg/kmol]<br />

n interacti<strong>on</strong> index [-]<br />

N A Avogadro number [-]<br />

p static pressure [Pa]<br />

Pr Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number [-]<br />

R specific <strong>gas</strong> c<strong>on</strong>stant [J/K-mol]<br />

R f reflecti<strong>on</strong> coefficient [-]<br />

q heat flux [W/m 2 ]<br />

˙q rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release (per unit mass) [J/kg]<br />

Q measure <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> quality [%]<br />

˙Q rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release (per unit area) [J/s-m 2 ]<br />

˙Q V heat producti<strong>on</strong> (per unit volume) [J/s-m 3 ]<br />

s entropy [J/K]<br />

s signal [-]<br />

s st mass stoichiometric ratio [-]<br />

s L laminar flame speed [m/s]<br />

xi


Nomenclature<br />

s t turbulent flame speed [m/s]<br />

S c reacti<strong>on</strong> source term [kg/m 2 -s]<br />

S sr Scattering matrix [-]<br />

Sc c,t turbulent Schmidt number [-]<br />

t time [s]<br />

t n sampling instant [s]<br />

T temperature [K]<br />

T f g Transfer matrix described by f <str<strong>on</strong>g>and</str<strong>on</strong>g> g [-]<br />

T per oscillati<strong>on</strong> period [s]<br />

T c cycle time [s]<br />

△t sampling interval [s]<br />

T t simulati<strong>on</strong> time [s]<br />

u velocity [m/s]<br />

u velocity vector [m/s]<br />

u absolute velocity [m/s]<br />

u i velocity comp<strong>on</strong>ent i or vector u [m/s]<br />

V volume [m 3 ]<br />

x input signal [-]<br />

X axial distance from point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> [m]<br />

y output signal (resp<strong>on</strong>se) [-]<br />

ŷ predictor [-]<br />

Y radial distance from point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> [m]<br />

Y mass fracti<strong>on</strong> [-]<br />

Z acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> [-]<br />

Z M mixture fracti<strong>on</strong> [-]<br />

Greek letters<br />

α [-]<br />

ǫ predicti<strong>on</strong> error [-]<br />

ǫ t turbulent dissipati<strong>on</strong> [m 2 /s 3 ]<br />

γ ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> specific heats [-]<br />

Γ auto-correlati<strong>on</strong> matrix [-]<br />

xii


Nomenclature<br />

λ air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g> ratio [-]<br />

λ t thermal c<strong>on</strong>ductivity [W/m-K]<br />

λ w wavelength [m]<br />

η k Kolmogorov length scale [m]<br />

ϕ regressi<strong>on</strong> vector [-]<br />

ϕ u velocity potential [1/s]<br />

φ equivalence ratio [-]<br />

µ t turbulent dynamic viscosity [kg/m-s]<br />

ρ density [kg/m 3 ]<br />

Σ flame surface per unit volume [m −1 ]<br />

τ stress tensor [Pa]<br />

τ c chemical time scale [s]<br />

τ k Kolmogorov time [s]<br />

τ t turbulent time scale [s]<br />

ˆθ least-square estimate [-]<br />

ω angular frequency [1/s]<br />

ω t turbulent frequency [1/s]<br />

˙ω reacti<strong>on</strong> rate [kg/m 3 -s]<br />

χ u thermal diffusivity [W/m-K]<br />

ζ pressure loss coefficient [-]<br />

Operators<br />

(.) ′ acoustic fluctuati<strong>on</strong><br />

(.) ′′ turbulent fluctuati<strong>on</strong><br />

(.) ¯ mean value (Reynolds average)<br />

(.) ˜ mass-weighted average (Favre average)<br />

xiii


Nomenclature<br />

Indices<br />

0 ambient state<br />

A air stream<br />

b burner exit (flame holder)<br />

cc combusti<strong>on</strong> chamber<br />

DS downstream<br />

f l flame / flame fr<strong>on</strong>t<br />

F <str<strong>on</strong>g>fuel</str<strong>on</strong>g>, <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream<br />

FS <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g><br />

im imaginary part <str<strong>on</strong>g>of</str<strong>on</strong>g> a complex quantity<br />

O oxidiser<br />

real real part <str<strong>on</strong>g>of</str<strong>on</strong>g> a complex quantity<br />

u unburnt<br />

s al<strong>on</strong>g streamlines<br />

US upstream<br />

xiv


1 Introducti<strong>on</strong><br />

1.1 Technology background: Electrical energy, efficiency <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

envir<strong>on</strong>mental protecti<strong>on</strong><br />

In times <str<strong>on</strong>g>of</str<strong>on</strong>g> a worldwide increasing dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for electricity, the power industry<br />

faces the challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> ensuring the <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic <str<strong>on</strong>g>and</str<strong>on</strong>g> sustainable <str<strong>on</strong>g>supply</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy. According to the Internati<strong>on</strong>al Energy Agency [3] the global primary<br />

energy dem<str<strong>on</strong>g>and</str<strong>on</strong>g> will rise by about 50% between now <str<strong>on</strong>g>and</str<strong>on</strong>g> 2030. Over 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

increase will come from the emerging countries, with China al<strong>on</strong>e accounting<br />

for 30%. Fossil <str<strong>on</strong>g>fuel</str<strong>on</strong>g>s will still form the backb<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrical energy <str<strong>on</strong>g>supply</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> remain the dominant source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. Their share <str<strong>on</strong>g>of</str<strong>on</strong>g> the worldwide electrical<br />

energy dem<str<strong>on</strong>g>and</str<strong>on</strong>g> will slightly increase from 80% to 81% in 2030 [3]. C<strong>on</strong>sidering<br />

the limited reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> raw material, the goal <str<strong>on</strong>g>of</str<strong>on</strong>g> an ec<strong>on</strong>omic <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electrical energy becomes a challenging task, assuming that fossil <str<strong>on</strong>g>fuel</str<strong>on</strong>g> prices<br />

will increase in the l<strong>on</strong>g run. Also an sustainable producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electricity is<br />

difficult to achieve given that burning fossil <str<strong>on</strong>g>fuel</str<strong>on</strong>g>s raises the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greenhouse <strong>gas</strong> carb<strong>on</strong> dioxide (CO 2 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> other air pollutants such as unburnt<br />

hydrocarb<strong>on</strong>s (UHC), sulfur oxide (SO x ), carb<strong>on</strong> m<strong>on</strong>oxide (CO) <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen<br />

oxide (NO x ), especially nitric oxide (NO). The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the pollutants include,<br />

am<strong>on</strong>g others, global warming <str<strong>on</strong>g>and</str<strong>on</strong>g> acid rain (see e.g. Turns [128]).<br />

Protecting the climate <str<strong>on</strong>g>and</str<strong>on</strong>g> natural resources will therefore play an increasing<br />

role in the prospective utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil <str<strong>on</strong>g>fuel</str<strong>on</strong>g>s. The European Uni<strong>on</strong> has recently<br />

decided to reduce greenhouse <strong>gas</strong>es by 20% until 2020 (compared to<br />

1990). To achieve high <str<strong>on</strong>g>supply</str<strong>on</strong>g> dependability, cost effectiveness <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

sustainability, the German power generati<strong>on</strong> industry, for instance, focuses<br />

<strong>on</strong> an energy mix. The energy mix c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, nuclear power, natural<br />

<strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> renewable energies. In this c<strong>on</strong>text, electrical power producti<strong>on</strong><br />

using combined-cycle plants plays an increasing role. According to the ”Ver-<br />

1


Introducti<strong>on</strong><br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> der Elektrizitätswirtschaft” (VDEW) [1], their share in Germany doubled<br />

from 5% in 1995 to 10% in 2005, whereas the net electrical energy producti<strong>on</strong><br />

increased from 437×10 6 kWh to almost 536×10 6 kWh. An advantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

combined-cycle plants burning natural <strong>gas</strong> is the low emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 1 . Enormous<br />

progress has been made in this area in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiency<br />

in the past few decades. With an achieved increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> efficiency<br />

by about 20%, the required amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> has been decreased to achieve the<br />

same power with a reducti<strong>on</strong> in corresp<strong>on</strong>ding emissi<strong>on</strong>s.<br />

As a c<strong>on</strong>sequence to tighter emissi<strong>on</strong> legislati<strong>on</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong><br />

combusti<strong>on</strong> systems is mainly driven by the aim to reduce NO x <str<strong>on</strong>g>and</str<strong>on</strong>g> CO<br />

emissi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to further increase efficiency. A high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal efficiency<br />

can be reached with a high <str<strong>on</strong>g>and</str<strong>on</strong>g> uniformly distributed temperature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the exhaust <strong>gas</strong>es at the inlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>turbine</strong>. However, to reduce the amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NO x [66] it is favorable to realize a minimum possible combusti<strong>on</strong> temperature.<br />

The ideal flame temperature would therefore lie above but close to the<br />

lean extincti<strong>on</strong> level, which corresp<strong>on</strong>ds to a lean air/<str<strong>on</strong>g>fuel</str<strong>on</strong>g> mixture. In additi<strong>on</strong><br />

to the dependence <strong>on</strong> temperature, the NO x <str<strong>on</strong>g>and</str<strong>on</strong>g> CO producti<strong>on</strong> depends<br />

also <strong>on</strong> the residence time in the combustor. Low emissi<strong>on</strong>s can be ensured by<br />

low residence times. This can be achieved by increasing the burning velocity,<br />

which in turn results in compact combusti<strong>on</strong> chambers.<br />

State-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art <strong>gas</strong> <strong>turbine</strong>s are therefore equipped with low-emissi<strong>on</strong> lean<br />

premixed <str<strong>on</strong>g>and</str<strong>on</strong>g> compact combustors with flame temperatures far below the<br />

stoichiometric flame temperature. A drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> these combusti<strong>on</strong> systems is<br />

that they exhibit an increased risk in generating thermo-acoustically induced<br />

combusti<strong>on</strong> oscillati<strong>on</strong>s. Such oscillati<strong>on</strong>s, which have been a well-known<br />

problem since the early days <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong> development, are due to the str<strong>on</strong>g<br />

coupling between fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release rate <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> can cause<br />

mechanical <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal damage <str<strong>on</strong>g>and</str<strong>on</strong>g> limit the operating range. The preventi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this phenomen<strong>on</strong> has become an important design target for <strong>gas</strong> <strong>turbine</strong><br />

combustors.<br />

1 SO x , for example, does not play a role as these emissi<strong>on</strong>s presume a combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g>s with a higher sulfurc<strong>on</strong>tent,<br />

such as coal or low-quality oils.<br />

2


1.2 Thermo-acoustic instabilities<br />

1.2 Thermo-acoustic instabilities<br />

The interacti<strong>on</strong> between acoustics <str<strong>on</strong>g>and</str<strong>on</strong>g> the combusti<strong>on</strong> process has been<br />

known for a l<strong>on</strong>g time. John LeC<strong>on</strong>te [67] described his observati<strong>on</strong>s during<br />

a visit <str<strong>on</strong>g>of</str<strong>on</strong>g> a private musical entertainment in 1858. He noticed that the flame<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two ”fish-tail” <strong>gas</strong> burners exhibited pulsati<strong>on</strong>s in height, which were synchr<strong>on</strong>ous<br />

with the audible beats. In his publicati<strong>on</strong>, he menti<strong>on</strong>ed that even<br />

”a deaf man might have seen the harm<strong>on</strong>y”.<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong> combusti<strong>on</strong> the mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong> between<br />

the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> an acoustic wave are manifold. The physical mechanism<br />

resp<strong>on</strong>sible for thermo-acoustic instabilities is the transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating<br />

energy released in unsteady combusti<strong>on</strong> into acoustic energy. The basis<br />

for this process is the flame, which transforms the internal enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cold fresh <strong>gas</strong> to the internal enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> the products. The enthalpy difference<br />

between products <str<strong>on</strong>g>and</str<strong>on</strong>g> educts is released in form <str<strong>on</strong>g>of</str<strong>on</strong>g> heat. In other words<br />

the flame exp<str<strong>on</strong>g>and</str<strong>on</strong>g>s the volume thermally <str<strong>on</strong>g>and</str<strong>on</strong>g> thus acts as a volume source. As a<br />

c<strong>on</strong>sequence a fluctuating flame is a fluctuating source <str<strong>on</strong>g>of</str<strong>on</strong>g> volume <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore<br />

an acoustic source.<br />

A fluctuating flame can be caused by natural flow phenomena – turbulent flow<br />

field or natural coherent structures – <str<strong>on</strong>g>and</str<strong>on</strong>g> by the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong><br />

system. The turbulent reacting flow field induces a fluctuating heat<br />

release rate <str<strong>on</strong>g>and</str<strong>on</strong>g> emits broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> noise. Natural coherent structures in the<br />

shear layers at the burner outlet lead to a modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>vective transport<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <strong>gas</strong> to the flame, which also results in a fluctuating heat release<br />

rate. Nevertheless, the dominant mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> oscillati<strong>on</strong>s are<br />

due to the acoustic field, which depends <strong>on</strong> the design <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire <strong>gas</strong> <strong>turbine</strong>,<br />

including the compressor, the combusti<strong>on</strong> chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>turbine</strong>.<br />

Figure 1.1 presents a simplified model <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed swirl-stabilized<br />

combusti<strong>on</strong> system <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding acoustic perturbati<strong>on</strong>s which affect<br />

the heat release rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame.<br />

The model, shown in the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 1.1, c<strong>on</strong>tains the plenum, the mixing<br />

secti<strong>on</strong>, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g>, the swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> the combusti<strong>on</strong> chamber. The upstream<br />

(US) <str<strong>on</strong>g>and</str<strong>on</strong>g> downstream (DS) part, the compressor <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>turbine</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

3


Introducti<strong>on</strong><br />

Plenum<br />

Fuel Supply<br />

Combusti<strong>on</strong> chamber<br />

Z US<br />

Air<br />

Z i<br />

Fuel<br />

Swirler<br />

u' F,i<br />

u' A,i<br />

φ' i<br />

u' fl<br />

p'<br />

Flame<br />

p' fl<br />

.<br />

Q'<br />

p',u’<br />

Z DS<br />

Mixing secti<strong>on</strong><br />

u' b<br />

Turbulence (s )<br />

t<br />

Flame fr<strong>on</strong>t kinematics (A)<br />

Hydrodynamic instabilities<br />

.<br />

Heat release rate (Q)<br />

Swirl number (A)<br />

Equivalence ratio (s , s , ∆H)<br />

L<br />

t<br />

Figure 1.1: Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame<br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages i , i = 1,..., N, where N denotes the total number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors in the system, are represented by their acoustic characteristics<br />

in form <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s Z US , Z DS <str<strong>on</strong>g>and</str<strong>on</strong>g> Z 2 i . The downstream part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the figure presents an overview over the different impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustics <strong>on</strong><br />

the heat release rate. Following Ducruix et al. [27], Fleifil et al. [29] or Lawn <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Polifke [65] the overall heat release rate is expressed as<br />

∫<br />

˙Q = ρ u △H Σ s t dV, (1.1)<br />

where ρ u is the unburnt <strong>gas</strong> density,△H the enthalpy or heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> per<br />

unit mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixture, Σ the flame surface per unit volume, s t the turbulent<br />

flame speed <str<strong>on</strong>g>and</str<strong>on</strong>g> V the volume. The heat release rate fluctuati<strong>on</strong>s can be<br />

2 The acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> Z is defined as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> is a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

local acoustic field.<br />

4


1.2 Thermo-acoustic instabilities<br />

decomposed in the linear regime into separate c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating<br />

unburnt density, heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>, flame area <str<strong>on</strong>g>and</str<strong>on</strong>g> flame speed: 3<br />

˙Q ′<br />

¯˙Q<br />

≈ ρ′ u<br />

¯ρ u<br />

+ △H′<br />

△ ¯H + A′<br />

Ā + s′ t<br />

¯s t<br />

. (1.2)<br />

Here, A denotes the total flame fr<strong>on</strong>t area. The total heat release rate can thus<br />

be described as a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual effects. The fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the unburnt density in Eqn. (1.2) can usually be neglected in typical leanpremixed<br />

combusti<strong>on</strong> systems burning hydrocarb<strong>on</strong> <str<strong>on</strong>g>fuel</str<strong>on</strong>g>s at low Mach numbers.<br />

For practical premixed flames, two dominant interacti<strong>on</strong> mechanisms between<br />

heat release rate <str<strong>on</strong>g>and</str<strong>on</strong>g> acoustic fluctuati<strong>on</strong>s have been identified:<br />

1) flame fr<strong>on</strong>t kinematics, i.e. the time-delayed adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> flame<br />

shape, flame surface area <str<strong>on</strong>g>and</str<strong>on</strong>g> flame positi<strong>on</strong> to a change in the velocity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the flow through the burner u ′ . These fluctuati<strong>on</strong>s result<br />

b<br />

in kinematic perturbati<strong>on</strong>s, which are c<strong>on</strong>vected al<strong>on</strong>g the flame<br />

fr<strong>on</strong>t [11, 13, 22, 29, 65, 68, 121]. The acoustic velocity fluctuati<strong>on</strong> u ′ b<br />

also influences the local turbulent flow field, especially in the shear<br />

layer within <str<strong>on</strong>g>and</str<strong>on</strong>g> bey<strong>on</strong>d the burner, which can modulate the turbulent<br />

burning velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> thus the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> rate [76, 90]. At<br />

large amplitudes, vortical disturbances <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow, induced by acoustic<br />

oscillati<strong>on</strong>s, can manifest themselves as large-scale vortex structures.<br />

They str<strong>on</strong>gly influence the mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <str<strong>on</strong>g>fuel</str<strong>on</strong>g>/air mixture <str<strong>on</strong>g>and</str<strong>on</strong>g> hot<br />

combusti<strong>on</strong> products <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby the heat release rate. Vortices observed<br />

during combusti<strong>on</strong> oscillati<strong>on</strong>s can also be due to hydrodynamic<br />

instabilities [94]. They have an impact <strong>on</strong> the local turbulent burning<br />

velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> can enhance or reduce the combusti<strong>on</strong> process or even lead<br />

to local quenching <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame.<br />

3 Acoustic fluctuati<strong>on</strong>s are throughout this work denoted by an apostrophe ′ , whereas mean values are represented<br />

by an overbar ¯.<br />

5


Introducti<strong>on</strong><br />

2) equivalence ratio fluctuati<strong>on</strong>s (φ ′ i<br />

): they are created by fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the air mass flow past the injector i or <str<strong>on</strong>g>of</str<strong>on</strong>g> the pressure at the injector<br />

i . These inhomogeneities are transported c<strong>on</strong>vectively to the flame,<br />

where they lead to a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> per unit<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixture (△H), laminar (s L ) <str<strong>on</strong>g>and</str<strong>on</strong>g> turbulent burning velocity<br />

(s t ), flame positi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hot <strong>gas</strong> temperature (”entropy waves”)<br />

[14, 31, 53, 71, 99, 101, 107, 112].<br />

The acoustic pressure (p ′ f l ) <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity (u′ ) at the flame fr<strong>on</strong>t could also<br />

f l<br />

modify the heat release rate. Their influence is rather small in practical applicati<strong>on</strong>s<br />

like <strong>gas</strong> <strong>turbine</strong>s or domestic heaters <str<strong>on</strong>g>and</str<strong>on</strong>g> can therefore be neglected.<br />

Other effects, like a fluctuating swirl, which changes mainly the flame area,<br />

can also play a role but are not c<strong>on</strong>sidered explicitly in the present work.<br />

All effects menti<strong>on</strong>ed lead to fluctuati<strong>on</strong>s in the heat release rate <str<strong>on</strong>g>and</str<strong>on</strong>g> thus to<br />

a fluctuating volume expansi<strong>on</strong>, which result in acoustic fluctuati<strong>on</strong>s (p ′ , u ′ ).<br />

As shown in Fig. 1.1, the acoustic waves caused by the flame travel through the<br />

combusti<strong>on</strong> system <str<strong>on</strong>g>and</str<strong>on</strong>g> are partly reflected at the <strong>gas</strong> <strong>turbine</strong> parts, which are<br />

located upstream <str<strong>on</strong>g>and</str<strong>on</strong>g> downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> chamber. The amplitude<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the reflecti<strong>on</strong> are determined by the acoustic characteristics<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>impedance</str<strong>on</strong>g> at the outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the compressor or at the inlet <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>turbine</strong>. The reflected waves are causing acoustic fluctuati<strong>on</strong>s at the flame<br />

fr<strong>on</strong>t, at the burner outlet <str<strong>on</strong>g>and</str<strong>on</strong>g> at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>, which give rise<br />

to a direct or time-delayed resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. The acoustic pressure fluctuati<strong>on</strong>s<br />

in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> the fluctuating heat release rate form<br />

therefore a thermodynamic feedback cycle, which is closed by the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the combusti<strong>on</strong> system. Whether the cycle excites or damps possible combusti<strong>on</strong><br />

oscillati<strong>on</strong>s depends <strong>on</strong> the phase shift between the two characteristics<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> is known as the Rayleigh criteri<strong>on</strong>. According to Lord Rayleigh [105], who<br />

discovered this correlati<strong>on</strong> in the 19th century, the c<strong>on</strong>diti<strong>on</strong>s for the occurrence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> instabilities are met, when heat is released at the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest<br />

compressi<strong>on</strong>. In other words a combusti<strong>on</strong> oscillati<strong>on</strong> can occur if pressure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate fluctuati<strong>on</strong>s are in phase, i.e. the integral <str<strong>on</strong>g>of</str<strong>on</strong>g> the product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate fluctuati<strong>on</strong>s over a oscillati<strong>on</strong> period T per is<br />

6


1.3 C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

positive:<br />

∮ t+Tper<br />

t<br />

∫<br />

V cc<br />

p ′ (x, y, z, t ) ˙Q ′ (x, y, z, t )dV d t > 0. (1.3)<br />

The integrati<strong>on</strong> in Eqn. (1.3) is performed spatially over the combusti<strong>on</strong><br />

chamber volume V cc . A positive Rayleigh integral is a necessary, but not sufficient<br />

c<strong>on</strong>diti<strong>on</strong> for the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> instabilities. The generated<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermo-acoustic process has to outweigh the acoustic losses in<br />

the system <str<strong>on</strong>g>and</str<strong>on</strong>g> the radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the oscillati<strong>on</strong> energy over the boundaries.<br />

To realize a low-oscillati<strong>on</strong> combusti<strong>on</strong> chamber three main possible approaches<br />

can be deduced from the latter c<strong>on</strong>siderati<strong>on</strong>:<br />

• Increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the damping characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system<br />

• Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s in the combusti<strong>on</strong> chamber<br />

• Favorable modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase relati<strong>on</strong>ship between fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate<br />

1.3 C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

Beside the fact that many different methods were developed to suppress<br />

thermo-acoustic oscillati<strong>on</strong>s, the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these instabilities in the early<br />

design stage is still a challenging task. Following the three approaches menti<strong>on</strong>ed,<br />

the manifold strategies to reduce unwanted pressure oscillati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

to c<strong>on</strong>trol possible thermo-acoustic oscillati<strong>on</strong>s can be divided into active<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> passive c<strong>on</strong>trol mechanism.<br />

Active feedback c<strong>on</strong>trol involves an actuator, which modifies certain parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the system in resp<strong>on</strong>se to a measured signal. In many cases the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

mass flow is modulated to counteract the heat release rate perturbati<strong>on</strong> that<br />

7


Introducti<strong>on</strong><br />

drives oscillati<strong>on</strong>s [17, 123]. Shcherbik et al., for example, applied harm<strong>on</strong>ic<br />

modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> rate with an open-loop active c<strong>on</strong>trol system<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a pressure sensor <str<strong>on</strong>g>and</str<strong>on</strong>g> a fast resp<strong>on</strong>se actuating valve [123].<br />

A general overview about different methods is given by Dowling <str<strong>on</strong>g>and</str<strong>on</strong>g> Morgan<br />

[25]. Most active c<strong>on</strong>trol methods bel<strong>on</strong>g therefore to the third approach<br />

in modifying the relati<strong>on</strong>ship between pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate. A<br />

possibility to reduce the heat release rate fluctuati<strong>on</strong>s is to enhance flame<br />

stabilizati<strong>on</strong>. This can be achieved using pilot flames, which are adjusted<br />

to the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the different operati<strong>on</strong> regimes. The method <str<strong>on</strong>g>of</str<strong>on</strong>g> using<br />

pilot flames is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a compromise between stability <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced emissi<strong>on</strong><br />

performance. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach, which comprises an actuator in<br />

the pilot <strong>gas</strong> system <str<strong>on</strong>g>and</str<strong>on</strong>g> a c<strong>on</strong>trol algorithm, is described in Seume et al. [122].<br />

A disadvantage <str<strong>on</strong>g>of</str<strong>on</strong>g> active c<strong>on</strong>trol methods is the requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> significant<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> sensors <str<strong>on</strong>g>and</str<strong>on</strong>g> actuators <str<strong>on</strong>g>and</str<strong>on</strong>g> a robust c<strong>on</strong>trol algorithm, which has<br />

an impact <strong>on</strong> complexity, cost <str<strong>on</strong>g>and</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>gas</strong> <strong>turbine</strong> system.<br />

Passive methods focus <strong>on</strong> the design optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

combusti<strong>on</strong> system. A reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure oscillati<strong>on</strong>s can be achieved<br />

by simply damping the amplitudes in the combusti<strong>on</strong> chamber by Helmholtz<br />

res<strong>on</strong>ators or λ/4 tubes [8,70,109]. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> these devices depends<br />

<strong>on</strong> their geometrical dimensi<strong>on</strong>s, their number <str<strong>on</strong>g>and</str<strong>on</strong>g> their arrangement in the<br />

system. As in other passive c<strong>on</strong>trol devices, the damping performance is limited<br />

to a certain frequency range. Generally speaking, it can be stated, that a<br />

damper acting <strong>on</strong> a wider frequency b<str<strong>on</strong>g>and</str<strong>on</strong>g> width has a lower damping performance.<br />

To reduce the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame various researchers use elliptic burner<br />

exit cross-secti<strong>on</strong>s [9, 89, 99]. According to Paschereit <str<strong>on</strong>g>and</str<strong>on</strong>g> Gutmark [89] the<br />

changed burner exit design mainly reduced the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale coherent<br />

structures in their combustor test rig. In the same work they reported<br />

also the positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> miniature vortex generators in separating shear layers,<br />

which were used in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> high <str<strong>on</strong>g>and</str<strong>on</strong>g> low frequency instabilities<br />

to suppress small-scale vortices produced at the burner exit by the Kelvin-<br />

Helmholtz instability. Berenbrink <str<strong>on</strong>g>and</str<strong>on</strong>g> H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman [9] used asymmetric burner<br />

outlets (ABO), which showed a similar behavior. ABOs cause asymmetric flow<br />

8


1.3 C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

fields <str<strong>on</strong>g>and</str<strong>on</strong>g> shear layer distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce the feedback <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetric ring<br />

vortices. In additi<strong>on</strong> Polifke et al. [99] menti<strong>on</strong>ed that a wider distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the time lags – a larger st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> – generated by an elliptical burner<br />

outlet could reduce combusti<strong>on</strong> oscillati<strong>on</strong>s.<br />

Other passive methods focus <strong>on</strong> a phase change <str<strong>on</strong>g>of</str<strong>on</strong>g> various characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the thermo-acoustic feedback loop. Following Berenbrink <str<strong>on</strong>g>and</str<strong>on</strong>g> H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann [9],<br />

detuning <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector combustors can improve the performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a full-scale <strong>gas</strong> <strong>turbine</strong> in preventing coherent feedback from all combusti<strong>on</strong><br />

z<strong>on</strong>es. This was realized by introducing cylindrical burner extensi<strong>on</strong>s<br />

(Cylindrical Burner Outlet (CBO)) with different lengths <str<strong>on</strong>g>and</str<strong>on</strong>g> thus different<br />

mean c<strong>on</strong>vective time delays to suppress possible burner-to-burner interacti<strong>on</strong>s.<br />

Using CBOs the formati<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent structures was shifted to a<br />

downstream locati<strong>on</strong>. In additi<strong>on</strong>, the time lag from the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> port to<br />

the flame was increased. They stated that both, CBOs <str<strong>on</strong>g>and</str<strong>on</strong>g> ABOs, could be used<br />

to substitute a certain amount <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard burners in an annular combusti<strong>on</strong><br />

chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> shift stable operati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s to higher power outputs.<br />

Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> changing the burner design different c<strong>on</strong>vective time lags from the<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> to the flame can be obtained by re-locating the point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

axial <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>, as described by Straub <str<strong>on</strong>g>and</str<strong>on</strong>g> Richards [125], Richards <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Straub [109] or Steele et al. [124]. Splitting the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> between two or more injecti<strong>on</strong><br />

positi<strong>on</strong>s is also a comm<strong>on</strong> approach to extend the stable operati<strong>on</strong><br />

regime [74, 117]. Scarinci <str<strong>on</strong>g>and</str<strong>on</strong>g> Halpin [117] showed that axial <str<strong>on</strong>g>staging</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

heat release rate inside a Rolls-Royce industrial Trent <strong>gas</strong> <strong>turbine</strong>, which was<br />

realized by an adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> splits, allows a wide turn down <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

flame temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> thus a direct influence <strong>on</strong> the amplitudes <str<strong>on</strong>g>and</str<strong>on</strong>g> frequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> oscillati<strong>on</strong>s.<br />

Richards et al. [106], Hobs<strong>on</strong> et al. [43], Goldmeer et al. [37] <str<strong>on</strong>g>and</str<strong>on</strong>g> Lieuwen <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Zinn [72] dem<strong>on</strong>strated that the stability characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong><br />

system could also be a str<strong>on</strong>g functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

<str<strong>on</strong>g>supply</str<strong>on</strong>g>. Richards et al. [106] showed that a change in the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence<br />

ratio fluctuati<strong>on</strong>s, which can be achieved by adjusting the res<strong>on</strong>ant<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> system, could reduce pressure oscillati<strong>on</strong>s.<br />

In a further analytical <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental study [108] two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors having<br />

a variable geometry were used to produce a different dynamic resp<strong>on</strong>se<br />

9


Introducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. The resulting <str<strong>on</strong>g>impedance</str<strong>on</strong>g> mismatch prevents the injectors from<br />

str<strong>on</strong>gly coupling to the same acoustic mode <str<strong>on</strong>g>and</str<strong>on</strong>g> allows a further reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

occurring oscillati<strong>on</strong>s.<br />

1.4 Intenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> this work<br />

The idea to use multiple, staged <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors with appropriately tuned injector<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g>s represents a promising passive design strategy to reduce<br />

unwanted combusti<strong>on</strong> oscillati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to extend the stable operati<strong>on</strong> range.<br />

Fuel <str<strong>on</strong>g>staging</str<strong>on</strong>g> also allows a flexible operating method regarding <str<strong>on</strong>g>fuel</str<strong>on</strong>g> quality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

partial load requirements. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> such a ”practical premixed combusti<strong>on</strong><br />

system” with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages with <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s Z i , i = 1,2<br />

is shown in Fig. 1.2.<br />

Plenum<br />

Air<br />

Fuel Supply<br />

Z 1<br />

Z 2<br />

Swirler<br />

Fuel<br />

Combusti<strong>on</strong> chamber<br />

Flame<br />

Mixing secti<strong>on</strong><br />

Figure 1.2: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> a combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors<br />

Although there are quite a few numerical <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental studies, which verify<br />

the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> this passive c<strong>on</strong>trol possibility, experience has shown that it is<br />

difficult to adjust the injector locati<strong>on</strong>s, <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s or both such that all possible<br />

modes <str<strong>on</strong>g>of</str<strong>on</strong>g> instability in a combustor are suppressed. Quantitative tools<br />

to devise such a passive c<strong>on</strong>trol strategy for <strong>gas</strong> <strong>turbine</strong> combustors are, up to<br />

now, still missing.<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic analysis a physical underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> an accurate<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics is essential. The flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

10


1.4 Intenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> this work<br />

practical combusti<strong>on</strong> system is mainly influenced by fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass<br />

flow at the burner exit (flame fr<strong>on</strong>t kinematics) <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence ratio, as described<br />

in chapter 1.2. In the literature, both effects have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been discussed<br />

separately. A significant body <str<strong>on</strong>g>of</str<strong>on</strong>g> work is c<strong>on</strong>cerned with the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> perfectly<br />

premixed flames, where equivalence ratio fluctuati<strong>on</strong>s are absent, while<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> the early works <strong>on</strong> thermo-acoustic instabilities in practical premixed<br />

combustors c<strong>on</strong>sider <strong>on</strong>ly equivalence ratio fluctuati<strong>on</strong>s. However, it should<br />

be clear that several <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong> mechanisms between flow, mixing, heat<br />

release <str<strong>on</strong>g>and</str<strong>on</strong>g> acoustics will be active simultaneously. The overall flame resp<strong>on</strong>se<br />

is therefore a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual c<strong>on</strong>tributi<strong>on</strong>s (see Eqn. 1.2).<br />

Retrospective <str<strong>on</strong>g>of</str<strong>on</strong>g> the menti<strong>on</strong>ed issues, it becomes obvious that for the development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such a passive c<strong>on</strong>trol strategy a design tool is required which accounts<br />

for the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors. The overall motivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> aim<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this work is therefore to develop a numerical design method <str<strong>on</strong>g>and</str<strong>on</strong>g> to determine<br />

design guidelines for combusti<strong>on</strong> systems using multiple, staged <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injectors with tuned injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s.<br />

A numerical investigati<strong>on</strong> has the advantage that there is no need for a time<br />

c<strong>on</strong>suming <str<strong>on</strong>g>and</str<strong>on</strong>g> expensive test rig <str<strong>on</strong>g>and</str<strong>on</strong>g> the required measurement devices. In<br />

additi<strong>on</strong>, the experimental measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical<br />

premixed combusti<strong>on</strong> system is rather challenging as many <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interest can not be measured easily. An example is the determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed flame using OH*<br />

or CH* chemiluminescence signals. According to [64], the integral heat release<br />

rate can be m<strong>on</strong>itored by chemiluminescence <strong>on</strong>ly if an empirical correlati<strong>on</strong><br />

between both exists, which implies a known integral heat release rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

flame. Another problem c<strong>on</strong>cerns the independent excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the air mass<br />

flow <str<strong>on</strong>g>and</str<strong>on</strong>g> the mass flows in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> systems. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the<br />

disadvantage <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical methods is that they rely <strong>on</strong> how well the physics<br />

are described by the numerical models. This is especially disadvantageous if<br />

the physics are as complex as the combusti<strong>on</strong> - turbulence - acoustic interacti<strong>on</strong>.<br />

To achieve the aims menti<strong>on</strong>ed the following tasks can be deduced, which reflect<br />

the organizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work:<br />

11


Introducti<strong>on</strong><br />

The work starts with an overview <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the available numerical<br />

methods (chapter 2) to determine the thermo-acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

combusti<strong>on</strong> systems <str<strong>on</strong>g>and</str<strong>on</strong>g> the chosen strategy, which is a hybrid approach using<br />

Computati<strong>on</strong>al Fluid Dynamics, system identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> acoustic network<br />

modelling.<br />

On this basis, the following chapter deals with the basic equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

acoustics (chapter 3) <str<strong>on</strong>g>and</str<strong>on</strong>g> the simplificati<strong>on</strong>s used in this work.<br />

Chapter 4 describes the basics <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Fluid Dynamics, including<br />

turbulence <str<strong>on</strong>g>and</str<strong>on</strong>g> combusti<strong>on</strong> models. It is followed by the presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

system identificati<strong>on</strong> method for flame dynamics resp<strong>on</strong>ding to more than<br />

<strong>on</strong>e disturbance signal (chapter 5).<br />

The numerical combusti<strong>on</strong> test rig used is then described with two <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

three <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages in chapter 6, including the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the numerical<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics. Furthermore,<br />

the acoustic network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the test rig <str<strong>on</strong>g>and</str<strong>on</strong>g> the parameter study analyzing<br />

the different influences <strong>on</strong> the combusti<strong>on</strong> stability is presented in chapter 7.<br />

The work is completed with a short summary <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> (chapter 8).<br />

1.5 Terminology <str<strong>on</strong>g>and</str<strong>on</strong>g> specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work<br />

Before the possible numerical calculati<strong>on</strong> methods are evaluated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the tasks presented, the terminology <str<strong>on</strong>g>and</str<strong>on</strong>g> the main general specificati<strong>on</strong>s are<br />

first reviewed.<br />

In general, the field <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong>eous combusti<strong>on</strong> can be subdivided into three different<br />

technical processes, which are related to the mixing process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

air: premixed, n<strong>on</strong>-premixed, or partial premixed combusti<strong>on</strong>.<br />

A combusti<strong>on</strong> process is called premixed if the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidizer are mixed<br />

by turbulence for a sufficient time before the mixture is ignited. In a n<strong>on</strong>premixed<br />

process, the oxidizer <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> are injected separately into the combusti<strong>on</strong><br />

chamber. The mixing <str<strong>on</strong>g>and</str<strong>on</strong>g> combusti<strong>on</strong> process are directly coupled<br />

12


1.5 Terminology <str<strong>on</strong>g>and</str<strong>on</strong>g> specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> combusti<strong>on</strong> takes place in regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stoichiometric mixture. The partial<br />

premixed process is therefore a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both. The diesel engine<br />

is a good example, where several liquid <str<strong>on</strong>g>fuel</str<strong>on</strong>g> sprays are injected into hot compressed<br />

air. Before auto-igniti<strong>on</strong> occurs, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> evaporates <str<strong>on</strong>g>and</str<strong>on</strong>g> mixes partially<br />

with the air. Thus, the beginning chemical reacti<strong>on</strong> can be seen as a premixed<br />

process whereas the final burnout occurs mainly under n<strong>on</strong>-premixed<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

In the present work a so-called ”practical premixed combusti<strong>on</strong> system” is<br />

analyzed. It is characterized by inhomogeneous lean premixed c<strong>on</strong>diti<strong>on</strong>s,<br />

where natural <strong>gas</strong> is injected at <strong>on</strong>e or multiple locati<strong>on</strong>s in the mixing secti<strong>on</strong><br />

as shown in Fig. 1.2. As in real <strong>gas</strong> <strong>turbine</strong>s there is no choke between <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injectors <str<strong>on</strong>g>and</str<strong>on</strong>g> flame. In such a c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in c<strong>on</strong>trast to perfect premixed<br />

c<strong>on</strong>diti<strong>on</strong>s, local <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

may be induced by acoustic fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> must be taken into account. The<br />

difference between perfect premixed, n<strong>on</strong>-premixed <str<strong>on</strong>g>and</str<strong>on</strong>g> practical premixed<br />

combusti<strong>on</strong> systems is also shown in Fig. 1.3.<br />

The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors <str<strong>on</strong>g>of</str<strong>on</strong>g> the practical premixed combusti<strong>on</strong> system c<strong>on</strong>sidered<br />

in the present work are acoustically n<strong>on</strong>-stiff. In other words, the pressure<br />

drop between <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing secti<strong>on</strong> is not sufficient to decouple the<br />

acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> system from the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong><br />

system. This means the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow through the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors may be<br />

influenced by the acoustics <str<strong>on</strong>g>and</str<strong>on</strong>g> can vary in time. The flame <str<strong>on</strong>g>of</str<strong>on</strong>g> such a system<br />

can therefore resp<strong>on</strong>d to equivalence ratio fluctuati<strong>on</strong>s, which are caused by<br />

acoustic fluctuati<strong>on</strong>s in the mixing secti<strong>on</strong> at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fluctuati<strong>on</strong>s in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream in the injector, <str<strong>on</strong>g>and</str<strong>on</strong>g> by mass flow fluctuati<strong>on</strong>s at<br />

the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner exit.<br />

The main motivati<strong>on</strong> to develop a design tool <str<strong>on</strong>g>and</str<strong>on</strong>g> design guidelines for practical<br />

premixed combusti<strong>on</strong> systems is to dem<strong>on</strong>strate how <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

differently tuned <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s influences the overall thermo-acoustic behavior.<br />

Therefore a linear stability analysis is sufficient to accomplish the task.<br />

A n<strong>on</strong>-linear analysis, which is required to predict limit cycle amplitudes or<br />

n<strong>on</strong>-linear instability limits, is out <str<strong>on</strong>g>of</str<strong>on</strong>g> the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work.<br />

13


Introducti<strong>on</strong><br />

perfect premixed combusti<strong>on</strong><br />

Air + Fuel<br />

Fuel<br />

n<strong>on</strong>- premixed combusti<strong>on</strong><br />

Air<br />

practical premixed combusti<strong>on</strong><br />

Fuel Fuel<br />

Air<br />

Figure 1.3: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> premixed, n<strong>on</strong>-premixed <str<strong>on</strong>g>and</str<strong>on</strong>g> practical premixed combusti<strong>on</strong><br />

systems<br />

A general ”c<strong>on</strong>diti<strong>on</strong>” arises from the geometric extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>sidered<br />

combusti<strong>on</strong> system in relati<strong>on</strong> to the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. The flame resp<strong>on</strong>se<br />

exhibits low pass filter behavior in the frequency domain with a cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

frequency. For the combusti<strong>on</strong> system analyzed, this frequency lies between<br />

400 Hz <str<strong>on</strong>g>and</str<strong>on</strong>g> 800 Hz. The maximum frequency can then be restricted to 1000 Hz<br />

in the present work. In additi<strong>on</strong>, the burner c<strong>on</strong>figurati<strong>on</strong> examined exhibits<br />

small radial <str<strong>on</strong>g>and</str<strong>on</strong>g> circumferential extensi<strong>on</strong>s compared to the wavelength. The<br />

problem can therefore be reduced to <strong>on</strong>e-dimensi<strong>on</strong>al acoustics.<br />

14


1.5 Terminology <str<strong>on</strong>g>and</str<strong>on</strong>g> specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work<br />

A design tool should deliver results <str<strong>on</strong>g>of</str<strong>on</strong>g> various c<strong>on</strong>figurati<strong>on</strong>s in an adequate<br />

time frame. An investigati<strong>on</strong> about the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> several parameters requires<br />

multiple calculati<strong>on</strong>s or simulati<strong>on</strong>s. The overall computati<strong>on</strong>al effort <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

methods should be minimized <str<strong>on</strong>g>and</str<strong>on</strong>g> is c<strong>on</strong>sidered as another specificati<strong>on</strong>.<br />

15


Introducti<strong>on</strong><br />

16


2 Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic<br />

instabilities<br />

2.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for thermo-acoustic stability analysis<br />

The analytical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic oscillati<strong>on</strong>s has first been developed<br />

to explain combusti<strong>on</strong> instabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> solid-propellant <str<strong>on</strong>g>and</str<strong>on</strong>g> liquidpropellant<br />

rockets [18, 19]. In the area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong>eous <str<strong>on</strong>g>fuel</str<strong>on</strong>g>s Merk [79] created a<br />

comprehensive <str<strong>on</strong>g>and</str<strong>on</strong>g> universal basis for the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic oscillati<strong>on</strong>s.<br />

He was the first <strong>on</strong>e, who developed a mathematical approach in<br />

defining a transfer functi<strong>on</strong>, which relates the unsteady heat release rate to<br />

fluctuating fluid properties. Merk dem<strong>on</strong>strated for several applicati<strong>on</strong>s, such<br />

as the Rijke tube or for premixed flames, that, with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer<br />

functi<strong>on</strong>, it is possible to determine the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> systems.<br />

Thermo-acoustic phenomena can be described by the c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s<br />

– the mass <str<strong>on</strong>g>and</str<strong>on</strong>g> species c<strong>on</strong>servati<strong>on</strong> or the so-called c<strong>on</strong>tinuity equati<strong>on</strong>,<br />

the momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> the energy equati<strong>on</strong>. The possible mathematical<br />

methods to determine the thermo-acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a system differ in having<br />

a different degree <str<strong>on</strong>g>of</str<strong>on</strong>g> simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s in the<br />

time or frequency domain.<br />

The most complex <str<strong>on</strong>g>and</str<strong>on</strong>g> expensive method is the numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compressible,<br />

turbulent <str<strong>on</strong>g>and</str<strong>on</strong>g> reactive flow using Navier-Stokes equati<strong>on</strong>s, which is<br />

comm<strong>on</strong>ly associated with the term ”Computati<strong>on</strong>al Fluid Dynamics (CFD)”.<br />

CFD simulati<strong>on</strong>s are, in general, based <strong>on</strong> a finite-volume method, which discretizes,<br />

like the finite-difference method, the differential quotient in the differential<br />

equati<strong>on</strong>s. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this procedure, compared to other ap-<br />

17


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

proaches, is that the representative physical processes are <strong>on</strong>ly slightly simplified.<br />

This is especially advantageous because the coupling between the acoustics<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> process does not need to be modeled.<br />

It follows implicitly from the soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-linear partial differential<br />

equati<strong>on</strong>s.<br />

The field <str<strong>on</strong>g>of</str<strong>on</strong>g> CFD can be characterized by three different modelling approaches.<br />

They range from the Direct Numerical Simulati<strong>on</strong> (DNS), which<br />

solves the Navier-Stokes equati<strong>on</strong>s explicitly <strong>on</strong> a very fine mesh, to methods,<br />

which simplify the equati<strong>on</strong>s by dividing the physical properties into<br />

resolved <str<strong>on</strong>g>and</str<strong>on</strong>g> modeled quantities (Large Eddy Simulati<strong>on</strong> (LES)) or rather in<br />

mean <str<strong>on</strong>g>and</str<strong>on</strong>g> fluctuating quantities (Reynolds-averaged Navier-Stokes Equati<strong>on</strong>s<br />

(RANS)). Whereas the LES still resolves large scale turbulent eddies <str<strong>on</strong>g>and</str<strong>on</strong>g> filters<br />

the small scale <strong>on</strong>es, the RANS approach computes primarily average values,<br />

without solving any turbulent quantities. In both methods closure models<br />

are required to calculate the unresolved turbulent structures. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

combusti<strong>on</strong> further simplificati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> models are necessary to simulate the<br />

complex chemical process as well as the interacti<strong>on</strong> between chemical kinetics<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> turbulence.<br />

In the past a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong>s dem<strong>on</strong>strating the possibilities to simulate<br />

combusti<strong>on</strong> oscillati<strong>on</strong>s using RANS or LES were published 1 . To name a<br />

few, there are Murota <str<strong>on</strong>g>and</str<strong>on</strong>g> Ohtsuka [83], for example, for the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

instabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> a premixed burner, Hantschk <str<strong>on</strong>g>and</str<strong>on</strong>g> Vortmeyer [39] for the analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> self-excited oscillati<strong>on</strong>s in a n<strong>on</strong>-premixed burner, Angelberger <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Veyante [4] for LES simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> instabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> premixed flames<br />

in c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flow <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Roux et<br />

al. [111] for the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental results, acoustic analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> LES<br />

simulati<strong>on</strong>.<br />

Using CFD it would be possible to determine the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the combusti<strong>on</strong> system – including the flame dynamics – with <strong>on</strong>e method.<br />

However, to obtain meaningful results, the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system<br />

has to be computed up to the point where, according to Schönfeld<br />

1 The use <str<strong>on</strong>g>of</str<strong>on</strong>g> DNS is, because <str<strong>on</strong>g>of</str<strong>on</strong>g> its immense computati<strong>on</strong>al effort, until now restricted to small <str<strong>on</strong>g>and</str<strong>on</strong>g> simple<br />

simulati<strong>on</strong> cases <str<strong>on</strong>g>and</str<strong>on</strong>g> not feasible for industrial <str<strong>on</strong>g>and</str<strong>on</strong>g> most scientific applicati<strong>on</strong>s.<br />

18


2.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for thermo-acoustic stability analysis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Poinsot [118], well defined boundary c<strong>on</strong>diti<strong>on</strong>s can be defined. If the<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundaries is known, it can be implemented using an approach<br />

which is described e.g. by Huber et al. [50]. For these cases the method<br />

is suitable to predict the physically meaningful dominant eigenfrequencies<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> limit cycle amplitudes. Also, the method has the advantage in not being<br />

restricted to the linear behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame nor to the compactness assumpti<strong>on</strong><br />

2 , which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten applies for flame transfer functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> matrices in<br />

the frame <str<strong>on</strong>g>of</str<strong>on</strong>g> analytical or network models. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, a change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the combustor design, e.g. <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s, has an impact <strong>on</strong><br />

the flame resp<strong>on</strong>se <str<strong>on</strong>g>and</str<strong>on</strong>g> the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire system. The method would<br />

therefore require <strong>on</strong>e simulati<strong>on</strong> for every geometrical change.<br />

Further simplificati<strong>on</strong>s regarding the physical phenomena always result in the<br />

dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for an explicit model to include the coupling between acoustics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

combusti<strong>on</strong>. The first step in simplifying the Navier-Stokes equati<strong>on</strong>s is to neglect<br />

viscous effects <str<strong>on</strong>g>and</str<strong>on</strong>g> to linearize the main physical parameters such as<br />

density, pressure, velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate. This means a decompositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the flow into a steady mean flow <str<strong>on</strong>g>and</str<strong>on</strong>g> small perturbati<strong>on</strong>s. Subtracting the<br />

mean part <str<strong>on</strong>g>and</str<strong>on</strong>g> neglecting higher order terms <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating variables yields<br />

the linearized Euler equati<strong>on</strong>s for pressure, velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> density. Combining<br />

the linearized Euler equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> neglecting mean flow effects, which is a<br />

feasible assumpti<strong>on</strong> in the low Mach number regime, leads to the inhomogeneous<br />

wave equati<strong>on</strong>.<br />

The inhomogeneous wave equati<strong>on</strong> is comm<strong>on</strong>ly solved using a finite element<br />

method, which is based <strong>on</strong> the discretizati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the ansatz<br />

functi<strong>on</strong>s. These functi<strong>on</strong>s are defined <strong>on</strong> individual elements in the domain<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> approximate the soluti<strong>on</strong>. Pankiewitz <str<strong>on</strong>g>and</str<strong>on</strong>g> Sattelmayer have shown in<br />

several publicati<strong>on</strong>s [87, 88] that this approach can be applied to analyze the<br />

thermo-acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> large <str<strong>on</strong>g>and</str<strong>on</strong>g> complex geometries, such as annular<br />

combusti<strong>on</strong> chambers. Another advantage is the fact that the method does<br />

not require any assumpti<strong>on</strong>s about the coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> different modes. When<br />

n<strong>on</strong>-linearities, such as saturati<strong>on</strong> effects in the combusti<strong>on</strong> process, are<br />

2 An acoustic element can be c<strong>on</strong>sidered as compact if its geometrical length l is much smaller than the shortest<br />

wavelength λ w , l ≪ λ w .<br />

19


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

included it is possible to reproduce limit cycle oscillati<strong>on</strong>. The difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the method lies in the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the source term <str<strong>on</strong>g>of</str<strong>on</strong>g> the reacti<strong>on</strong> rate. Additi<strong>on</strong>al<br />

flow effects or driving mechanisms for oscillati<strong>on</strong>s, like equivalence<br />

ratio fluctuati<strong>on</strong>s, can <strong>on</strong>ly be determined indirectly. Pankiewitz therefore<br />

suggested a hybrid approach using a finite element method to simulate the<br />

pure acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system while the flame behavior is provided<br />

externally through experiments or CFD. Furthermore, pressure losses or<br />

damping in the system cannot be realized in a straightforward manner.<br />

The Galerkin method or the Green’s functi<strong>on</strong> technique are further numerical<br />

approaches to solve the inhomogeneous wave equati<strong>on</strong>. In the first method<br />

the acoustic pressure can be exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed in a Galerkin series <str<strong>on</strong>g>of</str<strong>on</strong>g> trial functi<strong>on</strong>s.<br />

The elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the trial functi<strong>on</strong>s are comm<strong>on</strong>ly represented by the amplitudes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the pressure perturbati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the acoustic eigenfuncti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the homogeneous wave equati<strong>on</strong>. Thus, the detailed knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the mode<br />

shapes <str<strong>on</strong>g>and</str<strong>on</strong>g> geometry without mean flow <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release has to be known a<br />

priori. This could be d<strong>on</strong>e by calculating the analytical soluti<strong>on</strong> or by using<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware tools for more complex geometries. The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic<br />

pressure field reduces to solve a set <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s. The soluti<strong>on</strong><br />

tracks in time whether the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> each mode will grow or decay.<br />

