Dinuclear Alkynyl Gold(I) Complexes Containing Bridging N ...
Dinuclear Alkynyl Gold(I) Complexes Containing Bridging N ...
Dinuclear Alkynyl Gold(I) Complexes Containing Bridging N ...
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
Article<br />
pubs.acs.org/Organometallics<br />
<strong>Dinuclear</strong> <strong>Alkynyl</strong> <strong>Gold</strong>(I) <strong>Complexes</strong> <strong>Containing</strong> <strong>Bridging</strong><br />
N‐Heterocyclic Dicarbene Ligands: New Synthetic Routes and<br />
Luminescence<br />
Juan Gil-Rubio,* ,† Verońica Caḿara, † Delia Bautista, ‡ and JoséVicente* ,†<br />
† Grupo de Química Organometaĺica, Departamento de Química Inorgańica, Facultad de Química, Universidad de Murcia, E-30071<br />
Murcia, Spain<br />
‡ SAI, Universidad de Murcia, E-30071 Murcia, Spain<br />
*S Supporting Information<br />
ABSTRACT: A series of dinuclear alkynyl gold(I) complexes<br />
of the type [(AuCCR′) 2 {μ-(Im-R) 2 (CH 2 ) n }] (R′ = t Bu,<br />
SiMe 3 , Ph, C 6 H 4 X-4 (X = OMe, CF 3 ,orNO 2 ), 3-pyridyl (Pyl),<br />
2,2′-bipyridin-5-yl (Bpyl); Im-R = N-methylimidazol-N-yl-2-<br />
ylidene (Im-Me), N-butylimidazol-N-yl-2-ylidene (Im-Bu), N-<br />
benzylimidazol-N-yl-2-ylidene (Im-Bz); n = 1, 3, 5) have been<br />
synthesized by (1) deprotonation of arylacetylenes with<br />
K 2 CO 3 in the presence of [(AuCl) 2 {μ-(Im-R) 2 (CH 2 ) n }], (2)<br />
the “acac method”, i.e., the reaction of [(AuCl) 2 {μ-(Im-<br />
R) 2 (CH 2 ) n }] with Tl(acac) and, subsequently, with HCCR′, and (3) the reaction of [Au(CCR′)] n with [(AgBr) 2 {μ-(Im-<br />
R) 2 (CH 2 ) n }]. In addition, mononuclear complexes [(AuCCR′)(Im-R 2 )], where Im-R 2 = N,N′-dimethylimidazol-2-ylidene and<br />
R′ = SiMe 3 or Im-R 2 = N,N′-dibenzylimidazol-2-ylidene and R′ = t Bu, have been prepared by method 2 or 3, respectively. A<br />
dinuclear complex containing two AuCl units connected by an acyclic dicarbene ligand results from the attack of N,N′-<br />
diethylpropylenediamine to the isocyanide ligand of [AuCl(CN t Bu)]. The photophysical properties of the new gold(I) chloro<br />
and alkynyl bis(carbene) complexes have been studied. Most of the dinuclear alkynyl complexes prepared are emissive at room<br />
temperature in the solid state or in solution. <strong>Complexes</strong> derived from aryl- or heteroarylalkynes give structured emissions that<br />
have been assigned to gold-perturbed intraligand 3 [π→π*](CCAr) excited states.<br />
■ INTRODUCTION<br />
<strong>Alkynyl</strong> gold(I) complexes have been extensively studied<br />
because they combine singular structural and photophysical<br />
features. 1 Their most remarkable structural features are related<br />
to their rod-like geometry and their marked tendency to form<br />
aggregates by intra- or intermolecular aurophilic interactions, 2<br />
which make them interesting building blocks for the synthesis<br />
of organometallic rod-shaped oligomers and polymers, 3−6<br />
liquid crystals, 7,8 macrocycles, 4,9,10 catenanes, 4 helicates, 11 and<br />
dendrimers. 12 Their photophysical behavior is characterized by<br />
a strong spin−orbit coupling, leading to emissive triplet states,<br />
the energy and luminescence efficiency of which can be deeply<br />
affected by the aurophilic interactions. 13 These properties have<br />
been exploited to prepare ion probes, 14,15 molecular switches, 16<br />
and electroluminescent devices. 17,18<br />
In contrast with the extensively studied alkynyl gold(I)<br />
complexes with auxiliary phosphine ligands, 1 alkynyl(carbene)<br />
gold(I) derivatives have received only little attention. 3,19−30<br />
The first such compounds were obtained by reacting alkynyl<br />
isocyanide complexes with amines (Scheme 1), which afforded<br />
acyclic diaminocarbene complexes. 22 This method was<br />
successfully applied to di- and trialkynyl derivatives. 3,19,20,22<br />
<strong>Gold</strong>(I) alkynyls containing N-heterocyclic carbene (NHC)<br />
ligands have been obtained (Scheme 1) (a) by reacting a<br />
Scheme 1<br />
NHC(chloro) gold(I) complex with a terminal alkyne in the<br />
presence of base, 23,25,28,29 (b) by transmetalation using<br />
MgCl(CCH) 24 or [Ag(CCPh)] n , 23 (c) by reacting a<br />
Received: May 18, 2012<br />
Published: August 1, 2012<br />
© 2012 American Chemical Society 5414 dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
hydroxo(carbene) gold(I) complex with a terminal alkyne or<br />
with a 1-trimethylsilylalkyne, 26,27 or (d) by replacement of PR 3<br />
by a NHC ligand in [Au(CCR)(PR 3 )]. 18 Some of them are<br />
photoluminescent, and their emissions have been attributed to<br />
metal-perturbed alkynyl-based states. 23,25,26,28 In addition,<br />
several patents have reported the application of mononuclear<br />
alkynyl(carbene) gold(I) complexes as emitters in electroluminescent<br />
devices. 18<br />
<strong>Complexes</strong> containing two or more alkynyl gold(I) units<br />
connected by a multidentate phosphine or isocyanide ligand<br />
have been studied because of their aurophilic interactions and<br />
luminescence. 10,14,31−33 In recent years, bidentate NHC ligands<br />
with variable geometry, steric bulk, and donor ability have<br />
become available. 34,35 Herein we report the first series of<br />
dinuclear gold(I) alkynyls containing bridging dicarbene<br />
