Hydro Power from a Control Engineering Perspective
Hydro Power from a Control Engineering Perspective
Hydro Power from a Control Engineering Perspective
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Hydro</strong> <strong>Power</strong> <strong>from</strong> a<br />
<strong>Control</strong> <strong>Engineering</strong> <strong>Perspective</strong><br />
Bernt.Lie@hit.no<br />
Telemark University College<br />
2 nd International Seminar on Renewable Energy, UiA, Grimstad, May 31, 2011
Overview<br />
• The need for<br />
renewable energy<br />
• <strong>Hydro</strong> power systems<br />
• Modeling HPS<br />
• Simulation tools<br />
• <strong>Control</strong>ling HPS<br />
• <strong>Hydro</strong> power &<br />
renewable energy<br />
2
The need for renewable energy<br />
Human needs:<br />
• Fresh air (1 min)<br />
• Fresh water (1-2 d)<br />
• Food (2 weeks)<br />
• Humane conditions<br />
(culture, democracy)<br />
• Health<br />
• Standard of living<br />
Renewable resources:<br />
• Municipal solid waste<br />
• <strong>Hydro</strong> – small/large scale<br />
• Wind – onshore/offshore<br />
• Biofuels – energy crops,<br />
forestry wastes,<br />
agricultural wastes<br />
• Wave – shore/offshore<br />
• Tidal – stream/barrage<br />
• Solar – PV/thermal<br />
3
<strong>Hydro</strong> power around the globe<br />
Location Capacity Production P/C Comment<br />
Norway 30 GW 135 TWh 0.5<br />
Switzerland 35 TWh 47% RofR<br />
Sweden<br />
16 GW<br />
Finland 3 GW 10-17 TWh 0.4-0.65<br />
Denmark 4 MW Tangenværket<br />
EU 120 GW 365 TWh 0.35<br />
Three Gorges, China 22.5 GW 80 TWh 0.5<br />
Itaipú, Paraguay 14 GW 93 TWh 0.75<br />
USA 95 GW ?<br />
Minnesota 0.15 GW ? RofR<br />
Grand Coulee Dam 6.8 GW 20 TWh No. 5
<strong>Hydro</strong> power systems – history I<br />
• Undershot wheel:<br />
China/Egypt several<br />
thousand years ago<br />
• Rivers and shallow canals<br />
• Overshot wheel: improved<br />
design<br />
• Artificial falls up to 3 m<br />
• Best designs: 85% eff.<br />
www.top-alternative-energy-sources.com/water-wheel-design.html<br />
5
<strong>Hydro</strong> power systems – history II<br />
Flour mill<br />
Saw mill<br />
farm, Norway<br />
www.top-alternative-energy-sources.com/<br />
water-wheel-design.html<br />
6
<strong>Hydro</strong> power systems – main principle<br />
• Water level<br />
difference<br />
• Water flow<br />
• ‘’Turbine’’<br />
• Generator<br />
• ‘’Grid’’ with<br />
load<br />
www.green-trust.org/hydro.htm
<strong>Hydro</strong> power systems – high head plant<br />
intake tunnel<br />
surge shaft<br />
reservoir<br />
grid<br />
penstock<br />
aggregate<br />
downstream
Modeling HPS: turbine model I<br />
Pelton turbine<br />
nozzle<br />
needle<br />
jet<br />
bucket<br />
overspeed deflector<br />
9
Modeling HPS: turbine model II<br />
Francis turbine<br />
Kaplan turbine<br />
guide vanes<br />
water flow<br />
runner<br />
guide vanes<br />
runner<br />
blade pitch<br />
propeller blades<br />
water flow<br />
10
Modeling HPS: turbine model III<br />
D. Winkler<br />
Admission: scaled volumetric flowrate<br />
11
Modeling HPS: penstock model I<br />
surge shaft<br />
aggregate<br />
penstock<br />
12
Modeling HPS: penstock model II<br />
Compressible water<br />
Elastic penstock wall<br />
13
Modeling HPS: penstock model III<br />
40<br />
Incompressible vs. compressible transfer function<br />
j♒()j (dB)<br />
20<br />
0<br />
-20<br />
-40<br />
10 -1 10 0 10 1 10 2 10 3<br />
100<br />
50<br />
6 ♒()<br />
0<br />
-50<br />
-100<br />
10 -1 10 0 10 1 10 2 10 3<br />
(rad/ s)
Modeling HPS: waterway model<br />
15
Modeling HPS: turbine power<br />
16
Modeling HPS: aggregate<br />
17
Modeling HPS: synchronous generator I<br />
18
Modeling HPS: synchronous generator II<br />