Dowling <str<strong>on</strong>g>and</str<strong>on</strong>g> Stow [26] <str<strong>on</strong>g>and</str<strong>on</strong>g> Dowling [21] dem<strong>on</strong>strated that the form <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

coupling between the heat input <str<strong>on</strong>g>and</str<strong>on</strong>g> the unsteady flow has a critical effect <strong>on</strong><br />

the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s. They suggested a multiple-term Galerkin series<br />

expansi<strong>on</strong> to determine the frequency shift for unsteady combusti<strong>on</strong>. Also,<br />

Krebs et al. [59] used the Galerkin method to analyze the thermo-acoustic<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> annular combustors <str<strong>on</strong>g>and</str<strong>on</strong>g> stated that by using this method even<br />

the coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> different modes could be taken into account. In the sec<strong>on</strong>d<br />

technique menti<strong>on</strong>ed, the harm<strong>on</strong>ic heat perturbati<strong>on</strong> term is represented<br />

by a Green’s functi<strong>on</strong>. If formal coupling between flow perturbati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

heat release rate fluctuati<strong>on</strong>s is c<strong>on</strong>sidered, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the Green’s functi<strong>on</strong><br />

simplifies the inhomogeneous partial differential equati<strong>on</strong> to an integral<br />

equati<strong>on</strong>, which can be solved iteratively. To determine the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

pressure perturbati<strong>on</strong> generated by unsteady combusti<strong>on</strong> Hedge et al. [41]<br />

calculated the res<strong>on</strong>ance frequencies by minimizing the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

20


2.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for thermo-acoustic stability analysis<br />

C<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s (Navier-Stokes equati<strong>on</strong>s)<br />

Mass - Momentum - Energy<br />

Finite Volume<br />

methods<br />

Linearized Euler equati<strong>on</strong><br />

+ model describing flame dynamics<br />

inhomogeneous Wave equati<strong>on</strong><br />

homogeneous<br />

Wave equati<strong>on</strong><br />

DNS, LES,<br />

URANS<br />

Finite<br />

difference<br />

methods<br />

Finite element methods<br />

Galerkin expansi<strong>on</strong>,<br />

Green’s functi<strong>on</strong><br />

Network models,<br />

analytical methods<br />

Time domain<br />

Frequency domain<br />

Grade <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical accuracy / numerical modeling order<br />

Calculati<strong>on</strong> speed<br />

Figure 2.1: Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> numerical thermo-acoustic calculati<strong>on</strong><br />

methods<br />

denominator in the Green’s functi<strong>on</strong>. Peracchio <str<strong>on</strong>g>and</str<strong>on</strong>g> Proscia [91] also took<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the Green’s functi<strong>on</strong> in developing a n<strong>on</strong>-linear parametric heat<br />

release rate/acoustic model.<br />

A further simplificati<strong>on</strong> comes from technical acoustics. Munjal [82] proposed<br />

21


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

to divide a complex system into a network c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> simple elements.<br />

Deuker [20] transferred this approach to the thermo-acoustic problem in the<br />

field <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong>s. Nowadays, the acoustic network model technique is a<br />

widely used design tool <str<strong>on</strong>g>and</str<strong>on</strong>g> allows a fast <str<strong>on</strong>g>and</str<strong>on</strong>g> robust estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermoacoustic<br />

behavior for a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> systems [23,46,58,61,70,101].<br />

In the network model approach the acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> each element is comm<strong>on</strong>ly<br />

described by a transfer matrix. A transfer matrix relates the acoustic<br />

pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity or the Riemann Invariants f <str<strong>on</strong>g>and</str<strong>on</strong>g> g between inlet<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the element. The superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two Riemann Invariants f<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> g , which travel in opposite directi<strong>on</strong>s, are a general soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave<br />

equati<strong>on</strong> in the <strong>on</strong>e- or two-dimensi<strong>on</strong>al case. A further limitati<strong>on</strong> to plane<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> harm<strong>on</strong>ic waves <str<strong>on</strong>g>and</str<strong>on</strong>g> the presumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain mode shapes enables<br />

the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic field <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an acoustic system. The<br />

c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the elements finally results in an algebraic eigenvalue problem,<br />

which can be solved analytically or numerically. As shown e.g. by Sattelmayer<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke [113, 114], the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> such a system can also be analyzed using<br />

methods derived from c<strong>on</strong>trol theory. The latter approach enables the determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eigenfrequencies in the real frequency domain, which is necessary<br />

when experimentally determined acoustic elements are used. In network<br />

models the flame is comm<strong>on</strong>ly assumed to be a disc<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> negligible<br />

thickness <str<strong>on</strong>g>and</str<strong>on</strong>g> can be represented by simple flame models. Flame transfer<br />

functi<strong>on</strong>s obtained by experiment or CFD can also be implemented as a single<br />

network element via the linearized Rankine-Hug<strong>on</strong>iot relati<strong>on</strong>s. Hubbard <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Dowling [47, 48] used network-like models to analyze the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

analytical flame models or the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a Helmholtz res<strong>on</strong>ator attached to<br />

the plenum <str<strong>on</strong>g>of</str<strong>on</strong>g> a Rolls-Royce <strong>gas</strong> <strong>turbine</strong>. A model investigating some generic<br />

aspects in relati<strong>on</strong> to <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s is reported by Hobs<strong>on</strong> et al. [43].<br />

Here, a CFD simulati<strong>on</strong> was performed to obtain a time delay to optimize the<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame resp<strong>on</strong>se. Polifke et al. [101] investigated the interacti<strong>on</strong><br />

between combustor acoustics <str<strong>on</strong>g>and</str<strong>on</strong>g> entropy waves using a network model.<br />

The authors were able to verify that entropy waves at the exit nozzle can enhance<br />

or reduce thermo-acoustic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> a combustor. The network model<br />

technique was also successfully applied by Evesque <str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke [28] <str<strong>on</strong>g>and</str<strong>on</strong>g> Kopitz<br />

et al. [58] to two-dimensi<strong>on</strong>al geometries as annular combusti<strong>on</strong> cham-<br />

22


2.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for thermo-acoustic stability analysis<br />

bers. In the latter work, Kopitz et al. implemented an experimentally measured<br />

flame transfer functi<strong>on</strong> into a network model.<br />

Another comm<strong>on</strong> approach is the use <str<strong>on</strong>g>of</str<strong>on</strong>g> analytical methods to analyze the<br />

thermo-acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> systems. The developed models are<br />

similar to the network technique but usually comprise very simplified estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the geometry, the combusti<strong>on</strong> mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> the flow physics. Basic<br />

physical effects <strong>on</strong> the combusti<strong>on</strong> process using analytical approximati<strong>on</strong>s<br />

are the focus <str<strong>on</strong>g>of</str<strong>on</strong>g> various publicati<strong>on</strong>s. Examples can be found in Fleifil et<br />

al. [29], Lieuwen <str<strong>on</strong>g>and</str<strong>on</strong>g> Zinn [72], Hubbart <str<strong>on</strong>g>and</str<strong>on</strong>g> Dowling [48], Polifke et al. [101],<br />

Sattelmayer [112], Cho <str<strong>on</strong>g>and</str<strong>on</strong>g> Lieuwen [15] <str<strong>on</strong>g>and</str<strong>on</strong>g> Richards et al. [106, 108].<br />

A schematic classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the methods presented is shown in Fig. 2.1. The<br />

main differences between the described calculati<strong>on</strong> methods lie in the various<br />

degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> simplificati<strong>on</strong> regarding the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical phenomena<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the calculati<strong>on</strong> routine to find appropriate soluti<strong>on</strong>s. Generally it can<br />

be stated that a higher degree <str<strong>on</strong>g>of</str<strong>on</strong>g> simplificati<strong>on</strong> corresp<strong>on</strong>ds to a reduced<br />

computati<strong>on</strong>al effort <str<strong>on</strong>g>and</str<strong>on</strong>g> a reduced modelling accuracy. Another difference is<br />

the fact that <strong>on</strong>ly CFD is able to model the acoustic-combusti<strong>on</strong> interacti<strong>on</strong><br />

– all other methods presented require a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics<br />

either through an analytical model or models derived from CFD simulati<strong>on</strong>s<br />

or experiments (e.g. flame transfer functi<strong>on</strong>s).<br />

The CFD simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong> system including plenum, mixing<br />

secti<strong>on</strong>, injectors, swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> combusti<strong>on</strong> chamber, would therefore be<br />

straightforward in the sense that <strong>on</strong>ly a method is sufficient to determine the<br />

thermo-acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. As every design change requires a<br />

new simulati<strong>on</strong>, it is also the computati<strong>on</strong>al most expensive variant. The computati<strong>on</strong>al<br />

effort for a parameter study, which is required for the present work<br />

(see chapter 1.5), is unacceptable <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore not c<strong>on</strong>sidered any further.<br />

Finite element methods, Galerkin or Green’s functi<strong>on</strong>s, which are useful tools<br />

to analyze complex three-dimensi<strong>on</strong>al acoustic fields, do not have more advantages<br />

compared to acoustic network models, as the present work is restricted<br />

to <strong>on</strong>e-dimensi<strong>on</strong>al acoustics. They are also not taken into account<br />

23


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

in the following.<br />

Simple approaches, however, which are based <strong>on</strong> analytical derivati<strong>on</strong>s, can<br />

hardly be achieved because <str<strong>on</strong>g>of</str<strong>on</strong>g> the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> test rig<br />

acoustics. In c<strong>on</strong>trast to the latter, network models proved to be quite useful<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> speed <str<strong>on</strong>g>and</str<strong>on</strong>g> flexibility to perform parameter studies.<br />

They are therefore chosen in the present work to calculate the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

practical premixed combusti<strong>on</strong> system.<br />

The network model approach requires a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics. A<br />

physically meaningful descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the practical premixed flame is essential<br />

to determine the overall thermo-acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a combusti<strong>on</strong> system.<br />

The flame dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g> its implementati<strong>on</strong> into the acoustic network model<br />

are discussed in detail in the following secti<strong>on</strong>s.<br />

2.2 Flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system<br />

The flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system can be described<br />

in the linear regime using a general analytical relati<strong>on</strong> (see Eqn. (1.2)):<br />

˙Q ′<br />

¯˙Q<br />

∼ △H′<br />

△ ¯H + A′<br />

Ā + s′ t<br />

¯s t<br />

= φ′<br />

¯φ + A′<br />

Ā + s′ t<br />

¯s t<br />

. (2.1)<br />

The individual terms <strong>on</strong> the right h<str<strong>on</strong>g>and</str<strong>on</strong>g> side can be related to the dominant<br />

acoustic-combusti<strong>on</strong> interacti<strong>on</strong> mechanisms, which cause heat release fluctuati<strong>on</strong>s<br />

immediately or after a certain time delay. Assuming that the flame<br />

resp<strong>on</strong>se to acoustic fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure at the flame can be neglected the<br />

main mechanisms are due to acoustic fluctuati<strong>on</strong>s at the flame holder <str<strong>on</strong>g>and</str<strong>on</strong>g> at<br />

the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> as discussed in chapter 1.2. A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical<br />

premixed combusti<strong>on</strong> system with <strong>on</strong>e <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector is shown in Fig. 2.2 to<br />

clarify important parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong>s in the following.<br />

24


2.2 Flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system<br />

Z i<br />

Air<br />

Fuel<br />

u' F,i u' b<br />

u' A,i<br />

φ' i<br />

X<br />

.<br />

Q'<br />

x b<br />

x F,i<br />

Figure 2.2: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system, indicating important<br />

parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> dimensi<strong>on</strong>s<br />

2.2.1 Flame resp<strong>on</strong>se to velocity fluctuati<strong>on</strong>s<br />

at a ref-<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame to fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flow or velocity u ′ b<br />

erence locati<strong>on</strong>, i.e. the burner exit (see e.g. [13, 22, 29, 121])<br />

˙Q ′<br />

¯˙Q<br />

∼ u′ b<br />

ū b<br />

(2.2)<br />

is comm<strong>on</strong>ly rewritten in the frequency domain in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a flame transfer<br />

functi<strong>on</strong>, F u . The flame transfer functi<strong>on</strong> relates a fluctuating ”signal”, in this<br />

case, the velocity u ′ , to its ”resp<strong>on</strong>se”, i.e. the resulting fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat<br />

b<br />

release rate ˙Q ′ :<br />

F u ≡ ˙Q ′ (ω)<br />

/ u′ b (ω)<br />

¯˙Q(ω) ū b (ω)<br />

⇒ ˙Q ′ (ω)<br />

¯˙Q(ω)<br />

(2.3)<br />

= F u<br />

u ′ b (ω)<br />

ū b (ω) . (2.4)<br />

The latter relati<strong>on</strong> represents a single-input single-output (SISO) system with<br />

25


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

input u ′ b <str<strong>on</strong>g>and</str<strong>on</strong>g> output ˙Q ′ as shown in Fig. 2.3. The flame resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a perfect<br />

premixed combusti<strong>on</strong> system, in which no equivalence ratio fluctuati<strong>on</strong>s exist,<br />

is completely described by such a SISO system.<br />

u' b<br />

.<br />

Q'<br />

Figure 2.3: SISO system representing a perfect premixed flame<br />

A proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the reference locati<strong>on</strong> "b" for the velocity fluctuati<strong>on</strong> u ′ b is<br />

crucial to obtain a flame transfer functi<strong>on</strong> which is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> at the burner. The acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> at the burner is characterized<br />

by the acoustic properties <str<strong>on</strong>g>and</str<strong>on</strong>g> the acoustic boundary c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

combusti<strong>on</strong> system. As the flame dynamics is mainly c<strong>on</strong>trolled by the flame<br />

fr<strong>on</strong>t kinematics, the proper reference locati<strong>on</strong> is the burner exit. At this locati<strong>on</strong><br />

acoustic fluctuati<strong>on</strong>s generate vortical perturbati<strong>on</strong>s in the flow field<br />

(shear layer), which are transported with the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow to <str<strong>on</strong>g>and</str<strong>on</strong>g> through<br />

the flame, modulating the flame area <str<strong>on</strong>g>and</str<strong>on</strong>g> turbulent flame speed. The strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the disturbance is directly related to the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong><br />

at this positi<strong>on</strong>. A velocity signal, which is taken at a different locati<strong>on</strong>,<br />

may be influenced in a spurious manner by the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong><br />

system. If the distance between burner exit (x b ) <str<strong>on</strong>g>and</str<strong>on</strong>g> the reference locati<strong>on</strong> (x ˜b)<br />

is not much smaller than a acoustic wave length (speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound divided by<br />

frequency), the acoustic velocities at both locati<strong>on</strong>s differ in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> amplitude<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> phase. If now the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the system is changed, e.g. by changing<br />

the upstream boundary c<strong>on</strong>diti<strong>on</strong>, the amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase difference between<br />

the acoustic velocities at both locati<strong>on</strong>s is modified. This is clarified<br />

in Fig. 2.4, which shows the spatial amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

cases a) <str<strong>on</strong>g>and</str<strong>on</strong>g> b) with a different upstream boundary c<strong>on</strong>diti<strong>on</strong> Z 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Z 2 . As the<br />

velocity fluctuati<strong>on</strong> at x b is the driving parameter, a high velocity value at x ˜b<br />

would result in almost no heat release rate fluctuati<strong>on</strong> in case a). However, the<br />

c<strong>on</strong>trary is dem<strong>on</strong>strated in case b), in which a low value at x ˜b corresp<strong>on</strong>ds to<br />

a str<strong>on</strong>g resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. The modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the system changes there-<br />

26


2.2 Flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system<br />

Z 1<br />

u'<br />

u' b ~<br />

u' b<br />

.<br />

Q'<br />

X<br />

a)<br />

x~<br />

b<br />

Z 2<br />

u' b ~<br />

u'<br />

u' b<br />

x b<br />

.<br />

Q'<br />

X<br />

x b<br />

b)<br />

x~<br />

b<br />

Figure 2.4: <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system acoustics <strong>on</strong> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

reference locati<strong>on</strong><br />

fore also the relati<strong>on</strong> – the transfer functi<strong>on</strong> – between the velocity fluctuati<strong>on</strong><br />

at x ˜b <str<strong>on</strong>g>and</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>. A transfer functi<strong>on</strong> using the reference<br />

locati<strong>on</strong> x ˜b is thus not independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong><br />

system. It is therefore not a useful descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics. Indeed,<br />

the latter was dem<strong>on</strong>strated by Truffin <str<strong>on</strong>g>and</str<strong>on</strong>g> Poinsot [127]. In their work they<br />

showed that the values <str<strong>on</strong>g>of</str<strong>on</strong>g> phase <str<strong>on</strong>g>and</str<strong>on</strong>g> gain <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame resp<strong>on</strong>se depend significantly<br />

<strong>on</strong> the combustor outlet reflecti<strong>on</strong> coefficient, if a reference locati<strong>on</strong><br />

far upstream is selected. Here, Truffin <str<strong>on</strong>g>and</str<strong>on</strong>g> Poinsot proposed, that the distance<br />

x ˜b− x b , expressed as a Helmholtz number, should not exceed 0.01 to obtain<br />

c<strong>on</strong>sistent results. This limit is a surprisingly strict criteri<strong>on</strong>, indicating that<br />

already a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> a few millimeter can have a noticeable effect <strong>on</strong> the results.<br />

27


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

2.2.2 Flame resp<strong>on</strong>se to equivalence ratio fluctuati<strong>on</strong>s<br />

In a practical premixed combusti<strong>on</strong> system, where <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is injected at a locati<strong>on</strong><br />

with n<strong>on</strong>-negligible acoustic fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure or velocity, the equivalence<br />

ratio φ i will also fluctuate, see Fig. 2.2. When the fluctuati<strong>on</strong>s, which are<br />

transported c<strong>on</strong>vectively with the flow, arrive at the flame fr<strong>on</strong>t, they affect<br />

the heat release rate through a change <str<strong>on</strong>g>of</str<strong>on</strong>g> heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> per unit mass <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture,<br />

burning velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> flame area. All these processes can be captured<br />

by another transfer functi<strong>on</strong>, which describes the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio<br />

fluctuati<strong>on</strong> φ i to heat release rate fluctuati<strong>on</strong>s<br />

F φ,i (ω)≡ ˙Q ′ (ω)/ ¯˙Q<br />

φ ′ i (ω)/ ¯φ , (2.5)<br />

where ¯φ denotes the mean equivalence ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire system. φ i represents<br />

the nominal equivalence ratio fluctuati<strong>on</strong>s, which is measured at the<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>. The transfer functi<strong>on</strong> represents again a SISO system with<br />

input φ ′ i<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> output ˙Q ′ . Similar to the discussi<strong>on</strong> above the point <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong><br />

is the physical correct reference locati<strong>on</strong> as equivalence ratio fluctuati<strong>on</strong>s<br />

are the result <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic velocity fluctuati<strong>on</strong>s at this locati<strong>on</strong>. At the point<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> the equivalence ratio fluctuati<strong>on</strong>s can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the acoustic velocity fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the main air mass flow <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass<br />

flow, which is a very useful relati<strong>on</strong>ship. It provides in c<strong>on</strong>juncti<strong>on</strong> with the<br />

transfer functi<strong>on</strong> F φ,i a closure relati<strong>on</strong> for stability analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong><br />

system using e.g. a low-order network model as in the present work or<br />

a finite-element model for a generalized Helmholtz-Equati<strong>on</strong> [53, 84, 96, 101].<br />

The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship is represented below. Care has to be taken<br />

if equivalence ratio fluctuati<strong>on</strong>s are determined at a different positi<strong>on</strong> as the<br />

c<strong>on</strong>vectively transported equivalence ratio fluctuati<strong>on</strong>s are dispersed <strong>on</strong> the<br />

way to the flame. The dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> depends <strong>on</strong> the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>on</strong> the turbulent flow field in the mixing secti<strong>on</strong> or swirler. Additi<strong>on</strong>ally, in<br />

jet-in-cross flow injector c<strong>on</strong>figurati<strong>on</strong>s for example, as shown in Fig. 2.2, the<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> penetrati<strong>on</strong> can, depending <strong>on</strong> the fluctuati<strong>on</strong>s, also change. A different<br />

depth <str<strong>on</strong>g>of</str<strong>on</strong>g> penetrati<strong>on</strong> results in a different radial <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-air compositi<strong>on</strong> at<br />

the burner exit. This may have an influence <strong>on</strong> the local heat release rate fluctuati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus <strong>on</strong> the transfer functi<strong>on</strong> as indicated by Armitage et al. [7]<br />

28


2.2 Flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system<br />

for example. The reference locati<strong>on</strong> can therefore <strong>on</strong>ly be chosen arbitrarily<br />

if a perfect <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-air mixture is achieved at the burner exit. However, for many<br />

practical applicati<strong>on</strong>s this is not the case.<br />

Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s<br />

The nominal equivalence ratio fluctuati<strong>on</strong>s can be expressed as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the acoustic velocities in the main air <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream at the point <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>,<br />

which is presented in the following. The overall equivalence ratio φ is defined<br />

by the mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> air <str<strong>on</strong>g>and</str<strong>on</strong>g> the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow rates at the<br />

different injectors ”i ”,<br />

φ=s st<br />

∑ N<br />

i=1 ṁF,i<br />

ṁ A<br />

, (2.6)<br />

where N represents the number <str<strong>on</strong>g>of</str<strong>on</strong>g> injectors <str<strong>on</strong>g>and</str<strong>on</strong>g> s st denotes the stoichiometric<br />

factor.<br />

At each injector ”i ”, the nominal equivalence ratio φ i is increased in the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic fluctuati<strong>on</strong>s, if the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow past the injector is reduced<br />

(by a negative velocity fluctuati<strong>on</strong> u ′ A,i<br />

) or the mass flow rate through<br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> nozzle is increased (by a positive velocity fluctuati<strong>on</strong> u ′ F,i<br />

), see Fig. 2.2<br />

[75, 101].<br />

Dividing the equivalence ratio at injector ”i = k” into the c<strong>on</strong>tributi<strong>on</strong>s which<br />

are injected upstream ”i = 1,...,k− 1”<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> at ”i = k”, it follows:<br />

(<br />

¯ṁ F,k + ṁ ′ F,k)<br />

φ k = s<br />

( ¯ṁ A + ṁ ′ A ) +<br />

)<br />

ρ F A F<br />

(ū F,k + u ′ F,k<br />

= s<br />

)+ s<br />

ρ A A A<br />

(ū A,k + u ′ A,k<br />

∑ k−1<br />

i=1 ¯ṁ F,i<br />

¯ṁ A<br />

=<br />

∑ k−1<br />

i=1 ¯ṁ F,i<br />

¯ṁ A<br />

, (2.7)<br />

where ṁ F,i , ṁ A denote the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> line <str<strong>on</strong>g>of</str<strong>on</strong>g> injector ”i ” <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the air mass flow, respectively. With series expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the first order <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

term (ū A +u ′ A ) with respect to u′ A around ū A (higher orders are neglected) <strong>on</strong>e<br />

29


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

obtains:<br />

( )<br />

ū F,k + u ′ ( )<br />

F,k<br />

( ) = ūF,k<br />

1+ u′ F,k<br />

− u′ A,k<br />

. (2.8)<br />

ū A,k + u ′ ū A,k ū F,k ū A,k<br />

A,k<br />

Equati<strong>on</strong> (2.7) can be rewritten to:<br />

φ k = s<br />

∑ k<br />

i=0 ¯ṁ F,i<br />

¯ṁ A<br />

+ s ¯ṁ<br />

( )<br />

F,k<br />

u<br />

′<br />

F,k<br />

− u′ A<br />

, (2.9)<br />

¯ṁ A ū F,k ū A<br />

where the first part <strong>on</strong> the right side represents the mean value ¯φ k <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

sec<strong>on</strong>d the fluctuating variable φ ′ . Taking Eqn. (2.9), a general equati<strong>on</strong> for<br />

k<br />

the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s at each injector ”i ” to the overall<br />

mean value φ ′ i / ¯φ can be derived:<br />

( )<br />

φ ′ i u<br />

′<br />

¯φ = F,i<br />

− u′ A,k<br />

¯ṁ F,i<br />

∑<br />

ū F,i ū N ¯ṁ<br />

. (2.10)<br />

A,k i=1<br />

} {{ F,i<br />

}<br />

K i<br />

2.2.3 MISO model structure for practical premixed flames<br />

Combining the results obtained so far, the overall fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release<br />

rate for a practical premix burner with N <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages – see figure 1.2<br />

– are determined as a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>ses to velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence<br />

ratio perturbati<strong>on</strong>s, respectively:<br />

˙Q ′ (ω)<br />

= F u (ω) u′ b (ω) N∑<br />

+<br />

¯˙Q<br />

ū b i=1<br />

= F u (ω) u′ b (ω)<br />

(<br />

N∑ u<br />

′<br />

F,i<br />

+ F φ,i (ω)<br />

(ω)<br />

− u′ A,i (ω)<br />

)<br />

ū b ū A,i<br />

i=1<br />

ū F,i<br />

F φ,i<br />

φ ′ i (ω)<br />

¯φ<br />

¯ṁ F,i<br />

∑ N<br />

i=1 ¯ṁ F,i<br />

. (2.11)<br />

Comparing the latter relati<strong>on</strong> with Eqn. (2.4) or (2.5), the flame is described<br />

as a multiple-input single-output (MISO) system with input signals u ′ b <str<strong>on</strong>g>and</str<strong>on</strong>g> φ′ i ,<br />

where φ ′ i can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s u′ F,i <str<strong>on</strong>g>and</str<strong>on</strong>g> u′ A,i<br />

30


2.2 Flame dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system<br />

u' A,1<br />

u' b<br />

Q'<br />

.<br />

φ'<br />

u' 1 F,1<br />

u' A,2 φ'<br />

u' 2 F,2<br />

Figure 2.5: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> a MISO system with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors.<br />

at the injectors i = 1,..., N. For a burner with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors (N = 2) the<br />

corresp<strong>on</strong>ding block diagram is shown in figure 2.5.<br />

A simple SISO model structure or use <str<strong>on</strong>g>of</str<strong>on</strong>g> inappropriate reference locati<strong>on</strong>s will<br />

lead to significant errors in the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the practical premixed flame<br />

dynamics. This is dem<strong>on</strong>strated in Fig. 2.6, which shows a practical premixed<br />

combusti<strong>on</strong> system with different upstream boundary c<strong>on</strong>diti<strong>on</strong>s Z 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Z 2 .<br />

For simplicity an acoustically ”stiff” <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector with a large pressure drop<br />

across the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector is assumed. In this case the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass<br />

flow induced by acoustic fluctuati<strong>on</strong>s will be very small, <str<strong>on</strong>g>and</str<strong>on</strong>g> signal variables<br />

u ′ F,i<br />

may be neglected. The acoustic field <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor is represented in<br />

Fig. 2.6 in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic velocity u ′ . A SISO model based <strong>on</strong> the flame<br />

transfer functi<strong>on</strong> F u <str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s at the burner exit u ′ b would<br />

result in almost no heat release rate fluctuati<strong>on</strong>s in case a) as the amplitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic velocity u ′ exhibits a minimum. Heat release rate fluctuati<strong>on</strong>s,<br />

b<br />

which are due to equivalence fluctuati<strong>on</strong>s generated at the point <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>,<br />

are not taken into account. The SISO model would therefore not be a proper<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. An excepti<strong>on</strong> is the case, in which the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector is<br />

located very close (”acoustically compact” distance) to the reference locati<strong>on</strong><br />

”b”. In this case the acoustic velocity u ′ A,i<br />

has, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundary<br />

c<strong>on</strong>diti<strong>on</strong>s, almost the same amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase as u ′ . It can therefore be<br />

b<br />

replaced by u ′ . In case b) the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s at the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

b<br />

injecti<strong>on</strong> u ′ A,i<br />

is now zero, whereas the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity fluctuati<strong>on</strong>s at the<br />

burner exit exhibits a maximum. The SISO model based <strong>on</strong> F u would <strong>on</strong>ly in<br />

31


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

Z 1<br />

u' A,i<br />

.<br />

m F,i<br />

u' F,i<br />

u'<br />

φ' A,i i<br />

u' b<br />

.<br />

Q'<br />

X<br />

u'<br />

x b<br />

a)<br />

x F,i<br />

Z 2<br />

u'A,i<br />

.<br />

m F,i<br />

u' F,i<br />

A,i<br />

u'<br />

φ' i<br />

u' b<br />

.<br />

Q'<br />

X<br />

u'<br />

x b<br />

b)<br />

x F,i<br />

Figure 2.6: <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system acoustics <strong>on</strong> the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the flame dynamics<br />

this case reflect the flame dynamics correctly. If the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ”stiff”<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector does not hold, the SISO model would again neglect the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s, which result from velocity fluctuati<strong>on</strong>s in<br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector u ′ F,i<br />

. If the flame is described, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, by a SISO<br />

model based <strong>on</strong> equivalence ratio fluctuati<strong>on</strong>s, the same c<strong>on</strong>siderati<strong>on</strong>s can<br />

be obtained.<br />

A SISO model can finally not describe the practical premixed flame dynamics<br />

properly as it clearly depends <strong>on</strong> the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong><br />

system. It can <strong>on</strong>ly be represented by such a model if the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors are<br />

placed at the burner exit <str<strong>on</strong>g>and</str<strong>on</strong>g> if they are acoustically ”stiff”. This is not the case<br />

for most practical premixed combusti<strong>on</strong> systems. The <strong>on</strong>ly physically meaningful<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame is therefore the MISO model based <strong>on</strong> velocity<br />

32


2.3 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s<br />

fluctuati<strong>on</strong>s at the burner exit <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence fluctuati<strong>on</strong>s at the point <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>.<br />

The fact, that the flame has to be described by a MISO system with signals u ′ b<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> φ ′ i<br />

, is not always addressed in work <strong>on</strong> combusti<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> practical<br />

premixed combustors. Many studies neglect the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame fr<strong>on</strong>t<br />

kinematics completely. In the field <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> or tuned <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s<br />

examples can be found in Lieuwen <str<strong>on</strong>g>and</str<strong>on</strong>g> Zinn [72], Richards et al. [106, 108] or<br />

Scarinci et al. [115, 116]. Comprehensive models, which take the significant<br />

interacti<strong>on</strong> mechanisms into account, have been developed so far by e.g. [14,<br />

48, 65, 101, 119, 133].<br />

2.3 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s<br />

After the model structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the practical premixed flame has been derived,<br />

the questi<strong>on</strong> arises how the required flame transfer functi<strong>on</strong>s F u <str<strong>on</strong>g>and</str<strong>on</strong>g> F φ,i can<br />

be determined. Flame transfer functi<strong>on</strong>s can be obtained using experiments,<br />

numerical simulati<strong>on</strong> or analytical relati<strong>on</strong>s. As the present work focuses <strong>on</strong><br />

numerical design methods, experimental methods are out <str<strong>on</strong>g>of</str<strong>on</strong>g> the scope <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

not addressed in the following. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical methods a wide range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> approaches exists ranging from simple analytical relati<strong>on</strong>s to transient CFD<br />

simulati<strong>on</strong>s combined with a post-processing step to extract the flame behavior.<br />

These approaches are shortly reviewed in the following. Furthermore, the<br />

flame transfer functi<strong>on</strong>s obtained have to be implemented into an acoustic<br />

network model, which is based <strong>on</strong> acoustic variables u ′ , p ′ or Riemann invariants<br />

f <str<strong>on</strong>g>and</str<strong>on</strong>g> g . Here, it has to be defined how the input <str<strong>on</strong>g>and</str<strong>on</strong>g> output signals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the identified flame model can be related to an equivalent flame model in the<br />

network model. The coupling between flame dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g> network model<br />

has thus an influence <strong>on</strong> the identificati<strong>on</strong> procedure in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the signals,<br />

which can be practically determined by the chosen method. Different coupling<br />

strategies are therefore discussed in the sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> the chapter.<br />

33


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

2.3.1 Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> methods to determine flame transfer functi<strong>on</strong>s<br />

The flame transfer functi<strong>on</strong> F can basically be described in the frequency domain<br />

by amplitude A <str<strong>on</strong>g>and</str<strong>on</strong>g> phase φ, which determines the time lag <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame<br />

resp<strong>on</strong>se:<br />

F (ω)= A(ω)e i φ(ω) . (2.12)<br />

Various researchers derived a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> analytic relati<strong>on</strong>s describing the<br />

amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong> (e.g. [13, 15, 29, 48, 72, 101,<br />

112]). In many cases they are not <strong>on</strong>ly restricted to single effects, like the flame<br />

fr<strong>on</strong>t kinematics or the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s, but also to<br />

laminar combusti<strong>on</strong> cases or simple laboratory c<strong>on</strong>figurati<strong>on</strong>s. An excepti<strong>on</strong><br />

is the derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> e.g. Lawn <str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke [65], who c<strong>on</strong>sider a swirl stabilized<br />

turbulent flame. However their model lacks in the low frequency range where<br />

it does not exhibit the correct limiting behavior. A simple descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

flame transfer functi<strong>on</strong>, which is widely used, is the so-called n− τ model,<br />

which was developed by Crocco <str<strong>on</strong>g>and</str<strong>on</strong>g> Chen [19]. Here, the amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase<br />

are replaced by an frequency independent acoustic-combusti<strong>on</strong> interacti<strong>on</strong><br />

index n, which accounts for the influences as turbulent flame speed, flame<br />

area or enthalpy <str<strong>on</strong>g>and</str<strong>on</strong>g> time lag τ:<br />

F (ω)=ne −i ωτ . (2.13)<br />

The n-τ model <str<strong>on</strong>g>and</str<strong>on</strong>g> many other analytical models are restricted to <strong>on</strong>e specific<br />

time delay without any time delay distributi<strong>on</strong>. The idea to characterize the<br />

flame resp<strong>on</strong>se with <strong>on</strong>e global time delay, which ignores the c<strong>on</strong>vective<br />

dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> inhomogeneities, is <strong>on</strong>ly adequate for the low frequency<br />

regime as pointed out by Sattelmayer [112]. Turbulent fluctuati<strong>on</strong>s, boundary<br />

layers <str<strong>on</strong>g>and</str<strong>on</strong>g> recirculati<strong>on</strong> z<strong>on</strong>es induce a n<strong>on</strong>-uniform velocity field both at the<br />

locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in the combusti<strong>on</strong> chamber. The c<strong>on</strong>sequence is<br />

a n<strong>on</strong>-uniform distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>. The same c<strong>on</strong>siderati<strong>on</strong> holds for the<br />

combusti<strong>on</strong> process, which is affected by velocity fluctuati<strong>on</strong>s at the burner<br />

exit. Therefore, many researchers agree that models based <strong>on</strong> a time delay<br />

distributi<strong>on</strong> represent the flame resp<strong>on</strong>se significantly better [31, 99, 112].<br />

Regarding the present work Richards et al. [106], for example, used a reduced<br />

order model to include the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s.<br />

34


2.3 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s<br />

The developed flame model focuses mainly <strong>on</strong> the fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence<br />

ratio with a fixed single time delay, but neglects any flame fr<strong>on</strong>t kinematics,<br />

turbulence, change in shear layers, etc. The turbulent mixing process,<br />

which naturally damps this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong> as shown in Scarinci <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Freeman [115], is also not c<strong>on</strong>sidered. But even Scarinci <str<strong>on</strong>g>and</str<strong>on</strong>g> Freeman [115]<br />

used a simplified approach in form <str<strong>on</strong>g>of</str<strong>on</strong>g> a spatio-temporal mixing model, which<br />

is comparable to the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmospheric dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a pollutant<br />

emitted from a plant stack over an open field. It determines the average <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> at a certain positi<strong>on</strong> based <strong>on</strong> a Lagrangian formulati<strong>on</strong>.<br />

An alternative method to identify the flame behavior at relatively low costs is<br />

the use <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Fluid Dynamics. With steady state simulati<strong>on</strong>s an<br />

accurate time-lag distributi<strong>on</strong> can be obtained using a Lagrangian approach<br />

with injected particles as described by Flohr et al. [30, 31]. To save computati<strong>on</strong>al<br />

time the authors injected the particles shortly downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the injecti<strong>on</strong><br />

plane <str<strong>on</strong>g>and</str<strong>on</strong>g> measured their traveling times until they hit the flame fr<strong>on</strong>t.<br />

Alternatively Krebs et al. [59, 60] performed transient simulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> calculated<br />

the instati<strong>on</strong>ary dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injected passive scalars in a statistically<br />

stati<strong>on</strong>ary flow field. Compared to the Lagrangian approach the Eulerian approach<br />

enables a determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time lags not <strong>on</strong>ly at a predefined surface<br />

but also in the entire combusti<strong>on</strong> chamber. The distributi<strong>on</strong> obtained can<br />

then be used to improve the time lag descripti<strong>on</strong> in the n− τ model. In a further<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Eulerian approach the time lags could be weighted with<br />

the corresp<strong>on</strong>ding local heat release rate in relati<strong>on</strong> to the overall heat release<br />

rate to incorporate the local characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. However, the latter<br />

method requires a soluti<strong>on</strong> for recirculati<strong>on</strong> z<strong>on</strong>es to avoid multiple counts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the time lags passing the flame.<br />

To obtain not <strong>on</strong>ly the time lag distributi<strong>on</strong> but also the transfer functi<strong>on</strong><br />

amplitude as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> frequency, many methods based <strong>on</strong> transient<br />

CFD simulati<strong>on</strong>s analyze the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame to harm<strong>on</strong>ic forcing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the acoustic variables at <strong>on</strong>e specific frequency. Using harm<strong>on</strong>ic forcing is<br />

especially a comm<strong>on</strong> procedure in experiments. This approach is particular<br />

suitable to determine the kinematic resp<strong>on</strong>se F u (ω) <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame fr<strong>on</strong>t to flow<br />

35


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

perturbati<strong>on</strong>s. Hettel et al. [42] studied the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a premixed turbulent<br />

axial methane jet flame using unsteady RANS simulati<strong>on</strong> with a sinusoidal<br />

modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the inlet mass flow. A LES simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a double swirler<br />

premixed burner was performed by Giauque et al. [36] at three different<br />

frequencies. The simulati<strong>on</strong> was able to identify two main flow structures,<br />

namely a toroidal structure <str<strong>on</strong>g>and</str<strong>on</strong>g> a precessing vortex core attached to the center<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler, which modulates the global heat release rate. The obvious<br />

drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> these approaches is that numerous simulati<strong>on</strong>s are necessary<br />

to obtain a transfer functi<strong>on</strong> over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies. To reduce the<br />

computati<strong>on</strong>al effort Bohn et al. [12] used a sudden increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the inlet mass<br />

flow as excitati<strong>on</strong> signal, which c<strong>on</strong>tains by design multiple frequencies. A<br />

Laplace transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting unit functi<strong>on</strong> resp<strong>on</strong>se represents the<br />

flame dynamics in the frequency domain. Polifke et al. [102] proposed an<br />

advanced system identificati<strong>on</strong> method (CFD/SI) based <strong>on</strong> digital signal theory<br />

to post-process time series data generated by transient CFD simulati<strong>on</strong><br />

with broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong>. The method uses auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time series <str<strong>on</strong>g>of</str<strong>on</strong>g> ”signals” <str<strong>on</strong>g>and</str<strong>on</strong>g> ”resp<strong>on</strong>ses” <str<strong>on</strong>g>and</str<strong>on</strong>g> the Wiener-Hopf-Inversi<strong>on</strong><br />

to identify unit impulse resp<strong>on</strong>ses (UIR). The acoustic transfer functi<strong>on</strong> or<br />

transfer matrix is obtained by a z-transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit impulse resp<strong>on</strong>ses. In<br />

their work they successfully obtained the acoustic transfer matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> a gauze<br />

in a Rjike tube. Gentemann et al. applied the approach to determine the<br />

transfer matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> a sudden jump in cross-secti<strong>on</strong> in compressible flow [34]<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a flame transfer functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a perfect premixed combusti<strong>on</strong> system [35].<br />

In the latter case [35] the ”signal” is the velocity fluctuati<strong>on</strong> close to the burner<br />

exit, whereas the heat release rate fluctuati<strong>on</strong> caused downstream is regarded<br />

as the "resp<strong>on</strong>se". A similar method was developed by Zhu et al. [6, 135],<br />

which describes the flame resp<strong>on</strong>se as an infinite impulse resp<strong>on</strong>se (IIR) filter<br />

model. The model coefficients are determined by a least square estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the signals. As in [35], the ”outputs” <str<strong>on</strong>g>of</str<strong>on</strong>g> the IIR model are fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heat release rate, while the ”inputs” are fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow variable.<br />

A different method, based <strong>on</strong> steady state simulati<strong>on</strong>s, is proposed by van<br />

Kampen et al. [129]. The authors calculated the transfer functi<strong>on</strong> using a<br />

linear coefficient method in combinati<strong>on</strong> with an efficient order reducti<strong>on</strong><br />

algorithm.<br />

36


2.3 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s<br />

To determine the flame transfer functi<strong>on</strong>, which is the key element in analyzing<br />

the thermo-acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> systems, an advanced <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

accurate method should be chosen. Analytic descripti<strong>on</strong>s can hardly be used<br />

in the area <str<strong>on</strong>g>of</str<strong>on</strong>g> realistic <strong>gas</strong> <strong>turbine</strong> combusti<strong>on</strong> chambers because <str<strong>on</strong>g>of</str<strong>on</strong>g> their limitati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> accuracy. Even semi-analytical approaches using a time lag distributi<strong>on</strong><br />

obtained by CFD can <strong>on</strong>ly improve simple flame models like the n− τ<br />

model for example. The amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> these fluctuati<strong>on</strong>s in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong> n is still unsolved. Most methods based <strong>on</strong> transient CFD<br />

account <strong>on</strong>ly for a SISO model <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics using the velocity fluctuati<strong>on</strong>s<br />

at the flame holder or equivalence ratio fluctuati<strong>on</strong>s at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

injecti<strong>on</strong> as input signal. Therefore they can not be used, at least not in their<br />

original form, in the present c<strong>on</strong>text. However, the menti<strong>on</strong>ed combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CFD <str<strong>on</strong>g>and</str<strong>on</strong>g> system identificati<strong>on</strong> used by Polifke et al. [102] or Gentemann et<br />

al. [35], [34] is also suitable for more complex structures. It was originally developed<br />

in the thermo-acoustic c<strong>on</strong>text to obtain acoustic transfer matrices,<br />

i.e. multiple-input multiple-output (MIMO) systems. It represents a flexible<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> powerful method <str<strong>on</strong>g>and</str<strong>on</strong>g> is chosen in the following as a starting basis. In the<br />

present work the method has to be extended to identify the practical premixed<br />

flame behavior, which has to be described by a MISO system.<br />

The chosen hybrid approach combining CFD simulati<strong>on</strong>s, system identificati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> acoustic network modeling represents an optimal soluti<strong>on</strong>. The numerical<br />

CFD simulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> system identificati<strong>on</strong> enable an accurate determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the complex acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. The network model,<br />

<strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, is suitable to analyze the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> geometries <strong>on</strong> the thermo-acoustic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong><br />

system.<br />

2.3.2 Identificati<strong>on</strong> strategy<br />

No matter, which combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> identificati<strong>on</strong> method is chosen,<br />

the questi<strong>on</strong> arises how the flame transfer functi<strong>on</strong> F φ,i is determined<br />

practically <str<strong>on</strong>g>and</str<strong>on</strong>g> how the signal <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame model can be re-<br />

37


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

lated to an equivalent element in the acoustic network model.<br />

The identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s by CFD/SI requires an excitati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the flow variables to cause a system resp<strong>on</strong>se. As the flame resp<strong>on</strong>ds to mass<br />

flow <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s two independent excitati<strong>on</strong> signals are<br />

required to discern the individual effects in the post-processing identificati<strong>on</strong><br />

step. The excitati<strong>on</strong> in such a simulati<strong>on</strong> should be provided by the boundary<br />

c<strong>on</strong>diti<strong>on</strong>s or adequate sources inside the CFD domain. A meaningful coupling<br />

between CFD/SI <str<strong>on</strong>g>and</str<strong>on</strong>g> acoustic network model has to take into account<br />

that the network model describes the system characteristics in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic<br />

variables. Therefore equivalence ratio fluctuati<strong>on</strong>s have to be expressed in<br />

a suitable way as, e.g. described in Eqn. (2.10).<br />

The excitati<strong>on</strong>, the signal <str<strong>on</strong>g>and</str<strong>on</strong>g> its locati<strong>on</strong>, which will be used as the input to<br />

identify F φ,i , determine the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulated domain <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the<br />

computati<strong>on</strong>al effort. It also affects the interface between CFD/SI <str<strong>on</strong>g>and</str<strong>on</strong>g> network<br />

model <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding network flame element. The kinematic<br />

flame resp<strong>on</strong>se F u , <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, can be included in a straightforward<br />

manner extracting the acoustic velocity fluctuati<strong>on</strong>s at the burner exit. Its<br />

identificati<strong>on</strong> <strong>on</strong>ly requires the simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> chamber if a<br />

proper inlet boundary c<strong>on</strong>diti<strong>on</strong> is set, which takes the flow c<strong>on</strong>diti<strong>on</strong>s upstream<br />

into account (e.g. swirling flow).<br />

In the following different possibilities are discussed, which are denoted as A,<br />

B, C <str<strong>on</strong>g>and</str<strong>on</strong>g> D. The comparis<strong>on</strong> between the possibilities is shown in Fig. 2.7. The<br />

columns present the computati<strong>on</strong>al domain required, the excitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> signals<br />

extracted <str<strong>on</strong>g>and</str<strong>on</strong>g> their locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding network flame element.<br />

In case A the combustor, including swirler vanes, mixing secti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors is resolved as shown in the first row <str<strong>on</strong>g>and</str<strong>on</strong>g> first column. The<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors, which have to be modeled, should be l<strong>on</strong>g enough<br />

to ensure a well developed velocity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile at the entry to the mixing secti<strong>on</strong>.<br />

For this opti<strong>on</strong>, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow <str<strong>on</strong>g>and</str<strong>on</strong>g> the air mass flow are excited at the inlet<br />

boundary c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> line <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing secti<strong>on</strong>, respectively.<br />

Here, the mass flow averaged velocity fluctuati<strong>on</strong>s upstream the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injec-<br />

38


2.3 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s<br />

CFD simulati<strong>on</strong> Excitati<strong>on</strong> & Extracti<strong>on</strong> Flame element<br />

Inlet boundaries<br />

.<br />

m'<br />

m' F,i<br />

Excitati<strong>on</strong><br />

A<br />

CFD domain<br />

u' F,i<br />

u' b<br />

. m' u' A,i A,i Measurement planes<br />

u' b .<br />

u' A,i φ'<br />

u' i F,i<br />

Q'<br />

Inlet boundary<br />

Excitati<strong>on</strong><br />

B<br />

CFD domain<br />

Y'<br />

.<br />

m'<br />

Y' <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

φ'<br />

u' b<br />

Measurement planes<br />

- <strong>on</strong>ly valid if<br />

C<br />

Inlet boundary<br />

u' Y' b<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

m'<br />

. φ'<br />

Excitati<strong>on</strong><br />

- additi<strong>on</strong>al informati<strong>on</strong><br />

required<br />

D<br />

CFD domain<br />

.<br />

m'<br />

m' A,i<br />

Measurement planes<br />

Excitati<strong>on</strong><br />

.<br />

m'<br />

u' b<br />

m' F,i<br />

φ'<br />

Measurement planes<br />

u' b .<br />

u' A,i<br />

φ'<br />

u' F,i<br />

Q'<br />

Figure 2.7: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities to identify the flame transfer functi<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> to couple the transfer functi<strong>on</strong>s to the acoustic network model<br />

39


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

ti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in the mixing secti<strong>on</strong> upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner exit are taken as the<br />

input signals for the post-processor. They are extracted at the ”measurement”<br />

planes, which are shown in the sec<strong>on</strong>d column. The heat release fluctuati<strong>on</strong>s<br />

due to equivalence ratio fluctuati<strong>on</strong>s can thus be determined by combining<br />

Eqn. (2.10) <str<strong>on</strong>g>and</str<strong>on</strong>g> (2.5). The total heat release rate fluctuati<strong>on</strong>s can be obtained<br />

by the summati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two flame transfer functi<strong>on</strong>s:<br />

˙Q ′<br />

¯˙Q<br />

( )<br />

u<br />

′<br />

F,i<br />

= F φ,i − u′ A,k<br />

ū F,i ū A,k<br />

¯ṁ F,i<br />

∑ N<br />

i=1 ¯ṁ F,i<br />

+ F u<br />

u ′ b<br />

ū b<br />

. (2.14)<br />

This flame model structure can be directly transferred to the acoustic network<br />

model envir<strong>on</strong>ment as the input for both models are the velocity fluctuati<strong>on</strong>s<br />

u ′ F,i , u′ A,i <str<strong>on</strong>g>and</str<strong>on</strong>g> u′ b . A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame element is shown in the third column3 .<br />

Alternatively, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow can be excited downstream the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector<br />

in applying <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass fracti<strong>on</strong> fluctuati<strong>on</strong>s at the inlet boundary. The mass<br />

fracti<strong>on</strong> Y is defined as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass m k <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular species k <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid m:<br />

Y = m k<br />

m . (2.15)<br />

To obtain the flame resp<strong>on</strong>se to velocity fluctuati<strong>on</strong>s at the burner exit the total<br />

mass flow rate is in additi<strong>on</strong> excited at the inlet. This is shown in the sec<strong>on</strong>d<br />

row (case B). Here, the CFD domain c<strong>on</strong>tains a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing secti<strong>on</strong>, the<br />

swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> the combusti<strong>on</strong> chamber. The input signal for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

F φ,i would be the equivalence ratio fluctuati<strong>on</strong>s φ ′ at the inlet, which can be<br />

calculated using (see also Eqn. (2.6))<br />

φ ′ Y ′<br />

F<br />

= s st<br />

Y ′ , (2.16)<br />

O<br />

where Y F <str<strong>on</strong>g>and</str<strong>on</strong>g> Y O denote the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidizer mass fracti<strong>on</strong>,<br />

respectively. However, this possibility is based, as discussed in chapter<br />

2.2.2, <strong>on</strong> the assumpti<strong>on</strong> that the spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s<br />

does not vary with injecti<strong>on</strong> momentum. This is not the case for all<br />

3 The resp<strong>on</strong>se ˙Q ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> the network flame element has still to be expressed as a functi<strong>on</strong> the acoustic variables<br />

downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame, which can be d<strong>on</strong>e using e.g. the Rankine-Hug<strong>on</strong>iot relati<strong>on</strong>s.<br />

40


2.3 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s<br />

injecti<strong>on</strong> systems. Examples are jet-in-cross flow injector c<strong>on</strong>figurati<strong>on</strong>s, in<br />

which a str<strong>on</strong>g dependence <strong>on</strong> momentum ratio between air <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream<br />

is observed. In this case, an increased <str<strong>on</strong>g>fuel</str<strong>on</strong>g> velocity results in increased penetrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream into the air stream <str<strong>on</strong>g>and</str<strong>on</strong>g> thus in a different <str<strong>on</strong>g>fuel</str<strong>on</strong>g> distributi<strong>on</strong>,<br />

which may influence the heat release rate. As the equivalence ratio<br />

fluctuati<strong>on</strong>s are generated at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>, a transfer functi<strong>on</strong><br />

T has to be defined in the network model envir<strong>on</strong>ment, which c<strong>on</strong>nects the<br />

acoustic velocities at this locati<strong>on</strong> to the equivalence ratio fluctuati<strong>on</strong>s at the<br />