ligands. In addition, we have developed two new synthetic<br />
routes for this type of compound: (a) the reaction of<br />
acetylacetonato(carbene) gold(I) complexes with terminal<br />
alkynes (“acac” method), 36 and (b) the carbene-transfer<br />
reaction from a silver carbene complex to an acetylide gold(I)<br />
derivative. Finally, the photophysical properties of the new<br />
alkynyl complexes have been studied and compared to those of<br />
related<br />
■<br />
alkynyl(phosphino) gold(I) compounds.<br />
RESULTS AND DISCUSSION<br />
Synthesis and Structural Characterization. Silver<br />
carbene precursors L n RAg 2 Br 2 (Scheme 2) were obtained in<br />
bond cleavage. Unfortunately, no good-quality single crystals of<br />
the new silver complexes were obtained; in addition, as they are<br />
soluble only in d 6 -DMSO, no low-temperature NMR studies<br />
could be conducted.<br />
<strong>Complexes</strong> L n RAg 2 Br 2 are effective carbene-transfer agents, 35<br />
reacting with [AuCl(SMe 2 )] at room temperature to give good<br />
yields of complexes L n RAu 2 Cl 2 (Scheme 2). The NMR spectra<br />
of the gold(I) complexes obtained agree with their symmetrical<br />
structures, and the C−Au carbon nucleus is more shielded than<br />
in L n RAg 2 Br 2 , giving a narrow singlet in the range 169.7−172.7<br />
ppm.<br />
<strong>Dinuclear</strong> alkynyl gold(I) complexes L n R(AuCCR′) 2 were<br />
prepared using three different methods (Scheme 3):<br />
Scheme 3<br />
Article<br />
Scheme 2<br />
high yield by reacting the corresponding diimidazolium<br />
bromides (L n RH 2 )Br 2 (R = benzyl (Bz), n =1 37 or 3; 38 R=<br />
n Bu, n =1 39 or 3; 40 R = Me, n =3 41 or 5 42 ) with Ag 2 Oin<br />
acetonitrile. The synthesis and X-ray crystal structures of<br />
complexes L 1 BzAg 2 Br 2 43 and L 5 MeAg 2 Br 2 42 have been already<br />
reported, showing that the former is a tetranuclear species,<br />
[Ag 4 (μ-Br) 4 (μ-L 1 Bz) 2 ], while the second can be described as<br />
[Ag 2 (μ-L 5 Me) 2 ][AgBr 2 ] 2 . The NMR spectra of complexes<br />
L n RAg 2 Br 2 show the resonances expected for the symmetrical<br />
dicarbene ligands. A broad singlet in their 13 C{ 1 H} NMR<br />
spectrum (179.1−180.9 ppm, RT), corresponding to the C−Ag<br />
carbon nuclei, suggests a fast exchange process involving Ag−C<br />
Method A: By reacting chloro complexes L n RAu 2 Cl 2 with<br />
Tl(acac) (acac = acetylacetonato) and, subsequently, with<br />
HCCR′ (R′ = alkyl, aryl, or trimethylsilyl). In this application<br />
of the “acac” method, 36 we could not isolate the intermediate<br />
acetylacetonato complexes owing to their low stability. It<br />
should be noted that this method allows the synthesis of<br />
gold(I) trimethylsilylethynyl carbene complexes avoiding basepromoted<br />
desilylation.<br />
Method B: The reaction of [Au(CCR)] n with silver<br />
complexes L n RAg 2 Br 2 . This new method of synthesis of carbene<br />
gold(I) acetylides makes use of two well-known facts: (i)<br />
[Au(CCR)] n polymers react with neutral or anionic ligands,<br />
such as phosphines, 3,14,19,20,32,44− 47 isocyanides,<br />
3,8,15,16,19,20,45−48 or Cl − , 49 to give complexes of the<br />
type [Au(CCR)L] or [Au(CCR)Cl] − , respectively, and<br />
5415<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
Article<br />
(ii) silver carbene complexes are good carbene-transfer<br />
agents. 35,50 We note that, even though AgBr precipitation<br />
occurs during the reaction, the crude gold alkynyls still<br />
contained some soluble silver impurity, which was removed<br />
by stirring their solutions with excess Na 2 S 2 O 3·5H 2 O.<br />
Method C: The reaction of a chloro complex L n RAu 2 Cl 2 with<br />
HCCR′ in the presence of K 2 CO 3 . This method failed for<br />
the reactions of L 3 RAu 2 Cl 2 (R = n Bu or Me) with HCCPh,<br />
affording impure L 3 R(AuCCPh) 2 , and for the reaction of<br />
L 5 MeAu 2 Cl 2 with HCC t Bu, which gave a mixture where the<br />
expected alkynyl L 5 Me(AuCC t Bu) 2 was a minor component.<br />
<strong>Complexes</strong> L R AuCCR′ (Chart 1) were prepared from<br />
L Me AuCl 51 and HCCSiMe 3 using method A or from<br />
[Au(CC t Bu)] n and L Bz AgBr 52 using method B.<br />
Chart 1<br />
The NMR spectra of the gold alkynyl carbene complexes<br />
gave the expected signals according to the high symmetry of the<br />
molecules. The C−Au carbene carbon nuclei are deshielded by<br />
ca. 16 ppm with respect to their parent chloro complexes<br />
L n RAu 2 Cl 2 , which could be attributed to the stronger trans<br />
influence of the alkynyl ligand and the greater electronegativity<br />
of the chloro ligand. The chemical shifts of the acetylenic<br />
carbons were not significantly affected by the nature of the<br />
substituents of the carbene ligands, but depended on the alkyne<br />
substituents as previously noted. 22 In the IR spectra of all<br />
complexes, the ν(CC) bands appeared in the range 2020−<br />
2116 cm −1 . The crystal structure of L 3 Bu(AuCCPh) 2 has<br />
been determined (Figure 1).<br />
Acyclic diamino carbene (ADC) gold(I) complexes have<br />
been obtained by reacting amines with isocyanide gold(I)<br />
complexes. 21,45 We have attempted the synthesis of dinuclear<br />
Au(I) alkynyls containing bridging ADC ligands by using this<br />
Figure 1. Molecular structure of L 3 Bu(AuCCPh) 2 showing the<br />
