16.10.2014 Views

Hydro Power from a Control Engineering Perspective

Hydro Power from a Control Engineering Perspective

Hydro Power from a Control Engineering Perspective

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Hydro</strong> <strong>Power</strong> <strong>from</strong> a<br />

<strong>Control</strong> <strong>Engineering</strong> <strong>Perspective</strong><br />

Bernt.Lie@hit.no<br />

Telemark University College<br />

2 nd International Seminar on Renewable Energy, UiA, Grimstad, May 31, 2011


Overview<br />

• The need for<br />

renewable energy<br />

• <strong>Hydro</strong> power systems<br />

• Modeling HPS<br />

• Simulation tools<br />

• <strong>Control</strong>ling HPS<br />

• <strong>Hydro</strong> power &<br />

renewable energy<br />

2


The need for renewable energy<br />

Human needs:<br />

• Fresh air (1 min)<br />

• Fresh water (1-2 d)<br />

• Food (2 weeks)<br />

• Humane conditions<br />

(culture, democracy)<br />

• Health<br />

• Standard of living<br />

Renewable resources:<br />

• Municipal solid waste<br />

• <strong>Hydro</strong> – small/large scale<br />

• Wind – onshore/offshore<br />

• Biofuels – energy crops,<br />

forestry wastes,<br />

agricultural wastes<br />

• Wave – shore/offshore<br />

• Tidal – stream/barrage<br />

• Solar – PV/thermal<br />

3


<strong>Hydro</strong> power around the globe<br />

Location Capacity Production P/C Comment<br />

Norway 30 GW 135 TWh 0.5<br />

Switzerland 35 TWh 47% RofR<br />

Sweden<br />

16 GW<br />

Finland 3 GW 10-17 TWh 0.4-0.65<br />

Denmark 4 MW Tangenværket<br />

EU 120 GW 365 TWh 0.35<br />

Three Gorges, China 22.5 GW 80 TWh 0.5<br />

Itaipú, Paraguay 14 GW 93 TWh 0.75<br />

USA 95 GW ?<br />

Minnesota 0.15 GW ? RofR<br />

Grand Coulee Dam 6.8 GW 20 TWh No. 5


<strong>Hydro</strong> power systems – history I<br />

• Undershot wheel:<br />

China/Egypt several<br />

thousand years ago<br />

• Rivers and shallow canals<br />

• Overshot wheel: improved<br />

design<br />

• Artificial falls up to 3 m<br />

• Best designs: 85% eff.<br />

www.top-alternative-energy-sources.com/water-wheel-design.html<br />

5


<strong>Hydro</strong> power systems – history II<br />

Flour mill<br />

Saw mill<br />

farm, Norway<br />

www.top-alternative-energy-sources.com/<br />

water-wheel-design.html<br />

6


<strong>Hydro</strong> power systems – main principle<br />

• Water level<br />

difference<br />

• Water flow<br />

• ‘’Turbine’’<br />

• Generator<br />

• ‘’Grid’’ with<br />

load<br />

www.green-trust.org/hydro.htm


<strong>Hydro</strong> power systems – high head plant<br />

intake tunnel<br />

surge shaft<br />

reservoir<br />

grid<br />

penstock<br />

aggregate<br />

downstream


Modeling HPS: turbine model I<br />

Pelton turbine<br />

nozzle<br />

needle<br />

jet<br />

bucket<br />

overspeed deflector<br />

9


Modeling HPS: turbine model II<br />

Francis turbine<br />

Kaplan turbine<br />

guide vanes<br />

water flow<br />

runner<br />

guide vanes<br />

runner<br />

blade pitch<br />

propeller blades<br />

water flow<br />

10


Modeling HPS: turbine model III<br />

D. Winkler<br />

Admission: scaled volumetric flowrate<br />

11


Modeling HPS: penstock model I<br />

surge shaft<br />

aggregate<br />

penstock<br />

12


Modeling HPS: penstock model II<br />

Compressible water<br />

Elastic penstock wall<br />

13


Modeling HPS: penstock model III<br />

40<br />

Incompressible vs. compressible transfer function<br />

j♒()j (dB)<br />

20<br />

0<br />

-20<br />

-40<br />

10 -1 10 0 10 1 10 2 10 3<br />

100<br />

50<br />

6 ♒()<br />

0<br />

-50<br />

-100<br />

10 -1 10 0 10 1 10 2 10 3<br />

(rad/ s)