”measurement” plane in the CFD simulati<strong>on</strong>. Here, the equivalence ratio fluctuati<strong>on</strong>s<br />

do not have to be extracted. They can be directly calculated using the<br />

excitati<strong>on</strong> signals at the inlet boundary. The corresp<strong>on</strong>ding network elements<br />

are shown in the third column. In simple c<strong>on</strong>figurati<strong>on</strong>s a c<strong>on</strong>stant time delay<br />

model can be chosen, which accounts for the c<strong>on</strong>vective transport <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

between both locati<strong>on</strong>s. If the inlet boundary <str<strong>on</strong>g>and</str<strong>on</strong>g> the ”measurement” plane is<br />

taken very close to the injecti<strong>on</strong> point, the same relati<strong>on</strong> for the flame transfer<br />

functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the same network flame element can be used as in case A.<br />

The CFD domain could be further reduced in c<strong>on</strong>sidering the combustor<br />

downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> swirler vanes, which is shown in the third<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> fourth row <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 2.7. Here, the swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> are not modeled.<br />

The excitati<strong>on</strong> can be provided by<br />

• C) a <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass fracti<strong>on</strong> fluctuati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total mass flow<br />

rate, which are applied at the inlet boundary<br />

• D) introducing a fluctuating mass source functi<strong>on</strong> inside the computati<strong>on</strong>al<br />

domain <str<strong>on</strong>g>and</str<strong>on</strong>g> a fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the air mass flow rate at the inlet<br />

boundary<br />

In both cases the equivalence ratio fluctuati<strong>on</strong>s can be calculated using<br />

Eqn. (2.16). In case C the excitati<strong>on</strong> signals can be used directly for the calculati<strong>on</strong>.<br />

In case D <strong>on</strong>ly <strong>on</strong>e ”measurement” plane at the burner exit is necessary<br />

to extract the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidizer mass fracti<strong>on</strong>s as well as velocity fluctuati<strong>on</strong>s.<br />

The network flame model for both cases require again a transfer functi<strong>on</strong> T<br />

to express the equivalence ratio in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic fluctuati<strong>on</strong>s at the locati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>. In c<strong>on</strong>trast to case B such a transfer functi<strong>on</strong> should<br />

41


Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic instabilities<br />

ideally also account for the dispersi<strong>on</strong> due to the turbulent flow field in the<br />

mixing secti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> swirler.<br />

In the present work jet-in-cross flow injectors are used. In c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the modeling uncertainties associated with cases B, C <str<strong>on</strong>g>and</str<strong>on</strong>g> D, case A is chosen,<br />

which has the advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> a straightforward <str<strong>on</strong>g>and</str<strong>on</strong>g> exact implementati<strong>on</strong>.<br />

Therefore the mixing secti<strong>on</strong>, a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the injecti<strong>on</strong> tubes, the swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

combusti<strong>on</strong> chamber are simulated in the following. The velocity fluctuati<strong>on</strong>s<br />

at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> at the burner exit, which can be directly coupled<br />

to the corresp<strong>on</strong>ding flame element in the network model, are used as<br />

input signals for the identificati<strong>on</strong> routine. Except the acoustic characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler, which will be also determined using CFD/SI, the acoustic network<br />

elements representing all other parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system can be<br />

derived analytically. The acoustic network model obtained can then be used<br />

to analyze the acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> practical premixed combusti<strong>on</strong> systems<br />

using multiple, staged <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors with tuned <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s.<br />

The next chapters describe the theory <str<strong>on</strong>g>and</str<strong>on</strong>g> the models, which are required for<br />

the present purpose. Chapter 3 describes the basic acoustic relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

network model. The introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Fluid Dynamics with the<br />

chosen numerical turbulence <str<strong>on</strong>g>and</str<strong>on</strong>g> combusti<strong>on</strong> models is discussed in chapter<br />

4. The system identificati<strong>on</strong> method with its extensi<strong>on</strong> to determine multipleinput<br />

single-output systems is addressed in chapter 5.<br />

42


3 Acoustics<br />

Before analyzing the acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a combusti<strong>on</strong> system, the basic<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> the propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sound in <strong>gas</strong>eous media has to be understood.<br />

This secti<strong>on</strong> presents the main relevant mathematical equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their<br />

simplificati<strong>on</strong>s, as they are appropriate in the present c<strong>on</strong>text. The later<br />

sub-chapters deal with the relati<strong>on</strong>s used in the acoustic network model. All<br />

relati<strong>on</strong>s can be found in various books <str<strong>on</strong>g>and</str<strong>on</strong>g> publicati<strong>on</strong>s about basic acoustics<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> aeroacoustics, especially in Dowling <str<strong>on</strong>g>and</str<strong>on</strong>g> Ffowcs Williams [24], Morse<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ingard [81], Pierce [93], Rienstra <str<strong>on</strong>g>and</str<strong>on</strong>g> Hirschberg [110], Goldstein [38] or<br />

Munjal [82].<br />

3.1 Basic acoustic equati<strong>on</strong>s<br />

The basis for the following derivati<strong>on</strong>s are the c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s for<br />

mass, momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> energy. The c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong> for momentum reduces<br />

to the Euler equati<strong>on</strong> in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> body forces <str<strong>on</strong>g>and</str<strong>on</strong>g> neglecting viscosity:<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass:<br />

Dρ<br />

+ ρ(∇·u)=0, (3.1)<br />

Dt<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum:<br />

ρ Du<br />

Dt<br />

+∇p = 0, (3.2)<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy:<br />

ρ D Dt<br />

(e+ 1 2 |u|2 )<br />

=−∇q−∇·(pu)+ ˙Q V . (3.3)<br />

43


Acoustics<br />

The term D Dt = ∂ + u·∇ is the material derivative. ρ denotes the density, t the<br />

∂t<br />

time, u the velocity, p the pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> e is the internal energy per unit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mass 1 . In the energy equati<strong>on</strong> (3.3) 1/2|u| 2 is the kinetic energy where|u| denotes<br />

the absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity vector u. q represents the heat flux <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

˙Q V the heat producti<strong>on</strong> per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> volume which can be caused by chemical<br />

reacti<strong>on</strong>s or electrical heating. The energy equati<strong>on</strong> can be replaced by the<br />

equati<strong>on</strong> for the entropy s, which is derived by a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy<br />

equati<strong>on</strong> with the sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamics. If the heat transfer <str<strong>on</strong>g>and</str<strong>on</strong>g> dissipati<strong>on</strong><br />

are negligible the entropy equati<strong>on</strong> can be written as<br />

ρT Ds<br />

Dt = ˙Q V , (3.4)<br />

where T denotes the temperature. In the following it is assumed that the flow<br />

is homentropic except in the regi<strong>on</strong> where the flame is located. Homentropy<br />

implies, that the flow is adiabatic, reversible ( Ds<br />

Dt = 0) <str<strong>on</strong>g>and</str<strong>on</strong>g> uniform (∇s = 0).<br />

The combusti<strong>on</strong> process adds heat to the system, which does not result in a<br />

uniform temperature distributi<strong>on</strong> – especially if equivalence ratio fluctuati<strong>on</strong>s<br />

are present. The flame is therefore treated as a disc<strong>on</strong>tinuity. If the flow is uniform,<br />

entropy waves, which are caused by equivalence ratio fluctuati<strong>on</strong>s at<br />

the flame, propagate independently with the mean flow speed <str<strong>on</strong>g>and</str<strong>on</strong>g> may also<br />

be coupled to the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the system at boundaries, at which the flow<br />

faces str<strong>on</strong>g velocity gradients 2 . As these boundaries, e.g. nozzles or choked<br />

cross secti<strong>on</strong>s, are not c<strong>on</strong>sidered in the present work, entropy waves are neglected<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> homentropy for the flow field upstream <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

downstream the flame is valid.<br />

The c<strong>on</strong>servati<strong>on</strong> laws (3.1), (3.2), (3.3) do not form a complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s.<br />

Additi<strong>on</strong>al informati<strong>on</strong> is required which is provided by the c<strong>on</strong>stitutive<br />

equati<strong>on</strong>s. Assuming that the flow is homogeneous <str<strong>on</strong>g>and</str<strong>on</strong>g> in a state <str<strong>on</strong>g>of</str<strong>on</strong>g> local thermodynamic<br />

equilibrium, two intrinsic state variables are sufficient to specify<br />

the thermodynamic state <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid. It is comm<strong>on</strong> to use the density ρ <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the entropy s as the basic state variables. The pressure can then be expressed<br />

1 The internal energy is also called the specific internal energy or simply the energy.<br />

2 Here, a temperature fluctuati<strong>on</strong> results in a volume flux fluctuati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> can generate expansi<strong>on</strong> waves propagating<br />

upstream.<br />

44


3.1 Basic acoustic equati<strong>on</strong>s<br />

as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the state variables p = p(ρ, s) (equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state). In differential<br />

form this equati<strong>on</strong> yields<br />

where<br />

( ) ( ∂p ∂p<br />

d p = dρ+<br />

∂ρ<br />

s<br />

∂s<br />

( ) ∂p<br />

∂ρ<br />

s<br />

)<br />

p<br />

d s, (3.5)<br />

≡ c 2 . (3.6)<br />

Equati<strong>on</strong> (3.6) is a definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermodynamic variable c = c(ρ, s) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is a measure for the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound. In the present work, air at atmospheric<br />

pressure is c<strong>on</strong>sidered as the main fluid, which behaves like an ideal <strong>gas</strong>. The<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state can therefore be simplified to<br />

p = ρRT, (3.7)<br />

where R denotes the specific <strong>gas</strong> c<strong>on</strong>stant, which is defined by the Boltzmann<br />

c<strong>on</strong>stant k b <str<strong>on</strong>g>and</str<strong>on</strong>g> the Avogadro number N A divided by the molar mass M <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <strong>gas</strong> (R = k b N A /M). For an ideal <strong>gas</strong> R can be expressed also as R = c p − c v ,<br />

where c p <str<strong>on</strong>g>and</str<strong>on</strong>g> c v are the specific heat at c<strong>on</strong>stant pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> volume, respectively.<br />

The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the specific heats is defined by γ≡c p /c v .<br />

A further useful relati<strong>on</strong> is the combining <str<strong>on</strong>g>of</str<strong>on</strong>g> the first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamics<br />

3 :<br />

T d s= d e+ pd 1 ρ . (3.8)<br />

Using this equati<strong>on</strong>, the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state (3.7) for an ideal <strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> assuming<br />

that e= c v T , which is a valid assumpti<strong>on</strong> for most ideal <strong>gas</strong>es over a wide range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> temperatures, <strong>on</strong>e obtains a further formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state<br />

relating pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> density:<br />

3 which is also called the fundamental equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamics<br />

( )<br />

p ρ γ ( ) s− s0<br />

= exp . (3.9)<br />

p 0 ρ 0 c v<br />

45


Acoustics<br />

If the flow is homentropic the pressure p is proporti<strong>on</strong>al to ρ γ . With the same<br />

relati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> assumpti<strong>on</strong>s an equati<strong>on</strong> for the energy <str<strong>on</strong>g>and</str<strong>on</strong>g> the specific enthalpy,<br />

which is defined as h s = e+ p/ρ, can be defined:<br />

e = 1 p<br />

γ−1 ρ , (3.10)<br />

h s = γ p<br />

γ−1 ρ . (3.11)<br />

Beside the c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s, which are the basis for the following<br />

derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> its simple d’Alembert’s soluti<strong>on</strong>s, an additi<strong>on</strong>al<br />

equati<strong>on</strong>, the Bernoulli equati<strong>on</strong> plays an important role in describing<br />

the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> compact elements. The bases for its derivati<strong>on</strong><br />

are the Euler equati<strong>on</strong>s. C<strong>on</strong>sidering an irrotati<strong>on</strong>al flow <str<strong>on</strong>g>and</str<strong>on</strong>g> the equati<strong>on</strong>s<br />

derived for the homentropic flow, the Bernoulli equati<strong>on</strong> for compressible<br />

flow can be written as<br />

∂ϕ s<br />

∂t + 1 2 u2 s + γ p<br />

γ−1 ρ<br />

= g (t ), (3.12)<br />

which is valid al<strong>on</strong>g streamlines. ϕ s denotes the scalar velocity potential,<br />

which is defined as ∇ϕ s = u s . g (t ) is a functi<strong>on</strong> which is determined by the<br />

boundary c<strong>on</strong>diti<strong>on</strong>s. Equati<strong>on</strong> (3.12) can be further simplified in the case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incompressible steady flow to<br />

1<br />

2 |u|·|u|+ p ρ<br />

= c<strong>on</strong>st. (3.13)<br />

3.2 Linear acoustic equati<strong>on</strong>s<br />

In the present work, it is assumed that the sound-induced fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure<br />

p <str<strong>on</strong>g>and</str<strong>on</strong>g> density ρ are small compared to their ambient state values:<br />

p ′<br />

p 0<br />

≪ 1, ρ′<br />

ρ 0<br />

≪ 1. (3.14)<br />

46


3.2 Linear acoustic equati<strong>on</strong>s<br />

Here, the apostrophe ′ st<str<strong>on</strong>g>and</str<strong>on</strong>g>s for the fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic variable while<br />

the subscript 0 refers to the ambient state in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic fluctuati<strong>on</strong>s.<br />

The ambient state is comparable to the introduced mean values (denoted<br />

by the overbar ¯ ) <str<strong>on</strong>g>and</str<strong>on</strong>g> defines, in general, the medium through which<br />

the sound waves propagate. The velocity fluctuati<strong>on</strong> u ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid associated<br />

with the acoustic wave propagati<strong>on</strong> u ′ = p ′ /(ρc) is therefore also c<strong>on</strong>sidered to<br />

be small. The assumpti<strong>on</strong>s made above justify a linear approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s. However, this implies that the following derivati<strong>on</strong>s<br />

are restricted to the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> linear acoustics. It follows from Eqn. (3.14)<br />

that the flow variables at locati<strong>on</strong> x <str<strong>on</strong>g>and</str<strong>on</strong>g> time t can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the state value superposed by the fluctuating part 4 :<br />

p(x, t )= p 0 + p ′ (x, t ),<br />

ρ(x, t )=ρ 0 + ρ ′ (x, t ),<br />

u(x, t )=u 0 + u ′ (x, t ). (3.15)<br />

3.2.1 Sound propagati<strong>on</strong> in a quiescent medium<br />

Assuming that the medium is quiescent, in which the ambient quantities are<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>and</str<strong>on</strong>g> the flow is stagnant (u 0 = 0), the relati<strong>on</strong>s (3.15) can<br />

be used to simplify the c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong> for mass <str<strong>on</strong>g>and</str<strong>on</strong>g> momentum. The<br />

result are the linear acoustic equati<strong>on</strong>s 5<br />

∂ρ ′<br />

∂t + ρ 0∇·u ′ = 0, (3.16)<br />

ρ 0<br />

∂u ′<br />

∂t +∇p′ = 0, (3.17)<br />

where sec<strong>on</strong>d- <str<strong>on</strong>g>and</str<strong>on</strong>g> higher-order terms are neglected. A first order approximati<strong>on</strong><br />

for the pressure fluctuati<strong>on</strong>s (see also the c<strong>on</strong>stitutive equati<strong>on</strong>s (3.5) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

4 Here, it is assumed that no other fluctuati<strong>on</strong>s are present, e.g. imposed by turbulence.<br />

5 Again, entropy fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their impact <strong>on</strong> the acoustics are not c<strong>on</strong>sidered in the present work.<br />

47


Acoustics<br />

(3.6)) yields:<br />

p ′ = c 2 ρ ′ . (3.18)<br />

The wave equati<strong>on</strong> can be derived by subtracting the time derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

mass c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong> (3.16) from the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the momentum<br />

equati<strong>on</strong> (3.17) <str<strong>on</strong>g>and</str<strong>on</strong>g> using the c<strong>on</strong>stitutive equati<strong>on</strong> (3.18):<br />

∂ 2 p ′<br />

∂ 2 t − c 2 ∇ 2 p ′ = 0. (3.19)<br />

Equati<strong>on</strong> (3.19) describes the three-dimensi<strong>on</strong>al propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pressure<br />

waves with propagati<strong>on</strong> speed c. The directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave propagati<strong>on</strong> is<br />

normal to the wave fr<strong>on</strong>t, which is defined as the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> all points featuring<br />

the same pressure amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase.<br />

In most <strong>gas</strong> <strong>turbine</strong> combusti<strong>on</strong> systems the thermo-acoustic instabilities occur<br />

in the frequency range up to 1000 Hz. The radial <str<strong>on</strong>g>and</str<strong>on</strong>g> circumferential dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system c<strong>on</strong>sidered are much shorter than any<br />

wavelength in this range as already discussed in chapter 1.5. Here, the cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> possible two- or three-dimensi<strong>on</strong>al modes is higher than<br />

the maximum frequency. This implies that these modes are exp<strong>on</strong>entially<br />

damped in the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> propagati<strong>on</strong>. Therefore, the wave propagati<strong>on</strong> can<br />

be restricted to <strong>on</strong>e-dimensi<strong>on</strong>al duct acoustics with plane waves 6 .<br />

The wave equati<strong>on</strong> (3.19) can then be simplified to:<br />

∂ 2 p ′<br />

∂t − c 2 ∂2 p ′<br />

= 0. (3.20)<br />

2 ∂x2 Simple <str<strong>on</strong>g>and</str<strong>on</strong>g> important soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>e-dimensi<strong>on</strong>al wave equati<strong>on</strong> are<br />

the d’Alembert’s soluti<strong>on</strong>s, which result by substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the variables ξ =<br />

x− ct, η=x+ ct:<br />

6 Multi-dimensi<strong>on</strong>al wave fields, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, have <strong>on</strong>ly to be c<strong>on</strong>sidered in combusti<strong>on</strong> systems, in<br />

which the circumferential or radial dimensi<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the occurring wavelength [28, 58, 62, 88, 101]<br />

48


3.2 Linear acoustic equati<strong>on</strong>s<br />

p ′<br />

ρ 0 c<br />

= f (ξ)+ g (η)= f (x− c t )+ g (x+ c t ). (3.21)<br />

The soluti<strong>on</strong> p ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> the latter equati<strong>on</strong> is, in general, normalized by the characteristic<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> ρ 0 c. f <str<strong>on</strong>g>and</str<strong>on</strong>g> g are the so-called Riemann Invariants <str<strong>on</strong>g>and</str<strong>on</strong>g> are<br />

determined by boundary or initial c<strong>on</strong>diti<strong>on</strong>s. The Riemann Invariants represent<br />

physically waves, which are traveling with speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound c in the right or<br />

positive x-directi<strong>on</strong> (f ) or rather in the left or negative directi<strong>on</strong> (g ) as shown<br />

in Fig. 3.1.<br />

g<br />

f<br />

x<br />

Figure 3.1: Riemann Invariants f <str<strong>on</strong>g>and</str<strong>on</strong>g> g traveling in positive <str<strong>on</strong>g>and</str<strong>on</strong>g> negative x-<br />

directi<strong>on</strong><br />

The acoustic velocity u ′ can be obtained from the acoustic pressure p ′<br />

(Eqn. (3.21)) <str<strong>on</strong>g>and</str<strong>on</strong>g> the linearized momentum equati<strong>on</strong> (3.17):<br />

u ′ = f (x− c t )− g (x+ c t ). (3.22)<br />

Using Eqn. (3.21) <str<strong>on</strong>g>and</str<strong>on</strong>g> (3.22), the Riemann Invariants can be c<strong>on</strong>versely expressed<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> p ′ <str<strong>on</strong>g>and</str<strong>on</strong>g> u ′ :<br />

f = 1 ( p<br />

′<br />

)<br />

2 ρ 0 c + u′ , (3.23)<br />

g = 1 ( p<br />

′<br />

)<br />

2 ρ 0 c − u′ . (3.24)<br />

49


Acoustics<br />

In case <str<strong>on</strong>g>of</str<strong>on</strong>g> time-harm<strong>on</strong>ic plane waves, the acoustic pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity can<br />

be written in complex form as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the angular frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong><br />

(ω=2π f ):<br />

p ′ (x, t ), u ′ (x, t )∼exp(i ω t− i kx), (3.25)<br />

where k = ω/c denotes the wave number with directi<strong>on</strong> normal to the wave<br />

fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a plane wave. Using the latter relati<strong>on</strong> Eqn. (3.21) <str<strong>on</strong>g>and</str<strong>on</strong>g> (3.22) can be<br />

rewritten in the following form:<br />

p ′ (x, t )<br />

= exp(i ω t ) ( f exp(−i k x)+ g exp(+i k x) ) , (3.26)<br />

ρ 0 c<br />

u ′ (x, t )=exp(i ω t ) ( f exp(−i k x)− g exp(+i k x) ) . (3.27)<br />

3.2.2 Sound propagati<strong>on</strong> in a moving medium<br />

In the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an uniform mean flow the c<strong>on</strong>vective wave equati<strong>on</strong> can<br />

be obtained by performing a transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinates from the system<br />

moving with the fluid to the laboratory system<br />

x ′ = x+ u 0 t , t ′ = t , u 0 = c<strong>on</strong>st., (3.28)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> yields<br />

( ) ∂<br />

∂t + u ∂ 2<br />

0 − c 2∂2 p ′<br />

= 0, (3.29)<br />

∂x ∂x2 where ∂ ∂t +u 0 ∂ denotes a time derivative moving with the mean flow. The wave<br />

∂x<br />

number vector k is the same in the laboratory system as it is in the co-moving<br />

system. Therefore, the wave number c<strong>on</strong>sidering mean flow can be written as:<br />

k ± =± ω/c<br />

1± M . (3.30)<br />

Similar to Eqn. (3.26) <str<strong>on</strong>g>and</str<strong>on</strong>g> (3.27) the following soluti<strong>on</strong> for the c<strong>on</strong>vective wave<br />

equati<strong>on</strong> can be found:<br />

50


3.3 Acoustic network model<br />

p ′ (x, t )<br />

= exp(i ω t ) ( f exp(−i k + x)+ g exp(+i k − x) ) , (3.31)<br />

ρ 0 c<br />

u ′ (x, t )=exp(i ω t ) ( f exp(−i k + x)− g exp(+i k − x) ) . (3.32)<br />

The term exp(i ωt ) is omitted in the following as the harm<strong>on</strong>ic time dependence<br />

is the same for every locati<strong>on</strong> in space.<br />

3.3 Acoustic network model<br />

An acoustic low-order network model is a fast, flexible <str<strong>on</strong>g>and</str<strong>on</strong>g> useful tool to analyze<br />

the dynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a complex system. In a network model the<br />

entire system is divided into discrete acoustic elements. In this way a complex<br />

system becomes easy to h<str<strong>on</strong>g>and</str<strong>on</strong>g>le. The acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> each element<br />

are usually represented by its transfer matrix. A transfer matrix describes the<br />

relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity or the Riemann Invariants<br />

f <str<strong>on</strong>g>and</str<strong>on</strong>g> g between the inlet <str<strong>on</strong>g>and</str<strong>on</strong>g> the outlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the element. Acoustic network<br />

models are widely used in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> are described in many publicati<strong>on</strong>s [10,20,23,46,58,61,70] (see also<br />

chapter 2.1). The presented network model approach is based <strong>on</strong> the work by<br />

Keller [53] <str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke et al. [101, 103]. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach can be<br />

found in Huber <str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke [49]. A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> a network model representing a<br />

combusti<strong>on</strong> system is shown in Fig. 3.2.<br />

The mathematical bases <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic network models are the linear acoustic relati<strong>on</strong>s<br />

derived in the last secti<strong>on</strong>, especially the wave equati<strong>on</strong>, the soluti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> d’Alembert <str<strong>on</strong>g>and</str<strong>on</strong>g> the Bernoulli equati<strong>on</strong>. The elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic system<br />

in the present work are mainly characterized by two in-ports <str<strong>on</strong>g>and</str<strong>on</strong>g> two outports,<br />

whereas the boundary c<strong>on</strong>diti<strong>on</strong>s possess <strong>on</strong>e in- <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e out-port. An<br />

excepti<strong>on</strong> are "T-juncti<strong>on</strong>s" in form <str<strong>on</strong>g>of</str<strong>on</strong>g> a ”joint” or ”fork” with altogether four<br />

in-ports <str<strong>on</strong>g>and</str<strong>on</strong>g> two out-ports or two in-ports <str<strong>on</strong>g>and</str<strong>on</strong>g> four out-ports, respectively. A<br />

”joint” represents an intersecti<strong>on</strong>, in which two ducts are combined into <strong>on</strong>e,<br />

whereas a ”fork” is an intersecti<strong>on</strong>, in which a duct is divided into two. The in<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

out-ports <str<strong>on</strong>g>of</str<strong>on</strong>g> an element are c<strong>on</strong>nected by the Riemann Invariants f <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

51


Acoustics<br />

Fuel<br />

Supply<br />

Air<br />

Supply<br />

Plenum<br />

T-<br />

juncti<strong>on</strong><br />

Burner<br />

Flame<br />

Combusti<strong>on</strong><br />

Chamber<br />

Figure 3.2: Simplified sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> a network model representing a combusti<strong>on</strong><br />

system<br />

g . The out-port <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e element is the in-port <str<strong>on</strong>g>of</str<strong>on</strong>g> the following for the f -wave<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> vice versa for the g -wave as shown in Fig. 3.3.<br />

The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the network model is organized by different port numbers,<br />

which define also the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the Riemann Invariants f <str<strong>on</strong>g>and</str<strong>on</strong>g> g . The characteristics<br />

between two ports are determined by the acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

element. It can be described by the acoustic transfer matrix in case <str<strong>on</strong>g>of</str<strong>on</strong>g> a two<br />

in-port, two out-port element, by transfer functi<strong>on</strong>s in case <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> by three equati<strong>on</strong>s resulting in a 3x3 transfer matrix in case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

"T-juncti<strong>on</strong>s". The elements <str<strong>on</strong>g>and</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s form a system <str<strong>on</strong>g>of</str<strong>on</strong>g> linear<br />

equati<strong>on</strong>s. The system can be split into a system matrix c<strong>on</strong>taining the<br />

1 1 2 n-1 n n<br />

f 1<br />

f 1<br />

f 2<br />

g 1<br />

f n-1<br />

f n<br />

f n<br />

g 1<br />

g 2<br />

g n-1<br />

g n<br />

g n<br />

boundary<br />

c<strong>on</strong>diti<strong>on</strong><br />

element<br />

element<br />

boundary<br />

c<strong>on</strong>diti<strong>on</strong><br />

Figure 3.3: Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a network model with c<strong>on</strong>nected elements<br />

52


3.3 Acoustic network model<br />

matrix elements <str<strong>on</strong>g>and</str<strong>on</strong>g> the transfer functi<strong>on</strong>s, a vector c<strong>on</strong>taining the unknown<br />

Riemann Invariants <str<strong>on</strong>g>and</str<strong>on</strong>g> a source term vector. The next subsecti<strong>on</strong> 3.3.1 describes<br />

the matrices <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> basic acoustic elements <str<strong>on</strong>g>and</str<strong>on</strong>g> boundary<br />

c<strong>on</strong>diti<strong>on</strong>s. Subsecti<strong>on</strong> 3.3.2 deals with methods solving the entire acoustic<br />

system.<br />

3.3.1 Matrices <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic elements<br />

The acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual network element is described by<br />

a 2×2 acoustic transfer matrix or 1×1 transfer functi<strong>on</strong>. "T-juncti<strong>on</strong>s" can, in<br />

principle, also be characterized by a transfer matrix. For the sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity<br />

they are described using three different matrices for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> ports resulting<br />

in three linear equati<strong>on</strong>s.<br />

In the following the upstream end <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer matrix element is denoted<br />

by i , <str<strong>on</strong>g>and</str<strong>on</strong>g> the downstream end by j . The relati<strong>on</strong>ship between Riemann Invariants<br />

f <str<strong>on</strong>g>and</str<strong>on</strong>g> g <str<strong>on</strong>g>of</str<strong>on</strong>g> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the element, which is described by a 2×2<br />

transfer matrix, are presented in Fig. 3.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> are mathematically described as:<br />

[ ] f j<br />

≡<br />

g j<br />

[ ][ T11 T 12 fi<br />

T 21 T 22<br />

} {{ }<br />

Transfer matrix T f g<br />

g i<br />

]<br />

. (3.33)<br />

i j i j<br />

f i<br />

f j<br />

f i<br />

f j<br />

g i<br />

g j<br />

g i<br />

g j<br />

Transfer matrix (fg)<br />

Scattering matrix<br />

Figure 3.4: Transfer matrix (fg) <str<strong>on</strong>g>and</str<strong>on</strong>g> scattering matrix<br />

53


Acoustics<br />

Beside the transfer matrix for variables f <str<strong>on</strong>g>and</str<strong>on</strong>g> g , the scattering matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

transfer matrix characterized by p <str<strong>on</strong>g>and</str<strong>on</strong>g> u are widely used. C<strong>on</strong>sidering the punotati<strong>on</strong>,<br />

f <str<strong>on</strong>g>and</str<strong>on</strong>g> g are replaced by the normalized acoustic pressure p ′ /(ρ 0 c)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity u ′ . The scattering matrix, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, describes the<br />

acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> an element in a pure causal way. The relati<strong>on</strong>ship between<br />

the Riemann Invariants f <str<strong>on</strong>g>and</str<strong>on</strong>g> g is determined by the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave<br />

propagati<strong>on</strong> (see Fig. 3.4):<br />

[ ] f j<br />

≡ [ ] [ ]<br />

f i<br />

S sr . (3.34)<br />

g i g j<br />

Here, f i <str<strong>on</strong>g>and</str<strong>on</strong>g> g j denote the input or the signal whereas f j <str<strong>on</strong>g>and</str<strong>on</strong>g> g i represent the<br />

output or the resp<strong>on</strong>se. All different forms <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices can be mathematically<br />

transformed into each other as described in appendix A.1.<br />

In some cases it is useful for a better underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing to split the transfer matrix<br />

in matrices for each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> ports. This is applied in the following to the ”Tjuncti<strong>on</strong>”,<br />

the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> area change element.<br />

Transfer functi<strong>on</strong>s, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, c<strong>on</strong>nect <strong>on</strong>e acoustic variable with another<br />

as in the causal input-output relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong><br />

or <str<strong>on</strong>g>of</str<strong>on</strong>g> the causal (reflecti<strong>on</strong> coefficient R f ) <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-causal (acoustic<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> Z ) descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundary c<strong>on</strong>diti<strong>on</strong>s. Mathematically the<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> is defined as the acoustic pressure p ′ divided by the acoustic velocity<br />

comp<strong>on</strong>ent normal to a surface u ′ n :<br />

Z (ω)= p′ (ω)<br />

(3.35)<br />

u n ′ (ω).<br />

The <str<strong>on</strong>g>impedance</str<strong>on</strong>g> is comm<strong>on</strong>ly used to characterize the propagati<strong>on</strong> (transmissi<strong>on</strong>,<br />

absorpti<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> sound through a medium, or the reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sound at<br />

the boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> two materials having different acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s. In the<br />

present work it is used to describe the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

stages. The reflecti<strong>on</strong> coefficient describes the relati<strong>on</strong>ship between<br />

the reflected acoustic wave <str<strong>on</strong>g>and</str<strong>on</strong>g> the incident wave traveling towards a surface.<br />

For the downstream side, for example, it yields:<br />

R f (ω)= g (ω)<br />

f (ω) . (3.36)<br />

54


3.3 Acoustic network model<br />

The <str<strong>on</strong>g>impedance</str<strong>on</strong>g> can be related to the reflecti<strong>on</strong> coefficient for the downstream<br />

side<br />

R f (ω)= Z (ω)−ρ 0 c<br />

Z (ω)+ρ 0 c , (3.37)<br />

or vice versa<br />

Z (ω)=ρ 0 c 1+R f (ω)<br />

1−R f (ω) . (3.38)<br />

The factor ρ 0 c in the last equati<strong>on</strong>s is referred to as the characteristic<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g>.<br />

Beside the classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic elements in matrices <str<strong>on</strong>g>and</str<strong>on</strong>g> transfer<br />

functi<strong>on</strong>s, they can also be divided into three different groups, which are described<br />

in the following subsecti<strong>on</strong>s:<br />

• elements with a certain geometrical extensi<strong>on</strong> (simple ducts <str<strong>on</strong>g>and</str<strong>on</strong>g> tubes)<br />

• compact elements (e.g. area change, ”T-juncti<strong>on</strong>”, flame)<br />

• boundary c<strong>on</strong>diti<strong>on</strong>s (e.g. closed end, open end, loudspeaker).<br />

3.3.1.1 Simple ducts or tubes<br />

In simple ducts or tubes with c<strong>on</strong>stant cross secti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> length L the acoustic<br />

waves propagate undisturbed. Neglecting any acoustic losses, e.g. in the<br />

boundary layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the duct walls, it can be easily shown that according to<br />

Eqn. (3.26), (3.27) or Eqn. (3.31), (3.32) <strong>on</strong>ly a phase change will appear between<br />

the upstream end <str<strong>on</strong>g>and</str<strong>on</strong>g> the downstream end <str<strong>on</strong>g>of</str<strong>on</strong>g> the duct. The transfer<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple duct can then be described by:<br />

[ e<br />

−i k + L<br />

0<br />

0 e −i k −L<br />

][<br />

fi<br />

g i<br />

]<br />

=<br />

[ f j<br />

g j<br />

]<br />

. (3.39)<br />

3.3.1.2 Compact elements<br />

In regi<strong>on</strong>s or elements – for example at boundaries, area changes, ”Tjuncti<strong>on</strong>s”<br />

or the flame – where the corresp<strong>on</strong>ding geometrical length L is<br />

55


Acoustics<br />

much smaller than the shortest wavelength λ w (λ w = 2πc/ω), the acoustic<br />

flow can locally be approximated as an incompressible flow. In c<strong>on</strong>trast to<br />

simple ducts or tubes the phase change over the length is negligible. Such elements<br />

or regi<strong>on</strong>s can be called compact. A criteri<strong>on</strong> for compactness is the<br />

Helmholtz number defined as:<br />

He= L<br />

cτ = ωL<br />

c<br />

= 2πL . (3.40)<br />

λ w<br />

Similar to L, τ represents in this c<strong>on</strong>text a typical time scale. An element can<br />

be seen as compact if<br />

He≪1. (3.41)<br />

The element may thus be regarded as a disc<strong>on</strong>tinuity, which has to fulfill the<br />

mass c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>. In additi<strong>on</strong> the Bernoulli equati<strong>on</strong> for instati<strong>on</strong>ary,<br />

incompressible flow (Eqn. (3.13) + ∂ϕ/∂t ) can be used to analyze the<br />

acoustic change <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow state between the two sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the element. C<strong>on</strong>sidering<br />

again an uniform <strong>on</strong>e-dimensi<strong>on</strong>al flow the velocity potential may<br />

be written as ∫ u d x. A pressure loss between the upstream <str<strong>on</strong>g>and</str<strong>on</strong>g> downstream<br />

locati<strong>on</strong> is c<strong>on</strong>sidered, which is comm<strong>on</strong>ly defined as<br />

△p i→j = ζ 1 2 ρ 0 u 2 j , (3.42)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ds to the downstream mean velocity u j . Linearizing the<br />

Bernoulli equati<strong>on</strong>, using the relati<strong>on</strong>s derived above <str<strong>on</strong>g>and</str<strong>on</strong>g> neglecting terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> higher order (e.g. products <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic quantities) an equati<strong>on</strong> over the geometrical<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the element (i → j ) can be derived:<br />

d<br />

d t<br />

[ p<br />

u ′ ′<br />

] j<br />

d x+<br />

x i<br />

ρ + u 0 u ′ i<br />

∫ x j<br />

+ u 0j ζu ′ j<br />

= 0. (3.43)<br />

The remaining integral can be simplified using the c<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> flux (A i u ′ i =<br />

A(x)u ′ (x)) to<br />

∫ x j<br />

u ′ A i<br />

i<br />

A(x) d x≈ u′ l eff , (3.44)<br />

x i<br />

56


3.3 Acoustic network model<br />

where A denotes the cross-secti<strong>on</strong>al area <str<strong>on</strong>g>of</str<strong>on</strong>g> the element. C<strong>on</strong>sidering a timeharm<strong>on</strong>ic<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic variables (Eqn. (3.25)) Eqn. (3.43) yields:<br />

i ω l eff u ′ i + [ p<br />

′<br />

ρ 0<br />

+ u 0 u ′ ] j<br />

i<br />

+ u 0j ζu ′ j<br />

= 0. (3.45)<br />

The sec<strong>on</strong>d necessary relati<strong>on</strong> for a compact element can be derived using the<br />

integral mass c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>:<br />

d<br />

d t<br />

∫ ∫<br />

ρ dV + ρ u d A= 0. (3.46)<br />

C<strong>on</strong>sidering <strong>on</strong>e-dimensi<strong>on</strong>al flows <str<strong>on</strong>g>and</str<strong>on</strong>g> linearizing this equati<strong>on</strong> results in:<br />

d<br />

d t<br />

∫ x j<br />

x i<br />

ρ ′ A d x+ [ (ρ ′ u 0 + ρ 0 u ′ )A ] j<br />

i<br />

= 0. (3.47)<br />

Again a time-harm<strong>on</strong>ic dependence (Eqn. (3.25)) <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic variables<br />

is assumed. If the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound is c<strong>on</strong>stant <strong>on</strong>e obtains introducing<br />

∫ x j<br />

x i<br />

A(x)/A j ≡ l red <str<strong>on</strong>g>and</str<strong>on</strong>g> using Eqn. (3.18)<br />

i ω<br />

c i<br />

p ′ [(<br />

i<br />

p<br />

′<br />

) ] j<br />

l red A j +<br />

c i c M+ ρ 0 u ′ A<br />

i<br />

= 0, (3.48)<br />

where M denotes the Mach number (M = u 0 /c). The values <str<strong>on</strong>g>of</str<strong>on</strong>g> the first term<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the left h<str<strong>on</strong>g>and</str<strong>on</strong>g> side <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (3.48) <str<strong>on</strong>g>and</str<strong>on</strong>g> Eqn. (3.45) are in case <str<strong>on</strong>g>of</str<strong>on</strong>g> compact elements<br />

small <str<strong>on</strong>g>and</str<strong>on</strong>g> are omitted in the following. A further simplificati<strong>on</strong> can<br />

be made if the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound <str<strong>on</strong>g>and</str<strong>on</strong>g> the density are assumed to be c<strong>on</strong>stant<br />

over the element (c i = c j = c, ρ 0i = ρ 0j = ρ 0 ). Dividing Eqn. (3.45) by c <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Eqn. (3.48) by ρ 0 leads to the following relati<strong>on</strong>s for compact elements:<br />

[ ( p<br />

′<br />

)] j<br />

A<br />

ρ 0 c M+ u′ = 0,<br />

i<br />

[ p<br />

′<br />

] j<br />

ρ 0 c + M u′ + ζ j M j u ′ j<br />

= 0. (3.49)<br />

i<br />

57


Acoustics<br />

i<br />

L<br />

j<br />

i<br />

j<br />

f j<br />

g j<br />

k<br />

f i<br />

f j<br />

f i<br />

f k<br />

g i<br />

g j<br />

g i<br />

g k<br />

Area Change<br />

T-juncti<strong>on</strong><br />

Figure 3.5: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> an area change <str<strong>on</strong>g>and</str<strong>on</strong>g> a ”T-juncti<strong>on</strong>”<br />

Area changes<br />

Using Eqn. (3.49) the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> an area change can be described<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the Riemann Invariants as:<br />

[<br />

1+ M i 1− M i<br />

A i (1+ M i ) A i (M i − 1)<br />

[ (1+ M j (1+ζ)) (1− M j (1+ζ))<br />

A j (1+ M j ) A j (M j − 1)<br />

][<br />

fi<br />

]<br />

=<br />

g i<br />

][ ] f j<br />

. (3.50)<br />

g j<br />

A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> an area change is presented in Fig. 3.5.<br />

T-juncti<strong>on</strong><br />

The relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrices for the "T-juncti<strong>on</strong>" is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (3.45)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Eqn. (3.48). In the present work <strong>on</strong>ly joints are <str<strong>on</strong>g>of</str<strong>on</strong>g> special interests, in<br />

which a sec<strong>on</strong>d upstream port is added (four in-ports <str<strong>on</strong>g>and</str<strong>on</strong>g> two out-ports).<br />

Here, i <str<strong>on</strong>g>and</str<strong>on</strong>g> j denote the upstream ports <str<strong>on</strong>g>and</str<strong>on</strong>g> k the downstream <strong>on</strong>es as shown<br />

in Fig. 3.5. As the ”T-juncti<strong>on</strong>” is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage, the describing<br />

matrices have to take the different speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound <str<strong>on</strong>g>and</str<strong>on</strong>g> density at the in-<br />

58


3.3 Acoustic network model<br />

coming c<strong>on</strong>necti<strong>on</strong>s into account 7 :<br />

⎡<br />

⎢<br />

⎣<br />

⎡<br />

⎢<br />

⎣<br />

c i (1+ M i (1−ζ i )) c i (1− M i (1−ζ i ))<br />

0 0<br />

ρ 0i A i (1+ M i ) ρ 0i A i (M i − 1)<br />

0 0<br />

c j (1+ M j (1−ζ j )) c j (1− M j (1−ζ j ))<br />

ρ 0j A j (1+ M j ) ρ 0j A j (M j − 1)<br />

⎡<br />

⎢<br />

⎣<br />

c k (1+ M k ) c k (1− M k )<br />

c k (1+ M k ) c k (1− M k )<br />

ρ 0k A k (1+ M k ) ρ 0k A k (M k − 1)<br />

⎤<br />

[ ]<br />

⎥ fi<br />

⎦ +<br />

g i<br />

⎤<br />

[ ]<br />

⎥ f j<br />

⎦ =<br />

g j<br />

⎤<br />

⎥<br />

⎦<br />

[<br />

fk<br />

g k<br />

]<br />

. (3.51)<br />

Practical premixed flame element<br />

A special case <str<strong>on</strong>g>of</str<strong>on</strong>g> the compact element is the flame element. According to<br />

[16,54], the flame can be c<strong>on</strong>sidered as a disc<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> negligible thickness,<br />

where heat is added uniformly distributed over the chamber cross-secti<strong>on</strong> to<br />

the otherwise isentropic flow <str<strong>on</strong>g>of</str<strong>on</strong>g> an ideal <strong>gas</strong>. A detailed derivati<strong>on</strong> can be<br />

found in Polifke et al. [101]. In the following <strong>on</strong>ly the basic relati<strong>on</strong>s are explained.<br />

In the steady case the energy equati<strong>on</strong> over the flame sheet can be rewritten to<br />

c<strong>on</strong>nect the cold <str<strong>on</strong>g>and</str<strong>on</strong>g> fresh <strong>gas</strong> side (i ) <str<strong>on</strong>g>and</str<strong>on</strong>g> the hot <strong>gas</strong> side (j ) with a given rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heat additi<strong>on</strong>. Using Eqn. (3.11) <str<strong>on</strong>g>and</str<strong>on</strong>g> the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound<br />

(c 2 = γ p/ρ 0 ), the energy equati<strong>on</strong> yields<br />

[ c<br />

2<br />

γ−1 + 1 ] j<br />

2 u2 = ˙q, (3.52)<br />

i<br />

where ˙q is the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat additi<strong>on</strong> per unit mass. The latter equati<strong>on</strong> can be<br />

rearranged, neglecting terms <str<strong>on</strong>g>of</str<strong>on</strong>g> higher order, as:<br />

7 The simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the integral <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (3.48) assumes a c<strong>on</strong>stant speed <str<strong>on</strong>g>of</str<strong>on</strong>g> sound over the element, which<br />

is violated in the equati<strong>on</strong>s used. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the compactness <str<strong>on</strong>g>of</str<strong>on</strong>g> the element, the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the integral is rather<br />

small <str<strong>on</strong>g>and</str<strong>on</strong>g> can therefore be neglected.<br />

59


Acoustics<br />

c 2 j<br />

c 2 i<br />

= 1+ γ−1<br />

γ<br />

˙Q<br />

. (3.53)<br />

p i u i<br />

˙Q = ρ i u i ˙q in this c<strong>on</strong>text denotes the heat additi<strong>on</strong> per unit area. With the<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> an ideal <strong>gas</strong> (Eqn. (3.7)), the ratio c 2 j /c 2 i<br />

can be expressed as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T j /T i , where T j <str<strong>on</strong>g>and</str<strong>on</strong>g> T i are the corresp<strong>on</strong>ding temperatures. Thus<br />

Eqn. (3.53) can be written as T j /T i −1=(γ−1)/(γ)· ˙Q/(p i u i ). The momentum<br />

equati<strong>on</strong> can be reformulated in the same way <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e obtains two new relati<strong>on</strong>s<br />

for the velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure upstream <str<strong>on</strong>g>and</str<strong>on</strong>g> downstream the flame:<br />

u j<br />

= 1+ γ−1 ˙Q<br />

,<br />

u i γ p i u i<br />

(3.54)<br />

p j<br />

˙Q<br />

= 1−(γ−1) M 2 i<br />

p i p i u . i (3.55)<br />

After linearizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the last equati<strong>on</strong>s the linearized Rankine-Hug<strong>on</strong>iot relati<strong>on</strong>s<br />

can be derived c<strong>on</strong>necting the acoustic velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure between<br />

the cold <str<strong>on</strong>g>and</str<strong>on</strong>g> hot side:<br />

u ′ j<br />

p ′ j<br />

( ) (<br />

T<br />

= u ′ i + j<br />

˙Q ′<br />

− 1 u 0i<br />

T i<br />

¯˙Q<br />

)<br />

= p ′ i − ( T j<br />

T i<br />

− 1<br />

ρ 0i u 2 0i<br />

)<br />

− p′ i<br />

,<br />

¯p i<br />

(<br />

u<br />

′<br />

i<br />

+ ˙Q ′<br />

ū i<br />

¯˙Q<br />

)<br />

. (3.56)<br />

As described in chapter 2.2.3, the normalized heat release fluctuati<strong>on</strong>s ˙Q ′ / ¯˙Q<br />

for a practical premixed combusti<strong>on</strong> system depend <strong>on</strong> the acoustics at the<br />

burner exit <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages. The corresp<strong>on</strong>ding flame element<br />

has therefore to take the acoustics at the additi<strong>on</strong>al locati<strong>on</strong>s into account.<br />

In the following <strong>on</strong>e <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage (N = 1) is c<strong>on</strong>sidered. 3×2 more<br />

ports have therefore to be included into the flame element. Here, the locati<strong>on</strong><br />

m represents the burner exit <str<strong>on</strong>g>and</str<strong>on</strong>g> k <str<strong>on</strong>g>and</str<strong>on</strong>g> l the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>, where k corresp<strong>on</strong>ds<br />

to the acoustic c<strong>on</strong>diti<strong>on</strong>s in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>and</str<strong>on</strong>g> l to the c<strong>on</strong>diti<strong>on</strong>s<br />

60


3.3 Acoustic network model<br />

Z i<br />

Air<br />

Fuel<br />

u' F,i<br />

u' b<br />

u' φ' A,i i<br />

X<br />

.<br />

Q'<br />

x b<br />

x f<br />

l<br />

k<br />

f k g k<br />

m<br />

i<br />

j<br />

f l<br />

f m<br />

f i<br />

f j<br />

g l<br />

g m<br />

g i<br />

g j<br />

f m<br />

g m<br />

f k<br />

g k<br />

f l<br />

g l<br />

Fuel <str<strong>on</strong>g>supply</str<strong>on</strong>g> Burner exit Flame<br />

Figure 3.6: Sketch <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed flame element with<br />

<strong>on</strong>e <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage<br />

in the main flow upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the injecti<strong>on</strong> locati<strong>on</strong>. The different locati<strong>on</strong>s,<br />

the structural set-up <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame element c<strong>on</strong>sidering <strong>on</strong>e <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding practical premixed combusti<strong>on</strong> system are<br />

shown in Fig. 3.6. The normalized heat release rate fluctuati<strong>on</strong>s (Eqn. (2.11))<br />

61


Acoustics<br />

can be rewritten in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the additi<strong>on</strong>al ports as follows<br />

˙Q ′ (ω)<br />

¯˙Q<br />

= F u (ω) u′ m (ω)<br />

ū m<br />

+ F φ (ω)<br />

( u<br />

′<br />

k (ω)<br />

− u′ l (ω) )<br />

K , (3.57)<br />

ū k ū l<br />

where K denotes the ratio between the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injected at this <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the entire injected <str<strong>on</strong>g>fuel</str<strong>on</strong>g> in the combusti<strong>on</strong> system (see Eqn. (2.10), (2.11)).<br />

Using Eqn. (3.57) <str<strong>on</strong>g>and</str<strong>on</strong>g> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state (Eqn. (3.7)), Eqn. (3.56) can be<br />

transformed into relati<strong>on</strong>s for the Riemann Invariants upstream <str<strong>on</strong>g>and</str<strong>on</strong>g> downstream<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the flame<br />

⎡<br />

⎢<br />

⎣<br />

−r T M i<br />

u 0i<br />

u 0m<br />

F u<br />

u<br />

r 0i T u 0m<br />

F u<br />

( ) T j<br />

where r T = − 1<br />

T i<br />

⎡<br />

⎢<br />

⎣<br />

⎡<br />

⎢<br />

⎣<br />

⎡<br />

⎢<br />

⎣<br />

⎤<br />

1−r T M i 1+r T M i<br />

−r T M i<br />

u 0i<br />

u 0k<br />

F φ K<br />

r T M i<br />

u 0i<br />

u 0m<br />

F u<br />

−r T<br />

u 0i<br />

u 0m<br />

F u<br />

r T<br />

u 0i<br />

u 0k<br />

F φ K<br />

r T M i<br />

u 0i<br />

u 0l<br />

F φ K<br />

u<br />

−r 0i T F<br />

u φ K<br />

0l<br />

⎤<br />

⎥<br />

⎦<br />

[<br />

fm<br />

g m<br />

]<br />

=<br />

r T M i<br />

u 0i<br />

u 0k<br />

F φ K<br />

−r T<br />

u 0i<br />

u 0k<br />

F φ r m<br />

−r T M i<br />

u 0i<br />

u 0l<br />

F φ K<br />

r T<br />

u 0i<br />

u 0l<br />

F φ K<br />

[ ρ0j c j<br />

ρ 0i c i<br />

ρ 0j c j<br />

ρ 0i c i<br />

1 −1<br />

[<br />

⎥ fi<br />

⎦<br />

g i<br />

]<br />

+<br />

⎤<br />

[ ]<br />

⎥ fk<br />

⎦ +<br />

g k<br />

⎤<br />

[ ]<br />

⎥ fl<br />

⎦ +<br />

g l<br />

] [ ] f j<br />

, (3.58)<br />

g j<br />

. Equati<strong>on</strong> (3.58) can, <str<strong>on</strong>g>of</str<strong>on</strong>g> course, be extended easily to combusti<strong>on</strong><br />

systems with more <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages.<br />

3.3.1.3 Boundary c<strong>on</strong>diti<strong>on</strong>s<br />

To complete an acoustic network model appropriate boundary c<strong>on</strong>diti<strong>on</strong>s are<br />

required. In a combusti<strong>on</strong> test rig the air or the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> enter the plenum in many<br />

cases through small holes, which generate a c<strong>on</strong>siderable pressure loss. If the<br />

62


3.3 Acoustic network model<br />

pressure drop across the inlet is high enough, the <str<strong>on</strong>g>supply</str<strong>on</strong>g> lines upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

inlet are acoustically decoupled from the remaining system. This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> inlet<br />

c<strong>on</strong>diti<strong>on</strong> can therefore be seen as a ”hard wall” or a ”closed end”, where the<br />

acoustic velocity disappears 8 :<br />

[<br />

1+ Mi M i − 1 ][ f i<br />

g i<br />

]<br />

= 0. (3.59)<br />

The end or outflow boundary c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong> systems is usually described<br />

by an ”open end”, an reflecting exit or by a choked exit. A choked flow<br />

may occur in a c<strong>on</strong>vergent nozzle for a subs<strong>on</strong>ic inflow where the flow reaches<br />

M = 1 at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smallest cross-secti<strong>on</strong>al area. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> an<br />