interaction between pairs of molecules (50% thermal ellipsoids).<br />
Selected bond lengths (Å) and angles (deg): Au(1)−C(1) 2.017(4),<br />
Au(1)−C(2) 1.988(5), C(2)−C(3) 1.215(6), Au(2)−C(4) 2.021(5),<br />
Au(2)−C(5) 1.986(5), C(5)−C(6) 1.201(6), Au(3)−C(51) 2.028(5),<br />
Au(3)−C(52) 1.989(5), C(52)−C(53) 1.207(6), Au(4)−C(54)<br />
2.017(4), Au(4)−C(55) 1.996(5), C(55)−C(56) 1.204(6), Au(1)−<br />
Au(4) 3.3898(4); C(2)−Au(1)−C(1) 174.58(18), C(5)−Au(2)−<br />
C(4) 177.78(19), C(52)−Au(3)−C(51) 178.40(19), C(55)−Au(4)−<br />
C(54) 177.43(18).<br />
Scheme 4<br />
unit. The appearance and λ max values of the spectra are similar<br />
The structure of L 3 Bu(AuCCPh) 2 shows aurophilic<br />
method. Thus, compound L 3 *Au 2 Cl 2 was prepared from interactions between two gold atoms of adjacent molecules<br />
[AuCl(SMe 2 )], tert-butylisocyanide, and N,N′-diethylpropylenediamine<br />
(Scheme 4), and its X-ray crystal structure was<br />
determined (Figure 2). However, the reactions of L 3 *Au 2 Cl 2<br />
with BpylCCH by using several base/solvent combinations<br />
(Figure 1). The Au−Au distance is 3.3898(4) Å, and the two<br />
mutually interacting molecules are independent, differing<br />
mainly in the conformation of the n Bu chains. The structure<br />
of L 3 *Au 2 Cl 2 (Figure 2) shows three independent molecules,<br />
(NEt 3 /CD 2 Cl 2 , K 2 CO 3 /CD 2 Cl 2 or CD 3 COCD 3 , KO t Bu/ which present small differences in their conformation. No<br />
CD 2 Cl 2 , NaOH/THF) gave mixtures that could not be<br />
separated and characterized. The “acac” method or the reaction<br />
between [Au(CCBpyl)(CN t Bu)] and MeHN(CH 2 ) 6 NHMe<br />
in a 2:1 molar ratio gave also inseparable mixtures.<br />
Crystal Structures. The crystal structures of L 3 Bu(AuC<br />
CPh) 2 and L 3 *Au 2 Cl 2 were determined by single-crystal X-ray<br />
diffraction. The coordination geometry is linear in both cases<br />
aurophilic contacts were observed in this case (the shortest<br />
Au−Au distance is 5.116 Å), which could be attributed to the<br />
bulk of the dicarbene ligand.<br />
Electronic Absorption Spectroscopy. <strong>Complexes</strong><br />
L n R(AuCCR′) 2 display absorption bands in the high-energy<br />
region (Tables 2 and 3 and Figure 3) with λ max values (λ max ≤<br />
242 nm) similar to those shown by L n RAu 2 Cl 2 (Table 1) or<br />
(C−Au−X in the range 174.58−178.95°). The Au−C carbene and L Me AuCl 51 (234 and 247 nm). Hence, these bands are<br />
Au−C alkynyl bond distances (2.017−2.028 and 1.986−1.996 Å,<br />
respectively) are comparable to those found in alkynyl(NHC)<br />
gold(I) complexes, 20,21,24−26,28,53 whereas the Au−C carbene and<br />
tentatively assigned to transitions located mainly on the<br />
gold−carbene unit. In addition, all the alkynyl complexes<br />
studied, except L 3 R(AuCCC 6 H 4 NO 2 -4) 2 (R = Bz or n Bu),<br />
Au−Cl bond distances of L 3 *Au 2 Cl 2 (2.003−2.015 and give intense absorptions in the range 257−332 nm with<br />
2.2821−2.3012 Å) are comparable to their homologues in<br />
reported chloro(ADC) gold(I) complexes. 54 energies depending mainly on the substituent of the alkynyl<br />
5416<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
Figure 2. Molecular structure of L 3 *Au 2 Cl 2 (50% thermal ellipsoids).<br />
Selected bond lengths (Å) and angles (deg): Au(1)−C(1) 2.015(4),<br />
Au(1)−Cl(1) 2.3012(10), Au(2)−C(5) 2.004(4), Au(2)−Cl(2)<br />
2.2834(10); C(1)−Au(1)−Cl(1) 178.85(12), C(5)−Au(2)−Cl(2)<br />
178.95(12).<br />
Table 1. Electronic Absorption and Luminescence Data of<br />
L n RAu 2 Cl 2<br />
absorption a luminescence b<br />
λ abs /nm (ε/10 4 dm 3 mol −1<br />
complex<br />
cm −1 )<br />
L 1 BzAu 2 Cl 2 230 (1.33), 237 (1.38),<br />
251 (1.59)<br />
λ exc /<br />
nm medium λ em/nm [τ/<br />
μs]<br />
365 solid 438<br />
273 n PrCN 409<br />
glass<br />
L 3 BzAu 2 Cl 2 229 (1.70, sh), 236 (1.84),<br />
249 (1.95)<br />
322 solid 432 [0.96,<br />
5.07]<br />
270 n PrCN 408<br />
glass<br />
L 1 BuAu 2 Cl 2 230 (2.89), 236 (2.89), 315 solid 423<br />
250 (3.19)<br />
271 n PrCN 409<br />
glass<br />
L 3 BuAu 2 Cl 2 234 (1.49), 248 (1.64) 330 solid 441 [1.05,<br />
7.23]<br />
275 n PrCN 350, 420<br />
glass<br />
L 3 MeAu 2 Cl 2 235 (1.87), 247 (1.91) 320 solid 452, 611<br />
270 n PrCN 408<br />
glass<br />
L 5 MeAu 2 Cl 2 228 (3.0), 233 (2.93), 322 solid 429<br />
248 (3.09)<br />
270 n PrCN 408<br />
glass<br />
a Measured in CH 2 Cl 2 solution (2.1 × 10 −5 to 2.4 × 10 −5 M) at 298 K.<br />
b Measured in the solid state (T = 298 K) or glassy butyronitrile<br />
solution (1 × 10 −6 to 1.8 × 10 −6 M; T = 77 K).<br />
to those of gold(I) alkynyls containing phosphine or isocyanide<br />
ligands, some examples being [Au(CCPh)(PCy 3 )] (λ max =<br />
290 nm), 55 [Au(CCPh)(PPh 3 )] (284 nm), 56 [Au(C<br />
CBpyl)(PEt 3 )] (316 nm), 47 [Au 2 (CCPh) 2 (μ-dppe)] (284<br />
nm), 56 or [Au(CCPh)(CNC 6 H 3 Me 2 -2,6)] (288, 274 nm).<br />
Therefore, taking into account previous studies, 5,55 we<br />
tentatively propose these absorptions to be mostly of<br />
intraligand (IL) [π→π*](CC orCCAr) character with<br />
some participation of Au orbitals. Accordingly, the shifts to<br />
lower energies on varying the alkynyl substituent (the λ max<br />
value of the lowest-energy maximum increases in the order t Bu<br />
Article<br />
≈ Me 3 Si < 4-X-C 6 H 4 (X = H, MeO, CF 3 ) ≈ Pyl < Bpyl) may<br />