Modeling HPS: waterway model<br />

15


Modeling HPS: turbine power<br />

16


Modeling HPS: aggregate<br />

17


Modeling HPS: synchronous generator I<br />

18


Modeling HPS: synchronous generator II<br />

Two pole salient rotor/3 phase<br />

Example<br />

19


Modeling HPS: synchronous generator III<br />

Park transformation:<br />

Constant parameters in (0,d,q):<br />

20


i<br />

Modeling HPS:synchronous generator IV<br />

Electric torque:<br />

Short circuit, constant ω a :<br />

1.5 x 105<br />

Three-phase current i a<br />

, δ = 0°<br />

1<br />

0.5<br />

i a<br />

, A<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

t, sec<br />

1<br />

Three-phase flux linkage lam a<br />

, δ = 0°<br />

0<br />

-1<br />

lam a<br />

, Wb.turn<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

0 0.5 1 1.5 2 2.5<br />

t, sec<br />

21


Modeling HPS: interface + grid<br />

• Transformer:<br />

• Transmission line:<br />

Open terminal case:<br />

22


Modeling HPS: customer<br />

• Resistive or complex<br />

load<br />

• Grid + load give phase<br />

lead/lag in system:<br />

• Load changes:<br />

– change of phase lag<br />

– variation in Active<br />

<strong>Power</strong>, P A<br />

• Necessary to keep<br />

track of:<br />

– Active vs. Reactive<br />

power<br />

– Voltage amplitude<br />

23


Simulating HPS I<br />

LVTrans & LabVIEW


Simulating HPS II<br />

<strong>Hydro</strong>Plant & Dymola (Modelica)


<strong>Control</strong>ling HPS I<br />

• Turbine opening u t<br />

controls ω a /W m<br />

• Field voltage v f<br />

controls line voltage/<br />

active-reactive power<br />

26


<strong>Control</strong>ling HPS II<br />

What is special about control<br />

of electrical power?<br />

• Difficult to store electrical<br />

energy<br />

– Balance is attempted at all<br />

time<br />

• Common grid frequency<br />

• Common (consumer) grid<br />

voltage<br />

27


<strong>Control</strong>ling HPS III<br />

Multi generator grid:<br />

• all generators lock in to<br />

the same electric<br />

frequency<br />

http://en.wikipedia.org/wiki/Crankshaft<br />

28


Trends: Renewable energy & storage<br />

Renewable resources:<br />

• Municipal solid waste<br />

• <strong>Hydro</strong> – small/large scale<br />

• Wind – onshore/offshore<br />

• Biofuels – energy crops,<br />

forestry wastes,<br />

agricultural wastes<br />

• Wave – shore/offshore<br />

• Tidal – stream/barrage<br />

• Solar – PV/thermal<br />

Storage possibilities:<br />

• Pump storage hydro<br />

plants<br />

• Plug-in cars/batteries<br />

• Electrolysis of water into<br />

hydrogen + fuel cells<br />

• High temperature water<br />

(T>100C for electricity,<br />

district heating, etc.)<br />

• High temperature vapor<br />

29


Trends: hydro power + wind power etc<br />

Renewable power<br />

varies:<br />

wind<br />

Demand varies:<br />

tidal<br />

<strong>Power</strong> can be predicted:<br />

wind<br />

G. Boyle (ed): Renewable Electricity and the Grid. The challenge of variability., 2007, Earthscan, London<br />

30


Trends: hydro power + wind power etc<br />

• Increased power<br />

production <strong>from</strong><br />

renewable resources<br />

(wind, etc.) in Europe<br />

• <strong>Hydro</strong> power admits rapid<br />

production variation<br />

• Stored hydro power<br />

(reservoirs) suitable as<br />

balance power<br />

• Run-of-river hydro power<br />

less suitable<br />

• Increased transmission<br />

capacity necessary<br />

• Many small sources <br />

increased safety<br />

requirements<br />

• Growing need for rapid<br />

and good control of hydro<br />

power<br />

31


Conclusions<br />

• <strong>Hydro</strong> power production requires knowledge in many<br />

fields<br />

• Stored hydro power is suitable as balance power for other<br />

renewable energy resources<br />

• The new interconnected grid of renewable energy sources<br />

poses challenges for optimal operation<br />

• Modeling and simulation key technologies for optimal<br />

energy usage


Bibliography<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!