”open end” is an outlet where the fluid enters into the atmosphere, which<br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten true for many simple combusti<strong>on</strong> test rigs. In this case the acoustic<br />

pressure must vanish at the combusti<strong>on</strong> chamber outlet. Thus the ”open end”<br />

c<strong>on</strong>diti<strong>on</strong> can be applied:<br />

[<br />

1+ Mi 1− M i<br />

] [ f i<br />

g i<br />

]<br />

= 0. (3.60)<br />

The ”open end” implies that the downstream traveling acoustic waves are fully<br />

reflected at the combusti<strong>on</strong> chamber end. In the analyzed c<strong>on</strong>figurati<strong>on</strong> a part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the waves are leaving the outlet without being reflected. To account for the<br />

reflecti<strong>on</strong> Eqn. (3.61) can be rewritten in the following way:<br />

[<br />

1+ Mi 1− M i<br />

] [ f i<br />

g i<br />

]<br />

= −|R f |. (3.61)<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the frequency resp<strong>on</strong>se analysis, explained in the next secti<strong>on</strong>, the<br />

acoustic system has to be excited at a boundary c<strong>on</strong>diti<strong>on</strong>. This is d<strong>on</strong>e, similar<br />

to experiments, in using a loudspeaker to produce certain amplitudes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

8 The equati<strong>on</strong>s for the boundaries are adjusted to include the mean flow effect <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>serve the acoustic<br />

energy.<br />

63


Acoustics<br />

velocity fluctuati<strong>on</strong>s. The loudspeaker has the same characteristics as a closed<br />

end boundary c<strong>on</strong>diti<strong>on</strong> (Eqn. (3.59)), where, in additi<strong>on</strong>, a fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity<br />

ǫ is imposed:<br />

[<br />

1+ Mi M i − 1 ][ f i<br />

g i<br />

]<br />

= ǫ. (3.62)<br />

3.3.2 Numerical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model<br />

To analyze the acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a network model representing a practical<br />

premixed combusti<strong>on</strong> system two different mathematical techniques are<br />

applied in the present work: The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the inhomogeneous<br />

system, which is excited over a certain range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies or the determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the unexcited homogeneous system.<br />

The individual elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire acoustic network model are combined<br />

in <strong>on</strong>e matrix equati<strong>on</strong> with the quadratic system matrix S, which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the matrix coefficients, the system vector with the Riemann Invariants <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

source term vector <strong>on</strong> the right h<str<strong>on</strong>g>and</str<strong>on</strong>g> side<br />

⎡<br />

⎢<br />

⎣<br />

T 11 (ω)···T 1(2n) (ω)<br />

. .<br />

T (2n)1 (ω)···T (2n)(2n) (ω)<br />

⎡<br />

⎤<br />

⎥<br />

⎦<br />

⎢<br />

⎣<br />

⎤<br />

f 1<br />

⎡<br />

g 1<br />

.<br />

⎢<br />

= ⎣<br />

⎥<br />

f n ⎦<br />

g n<br />

⎤<br />

ǫ 1<br />

.<br />

ǫ 2n<br />

⎥<br />

⎦. (3.63)<br />

Here, n is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> interfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the system which implies 2×n Riemann<br />

Invariants. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> a homogeneous system the source term vector [ǫ 1 ...ǫ 2n ]<br />

is zero. If the system is excited at <strong>on</strong>e or more boundaries the corresp<strong>on</strong>ding<br />

ǫ refers to the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the excitati<strong>on</strong> which leads to an inhomogeneous<br />

system. In the latter case the frequency resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the linear inhomogeneous<br />

system can be calculated for a desired, fixed range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies using a simple<br />

algorithm based <strong>on</strong> LU decompositi<strong>on</strong> with partial pivoting.<br />

64


3.3 Acoustic network model<br />

The eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the homogeneous system are determined by calculating<br />

the roots <str<strong>on</strong>g>of</str<strong>on</strong>g> the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the system matrix S:<br />

⎛⎡<br />

⎜⎢<br />

det(S)=det⎝⎣<br />

T 11 (ω)···T 1(2n) (ω)<br />

. .<br />

T (2n)1 (ω)···T (2n)(2n) (ω)<br />

⎤⎞<br />

⎥⎟<br />

⎦⎠=0. (3.64)<br />

If the system c<strong>on</strong>siders damping effects or acoustic sources like the flame, the<br />

determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the system matrix becomes zero for complex eigenfrequencies<br />

(ω=ω real +i ω im ). Inserting the complex eigenfrequency into the assumed<br />

harm<strong>on</strong>ic time dependence, the time dependence can be written as:<br />

exp(i ωt )=exp(i (ω real + i ω im )t = exp(i ω real t )exp(−ω im t ). (3.65)<br />

If the imaginary part <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenfrequency has a negative value (ω im < 0) the<br />

oscillati<strong>on</strong> will grow exp<strong>on</strong>entially in time. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, a positive imaginary<br />

part (ω im > 0) will dampen possible oscillati<strong>on</strong>s. While the real part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the eigenfrequency determines the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenmode, the imaginary<br />

part is thus an indicati<strong>on</strong> for the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the system at this frequency.<br />

The stability can also be described by the cycle increment <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenmode,<br />

which is defined by the imaginary <str<strong>on</strong>g>and</str<strong>on</strong>g> real part as:<br />

(<br />

C I = exp −2π ω )<br />

im<br />

. (3.66)<br />

ω real<br />

The cycle increment can be c<strong>on</strong>sidered as a growth rate per period <str<strong>on</strong>g>of</str<strong>on</strong>g> the oscillati<strong>on</strong>.<br />

It is usually reduced by <strong>on</strong>e to shift the stability border from <strong>on</strong>e to<br />

zero. A cycle increment <str<strong>on</strong>g>of</str<strong>on</strong>g> C I < 1 or (C I−1) 1 ((C I − 1) > 0) indicates an unstable<br />

eigenmode <str<strong>on</strong>g>and</str<strong>on</strong>g> would thus amplify an oscillati<strong>on</strong>. In the following the<br />

term C I − 1 is used.<br />

The routine to find frequencies ω, where |det(S(ω real ,ω im ))| → 0, is based <strong>on</strong><br />

the Nelder-Mead simplex method [63], which is a direct search method <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

finds the minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> a scalar functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several variables. Especially as the<br />

determinant exhibits large changes in its value over small frequency steps, the<br />

65


Acoustics<br />

2<br />

1.5<br />

|det(S)|<br />

1<br />

0.5<br />

0<br />

4600<br />

4400<br />

4200 4000 3800<br />

ω real<br />

[rad/s]<br />

3600<br />

200<br />

0<br />

ω im<br />

[rad/s]<br />

−200<br />

Figure 3.7: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> a search path with <strong>on</strong>e initial estimate to determine<br />

the minimum <str<strong>on</strong>g>of</str<strong>on</strong>g>|det(S)|→0<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this unc<strong>on</strong>strained n<strong>on</strong>-linear optimizati<strong>on</strong> is that it does not<br />

require numerical or analytical gradients. The method requires an initial estimate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the variables, the real <str<strong>on</strong>g>and</str<strong>on</strong>g> imaginary part <str<strong>on</strong>g>of</str<strong>on</strong>g> the frequency (ω real ,ω im ),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> calculates the corresp<strong>on</strong>ding starting simplex. For each new iterati<strong>on</strong> a<br />

point close to the current simplex is determined. If the functi<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

new point is smaller than the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the current simplex it is replaced by<br />

the new <strong>on</strong>e. The search is stopped by reaching a user-defined tolerance level.<br />

Figure 3.7 shows the calculati<strong>on</strong> from <strong>on</strong>e starting point. For a wide frequency<br />

range several initial estimates <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore several calculati<strong>on</strong>s have to be<br />

performed. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s depends <strong>on</strong> the estimated number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. Here, care has to be taken in choosing good<br />

initial estimates to ensure that every eigenfrequency can be found by the rou-<br />

66


3.3 Acoustic network model<br />

tine. To roughly locate all eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the system it is helpful to generate<br />

a plot <str<strong>on</strong>g>of</str<strong>on</strong>g> the absolute values <str<strong>on</strong>g>of</str<strong>on</strong>g> the determinant for a fixed range <str<strong>on</strong>g>of</str<strong>on</strong>g> complex<br />

frequencies. Figure 3.8 shows for example the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g><br />

system c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed end, a duct, an area change including pressure<br />

losses <str<strong>on</strong>g>and</str<strong>on</strong>g> an open end. The black line at C I−1 = 0 indicates the stability<br />

limit according Eqn. (3.65). Possible eigenfrequencies can be found at the local<br />

minima indicated by the black colour.<br />

0.2<br />

0.001<br />

0<br />

0.0001<br />

(CI − 1)<br />

−0.2<br />

−0.4<br />

1e−05<br />

1e−06<br />

−0.6<br />

1e−07<br />

500 1000 1500<br />

Frequency [Hz]<br />

1e−08<br />

Figure 3.8: Stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> system<br />

The eigenfrequency analysis can <strong>on</strong>ly be applied if all elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the network<br />

model are defined in the complex frequency domain. Transfer matrices or<br />

flame transfer functi<strong>on</strong>s obtained by experiments can therefore not be used<br />

in their original formulati<strong>on</strong>. To avoid this problem a method proposed by<br />

Sattelmayer <str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke [113, 114], which is based <strong>on</strong> c<strong>on</strong>trol theory could be<br />

used instead. The CFD/SI method, however, determines the acoustic characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transfer matrices <str<strong>on</strong>g>and</str<strong>on</strong>g> transfer functi<strong>on</strong>s in the time <str<strong>on</strong>g>and</str<strong>on</strong>g> frequency<br />

domain. The time domain informati<strong>on</strong> obtained can be easily transformed<br />

into the real or complex frequency domain as shown in chapter 5.<br />

67


Acoustics<br />

68


4 Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows<br />

using CFD<br />

In the present work transient Computati<strong>on</strong>al Fluid Dynamics simulati<strong>on</strong>s are<br />

used to analyze quantitatively the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed flame to<br />

acoustic fluctuati<strong>on</strong>s at the flame holder <str<strong>on</strong>g>and</str<strong>on</strong>g> in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>.<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame is determined in a post-processing step<br />

using the exported transient CFD data <str<strong>on</strong>g>and</str<strong>on</strong>g> the system identificati<strong>on</strong> method<br />

presented in chapter 5. This secti<strong>on</strong> describes the basic c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> the numerical<br />

methods used in this work to model the turbulent reactive flow. For a<br />

more detailed informati<strong>on</strong> the reader is referred to Pope [104], Friedrich [33]<br />

or Tennekes <str<strong>on</strong>g>and</str<strong>on</strong>g> Lumley [126] regarding the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence <str<strong>on</strong>g>and</str<strong>on</strong>g> to<br />

Poinsot <str<strong>on</strong>g>and</str<strong>on</strong>g> Veynante [94], Turns [128], Peters [92], Fox [32] <str<strong>on</strong>g>and</str<strong>on</strong>g> Williams [132]<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reacting flows. As the CFD simulati<strong>on</strong>s are performed<br />

using the commercial s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package ANSYS CFX, the equati<strong>on</strong>s presented<br />

below are similar to those described in [5].<br />

4.1 Theory <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence<br />

4.1.1 Basic equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent flows<br />

The numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a turbulent reacting flow is based <strong>on</strong> the c<strong>on</strong>servati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass, momentum <str<strong>on</strong>g>and</str<strong>on</strong>g> energy. As the c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s c<strong>on</strong>tain<br />

more unknowns than equati<strong>on</strong>s, further simplificati<strong>on</strong>s have to be made<br />

to obtain a closed system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s. These simplificati<strong>on</strong>s include the introducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state for an ideal <strong>gas</strong> (Eqn. (3.7)), the caloric c<strong>on</strong>stitutive<br />

equati<strong>on</strong> d e= c v d T <str<strong>on</strong>g>and</str<strong>on</strong>g> a relati<strong>on</strong> for the stress tensor. The resulting<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s is called the unsteady Navier-Stokes equati<strong>on</strong>s, which can<br />

69


Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows using CFD<br />

be written in their c<strong>on</strong>servati<strong>on</strong> form:<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass:<br />

∂ρ<br />

∂t + ∂ρu i<br />

∂x i<br />

= 0. (4.1)<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum:<br />

∂(ρ u i )<br />

∂t<br />

+ ∂ρu i u j<br />

∂x j<br />

=− ∂p<br />

∂x i<br />

+ ∂τ i j<br />

∂x j<br />

, (4.2)<br />

where<br />

( (<br />

τ i j denotes the stress tensor, which is related to the strain rate by τ i j =<br />

1 ∂ui<br />

2µ + ∂u j<br />

)− 1 ∂u i<br />

). The energy equati<strong>on</strong> in ANSYS CFX is formulated in<br />

2 ∂x j ∂x i 3 ∂x i<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the total enthalpy h t , where h t = h s + 1 2 u2 :<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy:<br />

∂ρ h t<br />

∂t<br />

− ∂p<br />

∂t + ∂<br />

( )<br />

( ) ∂ ∂T<br />

ρ ht u i = λ t + ∂τ i j u j<br />

. 1 (4.3)<br />

∂x i ∂x i ∂x i ∂x i<br />

Here, λ t denotes the thermal c<strong>on</strong>ductivity. The static enthalpy h s (T, p) is related<br />

to the internal energy e by h s = e + p/ρ as menti<strong>on</strong>ed in chapter 3.<br />

(<br />

∂τi j u j<br />

)<br />

/∂xi is the viscous work term <str<strong>on</strong>g>and</str<strong>on</strong>g> represents the work due to viscous<br />

stresses. Analytical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Navier-Stokes equati<strong>on</strong>s are known <strong>on</strong>ly<br />

for simple flows under ideal c<strong>on</strong>diti<strong>on</strong>s. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> real flows they are, due to<br />

the multi-dimensi<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-linear differential equati<strong>on</strong>s, rather difficult.<br />

Therefore, a numerical approach must be adopted whereby the equati<strong>on</strong>s are<br />

replaced by algebraic approximati<strong>on</strong>s, which can be solved using numerical<br />

methods. The phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence, which occurs at sufficiently large<br />

Reynolds numbers 2 , complicates the efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> solving the equati<strong>on</strong>s. Turbulence<br />

is a complex three-dimensi<strong>on</strong>al unsteady process, which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluctuati<strong>on</strong>s in time <str<strong>on</strong>g>and</str<strong>on</strong>g> space over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> scales. It has a significant<br />

effect <strong>on</strong> the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow, especially if, as in the present work,<br />

mixing <str<strong>on</strong>g>and</str<strong>on</strong>g> combusti<strong>on</strong> problems are involved. The combusti<strong>on</strong> process itself<br />

increases the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the problem, since an accurate resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1 As the present study focuses <strong>on</strong> adiabatic c<strong>on</strong>diti<strong>on</strong>s, c<strong>on</strong>vective enthalpy fluxes <str<strong>on</strong>g>and</str<strong>on</strong>g> radiative heat losses<br />

are neglected.<br />

2 The Reynolds number relates the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the inertia forces to the viscous forces in the fluid.<br />

70


4.1 Theory <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence<br />

the reactive flow would require a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary chemical reacti<strong>on</strong>s.<br />

Even in rather simple reacti<strong>on</strong> processes this would imply to take an immense<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> species <str<strong>on</strong>g>and</str<strong>on</strong>g> their corresp<strong>on</strong>ding transport equati<strong>on</strong>s into account.<br />

The Navier-Stokes equati<strong>on</strong>s are able to describe turbulent reactive flows<br />

without any additi<strong>on</strong>al informati<strong>on</strong>. But to resolve even the smallest eddies at<br />

realistic Reynolds numbers an extremely fine finite volume mesh is required.<br />

Therefore, a high computati<strong>on</strong>al effort is necessary to apply such a simulati<strong>on</strong>,<br />

which is known as the Direct Numerical Simulati<strong>on</strong> (DNS). As a c<strong>on</strong>sequence,<br />

DNS is far bey<strong>on</strong>d the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial <str<strong>on</strong>g>and</str<strong>on</strong>g> many research problems <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is therefore not c<strong>on</strong>sidered in the following. First simplificati<strong>on</strong>s result in the<br />

Large Eddy Simulati<strong>on</strong> (LES), which resolves the largest turbulent scales up<br />

to a certain cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f scale. The cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f scale is comm<strong>on</strong>ly determined by the<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> the mesh, which acts as a low pass filter. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent fluctuati<strong>on</strong>s,<br />

which are smaller than this limit, are modeled. In looking at time<br />

scales, which are larger than the time scales <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent fluctuati<strong>on</strong>s, a turbulent<br />

flow quantity (f t ) can be divided into an averaged ( ¯f t ) <str<strong>on</strong>g>and</str<strong>on</strong>g> a time-varying<br />

fluctuating part (f t ′′ ). This idea is exploited in the Reynolds averaged Navier-<br />

Stokes equati<strong>on</strong>s (RANS), which determine the averaged flow quantities <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

model the entire turbulence spectrum. Due to the applied statistically averaging<br />

procedure the turbulence models based <strong>on</strong> the RANS formulati<strong>on</strong> are<br />

known as statistical turbulence models.<br />

The questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> choosing either LES or RANS is always a compromise between<br />

numerical accuracy, computati<strong>on</strong>al resources <str<strong>on</strong>g>and</str<strong>on</strong>g> physical simulati<strong>on</strong> time.<br />

For performing transient simulati<strong>on</strong>s Reynolds averaged Navier-Stokes equati<strong>on</strong>s<br />

are used in the present work because they <str<strong>on</strong>g>of</str<strong>on</strong>g>fer satisfactory results in an<br />

acceptable time frame.<br />

4.1.2 Modeling turbulence with RANS<br />

In the RANS approach turbulence models solve a modified set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s by<br />

introducing a mean <str<strong>on</strong>g>and</str<strong>on</strong>g> fluctuating part, which results in additi<strong>on</strong>al unknown<br />

terms c<strong>on</strong>taining products <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s. To avoid further unknowns the<br />

mass-weighted averages (Favre averages) are usually preferred over Reynolds<br />

71


Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows using CFD<br />

averaged quantities. Every quantity can then be described as<br />

where<br />

f t = ˜f t + f ′′<br />

t , ˜f<br />

′′<br />

t<br />

= 0, (4.4)<br />

˜f t = ρ f t<br />

¯ρ . (4.5)<br />

Using the above definiti<strong>on</strong> the Reynolds averaged Navier-Stokes equati<strong>on</strong>s are<br />

written as follows:<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass:<br />

∂ ¯ρ<br />

∂t + ∂ ¯ρ ũ i<br />

∂x i<br />

= 0. (4.6)<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum:<br />

∂( ¯ρ ũ i )<br />

∂t<br />

+ ∂ ¯ρ ũ i ũ j<br />

∂x j<br />

=− ∂ ¯p<br />

∂x i<br />

+ ∂˜τ i j<br />

∂x j<br />

−<br />

∂ ¯ρ u ′′<br />

i u′′ j<br />

, (4.7)<br />

∂x j<br />

c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy:<br />

∂ ¯ρ˜h t<br />

∂t<br />

− ∂ ¯p<br />

∂t + ∂ ( )<br />

¯ρ ũ i˜ht = ∂ (<br />

λ∇T − ¯ρ )<br />

u ′′<br />

i<br />

∂x i ∂x h′′ t<br />

+ ∂u i τ<br />

. (4.8)<br />

i ∂x i<br />

Compared to the Navier-Stokes equati<strong>on</strong>s the latter relati<strong>on</strong>s exhibit additi<strong>on</strong>al<br />

terms in form <str<strong>on</strong>g>of</str<strong>on</strong>g> products <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s. Two classes <str<strong>on</strong>g>of</str<strong>on</strong>g> terms can be<br />

identified: The Reynolds stresses u ′′<br />

i u′′ <str<strong>on</strong>g>and</str<strong>on</strong>g> the turbulent fluxes, e.g. <str<strong>on</strong>g>of</str<strong>on</strong>g> the enthalpy<br />

¯ρ u ′′<br />

i h′′ t . The introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an additi<strong>on</strong>al equati<strong>on</strong> for the combusti<strong>on</strong><br />

j<br />

process (see chapter 4.2.1) results in another turbulent flux <str<strong>on</strong>g>of</str<strong>on</strong>g> the species or<br />

progress variable. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence models is now to derive closure<br />

relati<strong>on</strong>s for these unknown quantities.<br />

Following the classical turbulence viscosity assumpti<strong>on</strong> proposed by Bussinesq,<br />

the Reynold stresses can be related to the mean velocity gradients <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

turbulent eddy viscosity by the gradient diffusi<strong>on</strong> hypothesis<br />

(<br />

¯ρ u ′′<br />

i u′′ j =−µ ∂ũi<br />

t + ∂ũ j<br />

− 2 )<br />

∂ũ i<br />

+ 2 ¯ρk, (4.9)<br />

∂x j ∂x i 3 ∂x i 3<br />

72


4.1 Theory <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence<br />

where µ t is the turbulent dynamic viscosity, which has to be modeled. k denotes<br />

the turbulent kinetic energy, which is defined as:<br />

k = 1 2 ( u ′′<br />

i u′′ i<br />

). (4.10)<br />

A similar soluti<strong>on</strong> can be found for the turbulent fluxes. The diffusivity hypothesis<br />

states that the fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> a scalar φ (species, enthalpy, progress variable)<br />

can be related linearly to the mean scalar gradient<br />

where Pr t represents the turbulent Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number.<br />

− ¯ρ u ′′<br />

i φ′′ k = µ t<br />

Pr t<br />

∂˜φ k<br />

∂x i<br />

, (4.11)<br />

A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> methods exist to model the closure for the turbulent viscosity. The<br />

methods range from simple mixing length or no-equati<strong>on</strong> models over <strong>on</strong>e or<br />

two equati<strong>on</strong> models up to computati<strong>on</strong>al expensive Reynolds stress models.<br />

Whereas the no- to two-equati<strong>on</strong>s models assume isotropy <str<strong>on</strong>g>and</str<strong>on</strong>g> homogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence, the Reynolds stress model solves the individual stress comp<strong>on</strong>ents<br />

resulting in six additi<strong>on</strong>al transport equati<strong>on</strong>s. As the computati<strong>on</strong>al<br />

effort related to the Reynolds stress models is too high, the performed simulati<strong>on</strong>s<br />

use the so-called Shear Stress Transport (SST) model to account for the<br />

complex flow field <str<strong>on</strong>g>of</str<strong>on</strong>g> a swirled stabilized combusti<strong>on</strong>. The SST model combines<br />

the advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> the Wilcox k− ω [131] <str<strong>on</strong>g>and</str<strong>on</strong>g> the k− ǫ model. k− ω <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

k−ǫ models solve two equati<strong>on</strong>s accounting for the turbulent kinetic energy k<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the turbulent frequency ω t , in case <str<strong>on</strong>g>of</str<strong>on</strong>g> the k− ω model, <str<strong>on</strong>g>and</str<strong>on</strong>g> the turbulent<br />

dissipati<strong>on</strong> ǫ t , in case <str<strong>on</strong>g>of</str<strong>on</strong>g> the k− ǫ model. The turbulent viscosity can then be<br />

determined by the relati<strong>on</strong>s<br />

µ t = ρ k ω t<br />

or µ t = c µ ρ k 2<br />

ǫ t<br />

, (4.12)<br />

where c µ is a c<strong>on</strong>stant. The main advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the k − ω model is the near<br />

wall treatment. According to [5] it is even more robust <str<strong>on</strong>g>and</str<strong>on</strong>g> accurate, because it<br />

does not involve the complex n<strong>on</strong>-linear damping functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the k−ǫ model.<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> the Wilcox formulati<strong>on</strong> is known to have a str<strong>on</strong>g sensitivity<br />

73


Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows using CFD<br />

to free-stream c<strong>on</strong>diti<strong>on</strong>s [77]. The Baseline (BSL) k−ω model tries to solve the<br />

problem in combining a transformed k−ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g> the k−ω model. The transiti<strong>on</strong><br />

between both approaches is realized near the surface <str<strong>on</strong>g>and</str<strong>on</strong>g> in the outer regi<strong>on</strong><br />

with a blending functi<strong>on</strong>, which was developed by Menter [78]. The author<br />

also dem<strong>on</strong>strated [78] that the BSL k− ω model still fails to properly detect<br />

the <strong>on</strong>set <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> flow separati<strong>on</strong> from smooth surfaces, because<br />

the model does not c<strong>on</strong>sider the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulent shear stress. This<br />

results in an over-predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the eddy viscosity. The SST model, which is<br />

based <strong>on</strong> the BSL k− ω formulati<strong>on</strong>, uses therefore a limiter for the eddy viscosity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> an improved blending functi<strong>on</strong>. According to [5] the SST model is<br />

able to accurately predict the <strong>on</strong>set <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> flow separati<strong>on</strong> under<br />

adverse pressure gradients. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>and</str<strong>on</strong>g> computati<strong>on</strong>al effort the<br />

SST model is an adequate soluti<strong>on</strong> for the present work c<strong>on</strong>sidering reactive<br />

swirling flows <str<strong>on</strong>g>and</str<strong>on</strong>g> is chosen in the following.<br />

4.2 Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical combusti<strong>on</strong><br />

4.2.1 Combusti<strong>on</strong> theory<br />

Similar to the problems menti<strong>on</strong>ed above, the descripti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the complex combusti<strong>on</strong> process is also a challenge. Beside the basic governing<br />

c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> species, energy, fluid mass <str<strong>on</strong>g>and</str<strong>on</strong>g> momentum, it is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> importance to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the complex interacti<strong>on</strong> between the fluid flow<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the combusti<strong>on</strong> process. As menti<strong>on</strong>ed in chapter 1.5 the field <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong>eous<br />

turbulent combusti<strong>on</strong> can be subdivided in premixed, n<strong>on</strong>-premixed, or partial<br />

premixed combusti<strong>on</strong>.<br />

Furthermore, the combusti<strong>on</strong> process can be characterized by the flow<br />

regime. In laminar combusti<strong>on</strong> the process is mainly driven by chemical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

molecular diffusi<strong>on</strong> processes <str<strong>on</strong>g>and</str<strong>on</strong>g> is not affected by the flow field itself. Turbulence,<br />

<strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, changes completely the character <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong><br />

process. In presence <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulence, each eddy can, depending <strong>on</strong> its size,<br />

wrinkle the flame fr<strong>on</strong>t or even enter the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> can thus modify its in-<br />

74


4.2 Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical combusti<strong>on</strong><br />

trinsic structure. As the flow field is turbulent in most practical applicati<strong>on</strong>s,<br />

laminar flames do not play an important role. However, the computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laminar premixed flames is the first step towards more complex combusti<strong>on</strong><br />

models.<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical combusti<strong>on</strong> processes the global chemical reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural <strong>gas</strong> can be written as follows:<br />

(<br />

CH 4 + λ O 2 + 79 )<br />

[<br />

21 N 2 → CO 2 + 2H 2 O+ (λ−1) O 2 + λ 79 ]<br />

21 N 2 . (4.13)<br />

Here, λ denotes the air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g> ratio, which describes the relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> air, which is effective available <str<strong>on</strong>g>and</str<strong>on</strong>g> which is stoichiometric required. The<br />

reciprocal <str<strong>on</strong>g>of</str<strong>on</strong>g> λ is the comm<strong>on</strong>ly used equivalence ratio φ, which was defined<br />

in chapter 2.2.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.3.2. Depending <strong>on</strong> the equivalence ratio the combusti<strong>on</strong><br />

can be divided in several regimes:<br />

⎧<br />

⎪⎨<br />

φ=<br />

⎪⎩<br />

< 1 lean<br />

= 1 stoichiometric<br />

> 1 rich.<br />

(4.14)<br />

The c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a species k can be derived analogously to the c<strong>on</strong>servati<strong>on</strong><br />

equati<strong>on</strong>s (Eqn. (4.1), (4.2), (4.3))<br />

∂(ρ Y k )<br />

∂t<br />

+ ∂(ρ Y k u i )<br />

∂x i<br />

= ∂ ( )<br />

∂Y k<br />

ρ D k + ˙ω k , (4.15)<br />

∂x i ∂x i<br />

where D accounts for the molecular diffusi<strong>on</strong> according to Fick’s law <str<strong>on</strong>g>and</str<strong>on</strong>g> denotes<br />

the diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> species k. ˙ω k is the reacti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> species<br />

k. Even in simple cases the combusti<strong>on</strong> process involves many species. To accurately<br />

resolve this process various species transport equati<strong>on</strong>s have to be<br />

solved. This is computati<strong>on</strong>ally expensive <str<strong>on</strong>g>and</str<strong>on</strong>g> not feasible in most technical<br />

applicati<strong>on</strong>s. Therefore, the reacti<strong>on</strong> mechanism has to be reduced <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is comm<strong>on</strong>ly represented by a few main species (like the global mechanism<br />

shown in Eqn. (4.13)). In case <str<strong>on</strong>g>of</str<strong>on</strong>g> perfect premixed flames, an alternative approach<br />

has been established, which replaces the species c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s<br />

by a transport equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a so-called reacti<strong>on</strong> progress variable. The<br />

75


Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows using CFD<br />

reacti<strong>on</strong> progress variable, denoted by the scalar c, represents the probability<br />

for the instantaneous state <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid being reacted. It is defined in the range<br />

from:<br />

{ 0 unburnt mixture / fresh <strong>gas</strong><br />

c =<br />

(4.16)<br />

1 burnt products.<br />

The species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid can, for the special case <str<strong>on</strong>g>of</str<strong>on</strong>g> (Le = 1) 3 , be<br />

computed by the following relati<strong>on</strong>:<br />

Y = (1−c)Y fresh + c Y burnt . (4.17)<br />

If the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> is not premixed perfectly, an additi<strong>on</strong>al transport<br />

equati<strong>on</strong> for the mixture fracti<strong>on</strong> Z M has to be solved to account for the<br />

mixing process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> air. The mixture fracti<strong>on</strong> measures the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-oxidizer<br />

ratio <str<strong>on</strong>g>and</str<strong>on</strong>g> is normalized such that Z M = 0 in the oxidizer stream <str<strong>on</strong>g>and</str<strong>on</strong>g> Z M = 1 in<br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream:<br />

Y 0<br />

F<br />

Z M = sY F − Y O + Y 0 O<br />

sY 0<br />

F + Y . (4.18)<br />

0<br />

O<br />

denote the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxidizer mass fracti<strong>on</strong>s in pure <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> oxi-<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Y 0 O<br />

dizer streams, respectively. Z M is a passive or c<strong>on</strong>served scalar <str<strong>on</strong>g>and</str<strong>on</strong>g> alters <strong>on</strong>ly<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>vecti<strong>on</strong> processes <str<strong>on</strong>g>and</str<strong>on</strong>g>, in c<strong>on</strong>trast to Eqn. (4.15),<br />

not because <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>:<br />

∂(ρ Z )<br />

∂t<br />

+ ∂(ρ Z u i )<br />

∂x i<br />

= ∂ (<br />

ρ D ∂Z )<br />

. (4.19)<br />

∂x i ∂x i<br />

To ensure that the problem in the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> pure <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> pure oxidizer remains<br />

well-posed, the reacti<strong>on</strong> progress approach has to be extended. According to<br />

[5] this can be realized in introducing the weighted reacti<strong>on</strong> progress F w , F w =<br />

Z M·(1−c). A linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the transport equati<strong>on</strong> for Z M <str<strong>on</strong>g>and</str<strong>on</strong>g> c yields<br />

the transport equati<strong>on</strong> for F w :<br />

∂(ρ F w )<br />

∂t<br />

+ ∂(ρ F w u i )<br />

∂x i<br />

= ∂ (<br />

ρ D ∂F )<br />

w<br />

+ 2 ( ρ D )( )<br />

∂Z M ∂c<br />

− Z M ˙ω c . (4.20)<br />

∂x i ∂x i ∂x i ∂x i<br />

3 A unity Lewis number is assumed in the present work, which implies that the thermal diffusivity is equal to<br />

the mass diffusivity.<br />

76


4.2 Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical combusti<strong>on</strong><br />

4.2.2 Practical premixed combusti<strong>on</strong> model<br />

Similar to Eqn. (4.6), (4.7), (4.8) a Reynolds averaged equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixture<br />

fracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the weighted reacti<strong>on</strong> progress can be derived. For the weighted<br />

reacti<strong>on</strong> progress this relati<strong>on</strong> yields:<br />

∂( ¯ρ ˜F w )<br />

+ ∂( ¯ρ ˜F w ũ i )<br />

∂t ∂x i<br />

(<br />

2<br />

= ∂ [(<br />

ρ D+ µ ) ]<br />

t ∂˜F w<br />

+<br />

∂x i Sc c,t ∂x i<br />

ρ D+ µ t<br />

Sc c,t<br />

)( ∂ ˜Z M<br />

∂x i<br />

)<br />

∂˜c<br />

− ˜Z M ¯˙ω c . (4.21)<br />

∂x i<br />

The term − ¯ρ c ′′ u ′′<br />

i<br />

was replaced analogous to Eqn. (4.11) by µ t<br />

Sc c,t<br />

, where Sc c,t<br />

denotes the turbulent Schmidt number, which is set by default to 0.9 [5] 4 . The<br />

source term ¯˙ω c is defined as:<br />

¯˙ω c = S¯<br />

c − ∂ (<br />

ρ D ∂˜c )<br />

. (4.22)<br />

∂x i ∂x i<br />

To solve Eqn. (4.21), the turbulent flame speed closure (TFC) model is used for<br />

the unknown averaged reacti<strong>on</strong> source term S¯<br />

c . The original idea <str<strong>on</strong>g>of</str<strong>on</strong>g> the TFCmodel<br />

was presented by Zim<strong>on</strong>t [138], whereas the complete formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the model was described by Zim<strong>on</strong>t <str<strong>on</strong>g>and</str<strong>on</strong>g> Lipatnikov [136]. Furthermore, the<br />

TFC-model was improved <str<strong>on</strong>g>and</str<strong>on</strong>g> extended by Zim<strong>on</strong>t et al. [137] <str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke et<br />

al. [97].<br />

The approach is based <strong>on</strong> the idea to represent the source term as a spatial<br />

progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame fr<strong>on</strong>t, which can be described as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulent<br />

flame speed s t :<br />

¯ S c = ρ u s t |∇˜c|. (4.23)<br />

|∇˜c| is the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> the progress variable <str<strong>on</strong>g>and</str<strong>on</strong>g> ρ u is the<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> the unburnt <strong>gas</strong>. This approach has the advantage that, for a given<br />

4 Again, a unity Lewis number is assumed. In this case it follows that the Pr<str<strong>on</strong>g>and</str<strong>on</strong>g>tl number Pr = Sc.<br />

77


Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows using CFD<br />

area, the integral over the source term matches the inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-air mass<br />

flow over the flame fr<strong>on</strong>t. In additi<strong>on</strong> the turbulent flame speed s t , for which<br />

a closure has to be derived, varies in a given c<strong>on</strong>figurati<strong>on</strong> typically by <strong>on</strong>e<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude compared to combusti<strong>on</strong> models, which are based <strong>on</strong><br />

molecular reacti<strong>on</strong> rates 5 . Following Zim<strong>on</strong>t, the closure for s t is derived for<br />

the thickened-wrinkled flame regime, which is characterized by a Damköhler<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> Da>1 <str<strong>on</strong>g>and</str<strong>on</strong>g> a Karlowitz number <str<strong>on</strong>g>of</str<strong>on</strong>g> 1


4.2 Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical combusti<strong>on</strong><br />

0.4<br />

0.35<br />

Laminar flame speed [m/s]<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.4 0.6 0.8 1 1.2 1.4 1.6<br />

Equivalence ratio [ ]<br />

Figure 4.1: Laminar flame speed s L as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio φ<br />

log-normal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ǫ, by:<br />

G = 1 2 erfc {−<br />

√<br />

1<br />

2σ<br />

(<br />

ln 15νg 2 crit<br />

ǫ<br />

)}<br />

. (4.26)<br />

σ denotes the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g> is defined as σ=<br />

0.28 ln(l t /η). Following experiences <str<strong>on</strong>g>of</str<strong>on</strong>g> similar combustor c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

recommendati<strong>on</strong>s given by Polifke et al. [97], the critical strain rate g crit is set<br />

to 8500s −1 in the present work.<br />

The laminar flame speed is a property <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-air mixture. It depends <strong>on</strong><br />

the equivalence ratio, the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the unburnt mixture <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure.<br />

In the present work the reference pressure is the atmospheric pressure. The<br />

inflow temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulati<strong>on</strong>s is 298K . To determine the correct value<br />

in dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio a simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>on</strong>e-dimensi<strong>on</strong>al<br />

laminar flame was performed using the solver Chemkin. Chemkin computes<br />

various laminar flame characteristics using a detailed chemical mechanism<br />

<strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary reacti<strong>on</strong>s, which are determined by Arrhenius ex-<br />

79


Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent reactive flows using CFD<br />

pressi<strong>on</strong>s. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong> in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5016 < φ < 1.429<br />

are shown in Fig. 4.1, where φ=0.5016 represents the lean extincti<strong>on</strong> value.<br />

An alternative correlati<strong>on</strong> without performing any computati<strong>on</strong>s can be found<br />

in Metghalchi <str<strong>on</strong>g>and</str<strong>on</strong>g> Keck [80], Poinsot <str<strong>on</strong>g>and</str<strong>on</strong>g> Veynante [94] or Turns [128].<br />

80


5 System Identificati<strong>on</strong><br />

Flame transfer functi<strong>on</strong>s can in principle be obtained experimentally, analytically<br />

or numerically. To overcome limitati<strong>on</strong>s associated with experiments or<br />

analytical descripti<strong>on</strong>s, the present study uses unsteady CFD computati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a system identificati<strong>on</strong> method to determine the flame transfer functi<strong>on</strong>s<br />

F u (ω) <str<strong>on</strong>g>and</str<strong>on</strong>g> F φ (ω) over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies.<br />

The CFD/SI method based <strong>on</strong> digital signal processing was proposed <str<strong>on</strong>g>and</str<strong>on</strong>g> developed<br />

by Polifke et al. [98, 102] <str<strong>on</strong>g>and</str<strong>on</strong>g> Gentemann et al. [34] to identify SISO<br />

or MIMO systems. The method processes time series data generated by turbulent<br />

reactive flow simulati<strong>on</strong> with broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong>. This makes it possible<br />

to determine frequency resp<strong>on</strong>ses from a single CFD run, thus reducing<br />

the computati<strong>on</strong>al effort drastically. The presented routine is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the basic approach <str<strong>on</strong>g>and</str<strong>on</strong>g> allows determining MISO model coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical<br />

premixed flame. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a MISO model is more difficult than<br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SISO model coefficients, especially in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise.<br />

Therefore it is explored how the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the identified model can be validated<br />

a posteriori. A simple Matlab/Simulink model that mimics qualitatively<br />

the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combusti<strong>on</strong> system with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector<br />

stages is used to establish the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the proposed methodology.<br />

In c<strong>on</strong>trast to a CFD simulati<strong>on</strong>, the simple model allows a comparis<strong>on</strong> between<br />

identified <str<strong>on</strong>g>and</str<strong>on</strong>g> predefined transfer functi<strong>on</strong>s as the exact values <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

transfer functi<strong>on</strong>s are known. Furthermore, it is investigated which excitati<strong>on</strong><br />

signal type provides the best identificati<strong>on</strong> results in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise.<br />

In the next secti<strong>on</strong>s basic relati<strong>on</strong>s for identifying the flame dynamics are derived<br />

using theory <str<strong>on</strong>g>of</str<strong>on</strong>g> linear time-invariant systems, system identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

digital signal processing. The interested reader may refer to [51, 73, 85] for a<br />

more detailed explanati<strong>on</strong>. Different types <str<strong>on</strong>g>of</str<strong>on</strong>g> excitati<strong>on</strong> signal employed in<br />

this study are introduced. In additi<strong>on</strong>, quality measures for a posteriori val-<br />

81


System Identificati<strong>on</strong><br />

idati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results are defined. Afterwards a numerical study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a multiple-input single-output flame model is presented using<br />

the Matlab/Simulink model. Beside the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>and</str<strong>on</strong>g> the investigati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different excitati<strong>on</strong> signal types the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the time series length<br />

<strong>on</strong> the identificati<strong>on</strong> results is analyzed. Furthermore, it is shown that identificati<strong>on</strong><br />

fails if a SISO structure – inappropriate for the system investigated (see<br />

chapter 2.2.3) – is assumed.<br />

5.1 Model structures <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>se filters<br />

As n<strong>on</strong>-linear effects are outside the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work, it is assumed<br />

that at sufficient small amplitudes the MISO system representing the flame<br />

dynamics can be regarded as a discrete, linear time-invariant (LTI) system.<br />

A system is said to be time invariant if the resp<strong>on</strong>se to a input signal does not<br />

depend <strong>on</strong> absolute time. In additi<strong>on</strong>, a system is a causal system, if the output<br />

signal depends <strong>on</strong>ly <strong>on</strong> present <str<strong>on</strong>g>and</str<strong>on</strong>g> past input signals. According to digital<br />

signal theory any linear, time-invariant, causal SISO system can be described<br />

by its impulse resp<strong>on</strong>se or weighting functi<strong>on</strong> as follows:<br />

y(t )=<br />

∫ ∞<br />

τ=0<br />

h(τ)x(t− τ)dτ. (5.1)<br />

Here, y denotes the output or resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the system <str<strong>on</strong>g>and</str<strong>on</strong>g> x the input signal at<br />

time t . Knowing the impulse resp<strong>on</strong>se h(τ) for every value τ=0...∞ <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

present <str<strong>on</strong>g>and</str<strong>on</strong>g> past input signals the corresp<strong>on</strong>ding output can be determined<br />

for any input. The system is therefore completely characterized by its impulse<br />

resp<strong>on</strong>se.<br />

In most practical cases the output depends not <strong>on</strong>ly <strong>on</strong> the input, but also <strong>on</strong><br />

disturbances in the system. Therefore an additive noise term e is introduced in<br />

the model. Depending <strong>on</strong> the signal to noise ratio, e can have a significant influence<br />

<strong>on</strong> the identificati<strong>on</strong> quality. For a discrete system, which is observed<br />

at the sampling instants t n = n△t , n = 1,2,...n tot with △t being the sampling<br />

interval, Eqn. (5.1) becomes:<br />

∞∑<br />

y n = h k x n−k + e n . (5.2)<br />

k=0<br />

82


5.1 Model structures <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>se filters<br />

To avoid infinite c<strong>on</strong>voluti<strong>on</strong> sums, the first step is to choose a model structure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> model size, which is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> accurately representing the system with<br />

<strong>on</strong>ly a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients. In the field <str<strong>on</strong>g>of</str<strong>on</strong>g> system identificati<strong>on</strong> there<br />

exists a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> model classes for LTI systems.<br />

A comm<strong>on</strong> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a LTI system is, for example, the linear difference<br />

equati<strong>on</strong>:<br />

y n =−a 1 y n−1 − a 2 y n−2 − ...− a N y n−N<br />

+b 0 x n + ...+b M x n−M + e n<br />

N∑<br />

M∑<br />

=− a k y n−k + b k x n−k + e n . (5.3)<br />

k=1<br />

k=0<br />

Here, the required output at time step n can be calculated using a finite<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> previous output values <str<strong>on</strong>g>and</str<strong>on</strong>g> the present <str<strong>on</strong>g>and</str<strong>on</strong>g> previous input values,<br />

which are weighted with model coefficients a <str<strong>on</strong>g>and</str<strong>on</strong>g> b. Eqn. (5.3) is also called<br />

an equati<strong>on</strong> error, infinite impulse resp<strong>on</strong>se (IIR) or an ARX model, where AR<br />

refers to the auto-regressive part a i y n−i <str<strong>on</strong>g>and</str<strong>on</strong>g> X to the extra input b i x n−i . The<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the ARX model is the fact that its predictor defines a linear regressi<strong>on</strong>,<br />

which allows the use <str<strong>on</strong>g>of</str<strong>on</strong>g> powerful estimati<strong>on</strong> methods to determine<br />

the unknown model coefficients.<br />

To maintain the causal relati<strong>on</strong>ship between the input signal <str<strong>on</strong>g>and</str<strong>on</strong>g> the output<br />

resp<strong>on</strong>se in the time-domain, the model is reduced to a discrete finite impulse<br />

resp<strong>on</strong>se (FIR) descripti<strong>on</strong> where a n = 0, for n = 1,2,... N. The causal relati<strong>on</strong>ship<br />

has the advantage that a physical interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients<br />

is straightforward 1 .<br />

In the following a practical premixed burner with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages is<br />

discussed, in which the flame is accordingly described as a MISO system as<br />

shown in Fig. 6.2. Treating the system as an open-loop, discrete time system<br />

without feedback, the output y n (the normalized heat release rate fluctuati<strong>on</strong><br />

1 A IIR descripti<strong>on</strong> would reduce the required amount <str<strong>on</strong>g>of</str<strong>on</strong>g> model coefficients to achieve a desired accuracy. An<br />

undesirable c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> an IIR model is, however, that a physical interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients is rather<br />

difficult.<br />

83


System Identificati<strong>on</strong><br />

x<br />

(1)<br />

x (2)<br />

x (3)<br />

y<br />

Figure 5.1: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> a MISO system with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors<br />

˙Q ′ / ¯˙Q) at time n∆t can then be determined by the relati<strong>on</strong><br />

y n =<br />

M∑<br />

k=0<br />

M∑<br />

h (1)<br />

k<br />

x(1) n−k + k=0<br />

M∑<br />

h (2)<br />

k<br />

x(2) n−k + k=0<br />

h (3)<br />

k<br />

x(3) n−k + e n, (5.4)<br />

where x (i ) , i = 1,2,3 represent the three normalized input signals<br />

u ′ b /ū b,φ ′ 1 / ¯φ 1 ,φ ′ 2 / ¯φ 2 . The parameters h (1)<br />

k<br />

, h(2) k<br />

, h(3) represent the unit impulse<br />

k<br />

resp<strong>on</strong>se vectors, which can be regarded as a causal, weighted, time-delayed<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se to the different x (i ) ’s.<br />

The length M <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR vectors, which corresp<strong>on</strong>ds to the filter ”memory”,<br />

has to be chosen such that it accounts for the l<strong>on</strong>gest time lag <str<strong>on</strong>g>of</str<strong>on</strong>g> the system<br />

(usually a c<strong>on</strong>vective time scale [98]). The transfer functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (5.4) are<br />

computed as the z-transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIRs:<br />

F (i ) (ω)=<br />

M∑<br />

k=0<br />

h (i )<br />

k e−i ωk∆t , i = 1,2,3. (5.5)<br />

The valid frequency range for the transfer functi<strong>on</strong>s depends <strong>on</strong> the time step<br />

∆t <str<strong>on</strong>g>and</str<strong>on</strong>g> the total simulati<strong>on</strong> time T = n tot ∆t <str<strong>on</strong>g>and</str<strong>on</strong>g> ranges from f mi n = 1/T to<br />

f max = f n = 1/ (2∆t ). Here, f n is denoted as the Nyquist frequency 2 .<br />

The UIR coefficients h (i )<br />

k<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (5.5) describe the system as a so-called grey<br />

box with limited physical insight <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. With the given model structure,<br />

the search for the optimum model reduces to the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> identifying<br />

the unit impulse resp<strong>on</strong>se vectors.<br />

2 The Nyquist frequency represents the maximum frequency at which a broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> signal can be exactly recovered<br />

from its sample values.<br />

84


5.2 System Identificati<strong>on</strong><br />

5.2 System Identificati<strong>on</strong><br />

To accomplish this task a routine based <strong>on</strong> a n<strong>on</strong>-recursive least square method<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the linear regressi<strong>on</strong> property are used (see [73] for more details). The<br />

predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (5.4) can be described as<br />

where θ denotes the unknown parameters<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ϕ the regressi<strong>on</strong> vector<br />

ŷ n|θ = ϕ T n θ, (5.6)<br />

[h (1)<br />

0 h(1) 1 ...h(1) M h(2) 0<br />

...h (2)<br />

M h(3) 0<br />

...h (3)<br />

M ]T<br />

[x n (1) , x (1)<br />

n−1 ...x(1) n−M x(2) n ...x (2)<br />

n−M x(3) n ... x (3)<br />

n−M ]T .<br />

Using the predictor in Eqn. (5.6) the predicti<strong>on</strong> error can be estimated:<br />

ǫ n,θ = y n − ϕ T n θ. (5.7)<br />

A least-square criteri<strong>on</strong> for the linear regressi<strong>on</strong> can now be defined as<br />

1<br />

V (θ)=<br />

N − M+ 1<br />

N∑<br />

n=M<br />

1 [<br />

yn − ϕ T n<br />

2<br />

θ] 2<br />

, (5.8)<br />

where N denotes the number <str<strong>on</strong>g>of</str<strong>on</strong>g> time steps c<strong>on</strong>sidered. Eqn. (5.8) can be minimized<br />

analytically due to its quadratic characteristics in θ:<br />

[<br />

] −1<br />

1 N∑<br />

ˆθ=<br />

ϕ n ϕ T 1 N∑<br />

n<br />

ϕ n y n . (5.9)<br />

N − M+ 1<br />

N− M+ 1<br />

n=M<br />

n=M<br />

The least-square estimate ˆθ can be calculated, if the inverse <strong>on</strong> the right side<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the latter equati<strong>on</strong> exists. The first sum <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqn. (5.9) can be estimated as the<br />

3M× 3M auto-correlati<strong>on</strong> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the input signals:<br />

1<br />

Γ xx =<br />

N − M+ 1<br />

N∑<br />

n=M<br />

x (i )<br />

n x(j ) ; k = 0,..., M; i , j = 1,2,3. (5.10)<br />

n−k<br />

85


System Identificati<strong>on</strong><br />

The sec<strong>on</strong>d term <strong>on</strong> the right h<str<strong>on</strong>g>and</str<strong>on</strong>g> side can be estimated as the crosscorrelati<strong>on</strong><br />

vector <str<strong>on</strong>g>of</str<strong>on</strong>g> the input <str<strong>on</strong>g>and</str<strong>on</strong>g> output signals:<br />

1<br />

C x y =<br />

N− M+ 1<br />

N∑<br />

n=M<br />

x (i )<br />

n y n−k; k = 0,..., M; i = 1,2,3. (5.11)<br />

Compared to the basic CFD/SI method, which identifies SISO <str<strong>on</strong>g>and</str<strong>on</strong>g> MIMO<br />

models (see [34, 98, 102]), the auto-correlati<strong>on</strong> matrix c<strong>on</strong>tains now as well<br />

n<strong>on</strong>-diag<strong>on</strong>al entries as the input signals are correlated. This fact requires a<br />

discussi<strong>on</strong> about the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> excitati<strong>on</strong> signals <str<strong>on</strong>g>and</str<strong>on</strong>g> the validati<strong>on</strong> methods<br />

to judge the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the results obtained. Equati<strong>on</strong> (5.9) can be rewritten as<br />

follows<br />

ˆθ= Γ −1<br />

xx C x y, (5.12)<br />

which is the optimal linear least square estimator for the unit impulse resp<strong>on</strong>se.<br />

It is also known as the Wiener-Hopf equati<strong>on</strong> or rather the Wiener-<br />

Hopf inversi<strong>on</strong> [40, 52, 73]. After the auto-correlati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong>s<br />

are determined, the unknown parameters are solved using a method which is<br />

based <strong>on</strong> a least-square root algorithm for sparse linear equati<strong>on</strong>s [86].<br />

5.3 Excitati<strong>on</strong> signals<br />

The identificati<strong>on</strong> method presented above processes data from simulati<strong>on</strong>s<br />

with broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong>. Several types <str<strong>on</strong>g>of</str<strong>on</strong>g> broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong> signals are<br />

known, <str<strong>on</strong>g>and</str<strong>on</strong>g> it is worthwhile to investigate how the signal type influences the<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong>.<br />

Insufficient excitati<strong>on</strong> strength will yield poor identificati<strong>on</strong> results, especially<br />

in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, because the identificati<strong>on</strong> procedure<br />

is limited to linear systems, it has to be assured that maximum signal amplitudes<br />

do not generate n<strong>on</strong>-linear behavior. A maximum utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

amplitude limit over a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies is therefore beneficial. This<br />

can be judged in analyzing the so-called crest factor or peak-to-average ratio,<br />

proposed by Ljung [73]. The crest factor is a property <str<strong>on</strong>g>of</str<strong>on</strong>g> the waveform <str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

equal to the peak amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the waveform divided by the mean square <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