be attributed to the increase in π-electron delocalization.<br />
Compounds L 1 Bz(AuCCPh) 2 and L n Bu(AuCC t Bu) 2 (n =1<br />
or 3) display weak absorptions in the 318−330 nm region,<br />
which could not be assigned.<br />
The low-energy region of the spectra of L 3 R(AuC<br />
CC 6 H 4 NO 2 -4) 2 (R = Bz or n Bu; Figure 7) is dominated by a<br />
strong band at 346 or 347 nm (CH 2 Cl 2 ), respectively. This<br />
absorption shows a modest solvatochromism (for R = n Bu, λ max<br />
is 345 or 350 nm in toluene or butyronitrile, respectively) and<br />
is tentatively assigned to a IL [π→π*] transition involving goldperturbed<br />
states located in the CCC 6 H 4 NO 2 unit. The redshift<br />
of this absorption with respect to its homologues in the<br />
remaining phenylethynyl complexes is attributed to some<br />
charge-transfer character induced by the nitro group. The<br />
phosphine counterparts [Au(CCC 6 H 4 NO 2 -4)(PR 3 )] (R =<br />
Cy or Ph) give a band with similar λ max values (336 and 340<br />
nm, respectively), which has been assigned to an intraligand<br />
charge-transfer (ILCT) transition. 57<br />
Luminescence. <strong>Complexes</strong> L n RAu 2 Cl 2 . Previous studies 23,51<br />
have reported that complexes of the type [AuCl(NHC)] (NHC<br />
= 1,3-dimethylimidazol-2-ylidene, 1,3-dimethyltriazol-2-ylidene,<br />
or 1,3-dimethylbenzimidazol-2-ylidene) give two bands in the<br />
solid state, with emission maxima in the ranges 410−435 and<br />
580−650 nm, which were assigned to IL(NHC) and Au···Au<br />
excited states, respectively. Similarly, solid biscarbene complexes<br />
L n RAu 2 Cl 2 give an emission with λ max in the range 423−<br />
452 nm (Table 1 and Figure S1). These bands are broad at<br />
room temperature, but in glassy butyronitrile display shoulders<br />
indicating vibronic structure (Figure S2). In CH 2 Cl 2 at 298 K<br />
they do not emit. Considering the structured character, the<br />
microsecond lifetimes, and the close similarity of these bands<br />
with the high-energy bands of their mononuclear counterparts,<br />
23,51 they are assigned to gold-perturbed 3 IL(NHC) states.<br />
Additionally, solid L 3 MeAu 2 Cl 2 shows a broad structureless band<br />
at 611 nm, which is attributable to a Au···Au emission. The<br />
presence of aurophilic interactions in this complex is not<br />
surprising considering that L 3 Me is the less bulky ligand of the<br />
series, being flexible enough to allow an intramolecular Au···Au<br />
contact, as observed for complex [Au 2 (μ-L 3 Me) 2 ] 2+ . 58 Unfortunately,<br />
we could not obtain single crystals of L 3 MeAu 2 Cl 2 for an<br />
X-ray structural confirmation of this assignment.<br />
<strong>Complexes</strong> L n R(AuCCR′) 2 (R′ = t Bu or SiMe 3 ). In CH 2 Cl 2<br />
at 298 K (Table 2), only L 1 R(AuCC t Bu) 2 (R = Bz or n Bu)<br />
are emissive, giving a broad emisssion around 395 nm and a<br />
very weak emission around 520 nm (Figure S3). In glassy<br />
butyronitrile (77 K) their emissions show vibrational structure<br />
(Figure S4). The solid-state spectra (298 K) of L n R(AuC<br />
C t Bu) 2 (n =1,R=Bzor n Bu, and n =3,R= n Bu) show a broad<br />
emission around 450 nm. In contrast, solid L 3 Bz(AuCC t Bu) 2<br />
(Figure 4) gives a structured emission with λ 0−0 = 413 nm and<br />
vibronic progressions of 1155, 1516, and 2060 cm −1 , and solid<br />
L 3 Bu(AuCCSiMe 3 ) 2 (Figure 4) gives a broad emission at 370<br />
nm and a weak structured emission with λ 0−0 = 423 nm with<br />
vibronic progressions of 1067, 1517, and 1996 cm −1 . The<br />
lifetimes of all solid-state emissions are in the microsecond<br />
range. Considering their Stokes shifts, vibronic progressions,<br />
and lifetimes, we attribute the solid-state emissions of<br />
L 3 Bz(AuCC t Bu) 2 and L 3 Bu(AuCCSiMe 3 ) 2 (low-energy<br />
emission) to gold-perturbed 3 [π→π*](CC) states. For the<br />
other emissions, a gold-perturbed IL(NHC) character is<br />
tentatively assigned. Although the differences between the<br />
solution and solid-state spectra of L 1 R(AuCC t Bu) 2 (R = Bz<br />
5417<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
Article<br />
Table 2. Electronic Absorption and Luminescence Data of L n R(AuCCR′) 2 (R′ = t Bu or Me 3 Si)<br />
absorption a<br />
luminescence b<br />
complex λ abs /nm (ε/10 4 dm 3 mol −1 cm −1 )<br />
λ exc /<br />
nm medium λ em /nm [τ/μs]<br />
L 1 Bz(AuCC t Bu) 2 240 (2.03, sh), 264 (2.62), 318 (0.24), 330 (0.22) 350 solid 451 [0.70, 6.80]<br />
350 CH 2 Cl 2 395, 522 (weak)<br />
350 n PrCN glass 415, 485 (sh)<br />
L 3 Bz(AuCC t Bu) 2 240 (1.97, sh), 261 (2.99) 280 solid 416, 437, 444, 455 [191.8]<br />
CH 2 Cl 2 nonemissive<br />
n PrCN glass nonemissive<br />
L 1 Bu(AuCC t Bu) 2 240 (2.46, sh), 263 (4.41), 330 (0.16, sh) 350 solid 446 [0.73, 5.34]<br />
350 CH 2 Cl 2 394, 517 (weak)<br />
350 n PrCN glass 415, 430 (sh), 487 (sh)<br />
L 3 Bu(AuCC t Bu) 2 240 (2.82, sh), 261 (4.88), 325 (0.05, sh) 350 solid 455 [0.85, 4.88]<br />
CH 2 Cl 2 nonemissive<br />
270 n PrCN glass 360, 443<br />
L 3 Bu(AuCCSiMe 3 ) 2 242 (2.00, sh), 262 (2.95) 300 solid 370 [0.37, 1.01], 423 (weak), 443 (sh), 452 (sh), 462 (sh)<br />
CH 2 Cl 2 nonemissive<br />
270 n PrCN glass 364, 421 (sh)<br />
a Measured in CH 2 Cl 2 solution (ca. 2 × 10 −5 M) at 298 K. b Measured in the solid state (T = 298 K), deoxygenated CH 2 Cl 2 solution (ca. 2 × 10 −5 M;<br />