Two pole salient rotor/3 phase<br />
Example<br />
19
Modeling HPS: synchronous generator III<br />
Park transformation:<br />
Constant parameters in (0,d,q):<br />
20
i<br />
Modeling HPS:synchronous generator IV<br />
Electric torque:<br />
Short circuit, constant ω a :<br />
1.5 x 105<br />
Three-phase current i a<br />
, δ = 0°<br />
1<br />
0.5<br />
i a<br />
, A<br />
0<br />
-0.5<br />
-1<br />
-1.5<br />
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />
t, sec<br />
1<br />
Three-phase flux linkage lam a<br />
, δ = 0°<br />
0<br />
-1<br />
lam a<br />
, Wb.turn<br />
-2<br />
-3<br />
-4<br />
-5<br />
-6<br />
0 0.5 1 1.5 2 2.5<br />
t, sec<br />
21
Modeling HPS: interface + grid<br />
• Transformer:<br />
• Transmission line:<br />
Open terminal case:<br />
22
Modeling HPS: customer<br />
• Resistive or complex<br />
load<br />
• Grid + load give phase<br />
lead/lag in system:<br />
• Load changes:<br />
– change of phase lag<br />
– variation in Active<br />
<strong>Power</strong>, P A<br />
• Necessary to keep<br />
track of:<br />
– Active vs. Reactive<br />
power<br />
– Voltage amplitude<br />
23
Simulating HPS I<br />
LVTrans & LabVIEW
Simulating HPS II<br />
<strong>Hydro</strong>Plant & Dymola (Modelica)
<strong>Control</strong>ling HPS I<br />
• Turbine opening u t<br />
controls ω a /W m<br />
• Field voltage v f<br />
controls line voltage/<br />
active-reactive power<br />
26
<strong>Control</strong>ling HPS II<br />
What is special about control<br />
of electrical power?<br />
• Difficult to store electrical<br />
energy<br />
– Balance is attempted at all<br />
time<br />
• Common grid frequency<br />
• Common (consumer) grid<br />
voltage<br />
27
<strong>Control</strong>ling HPS III<br />
Multi generator grid:<br />
• all generators lock in to<br />
the same electric<br />
frequency<br />
http://en.wikipedia.org/wiki/Crankshaft<br />
28
Trends: Renewable energy & storage<br />
Renewable resources:<br />
• Municipal solid waste<br />
• <strong>Hydro</strong> – small/large scale<br />
• Wind – onshore/offshore<br />
• Biofuels – energy crops,<br />
forestry wastes,<br />
agricultural wastes<br />
• Wave – shore/offshore<br />
• Tidal – stream/barrage<br />
• Solar – PV/thermal<br />
Storage possibilities:<br />
• Pump storage hydro<br />
plants<br />
• Plug-in cars/batteries<br />
• Electrolysis of water into<br />
hydrogen + fuel cells<br />
• High temperature water<br />
(T>100C for electricity,<br />
district heating, etc.)<br />
• High temperature vapor<br />
29
Trends: hydro power + wind power etc<br />
Renewable power<br />
varies:<br />
wind<br />
Demand varies:<br />
tidal<br />
<strong>Power</strong> can be predicted:<br />
wind<br />
G. Boyle (ed): Renewable Electricity and the Grid. The challenge of variability., 2007, Earthscan, London<br />
30
Trends: hydro power + wind power etc<br />
• Increased power<br />
production <strong>from</strong><br />
renewable resources<br />
(wind, etc.) in Europe<br />
• <strong>Hydro</strong> power admits rapid<br />
production variation<br />
• Stored hydro power<br />
(reservoirs) suitable as<br />
balance power<br />
• Run-of-river hydro power<br />
less suitable<br />
• Increased transmission<br />
capacity necessary<br />
• Many small sources <br />
increased safety<br />
requirements<br />
• Growing need for rapid<br />
and good control of hydro<br />
power<br />
31
Conclusions<br />
• <strong>Hydro</strong> power production requires knowledge in many<br />
fields<br />
• Stored hydro power is suitable as balance power for other<br />
renewable energy resources<br />
• The new interconnected grid of renewable energy sources<br />
poses challenges for optimal operation<br />
• Modeling and simulation key technologies for optimal<br />
energy usage
Bibliography<br />
33