86


5.3 Excitati<strong>on</strong> signals<br />

the zero mean signal:<br />

C 2 r = max n(x 2 n )<br />

1<br />

N<br />

∑ N<br />

n=1 x2 n<br />

(5.13)<br />

According to [73] a good signal waveform is <strong>on</strong>e with a small crest factor. A<br />

similar definiti<strong>on</strong> can be found in Isermann [51]. In the next secti<strong>on</strong>, three different<br />

excitati<strong>on</strong> signals are shortly explained as they are used in the following.<br />

Overlaid multi-frequency signals<br />

A broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong> signal x ex can be generated by a superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sine<br />

waves (SINE):<br />

x ex,n =<br />

∑N F<br />

ν=0<br />

u 0 sin(2πf ν (n∆t+ φ ν )), (5.14)<br />

where NF denotes the number <str<strong>on</strong>g>of</str<strong>on</strong>g> single frequencies, u 0 the basic amplitude<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ∆t is the sampling interval <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal.<br />

Broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> white noise (BBWN)<br />

A broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> white noise signal can be generated from pseudo-r<str<strong>on</strong>g>and</str<strong>on</strong>g>om numbers<br />

”r<str<strong>on</strong>g>and</str<strong>on</strong>g>(n)” distributed uniformly between 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1:<br />

{ 2u0 (r<str<strong>on</strong>g>and</str<strong>on</strong>g>(m)−0.5), n= m T c /∆t ,<br />

x ex,n =<br />

x ex,(n−1) , n≠ m T c /∆t ,<br />

(5.15)<br />

for m = 0,1,..., N ∆t /T c . T c represents the cycle time or rather the cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

frequency F c = 1/T c , which determines the frequency c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal.<br />

Discrete r<str<strong>on</strong>g>and</str<strong>on</strong>g>om binary signal (DRBS)<br />

A discrete r<str<strong>on</strong>g>and</str<strong>on</strong>g>om binary signal can take <strong>on</strong> <strong>on</strong>ly two values±u 0 . The change<br />

between the two values takes place at a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> the time step<br />

87


System Identificati<strong>on</strong><br />

T c = m∆t , m = 1,2,..., N (∆t /T c ), which determines again the maximum frequency<br />

F c <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal:<br />

x ex,n =<br />

{<br />

u0 sign((r<str<strong>on</strong>g>and</str<strong>on</strong>g>(m)−0.5) 2), n= m T c /∆t ,<br />

x ex,(n−1) , n≠ m T c /∆t .<br />

(5.16)<br />

”sign” is the sign functi<strong>on</strong> in this c<strong>on</strong>text which returns the value 1 or −1 depending<br />

<strong>on</strong> a positive or negative expressi<strong>on</strong>.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> the excitati<strong>on</strong> signals in the time domain in shown in Fig. 5.2 to<br />

dem<strong>on</strong>strate the different utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the amplitude limit. The sec<strong>on</strong>d line<br />

in Eqn. (5.15) <str<strong>on</strong>g>and</str<strong>on</strong>g> (5.16) represents a n<strong>on</strong>-st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard low-pass "filtering" operati<strong>on</strong><br />

that has been found useful in the present work. Its purpose is to preserve<br />

a maximum possible amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the excitati<strong>on</strong> signals. Using st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard filter<br />

methods (e.g. low-pass Butterworth filter), the amplitudes in the time-domain<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the power density spectrum are usually damped. This is dem<strong>on</strong>strated for<br />

the DRBS in Fig. 5.3. In principle rectangular or binary signals have the lowest<br />

crest factor <str<strong>on</strong>g>and</str<strong>on</strong>g> the highest power spectral density (signal amplitudes) for<br />

given limit amplitude. The power spectral density can be increased even further<br />

if the frequency c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal is reduced to a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sam-<br />

1<br />

0.5<br />

Amplitude<br />

0<br />

−0.5<br />

−1<br />

2.5 2.6 2.7 2.8 2.9 3<br />

Time [s]<br />

x 10 −3<br />

Figure 5.2: Excitati<strong>on</strong> signals (−− Sine, -- BBWN, -· DRBS)<br />

88


5.4 A posteriori validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results<br />

1<br />

0.5<br />

Amplitude<br />

0<br />

−0.5<br />

−1<br />

2.5 3 3.5<br />

Time [s]<br />

x 10 −3<br />

Figure 5.3: Filtered excitati<strong>on</strong> signals (−− Low-pass filtered DRBS, -· DRBS filtered<br />

acc. Eqn. (5.16))<br />

pling frequency. This effect can be exploited especially in the present case, as<br />

the flame exhibits a low-pass behavior, i.e it does not resp<strong>on</strong>d to high frequencies.<br />

5.4 A posteriori validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results<br />

In many cases it is difficult to judge whether the transfer functi<strong>on</strong> or the<br />

unit impulse resp<strong>on</strong>se identified indeed describe the relati<strong>on</strong>ship between the<br />

measured signals <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>ses <str<strong>on</strong>g>and</str<strong>on</strong>g> thus the physics correctly. Especially in<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise the model size M <str<strong>on</strong>g>and</str<strong>on</strong>g> the length N <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal have to be<br />

chosen in such a way that a proper identificati<strong>on</strong> is guaranteed. To accomplish<br />

this task, a posteriori ”quality checks” are required, which are described in the<br />

following.<br />

In some cases the transfer functi<strong>on</strong> or the unit impulse resp<strong>on</strong>se vector has<br />

89


System Identificati<strong>on</strong><br />

to satisfy certain c<strong>on</strong>straints or has to exhibit certain characteristic features.<br />

For example, c<strong>on</strong>straints <strong>on</strong> the low-frequency limit <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s<br />

can be derived from global c<strong>on</strong>servati<strong>on</strong>s laws, as discussed by Polifke<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Lawn [100]. According to their analysis, the flame transfer functi<strong>on</strong> F u approaches<br />

unity for ω→0. The same behavior holds for transfer functi<strong>on</strong>s F φ in<br />

combusti<strong>on</strong> systems with n<strong>on</strong>-stiff <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>. The unit impulse resp<strong>on</strong>se,<br />

<strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, has to reflect the physics <str<strong>on</strong>g>of</str<strong>on</strong>g> the system in showing a realistic<br />

mean time delay <str<strong>on</strong>g>and</str<strong>on</strong>g> time delay distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se to the input<br />

signal.<br />

Beside such qualitative evaluati<strong>on</strong> two methods are used in the present work,<br />

which are described in system identificati<strong>on</strong> theory (e.g. [73]). In the first<br />

method, the measured 3 input signals <str<strong>on</strong>g>and</str<strong>on</strong>g> the estimated parameters h (i ) are<br />

k<br />

used to determine the predicted resp<strong>on</strong>se ŷ. The deviati<strong>on</strong> between predicted<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> measured resp<strong>on</strong>se y n , the predicti<strong>on</strong> error ǫ (ǫ n = y n − ŷ n ), is then compared<br />

to the variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured resp<strong>on</strong>se by the following relati<strong>on</strong>:<br />

⎛ √ ⎞<br />

∑N<br />

⎜<br />

n=1 (y n− ŷ n ) 2<br />

⎟<br />

Q = 100∗⎝1−<br />

√ ∑N<br />

⎠ [%]. (5.17)<br />

n=1 (y n− ȳ) 2<br />

The numerator <str<strong>on</strong>g>of</str<strong>on</strong>g> the fracti<strong>on</strong> term is the root mean squared predicti<strong>on</strong> error.<br />

The denominator represents the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se measured,<br />

where ȳ denotes the mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> y. Q represents the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the total deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured resp<strong>on</strong>se that is explained by the model.<br />

A value <str<strong>on</strong>g>of</str<strong>on</strong>g> 100% indicates that the resp<strong>on</strong>se measured can be completely described<br />

by the input signals <str<strong>on</strong>g>and</str<strong>on</strong>g> the identified model parameters. 100%− Q<br />

can therefore be related to the unexplained deviati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> can be interpreted<br />

as the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the error or white noise in the signal.<br />

A better assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the model can be achieved in analyzing<br />

the correlati<strong>on</strong> between the predicti<strong>on</strong> error ǫ n <str<strong>on</strong>g>and</str<strong>on</strong>g> the input signals x (i ) , i =<br />

1,2,3<br />

1<br />

C ǫx (i )(k)=<br />

N − O+ 1<br />

N∑<br />

n=O<br />

ǫ n x (i ) , k = 0,...,O; i = 1,2,3. (5.18)<br />

n−k<br />

3 The terms ”measured signal / resp<strong>on</strong>se” represent in the present c<strong>on</strong>text the signals, which are obtained by<br />

the Matlab/Simulink model or the transient CFD simulati<strong>on</strong>.<br />

90


5.4 A posteriori validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results<br />

If the correlati<strong>on</strong> values are rather large, it can be reas<strong>on</strong>ed that there is still<br />

a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured output y n that originates from present <str<strong>on</strong>g>and</str<strong>on</strong>g> past input<br />

signals. In other words, the input-output relati<strong>on</strong>ship has not been properly<br />

identified by the model with order M. If the obtained correlati<strong>on</strong> values are<br />

small, the model is probably independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the input signal. The model can<br />

therefore also be applied to other input signals. As the least-square method<br />

determines the parameters ˆθ such that the correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicti<strong>on</strong> error<br />

ǫ n <str<strong>on</strong>g>and</str<strong>on</strong>g> the regressor vector ϕ is minimized, the analysis should be carried out<br />

with O > M. To judge whether a value is small or still acceptable, the correlati<strong>on</strong><br />

can be compared to a 99% c<strong>on</strong>fidence interval, which can be determined<br />

according to Ljung [73] to:<br />

ci x (i ) =<br />

√ ∑O<br />

k=−O Γ ǫ,kΓ x (i ) ,k<br />

N− 2O− 1<br />

N α , i = 1,2,3, (5.19)<br />

where Γ ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g> Γ x (i ) are the auto-correlati<strong>on</strong> vectors <str<strong>on</strong>g>of</str<strong>on</strong>g> ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g> x (i ) , i = 1,2,3 respectively.<br />

N α represents the deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a normal distributi<strong>on</strong> with expectati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> µ=0 <str<strong>on</strong>g>and</str<strong>on</strong>g> a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> σ=1. For a c<strong>on</strong>fidence value <str<strong>on</strong>g>of</str<strong>on</strong>g> 99%,<br />

N α amounts to 2.58. It follows for the correlati<strong>on</strong> that the relati<strong>on</strong><br />

∣ 1 ∣∣∣∣ √ C<br />

∣<br />

ǫx,k ⩽ ci (5.20)<br />

Γǫ,k=0 Γ x,k=0<br />

has to be fulfilled.<br />

Similar equati<strong>on</strong>s can be obtained for the auto-correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicti<strong>on</strong><br />

error. Large values <str<strong>on</strong>g>of</str<strong>on</strong>g> the auto-correlati<strong>on</strong> are an indicati<strong>on</strong> that the predicti<strong>on</strong><br />

error does not exhibit white noise characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> may therefore still<br />

c<strong>on</strong>tain some dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. An excepti<strong>on</strong> is the value at k = 0 which<br />

has to approach unity. If the predicti<strong>on</strong> error exhibits, similar to the flame resp<strong>on</strong>se,<br />

a low pass filter behavior with a cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequency far below the sampling<br />

frequency the auto-correlati<strong>on</strong> can c<strong>on</strong>tain large values for k ≤ 1/ f c /△t ,<br />

where f c denotes the cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequency <str<strong>on</strong>g>and</str<strong>on</strong>g>△t the sampling interval.<br />

All methods menti<strong>on</strong>ed above should be analyzed in combinati<strong>on</strong> to assess<br />

the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong>.<br />

91


System Identificati<strong>on</strong><br />

5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame<br />

model<br />

Until now, the CFD/SI method has not been applied to identify the flame dynamics,<br />

which are described by a MISO model. In this secti<strong>on</strong>, pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept<br />

for this approach is established by a comprehensive validati<strong>on</strong> study.<br />

Both a priori <str<strong>on</strong>g>and</str<strong>on</strong>g> a posteriori quality criteria are employed. Furthermore, the<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> different excitati<strong>on</strong> signals <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal time series length N in<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong> results is assessed. Such<br />

a sensitivity study helps to determine the necessary c<strong>on</strong>diti<strong>on</strong>s for a successful<br />

identificati<strong>on</strong>. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept is not based <strong>on</strong> CFD data – because<br />

with a CFD model, the exact values <str<strong>on</strong>g>of</str<strong>on</strong>g> the frequency resp<strong>on</strong>se functi<strong>on</strong>s are<br />

not known a priori. Even, if highly accurate data can be obtained, it is not possible<br />

to distinguish whether discrepancies observed are due to inadequacies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the turbulent combusti<strong>on</strong> model or due to the MISO identificati<strong>on</strong> scheme.<br />

Instead, a time-domain simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear, time-invariant dynamic system<br />

model, that is qualitatively representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical<br />

u<br />

1<br />

φ,1<br />

2<br />

φ,2<br />

Figure 5.4: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the Matlab/Simulink test rig model<br />

92


5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame model<br />

0.25<br />

0.2<br />

0.15<br />

Amplitude<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

−0.1<br />

0 10 20 30 40 50 60<br />

Time steps<br />

Figure 5.5: Predefined test UIRs <str<strong>on</strong>g>of</str<strong>on</strong>g> the model (−− U I R u , -- U I R φ,1 , -· U I R φ,2 )<br />

premixed combustor (see Fig. 1.2) is set up in Matlab/Simulink. A similar approach<br />

has been used by Yuen et al. [134] for validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic transfer<br />

matrix rec<strong>on</strong>structi<strong>on</strong>. A block diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the model, which includes two <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injectors at different locati<strong>on</strong>s, is shown in Fig. 5.4. The first disturbance represents<br />

the velocity fluctuati<strong>on</strong> at the burner mouth. The sec<strong>on</strong>d <str<strong>on</strong>g>and</str<strong>on</strong>g> the third<br />

<strong>on</strong>e are fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio, which arise from fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the main stream <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow at the corresp<strong>on</strong>ding injecti<strong>on</strong><br />

locati<strong>on</strong>s. Without essential loss <str<strong>on</strong>g>of</str<strong>on</strong>g> generality, zero acoustic boundary<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> zero phase lags between velocity fluctuati<strong>on</strong>s at the injectors<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the burner exit are assumed. Therefore, the velocity fluctuati<strong>on</strong>s at the injecti<strong>on</strong><br />

locati<strong>on</strong>s are coupled directly to the fluctuati<strong>on</strong>s at the burner mouth,<br />

as indicated in Fig. 5.4. The flame dynamics is described by three unit impulse<br />

resp<strong>on</strong>ses UIR u , UIR φ,1 , UIR φ,2 , named ”Digital filter” in Fig. 5.4. The amplitudes,<br />

mean time lags <str<strong>on</strong>g>and</str<strong>on</strong>g> time lag distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the three UIRs differ from<br />

each other as presented in Fig. 5.5. The UIRs are designed to corresp<strong>on</strong>d qualitatively<br />

with results <str<strong>on</strong>g>of</str<strong>on</strong>g> previous experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> computati<strong>on</strong>al studies <strong>on</strong><br />

premix flame dynamics, <str<strong>on</strong>g>and</str<strong>on</strong>g> also to the UIRs obtained in the CFD/SI study,<br />

93


System Identificati<strong>on</strong><br />

Phase<br />

Amplitude<br />

2<br />

1<br />

3.14<br />

1.57<br />

−1.57<br />

0<br />

0 2 4 6 8 10<br />

0<br />

−3.14<br />

0 2 4 6 8 10<br />

Strouhal number<br />

Figure 5.6: Predefined test FTFs <str<strong>on</strong>g>of</str<strong>on</strong>g> the model (−− F u , -- F φ,1 , -· F φ,2 )<br />

which are discussed in chapter 6.3. The corresp<strong>on</strong>ding transfer functi<strong>on</strong>s are<br />

presented in Fig. 5.6. For the present case 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is<br />

injected by the first <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage <str<strong>on</strong>g>and</str<strong>on</strong>g> the remaining 40% by the sec<strong>on</strong>d<br />

<strong>on</strong>e. The factor K i = ¯ṁ F,i /( ∑ N ¯ṁ i=1 F,i ) (see Eqn. 2.10) in the model is accordingly<br />

set to 0.6 for the first <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.4 for the sec<strong>on</strong>d <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage.<br />

All excitati<strong>on</strong> signals – see Fig. 5.2 for a sample – have the same amplitude<br />

in the following. The relevant signals were measured upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame,<br />

represented by the digital filters in Fig. 5.4. The amplitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured<br />

equivalence signals vary according to the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> two excitati<strong>on</strong> signals, which<br />

are weighted with factors K 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> K 2 . The sum represents the correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

velocity fluctuati<strong>on</strong>s as described in Eqn. (2.10), (2.11). The crest factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

DRBS BBWN SINE<br />

C r [-] 1,007 1,319 2,032<br />

Table 5.1: Crest factor C r <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured signals.<br />

94


5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame model<br />

measured signals are presented in table 5.1, c<strong>on</strong>firming that the DRBS exhibits<br />

the best characteristics.<br />

The simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the dynamic model were performed using a time step <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

∆t = 2.5×10 −5 s. The total length <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulati<strong>on</strong>s were equal to 10000<br />

time steps, which corresp<strong>on</strong>ds to a minimum resolved frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> f min =<br />

1/(10000∆t ) = 4 Hz. In the first test series the used white noise signals are<br />

not limited in frequency ([0 40000 Hz]). The cycle time is thus the same as the<br />

sampling interval <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulati<strong>on</strong>. The sinus signal c<strong>on</strong>tains multiple sine<br />

waves with frequencies ranging up to 10000 Hz with a frequency step <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 Hz.<br />

5.5.1 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> model structure <strong>on</strong> identificati<strong>on</strong> results<br />

In this sub-secti<strong>on</strong> results, which are obtained in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise, are presented.<br />

In this case the identificati<strong>on</strong> results obtained with the MISO model<br />

exhibit a perfect match for all excitati<strong>on</strong> signals applied in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> unit impulse<br />

resp<strong>on</strong>ses or flame transfer functi<strong>on</strong>s. For example, the unit impulse<br />

resp<strong>on</strong>se UIR u is shown in Fig. 5.7. Equivalent results are achieved for UIR φ,1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> UIR φ,2 , which are not presented here. This is a remarkable result, which<br />

dem<strong>on</strong>strates that the proposed method is capable to discern the impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the different input signals variables <strong>on</strong> the overall flame resp<strong>on</strong>se. For comparis<strong>on</strong>,<br />

Fig. 5.7 shows also the identificati<strong>on</strong> result obtained if the flame resp<strong>on</strong>se<br />

is represented by a SISO model structure taking the velocity fluctuati<strong>on</strong><br />

at the burner mouth as the <strong>on</strong>ly input signal. Here it is apparent, see<br />

Fig. 5.5 for comparis<strong>on</strong>, that the identified UIR also includes spurious c<strong>on</strong>tributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the correlated part <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s. Fig. 5.8<br />

shows in additi<strong>on</strong>, that the predicted output signal using the UIR identified<br />

with the SISO model results in a huge predicti<strong>on</strong> error. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

if the UIR identified with the MISO model is used, a perfect match between<br />

measured <str<strong>on</strong>g>and</str<strong>on</strong>g> predicted time series is achieved, see again Fig. 5.8. These observati<strong>on</strong>s<br />

indicate that, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong> method chosen, an<br />

adequate model structure must be selected. In principle, simpler identificati<strong>on</strong><br />

methods based e.g. <strong>on</strong> single frequency forcing <str<strong>on</strong>g>and</str<strong>on</strong>g> Fourier transforms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the signals could be applied. In that case a multi-load or multi-source strategy<br />

95


System Identificati<strong>on</strong><br />

Amplitude<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

−0.1<br />

−0.15<br />

−0.2<br />

0 10 20 30 40 50 60<br />

Time steps<br />

Figure 5.7: Comparis<strong>on</strong> between predefined <str<strong>on</strong>g>and</str<strong>on</strong>g> identified unit impulse resp<strong>on</strong>se<br />

U I R u using MISO <str<strong>on</strong>g>and</str<strong>on</strong>g> SISO model structure (−− Test UIR,<br />

-o MISO, -- SISO)<br />

– an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two-source method proposed by Åbom [2] – would have<br />

to be developed in order to separate the correlated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the signals <strong>on</strong> the<br />

resp<strong>on</strong>se. This would, however, result in a several-fold increase in computati<strong>on</strong>al<br />

requirements.<br />

5.5.2 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> excitati<strong>on</strong> signal types in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise<br />

In experiments or CFD simulati<strong>on</strong>s, measured signals as well as measured resp<strong>on</strong>ses<br />

c<strong>on</strong>tain usually a certain amount <str<strong>on</strong>g>of</str<strong>on</strong>g> noise. To investigate the impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> noise <strong>on</strong> identificati<strong>on</strong> quality, the signals are overlaid with an uncorrelated,<br />

normally distributed white noise signal. A signal-to-noise ratio u 0 /n 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> about<br />

four was chosen in the present case, where n 0 denotes the basic amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the white noise. Figure 5.9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.10 show the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong> in<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit impulse resp<strong>on</strong>ses UIR u <str<strong>on</strong>g>and</str<strong>on</strong>g> UIR φ,2 .<br />

The results for the third unit impulse resp<strong>on</strong>se UIR φ,1 , as well as the corre-<br />

96


5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame model<br />

1.5<br />

1<br />

Amplitude<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

0.025 0.0255 0.026 0.0265 0.027 0.0275<br />

Time [s]<br />

Figure 5.8: Comparis<strong>on</strong> between measured <str<strong>on</strong>g>and</str<strong>on</strong>g> predicted heat release rate<br />

using MISO <str<strong>on</strong>g>and</str<strong>on</strong>g> SISO model structure (−− measured, -o MISO, -<br />

- SISO)<br />

sp<strong>on</strong>ding flame transfer functi<strong>on</strong>s exhibit similar trends <str<strong>on</strong>g>and</str<strong>on</strong>g> are omitted. The<br />

discrete r<str<strong>on</strong>g>and</str<strong>on</strong>g>om binary signal exhibits the best characteristics. The broadb<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

white noise <str<strong>on</strong>g>and</str<strong>on</strong>g> the overlaid multiple sine signal result in noticeable deviati<strong>on</strong>s,<br />

especially in regi<strong>on</strong>s where the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the predefined test UIRs<br />

are zero. However, compared to the sine signal the broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> white noise<br />

dem<strong>on</strong>strates a smoother behavior. A similar trend can be seen in Fig. 5.11<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 5.12, which show the identified flame transfer functi<strong>on</strong>s. The flame transfer<br />

functi<strong>on</strong>s are presented in form <str<strong>on</strong>g>of</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase vs. Strouhal number<br />

(n<strong>on</strong>-dimensi<strong>on</strong>al frequency):<br />

Sr = ωd<br />

2πu . (5.21)<br />

d (d = 0.04 m) denotes the burner mouth diameter <str<strong>on</strong>g>and</str<strong>on</strong>g> u (u = 19.4 m/s) the<br />

mean flow velocity in the mixing secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor test rig c<strong>on</strong>figurati<strong>on</strong>,<br />

which is presented in the next chapter. Again the DRBS reveals, in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase, the best agreement with the target values. Analyzing<br />

97


System Identificati<strong>on</strong><br />

0.2<br />

0.15<br />

0.1<br />

Amplitude<br />

0.05<br />

0<br />

−0.05<br />

−0.1<br />

0 10 20 30 40 50 60<br />

Time steps<br />

Figure 5.9: Unit impulse resp<strong>on</strong>se U I R u identified in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise<br />

(−− Test UIR, -· Sine, -o BBWN, -- DRBS)<br />

0.15<br />

0.1<br />

Amplitude<br />

0.05<br />

0<br />

−0.05<br />

−0.1<br />

0 10 20 30 40 50 60<br />

Time steps<br />

Figure 5.10: Unit impulse resp<strong>on</strong>se U I R φ,2 identified in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise<br />

(−− Test UIR, -· Sine, -o BBWN, -- DRBS)<br />

98


5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame model<br />

1.5<br />

Amplitude<br />

1<br />

0.5<br />

Phase<br />

3.14<br />

1.57<br />

−1.57<br />

0<br />

0 2 4 6 8 10<br />

0<br />

−3.14<br />

0 2 4 6 8 10<br />

Strouhal number<br />

Figure 5.11: Flame transfer functi<strong>on</strong> F u identified in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise (−−<br />

Test FTF, -· Sine, -o BBWN, -- DRBS)<br />

Phase<br />

Amplitude<br />

1.5<br />

1<br />

0.5<br />

3.14<br />

1.57<br />

−1.57<br />

0<br />

0 2 4 6 8 10<br />

0<br />

−3.14<br />

0 2 4 6 8 10<br />

Strouhal number<br />

Figure 5.12: Flame transfer functi<strong>on</strong> F φ,2 identified in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise<br />

(−− Test FTF, -· Sine, -o BBWN, -- DRBS)<br />

99


System Identificati<strong>on</strong><br />

the other two signals it can be c<strong>on</strong>firmed that the BBWN is preferable to<br />

the SINE signal. Identificati<strong>on</strong> quality according to Eqn. (5.17) is listed in<br />

table 5.2. Figure 5.13 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.14 show the auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> error<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> measured DRBS <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured SINE signal, respectively, which<br />

have been defined in Eqn. (5.18) - (5.20). The c<strong>on</strong>fidence interval is marked<br />

by the two horiz<strong>on</strong>tal lines in the figures. The cross-correlati<strong>on</strong> is determined<br />

between ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g> u ′ b <str<strong>on</strong>g>and</str<strong>on</strong>g> ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g> φ′ 2 . The correlati<strong>on</strong> between ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g> φ′ 1<br />

has similar<br />

characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> is again omitted. The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the correlati<strong>on</strong>s was set to<br />

120 time steps, which is almost twice the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIRs. Except for a few<br />

cross-correlati<strong>on</strong> values between the error <str<strong>on</strong>g>and</str<strong>on</strong>g> the SINE signal, which are located<br />

outside the border <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>fidence interval, both figures indicate that<br />

the chosen model structure <str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters are sufficient<br />

to properly describe the input-output relati<strong>on</strong>ships. The deviati<strong>on</strong>s in the<br />

auto-correlati<strong>on</strong> signal for the first time steps are due to the limited frequency<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se signal, which corresp<strong>on</strong>ds to the low-frequency<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. Combining the informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> table 5.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 5.13,<br />

5.14, it can be c<strong>on</strong>cluded that the n<strong>on</strong>-identified deviati<strong>on</strong>s (100% - Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

DRBS signal are completely due to the noise signal (which is equal to about<br />

1/4 <str<strong>on</strong>g>of</str<strong>on</strong>g> the total signal level as menti<strong>on</strong>ed before). In case <str<strong>on</strong>g>of</str<strong>on</strong>g> the SINE signal the<br />

same level <str<strong>on</strong>g>of</str<strong>on</strong>g> noise deteriorates the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong> significantly.<br />

The BBWN lies between both extremes, but shows in total acceptable results.<br />

In the sec<strong>on</strong>d test case presented, two DRBS excitati<strong>on</strong> signals with unlimited<br />

([0 40000 Hz]) <str<strong>on</strong>g>and</str<strong>on</strong>g> limited frequency range ([0 8000 Hz]), respectively, were analyzed.<br />

A signal can be limited to a certain frequency range in setting a cycle<br />

time or cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequency according to Eqn. (5.15), (5.16) or setting a maximal<br />

single frequency in case <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-frequency signal (Eqn. (5.14)). As a c<strong>on</strong>sequence<br />

the power spectrum density reaches a higher level in the limited fre-<br />

DRBS BBWN SINE<br />

Q [%] 74,4 58,9 39,6<br />

Table 5.2: Proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the explained deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured resp<strong>on</strong>se according<br />

Eqn. (5.17)<br />

100


5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame model<br />

Amplitude<br />

Amplitude<br />

Amplitude<br />

1<br />

0.5<br />

0<br />

0 20 40 60 80 100 120<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

0 20 40 60 80 100 120<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

0 20 40 60<br />

Time steps<br />

80 100 120<br />

Figure 5.13: Auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> error <str<strong>on</strong>g>and</str<strong>on</strong>g> DRBS excitati<strong>on</strong> signal<br />

(Top: Γ ǫ , Middle: C ǫu ′<br />

b , Bottom: C ǫφ ′ 2 )<br />

Amplitude<br />

Amplitude<br />

Amplitude<br />

1<br />

0.5<br />

0<br />

0 20 40 60 80 100 120<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

0 20 40 60 80 100 120<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

0 20 40 60<br />

Time steps<br />

80 100 120<br />

Figure 5.14: Auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> error <str<strong>on</strong>g>and</str<strong>on</strong>g> SINE excitati<strong>on</strong> signal<br />

(Top: Γ ǫ , middle: C ǫu ′<br />

b , bottom: C ǫφ ′ 2 )<br />

101


System Identificati<strong>on</strong><br />

0.15<br />

0.1<br />

Amplitude<br />

0.05<br />

0<br />

−0.05<br />

−0.1<br />

0 10 20 30 40 50 60<br />

Time steps<br />

Figure 5.15: Unit impulse resp<strong>on</strong>se U I R φ,2 identified in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise<br />

(−− Test FTF, -- DRBS (limited frequency range), -· DRBS)<br />

quency range. Such an excitati<strong>on</strong> signal could therefore exhibit an even better<br />

characteristic regarding the identificati<strong>on</strong> process, especially in cases <str<strong>on</strong>g>of</str<strong>on</strong>g> significant<br />

noise amplitudes. The measured signals <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>ses are overlaid<br />

with white noise such that a signal to noise ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> about two results. Fig. 5.15<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 5.16 show the identified UIR u <str<strong>on</strong>g>and</str<strong>on</strong>g> the flame transfer functi<strong>on</strong> as an<br />

example. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the noise is even further reduced in case <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal<br />

with limited frequency c<strong>on</strong>tent. Even with a high fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> noise in the<br />

signal the identificati<strong>on</strong> results reveal <strong>on</strong>ly small deviati<strong>on</strong>s compared to the<br />

predefined flame transfer functi<strong>on</strong>.<br />

5.5.3 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured time series length<br />

In further test series it was evaluated how many simulati<strong>on</strong> time steps N <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

signals are sufficient to guarantee a proper identificati<strong>on</strong>. As the total computati<strong>on</strong>al<br />

effort is proporti<strong>on</strong>al to the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the time series, it is important<br />

to know under which circumstances shorter time series would not degrade<br />

102


5.5 Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cept for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the MISO flame model<br />

Phase<br />

Amplitude<br />

1.5<br />

1<br />

0.5<br />

3.14<br />

1.57<br />

−1.57<br />

0<br />

0 2 4 6 8 10<br />

0<br />

−3.14<br />

0 2 4 6 8 10<br />

Strouhal number<br />

Figure 5.16: Flame transfer functi<strong>on</strong> F φ,2 identified in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise<br />

(−− Test FTF, -- DRBS (limited frequency range), -· DRBS)<br />

the identificati<strong>on</strong> quality. For the present case a DRBS signal with unlimited<br />

frequency range is used as a reference signal. Different numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> time steps<br />

were evaluated ranging from N = 3×M to N = 150×M, where M denotes again<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> UIR coefficients. Three different signal to noise ratios were analyzed<br />

(no noise, S/N = 4, S/N = 10). The results are presented in Fig. 5.17 in<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> the ”quality” Q/Q 0 over the time series length, which are shown as<br />

multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> M. Q/Q 0 is determined using Eqn. (5.17), which is normalized by<br />

the maximum possible result <str<strong>on</strong>g>of</str<strong>on</strong>g> Q in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise. Taking the case with a<br />

signal to noise ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 97% can be reached when the total simulati<strong>on</strong><br />

time is 15 times the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR or the l<strong>on</strong>gest time lag c<strong>on</strong>sidered<br />

(M△t ).<br />

The numerical study using the simplified model dem<strong>on</strong>strated that the proposed<br />

identificati<strong>on</strong> method based <strong>on</strong> correlati<strong>on</strong> analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> the Wiener-<br />

Hopf inversi<strong>on</strong> is able to identify multiple-input single-output (MISO) systems.<br />

Furthermore, it is capable to separate the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the different input<br />

signals <strong>on</strong> the resp<strong>on</strong>se, even if the input signals are correlated to a certain<br />

103


System Identificati<strong>on</strong><br />

1<br />

0.9<br />

Quality Q/Q 0<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

20 40 60 80 100<br />

Length <str<strong>on</strong>g>of</str<strong>on</strong>g> time series [x M]<br />

Figure 5.17: Quality Q/Q 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time series length<br />

(-+ W/O NOISE, -o S/N = 10, -∗ S/N = 4)<br />

degree. In the present case the correlati<strong>on</strong> amounted to 50%. In the presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> noise it becomes apparent that the discrete r<str<strong>on</strong>g>and</str<strong>on</strong>g>om binary signal showed<br />

the best performance compared to broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> white noise or a sine overlay.<br />

Therefore the DRBS is used in the following to apply the identificati<strong>on</strong> method<br />

to the measured signals <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>ses, which are obtained by a transient CFD<br />

simulati<strong>on</strong>. As the method itself has proven to work properly, the physical<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong> just depends <strong>on</strong> the numerical models (turbulence,<br />

combusti<strong>on</strong>) used in the CFD simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> noise in<br />

the signals.<br />

104


6 Numerical simulati<strong>on</strong><br />

MISO model identificati<strong>on</strong> is now applied to a generic practical premixed swirl<br />

burner with a multi-stage <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> system. The purpose is to show that<br />

the method proposed can be applied successfully to complex c<strong>on</strong>figurati<strong>on</strong>s,<br />

like the turbulent reacting flow <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical premixed combustor, <str<strong>on</strong>g>and</str<strong>on</strong>g> to<br />

dem<strong>on</strong>strate that relevant informati<strong>on</strong> <strong>on</strong> flame dynamics can be deduced<br />

from unit impulse <str<strong>on</strong>g>and</str<strong>on</strong>g> frequency resp<strong>on</strong>ses.<br />

In the next secti<strong>on</strong> the combustor c<strong>on</strong>figurati<strong>on</strong>s with two stage <str<strong>on</strong>g>and</str<strong>on</strong>g> three<br />

stage <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> will be described in more detail, followed by a summary<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the CFD model setup. Then the results <str<strong>on</strong>g>of</str<strong>on</strong>g> steady-state <str<strong>on</strong>g>and</str<strong>on</strong>g> transient simulati<strong>on</strong>s<br />

are presented, including a physics-based interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame<br />

dynamics. As the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler are not known<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> can not be derived analytically, the transfer matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler is identified<br />

in additi<strong>on</strong> to the flame transfer functi<strong>on</strong>s. The results obtained are implemented<br />

into an acoustic network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system, as described<br />

in chapter 7.<br />

6.1 Practical premixed combustor c<strong>on</strong>figurati<strong>on</strong><br />

The c<strong>on</strong>figurati<strong>on</strong> investigated in this study is representative <str<strong>on</strong>g>of</str<strong>on</strong>g> a combustor<br />

with practical premixing. The layout is similar to a combusti<strong>on</strong> test rig investigated<br />

by Komarek et al. [56, 57] <str<strong>on</strong>g>and</str<strong>on</strong>g> comprises a plenum, an axial swirler<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bluff-body flame holder mounted in an annular duct, <str<strong>on</strong>g>and</str<strong>on</strong>g> the combusti<strong>on</strong><br />

chamber. The axial swirler comprises in total eight blades with an angle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

attack <str<strong>on</strong>g>of</str<strong>on</strong>g> 45 ◦ . The theoretical swirl number <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow is 0.74. The plenum has<br />

a length <str<strong>on</strong>g>of</str<strong>on</strong>g> L = 0.095 m with a cross-secti<strong>on</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> A= 0.0312 m 2 . The length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> chamber is equal to L = 0.3 m, with a cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A =<br />

105


Numerical simulati<strong>on</strong><br />

0.00816 m 2 . An orifice plate is used as terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> chamber<br />

through which the hot products leave the chamber into the atmosphere. In<br />

the experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> Komarek et al. [56, 57], natural <strong>gas</strong> was injected upstream<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a choked cross secti<strong>on</strong>, such that the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>/air mixture was perfectly homogeneous<br />

even in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> oscillati<strong>on</strong>s. The computati<strong>on</strong>al<br />

model investigated in this work, however, incorporates additi<strong>on</strong>al <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

stages, which inject <str<strong>on</strong>g>fuel</str<strong>on</strong>g> through a number <str<strong>on</strong>g>of</str<strong>on</strong>g> small holes into the annular<br />

duct upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler. A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong> system<br />

including the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> system is shown in Fig. 6.1. As in many industrial<br />

combusti<strong>on</strong> systems, the distances between the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors <str<strong>on</strong>g>and</str<strong>on</strong>g> the flame<br />

are too short to allow for perfect premixing. More important in the present<br />

c<strong>on</strong>tent is the fact that the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> system is acoustically n<strong>on</strong>-stiff, i.e.<br />

the pressure drop between <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing secti<strong>on</strong> is not sufficient to<br />

decouple the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> system from the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

entire combusti<strong>on</strong> system. Therefore, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> at the flame will<br />

be influenced by acoustic perturbati<strong>on</strong>s in the annular mixing duct <str<strong>on</strong>g>and</str<strong>on</strong>g> in the<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors.<br />

In the present work two different c<strong>on</strong>figurati<strong>on</strong>s with two <str<strong>on</strong>g>and</str<strong>on</strong>g> with three injecti<strong>on</strong><br />

stages, respectively, are studied with the CFD/SI approach. The main focus<br />

in the first case lies <strong>on</strong> the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g><br />

Air/Fuel<br />

Plenum<br />

Fuel Supply/<br />

Fuel Plenum<br />

Fuel<br />

Swirler<br />

Combusti<strong>on</strong> Chamber<br />

Mixing Secti<strong>on</strong><br />

Figure 6.1: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> test rig<br />

106


6.1 Practical premixed combustor c<strong>on</strong>figurati<strong>on</strong><br />

u' b .<br />

u' A,2<br />

φ'<br />

u'<br />

2<br />

F,2<br />

Q'<br />

u' A,2<br />

u' b<br />

φ' .<br />

u' 2 F,2<br />

u' A,3<br />

φ' 3<br />

u' F,3<br />

a) b)<br />

Q'<br />

Figure 6.2: MISO systems representing practical premixed combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong>s:<br />

a) case A <str<strong>on</strong>g>and</str<strong>on</strong>g> b) case B<br />

<strong>on</strong> the thermo-acoustic stability. The sec<strong>on</strong>d <strong>on</strong>e explores possible implementati<strong>on</strong><br />

strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> as a means <str<strong>on</strong>g>of</str<strong>on</strong>g> passive c<strong>on</strong>trol. Note that the<br />

first <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage is not resolved in the computati<strong>on</strong>al model. Instead,<br />

a lean premixture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> air is imposed at the inlet boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>al<br />

domain at the upstream side <str<strong>on</strong>g>of</str<strong>on</strong>g> the plenum.<br />

In the first case, denoted as case A, 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is already premixed in the<br />

first stage before it enters the plenum. The remaining <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is injected through<br />

the sec<strong>on</strong>d <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector. The axial distance from the injecti<strong>on</strong> to the burner is<br />

L F,2 = 0.125 m.<br />

The sec<strong>on</strong>d case, named case B in the following, is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the first <strong>on</strong>e.<br />

A third <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage is placed at a locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L F,3 = 0.085 m upstream<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the burner mouth, indicated as a grey shadow in Fig. 6.3. A part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>,<br />

namely 10%, is premixed before it enters the mixing secti<strong>on</strong>. 36% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is<br />

injected via the sec<strong>on</strong>d injecti<strong>on</strong> stage <str<strong>on</strong>g>and</str<strong>on</strong>g> the remaining 54% are supplied to<br />

the third <strong>on</strong>e.<br />

In all cases methane (C H 4 ) is used as <str<strong>on</strong>g>fuel</str<strong>on</strong>g>. The thermal power is set to 50 kW<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the overall nominal equivalence ratio to φ=0.77. The MISO model structures<br />

for the c<strong>on</strong>figurati<strong>on</strong>s are shown in Fig. 6.2, where u ′ represents the velocity<br />

fluctuati<strong>on</strong> at the burner exit <str<strong>on</strong>g>and</str<strong>on</strong>g> ˙Q ′ the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release rate.<br />

b<br />

The variables φ ′ i<br />

denote the nominal equivalence ratio fluctuati<strong>on</strong>s at injec-<br />

107


Numerical simulati<strong>on</strong><br />

tors i = 2 for the sec<strong>on</strong>d injector <str<strong>on</strong>g>and</str<strong>on</strong>g> i = 3 for the third injector 1 . As discussed<br />

in chapter 2.2.2, the nominal fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio at the injectors<br />

can in turn be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

mass flow u ′ F,i <str<strong>on</strong>g>and</str<strong>on</strong>g> the main mass flow u′ A,i<br />

at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> i , see<br />

Eqn. (2.10).<br />

6.1.1 Design <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector<br />

The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> nozzle is designed similar to the <strong>on</strong>e described in Richards <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Robey [108]. The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum is arranged as an annulus <str<strong>on</strong>g>of</str<strong>on</strong>g> rectangular cross<br />

secti<strong>on</strong> around the mixing secti<strong>on</strong>. In additi<strong>on</strong>, a res<strong>on</strong>ator tube with variable<br />

length L R is attached to the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum to change the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> system. A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> dimensi<strong>on</strong>s is shown in<br />

Fig. 6.3. From the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum, <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is injected radially inward through eight<br />

holes, which are equally distributed around the circumference. The injecti<strong>on</strong><br />

holes have a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> d j = 1.2 mm. The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> holes, the<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the holes <str<strong>on</strong>g>and</str<strong>on</strong>g> chosen <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow is a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between the<br />

acoustic characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> the premixing quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the air <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g>: For the<br />

present purposes the pressure drop over the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> nozzles has, <strong>on</strong> the<br />

<strong>on</strong>e h<str<strong>on</strong>g>and</str<strong>on</strong>g>, to be small enough to ensure an acoustically coupled <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

system. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> the impulse ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> main stream has<br />

to be high enough to ensure a sufficient penetrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>.<br />

The pressure loss coefficients from the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum to the injecti<strong>on</strong> tube (ζ 1 )<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> from the tube to the mixing secti<strong>on</strong> (ζ 2 ) were determined with a steadystate<br />

CFD simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> are equal to 0.73 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.84. The coefficient is, in general,<br />

defined as (see also Eqn. (3.42)):<br />

ζ≡ 2△p<br />

ρu 2 . (6.1)<br />

In both cases the pressure loss coefficients depend <strong>on</strong> the velocity u in the injecti<strong>on</strong><br />

tube. In case A, for example, the pressure loss over the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

1 As the first injector is acoustically decoupled the equivalence ratio fluctuati<strong>on</strong>s at injector i = 1 are zero<br />

(φ ′ 1 = 0) 108


6.1 Practical premixed combustor c<strong>on</strong>figurati<strong>on</strong><br />

A-A<br />

L F,3<br />

Ø1,2<br />

L R,3<br />

A-A<br />

Ø16<br />

Ø40<br />

5<br />

L R,2<br />

Ø8<br />

Ø10<br />

55<br />

A-A<br />

125 L F,2<br />

60<br />

30<br />

Figure 6.3: Dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing secti<strong>on</strong> (mm)<br />

system is △p 1 = 3794 Pa or △p 1 = 0.037 p atm , where p atm denotes the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

atmospheric pressure.<br />

Beside the relatively low pressure loss, the mixing quality between air <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

should be adequate. The impulse <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream in relati<strong>on</strong> to the main<br />

stream should be high enough that the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> jet penetrates to a radial positi<strong>on</strong><br />

near the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing secti<strong>on</strong>. Various estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the penetrati<strong>on</strong><br />

depth exist in the literature <str<strong>on</strong>g>and</str<strong>on</strong>g> can be found in e.g. Lefebvre [69]. Many <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these estimates are validated for liners in combusti<strong>on</strong> chambers. The diameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the liner holes is comm<strong>on</strong>ly an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude larger than the <strong>on</strong>e used<br />

in the present work. Therefore, these relati<strong>on</strong>s can <strong>on</strong>ly be used as a first starting<br />

point. In c<strong>on</strong>trast to the cases described in literature, the c<strong>on</strong>figurati<strong>on</strong><br />

analyzed exhibits a rather low distance between the injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the burner<br />

center body. According to [69] a penetrati<strong>on</strong> depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Y max = 1.15d j<br />

√<br />

J (6.2)<br />

109


Numerical simulati<strong>on</strong><br />

can be calculated for a single jet injected into a circular duct. J represents the<br />

impulse ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> main stream <str<strong>on</strong>g>and</str<strong>on</strong>g> is defined as:<br />

J = ρ F u 2 F<br />

ρ A u 2 . (6.3)<br />

A<br />

The subscripts F <str<strong>on</strong>g>and</str<strong>on</strong>g> A represent again the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> main stream, respectively.<br />

In c<strong>on</strong>figurati<strong>on</strong> A, for example, the main flow velocity is equal to u A = 18.6<br />

m/s. The density has a value <str<strong>on</strong>g>of</str<strong>on</strong>g> ρ A = 1.167 kg/m 3 . With the properties for the<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream (u F = 85.6 m/s, ρ F = 0.66 kg/m 3 ) an impulse ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> J = 12.0 is<br />

computed for the present case. The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> including stream lines <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass fracti<strong>on</strong> at a downstream locati<strong>on</strong> are presented exemplarily<br />

for the c<strong>on</strong>figurati<strong>on</strong> A in Fig. 6.4. The legend refers to the plane presented<br />

whereas the colors <str<strong>on</strong>g>of</str<strong>on</strong>g> the streamlines indicate the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity.<br />

The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is distributed well over the radial directi<strong>on</strong>, with the main part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> located in the middle between the outer wall <str<strong>on</strong>g>and</str<strong>on</strong>g> the center body. The<br />

maximum depth according to Eqn. (6.2) would be 0.005 m, which is slightly<br />

too low. The optimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> circumferential holes was estimated according<br />

to Holdeman et al. [45] <str<strong>on</strong>g>and</str<strong>on</strong>g> lies in the range between 6.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10.2 for the<br />

c<strong>on</strong>figurati<strong>on</strong> analyzed (see appendix A.2 for more details). CFD simulati<strong>on</strong>s<br />

with different numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> holes showed that the c<strong>on</strong>figurati<strong>on</strong> with eight injecti<strong>on</strong><br />

holes exhibits adequate mixing characteristics.<br />

6.1.2 Numerical setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system<br />

To determine the flame transfer functi<strong>on</strong>s, a three-dimensi<strong>on</strong>al unsteady<br />

RANS computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the compressible turbulent reacting flow in the combustor<br />

has been performed using the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package ANSYS-CFX. According<br />

to the discussi<strong>on</strong> in chapter 2.3.2, the computati<strong>on</strong>al domain can be reduced<br />

to the mixing secti<strong>on</strong>, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> holes, the axial swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

combusti<strong>on</strong> chamber. A sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>al domain including the<br />

”measurement” planes for case A, at which the time series <str<strong>on</strong>g>of</str<strong>on</strong>g> the required velocity<br />

fluctuati<strong>on</strong>s are recorded, is shown in Fig. 6.5. To save computati<strong>on</strong>al<br />

time <strong>on</strong>ly a 90 ◦ segment is simulated using periodic boundary c<strong>on</strong>diti<strong>on</strong>s.<br />

A sec<strong>on</strong>d order backward Euler scheme <str<strong>on</strong>g>and</str<strong>on</strong>g> the high-resoluti<strong>on</strong> scheme were<br />

110


6.1 Practical premixed combustor c<strong>on</strong>figurati<strong>on</strong><br />

Figure 6.4: Streamlines <str<strong>on</strong>g>of</str<strong>on</strong>g> the injected <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong><br />

c<strong>on</strong>figurati<strong>on</strong>, case A<br />

used in time <str<strong>on</strong>g>and</str<strong>on</strong>g> space discretizati<strong>on</strong>, respectively. More details about the numerical<br />

methods can be found in [5]. The simulati<strong>on</strong>s were performed with<br />

the Shear Stress Transport turbulence model <str<strong>on</strong>g>and</str<strong>on</strong>g> the partially burning velocity<br />

combusti<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> CFX. Both models are described in chapter 4.1.2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 4.2.2. For simplicity all walls are assumed to be adiabatic. The chosen time<br />

step is△t = 2.5×10 −5 s. The main inlet flow parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the two simulati<strong>on</strong><br />

cases are shown in Table 6.1. The temperature for all inlets was set to T = 298<br />

K. The inlet turbulence intensity, which is defined as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent<br />

velocity fluctuati<strong>on</strong>s to the mean flow velocity, has a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 5%. CFX n<strong>on</strong>reflecting<br />

boundary c<strong>on</strong>diti<strong>on</strong>s are used for the inlets <str<strong>on</strong>g>and</str<strong>on</strong>g> the outlet to prevent<br />

res<strong>on</strong>ant amplificati<strong>on</strong> with high amplitudes in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> eigenfrequencies,<br />

which deteriorates the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results. This c<strong>on</strong>diti<strong>on</strong> is<br />

realized using a modified algorithm <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the Navier-Stokes charac-<br />

111


Numerical simulati<strong>on</strong><br />

Velocity inlet<br />

(<str<strong>on</strong>g>fuel</str<strong>on</strong>g>+air)<br />

Measurement planes (SI)<br />

Pressure<br />

outlet<br />

Velocity inlet<br />

(<str<strong>on</strong>g>fuel</str<strong>on</strong>g>)<br />

Figure 6.5: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>al domain <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ”measurement”<br />

planes (case A) for the SI-method<br />

teristic boundary c<strong>on</strong>diti<strong>on</strong>s (NSCBC) <str<strong>on</strong>g>of</str<strong>on</strong>g> Poinsot <str<strong>on</strong>g>and</str<strong>on</strong>g> Lele [95], which was implemented<br />

in the CFX envir<strong>on</strong>ment by Widenhorn [130]. The inlet boundary<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the main air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream(s) are overlaid by acoustic<br />

velocity excitati<strong>on</strong>. As the discrete r<str<strong>on</strong>g>and</str<strong>on</strong>g>om binary signal with limited frequency<br />

c<strong>on</strong>tent led to heat release fluctuati<strong>on</strong>s, which can not be described<br />

completely by a linear relati<strong>on</strong>ship <str<strong>on</strong>g>and</str<strong>on</strong>g> might be due to n<strong>on</strong>-linearities, the<br />

unlimited signal (f max = 1/△t ) was used in the following. These unexplained<br />

deviati<strong>on</strong>s, which are also present at low level using the unlimited signal, are<br />

described in more detail in chapter 6.3. The excitati<strong>on</strong> amplitude at the inlet<br />