T = 298 K) or glassy butyronitrile solution (1.3 × 10 −6 to 2.2 × 10 −6 M; T = 77 K).<br />
Table 3. Electronic Absorption and Luminescence Data of L n R(AuCCR′) 2 (R′ = Aryl, Pyl, or Bpyl)<br />
absorption a<br />
luminescence b<br />
compound λ abs /nm (ε/10 4 dm 3 mol −1 cm −1 )<br />
λ exc /<br />
nm medium λ em /nm [τ/μs]<br />
L 1 Bz(AuCCPh) 2 238 (4.40), 265 (4.20, sh), 274 (4.30), 284 (4.30) 350 solid 477, 510<br />
350 CH 2 Cl 2 460, 530<br />
L 3 Bz(AuCCPh) 2 239 (3.70), 260 (3.50, sh), 272 (4.00), 283 (4.13) 350 solid 464 (sh), 503 [0.56, 2.28]<br />
300 CH 2 Cl 2 421, 448<br />
290 2-Me-THF glass 419 [202.7], 438, 449, 459<br />
L 1 Bu(AuCCPh) 2 236 (4.79), 274 (4.48), 284 (4.92), 320 (0.30, sh) 350 solid 410 (sh), 430 (sh), 459, 505 [0.45,<br />
1.87]<br />
270 CH 2 Cl 2 305, 420, 440<br />
270 n PrCN glass 415 [270.8], 435, 444, 456<br />
L 3 Bu(AuCCPh) 2 238 (3.09), 259 (2.67, sh), 273 (3.59), 283 (3.92) 350 solid 460 (sh), 516 [0.45, 1.69]<br />
350 CH 2 Cl 2 451, 530 (sh)<br />
290 2-Me-THF glass 419 [211.5], 438, 448, 460<br />
L 5 Me(AuCCPh) 2 238 (3.20), 257 (2.52, sh), 272 (3.35), 283 (3.62) 350 solid 416, 496, 539 [96.2], 575 (sh)<br />
270 CH 2 Cl 2 421, 445, 457 (sh)<br />
L 3 Bu(AuCCC 6 H 4 CF 3 - 238 (3.31), 260 (2.97, sh), 279 (5.27), 289 (6.10) 315 solid 432, 453 (sh), 471 (sh), 491 (sh)<br />
4) 2 270 CH 2 Cl 2 432, 452<br />
290 2-Me-THF glass 429 [249.5], 451, 460, 471<br />
L 3 Bu(AuCCC 6 H 4 OMe- 238 (3.60), 263 (3.18, sh), 273 (3.83, sh), 284 (4.35), 296 (3.50,<br />
4) 2 sh)<br />
360 solid 435 (sh), 477, 494<br />
275 CH 2 Cl 2 427, 465<br />
275 n PrCN glass 422, 439, 452, 465<br />
L 3 Bu(AuCCPyl) 2 238 (3.83), 258 (3.35, sh), 276 (4.43), 282 (4.21, sh) 365 solid 438 (sh), 506<br />
300 CH 2 Cl 2 430, 454<br />
290 2-Me-THF glass 424 [193.9], 444, 454, 467<br />
L 3 Me(AuCCBpyl) 2 236 (3.31), 242 (3.33), 250 (2.87, sh), 319 (6.31), 332 (6.10) 350 solid 400, 507, 549 [17.0, 61.7], 585 (sh)<br />
350 CH 2 Cl 2 376, 393, 412, 430 (sh), 502, 533<br />
L 5 Me(AuCCBpyl) 2 235 (4.34), 241 (4.22), 250 (3.19, sh), 319 (7.87), 331 (7.62) 350 solid 413, 505, 549, 585 (sh)<br />
350 CH 2 Cl 2 376, 394, 408 (sh), 507, 536<br />
L 3 Bz(AuCCC 6 H 4 NO 2 - 236 (4.43), 346 (4.81) 350 solid 462, 528, 557 (sh)<br />
4) 2 CH 2 Cl 2 nonemissive<br />
360 n PrCN glass 413 (weak), 501, 536<br />
L 3 Bu(AuCCC 6 H 4 NO 2 - 234 (2.95), 347 (3.05) 350 solid 453, 524, 547 (sh)<br />
4) 2 CH 2 Cl 2 nonemissive<br />
365 2-Me-THF glass 502 [412.4], 537<br />
a Measured in CH 2 Cl 2 solution (1.9 × 10 −5 to 2.5 × 10 −5 M) at 298 K. b Measured in the solid state (T = 298 K), deoxygenated CH 2 Cl 2 solution (1.9<br />
× 10 −5 to 2.5 × 10 −5 M; T = 298 K) or glassy 2-methyltetrahydrofuran or butyronitrile solution (1.3 × 10 −6 to 2 × 10 −6 M; T = 77 K).<br />
5418<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
Article<br />
Figure 3. Absorption spectra (CH 2 Cl 2 ) of selected L n R(AuCCR′) 2<br />
complexes.<br />
Figure 6. Emission spectra of L 3 Me(AuCCBpyl) 2 (298 K).<br />
Figure 4. Emission spectra (298 K) of solid L 3 Bz(AuCC t Bu) 2<br />
(continuous line) and L 3 Bu(AuCCSiMe 3 ) 2 (dashed line).<br />
Figure 5. Excitation (dashed line) and emission (continuous line)<br />
spectra of L 3 Bu(AuCCR′) 2 [R′ = Ph (gray) or 3-pyridyl (black)]<br />
measured in glassy 2-methyltetrahydrofuran at 77 K.<br />
or n Bu) suggest the influence of intra- or intermolecular<br />
interactions, we have no structural evidence for these<br />
Figure 7. Absorption (continuous line), excitation (77 K, λ em = 500<br />
nm, dashed line), and emission spectra (77 K, λ exc = 350 nm, dashdotted<br />
line) of L 3 Bu(AuCCC 6 H 4 NO 2 -4) 2 . All were measured in<br />
butyronitrile.<br />
interactions because we could not obtain single crystals suitable<br />
for X-ray diffraction after repeated attempts.<br />
<strong>Complexes</strong> L n R(AuCCR′) 2 (R′ = Aryl, Pyridyl, or Bipyridyl).<br />
<strong>Complexes</strong> L n R(AuCCPh) 2 (n = 1 or 3, R = n Bu or Bz; n =5,<br />
R = Me), L 3 Bu(AuCCC 6 H 4 X-4) 2 (X = CF 3 or OMe), and<br />
L 3 Bu(AuCCPyl) 2 are emissive at 298 K in CH 2 Cl 2 solution<br />
and in the solid state (Table 3 and Figures S5−S8). The<br />
emission maxima are in the range 420−539 nm, and the<br />
vibrational structure is poorly resolved. However, in glassy<br />
solutions of butyronitrile or 2-methyltetrahydrofuran at 77 K,<br />
they give a sharp structured emission (Figure 5) with λ 0−0 in<br />
the range 415−427 nm and vibronic spacings of ca. 1100, 1550,<br />
and 2100 cm −1 . Under these conditions, the excitation spectra<br />
(Figure 5) match the lower-energy absorptions (Figure 3), and<br />
lifetimes in the microsecond range could be determined. The<br />
large Stokes shifts, vibronic progressions, and lifetimes suggest a<br />
gold-perturbed intraligand 3 [π→π*](CC or CCAr)<br />
character for the emitting states. 5,23,28 Similar emission<br />
wavelengths and vibronic spacings have been reported for<br />
their phosphine or isocyanide counterparts, examples being<br />
[Au(CCPh)(PCy 3 )] (λ 0−0 = 419 nm), 55 [Au(CCPh)-<br />
(PPh 3 )] (419 nm), 56 [Au 2 (CCPh) 2 (μ-dppe)] (420 nm), 56<br />
or [Au(CCPh)(CNC 6 H 3 Me 2 -2,6)] (419 nm). 33 The bipyridylethynyl<br />
compounds L n Me(AuCCBpyl) 2 (n = 3 or 5) gave<br />
5419<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