Inlet, case A: Main stream Fuel stream<br />

Velocity u [m/s] 18.6 85.6<br />

Density ρ [kg /m 3 ] 1.167 0.66<br />

Fuel mass fracti<strong>on</strong> Y CH4 [−] 0.0218 1<br />

Inlet, case B: Main stream Fuel stream 1 Fuel stream 2<br />

Velocity u [m/s] 18.02 61.84 93.01<br />

Density ρ [kg /m 3 ] 1.18 0.66 0.66<br />

Fuel mass fracti<strong>on</strong> Y CH4 [−] 0.0044 1 1<br />

Table 6.1: Inlet flow parameters.<br />

112


6.1 Practical premixed combustor c<strong>on</strong>figurati<strong>on</strong><br />

boundary c<strong>on</strong>diti<strong>on</strong>s equals 4% <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean flow velocity in the combusti<strong>on</strong><br />

c<strong>on</strong>figurati<strong>on</strong> with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages <str<strong>on</strong>g>and</str<strong>on</strong>g> 3% for the <strong>on</strong>e with three <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injecti<strong>on</strong> stages. The velocity fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the volume integrated heat release<br />

rate, which are the signals used for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics,<br />

are recorded at the ”measurement” planes at every time step <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

simulati<strong>on</strong>. To suppress possible turbulent c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to account for<br />

density fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-air mixture, mass flow rate fluctuati<strong>on</strong>s were<br />

exported instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s. The ”measurement” plane at the<br />

burner mouth was placed 5 mm upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner exit to minimize errors<br />

due to the fluctuating flame fr<strong>on</strong>t, which is able to travel slightly inside<br />

the burner. At the point <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> the ”measurement” planes in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> line<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in the mixing secti<strong>on</strong> were placed 2.5 mm upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the stream crossing<br />

point. The ”measurement” planes are also shown in Fig. 6.5.<br />

The size <str<strong>on</strong>g>of</str<strong>on</strong>g> the grid is a compromise between computati<strong>on</strong>al effort <str<strong>on</strong>g>and</str<strong>on</strong>g> a sufficient<br />

resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flow structures <str<strong>on</strong>g>and</str<strong>on</strong>g> acoustics. Especially in the vicinity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler a fine grid was necessary to realize the flow separati<strong>on</strong> at the<br />

swirler blade <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>dary flow. The sec<strong>on</strong>dary flow further enhances the<br />

mixing quality due to the additi<strong>on</strong>al imposed turbulence. It develops from the<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> flow separati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> is due to the pressure gradient, which drives the<br />

fluid to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler passage. The chosen grid predicts a slightly<br />

higher strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the passage vortex compared to a simulati<strong>on</strong> case where<br />

the boundary layer is fully resolved as described in H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann [44]. Figure 6.6<br />

shows the critical area <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler with the passage vortex, which is highlighted<br />

by stream lines.<br />

In the present work the propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic waves up to 2000 Hz are<br />

resolved in the unsteady RANS c<strong>on</strong>text, reflecting the amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> an acoustic wave correctly. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> an acoustic wave traveling<br />

through the CFD domain can be judged by mainly two parameters: the<br />

grid size or length <str<strong>on</strong>g>of</str<strong>on</strong>g> a grid cell △x <str<strong>on</strong>g>and</str<strong>on</strong>g> the time step △t <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulati<strong>on</strong>.<br />

Both parameters can be combined into <strong>on</strong>e parameter, the acoustic Courant-<br />

Friedrichs-Lewy (aCFL) number, which is defined as:<br />

113


Numerical simulati<strong>on</strong><br />

aCFL=(u+ c) △t<br />

△x . (6.4)<br />

It is an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the CFL number, which is based <strong>on</strong> the mean flow velocity.<br />

The CFL number determines the number <str<strong>on</strong>g>of</str<strong>on</strong>g> grid cells through which a flow<br />

disturbance is c<strong>on</strong>vected in <strong>on</strong>e time step. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al fluid dynamics<br />

it is a c<strong>on</strong>diti<strong>on</strong> for the algorithms for solving partial differential equati<strong>on</strong>s<br />

to be c<strong>on</strong>vergent. An explicit method becomes unstable if the CFL value<br />

exceeds <strong>on</strong>e. However, a fully implicit discretizati<strong>on</strong> method allows CFL values<br />

over <strong>on</strong>e, although the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the discrete schemes diminishes. It has<br />

been shown that for aCFL≫1 the propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an acoustic wave could be<br />

resolved adequately. The important criteria to minimize the numerical dispersi<strong>on</strong><br />

effects are the number <str<strong>on</strong>g>of</str<strong>on</strong>g> grid cells per wavelength <str<strong>on</strong>g>and</str<strong>on</strong>g> time steps per<br />

Figure 6.6: Streamlines around a swirler blade showing the flow separati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the resulting sec<strong>on</strong>dary flow<br />

114


6.2 Steady-state simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor c<strong>on</strong>figurati<strong>on</strong>s<br />

period. In the present simulati<strong>on</strong>s a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 grid cells <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 time<br />

steps per period was ensured for an acoustic wave with a frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> 2000<br />

Hz. Details about a numerical test case, in which the propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a plane<br />

acoustic wave in a simple duct was analyzed, can be found in H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann [44].<br />

6.2 Steady-state simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor c<strong>on</strong>figurati<strong>on</strong>s<br />

As a starting point for the transient simulati<strong>on</strong>s to determine the flame transfer<br />

functi<strong>on</strong>s, steady-state simulati<strong>on</strong>s were performed. They are required to<br />

obtain the main characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the two combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong>s regarding<br />

mixing quality <str<strong>on</strong>g>and</str<strong>on</strong>g> axial heat release distributi<strong>on</strong>. The heat release distributi<strong>on</strong><br />

is necessary to define an appropriate axial locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame in the<br />

acoustic network models.<br />

1500<br />

1000<br />

Counts<br />

500<br />

0<br />

0.5 0.6 0.7 0.8 0.9<br />

Equivalence ratio<br />

Figure 6.7: Equivalence ratio distributi<strong>on</strong> upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner mouth, case<br />

A<br />

To judge the air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g> mixing quality the grid cell value <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio<br />

measured <strong>on</strong> a cut through the mixing secti<strong>on</strong> were exported <str<strong>on</strong>g>and</str<strong>on</strong>g> analyzed.<br />

The cut was placed slightly in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner mouth. As each cell exhibits a<br />

115


Numerical simulati<strong>on</strong><br />

2000<br />

1500<br />

Counts<br />

1000<br />

500<br />

0<br />

0.5 0.6 0.7 0.8 0.9 1 1.1<br />

Equivalence ratio<br />

Figure 6.8: Equivalence ratio distributi<strong>on</strong> upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner mouth, case<br />

B<br />

Figure 6.9: Weighted reacti<strong>on</strong> progress source, case A<br />

116


6.2 Steady-state simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor c<strong>on</strong>figurati<strong>on</strong>s<br />

Figure 6.10: Weighted reacti<strong>on</strong> progress source, case B<br />

different area, the values obtained are area weighted. The results are presented<br />

in form <str<strong>on</strong>g>of</str<strong>on</strong>g> a histogram, showing the counts for different equivalence ratio values.<br />

In c<strong>on</strong>figurati<strong>on</strong> A (Fig. 6.7) the equivalence ratio is mainly distributed<br />

between 0.75 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.92 (the mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> both cases is about φ = 0.77). The<br />

sec<strong>on</strong>d case (Fig. 6.8) has a wider distributi<strong>on</strong>, which ranges up to 1.18. Here,<br />

regi<strong>on</strong>s with a rich <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mixture still exist. The mixing quality is, however, significantly<br />

better than in case A with a peak around φ=0.72.<br />

The heat release rate <str<strong>on</strong>g>of</str<strong>on</strong>g> both cases is presented in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the weighted reacti<strong>on</strong><br />

progress source Z M ˙ω c (see chapter 4.2.2) in Fig. 6.9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.10, which<br />

show the downstream end <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing secti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the upstream part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

combusti<strong>on</strong> chamber. In case A the heat release rate is more or less equally<br />

distributed between the inner <str<strong>on</strong>g>and</str<strong>on</strong>g> outer burning shear layer. Case B shows<br />

that the combusti<strong>on</strong> process is shifted towards the outer regi<strong>on</strong>. The reas<strong>on</strong><br />

is the upstream injecti<strong>on</strong> locati<strong>on</strong>, where 36% <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is injected. This injector<br />

possesses a lower impulse ratio <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore, in comparis<strong>on</strong> to case<br />

A, a decreased penetrati<strong>on</strong> depth. The c<strong>on</strong>sequence is a richer mixture close<br />

117


Numerical simulati<strong>on</strong><br />

0.02<br />

Amplitude HR/HR int<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

Axial distance from burner exit [m]<br />

Figure 6.11: Axial heat release rate distributi<strong>on</strong>, case A<br />

0.02<br />

Amplitude HR/HR int<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

Axial distance from burner exit [m]<br />

Figure 6.12: Axial heat release rate distributi<strong>on</strong>, case B<br />

118


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

to the outer wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the annulus <str<strong>on</strong>g>and</str<strong>on</strong>g> the outer shear layer, which explains the<br />

high heat release rate close to the burner exit. The corresp<strong>on</strong>ding axial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate can be found in Fig. 6.11 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.12. The heat<br />

release rate distributi<strong>on</strong> is normalized by the area integral over the axial directi<strong>on</strong><br />

HR int . Both curves show a similar overall trend. In c<strong>on</strong>trast to case A,<br />

case B exhibits an overall slightly lower amplitude but a wider heat release rate<br />

peak. The center <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate area is located in both cases 0.03 m<br />

downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner exit, which is marked as a cross in the figures. It is<br />

defined as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the local area integral <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate weighted<br />

with its axial positi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the overall heat release rate. In the acoustic network<br />

models (see chapter 3.3.1.2 or 7.1) the flame is treated as a disc<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

negligible thickness. Therefore this locati<strong>on</strong> is used as the locati<strong>on</strong> where the<br />

combusti<strong>on</strong> process takes place.<br />

6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

From the time series <str<strong>on</strong>g>of</str<strong>on</strong>g> the CFD simulati<strong>on</strong>s, the unit impulse resp<strong>on</strong>se vectors<br />

can be determined using the system identificati<strong>on</strong> relati<strong>on</strong>s derived in<br />

chapter 5. The corresp<strong>on</strong>ding flame transfer functi<strong>on</strong>s can be obtained from<br />

the UIR by z-transformati<strong>on</strong>. As the simulati<strong>on</strong>s with broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong><br />

<strong>on</strong>ly allow a limited physical insight into the flame behavior, additi<strong>on</strong>al transient<br />

simulati<strong>on</strong>s have been performed using impulse forcing. The results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such simulati<strong>on</strong>s, although not quantitatively accurate, are very helpful in developing<br />

a physics-based interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics. In this way the<br />

changes in flame shape, positi<strong>on</strong>, heat release rate, etc. in resp<strong>on</strong>se to the impulse<br />

perturbati<strong>on</strong> can be visualized easily.<br />

At first the results <str<strong>on</strong>g>of</str<strong>on</strong>g> both combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong>s, case A <str<strong>on</strong>g>and</str<strong>on</strong>g> case B, are<br />

discussed. Furthermore, the flame resp<strong>on</strong>se to velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence ratio<br />

fluctuati<strong>on</strong>s obtained are analyzed <str<strong>on</strong>g>and</str<strong>on</strong>g> interpreted using the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

impulse forcing simulati<strong>on</strong>s.<br />

119


Numerical simulati<strong>on</strong><br />

6.3.1 Combustor c<strong>on</strong>figurati<strong>on</strong> with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages<br />

The simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor c<strong>on</strong>figurati<strong>on</strong> with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages<br />

was performed using DRBS broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong> with an excitati<strong>on</strong> amplitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 4%. With a 50 / 50 % <str<strong>on</strong>g>fuel</str<strong>on</strong>g> split between the injecti<strong>on</strong> stages, the factor<br />

K 1 , required to calculate the nominal equivalence ratio fluctuati<strong>on</strong>s from the<br />

mass flow rate fluctuati<strong>on</strong>s, was set to 0.5. The simulati<strong>on</strong> was c<strong>on</strong>tinued for<br />

7600 time steps, corresp<strong>on</strong>ding to a total simulati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> T t = 0.19 s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

a minimum resolved frequency f min = 5.33 Hz. The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR vectors<br />

was set to 520 time steps, which is more than 50% l<strong>on</strong>ger than the mean time<br />

interval required for a c<strong>on</strong>vective disturbance to travel from the point <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong><br />

to the center <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. As discussed in chapter<br />

5.5.3, this modest length <str<strong>on</strong>g>of</str<strong>on</strong>g> the time series is in comparis<strong>on</strong> to the length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the UIR sufficiently large for accurate identificati<strong>on</strong>, provided that the signalto-noise-ratio<br />

is equal to or higher than 10.<br />

The unit impulse resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s caused by velocity<br />

fluctuati<strong>on</strong>s at the burner exit <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s at the<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> locati<strong>on</strong>, respectively, are presented in Fig. 6.13. The flame resp<strong>on</strong>ds<br />

to the two signals with different time delays: A resp<strong>on</strong>se to equivalence<br />

ratio fluctuati<strong>on</strong>s UIR φ,2 is visible after about 250 time steps, which corresp<strong>on</strong>ds<br />

roughly to the c<strong>on</strong>vective transport time from the point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

to the flame. The peak resp<strong>on</strong>se is reached at about 300 time steps, when<br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> arrives at the center <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. At later times, the UIR shows an ”undershoot”,<br />

i.e. a range <str<strong>on</strong>g>of</str<strong>on</strong>g> coefficients h k < 0. This is a remarkable feature, which<br />

has to the author’s knowledge not been observed previously in studies <strong>on</strong> the<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> premix flames to equivalence ratio fluctuati<strong>on</strong>s. A discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this observati<strong>on</strong> is the main focus <str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 6.3.3.<br />

The resp<strong>on</strong>se UIR u to velocity fluctuati<strong>on</strong>s at the burner exit, which starts after<br />

a shorter delay, exhibits two positive peaks. The first peak at 60 time steps corresp<strong>on</strong>ds<br />

to fluctuati<strong>on</strong>s at the burner exit, whereas the sec<strong>on</strong>d <strong>on</strong>e at about<br />

100 time steps is the resp<strong>on</strong>se to fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity at the axial swirler,<br />

which in turn generate fluctuati<strong>on</strong>s in swirl number. This point is discussed<br />

extensively by Komarek <str<strong>on</strong>g>and</str<strong>on</strong>g> Polifke [56]. The flame kinematic resp<strong>on</strong>se UIR u<br />

120


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

Amplitude<br />

0.02<br />

0<br />

−0.02<br />

100 200 300 400 500<br />

Amplitude<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

100 200 300 400 500<br />

Time steps<br />

Figure 6.13: Unit impulse resp<strong>on</strong>se, case A (Top: UIR φ,2 , Bottom: UIR u )<br />

also shows an undershoot.<br />

The corresp<strong>on</strong>ding flame transfer functi<strong>on</strong>s are presented in Fig. 6.14. The frequency<br />

is normalized by the Strouhal number (Sr = ωd /(2πu)), with mean velocity<br />

u = 19.4 m/s <str<strong>on</strong>g>and</str<strong>on</strong>g> burner exit diameter d = 0.04 m. The phase informati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> F u shows the aforementi<strong>on</strong>ed influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the different time lags between<br />

the axial swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> the burner exit <str<strong>on</strong>g>and</str<strong>on</strong>g> the flame. The<br />

mean time delay is approximately τ≈7.5ms for the resp<strong>on</strong>se to equivalence<br />

ratio fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> τ≈2.1ms for velocity fluctuati<strong>on</strong>s. Both flame transfer<br />

functi<strong>on</strong>s computed from the UIRs show the correct behavior in the limit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

low frequencies. As menti<strong>on</strong>ed in chapter 5.4, c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass <str<strong>on</strong>g>and</str<strong>on</strong>g> energy<br />

requires that both flame transfer functi<strong>on</strong>s have to approach unity for<br />

ω → 0 (see [100] for more details). At higher frequencies – Strouhal numbers<br />

in the range 0.3 to 0.5 – both transfer functi<strong>on</strong>s show a gain significantly larger<br />

than unity, |F|≈2. This has been observed before for the fr<strong>on</strong>t-kinematic resp<strong>on</strong>se<br />

F u , see e.g. [35,121]. However, for the resp<strong>on</strong>se F φ to equivalence ratio<br />

fluctuati<strong>on</strong>s, previous work has always assumed that a dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vec-<br />

121


Numerical simulati<strong>on</strong><br />

Phase<br />

Amplitude<br />

2<br />

1<br />

3.14<br />

1.57<br />

−1.57<br />

0<br />

0 0.5 1 1.5 2<br />

0<br />

−3.14<br />

0 0.5 1 1.5 2<br />

Strouhal number<br />

Figure 6.14: Flame transfer functi<strong>on</strong>, case A (−− F φ,2 , -- F u )<br />

tive time delays will result in a low-pass filter behaviour with |F φ |0 [31, 60, 99, 112]. An explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present result is developed<br />

in chapter 6.3.3.<br />

The high quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the identificati<strong>on</strong> is dem<strong>on</strong>strated by the achieved Q-<br />

value (see Eqn. (5.17)) <str<strong>on</strong>g>of</str<strong>on</strong>g> 92.7%. The Q-value obtained indicate that 92.7%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s are properly described by the unit impulse<br />

resp<strong>on</strong>ses identified. The auto-correlati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicti<strong>on</strong> error ǫ <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the error-input signal cross-correlati<strong>on</strong>s (between ǫ, equivalence ratio fluctuati<strong>on</strong>s<br />

φ ′ 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity fluctuati<strong>on</strong>s at the burner exit u′ ) are presented in<br />

b<br />

Fig. 6.15. The correlati<strong>on</strong> analysis was performed with a length <str<strong>on</strong>g>of</str<strong>on</strong>g> two times<br />

the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIRs. The correlati<strong>on</strong>s are below the c<strong>on</strong>fidence interval,<br />

which are marked by the two horiz<strong>on</strong>tal lines. Therefore the unpredicted deviati<strong>on</strong>s<br />

(100%-Q) <str<strong>on</strong>g>of</str<strong>on</strong>g> the output heat release rate signal can not be related to the<br />

input velocity signals. This verifies that the chosen number <str<strong>on</strong>g>of</str<strong>on</strong>g> UIR coefficients<br />

is sufficient to completely describe the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the input signals. The autocorrelati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the predicti<strong>on</strong> error is for most <str<strong>on</strong>g>of</str<strong>on</strong>g> the time steps inside or close<br />

122


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

Amplitude<br />

Amplitude<br />

Amplitude<br />

1<br />

0.5<br />

0<br />

−0.5<br />

0 200 400 600 800 1000<br />

0.05<br />

0<br />

−0.05<br />

0.1<br />

0<br />

0 200 400 600 800 1000<br />

−0.1<br />

0 200 400 600<br />

Time steps<br />

800 1000<br />

Figure 6.15: Auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> error <str<strong>on</strong>g>and</str<strong>on</strong>g> signals, case A (Top: Γ ǫ ,<br />

middle: C ǫφ ′<br />

2<br />

, bottom: C ǫu ′<br />

b )<br />

to the c<strong>on</strong>fidence interval. It has almost the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a white noise<br />

signal. The deviati<strong>on</strong>s at time steps close to zero are due to the low-pass filtering<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. The reas<strong>on</strong> for the further deviati<strong>on</strong>s is not clear.<br />

To analyze the unpredicted deviati<strong>on</strong>s (100%-Q) <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>on</strong>es observed in the<br />

auto-correlati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicti<strong>on</strong> error the predicted heat release rate fluctuati<strong>on</strong>s<br />

are compared to the <strong>on</strong>es computed in the CFD simulati<strong>on</strong>. The predicti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s is d<strong>on</strong>e using the input signals<br />

obtained by the CFD simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the identified UIR coefficients. A segment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> both signals is shown in Fig. 6.16. The phase is perfectly reproduced<br />

by the identified model. However, the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal predicted shows<br />

some small deviati<strong>on</strong>s mainly at higher absolute values. As the deviati<strong>on</strong>s do<br />

not correlate with the input signals (see Fig. 6.15) they might be due to n<strong>on</strong>linearities<br />

or reflecti<strong>on</strong>s at the boundaries. This should be clarified in detail in<br />

the future.<br />

However, the results obtained dem<strong>on</strong>strate that the model structure <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

123


Numerical simulati<strong>on</strong><br />

0.06<br />

0.04<br />

0.02<br />

Amplitude<br />

0<br />

−0.02<br />

−0.04<br />

−0.06<br />

4000 4200 4400 4600 4800 5000<br />

Timesteps<br />

Figure 6.16: Comparis<strong>on</strong> between heat release rate signals, case A (−− measured,<br />

-- predicted)<br />

estimati<strong>on</strong>s made regarding the total simulati<strong>on</strong> time <str<strong>on</strong>g>and</str<strong>on</strong>g> model order enable<br />

a proper identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics in the present case.<br />

Please note that a validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the results obtained can <strong>on</strong>ly be d<strong>on</strong>e with<br />

the methods used above. A validati<strong>on</strong> against experimental data can not be<br />

d<strong>on</strong>e, as to the author’s knowledge no such data exist at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> writing. A<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such data, however, is rather difficult as discussed in chapter 1.4.<br />

6.3.2 Combustor c<strong>on</strong>figurati<strong>on</strong> with three <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages<br />

In the sec<strong>on</strong>d CFD/SI simulati<strong>on</strong> the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> c<strong>on</strong>taining<br />

three separate <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages were analyzed. Ten percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is<br />

already homogeneously premixed with air as they enter the mixing secti<strong>on</strong> at<br />

the upstream boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>al domain. 36% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

is injected at the sec<strong>on</strong>d <str<strong>on</strong>g>and</str<strong>on</strong>g> 54% at the third injector. Therefore K 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> K 3<br />

equal 0.36 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.54, respectively. Similar to the first case the total simulati<strong>on</strong><br />

124


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

Amplitude<br />

Amplitude<br />

Amplitude<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

0.02<br />

0<br />

−0.02<br />

100 200 300 400<br />

100 200 300 400<br />

100 200<br />

Time steps<br />

300 400<br />

Figure 6.17: Unit impulse resp<strong>on</strong>se, case B (Top: UIR φ,2 , Middle: UIR φ,3 , Bottom:<br />

UIR u )<br />

time was T t = 0.2 s, which is equivalent to 8000 time steps. The overall c<strong>on</strong>sidered<br />

time delay <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIRs were set to 440 time steps. The unit impulse resp<strong>on</strong>se<br />

vectors <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding flame transfer functi<strong>on</strong>s are presented<br />

in Fig. 6.17 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 6.18. The results dem<strong>on</strong>strate that the method is able to<br />

separate the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> three different input excitati<strong>on</strong> signals, although they<br />

are correlated significantly. The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR peaks as well as the lowfrequency<br />

behavior characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s indicate a<br />

proper identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thus affirm the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the proposed identificati<strong>on</strong><br />

method. Compared to case A, the UIR <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s<br />

φ ′ 2<br />

at the sec<strong>on</strong>d injector shows a similar trend, but exhibits a narrower<br />

time delay distributi<strong>on</strong>. The result can be explained by analyzing the heat release<br />

rate distributi<strong>on</strong> (see Fig. 6.10). The upstream <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>, which supplies<br />

36% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g>, induces a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a rich mixture <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thus high reacti<strong>on</strong> rates in the outer shear layer close to the burner exit. Indeed,<br />

a substantial part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injected at the upstream <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector is<br />

125


Numerical simulati<strong>on</strong><br />

Phase<br />

Amplitude<br />

2<br />

1<br />

3.14<br />

1.57<br />

−1.57<br />

0<br />

0 0.5 1 1.5 2<br />

0<br />

−3.14<br />

0 0.5 1 1.5 2<br />

Strouhal number<br />

Figure 6.18: Flame transfer functi<strong>on</strong>, case B (−− F φ,2 , -- F φ,3 , -· F u )<br />

c<strong>on</strong>sumed in this regi<strong>on</strong>. This influence can also be observed in the flame resp<strong>on</strong>se<br />

to velocity fluctuati<strong>on</strong>s. As the velocity increases with increasing radial<br />

distance <str<strong>on</strong>g>and</str<strong>on</strong>g> taking into account the slightly changed flow field, the impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the velocity fluctuati<strong>on</strong>s at the burner exit results in a str<strong>on</strong>g resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

outer flame regi<strong>on</strong>, see again Fig. 6.17. In c<strong>on</strong>trast to the two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

stage c<strong>on</strong>figurati<strong>on</strong> the first peak <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR u has a higher amplitude than the<br />

sec<strong>on</strong>d <strong>on</strong>e, indicating that the flame in this case resp<strong>on</strong>ds str<strong>on</strong>ger to velocity<br />

fluctuati<strong>on</strong>s at the burner exit than to those at the swirler. The resp<strong>on</strong>se<br />

UIR φ,3 starts about 170 time steps <str<strong>on</strong>g>and</str<strong>on</strong>g> reaches its positive maximum at 220<br />

time steps. It exhibits a time-shifted, but comparable time delay distributi<strong>on</strong><br />

as UIR φ,2 in the first c<strong>on</strong>figurati<strong>on</strong>. The mean time delay <str<strong>on</strong>g>of</str<strong>on</strong>g> the different impacts<br />

is τ ≈ 6.2 ms for the upstream <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>, τ ≈ 4.5 ms for the downstream<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> τ≈2 ms for the velocity fluctuati<strong>on</strong>s at the burner<br />

exit. Compared to case A, the shortened time delays are mainly due to the<br />

slightly changed heat release rate distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> to the fact that the mean<br />

inlet velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> case B is about 0.5 m/s less than in case A. Similar to the first<br />

126


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

Amplitude<br />

Amplitude<br />

Amplitude<br />

Amplitude<br />

1<br />

0<br />

−1<br />

0 200 400 600 800<br />

0.1<br />

0<br />

−0.1<br />

0 200 400 600 800<br />

0.1<br />

0<br />

−0.1<br />

0.1<br />

0<br />

0 200 400 600 800<br />

−0.1<br />

0 200 400<br />

Time steps<br />

600 800<br />

Figure 6.19: Auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> error <str<strong>on</strong>g>and</str<strong>on</strong>g> signals, case B. (From top<br />

to bottom: Γ ǫ , C ǫφ ′<br />

2<br />

, C ǫφ ′<br />

3<br />

, C ǫu ′<br />

b )<br />

c<strong>on</strong>figurati<strong>on</strong>, the deviati<strong>on</strong>s between the predicted <str<strong>on</strong>g>and</str<strong>on</strong>g> measured heat release<br />

rate signal is rather low. The quality parameter Q equals 90.4%. Fig. 6.19<br />

shows the auto- <str<strong>on</strong>g>and</str<strong>on</strong>g> cross-correlati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicti<strong>on</strong> error <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

input signals φ ′ 2 , φ′ 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> u′ . Again the cross-correlati<strong>on</strong> values stay for nearly<br />

b<br />

all c<strong>on</strong>sidered time delays within the 99% c<strong>on</strong>fidence interval. Only a few values<br />

are located slightly at or outside the border. The auto-correlati<strong>on</strong> shows<br />

unexpected deviati<strong>on</strong>s at large delay times, which are again probably due to<br />

n<strong>on</strong>-linearities.<br />

127


Numerical simulati<strong>on</strong><br />

6.3.3 Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> results<br />

The unit impulse resp<strong>on</strong>ses <str<strong>on</strong>g>and</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s identified show<br />

some remarkable results, which are analyzed in more detail in this secti<strong>on</strong>.<br />

The unit impulse resp<strong>on</strong>ses exhibit an undershoot h k < 0 for a range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time lags k∆t , whereas the gain <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s exceeds <strong>on</strong>e<br />

(|F (ω)|>1) for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies ω. Both phenomena are str<strong>on</strong>gly related<br />

to each other, which is described in the following. Furthermore a physicsbased<br />

interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse resp<strong>on</strong>ses to velocity <str<strong>on</strong>g>and</str<strong>on</strong>g> equivalence ratio<br />

fluctuati<strong>on</strong>s will be developed <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> results obtained with impulse<br />

forcing imposed <strong>on</strong> transient CFD simulati<strong>on</strong>s.<br />

The flame transfer functi<strong>on</strong> is determined by the z-transform <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit impulse<br />

resp<strong>on</strong>se (see chapter 5):<br />

F (ω)=<br />

M∑<br />

h k e −i ωk△t . (6.5)<br />

k=0<br />

The c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mass <str<strong>on</strong>g>and</str<strong>on</strong>g> energy requires that the flame transfer<br />

functi<strong>on</strong>s F φ,i <str<strong>on</strong>g>and</str<strong>on</strong>g> F u have to approach unity for ω→0 (see [100]). To realize<br />

the correct low frequency limit the sum over all unit impulse resp<strong>on</strong>se<br />

coefficients has also to approach unity:<br />

lim F (ω)= lim<br />

ω→0 ω→0<br />

M∑<br />

M∑<br />

h k e −i ωk△t = h k = 1. (6.6)<br />

k=0<br />

If all coefficients h k <str<strong>on</strong>g>of</str<strong>on</strong>g> a unit impulse resp<strong>on</strong>se vector are positive, the gain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the flame transfer functi<strong>on</strong> decreases with increasing frequency. The reas<strong>on</strong> is<br />

due to the index k in the phase factor exp(−i ωk△t ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the z-transform, which<br />

is resp<strong>on</strong>sible for a phase difference between the c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual<br />

coefficients. These phase differences lead with increasing frequencies to<br />

an increasing destructive superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tributi<strong>on</strong>s. The result is a<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sum over all weighted UIR coefficients. The flame acts therefore<br />

as a low pass filter with a maximum gain <str<strong>on</strong>g>of</str<strong>on</strong>g> unity at zero frequency.<br />

An UIR with positive <str<strong>on</strong>g>and</str<strong>on</strong>g> negative values, however, can result in a gain|F (ω)|><br />

1 for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies as the phase factors can, in this case, lead to<br />

128<br />

k=0


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

c<strong>on</strong>structive superpositi<strong>on</strong> between the c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual coefficients.<br />

To further analyze the relevant physical mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the behavior observed,<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>figurati<strong>on</strong> with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages were carried<br />

out using impulse forcing.<br />

Flame resp<strong>on</strong>se to impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> velocity at the burner exit<br />

The first transient CFD simulati<strong>on</strong> with impulse forcing was performed with<br />

excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly the main air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g> velocity inlet. The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow rate at <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injector ”2” was kept c<strong>on</strong>stant. The amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse in flow velocity<br />

was set to 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean value. As it is not possible to numerically resolve<br />

an impulse that is enforced during <strong>on</strong>ly <strong>on</strong>e time step, a impulse durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20 time steps is chosen. The results obtained are normalized according to the<br />

excitati<strong>on</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the CFD/SI simulati<strong>on</strong>.<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame should exhibit a similar behavior as the UIR u<br />

obtained with broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> forcing. A comparis<strong>on</strong> between the CFD/SI unit<br />

impulse resp<strong>on</strong>se <str<strong>on</strong>g>and</str<strong>on</strong>g> the UIR determined with impulse forcing is presented<br />

in Fig. 6.20. For the first time delays both resp<strong>on</strong>se vectors match very well.<br />

For later times, the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse forcing shows oscillati<strong>on</strong>s, caused by<br />

partial reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse signal at the boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> the computati<strong>on</strong>al<br />

domain. These spurious features are not representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the flame to the impulse excitati<strong>on</strong>. To explain the undershoot <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR,<br />

the temporal development <str<strong>on</strong>g>of</str<strong>on</strong>g> flame fr<strong>on</strong>t surface area <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate<br />

are tracked, which is presented in Fig. 6.21. The flame fr<strong>on</strong>t is defined as an<br />

iso-surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the progress variable with c = 0.5. In additi<strong>on</strong> a cut through<br />

the flame in a meridi<strong>on</strong>al plane at several instances in time is presented in<br />

Fig. 6.22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.23. The undisturbed flame fr<strong>on</strong>t is shown in Fig. 6.21 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

6.22 <str<strong>on</strong>g>and</str<strong>on</strong>g> is denoted as state ”A”. When the increased mass flow reaches the<br />

burner exit, the flame is first pushed downstream resulting in a stretched<br />

flame fr<strong>on</strong>t at the burner exit, especially in the inner shear layer. After a<br />

short time delay the flame is reacting to the disturbance with an increased<br />

flame speed <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate. As a c<strong>on</strong>sequence, the flame moves again<br />

129


Numerical simulati<strong>on</strong><br />

0.1<br />

0.05<br />

Amplitude<br />

0<br />

−0.05<br />

−0.1<br />

0 200 400 600<br />

Time steps<br />

Figure 6.20: UIR u computed with DRBS (--) <str<strong>on</strong>g>and</str<strong>on</strong>g> impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flow<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture (−−)<br />

0.2<br />

Amplitude<br />

0.1<br />

0<br />

−0.1<br />

A B C D E<br />

−0.2<br />

0 50 100 150 200 250 300<br />

Time steps<br />

Figure 6.21: Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> flame surface area (--) <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate (−−) to<br />

impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture<br />

130


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

0.04<br />

Radial distance [m]<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05<br />

Axial distance [m]<br />

Figure 6.22: Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> flame fr<strong>on</strong>t to impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

premixture at time A (−−), B (-·) <str<strong>on</strong>g>and</str<strong>on</strong>g> C (--)<br />

0.04<br />

Radial distance [m]<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0 0.01 0.02 0.03 0.04 0.05<br />

Axial distance [m]<br />

Figure 6.23: Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> flame fr<strong>on</strong>t to impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

premixture at time D (−−) <str<strong>on</strong>g>and</str<strong>on</strong>g> E (-·)<br />

131


Numerical simulati<strong>on</strong><br />

towards the burner <str<strong>on</strong>g>and</str<strong>on</strong>g> at the inner shear layer even into the mixing secti<strong>on</strong>.<br />

This undulating moti<strong>on</strong>, generated at the burner exit in the outer <str<strong>on</strong>g>and</str<strong>on</strong>g> inner<br />

flame fr<strong>on</strong>t, is then c<strong>on</strong>vected al<strong>on</strong>g the entire flame, leading to an increase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the overall flame surface area <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate (state ”B”). Close to<br />

the downstream end <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame the outer <str<strong>on</strong>g>and</str<strong>on</strong>g> the inner flame fr<strong>on</strong>t merge,<br />

separating the remaining downstream <str<strong>on</strong>g>fuel</str<strong>on</strong>g> from the main combusti<strong>on</strong> z<strong>on</strong>e.<br />

The downstream end <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame extinguishes, which is denoted as status<br />

”C”. At this time the disturbance produced at the axial swirler reaches the<br />

burner exit where it results in a similar resp<strong>on</strong>se (state ”D”, ”E”). A similar<br />

behavior (states ”A”, ”B”, ”C”) was described by Schuller et. al. [120]. In their<br />

work they investigated a laminar premixed flame <str<strong>on</strong>g>and</str<strong>on</strong>g> observed as well a<br />

sudden decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame surface due to the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neighboring<br />

flame fr<strong>on</strong>ts at the tip <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame.<br />

Flame resp<strong>on</strong>se to equivalence ratio fluctuati<strong>on</strong>s at the burner exit<br />

In a sec<strong>on</strong>d simulati<strong>on</strong>, impulse forcing was applied to the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow rate<br />

at injector ”2” without perturbati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the main flow. Unit impulse resp<strong>on</strong>ses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the flame, obtained from impulse <str<strong>on</strong>g>and</str<strong>on</strong>g> DRBS broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> excitati<strong>on</strong>, respectively,<br />

are compared in Fig. 6.24. The basic trend matches again. However, the<br />

amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse resp<strong>on</strong>se is <strong>on</strong>ly 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> the UIR computed from<br />

broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> forcing with SI. This is due to the small impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass<br />

flow added at injector ”2” compared to the overall mass flow. An alternating<br />

sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the impulse UIRs for larger time delays is also clearly seen.<br />

As above the impulse resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame surface area <str<strong>on</strong>g>and</str<strong>on</strong>g> the heat release<br />

rate are investigated. As menti<strong>on</strong>ed in chapter 1.2 the overall rate <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release<br />

˙Q <str<strong>on</strong>g>of</str<strong>on</strong>g> a premixed flame may be expressed as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the unburnt<br />

<strong>gas</strong> density ρ u , the flame surface per unit volume Σ, the (turbulent) burning<br />

velocity s t <str<strong>on</strong>g>and</str<strong>on</strong>g> the heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> per unit mass <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture△H. Once the<br />

richer <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-air mixture arrives at the flame fr<strong>on</strong>t, the heat released per unit<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture ∆H <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the overall heat release rate ˙Q increases<br />

as shown in Fig. 6.25. As the turbulent burning velocity s t also increases, the<br />

flame propagates upstream, resulting in a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total flame surface<br />

132


6.3 Identificti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s<br />

0.08<br />

0.06<br />

0.04<br />

Amplitude<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

0 200 400 600<br />

Time steps<br />

Figure 6.24: UIR φ,2 computed with DRBS (--) <str<strong>on</strong>g>and</str<strong>on</strong>g> impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> mass<br />

flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> at injector ”2” (−−)<br />

0.04<br />

Amplitude<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

200 300 400 500<br />

Time steps<br />

Figure 6.25: Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> flame surface area (--) <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate (−−) to<br />

impulse forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> at injector ”2”<br />

133


Numerical simulati<strong>on</strong><br />

area, which is shown in Fig. 6.25. Although the total flame surface is reduced<br />

the overall heat release rate increases in the beginning due to the str<strong>on</strong>g increased<br />

release <str<strong>on</strong>g>of</str<strong>on</strong>g> heat per unit mass <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture <str<strong>on</strong>g>and</str<strong>on</strong>g> the increased burning<br />

velocity. However, <strong>on</strong>ce the additi<strong>on</strong>al <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injected by the impulse forcing is<br />

c<strong>on</strong>sumed, the equivalence ratio returns al<strong>on</strong>g with ∆H <str<strong>on</strong>g>and</str<strong>on</strong>g> s t to its original<br />

value. As the flame surface is still smaller compared to the undisturbed case,<br />

˙Q ′ decreases <str<strong>on</strong>g>and</str<strong>on</strong>g> attains finally negative values. With the burning velocity s t<br />

restored to its original value, the flame surface area is now too small to burn<br />

the arriving fresh premixture. The flame is thus c<strong>on</strong>vected downstream to its<br />

original area <str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong>.<br />

In summary, the overall shape <str<strong>on</strong>g>of</str<strong>on</strong>g> UIR φ <str<strong>on</strong>g>and</str<strong>on</strong>g> in particular the undershoot can<br />

be explained by an interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in the heat released per mass <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> burning velocity with perturbati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> flame positi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> surface<br />

area. Methods using steady state CFD simulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a Eulerian or Lagrangian<br />

approach to model the c<strong>on</strong>vective transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> to the flame fr<strong>on</strong>t are<br />

therefore not able to capture this effect. These methods can <strong>on</strong>ly determine<br />

F φ simply as ”<str<strong>on</strong>g>fuel</str<strong>on</strong>g> transport time lag distributi<strong>on</strong>s” [30,31,59,60,99] assuming<br />

a fixed positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore a c<strong>on</strong>stant flame surface area. The<br />

reducti<strong>on</strong> in flame surface due to ”fr<strong>on</strong>t kinematics”, which is resp<strong>on</strong>sible for<br />

the undershoot in the UIR φ <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore also for the excess gain <str<strong>on</strong>g>of</str<strong>on</strong>g> F φ , can<br />

not be properly described with such modeling strategies.<br />

6.4 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler<br />

The acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler are also not known a priori <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

no analytical soluti<strong>on</strong> exists. Therefore the acoustic transfer matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> this element<br />

has to be determined separately. This is accomplished in a similar way as<br />

the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s in the last secti<strong>on</strong> using the<br />

CFD/SI method. With the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler an acoustic model <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

entire combusti<strong>on</strong> system can be built up, because all other elements can be<br />

described by the relati<strong>on</strong>s derived in chapter 3.3 <str<strong>on</strong>g>and</str<strong>on</strong>g> by the results obtained in<br />

the last secti<strong>on</strong>. The computati<strong>on</strong>al domain was reduced for the present analysis<br />

to a shortened mixing secti<strong>on</strong> with the axial swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> the combusti<strong>on</strong><br />

134


6.4 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler<br />

chamber. The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tubes are not included. The simulati<strong>on</strong> was performed<br />

with air as the <strong>on</strong>ly fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> a mean flow velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 m/s. In c<strong>on</strong>trast<br />

to the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s, it is necessary to excite the<br />

inlet <str<strong>on</strong>g>and</str<strong>on</strong>g> the outlet c<strong>on</strong>diti<strong>on</strong>s to obtain a physical meaningful transfer matrix.<br />

The velocity fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the inlet c<strong>on</strong>diti<strong>on</strong> was set to u ′ = 5% <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

mean value. The pressure outlet c<strong>on</strong>diti<strong>on</strong> with zero mean pressure was overlaid<br />

with an acoustic fluctuati<strong>on</strong> in the same order <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>:<br />

p ′ = ρcu ′ . As the present investigati<strong>on</strong> focuses <strong>on</strong> the pure acoustic characteristics<br />

over a relatively short distance, the time step <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulati<strong>on</strong> was<br />

reduced to△t = 0.5×10 −5 s to capture the acoustic waves accurately.<br />

The velocity fluctuati<strong>on</strong>s were exported 5 mm upstream <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 mm downstream<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler. 15000 time steps were simulated, which leads to a total<br />

simulati<strong>on</strong> time <str<strong>on</strong>g>and</str<strong>on</strong>g> minimum resolved frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> T t = 0.075 s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

f min = 13.33 Hz, respectively. The scattering matrix in form <str<strong>on</strong>g>of</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

phase is shown in Fig. 6.26 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.27. The amplitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> the diag<strong>on</strong>al elements<br />

S 11 <str<strong>on</strong>g>and</str<strong>on</strong>g> S 22 represent the transmissi<strong>on</strong>, whereas the n<strong>on</strong>-diag<strong>on</strong>al elements<br />

Amplitude S Amplitude S 21<br />

11<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

Amplitude S Amplitude S 22<br />

12<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

Figure 6.26: Scattering matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler (amplitude)<br />

135


Numerical simulati<strong>on</strong><br />

3.14<br />

3.14<br />

Phase S 11<br />

1.57<br />

0<br />

−1.57<br />

Phase S 12<br />

1.57<br />

0<br />

−1.57<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

3.14<br />

3.14<br />

Phase S 21<br />

1.57<br />

−1.57<br />

0<br />

Phase S 22<br />

1.57<br />

−1.57<br />

0<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

Figure 6.27: Scattering matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler (phase)<br />

Amplitude T 11<br />

Amplitude T 21<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

Amplitude T 12<br />

Amplitude T 22<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

Figure 6.28: Transfer matrix T f g center <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler (amplitude)<br />

136


6.4 Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler<br />

3.14<br />

3.14<br />

Phase T 11<br />

1.57<br />

0<br />

−1.57<br />

Phase T 12<br />

1.57<br />

0<br />

−1.57<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

3.14<br />

3.14<br />

Phase T 21<br />

1.57<br />

−1.57<br />

0<br />

Phase T 22<br />

1.57<br />

−1.57<br />

0<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

−3.14<br />

0.5 1 1.5 2 2.5 3<br />

Strouhal number<br />

Figure 6.29: Transfer matrix T f g center <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler (phase)<br />

represent the reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic waves. The phase <str<strong>on</strong>g>of</str<strong>on</strong>g> S 11 <str<strong>on</strong>g>and</str<strong>on</strong>g> S 22 determines<br />

the time, which an acoustic wave needs to travel between the two export<br />

planes. The results show that the reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the downstream side is<br />

rather low. The reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the upstream side reaches a value <str<strong>on</strong>g>of</str<strong>on</strong>g> over 20%.<br />

The acoustic waves are also slightly damped as they pass the swirler. The reflecti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler indicate that the acoustic characteristics are comparable<br />

to the <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> an area change. This comparis<strong>on</strong> seems to be quite reas<strong>on</strong>able<br />

as the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler passage, which is perpendicular to the blades,<br />

is smaller than the inlet <str<strong>on</strong>g>and</str<strong>on</strong>g> outlet area. For the acoustic network model, the<br />

scattering matrix has to be transformed into a transfer matrix described by f<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> g (see appendix A.1). In additi<strong>on</strong>, the acoustic characteristics between the<br />

two export planes obtained are exchanged by a descripti<strong>on</strong>, which is related to<br />

the axial center <str<strong>on</strong>g>of</str<strong>on</strong>g> the swirler. This is d<strong>on</strong>e in changing the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix<br />

elements, which is equivalent to the subtracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two ducts with a specific<br />

length from both sides:<br />

[ e<br />

−i k +<br />

]<br />

L −1 [<br />

d<br />

0<br />

e<br />

−i k + L u<br />

] −1<br />

0<br />

T f g center =<br />

0 e −i k −L d<br />

T f g<br />

0 e −i k −L u<br />

. (6.7)<br />

137


Numerical simulati<strong>on</strong><br />

The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the ducts are the distances from the upstream plane <str<strong>on</strong>g>and</str<strong>on</strong>g> from<br />

the downstream plane to the center <str<strong>on</strong>g>and</str<strong>on</strong>g> are equal to L u = 0.02 m <str<strong>on</strong>g>and</str<strong>on</strong>g> L d =<br />

0.035 m, respectively. The resulting transfer matrix T f g center is represented in<br />

Fig. 6.28 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.29<br />

138


7 Acoustic analysis<br />

Once the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g> the axial swirler<br />

are determined with the CFD/SI method, an acoustic network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> can be set up. The setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the model is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

next secti<strong>on</strong>. With the network model the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g><br />

<strong>on</strong> the thermo-acoustic stability is analyzed. Furthermore, it is shown how<br />

the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> nozzles influences the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire<br />

system, followed by the investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

stages. From the results obtained, design guidelines are derived.<br />

7.1 Setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model<br />

The acoustic network model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> the plenum, the mixing secti<strong>on</strong>, the<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g>, the axial swirler <str<strong>on</strong>g>and</str<strong>on</strong>g> the combusti<strong>on</strong> chamber. The acoustic characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor parts, like plenum or <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g>, are represented<br />

by acoustic elements, e.g. acoustic boundary c<strong>on</strong>diti<strong>on</strong>s, simple ducts, area<br />

changes <str<strong>on</strong>g>and</str<strong>on</strong>g> ”T-juncti<strong>on</strong>s”. The analytic relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic elements<br />

were derived in chapter 3.3. The flame dynamics obtained by CFD/SI is implemented<br />

using the practical premixed flame element (chapter 3.3). The acoustic<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the axial swirler are represented by a transfer matrix,<br />

which was also determined by CFD/SI as shown in chapter 6.4. As in the numerical<br />

analysis, two basic c<strong>on</strong>figurati<strong>on</strong>s are c<strong>on</strong>sidered with two <str<strong>on</strong>g>and</str<strong>on</strong>g> three<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages, respectively. They are denoted again as case A <str<strong>on</strong>g>and</str<strong>on</strong>g> B. The<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> test rig with two<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages is presented in Fig. 7.1. Here, the names, e.g. ”Plenum”,<br />

”AC I”, ”Mixing secti<strong>on</strong> I” are the names <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor<br />

network model, whereas their colors (see legend in Fig. 7.1) define the<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic elements, e.g. simple duct, area change,etc. The network<br />

139


Acoustic analysis<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>figurati<strong>on</strong> c<strong>on</strong>taining three <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> stages is built up in a<br />

similar way with an additi<strong>on</strong>al ”T-juncti<strong>on</strong>” <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage as shown<br />

in appendix A.3.<br />

Closed end<br />

Legend:<br />

Boundary<br />

C<strong>on</strong>diti<strong>on</strong><br />

Simple<br />

Duct<br />

Area<br />

Change<br />

T-juncti<strong>on</strong><br />

Flame<br />

Axial<br />

Swirler<br />

Res<strong>on</strong>ator<br />

tube<br />

Fuel<br />

plenum<br />

AC IV<br />

Fuel<br />

injecti<strong>on</strong> tube<br />

Closed end<br />

(loudspeaker)<br />

Plenum<br />

AC I<br />

Mixing<br />

secti<strong>on</strong> I<br />

Air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

T-juncti<strong>on</strong><br />

Mixing<br />

secti<strong>on</strong> II<br />

Axial<br />

Swirler<br />

Mixing<br />

secti<strong>on</strong> III<br />

AC II<br />

Combusti<strong>on</strong><br />

chamber I<br />

Flame<br />

Combusti<strong>on</strong><br />

chamber II<br />

partly reflecting<br />

Open End<br />

Figure 7.1: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> test rig<br />

with two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages (c<strong>on</strong>figurati<strong>on</strong> A)<br />

The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> stage including the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tubes, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the res<strong>on</strong>ator tube are substituted by a simplified model to reduce the computati<strong>on</strong>al<br />

effort associated with the search routine to find the complex eigenfrequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the system. Because <strong>on</strong>ly plane waves can travel through the<br />

combusti<strong>on</strong> system in the frequency range c<strong>on</strong>sidered, all <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> holes<br />

face the same acoustic c<strong>on</strong>diti<strong>on</strong>s. Therefore, they are combined into <strong>on</strong>e injecti<strong>on</strong><br />

slot for simplicity. In additi<strong>on</strong>, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> the res<strong>on</strong>ator tube,<br />

140


7.1 Setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model<br />

which have the same cross-secti<strong>on</strong>, are merged into <strong>on</strong>e duct. Finally the network<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage c<strong>on</strong>tains a ”Closed end”, a simple duct<br />

representing the ”Res<strong>on</strong>ator tube” <str<strong>on</strong>g>and</str<strong>on</strong>g> ”Fuel plenum”, an area change (”AC<br />

IV”) between <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> the ”Fuel injecti<strong>on</strong> tube” (simple duct), which<br />

is c<strong>on</strong>nected by the ”Air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g> T-juncti<strong>on</strong>” (”T-juncti<strong>on</strong>”) to the mixing secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor. To estimate the error, which is made with the simplified<br />

model, a finite element-based acoustic model was set up using the commercial<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package COMSOL. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector including<br />

the single injecti<strong>on</strong> tubes. An open end boundary c<strong>on</strong>diti<strong>on</strong> (p ′ = 0)<br />

is used as the terminati<strong>on</strong> <strong>on</strong> the injecti<strong>on</strong> tube side. The opposite side, the<br />

res<strong>on</strong>ator end, is realized as a rigid wall (u ′ = 0). The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator<br />

tube was set exemplarily to L R = 0.3 m. As the finite element method solves<br />

the homogeneous wave equati<strong>on</strong>, mean flow effects <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure losses are<br />

not c<strong>on</strong>sidered. Fig. 7.2 shows the first two eigenmodes <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector.<br />

The scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the legend is arbitrary <str<strong>on</strong>g>and</str<strong>on</strong>g> indicates the maximum <str<strong>on</strong>g>and</str<strong>on</strong>g> minimum<br />

pressure fluctuati<strong>on</strong>s. The first eigenmode <str<strong>on</strong>g>of</str<strong>on</strong>g> the finite element model exhibits<br />

nearly a λ/4 mode, whereas the sec<strong>on</strong>d <strong>on</strong>e approximates a 3λ/4 eigenmode.<br />

The overall length corresp<strong>on</strong>ding to the λ/4 modes can be composed <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

geometrical length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator <str<strong>on</strong>g>and</str<strong>on</strong>g> half <str<strong>on</strong>g>of</str<strong>on</strong>g> the circumference <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

plenum. The acoustic field inside the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum ring is almost c<strong>on</strong>stant. The<br />

acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> changes with increasing frequency<br />

as the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum becomes more complex. This is shown<br />

in table 7.1, in which the eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the finite element-based model<br />

are compared against the simplified network model with <str<strong>on</strong>g>and</str<strong>on</strong>g> without the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mean flow <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure losses. Here <str<strong>on</strong>g>and</str<strong>on</strong>g> in the following, the eigenfrequencies<br />

are normalized with the Strouhal number, where the reference<br />

speed is the mean axial velocity in the mixing secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> case A. In the network<br />

model the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> tube was set to L R = 0.355 m. This length<br />

is slightly less than the <strong>on</strong>e c<strong>on</strong>sidered above, but results in a more accurate<br />

match in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d eigenfrequency. The mean flow <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

pressure loss have in general <strong>on</strong>ly a small effect <strong>on</strong> the eigenfrequencies. The<br />

deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the first eigenfrequency between the network <str<strong>on</strong>g>and</str<strong>on</strong>g> finite element<br />

model is rather low. As menti<strong>on</strong>ed before, the error increases as the frequency<br />

increases. Nevertheless, in the Strouhal range up to Sr = 2 the simplified net-<br />

141


Acoustic analysis<br />

Figure 7.2: Finite element analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> system (left: first eigenmode,<br />

right: sec<strong>on</strong>d eigenmode<br />

work model represents the acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector quite well.<br />

However, the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> should be shown in general.<br />