dual emissions at 298 K in CH 2 Cl 2 solution and in the solid<br />
state (Figure 6), with maxima in the ranges 376−412 and 505−<br />
585 nm. Since these emissions closely resemble those of their<br />
diphosphine counterparts, 47,59 they were similarly attributed to<br />
intraligand [π→π*](AuCCBpyl) fluorescence (high-energy<br />
emission) and phosphorescence (low-energy emission).<br />
The emission maximum of L 3 Bu(AuCCPh) 2 in the solid<br />
state (λ max = 516 nm) is shifted to lower energies with respect<br />
to the solution spectrum (λ max = 451 nm). As this compound<br />
shows intermolecular short Au···Au contacts in its crystal<br />
structure (Figure 1), this red-shift is attributed to a perturbation<br />
of the emitting state originated by the aurophilic interaction.<br />
Similar red-shifts (Δλ max = 55−76 nm) were observed for<br />
L 3 Bz(AuCCPh) 2 , L 3 Bu(AuCCPyl) 2 , and L 5 Me(AuC<br />
CPh) 2 .<br />
Finally, the 4-nitrophenylethynyl compounds L 3 R(AuC<br />
CC 6 H 4 NO 2 -4) 2 (R = n Bu or Bz) are not emissive in CH 2 Cl 2<br />
solution at 298 K, and they are weakly emissive in the solid<br />
state. However, in butyronitrile glass, they give an emission<br />
with two maxima, at 500 and 535 nm, the spacing between<br />
them corresponding to a vibronic progression of ca. 1300 cm −1<br />
(Figure 7). These emissions resemble that of solid [Au(C<br />
CC 6 H 4 NO 2 )(PCy 3 )], 57 but differ from that of their phenylethynyl<br />
counterparts, suggesting that the emissive states of the<br />
4-nitro-substituted complexes are different from those of the<br />
other phenylethynyl complexes studied. As the excitation<br />
maxima of the emissions of L 3 R(AuCCC 6 H 4 NO 2 -4) 2 (350<br />
or 360 nm for R = n Bu or Bz, respectively) agree with their<br />
absorption maxima (Figure 7), in accord with previous<br />
studies, 57 we propose that they originate from gold-perturbed<br />
IL 3 [π→π*](CCAr) states with some charge-transfer<br />
character.<br />
■ SUMMARY<br />
New gold(I) alkynyls containing NHC ligands have been<br />
prepared by the following methods: (a) the reaction of in situ<br />
generated gold(I) acetylacetonato carbene complexes with<br />
terminal alkynes; (b) the reaction of silver(I) NHC complexes<br />
with gold(I) acetylides; (c) the reaction of dinuclear gold(I)<br />
chloro carbenes with terminal alkynes in the presence of a base.<br />
Methods (a) and (b) have been used for the first time in the<br />
synthesis of NHC gold complexes. The first dinuclear alkynyl<br />
gold(I) complexes containing bridging dicarbene ligands have<br />
been prepared, and their photophysical properties have been<br />
studied. The lower-energy bands of their absorption spectra<br />
have been assigned to gold-perturbed intraligand [π→π*](C<br />
C or CCAr) transitions. The new dinuclear chloro<br />
complexes are luminescent at room temperature in the solid<br />
state, and their emissions are similar to those of their<br />
mononuclear counterparts. Most of the dinuclear alkynyl<br />
complexes are luminescent at room temperature, in particular<br />
those derived from aryl- or heteroarylalkynes, the emissive<br />
behavior of which resembles that of their phosphine analogues.<br />
Thus, they show structured emissions with lifetimes in the<br />
microsecond range, which have been assigned to goldperturbed<br />
■<br />
intraligand 3 [π→π*](CCAr) excited states.<br />
EXPERIMENTAL SECTION<br />
General Considerations. L Bz AgBr, 52 L Me AuCl, 51 [Au(CCR)] n<br />
(R = Ph or t Bu), 60 and the alkynes HCCR (R = 4-C 6 H 4 NO 61 2 and<br />
Bpyl 62 ) were prepared using reported methods. HPLC-grade solvents<br />
were used as received unless otherwise stated. When necessary,<br />
CH 2 Cl 2 was previously distilled over calcium hydride and stored under<br />
5420<br />
Article<br />
nitrogen. Infrared spectra were recorded in the range 4000−200 cm −1<br />
on a Perkin-Elmer 16F PC FT-IR spectrometer using KBr pellets. C,<br />
H, N, and S analyses were carried out with Carlo Erba 1108 and<br />
LECO CHS-932 microanalyzers. NMR spectra were measured on<br />
Bruker Avance 200, 300, and 400 instruments. 1 H chemical shifts were<br />
referenced to residual CHCl 3 (7.26 ppm) or d 5 -DMSO (2.50 ppm).<br />
13 C{ 1 H} and 19 F NMR spectra were referenced to CDCl 3 (77.1 ppm)<br />
and to external CFCl 3 , respectively. Abbreviations used: br (broad), sh<br />
(shoulder), q (quartet), quint (quintet), sext (sextet), Im (imidazole).<br />
Assignments of 1 H and 13 C{ 1 H} NMR spectra are based on COSY,<br />
HMQC, and HMBC experiments. In the experimental data, the<br />
imidazole rings are numbered as shown in Scheme 2. Melting points<br />
were determined on a Reichert apparatus in the open air. UV−visible<br />
absorption spectra were recorded on a Perkin-Elmer Lambda 750S<br />
spectrometer in 1 cm path length quartz cuvettes. Steady-state<br />
excitation and emission spectra were measured on a Jobin Yvon<br />
Fluorolog 3-22 spectrofluorimeter with a 450 W xenon lamp, doublegrating<br />
monochromators, and a Hamamatsu R-928P photomultiplier.<br />
The solutions for luminescence measurements were deoxygenated by<br />
bubbling N 2 and placed inside 1 cm path length quartz fluorescence<br />
cuvettes (298 K) under a N 2 atmosphere. Low-temperature (77 K)<br />
emission measurements were carried out in quartz tubes using an<br />
optical Dewar sample holder filled with liquid N 2 . The solid samples<br />
were placed between quartz coverslips. Phosphorescence lifetimes<br />
were measured using an incorporated Jobin Yvon FL-1040<br />
phosphorimeter or by time-correlated single-photon counting on a<br />
FluoroHub of IBH with pulsed diodes (NanoLed) as excitation<br />
sources (λ exc = 334 or 372 nm).<br />
Synthesis of the Diimidazolium Salts. Diimidazolium salts<br />
(L n RH 2 )Br 2 (R = Bz, n =1 37 or 3; 38 R= n Bu, n =1 39 or 3; 40 R = Me, n<br />
=3 41 or 5 42 ) were prepared using a modified literature method. 63 A<br />
THF solution of 1-(benzyl, n-butyl, or methyl)-1H-imidazole and the<br />
corresponding Br(CH 2 ) n Br (2:1 molar ratio) was stirred at 100 °C<br />
overnight in a Carius tube. The precipitated salts were filtered, washed<br />
with Et 2 O, and dried under vacuum. The yields were nearly<br />
quantitative, and their NMR data agree with those previously reported.<br />
Synthesis of Silver(I) Biscarbene <strong>Complexes</strong>. All complexes<br />
have been prepared by reaction of the bisimidazolium salt with an<br />
equimolar amount of Ag 2 O in acetonitrile. The resulting suspension<br />
was stirred overnight at room temperature in the dark. The light gray<br />
solids were isolated by filtration, washed with Et 2 O(3× 5 mL), and<br />
dried under vacuum. The obtained compounds are soluble only in<br />
highly polar solvents such as DMSO, and their NMR spectra show<br />
only the expected signals for the carbene ligand. They were used for<br />
the synthesis of the gold complexes without further purification.<br />
L 1 BzAg 2 Br 2 . This was prepared from (L 1 BzH 2 )Br 2 (521 mg, 1.06<br />
mmol) and Ag 2 O (246 mg, 1.06 mmol). Yield: 724 mg, 1.03 mmol,<br />
97%. The 1 H and 13 C{ 1 H} NMR of the compound spectra agree with<br />
those reported. 43<br />
L 3 BzAg 2 Br 2 . This was prepared from (L 3 BzH 2 )Br 2 (230 mg, 0.44<br />
mmol) and Ag 2 O (103 mg, 0.44 mmol). Yield: 287 mg, 0.39 mmol,<br />
89%. Anal. Calcd for C 23 H 24 N 4 Ag 2 Br 2 : C, 37.74; H, 3.30; N, 7.65.<br />
Found: C, 37.74; H, 3.41; N, 7.64. 1 H NMR (400.9 MHz, d 6 -DMSO):<br />
δ 7.58 (s, 4H, CH, Im), 7.33−7.24 (m, 10H, Ph), 5.25 (s, 4H,<br />
PhCH 2 ), 4.04 (t, 4H, CH 2 CH 2 N, 3 J HH = 6.1 Hz), 2.39 (quint, 2H,<br />
CH 2 CH 2 N, 3 J HH = 6.1 Hz). 13 C{ 1 H} NMR (100.8 MHz, d 6 -DMSO):<br />
δ 179.8 (C2, Im), 137.0 (C1, Ph), 128.7, (Ph), 128.0 (C4, Ph), 127.6<br />
(Ph), 123.0 (CH, Im), 121.4 (CH, Im), 54.2 (PhCH 2 ), 47.6<br />
(CH 2 CH 2 N), 30.5 (CH 2 CH 2 N).<br />
L 1 BuAg 2 Br 2 . This was prepared from (L 1 BuH 2 )Br 2 (131 mg, 0.31<br />
mmol) and Ag 2 O (72 mg, 0.31 mmol). Yield: 165 mg, 0.26 mmol,<br />
84%. Anal. Calcd for C 15 H 24 N 4 Ag 2 Br 2 : C, 28.33; H, 3.80; N, 8.81.<br />
Found: C, 26.45; H, 3.59; N, 8.10. The element ratios agree with those<br />
of the ligand, and the NMR spectra show only the expected signals for<br />
the ligand; therefore the low percentages are attributed to inorganic<br />
silver impurities, which do not affect its use as carbene-transfer reagent.<br />
1 H NMR (400.9 MHz, d 6 -DMSO): δ 7.83 (d, 2H, CH, Im, 3 J HH = 1.5<br />
Hz), 7.61 (d, 2H, CH, Im, 3 J HH = 1.4 Hz), 6.67 (s, 2H, NCH 2 N), 4.12<br />
(t, 4H, H1, n Bu, 3 J HH = 7.2 Hz), 1.73 (quint, 4H, H2, n Bu, 3 J HH = 7.2<br />
Hz), 1.22 (sext, 4H, H3, n Bu, 3 J HH = 7.2 Hz), 0.83 (t, 6H, Me, 3 J HH =<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
7.2 Hz). 13 C{ 1 H} NMR (75.5 MHz, d 6 -DMSO): δ 180.9 (C2, Im),<br />
122.7 (C4, Im), 121.7 (C5, Im), 63.3 (NCH 2 N), 51.2 (C1, n Bu), 33.0<br />
(C2, n Bu), 19.2 (C3, n Bu), 13.5 (Me).<br />
L 3 BuAg 2 Br 2 . This was prepared from (L 3 BuH 2 )Br 2 (680 mg, 1.51<br />
mmol) and Ag 2 O (350 mg, 1.51 mmol). Yield: 837 mg, 1.26 mmol,<br />
83%. Anal. Calcd for C 17 H 28 N 4 Ag 2 Br 2 : C, 30.75; H, 4.25; N, 8.44.<br />
Found: C, 28.86; H, 3.96; N, 7.77. The element ratios agree with those<br />
of the ligand, and the NMR spectra show only the expected signals for<br />
the ligand; therefore the low percentages are attributed to inorganic<br />
silver impurities, which do not affect its use as carbene-transfer reagent.<br />
1 H NMR (400.9 MHz, d 6 -DMSO): δ 7.58 (d, 2H, CH, Im, 3 J HH = 1.6<br />
Hz), 7.57 (d, 2H, CH, Im, 3 J HH = 1.6 Hz), 4.02 (t, 4H, CH 2 CH 2 N,<br />
3 J HH = 5.6 Hz), 3.95 (t, 4H, H1, n Bu, 3 J HH = 7.3 Hz), 2.44 (quint, 2H,<br />
CH 2 CH 2 N, 3 J HH = 5.6 Hz), 1.70 (quint, 4H, H2, n Bu, 3 J HH = 7.2 Hz),<br />
1.22 (sext, 4H, H3, n Bu, 3 J HH = 7.2 Hz), 0.85 (t, 6H, Me, 3 J HH = 7.2<br />
Hz). 13 C{ 1 H} NMR (100.8 MHz, d 6 -DMSO): δ 179.3 (C2, Im), 122.6<br />
(CH, Im), 121.0 (CH, Im), 50.6 (C1, n Bu), 47.1 (CH 2 CH 2 N), 32.9<br />
(C2, n Bu), 30.2 (CH 2 CH 2 N), 19.2 (C3, n Bu), 13.4 (Me).<br />
L 3 MeAg 2 Br 2 . This was prepared from (L 3 MeH 2 )Br 2 (554 mg, 1.51<br />
mmol) and Ag 2 O (351 mg, 1.51 mmol). Yield: 800 mg, 1.38 mmol,<br />
91%. Anal. Calcd for C 11 H 16 N 4 Ag 2 Br 2·(CH 3 CN) 0.4 : C, 23.77; H, 2.91;<br />
N, 10.34. Found: C, 23.95; H, 2.87; N, 10.63. The amount of<br />
acetonitrile was estimated from the elemental analyses and<br />
corroborated by integration of the 1 H NMR spectrum. 1 H NMR<br />
(400.9 MHz, d 6 -DMSO): δ 7.60 (d, 2H, CH, Im, 3 J HH = 1.6 Hz), 7.52<br />
(d, 2H, CH, Im, 3 J HH = 1.6 Hz), 3.95 (t, 4H, CH 2 CH 2 N, 3 J HH = 5.8<br />