Therefore, small deviati<strong>on</strong>s, like the <strong>on</strong>es presented, can be neglected. In the<br />

following L R , as the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator tube, is exclusively taken as the<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> the combined tube in the simplified network model.<br />

The terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> chamber through which the hot products<br />

Eigenfrequencies: 1st 2nd 3rd<br />

Finite element-based model 0.61 1.71 2.62<br />

Simplified network model w/o mean flow <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure loss 0.59 1.79 2.99<br />

Simplified network model with mean flow <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure loss 0.57 1.75 2.98<br />

Table 7.1: Eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the finite element-based model <str<strong>on</strong>g>and</str<strong>on</strong>g> simplified<br />

network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g><br />

142


7.2 Acoustic network model results<br />

leave the chamber into the atmosphere is acoustically described by a partly<br />

reflecting open end with a reflecti<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> R f = 0.5 [55]. The further<br />

combusti<strong>on</strong> test rig elements are modeled according to their dimensi<strong>on</strong>s described<br />

in chapter 6.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 6.3. The acoustic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the axial swirler are implemented using the identified time domain informati<strong>on</strong><br />

in form <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit impulse resp<strong>on</strong>se. The UIR can be transformed in the<br />

real or complex frequency domain using Eqn. (5.5), which is repeated here for<br />

completeness:<br />

M∑<br />

F (ω real ,ω im )= h k e −i (ω real+i ω im )k△t . (7.1)<br />

k=0<br />

In this way it is possible to use the eigenfrequency search method described<br />

in chapter 3.3.2. The main flow parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network models,<br />

case A <str<strong>on</strong>g>and</str<strong>on</strong>g> case B, can be found in appendix A.3.<br />

7.2 Acoustic network model results<br />

With the acoustic network models <str<strong>on</strong>g>of</str<strong>on</strong>g> the two combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong>s, the<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g>, <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> <strong>on</strong> the<br />

thermo-acoustic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong> system can be analyzed in<br />

detail. The eigenfrequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby the linear stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenmodes<br />

are determined as the roots <str<strong>on</strong>g>of</str<strong>on</strong>g> the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the system matrix. To gain<br />

further insight into the complex system, frequency resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic<br />

variables to a velocity excitati<strong>on</strong> (loudspeaker) at the plenum are calculated<br />

in solving the inhomogeneous matrix equati<strong>on</strong>. The excitati<strong>on</strong> amplitude was<br />

set to 10%. Both methods are described in more detail in chapter 3.3.2. The<br />

three different design opti<strong>on</strong>s influence predominantly the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

heat release rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the phase relati<strong>on</strong>ship between fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate (see also the discussi<strong>on</strong> in chapter 1.2). The<br />

parameters, which are affected, can therefore be found in the relati<strong>on</strong>, which<br />

describes the heat release rate fluctuati<strong>on</strong>s (see also Eqn. (2.11)):<br />

˙Q ′ (ω)<br />

¯˙Q<br />

= F u (ω) u′ b (ω) N∑<br />

+<br />

ū b<br />

k=1<br />

F φ,i<br />

φ ′ i (ω)<br />

¯φ<br />

143


Acoustic analysis<br />

= F u (ω) u′ b (ω) N∑<br />

+ F φ,i (ω)<br />

ū b<br />

i=1<br />

(<br />

u<br />

′<br />

F,i (ω)<br />

ū F,i<br />

− u′ A,i (ω)<br />

)<br />

ū A,i<br />

¯ṁ F,i<br />

∑ N<br />

i=1 ¯ṁ F,i<br />

. (7.2)<br />

This equati<strong>on</strong> is used in the next secti<strong>on</strong>s to explain <str<strong>on</strong>g>and</str<strong>on</strong>g> emphasize the various<br />

interdependencies between the acoustic variables <str<strong>on</strong>g>and</str<strong>on</strong>g> the heat release<br />

rate. Figure 7.3 clarifies the acoustic variables <str<strong>on</strong>g>and</str<strong>on</strong>g> main parameters, which<br />

are used in the analysis.<br />

Fuel injecti<strong>on</strong> stage i<br />

L R,i<br />

u' F,i u' b<br />

u' A,i<br />

φ' i<br />

F,i<br />

.<br />

Q'<br />

Mixing secti<strong>on</strong><br />

L F,i<br />

Combusti<strong>on</strong> chamber<br />

Figure 7.3: Acoustic variables <str<strong>on</strong>g>and</str<strong>on</strong>g> main parameters used in the acoustic analysis<br />

The design proposals <str<strong>on</strong>g>and</str<strong>on</strong>g> results derived are based <strong>on</strong> the operating c<strong>on</strong>diti<strong>on</strong><br />

(see chapter 6.1) at which the flame transfer functi<strong>on</strong>s were determined.<br />

The results are therefore <strong>on</strong>ly valid at <str<strong>on</strong>g>and</str<strong>on</strong>g> close to these c<strong>on</strong>diti<strong>on</strong>s. To analyze<br />

operating c<strong>on</strong>diti<strong>on</strong>s far <str<strong>on</strong>g>of</str<strong>on</strong>g>f the current <strong>on</strong>e, additi<strong>on</strong>al flame transfer<br />

functi<strong>on</strong>s are required. However, the basic design guidelines are independent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the design.<br />

7.2.1 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage <str<strong>on</strong>g>impedance</str<strong>on</strong>g><br />

The acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage<br />

are changed in adjusting the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator tube L R,i , which is<br />

mounted <strong>on</strong> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum as described in the previous secti<strong>on</strong>. The <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

144


7.2 Acoustic network model results<br />

0.08<br />

0.06<br />

Amplitude<br />

0.04<br />

0.02<br />

0<br />

0 0.5 1 1.5 2<br />

Strouhal number<br />

Figure 7.4: Amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s u ′ F<br />

in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> line<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an acoustically coupled <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector (ζ = 0.2) with res<strong>on</strong>ator<br />

length L R = 0.42 m<br />

injecti<strong>on</strong> stage exhibits nearly the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a λ/4 tube. The<br />

amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s at the injector nozzle i , u ′ F,i , reaches<br />

therefore a maximum around the eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> system.<br />

This fact can be exploited to modify the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thus the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio. Between two eigenfrequencies the<br />

amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> u ′ F,i<br />

is minimized. In that case the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> has no active influence<br />

– the equivalence ratio fluctuati<strong>on</strong>s are mainly driven by the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the mixing secti<strong>on</strong>. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> u ′ F<br />

is shown in Fig. 7.4 for<br />

a coupled <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage with res<strong>on</strong>ator length L R = 0.42 m. The eigenfrequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage are around Sr = 0.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.5. As the<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector is coupled acoustically to the combusti<strong>on</strong> system, the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor acoustics can also be seen in the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d eigenfrequency<br />

around Sr = 1.3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.8.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <strong>on</strong> the system stability was already<br />

described with a similar setup <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector by Richards et al. [106].<br />

They dem<strong>on</strong>strated that a change in the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> sup-<br />

145


Acoustic analysis<br />

ply could change the phase <str<strong>on</strong>g>and</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s.<br />

In their study the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s modified<br />

the phase relati<strong>on</strong>ship between pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> led finally to a significant reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure oscillati<strong>on</strong>s. This can also<br />

be c<strong>on</strong>firmed by the c<strong>on</strong>siderati<strong>on</strong>s derived above: As the the amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> line u ′ F,i<br />

is directly driven by the<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage i , it follows from<br />

φ ′ i (ω)<br />

(<br />

u<br />

′<br />

¯φ ∼ F,i (ω)<br />

− u′ A,i (ω)<br />

)<br />

, (7.3)<br />

ū F,i ū A,i<br />

that the amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio is also modified. If now<br />

the phase change is sufficient to influence the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate<br />

fluctuati<strong>on</strong>s (see Eqn. (7.2)) in such a way that the heat release rate fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the acoustic pressure at the flame are out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase, the system becomes<br />

stable.<br />

Scarinci et. al. [116] suggested that minimizing the overall amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence<br />

ratio fluctuati<strong>on</strong>s can be useful to reduce the heat release rate fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus to realize a low-oscillati<strong>on</strong> combusti<strong>on</strong> chamber. They developed<br />

a new mixing strategy, which is based <strong>on</strong> multiple injecti<strong>on</strong> stages injecting<br />

air instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g>. In this way the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>-air mixing process is decoupled<br />

from pressure pulsati<strong>on</strong>s in the combusti<strong>on</strong> chamber as the local equivalence<br />

ratio fluctuati<strong>on</strong>s are damped <strong>on</strong> the way through the premixer. In the present<br />

c<strong>on</strong>text using <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release rate fluctuati<strong>on</strong>s<br />

can be achieved in changing the velocity fluctuati<strong>on</strong> u ′ F,i<br />

such that it is in phase<br />

with u ′ A,i<br />

. If both fluctuati<strong>on</strong>s have the same amplitude the resulting equivalence<br />

ratio fluctuati<strong>on</strong>s are reduced to zero:<br />

φ ′ i (ω)<br />

(<br />

u<br />

′<br />

¯φ ∼ F,i (ω)<br />

− u′ A,i (ω)<br />

)<br />

→ 0. (7.4)<br />

ū F,i ū A,i<br />

The c<strong>on</strong>sequence is a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release rate fluctuati<strong>on</strong>s. The reducti<strong>on</strong><br />

leads to a decrease in growth rate <str<strong>on</strong>g>and</str<strong>on</strong>g> results therefore in a more stable<br />

system.<br />

Both studies menti<strong>on</strong>ed have shown that influencing the equivalence ratio<br />

146


7.2 Acoustic network model results<br />

fluctuati<strong>on</strong>s can lead to lower thermo-acoustic oscillati<strong>on</strong>s in combusti<strong>on</strong><br />

systems. However, the models derived <strong>on</strong>ly account for the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence<br />

fluctuati<strong>on</strong>s <strong>on</strong> the heat release rate. As the heat release rate fluctuati<strong>on</strong><br />

in a practical premixed system is also driven by the kinematic resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

flame, tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> the amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio fluctuati<strong>on</strong>s<br />

al<strong>on</strong>e will in general not be sufficient to achieve a stable system. In the worst<br />

case it may lead also to a more unstable system, which is explained in the<br />

following.<br />

Taking into account both c<strong>on</strong>tributi<strong>on</strong>s (F u u ′ b /ū b, F φ,i φ ′ i / ¯φ) to fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heat release rate, a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong> can also<br />

be achieved if the phase difference between both equals π. This implies that<br />

both c<strong>on</strong>tributi<strong>on</strong>s are out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase with respect to each other <str<strong>on</strong>g>and</str<strong>on</strong>g> lead to a<br />

destructive interference:<br />

F u (ω) u′ b (ω)<br />

ū b<br />

+ F φ,i (ω) φ′ i (ω)<br />

¯φ<br />

→ 0. (7.5)<br />

The superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both c<strong>on</strong>tributi<strong>on</strong>s equals zero if the corresp<strong>on</strong>ding amplitudes<br />

have the same order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude. Returning to the argument above,<br />

such a c<strong>on</strong>stellati<strong>on</strong> would be affected in a negative way if the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the equivalence ratio fluctuati<strong>on</strong>s is reduced. The result would be an undesired<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s.<br />

To analyze the c<strong>on</strong>ceptual c<strong>on</strong>siderati<strong>on</strong>s the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> A is<br />

used in the following, in which the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> is located, as in the CFD simulati<strong>on</strong>,<br />

0.125 m upstream the burner exit. In the baseline c<strong>on</strong>figurati<strong>on</strong> the<br />

pressure loss coefficient between <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube <str<strong>on</strong>g>and</str<strong>on</strong>g> mixing secti<strong>on</strong> is set<br />

to a large value (ζ≫1) to decouple the acoustic field <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> from<br />

the remaining system. The stability map (det(S(ω))) <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong><br />

is shown in Fig. 7.5 in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> Sr = [0 2]. The ordinate is plotted<br />

using the cycle increment C I−1. The figure includes all possible stable or unstable<br />

eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the system in the frequency range c<strong>on</strong>sidered. The<br />

stability border is marked as a solid line with C I− 1=0. As discussed in chapter<br />

3.3.2 a value below zero corresp<strong>on</strong>ds to a stable eigenfrequency, whereas a<br />

value greater zero indicates an acoustically unstable system.<br />

147


Acoustic analysis<br />

1.5<br />

100<br />

10<br />

(CI − 1)<br />

1<br />

0.5<br />

0<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

−0.5<br />

0.5 1 1.5 2<br />

Strouhal number<br />

0.0001<br />

Figure 7.5: Stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong>, case A with acoustically<br />

decoupled <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> (ζ≫ 1)<br />

In the following three eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> are exemplarily<br />

analyzed in more detail: two unstable eigenmodes around Sr = 1.13<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.32 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e stable eigenmode at Sr = 0.51. The eigenfrequencies<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> their corresp<strong>on</strong>ding cycle increments can be found in Fig. 7.6. In tuning<br />

the <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector it is dem<strong>on</strong>strated how the three eigenfrequencies<br />

can be influenced in applying the different approaches presented<br />

above. To acoustically couple the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage to the combusti<strong>on</strong> system<br />

the pressure loss coefficients are set in the following to zero between the<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> the injecti<strong>on</strong> tube <str<strong>on</strong>g>and</str<strong>on</strong>g> to 0.2 between the injecti<strong>on</strong> tube <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the mixing secti<strong>on</strong>. The values are lower than the <strong>on</strong>es obtained by steady state<br />

CFD simulati<strong>on</strong>s. They are chosen to enhance the dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stabilizing<br />

potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the tuned <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s 1 .<br />

In the first example the combined length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator tube <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

1 The values obtained by CFD are in some dem<strong>on</strong>strati<strong>on</strong> cases too high to realize a stable combusti<strong>on</strong> system.<br />

A reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pressure loss can be realized, for example, in using injecti<strong>on</strong> holes with a higher diameter. The<br />

resulting lower <str<strong>on</strong>g>fuel</str<strong>on</strong>g> velocity leads to a lower impulse <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g>, which can lead to lower mixing qualities. To<br />

obtain similar mixing qualities the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> has to be injected closer to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing secti<strong>on</strong>, e.g. by<br />

extending the injecti<strong>on</strong> tubes into the mixing secti<strong>on</strong>.<br />

148


7.2 Acoustic network model results<br />

0.5<br />

(CI − 1)<br />

0<br />

−0.5<br />

0.5 1 1.5<br />

Strouhal number<br />

Figure 7.6: Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <strong>on</strong> the eigenfrequencies <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cycle increments – comparis<strong>on</strong> between baseline c<strong>on</strong>figurati<strong>on</strong><br />

(ζ ≫ 1) (□) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong>s with res<strong>on</strong>ator length L R,2 = 0.12<br />

m (◦), L R,2 = 0.42 m (⊳), <str<strong>on</strong>g>and</str<strong>on</strong>g> L R,2 = 0.18 m (⋄)<br />

plenum is set to L R,2 = 0.12 m. The corresp<strong>on</strong>ding eigenfrequency <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injecti<strong>on</strong> stage affects mainly the eigenfrequency at Sr = 1.32 <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline<br />

c<strong>on</strong>figurati<strong>on</strong>. Here, the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s φ ′ 2<br />

at the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage is shifted by nearly π. In additi<strong>on</strong> also the phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s at the burner mouth u ′ is changed. Both are<br />

b<br />

shown in Fig. 7.7. In c<strong>on</strong>sequence the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate c<strong>on</strong>tributi<strong>on</strong>s<br />

F φ,2 φ ′ 2 / ¯φ <str<strong>on</strong>g>and</str<strong>on</strong>g> F u u ′ b / u¯<br />

b <str<strong>on</strong>g>and</str<strong>on</strong>g> thus <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s<br />

are changed by about 1.1 π, see Fig. 7.8. This change leads to a favorable phase<br />

relati<strong>on</strong>ship between pressure fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> heat release rate fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> turns finally the unstable eigenfrequency (C I − 1=0.19) into a stable <strong>on</strong>e<br />

(C I − 1=−0.1). The amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>, however,<br />

is increased by the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> velocity fluctuati<strong>on</strong> u ′ F,2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the fact that<br />

u ′ F,2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the main stream u′ A,2<br />

are out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase, see Fig. 7.9 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Fig. 7.10. Here <str<strong>on</strong>g>and</str<strong>on</strong>g> in the following all amplitudes are normalized with their<br />

mean values. Higher equivalence ratio fluctuati<strong>on</strong>s increase the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the heat release rate c<strong>on</strong>tributi<strong>on</strong> F φ,2 φ ′ 2 / ¯φ. The amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release<br />

149


Acoustic analysis<br />

3.14<br />

1.57<br />

Phase<br />

0<br />

−1.57<br />

−3.14<br />

1.1 1.2 1.3 1.4 1.5<br />

Strouhal number<br />

Figure 7.7: Phase <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio <str<strong>on</strong>g>and</str<strong>on</strong>g> velocity fluctuati<strong>on</strong>s at the burner<br />

mouth <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> (ζ≫1) (-· φ ′ 2 , -- u′ ) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong><br />

with res<strong>on</strong>ator length L R,2 = 0.12 m (−− φ ′ 2 , -◦ u′ b<br />

b )<br />

3.14<br />

1.57<br />

Phase<br />

0<br />

−1.57<br />

−3.14<br />

1.1 1.2 1.3 1.4 1.5<br />

Strouhal number<br />

Figure 7.8: Phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s ˙Q ′ / ¯˙Q <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline<br />

c<strong>on</strong>figurati<strong>on</strong> (ζ≫1) (-·) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator length<br />

L R,2 = 0.12 m (−− )<br />

150


7.2 Acoustic network model results<br />

0.08<br />

0.06<br />

Amplitude<br />

0.04<br />

0.02<br />

0<br />

1.1 1.2 1.3 1.4 1.5<br />

Strouhal number<br />

Figure 7.9: Amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s φ ′ 2<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline<br />

c<strong>on</strong>figurati<strong>on</strong> (ζ≫1) (-·) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator length<br />

L R,2 = 0.12 m (−−)<br />

0.1<br />

Amplitude<br />

0.05<br />

0<br />

1.1 1.2 1.3 1.4 1.5<br />

Phase<br />

3.14<br />

1.57<br />

0<br />

−1.57<br />

−3.14<br />

1.1 1.2 1.3 1.4 1.5<br />

Strouhal number<br />

Figure 7.10: Velocity fluctuati<strong>on</strong>s at the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> baseline c<strong>on</strong>figurati<strong>on</strong><br />

(ζ ≫ 1) (-· u ′ A,2 , -- u′ F,2<br />

) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator<br />

length L R,2 = 0.12 m (-◦ u ′ A,2 ,−− u′ F,2 )<br />

151


Acoustic analysis<br />

Amplitude<br />

0.01<br />

0.005<br />

0<br />

1.1 1.2 1.3 1.4 1.5<br />

Phase<br />

3.14<br />

1.57<br />

0<br />

−1.57<br />

−3.14<br />

1.1 1.2 1.3 1.4 1.5<br />

Strouhal number<br />

Figure 7.11: Amplitude <str<strong>on</strong>g>and</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release rate c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

baseline c<strong>on</strong>figurati<strong>on</strong> (ζ≫1) (-· F φ,2 φ ′ 2 / ¯φ, -- F u u ′ b / u¯<br />

b) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong><br />

with res<strong>on</strong>ator length L R,2 = 0.12 m (-◦ F φ,2 φ ′ 2 / ¯φ, −−<br />

F u u ′ b / u¯<br />

b)<br />

rate fluctuati<strong>on</strong>s is also increased as the heat release rate c<strong>on</strong>tributi<strong>on</strong>s are<br />

almost in phase, which is presented in Fig. 7.11. As the heat release rate fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the pressure fluctuati<strong>on</strong>s are certainly out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase, the increase<br />

could even strengthen the stabilizing effect. The observati<strong>on</strong>s c<strong>on</strong>firm the fact<br />

that the main driving parameter is the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s,<br />

which influences the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thus the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. The amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio fluctuati<strong>on</strong>s,<br />

however, determines the absolute value <str<strong>on</strong>g>of</str<strong>on</strong>g> the cycle increment.<br />

A length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator tube <str<strong>on</strong>g>of</str<strong>on</strong>g> L R,2 = 0.42 m results in a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence<br />

ratio fluctuati<strong>on</strong>s φ ′ 2<br />

at a Strouhal number <str<strong>on</strong>g>of</str<strong>on</strong>g> about Sr = 0.51. At this<br />

frequency the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> velocity fluctuati<strong>on</strong> u ′ F,2<br />

is increased. Compared<br />

to the last case the phase difference between u ′ F,2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the main stream u ′ A,2<br />

is now roughly zero as it is dem<strong>on</strong>strated in<br />

Fig. 7.12.<br />

As both velocity fluctuati<strong>on</strong>s have almost the same amplitude at this fre-<br />

152


7.2 Acoustic network model results<br />

0.05<br />

Amplitude<br />

0<br />

0.4 0.5 0.6<br />

Phase<br />

3.14<br />

1.57<br />

0<br />

−1.57<br />

−3.14<br />

0.4 0.5 0.6<br />

Strouhal number<br />

Figure 7.12: Velocity fluctuati<strong>on</strong>s at the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline<br />

c<strong>on</strong>figurati<strong>on</strong> (ζ≫1) (-· u ′ A,2 , -- u′ F,2<br />

) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator<br />

length L R,2 = 0.42 m (-◦ u ′ A,2 ,−− u′ F,2 )<br />

0.04<br />

0.03<br />

Amplitude<br />

0.02<br />

0.01<br />

0<br />

0.4 0.5 0.6<br />

Strouhal number<br />

Figure 7.13: Heat release rate fluctuati<strong>on</strong>s caused by equivalence ratio fluctuati<strong>on</strong>s<br />

(F φ,2 φ ′ 2 / ¯φ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> (ζ ≫ 1) (--) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator length L R,2 = 0.42 m (−−)<br />

153


Acoustic analysis<br />

3.14<br />

1.57<br />

Phase<br />

0<br />

−1.57<br />

−3.14<br />

1 1.05 1.1 1.15 1.2<br />

Strouhal number<br />

Figure 7.14: Phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their corresp<strong>on</strong>ding<br />

fluctuating variables <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator length<br />

L R,2 = 0.18 m (−− φ ′ , -◦ u ′ b , -- F φ,2, -· F u )<br />

quency, the equivalence ratio fluctuati<strong>on</strong>s vanish almost completely. The resulting<br />

heat release fluctuati<strong>on</strong> caused by the equivalence ratio fluctuati<strong>on</strong>,<br />

which is shown in Fig. 7.13, decreases str<strong>on</strong>gly leading to a lower cycle increment<br />

(from C I − 1 = -0.33 to C I − 1 = -0.54) <str<strong>on</strong>g>and</str<strong>on</strong>g> thus to a more stable system.<br />

To dem<strong>on</strong>strate the possibility where the c<strong>on</strong>tributi<strong>on</strong>s (F u u ′ b /ū b, F φ,2 φ ′ 2 / ¯φ)<br />

to fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> heat release rate are out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator<br />

is set to L R,2 = 0.18 m. At Sr = 1.08 the flame transfer functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding<br />

fluctuating variable F φ,2 <str<strong>on</strong>g>and</str<strong>on</strong>g> φ ′ 2 as well as F u <str<strong>on</strong>g>and</str<strong>on</strong>g> u ′ are almost in<br />

b<br />

phase at π/2 <str<strong>on</strong>g>and</str<strong>on</strong>g> π, which is shown in Fig. 7.14. The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the two phases 2<br />

is equal to π <str<strong>on</strong>g>and</str<strong>on</strong>g> 2π. Using a pressure loss value <str<strong>on</strong>g>of</str<strong>on</strong>g> ζ = 0.1 between the injecti<strong>on</strong><br />

tube <str<strong>on</strong>g>and</str<strong>on</strong>g> the mixing secti<strong>on</strong> both heat release rate c<strong>on</strong>tributi<strong>on</strong>s have, at<br />

this frequency, roughly the same amplitude (see Fig. 7.15). As discussed above<br />

this finally leads to a destructive interference <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate c<strong>on</strong>tributi<strong>on</strong>s.<br />

For the chosen pressure loss value a reducti<strong>on</strong> in total heat release rate<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 75% can be achieved as shown in Fig. 7.16. As the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

2 A 1 exp −iϕ1 · A 2 exp −iϕ 2<br />

= A 1 A 2 exp −i (ϕ 1+ϕ 2 )<br />

154


7.2 Acoustic network model results<br />

Phase<br />

Amplitude<br />

5<br />

3.14<br />

1.57<br />

−1.57<br />

x 10 −3<br />

0<br />

1 1.05 1.1 1.15 1.2<br />

0<br />

−3.14<br />

1 1.05 1.1 1.15 1.2<br />

Strouhal number<br />

Figure 7.15: C<strong>on</strong>tributi<strong>on</strong>s to heat release rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline<br />

c<strong>on</strong>figurati<strong>on</strong> (ζ ≫ 1) (-- F φ,2 φ ′ 2 / ¯φ, -· F u u ′ b /ū′ b) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong><br />

with res<strong>on</strong>ator length L R,2 = 0.18 m (−− F φ,2 φ ′ 2 / ¯φ, -◦<br />

F u u ′ b /ū′ b)<br />

heat release rate fluctuati<strong>on</strong>s is <strong>on</strong>ly changed slightly, the eigenfrequency is<br />

damped but remains unstable. Here, the cycle increment is finally decreased<br />

by almost 0.2 to C I − 1 = 0.15.<br />

Another example <str<strong>on</strong>g>of</str<strong>on</strong>g> a destructive interference <str<strong>on</strong>g>of</str<strong>on</strong>g> the two heat release rate c<strong>on</strong>tributi<strong>on</strong>s<br />

can already be observed at the baseline c<strong>on</strong>figurati<strong>on</strong> (ζ≫ 1). At the<br />

unstable eigenfrequency at Sr = 0.37 (see Fig. 7.5) both flame transfer functi<strong>on</strong>s<br />

are in phase. In that case the equivalence ratio <str<strong>on</strong>g>and</str<strong>on</strong>g> the velocity fluctuati<strong>on</strong>s<br />

at the burner mouth have to be influenced in such a way that their phase<br />

difference equals π. For the baseline c<strong>on</strong>figurati<strong>on</strong> this is already the case as<br />

shown in Fig. 7.17 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 7.18. As in the last example the phase relati<strong>on</strong>ship<br />

between total heat release rate <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure fluctuati<strong>on</strong>s is unfavorable. This<br />

is another good example that the phase relati<strong>on</strong>ship is the main key in influencing<br />

the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> a system.<br />

The analyzed cases c<strong>on</strong>firm that the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g> influences the<br />

acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire system mainly in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

155


Acoustic analysis<br />

Phase<br />

Amplitude<br />

5<br />

x 10 −3<br />

0<br />

1 1.05 1.1 1.15 1.2<br />

Strouhal number<br />

3.14<br />

1.57<br />

0<br />

−1.57<br />

−3.14<br />

1 1.05 1.1 1.15 1.2<br />

Strouhal number<br />

Figure 7.16: Heat release rate fluctuati<strong>on</strong>s ˙Q ′ / ¯˙Q <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong><br />

(ζ≫1) (--) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator length L R,2 = 0.18 m<br />

(−−)<br />

3.14<br />

1.57<br />

Phase<br />

0<br />

−1.57<br />

−3.14<br />

0.3 0.35 0.4 0.45 0.5<br />

Strouhal number<br />

Figure 7.17: Phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame transfer functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their corresp<strong>on</strong>ding<br />

fluctuating variables <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> (ζ≫1) (−− φ ′ 2 ,<br />

-◦ u ′ b , -- F φ,2, -· F u )<br />

156


7.2 Acoustic network model results<br />

Amplitude<br />

0.05<br />

0<br />

0.3 0.35 0.4 0.45 0.5<br />

Phase<br />

3.14<br />

1.57<br />

0<br />

−1.57<br />

−3.14<br />

0.3 0.35 0.4 0.45 0.5<br />

Strouhal Number<br />

Figure 7.18: C<strong>on</strong>tributi<strong>on</strong>s to heat release rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> total heat release<br />

rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> (ζ ≫ 1) (--<br />

F φ,2 φ ′ 2 / ¯φ, -· F u u ′ b /ū′ b,−− ˙Q ′ / ¯˙Q)<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector (see subsecti<strong>on</strong> 7.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 7.6). The <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector with a res<strong>on</strong>ator<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> L R,2 = 0.18 acts at the first injector eigenfrequency near Sr = 1.1. The<br />

eigenfrequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the system at Sr = 0.51 is, as expected, not affected. The<br />

c<strong>on</strong>figurati<strong>on</strong> with a res<strong>on</strong>ator length with L R,2 = 0.42 interacts with the system<br />

acoustics at the first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d injector eigenfrequency (Sr = 0.51, 1.54).<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d injector eigenfrequency can also be observed at the<br />

eigenfrequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the system at Sr = 1.32, where the cycle increment can be<br />

reduced to C R− 1=0. An excepti<strong>on</strong> is the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> system with a res<strong>on</strong>ator<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> L R,2 = 0.12. Here, the frequency range <str<strong>on</strong>g>of</str<strong>on</strong>g> influence is quite wide, acting<br />

as well at the injector eigenfrequency at around Sr = 1.56 (not shown here)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> at the eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the system at Sr = 1.08 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.32.<br />

Whereas the eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> can be changed by the length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator tube, the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> <strong>on</strong> the system stability is mainly driven by the injector pressure<br />

loss. A lower pressure loss results in a higher impact <strong>on</strong> the system. This effect<br />

is dem<strong>on</strong>strated using the c<strong>on</strong>figurati<strong>on</strong> with a res<strong>on</strong>ator length <str<strong>on</strong>g>of</str<strong>on</strong>g> L R,2 = 0.12,<br />

157


Acoustic analysis<br />

0.2<br />

0.1<br />

(CI − 1)<br />

0<br />

−0.1<br />

−0.2<br />

1.2 1.25 1.3 1.35 1.4<br />

Strouhal number<br />

Figure 7.19: Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> injector pressure loss ζ <strong>on</strong> eigenfrequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> cycle<br />

increments <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with res<strong>on</strong>ator length L R,2 = 0.12<br />

m (ζ = 0.1 △, ζ = 0.2 ⊲, ζ = 0.3 ⊳, ζ = 0.4 ⋄, ζ = 0.5 ∇, ζ = 0.6 ◦, ζ =<br />

0.84+, ζ≫1□)<br />

see Fig. 7.19. The pressure loss coefficient between the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the mixing secti<strong>on</strong> is varied in the following between ζ=0.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> ζ=0.84. The<br />

cycle increment changes for these cases from C I − 1 = -0.16 (ζ=0.1) to C I − 1<br />

= 0.078 (ζ = 0.84). The border between a stable eigenfrequency <str<strong>on</strong>g>and</str<strong>on</strong>g> the unstable<br />

<strong>on</strong>e is reached near ζ=0.4. For comparis<strong>on</strong> the cycle increment <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

baseline c<strong>on</strong>figurati<strong>on</strong> (ζ≫1) is also shown in Fig. 7.19.<br />

7.2.2 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> nozzle locati<strong>on</strong><br />

If the distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> locati<strong>on</strong> to the burner mouth can be adjusted<br />

within a certain range in the early design stage 3 , the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> can<br />

be placed such that the acoustic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system is improved.<br />

The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> determines the time for c<strong>on</strong>vective<br />

NOx.<br />

3 Of course, c<strong>on</strong>sidering the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the locati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> auto-igniti<strong>on</strong> or flash-back, mixing quality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

158


7.2 Acoustic network model results<br />

transport <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> from the injecti<strong>on</strong> point to the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> thus the phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding flame transfer functi<strong>on</strong> F φ . Taking again the combusti<strong>on</strong><br />

c<strong>on</strong>figurati<strong>on</strong> case A, the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> F φ,2 can influence the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the overall<br />

heat release rate fluctuati<strong>on</strong>s as shown by the following equati<strong>on</strong>:<br />

˙Q ′ (ω)<br />

¯˙Q<br />

= F u (ω) u′ b (ω)<br />

ū b<br />

+ F φ,2 (ω) φ′ 2 (ω)<br />

¯φ . (7.6)<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> nozzles is comparable to the<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g>. The distance between the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the flame replaces in this case the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the res<strong>on</strong>ator tube<br />

L R,2 as the design variable. The different possibilities to change the stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the entire system are the same as discussed <str<strong>on</strong>g>and</str<strong>on</strong>g> dem<strong>on</strong>strated before.<br />

In the following the baseline c<strong>on</strong>figurati<strong>on</strong> is the combusti<strong>on</strong> system, case A,<br />

with the same flame resp<strong>on</strong>se to velocity fluctuati<strong>on</strong>s F u as before, but without<br />

the c<strong>on</strong>tributi<strong>on</strong>s due to the equivalence ratio fluctuati<strong>on</strong>s (|F φ,2 |=0). The <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

<str<strong>on</strong>g>supply</str<strong>on</strong>g> is acoustically decoupled from the combusti<strong>on</strong> system (ζ ≫ 1). The<br />

corresp<strong>on</strong>ding stability map over the complex frequency plane is presented<br />

in Fig. 7.20.<br />

Here, the two unstable eigenfrequencies at Sr = 0.487 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 0.489 will be<br />

influenced by placing the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector to a favorable locati<strong>on</strong>. By reducing the<br />

distance between <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> flame to L F,2 = 0.101 the cycle<br />

increment <str<strong>on</strong>g>of</str<strong>on</strong>g> both eigenfrequencies can be reduced below zero. Compared<br />

to the basic c<strong>on</strong>figurati<strong>on</strong> the two eigenfrequencies are shifted to a lower (Sr<br />

= 0.41) <str<strong>on</strong>g>and</str<strong>on</strong>g> higher (Sr = 0.55) frequency, respectively. The change in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

injecti<strong>on</strong> locati<strong>on</strong> corresp<strong>on</strong>ds to a mean time delay change <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.25 ms compared<br />

to the c<strong>on</strong>figurati<strong>on</strong> where the flame transfer functi<strong>on</strong> was originally<br />

determined (basic c<strong>on</strong>figurati<strong>on</strong>: L F,2 = 0.125 m). The slope <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the new flame transfer functi<strong>on</strong> is therefore adjusted to match the desired<br />

locati<strong>on</strong>. The amplitude is kept c<strong>on</strong>stant. Here, it is assumed that the slight<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> positi<strong>on</strong> does not change the mixing process nor<br />

the flame, so that the new flame transfer functi<strong>on</strong> still represents the flame resp<strong>on</strong>se<br />

correctly. The eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

c<strong>on</strong>figurati<strong>on</strong> with L F,2 = 0.101 can be found in Fig. 7.21. The stabilizing ef-<br />

159


Acoustic analysis<br />

1<br />

100<br />

10<br />

(CI − 1)<br />

0.5<br />

0<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

−0.5<br />

0.5 1 1.5 2<br />

Strouhal number<br />

0.0001<br />

Figure 7.20: Stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> without equivalence<br />

ratio fluctuati<strong>on</strong>s (case A, ζ≫1,|F φ,2 |=0)<br />

1<br />

0.5<br />

(CI − 1)<br />

0<br />

−0.5<br />

0.35 0.4 0.45 0.5 0.55 0.6<br />

Strouhal number<br />

Figure 7.21: Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the injector locati<strong>on</strong> <strong>on</strong> the eigenfrequencies <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

cycle increments – comparis<strong>on</strong> between baseline c<strong>on</strong>figurati<strong>on</strong><br />

(ζ ≫ 1, |F φ,2 | = 0) (□), <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with L F,2 = 0.101 m<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> decoupled (ζ ≫ 1) (⊲) <str<strong>on</strong>g>and</str<strong>on</strong>g> coupled <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> system<br />

(L R,2 = 0.42 m) (◦)<br />

160


7.2 Acoustic network model results<br />

3.14<br />

1.57<br />

Phase<br />

0<br />

−1.57<br />

−3.14<br />

0.2 0.3 0.4 0.5 0.6<br />

Strouhal number<br />

Figure 7.22: Phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s ˙Q ′ / ¯˙Q <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline<br />

c<strong>on</strong>figurati<strong>on</strong> (ζ≫1, |F φ,2 |=0) (-·) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> with injector<br />

locati<strong>on</strong> L F,2 = 0.101 m (ζ≫1) (−−)<br />

fect is due to the changed phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s in relati<strong>on</strong><br />

to the acoustic pressure at the flame. As dem<strong>on</strong>strated in Fig. 7.22 the<br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s is changed at both eigenfrequencies<br />

(Sr = 0.41, 0.55) by about π. To further decrease the cycle increment <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

two eigenfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the new c<strong>on</strong>figurati<strong>on</strong>, which are close to the stability<br />

limit, the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> was coupled to the system in setting the pressure loss<br />

coefficient between the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube <str<strong>on</strong>g>and</str<strong>on</strong>g> the mixing secti<strong>on</strong> as in the<br />

former analysis to ζ = 0.2. The res<strong>on</strong>ator tube was adjusted to a length <str<strong>on</strong>g>of</str<strong>on</strong>g> L R,2<br />

= 0.42 m, which exhibits an eigenfrequency around Sr = 0.5. In this frequency<br />

range the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate c<strong>on</strong>tributi<strong>on</strong> due to equivalence ratio<br />

fluctuati<strong>on</strong>s (F φ,2 φ ′ 2 / ¯φ) is out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase compared to the <strong>on</strong>e due to velocity<br />

fluctuati<strong>on</strong>s at the burner mouth (F u u ′ b /ū b). The destructive interference reduces<br />

str<strong>on</strong>gly the overall heat release rate fluctuati<strong>on</strong>s ˙Q ′ / ¯˙Q especially near<br />

Sr = 0.57 as shown in Fig. 7.23. The stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the system is further improved.<br />

As shown in Fig. 7.21 the cycle increment at the eigenfrequency at Sr = 0.53 is<br />

reduced from C − 1 = -0.04 to C− 1 = -0.47.<br />

161


Acoustic analysis<br />

Amplitude<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0.45 0.5 0.55 0.6 0.65<br />

Strouhal number<br />

Figure 7.23: Amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s ˙Q ′ / ¯˙Q <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong><br />

with injector locati<strong>on</strong> L F,2 = 0.101 m with uncoupled (ζ≫1)<br />

(-·) <str<strong>on</strong>g>and</str<strong>on</strong>g> coupled injecti<strong>on</strong> system with L R,2 = 0.42 m (−−)<br />

7.2.3 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g><br />

According to the discussi<strong>on</strong> in the last secti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to Eqn. (7.2) all possible<br />

opti<strong>on</strong>s to reduce the heat release rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> thus to enhance the<br />

thermo-acoustic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong> system have been menti<strong>on</strong>ed.<br />

The opportunity <str<strong>on</strong>g>of</str<strong>on</strong>g> implementing a staged <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g>, meaning that<br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is injected at different locati<strong>on</strong>s, increases the number <str<strong>on</strong>g>of</str<strong>on</strong>g> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom. Therefore, <strong>on</strong>e has to be quite careful that an additi<strong>on</strong>al <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

stage, which is placed into the system, does not affect the overall stability<br />

in a negative way.<br />

One case is dem<strong>on</strong>strated in the next secti<strong>on</strong> with the overall focus to design<br />

a combusti<strong>on</strong> system with three <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages, which is stable over a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies. The basis is now c<strong>on</strong>figurati<strong>on</strong> B with three different<br />

flame transfer functi<strong>on</strong>s as presented in chapter 6.3. The baseline c<strong>on</strong>figurati<strong>on</strong><br />

is the combusti<strong>on</strong> system without the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio<br />

flame transfer functi<strong>on</strong>s (|F φ,2 = 0|,|F φ,3 = 0|). Initially the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector is, as in<br />

162


7.2 Acoustic network model results<br />

3<br />

100<br />

(CI − 1)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

−0.5<br />

0.5 1 1.5 2<br />

Strouhal number<br />

0.0001<br />

Figure 7.24: Stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> without equivalence<br />

ratio fluctuati<strong>on</strong>s (case B, ζ≫1,|F φ,2 |,|F φ,3 |=0)<br />

the latter case, acoustically decoupled from the remaining combusti<strong>on</strong> system<br />

(ζ≫1). Starting from this point, the flame transfer functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the individual<br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages are implemented step by step. At the end the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g><br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> is adjusted to further optimize the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire system.<br />

The stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> the baseline c<strong>on</strong>figurati<strong>on</strong> is shown in Fig. 7.24.<br />

The system c<strong>on</strong>tains mostly unstable eigenfrequencies in the frequency range<br />

analyzed except two modes at Sr = 0.51 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.8, which are close to the stability<br />

limit. Similar to the last case the first unstable eigenmode can be damped<br />

in placing the downstream <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage at a favorable locati<strong>on</strong>. Here,<br />

L F,3 was set to 0.0714 m upstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the burner exit, which is again slightly<br />

downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the original CFD/SI locati<strong>on</strong> at L F,3 = 0.085 m. Therefore the<br />

mean time delay <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding flame transfer functi<strong>on</strong> was reduced by<br />

about 0.7 ms. In this case the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d or upstream <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

still remains zero (|F φ,2 = 0|). The result <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>figurati<strong>on</strong> can be found in<br />

Fig. 7.25, showing that the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> almost all eigenfrequencies is improved.<br />

The cycle increment <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenfrequency at Sr = 0.7 was reduced from C I−1<br />

= 2.7 to a value slightly below zero <str<strong>on</strong>g>and</str<strong>on</strong>g> is now stable. Now the sec<strong>on</strong>d <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

163


Acoustic analysis<br />

1<br />

10<br />

1<br />

(CI − 1)<br />

0.5<br />

0<br />

0.1<br />

0.01<br />

0.001<br />

−0.5<br />

0.5 1 1.5 2<br />

Strouhal number<br />

0.0001<br />

Figure 7.25: Stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> (case B) without<br />

equivalence ratio fluctuati<strong>on</strong>s at injector 2 (ζ≫1,|F φ,2 = 0|, L F,3 =<br />

0.0714 m)<br />

1<br />

10<br />

1<br />

(CI − 1)<br />

0.5<br />

0<br />

0.1<br />

0.01<br />

0.001<br />

−0.5<br />

0.5 1 1.5 2<br />

Strouhal number<br />

0.0001<br />

Figure 7.26: Stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> (case B) with<br />

acoustically uncoupled <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors (ζ ≫ 1, L F,2 = 0.132 m, L F,3<br />

= 0.0714 m)<br />

164


7.2 Acoustic network model results<br />

1<br />

0.01<br />

0.001<br />

(CI − 1)<br />

0.5<br />

0<br />

0.0001<br />

1e−05<br />

1e−06<br />

1e−07<br />

−0.5<br />

0.5 1 1.5 2<br />

Strouhal number<br />

1e−08<br />

Figure 7.27: Stability map <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> (case B) with<br />

acoustically coupled <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injectors (L F,2 = 0.132 m, L R,2 = 0.18 m,<br />

L F,3 = 0.0714 m, L R,3 = 0.12 m)<br />

injecti<strong>on</strong> is placed into the system. The distance was set according to the opti<strong>on</strong>s<br />

menti<strong>on</strong>ed to L F,2 = 0.132 m. The mean time delay <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding<br />

flame transfer functi<strong>on</strong> was increased slightly by 0.4 ms. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sec<strong>on</strong>d <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> system is presented in Fig. 7.26. The cycle increment <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

eigenfrequencies above Sr = 1.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> below Sr = 0.7 is further decreased, with<br />

two eigenfrequencies at Sr = 1.27 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.81 crossing the stability border.<br />

For the eigenfrequencies at Sr = 0.86 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.14 the stability is, <strong>on</strong> the other<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g>, slightly reduced.<br />

To finally stabilize the entire combusti<strong>on</strong> system in the range between Sr = 0.8<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.5 the res<strong>on</strong>ator length <str<strong>on</strong>g>of</str<strong>on</strong>g> the two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages were set to<br />

L R,2 = 0.18 m <str<strong>on</strong>g>and</str<strong>on</strong>g> L R,3 = 0.12 m. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the last example can be found<br />

in Fig. 7.27. The eigenfrequencies up to Sr = 1.5 are all stable with an adequate<br />

stability margin. The eigenfrequency at Sr = 1.5 is shifted close to the stability<br />

limit, but remains unstable. The last two unstable eigenfrequencies at Sr = 1.62<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Sr = 1.9 are hardly affected by the design modificati<strong>on</strong>s. Comparing the<br />

basic c<strong>on</strong>figurati<strong>on</strong> (Fig. 7.24) with the last case (Fig. 7.27), it becomes clear<br />

165


Acoustic analysis<br />

how effective it is to tune the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> to choose favorable<br />

locati<strong>on</strong>s for the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages.<br />

The last remaining parameter, which could be adjusted during the design process<br />

in a system with <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g>, is the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g>, which is injected at a<br />

certain <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage. Similar to the pressure loss coefficient, which determines<br />

the amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic velocity fluctuati<strong>on</strong> in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

tube, the mass flow split between the mean <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow at injecti<strong>on</strong> i<br />

( ¯ṁ i ) <str<strong>on</strong>g>and</str<strong>on</strong>g> the total <str<strong>on</strong>g>fuel</str<strong>on</strong>g> mass flow ( ∑ N ¯ṁ i=1 F,i ) defines the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact,<br />

which was already explained in chapter 2.2:<br />

(<br />

u<br />

′<br />

F,i (ω)<br />

F φ,i (ω) φ′ i (ω)<br />

¯φ<br />

= F φ,i (ω)<br />

ū F,i<br />

− u′ A,i (ω)<br />

)<br />

ū A,i<br />

¯ṁ F,i<br />

∑ N<br />

i=1 ¯ṁ F,i<br />

.<br />

Here, N denotes again the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages. Thus the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> split<br />

can be seen as a fine-tuning parameter to adjust the impact distributi<strong>on</strong> between<br />

the different <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages. It should be noted that each <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong><br />

stage should, in general, be placed at a locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> designed in a way<br />

that it has a positive influence <strong>on</strong> the acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong> system.<br />

166


8 Summary <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>clusi<strong>on</strong>s<br />

In the present work a numerical design method was developed to analyze the<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g>, <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> <strong>on</strong><br />

the thermo-acoustic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> practical premixed combusti<strong>on</strong> systems. Fuel<br />

<str<strong>on</strong>g>staging</str<strong>on</strong>g> denotes in this c<strong>on</strong>text, that the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> is injected at multiple locati<strong>on</strong>s<br />

into the mixing secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system.<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> thermo-acoustic stability analysis a physical underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> an<br />

accurate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame dynamics is essential. In practical premixed<br />

combusti<strong>on</strong> systems the flame resp<strong>on</strong>ds to acoustic disturbances <str<strong>on</strong>g>of</str<strong>on</strong>g> the velocity<br />

at the flame holder <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio, which are the result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic velocity fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the air <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> stream at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>. In such a system, a physically meaningful, c<strong>on</strong>sistent <str<strong>on</strong>g>and</str<strong>on</strong>g> unambiguous<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the overall flame dynamics can in general <strong>on</strong>ly be<br />

obtained if the flame resp<strong>on</strong>se is described as a multiple-input single-output<br />

(MISO) model with two or more flame transfer functi<strong>on</strong>s, which relate the heat<br />

release rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame to the various disturbances.<br />

In order to determine the flame transfer functi<strong>on</strong>s for such a model structure,<br />

a system identificati<strong>on</strong> method was developed, which is based <strong>on</strong> correlati<strong>on</strong><br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> time series data <str<strong>on</strong>g>and</str<strong>on</strong>g> the inversi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Wiener-Hopf<br />

equati<strong>on</strong>. As the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a MISO model is, because <str<strong>on</strong>g>of</str<strong>on</strong>g> partly correlated<br />

input signals, a challenging task, quality criteria were implemented to<br />

analyze how accurately an identified model reproduces the system dynamics.<br />

The method was validated successfully against test data generated with a<br />

time domain model, designed to qualitatively represent a practical premixed<br />

combusti<strong>on</strong> system. To obtain the flame dynamics for the present purpose<br />

the MISO identificati<strong>on</strong> was applied to data generated by a transient computati<strong>on</strong>al<br />

fluid dynamics (CFD) simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a practical<br />

premixed combustor with two <str<strong>on</strong>g>and</str<strong>on</strong>g> three <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages. The CFD<br />

167


Summary <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>clusi<strong>on</strong>s<br />

simulati<strong>on</strong>s were performed with <strong>on</strong>ly about 8000 time steps <str<strong>on</strong>g>and</str<strong>on</strong>g> a broadb<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

discrete-r<str<strong>on</strong>g>and</str<strong>on</strong>g>om-binary excitati<strong>on</strong>. The results achieved dem<strong>on</strong>strate<br />

that the approach is very well able to separate the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> up to three different<br />

signals <strong>on</strong> the resp<strong>on</strong>se <str<strong>on</strong>g>and</str<strong>on</strong>g> to identify the corresp<strong>on</strong>ding unit impulse<br />

resp<strong>on</strong>se (UIR) vectors <str<strong>on</strong>g>and</str<strong>on</strong>g> flame transfer functi<strong>on</strong>s. The high quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

results was also affirmed by the implemented quality criteria. A validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the results against experimental data is not possible, as to the knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the author no such data exists at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> writing. The experimental determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such practical premixed flame transfer functi<strong>on</strong>s is, however,<br />

rather difficult.<br />

All unit impulse resp<strong>on</strong>se functi<strong>on</strong>s obtained exhibit after an initial peak a<br />

pr<strong>on</strong>ounced undershoot <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame resp<strong>on</strong>se, i.e. a range <str<strong>on</strong>g>of</str<strong>on</strong>g> delay times with<br />

negative UIR coefficients. The observati<strong>on</strong> is str<strong>on</strong>gly related to the corresp<strong>on</strong>ding<br />

flame transfer functi<strong>on</strong>s, which exhibit in c<strong>on</strong>sequence an excess<br />

gain in a range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies. Such behavior has been reported for the flame<br />

kinematic resp<strong>on</strong>se, but to the knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the author it has not been observed<br />

previously for the resp<strong>on</strong>se to equivalence ratio fluctuati<strong>on</strong>s. To analyze<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> interpret the results in detail, transient simulati<strong>on</strong>s with impulse forcing<br />

were performed. The additi<strong>on</strong>al data generated revealed that fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio or velocity at the flame holder induce a flame movement,<br />

which accounts for the observed undershoot. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the equivalence ratio<br />

fluctuati<strong>on</strong>s, the flame movement is due to the interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in<br />

the heat released per mass <str<strong>on</strong>g>of</str<strong>on</strong>g> premixture <str<strong>on</strong>g>and</str<strong>on</strong>g> burning velocity with perturbati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flame positi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> shape. Other approaches, which determine the<br />

flame transfer functi<strong>on</strong> simply by steady state CFD measuring the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> transport<br />

time lag distributi<strong>on</strong>s, are not able to capture this effect, as they assume a<br />

fixed positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame. Here, the flame exhibits a low-pass filter behavior,<br />

which corresp<strong>on</strong>ds to purely positive UIR coefficients.<br />

The flame informati<strong>on</strong> obtained is implemented into an acoustic network<br />

model, which represents the acoustic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire combusti<strong>on</strong><br />

system. The acoustic network model technique allows a fast, flexible <str<strong>on</strong>g>and</str<strong>on</strong>g> robust<br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g>, <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector locati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>staging</str<strong>on</strong>g> <strong>on</strong> the stability characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system.<br />

168


The flame element <str<strong>on</strong>g>of</str<strong>on</strong>g> the network accounts for the acoustics at the flame locati<strong>on</strong><br />

as well as for the acoustics at the flame holder <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages.<br />

The network model is based <strong>on</strong> linear acoustic relati<strong>on</strong>s, derived from the<br />

wave equati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Bernoulli equati<strong>on</strong>. To analyze the acoustic behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> system two mathematical techniques have been applied:<br />

The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the inhomogeneous system, which is excited<br />

over a certain range <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the eigenfrequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the unexcited homogeneous system. In the present work the<br />

following impacts <strong>on</strong> the thermo-acoustic stability were investigated in detail:<br />

• The <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage at a predefined locati<strong>on</strong>, which<br />

was c<strong>on</strong>trolled by the length <str<strong>on</strong>g>of</str<strong>on</strong>g> a res<strong>on</strong>ator tube <str<strong>on</strong>g>and</str<strong>on</strong>g> the pressure loss<br />

over the injector. The res<strong>on</strong>ator tube was placed up<strong>on</strong> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> plenum,<br />

which was arranged as an annulus <str<strong>on</strong>g>of</str<strong>on</strong>g> rectangular cross secti<strong>on</strong> around<br />

the mixing secti<strong>on</strong>.<br />

• The distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage to the flame.<br />

• The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> up to two <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages at two different locati<strong>on</strong>s,<br />

in which the positi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s have been adjusted.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the analysis c<strong>on</strong>firm the c<strong>on</strong>ceptual c<strong>on</strong>siderati<strong>on</strong>s derived to<br />

suppress unwanted pressure oscillati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to improve the thermo-acoustic<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> systems: The main key to influence the stability is the<br />

phase relati<strong>on</strong>ship between the acoustic pressure at the flame <str<strong>on</strong>g>and</str<strong>on</strong>g> the heat<br />

release rate fluctuati<strong>on</strong>s. In tuning the acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g> or the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> thus<br />

the relati<strong>on</strong>ship menti<strong>on</strong>ed is changed directly. In additi<strong>on</strong> the stability can be<br />

further improved in<br />

• damping the equivalence ratio fluctuati<strong>on</strong>s, which can be achieved by<br />

adjusting the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> thus the velocity fluctuati<strong>on</strong><br />

in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube.<br />

As the velocity fluctuati<strong>on</strong>s in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube <str<strong>on</strong>g>and</str<strong>on</strong>g> in the mixing<br />

secti<strong>on</strong> upstream the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> determine the equivalence<br />

169


Summary <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>clusi<strong>on</strong>s<br />

ratio fluctuati<strong>on</strong>s, the latter can be damped if both fluctuati<strong>on</strong>s are in<br />

phase. The damping effect leads to a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding heat<br />

release rate c<strong>on</strong>tributi<strong>on</strong> term (F φ,i φ ′ i / ¯φ) <str<strong>on</strong>g>and</str<strong>on</strong>g> thus reduces the amplitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the heat release rate fluctuati<strong>on</strong>s.<br />

• changing the phase delay between the heat release rate c<strong>on</strong>tributi<strong>on</strong>s<br />

(F u u ′ b /ū b, F φ,i φ ′ i / ¯φ) to π.<br />

This can again be performed in influencing the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injector <str<strong>on</strong>g>impedance</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the acoustic velocity in the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube or in adjusting the positi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the corresp<strong>on</strong>ding flame transfer functi<strong>on</strong>.<br />

This implies finally that both c<strong>on</strong>tributi<strong>on</strong>s are out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase <str<strong>on</strong>g>and</str<strong>on</strong>g> lead to a<br />

destructive interference.<br />

The pressure loss over the injecti<strong>on</strong> tubes <str<strong>on</strong>g>and</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g>, which is<br />

distributed to the individual <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages, can be used in additi<strong>on</strong> to<br />

c<strong>on</strong>trol the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stage.<br />

The c<strong>on</strong>siderati<strong>on</strong>s, derived in the present work, can be taken as rough design<br />

guidelines to judge the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic <str<strong>on</strong>g>impedance</str<strong>on</strong>g>, the locati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> stages. The present work has also shown that the<br />

hybrid design method c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> transient CFD, system identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

acoustic network modeling can be successfully used to support the design <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an acoustically stable combusti<strong>on</strong> system.<br />

170


Bibliography<br />

[1] Verb<str<strong>on</strong>g>and</str<strong>on</strong>g> der Elektrizitätswirtschaft - VDEW - e.V. http://www.bdew.de.<br />

[2] M. Åbom. A note <strong>on</strong> the experimental determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustical twoport<br />

matrices. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, 155(1):185–188, 1991.<br />

[3] Internati<strong>on</strong>al Energy Agency. World energy outlook 2006. Technical<br />

report, Organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Co-operati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Development<br />

(OECD), 2006.<br />

[4] C. Angelberger, D. Veynante, F. Egolfopoulos, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Poinsot. Large eddy<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> instabilities in premixed flames. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Summer Program 1998, pages 61–82. Center for Turbulence<br />

Research, 1998.<br />

[5] ANSYS, Inc., Can<strong>on</strong>sburg, USA. ANSYS CFX-Solver Theory Guide, 2006.<br />

[6] C.A. Armitage, R.S. Cant, A.P. Dowling, <str<strong>on</strong>g>and</str<strong>on</strong>g> T.P. Hynes. Linearised theory<br />

for LPP combusti<strong>on</strong> dynamics. Number GT2003-38670 in Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2003: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 16-19, 2003,<br />

Atlanta, USA, 2003.<br />

[7] C.A. Armitage, A.J. Riley, R.S. Cant, A.P. Dowling, <str<strong>on</strong>g>and</str<strong>on</strong>g> S.R. Stow. Flame<br />

transfer functi<strong>on</strong> for swirled LPP combusti<strong>on</strong> from experiments <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

CFD. Number GT2004-53820 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2004:<br />

Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 14-17, 2004, Vienna, Austria, 2004.<br />

[8] V. Bellucci, C.O. Paschereit, P. Flohr, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. Magni. On the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Helmholtz res<strong>on</strong>ators for damping acoustic pulsati<strong>on</strong>s in industrial <strong>gas</strong><br />

<strong>turbine</strong>s. Number 2001-GT-0039 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo<br />

171


BIBLIOGRAPHY<br />

2001: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 4-7, 2001, New Orleans, USA,<br />

2001.<br />

[9] P. Berenbrink <str<strong>on</strong>g>and</str<strong>on</strong>g> S. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann. Suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic combusti<strong>on</strong><br />

instabilities by passive <str<strong>on</strong>g>and</str<strong>on</strong>g> active means. Number 2000-GT-0079 in Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2000: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, May<br />

8-11, 2000, Munich, Germany, 2000.<br />

[10] G.J. Bloxsidge, A.P. Dowling, <str<strong>on</strong>g>and</str<strong>on</strong>g> P.J. Langhorne. Reheat buzz: an acoustically<br />

coupled combusti<strong>on</strong> instability. Part 2. Theory. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluid<br />

Mechanics, 193:445–473, 1988.<br />

[11] D. Bohn <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Deucker. An acoustical model to predict combusti<strong>on</strong><br />

driven oscillati<strong>on</strong>s. 20th Internati<strong>on</strong>al C<strong>on</strong>gress <strong>on</strong> Combusti<strong>on</strong> Engines,<br />

1993.<br />

[12] D. Bohn, G. Deutsch, <str<strong>on</strong>g>and</str<strong>on</strong>g> U. Krüger. Numerical predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dynamic<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent diffusi<strong>on</strong> flames. ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 120(4):713–720, 1998.<br />

[13] L. Boyer <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Quinard. On the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> anchored flames. Combusti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 82:51–65, 1990.<br />

[14] J.H. Cho <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Lieuwen. Laminar premixed flame resp<strong>on</strong>se to equivalence<br />

ratio oscillati<strong>on</strong>s. Combusti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 140:116–129, 2005.<br />

[15] J.H. Cho <str<strong>on</strong>g>and</str<strong>on</strong>g> T.C. Lieuwen. Modeling the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> premixed flames<br />

to mixture ratio perturbati<strong>on</strong>s. Number GT2003-38089 in Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2003: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 16-19, 2003,<br />

Atlanta, USA, 2003.<br />

[16] B.T. Chu. On the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure waves at a plane flame fr<strong>on</strong>t.<br />

4th Intl. Symposium <strong>on</strong> Combusti<strong>on</strong>, pages 603–612, 1953.<br />

[17] A. Coker, Y. Neumeier, B.T. Zinn, S. Men<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Lieuwen. Active instability<br />

c<strong>on</strong>trol effectiveness in a liquid <str<strong>on</strong>g>fuel</str<strong>on</strong>g>ed combustor. Combusti<strong>on</strong><br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, 178:1251–1261, 2006.<br />

172


BIBLIOGRAPHY<br />

[18] L. Crocco. Theoretical studies <strong>on</strong> liquid-propellant rocket instability. In<br />

Tenth Symposium (Internati<strong>on</strong>al) <strong>on</strong> Combusti<strong>on</strong>, pages 1101–1128. The<br />

Combusti<strong>on</strong> Institute, Pittsburgh, 1965.<br />

[19] L. Crocco <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Cheng. Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> instability in liquid propellant<br />

rocket motors. AGARDOGRAPH No. 8. Butterworths Science<br />

Publicati<strong>on</strong>, 1956.<br />

[20] E. Deuker. Ein Beitrag zur Vorausberechnung des akustischen Stabilitätsverhaltens<br />

v<strong>on</strong> Gas<strong>turbine</strong>n-Brennkammern mittels theoretischer<br />

und experimenteller Analyse v<strong>on</strong> Brennkammerschwingungen. PhD thesis,<br />

RWTH Aachen, 1994. VDI Verlag: Fortschrittsberichte, Reihe 6: Energietechnik.<br />

[21] A.P. Dowling. The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermoacoustic oscillati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, 180(4):557–581, 1995.<br />

[22] A.P. Dowling. A kinematic model <str<strong>on</strong>g>of</str<strong>on</strong>g> a ducted flame. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluid<br />

Mechanics, 394:51–72, 1999.<br />

[23] A.P. Dowling. Thermoacoustics instability. Sixth Internati<strong>on</strong>al C<strong>on</strong>gress<br />

<strong>on</strong> Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, 1999.<br />

[24] A.P Dowling <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. Ffowcs Williams. Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> Sound. Ellis<br />

Horwood Limited, Chichester, 1983.<br />

[25] A.P. Dowling <str<strong>on</strong>g>and</str<strong>on</strong>g> A.S. Morgans. Feedback c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> oscillati<strong>on</strong>s.<br />

Annual Revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluid Mechanics, 37:151–182, 2005.<br />

[26] A.P. Dowling <str<strong>on</strong>g>and</str<strong>on</strong>g> S.R. Stow. Acoustic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong> combustors.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Propulsi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 19:751–764, 2003.<br />

[27] S. Ducruix, D. Durox, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. C<str<strong>on</strong>g>and</str<strong>on</strong>g>el. Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental<br />

determinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the transfer functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a laminar premixed flame.<br />

In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Combusti<strong>on</strong> Institute, volume 28, pages 765–773,<br />

2000.<br />

173


BIBLIOGRAPHY<br />

[28] S. Evesque <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. Low-order acoustic modelling for annular<br />

combustors. Validati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modal coupling. Number GT-<br />

2002-30064 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2002: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, 2002, Amsterdam, Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, 2002.<br />

[29] M. Fleifil, A.M. Annaswamy, Z.A. Gh<strong>on</strong>eim, <str<strong>on</strong>g>and</str<strong>on</strong>g> A.F. Gh<strong>on</strong>iem. Resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a laminar premixed flame to flow oscillati<strong>on</strong>s: A kinematic model <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

thermoacoustic instability results. Combusti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 106:487–510,<br />

1996.<br />

[30] P. Flohr, C.O. Paschereit, <str<strong>on</strong>g>and</str<strong>on</strong>g> V. Bellucci. Steady CFD analysis for <strong>gas</strong><br />

<strong>turbine</strong> burner transfer functi<strong>on</strong>s. Number AIAA 2003-1346 in 41st AIAA<br />

Aerospace Sciences Meeting <str<strong>on</strong>g>and</str<strong>on</strong>g> Exhibit, January 6-9, 2003, Reno, NV,<br />

2003.<br />

[31] P. Flohr, C.O. Paschereit, B. van Ro<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Schuermans. Using CFD for<br />

time-delay modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> premix flames. Number 2001-GT-0376 in Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2001: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June<br />

4-7, 2001, New Orleans, USA, 2001.<br />

[32] R.O. Fox. Computati<strong>on</strong>al models for turbulent reacting flows. Cambridge<br />

University Press, 2003.<br />

[33] R. Friedrich. Kompressible Strömungen mit Reibung und Wärmeverluste.<br />

Fachgebiet Strömungsmechanik, Technische Universität München, versi<strong>on</strong><br />

2004.<br />

[34] A. Gentemann, A. Fischer, S. Evesque, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. Acoustic transfer<br />

matrix rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis for ducts with sudden change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

area. Number AIAA-2003-3142 in 9th AIAA/CEAS Aeroacoustics C<strong>on</strong>ference<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Exhibit, 2003, Hilt<strong>on</strong> Head, USA, 2003.<br />

[35] A. Gentemann, C. Hirsch, K. Kunze, F. Kiesewetter, T. Sattelmayer, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

W. Polifke. Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer functi<strong>on</strong> rec<strong>on</strong>structi<strong>on</strong> for perfectly<br />

premixed swirl flames. Number GT2004-53776 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ASME Turbo Expo 2004: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 14-17, 2004,<br />

Vienna, Austria, 2004.<br />

174


BIBLIOGRAPHY<br />

[36] A. Giauque, L. Selle, T. Poinsot, H. Büchner, P. Kaufmann, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Krebs.<br />

System identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a large-scale swirled partially premixed combustor<br />

using LES <str<strong>on</strong>g>and</str<strong>on</strong>g> measurements. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Turbulence, 6(21),<br />

November 2005.<br />

[37] J. Goldmeer, S. S<str<strong>on</strong>g>and</str<strong>on</strong>g>ers<strong>on</strong>, G. Myers, J. Stewart, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. D’Ercole. Passive<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic pressure in a dry, low NOx combusti<strong>on</strong> system<br />

using <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <strong>gas</strong> circuit <str<strong>on</strong>g>impedance</str<strong>on</strong>g> optimizati<strong>on</strong>. Number GT2005-68605<br />

in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2005: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air,<br />

June 6-9, 2005, Reno-Tahoe, Nevada, USA, 2005.<br />

[38] M.E. Goldstein. Aeroacoustics. McGraw-Hill, New York, 1976.<br />

[39] C.-C. Hantschk <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Vortmeyer. Numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> self-excited<br />

combusti<strong>on</strong> oscillati<strong>on</strong>s in a n<strong>on</strong>-premixed burner. Combusti<strong>on</strong> Science<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, 174:189–204, 2002.<br />

[40] S. Haykin. Adaptive Filter Theory. Prentice-Hall, Upper Saddle River, NJ,<br />

2002.<br />

[41] U.G. Hedge, D. Reuter, <str<strong>on</strong>g>and</str<strong>on</strong>g> B.T. Zinn. Sound generati<strong>on</strong> by ducted<br />

flames. American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Astr<strong>on</strong>autics Jounral,<br />

26:532–537, 1988.<br />

[42] M. Hettel, M. Habisreuther, H. Bockhorn, <str<strong>on</strong>g>and</str<strong>on</strong>g> N. Zarzalis. URANS modelling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flame tranfer functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent premixed jet flames. Number<br />

GT2004-53808 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2004: Power for<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 14-17, 2004, Vienna, Austria, 2004.<br />

[43] D.E. Hobs<strong>on</strong>, J.E. Fackrell, <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Hewitt. Combusti<strong>on</strong> instabilities in industrial<br />

<strong>gas</strong> <strong>turbine</strong>s - measurements <strong>on</strong> operating plant <str<strong>on</strong>g>and</str<strong>on</strong>g> thermoacoustic<br />

modelling. ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Power, 122:420–428, July 2000.<br />

[44] F. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann. Akustische und strömungsphysikalische Analyse v<strong>on</strong> Gas<strong>turbine</strong>nkomp<strong>on</strong>enten<br />

mittels CFD-Simulati<strong>on</strong> und Systemidentifikati<strong>on</strong>.<br />

Technical report, Lehrstuhl für Thermodynamik, Technische Universität<br />

München, 2007.<br />

175


BIBLIOGRAPHY<br />

[45] J.D. Holdemann, D.S. Liscinsky, <str<strong>on</strong>g>and</str<strong>on</strong>g> D.B. Bain. Mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple jets<br />

with a c<strong>on</strong>fined subs<strong>on</strong>ic crossflow: Part I - cylindrical duct. ASME Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 119:852–862, 1997.<br />

[46] G.C. Hsiao, R.P. P<str<strong>on</strong>g>and</str<strong>on</strong>g>alai, H.S. Hura, <str<strong>on</strong>g>and</str<strong>on</strong>g> H.C. M<strong>on</strong>gia. Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

combusti<strong>on</strong> dynamics in dry-low-emissi<strong>on</strong> (DLE) <strong>gas</strong> <strong>turbine</strong> engine.<br />

Number AIAA 98-3381 in 34th AIAA/ASME/SAE/ASEE Joint Propulsi<strong>on</strong><br />

C<strong>on</strong>ference <str<strong>on</strong>g>and</str<strong>on</strong>g> Exhibit, Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, USA, July 13-15, 1998.<br />

[47] S. Hubbard <str<strong>on</strong>g>and</str<strong>on</strong>g> A.P. Dowling. Acoustic instabilities in premix burners. In<br />

4th AIAA/CEAS Aeroacoustics C<strong>on</strong>ference, June, 1998, Toulouse, France,<br />

1998.<br />

[48] S. Hubbard <str<strong>on</strong>g>and</str<strong>on</strong>g> A.P. Dowling. Acoustic res<strong>on</strong>ances <str<strong>on</strong>g>of</str<strong>on</strong>g> an industrial <strong>gas</strong><br />

<strong>turbine</strong> combusti<strong>on</strong> system. Number 2000-GT-94 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ASME Turbo Expo 2000: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, May 8-11, 2000,<br />

Munich, Germany, 2000.<br />

[49] A. Huber <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> <str<strong>on</strong>g>supply</str<strong>on</strong>g> <str<strong>on</strong>g>impedance</str<strong>on</strong>g> <strong>on</strong> system<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> <strong>turbine</strong>s. Number GT2008-51193 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME<br />

Turbo Expo 2008: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 11-13, 2008, Berlin,<br />

Germany, 2008.<br />

[50] A. Huber, P. Romann, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. Filter-based time-domain<br />

<str<strong>on</strong>g>impedance</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s for CFD applicati<strong>on</strong>s. Number<br />

GT2008-51195 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2008: Power for<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 11-13, 2008, Berlin, Germany, 2008.<br />

[51] R. Isermann. Identifikati<strong>on</strong> dynamischer Systeme 1. Springer Verlag<br />

Berlin Heidelberg, 2nd editi<strong>on</strong>, 1992.<br />

[52] T. Kailath, A.H. Sayed, <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Hassibi. Linear Estimati<strong>on</strong>. Prentice-Hall,<br />

Upper Saddle River, NJ, 2000.<br />

[53] J.J. Keller. Thermoacoustic oscillati<strong>on</strong>s in combusti<strong>on</strong> chambers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong><br />

<strong>turbine</strong>s. AIAA Journal, 33(12):2280–2287, 1995.<br />

176


BIBLIOGRAPHY<br />

[54] J.J. Keller, W. Egli, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Hellat. Thermally induced low frequency oscillati<strong>on</strong>s.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Mathematics <str<strong>on</strong>g>and</str<strong>on</strong>g> Physics, 36:250–274, March<br />

1985.<br />

[55] T. Komarek. private communicati<strong>on</strong>. 2008.<br />

[56] T. Komarek <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> swirl fluctuati<strong>on</strong>s <strong>on</strong> the flame<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a perfectly premixed swirl burner. Number GT2009-60100<br />

in Int’l Gas Turbine <str<strong>on</strong>g>and</str<strong>on</strong>g> Aeroengine C<strong>on</strong>gress & Expositi<strong>on</strong>, Jun 8-12,<br />

2009, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o, FL, USA, 2009.<br />

[57] T. Komarek, L. Tay Wo Ch<strong>on</strong>g, M. Zellhuber, A. Huber, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke.<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> heat loss <strong>on</strong> flame stabilizati<strong>on</strong> in shear layers.<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Jets, Wakes <str<strong>on</strong>g>and</str<strong>on</strong>g> Separated Flows (ICJWSF),<br />

September 16-19, 2008, Berlin, Germany, 2008.<br />

[58] J. Kopitz, A. Huber, T. Sattelmayer, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. Thermoacoustic stability<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an annular combusti<strong>on</strong> chamber with acoustic low<br />

order modeling <str<strong>on</strong>g>and</str<strong>on</strong>g> validati<strong>on</strong> against experiment. Number GT2005-<br />

68797 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2005 Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Air, June 6-9, 2005, Reno-Tahoe, USA, 2005.<br />

[59] W. Krebs, P. Flohr, B. Prade, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann. Thermoacoustic stability<br />

chart for high-intensity <strong>gas</strong> <strong>turbine</strong> combusti<strong>on</strong> systems. Combusti<strong>on</strong><br />

Science & Technology, 174(7):99–128, 2002.<br />

[60] W. Krebs, S. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, B. Prade, M. Lohrmann, <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Büchner. Thermoacoustic<br />

flame resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> swirl flames. Number GT-2002-30065 in<br />

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2002: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air,<br />

June 3-6, 2002, Amsterdam, Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, 2002.<br />

[61] U. Krüger, J. Hüren, S. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, W. Krebs, P. Flohr, <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Bohn. Predicti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> thermoacoustic improvements in <strong>gas</strong> <strong>turbine</strong>s<br />

with annular combusti<strong>on</strong> systems. Number 2000-GT-0095 in Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2000: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 8-11,<br />

2000, Munich, Germany, 2000.<br />

177


BIBLIOGRAPHY<br />

[62] Klaas Kunze. Untersuchung des thermoakustischen Flammenübertragungsverhaltens<br />

in einer Ringbrennkammer. PhD thesis, Lehrstuhl für<br />

Thermodynamik, Technische Universität München, 2004.<br />

[63] J.C. Lagarias, J.A. Reeds, M.H. Wright, <str<strong>on</strong>g>and</str<strong>on</strong>g> P.E. Wright. C<strong>on</strong>vergence<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the nelder-mead simplex method in low dimensi<strong>on</strong>s. SIAM<br />

J. Optim., 9(1):112–147, 1998.<br />

[64] M. Lauer <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Sattelmayer. On the adequacy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemiluminescence<br />

as a measure for heat release in turbulent flames with mixture gradients.<br />

Number GT2009-59631 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2009: Power<br />

for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 8-12, 2009, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o, Florida, USA, 2009.<br />

[65] C.J. Lawn <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. A model for the thermoacoustic resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

premixed swirl burner, part II: The flame resp<strong>on</strong>se. Combusti<strong>on</strong> Science<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, 176:1359–1390, 2004.<br />

[66] C. Lechner <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Seume, editors. Stati<strong>on</strong>äre Gas<strong>turbine</strong>n. Springer Verlag<br />

Berlin Heidelberg, 2003.<br />

[67] J. LeC<strong>on</strong>te. On the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> musical sounds <strong>on</strong> the flame <str<strong>on</strong>g>of</str<strong>on</strong>g> a jet <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coal <strong>gas</strong>. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Arts, 23(2):62–67, 1858.<br />

[68] D.-H. Lee <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Lieuwen. Acoustic near-field characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>ical,<br />

premixed flame. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Acoustical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America,<br />

113(1):167–177, 2003.<br />

[69] A.H. Lefebvre. Gas <strong>turbine</strong> combusti<strong>on</strong>. McGraw Hill, 1983.<br />

[70] J. Lepers, W. Krebs, B. Prade, P. Flohr, G. Pollarolo, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Ferrante. Investigati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thermoacoustic stability limits <str<strong>on</strong>g>of</str<strong>on</strong>g> an annular <strong>gas</strong> <strong>turbine</strong><br />

combustor test rig with <str<strong>on</strong>g>and</str<strong>on</strong>g> without Helmholtz res<strong>on</strong>ators. Number GT-<br />

2005-68246 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2005: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 6-9, 2005, Nevada, USA, 2005.<br />

[71] T. Lieuwen <str<strong>on</strong>g>and</str<strong>on</strong>g> B.T. Zinn. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence ratio oscillati<strong>on</strong>s in<br />

driving combusti<strong>on</strong> instabilities in low NOx <strong>gas</strong> <strong>turbine</strong>s. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 27th Symposium (Internati<strong>on</strong>al) <strong>on</strong> Combusti<strong>on</strong>, Pittsburgh, USA,<br />

1998.<br />

178


BIBLIOGRAPHY<br />

[72] T. Lieuwen <str<strong>on</strong>g>and</str<strong>on</strong>g> B.T. Zinn. Theoretical investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> instability<br />

mechanisms in lean premixed <strong>gas</strong> <strong>turbine</strong>s. Number AIAA 98-0641<br />

in AIAA 36th Aerospace Sciences Meeting <str<strong>on</strong>g>and</str<strong>on</strong>g> Exhibit, January 12-15,<br />

1998, Reno, NV, 1998.<br />

[73] L. Ljung. System Identificati<strong>on</strong>: Theory for the User. Prentice-Hall, Englewood<br />

Cliffs, NJ, 2nd editi<strong>on</strong>, 1999.<br />

[74] J.A. Lovett <str<strong>on</strong>g>and</str<strong>on</strong>g> K.T. Uznanski. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> dynamics in<br />

a staged premixed combustor. Number GT-2002-30646 in Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2002: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 3-6, 2002,<br />

Amsterdam, Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, 2002.<br />

[75] K. McManus, F. Han, W. Dunstan, C. Barbu, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Shah. Modeling<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> dynamics in industrial <strong>gas</strong> <strong>turbine</strong>s. Number<br />

GT2004-53872 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2004: Power for<br />

L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 14-17, 2004, Vienna, Austria, 2004.<br />

[76] K. McManus, T. Poinsot, <str<strong>on</strong>g>and</str<strong>on</strong>g> S.M. C<str<strong>on</strong>g>and</str<strong>on</strong>g>el. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> active c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

combusti<strong>on</strong> instabilities. Progress in Energy <str<strong>on</strong>g>and</str<strong>on</strong>g> Combusti<strong>on</strong> Science,<br />

19:1–29, 1993.<br />

[77] F.R. Menter. Multiscale model for turbulent flows. 24th Fluid Dynamics<br />

C<strong>on</strong>ference, American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Astr<strong>on</strong>autics, 1993.<br />

[78] F.R. Menter. Two-equati<strong>on</strong> eddy-viscosity turbulence models for engineering<br />

applicati<strong>on</strong>s. AIAA-Journal, 32(8):1598–1605, 1994.<br />

[79] H.J. Merk. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> heat-driven oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong> flows, I. General<br />

c<strong>on</strong>siderati<strong>on</strong>. Applied scientific Research, Secti<strong>on</strong> A, 6:317–335,<br />

1956/57.<br />

[80] M. Metghalchi <str<strong>on</strong>g>and</str<strong>on</strong>g> J.C. Keck. Burning velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> air with<br />

methanol, iso-octane <str<strong>on</strong>g>and</str<strong>on</strong>g> indolene at high pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature.<br />

Combusti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 48:191–210, 1982.<br />

[81] P.M. Morse <str<strong>on</strong>g>and</str<strong>on</strong>g> U.I. Ingard. Theoretical Acoustics. Princet<strong>on</strong> University<br />

Press, 1986.<br />

179


BIBLIOGRAPHY<br />

[82] M.L. Munjal. Acoustics <str<strong>on</strong>g>of</str<strong>on</strong>g> ducts <str<strong>on</strong>g>and</str<strong>on</strong>g> mufflers. John Wiley & S<strong>on</strong>s, 1987.<br />

[83] T. Murota <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Ohtsuka. Large-eddy simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> oscillati<strong>on</strong>s<br />

in the premixed combustor. Number 99-GT-274 in Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 1999: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 7-10, Indianapolis,<br />

USA. ASME Turbo Expo, 1999.<br />

[84] F. Nicoud, L. Benoit, C. Sensiau, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Poinsot. Acoustic modes in combustors<br />

with complex <str<strong>on</strong>g>impedance</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> multidimensi<strong>on</strong>al active flames.<br />

AIAA Journal, 45(2):426–441, 2007.<br />

[85] A.V. Oppenheim <str<strong>on</strong>g>and</str<strong>on</strong>g> R.W. Schafer. Discrete time signal processing.<br />

Prentice-Hall, Upper Saddle River, NJ, 2. editi<strong>on</strong>, 1999.<br />

[86] C.C. Paige <str<strong>on</strong>g>and</str<strong>on</strong>g> M.A. Saunders. Lsqr: An algorithm for sparse linear equati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> sparse least squares. ACM Transacti<strong>on</strong>s <strong>on</strong> Mathematical S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware,<br />

8(1):43–71, 1982.<br />

[87] C. Pankiewitz <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Sattelmayer. Hybrid methods for modelling combusti<strong>on</strong><br />

instabilities. 10th Internati<strong>on</strong>al C<strong>on</strong>gress <strong>on</strong> Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>,<br />

Stockholm, Sweden, 2003.<br />

[88] C. Pankiewitz <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Sattelmayer. Time domain simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong><br />

instabilities in annular combustors. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering for Gas<br />

Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 125:677–685, 2003.<br />

[89] C.O. Paschereit <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Gutmark. The effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> passive combusti<strong>on</strong><br />

c<strong>on</strong>trol methods. Number GT2004-53587 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME<br />

Turbo Expo 2004: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 14-17, 2004, Vienna,<br />

Austria, 2004.<br />

[90] C.O. Paschereit, W. Weisenstein, <str<strong>on</strong>g>and</str<strong>on</strong>g> E.J. Gutmark. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> coherent<br />

structures in acoustic combusti<strong>on</strong> c<strong>on</strong>trol. Number A98-32792 in 29th<br />

AIAA Fluid Dynamics C<strong>on</strong>ference, Albuquerque, New Mexico, June 15-<br />

18 1998.<br />

[91] A.A. Peracchio <str<strong>on</strong>g>and</str<strong>on</strong>g> W.M. Proscia. N<strong>on</strong>linear heat-release/acoustic<br />

model for thermoacoustic instability in lean premixed combustors.<br />

180


BIBLIOGRAPHY<br />

Number 98-GT-269 in Internati<strong>on</strong>al Gas Turbine <str<strong>on</strong>g>and</str<strong>on</strong>g> Aeroengine<br />

C<strong>on</strong>gress <str<strong>on</strong>g>and</str<strong>on</strong>g> Exhibiti<strong>on</strong>, 1998.<br />

[92] N. Peters. Turbulent Combusti<strong>on</strong>. Cambridge University Press, 2000.<br />

[93] A.D. Pierce. Acoustics. McGraw-Hill, Inc., 1981.<br />

[94] T. Poinsot <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Veynante. Theoretical <str<strong>on</strong>g>and</str<strong>on</strong>g> Numerical Combusti<strong>on</strong>. R.T.<br />

Edwards, Inc., 2nd editi<strong>on</strong> editi<strong>on</strong>, 2005.<br />

[95] T.J. Poinsot <str<strong>on</strong>g>and</str<strong>on</strong>g> S.K. Lele. Boundary c<strong>on</strong>diti<strong>on</strong>s for direct simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

compressible viscous flows. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Compuati<strong>on</strong>al Physics, 101:104–<br />

129, 1992.<br />

[96] W. Polifke. System modelling <str<strong>on</strong>g>and</str<strong>on</strong>g> stability analysis. In Basics <str<strong>on</strong>g>of</str<strong>on</strong>g> Aero-<br />

Acoustics <str<strong>on</strong>g>and</str<strong>on</strong>g> Thermo-Acoustics, VKI LS 2007-02, Brussels, BE, Dec 3-7<br />

2007. V<strong>on</strong> Karman Institute.<br />

[97] W. Polifke, P. Flohr, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Br<str<strong>on</strong>g>and</str<strong>on</strong>g>t. Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> inhomogeneously premixed<br />

combusti<strong>on</strong> with an extended TFC model. ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 124(1):58–65, 2002.<br />

[98] W. Polifke <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Gentemann. Order <str<strong>on</strong>g>and</str<strong>on</strong>g> realizability <str<strong>on</strong>g>of</str<strong>on</strong>g> impulse resp<strong>on</strong>se<br />

filters for accurate identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic multi-ports from<br />

transient CFD. Int. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Acoustics <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, 9(3):139–148, July 7-10<br />

2004.<br />

[99] W. Polifke, J. Kopitz, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Serbanovic. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fuel</str<strong>on</strong>g> time lag distributi<strong>on</strong><br />

in elliptical premix nozzles <strong>on</strong> combusti<strong>on</strong> stability. Number<br />

AIAA 2001-2104 in 7th AIAA/CEAS Aeroacoustics C<strong>on</strong>ference, 2001,<br />

Maastricht, Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, 2001.<br />

[100] W. Polifke <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Lawn. On the low-frequency limit <str<strong>on</strong>g>of</str<strong>on</strong>g> flame transfer<br />

functi<strong>on</strong>s. Combusti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 151(3):437–451, 2007.<br />

[101] W. Polifke, C.O. Paschereit, <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Döbbeling. C<strong>on</strong>structive <str<strong>on</strong>g>and</str<strong>on</strong>g> destructive<br />

interference <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic <str<strong>on</strong>g>and</str<strong>on</strong>g> entrophy waves in a premixed combustor<br />

with a choked exit. Int. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Acoustics <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, 6(3):135–146,<br />

2001.<br />

181


BIBLIOGRAPHY<br />

[102] W. Polifke, A. P<strong>on</strong>cet, C.O. Paschereit, <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Döbbeling. Rec<strong>on</strong>structi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic transfer matrices by instati<strong>on</strong>ary computati<strong>on</strong>al fluid<br />

dynamics. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, 245(3):483–510, 2001.<br />

[103] W. Polifke, J. van der Hoek, <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Verhaar. Basic equati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> numerical<br />

tools for linear acoustics in <strong>gas</strong> <strong>turbine</strong>s. Technical report, ABB<br />

Corporate Research, Baden, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 1997.<br />

[104] S.B. Pope. Turbulent Flows. Cambridge University Press, 2000.<br />

[105] J.W.S. Rayleigh. The explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain acoustical phenomena. Nature,<br />

18:319–321, 1878.<br />

[106] G. Richards, D. Straub, <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Robey. C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> dynamics<br />

using <str<strong>on</strong>g>fuel</str<strong>on</strong>g> system <str<strong>on</strong>g>impedance</str<strong>on</strong>g>. Number GT2003-38521 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ASME Turbo Expo 2003: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 16-19, Atlanta,<br />

USA, 2003.<br />

[107] G.A. Richards <str<strong>on</strong>g>and</str<strong>on</strong>g> M.C. Janus. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s during<br />

premix <strong>gas</strong> <strong>turbine</strong> combusti<strong>on</strong>. J. Eng. for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power,<br />

120:294 – 302, 1998.<br />

[108] G.A. Richards <str<strong>on</strong>g>and</str<strong>on</strong>g> E.H. Robey. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> system <str<strong>on</strong>g>impedance</str<strong>on</strong>g> mismatch<br />

<strong>on</strong> combusti<strong>on</strong> dynamics. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo<br />

2005: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 6-9, 2005, Nevada, USA, 2005.<br />

[109] G.A. Richards, D.L. Straub, <str<strong>on</strong>g>and</str<strong>on</strong>g> E.H. Robey. Passive c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong><br />

dynamics in stati<strong>on</strong>ary <strong>gas</strong> <strong>turbine</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Propulsi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Power, 19(5):795–810, 2003.<br />

[110] S.W. Rienstra <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Hirschberg. An introducti<strong>on</strong> to acoustics. Eindhoven<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, 2006.<br />

[111] S. Roux, G. Lartigue, T. Poinsot, U. Meier, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Bérat. Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> mean<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> unsteady flow in a swirled combustor using experiments, acoustic<br />

analysis, <str<strong>on</strong>g>and</str<strong>on</strong>g> large eddy simulati<strong>on</strong>s. Combusti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 141(1-<br />

2):40–54, 2005.<br />

182


BIBLIOGRAPHY<br />

[112] T. Sattelmayer. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the combustor aerodynamics <strong>on</strong> combusti<strong>on</strong><br />

instabilities from equivalence ratio fluctuati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 125:11–19, Januar 2003.<br />

[113] T. Sattelmayer <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. Assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for the computati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the linear stability <str<strong>on</strong>g>of</str<strong>on</strong>g> combustors. Combusti<strong>on</strong> Science <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Technology, 175(3):453–476, 2003.<br />

[114] T. Sattelmayer <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. A novel method for the computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the linear stability <str<strong>on</strong>g>of</str<strong>on</strong>g> combustors. Combusti<strong>on</strong> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology,<br />

175(3):477–497, 2003.<br />

[115] T. Scarinci <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Freeman. The propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fual-air ratio disturbance<br />

in a simple premixer <str<strong>on</strong>g>and</str<strong>on</strong>g> its influence <strong>on</strong> pressure wave amplificati<strong>on</strong>.<br />

Number 2000-GT-0106 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2000<br />

Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, May 8-11, 2000, Munich, Germany, 2000.<br />

[116] T. Scarinci, C. Freeman, <str<strong>on</strong>g>and</str<strong>on</strong>g> I. Day. Passive c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> instability<br />

in a low emissi<strong>on</strong>s aeroderivative <strong>gas</strong> <strong>turbine</strong>. Number GT 2004-<br />

53767 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2004: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 14-17, 2004, Vienna, Austria, 2004.<br />

[117] T. Scarinci <str<strong>on</strong>g>and</str<strong>on</strong>g> J.L. Halpin. Industrial trent combustor - combusti<strong>on</strong><br />

noise characteristics. ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering For Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Power, 122(98-GT-9):280–286, 2000.<br />

[118] T. Schönfeld <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Poinsot. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s in LES<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> premixed combusti<strong>on</strong> instabilities. Center for Turbulence Research,<br />

Annular Research Briefs, pages 73–84, 1999.<br />

[119] B. Schuermans, V. Bellucci, G. Felix, F. Meili, P. Flohr, <str<strong>on</strong>g>and</str<strong>on</strong>g> C.O. Paschereit.<br />

A detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> thermoacoustic interacti<strong>on</strong> mechanisms in a turbulent<br />

premixed flame. Number GT2004-53831 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME<br />

Turbo Expo 2004: Power for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 14-17, 2004, Vienna,<br />

Austria, 2004.<br />

[120] T. Schuller, D. Durox, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. C<str<strong>on</strong>g>and</str<strong>on</strong>g>el. Self-induced combusti<strong>on</strong> oscillati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> laminar premixed flames stabilized <strong>on</strong> annular burners. Combusti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 135:525–537, 2003.<br />

183


BIBLIOGRAPHY<br />

[121] T. Schuller, D. Durox, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. C<str<strong>on</strong>g>and</str<strong>on</strong>g>el. A unified model for the predicti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> laminar flame transfer functi<strong>on</strong>s: Comparis<strong>on</strong>s between c<strong>on</strong>ical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

V-flame dynamics. Combusti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 134:21–34, 2003.<br />

[122] J.R. Seume, N. Vortmeyer, W. Krause, J. Hermann, C.-C. Hantschk,<br />

P. Zangl, S. Gleis, D. Vortmeyer, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Orthmann. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> active<br />

combusti<strong>on</strong> instability c<strong>on</strong>trol to a heavy duty <strong>gas</strong> <strong>turbine</strong>. ASME<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 120:721–726, 1998.<br />

[123] D. Shcherbik, E. Lubarsky, Y. Neumeier, B.T. Zinn, K. McManus, T.F.<br />

Fric, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Srinivasan. Suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> instabilities in <strong>gas</strong>eous <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

high-pressure combustor using n<strong>on</strong>-coherent oscillatory <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong>.<br />

Number GT2003-38103 in Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ASME Turbo Expo 2003: Power<br />

for L<str<strong>on</strong>g>and</str<strong>on</strong>g>, Sea <str<strong>on</strong>g>and</str<strong>on</strong>g> Air, June 16-19, 2003, Atlanta, USA, 2003.<br />

[124] R.C. Steele, L.H. Cowell, S.M. Cann<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> C.E. Smith. Passive c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> combusti<strong>on</strong> instability in lean premixed combustors. ASME Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering for Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 122(3):412–419, 2000.<br />

[125] D.L. Straub <str<strong>on</strong>g>and</str<strong>on</strong>g> G.A. Richards. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fuel</str<strong>on</strong>g> nozzle c<strong>on</strong>figuati<strong>on</strong> <strong>on</strong><br />

premix combusti<strong>on</strong> dynamics. Number 98-GT-492 in Internati<strong>on</strong>al<br />

Gas Turbine <str<strong>on</strong>g>and</str<strong>on</strong>g> Aeroengine C<strong>on</strong>gress <str<strong>on</strong>g>and</str<strong>on</strong>g> Exchibiti<strong>on</strong>, June 2-5, 1998,<br />

Stockholm, Sweden, 1998.<br />

[126] H. Tennekes <str<strong>on</strong>g>and</str<strong>on</strong>g> J.L Lumley. A first course in turbulence. MIT Press,<br />

Cambridge, USA, 1972.<br />

[127] K. Truffin <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Poinsot. Comparis<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for<br />

acoustic identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> burners. Combusti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Flame, 142:388–400,<br />

2005.<br />

[128] S.R. Turns. An introducti<strong>on</strong> to combusti<strong>on</strong>: c<strong>on</strong>cepts <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s.<br />

McGraw-Hill, 2nd editi<strong>on</strong>, 2000.<br />

[129] J. van Kampen, J.B.W. Kok, <str<strong>on</strong>g>and</str<strong>on</strong>g> T.H. van der Meer. Efficient retrieval <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a flame transfer functi<strong>on</strong> from a steady state CFD simulati<strong>on</strong>. 12th Internati<strong>on</strong>al<br />

C<strong>on</strong>gress <strong>on</strong> Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, July 11-14, 2005, Lisb<strong>on</strong>,<br />

Portugal, 2005.<br />

184


BIBLIOGRAPHY<br />

[130] A. Widenhorn. private communicati<strong>on</strong>. 2007.<br />

[131] D.C. Wilcox. Multiscale model for turbulent flows. AIAA 24th Aerospace<br />

Sciences Meeting, American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Astr<strong>on</strong>autics,<br />

1986.<br />

[132] F.A. Williams. Combusti<strong>on</strong> Theory. The Benjamin-Cummings Publishing<br />

Inc., California, USA, 2nd editi<strong>on</strong>, 1985.<br />

[133] D. You, Y. Huang, <str<strong>on</strong>g>and</str<strong>on</strong>g> V. Yang. A generalized model <str<strong>on</strong>g>of</str<strong>on</strong>g> acoustic resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent premixed flame <str<strong>on</strong>g>and</str<strong>on</strong>g> its applicati<strong>on</strong> to <strong>gas</strong>-<strong>turbine</strong> combusti<strong>on</strong><br />

instability analysis. Combusti<strong>on</strong> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology, 177(5 -<br />

6):1109–1150, 2005.<br />

[134] S.W. Yuen, A. Gentemann, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Polifke. Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> system identifiability using real time system<br />

modeling. 11th Internati<strong>on</strong>al C<strong>on</strong>gress <strong>on</strong> Sound <str<strong>on</strong>g>and</str<strong>on</strong>g> Vibrati<strong>on</strong>, July 5-<br />

8, 2004, St. Petersburg, Russia, pages 3501–3508, 2004.<br />

[135] M. Zhu, A.P. Dowling, <str<strong>on</strong>g>and</str<strong>on</strong>g> K.N.C. Bray. Transfer functi<strong>on</strong> calculati<strong>on</strong>s<br />

for aeroengine combusti<strong>on</strong> oscillati<strong>on</strong>s. ASME Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering<br />

For Gas Turbines <str<strong>on</strong>g>and</str<strong>on</strong>g> Power, 127(2001-GT-0374):18–26, 2005.<br />

[136] V. Zim<strong>on</strong>t <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Lipatnikov. A numerical model <str<strong>on</strong>g>of</str<strong>on</strong>g> premixed turbulent<br />

combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>gas</strong>es. Chemical Physics Reports, 14(7):993–1025, 1995.<br />

[137] V. Zim<strong>on</strong>t, W. Polifke, M. Bettelini, <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Weisenstein. An efficient computati<strong>on</strong>al<br />

model for premixed turbulent combusti<strong>on</strong> at high Reynolds<br />

numbers based <strong>on</strong> a turbulent flame speed closure. ASME Transacti<strong>on</strong>s<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluids Engineering, 120(3):526 – 532, 1997.<br />

[138] V. L. Zim<strong>on</strong>t. Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a homogeneous <str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

mixture at high Reynolds numbers. Combust. Expl. <str<strong>on</strong>g>and</str<strong>on</strong>g> Shock Waves,<br />

15:305–311, 1979.<br />

185


A<br />

Appendix<br />

A.1 Transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pu, f g transfer matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> scattering<br />

(sr ) matrix notati<strong>on</strong><br />

The following relati<strong>on</strong>s show the necessary operati<strong>on</strong>s to transform a transfer<br />

or scattering matrix from <strong>on</strong>e notati<strong>on</strong> into another:<br />

T pu = Z T fg Z −1<br />

T fg = Z −1 T pu Z<br />

(A.1)<br />

(A.2)<br />

where<br />

⎛<br />

⎜<br />

Z ≡ ⎝<br />

1 1<br />

−1 1<br />

⎞<br />

⎟<br />

⎠. (A.3)<br />

With<br />

⎛<br />

⎜<br />

T fg ≡ ⎝<br />

A<br />

C<br />

B<br />

D<br />

⎞<br />

⎟<br />

⎠<br />

(A.4)<br />

the scattering matrix can be obtained:<br />

⎛<br />

⎜<br />

S sr = ⎝<br />

A− B C D<br />

− C D<br />

B<br />

D<br />

1<br />

D<br />

⎞<br />

⎟<br />

⎠. (A.5)<br />

186


A.2 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the optimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> circumferential injecti<strong>on</strong> holes<br />

A.2 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the optimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> circumferential injecti<strong>on</strong><br />

holes<br />

The optimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> circumferential holes was estimated according to<br />

Holdeman et al. [45] using the relati<strong>on</strong><br />

C = S H<br />

√<br />

J, (A.6)<br />

where S denotes the spacing <str<strong>on</strong>g>of</str<strong>on</strong>g> the holes <str<strong>on</strong>g>and</str<strong>on</strong>g> H corresp<strong>on</strong>ds to the height <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rectangular duct. C represents a c<strong>on</strong>stant with an optimum value <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5. For a<br />

cylindrical duct the spacing amounts to S = 2πR/n with n being the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> holes. Therefore the number <str<strong>on</strong>g>of</str<strong>on</strong>g> holes can be calculated by the following<br />

equati<strong>on</strong>:<br />

n= 2πR √<br />

J.<br />

H<br />

(A.7)<br />

In case <str<strong>on</strong>g>of</str<strong>on</strong>g> a cylindrical duct the height can be substituted by the radius using<br />

the relati<strong>on</strong> R = H/ 2. For the analyzed case the radius can be determined<br />

by the outer radius or the difference between the outer radius <str<strong>on</strong>g>and</str<strong>on</strong>g> the inner<br />

radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing secti<strong>on</strong>. The optimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> holes can then<br />

be calculated <str<strong>on</strong>g>and</str<strong>on</strong>g> lies in the range between 6.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10.2.<br />

A.3 Main flow parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network<br />

models<br />

The following tables represent the basic flow parameters which are required<br />

as an input for the acoustic network models used in the present work. In additi<strong>on</strong><br />

Fig. A.1 shows the network structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong><br />

with three <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> systems (c<strong>on</strong>figurati<strong>on</strong> B).<br />

187


188<br />

Figure A.1: Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network model <str<strong>on</strong>g>of</str<strong>on</strong>g> the combusti<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong><br />

with three injecti<strong>on</strong> stages, case B.<br />

Legend:<br />

Boundary<br />

C<strong>on</strong>diti<strong>on</strong><br />

Simple<br />

Duct<br />

Area<br />

Change<br />

Closed end<br />

(loudspeaker)<br />

Axial<br />

Swirler<br />

Closed end<br />

Res<strong>on</strong>ator<br />

tube I<br />

T-juncti<strong>on</strong><br />

Fuel<br />

Flame<br />

plenum I<br />

AC IV<br />

Axial<br />

Swirler<br />

Fuel injecti<strong>on</strong><br />

tube I<br />

Plenum AC I<br />

Mixing Air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

secti<strong>on</strong> I T-juncti<strong>on</strong><br />

Mixing<br />

Combusti<strong>on</strong><br />

AC II<br />

Flame<br />

secti<strong>on</strong> IV<br />

chamber I<br />

Closed end<br />

Res<strong>on</strong>ator<br />

tube II<br />

Fuel<br />

plenum II<br />

AC V<br />

Fuel injecti<strong>on</strong><br />

tube II<br />

Mixing<br />

secti<strong>on</strong> II<br />

Air-<str<strong>on</strong>g>fuel</str<strong>on</strong>g><br />

T-juncti<strong>on</strong> II<br />

Mixing<br />

secti<strong>on</strong> III<br />

Combusti<strong>on</strong> partly reflecting<br />

chamber II Open End<br />

Appendix


A.3 Main flow parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the acoustic network models<br />

Simple ducts l [m] M [-] ρ [kg/m 3 ] c [m/s]<br />

Plenum 0.095 0.0018 1.166 349<br />

Mixing secti<strong>on</strong> I 0.055 0.053 1.166 349<br />

Mixing secti<strong>on</strong> II 0.08 0.055 1.14 350.6<br />

Mixing secti<strong>on</strong> III 0.045 0.055 1.14 350.6<br />

Combusti<strong>on</strong> chamber I 0.03 0.018 1.14 350.6<br />

Combusti<strong>on</strong> chamber II 0.27 0.019 0.176 851.4<br />

Fuel injecti<strong>on</strong> tube 0.005 0.191 0.66 448<br />

Fuel plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> res<strong>on</strong>ator tube L R,2 0.0173 0.66 448<br />

Table A.1: Main flow parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the simple ducts (c<strong>on</strong>figurati<strong>on</strong> A).<br />

Simple ducts l [m] M [-] ρ [kg/m 3 ] c [m/s]<br />

Plenum 0.095 0.00176 1.182 346<br />

Mixing secti<strong>on</strong> I 0.055 0.052 1.182 346<br />

Mixing secti<strong>on</strong> II 0.04 0.053 1.168 349<br />

Mixing secti<strong>on</strong> III 0.04 0.056 1.13 350.6<br />

Mixing secti<strong>on</strong> IV 0.045 0.056 1.13 350.6<br />

Combusti<strong>on</strong> chamber I 0.03 0.0186 1.13 350.6<br />

Combusti<strong>on</strong> chamber II 0.27 0.019 0.176 851.4<br />

Fuel injecti<strong>on</strong> tube I 0.005 0.138 0.66 448<br />

Fuel plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> res<strong>on</strong>ator tube I L R,2 0.0125 0.66 448<br />

Fuel injecti<strong>on</strong> tube II 0.005 0.208 0.66 448<br />

Fuel plenum <str<strong>on</strong>g>and</str<strong>on</strong>g> res<strong>on</strong>ator tube II L R,3 0.0185 0.66 448<br />

Table A.2: Main flow parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the simple ducts (c<strong>on</strong>figurati<strong>on</strong> B).<br />

Area changes A i [m 2 ] A j [m 2 ] ζ [-]<br />

Plenum - mixing secti<strong>on</strong> (AC I) 0.312 0.00106 0.27<br />

Mixing secti<strong>on</strong> II - combusti<strong>on</strong> chamber I (AC II) 0.00106 0.00816 8.5<br />

Fuel plenum I - <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube I (AC IV) 0.00005 0.000009 0 / 0.73<br />

Fuel plenum II - <str<strong>on</strong>g>fuel</str<strong>on</strong>g> injecti<strong>on</strong> tube II (AC IV) 0.00005 0.000009 0 / 0.73<br />

Table A.3: Main flow parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the area changes (c<strong>on</strong>figurati<strong>on</strong> A, B).<br />

189


Appendix<br />

T-juncti<strong>on</strong>s A i [m 2 ] A j [m 2 ] A k [m 2 ] ζ i [-] ζ j [-]<br />

T-juncti<strong>on</strong> I, II 0.000009 0.00106 0.00106 0.1 - 0.84 0.11<br />

Table A.4: Main flow parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the T-juncti<strong>on</strong> (c<strong>on</strong>figurati<strong>on</strong> A, B).<br />

Flame γ [-] T i [K] T m [K]<br />

Flame 1.39 298 1930<br />

Table A.5: Main flow parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the flame (c<strong>on</strong>figurati<strong>on</strong> A, B).<br />

190

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!