Hz), 3.64 (s, 6H, Me), 2.45 (quint, 2H, CH 2 CH 2 N, 3 J HH = 5.8 Hz),<br />
2.04 (s, 1.2H, MeCN). 13 C{ 1 H} NMR (75.5 MHz, d 6 -DMSO): δ<br />
180.0 (C2, Im), 124.0 (C4, Im), 120.8 (C5, Im), 46.6 (CH 2 CH 2 N),<br />
37.9 (Me), 29.5 (CH 2 CH 2 N), 1.2 (MeCN); the MeCN signal was not<br />
detected.<br />
L 5 MeAg 2 Br 2 . This was prepared from (L 5 MeH 2 )Br 2 (706 mg, 1.79<br />
mmol) and Ag 2 O (415 mg, 1.79 mmol). Yield: 883.5 mg, 1.45 mmol,<br />
81%. The 1 H and 13 C{ 1 H} NMR spectra of the compound agree with<br />
those reported. 42<br />
L 1 BzAu 2 Cl 2 . [AuCl(SMe 2 )] (142 mg, 0.48 mmol) was added to a<br />
suspension of L 1 BzAg 2 Br 2 (170 mg, 0.24 mmol) in CH 2 Cl 2 (10 mL).<br />
The mixture was stirred for 15 h at room temperature in the dark and<br />
filtered through Celite. The filtrate was concentrated under vacuum to<br />
ca. 1 mL. Addition of Et 2 O (30 mL) gave a white precipitate, which<br />
was filtered, washed with Et 2 O(3× 5 mL), and dried under vacuum.<br />
Yield: 159 mg, 0.20 mmol, 84%. Mp: 182 °C dec. Anal. Calcd for<br />
C 21 H 20 N 4 Au 2 Cl 2 : C, 31.80; H, 2.54; N, 7.06. Found: C, 31.43; H, 2.24;<br />
N, 6.95. 1 H NMR (400.9 MHz, CDCl 3 ): δ 7.85 (d, 2H, CH, Im, 3 J HH<br />
= 2.0 Hz), 7.40−7.37 (m, 6H, Ph), 7.33−7.31 (m, 4H, Ph), 6.94 (d,<br />
2H, CH, Im, 3 J HH = 2.0 Hz), 6.46 (s, 2H, NCH 2 N), 5.36 (s, 4H,<br />
CH 2 Ph). 13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ): δ 172.1 (C2, Im),<br />
133.9 (C1, Ph), 129.3 (Ph), 129.2 (C4, Ph), 128.2 (Ph), 121.8 (CH,<br />
Im), 121.6 (CH, Im), 63.1 (NCH 2 N), 55.7 (PhCH 2 ).<br />
L 3 BzAu 2 Cl 2 . This was prepared in the same way as L 1 BzAu 2 Cl 2<br />
starting from L 3 BzAg 2 Br 2 (137 mg, 0.19 mmol) and [AuCl(SMe 2 )]<br />
(110 mg, 0.37 mmol). Yield: 129 mg, 0.16 mmol, 83%. Mp: 196 °C.<br />
Anal. Calcd for C 23 H 24 N 4 Au 2 Cl 2·(H 2 O) 0.13 : C, 33.54; H, 2.97, N, 6.80.<br />
Found: C, 33.13; H, 2.74; N, 6.90. The amount of water was estimated<br />
from the elemental analyses and corroborated by integration of the 1 H<br />
NMR spectrum. 1 H NMR (400.9 MHz, CDCl 3 ): δ 7.35 (br s, Ph,<br />
10H), 7.05 (d, 2H, H5, Im, 3 J HH = 1.9 Hz), 6.91 (d, 2H, H4, Im, 3 J HH<br />
= 1.9 Hz), 5.36 (s, 4H, CH 2 Ph), 4.25 (t, 4H, CH 2 CH 2 N, 3 J HH = 6.6<br />
Hz), 2.50 (quint, 2H, CH 2 CH 2 N, 3 J HH = 6.6 Hz), 1.57 (s, 0.26H,<br />
H 2 O). 13 C{ 1 H} NMR (100.1 MHz, CDCl 3 ): δ 171.4 (C2, Im), 134.9<br />
(C1, Ph), 129.1 (Ph), 128.7 (C4, Ph), 128.3 (Ph), 121.7 (C4, Im),<br />
119.9 (C5, Im), 55.3 (PhCH 2 ), 47.3 (CH 2 CH 2 N), 30.4 (CH 2 CH 2 N).<br />
L 1 BuAu 2 Cl 2 . This was prepared in the same way as L 1 BzAu 2 Cl 2<br />
starting from L 1 BuAg 2 Br 2 (178 mg, 0.28 mmol) and [AuCl(SMe 2 )]<br />
(173 mg, 0.59 mmol). Yield: 165 mg, 0.23 mmol, 81%. Mp: 161 °C<br />
dec. Anal. Calcd for C 15 H 24 N 4 Au 2 Cl 2 : C, 24.84; H, 3.34; N, 7.73.<br />
Found: C, 24.44; H, 3.15; N, 7.50. 1 H NMR (300.1 MHz, CDCl 3 ): δ<br />
7.85 (d, 2H, H5, Im, 3 J HH = 1.8 Hz), 7.00 (d, 2H, H4, Im, 3 J HH = 1.8<br />
Hz), 6.42 (s, 2H, NCH 2 N), 4.18 (t, 4H, H1, n Bu, 3 J HH = 7.2 Hz), 1.84<br />
(quint, 4H, H2, n Bu, 3 J HH = 7.2 Hz), 1.37 (m, 4H, H3, n Bu, 3 J HH = 7.2<br />
Article<br />
Hz), 0.96 (t, 6H, Me, 3 J HH = 7.2 Hz). 13 C{ 1 H} NMR (100.8 MHz,<br />
CDCl 3 ): δ 171.6 (C2, Im), 121.6 (C4, Im), 121.3 (C5, Im), 63.0<br />
(NCH 2 N), 51.8 (C1, n Bu), 32.8 (C2, n Bu), 19.6 (C3, n Bu), 13.6 (Me).<br />
L 3 BuAu 2 Cl 2 . This was prepared in the same way as L 1 BzAu 2 Cl 2<br />
starting from L 3 BuAg 2 Br 2 (321 mg, 0.48 mmol) and [AuCl(SMe 2 )]<br />
(285 mg, 0.97 mmol). Yield: 301 mg, 0.40 mmol, 84%. Mp: 151−152<br />
°C. Anal. Calcd for C 17 H 28 N 4 Au 2 Cl 2 : C, 27.11; H, 3.75; N, 7.44.<br />
Found: C, 26.88; H, 3.58; N, 7.69. 1 H NMR (400.9 MHz, CDCl 3 ): δ<br />
7.10 (d, 2H, CH, Im, 3 J HH = 2.0 Hz), 7.03 (d, 2H, CH, Im, 3 J HH = 2.0<br />
Hz), 4.22 (t, 4H, CH 2 CH 2 N, 3 J HH = 6.8 Hz), 4.20 (t, 4H, H1, n Bu,<br />
3 J HH = 7.4 Hz), 2.50 (quint, 2H, CH 2 CH 2 N, 3 J HH = 6.8 Hz), 1.83<br />
(quint, 4H, H2, n Bu, 3 J HH = 7.2 Hz), 1.36 (sext, 4H, H3, n Bu, 3 J HH =<br />
7.2 Hz), 0.96 (t, 6H, Me, 3 J HH = 7.2 Hz). 13 C{ 1 H} NMR (50.3 MHz,<br />
CDCl 3 ): δ 170.6 (C2, Im), 121.6 (CH, Im), 120.0 (CH, Im), 51.5<br />
(C1, n Bu), 47.6 (CH 2 CH 2 N), 32.9 (C2, n Bu), 31.3 (CH 2 CH 2 N), 19.7<br />
(C3, n Bu), 13.6 (Me).<br />
L 3 MeAu 2 Cl 2 . [AuCl(SMe 2 )] (99 mg, 0.34 mmol) was added to a<br />
suspension of L 3 MeAg 2 Br 2 (98 mg, 0.17 mmol) in acetonitrile (15 mL).<br />
The mixture was stirred overnight at room temperature in the dark<br />
and filtered. The filtrate was concentrated under vacuum to ca. 1 mL.<br />
Addition of Et 2 O (20 mL) gave a white precipitate, which was filtered<br />
off, washed with Et 2 O(3× 5 mL), and dried under vacuum. Next, the<br />
solid that precipitated in the reaction mixture was stirred with DMSO<br />
(7 mL), and the suspension was filtered through Celite. The filtrate<br />
was concentrated under reduced pressure, and Et 2 O (20 mL) was<br />
added to precipitate a second crop of the same compound, which was<br />
filtered off, washed with Et 2 O(3× 5 mL), and dried under vacuum.<br />
Overall yield: 66 mg, 0.10 mmol, 61%. Mp: 167 °C dec. Anal. Calcd<br />
for C 11 H 16 N 4 Au 2 Cl 2 : C, 19.75; H, 2.41; N, 8.37. Found: C, 19.60; H,<br />
2.70; N, 8.33. 1 H NMR (400.9 MHz, CDCl 3 ): δ 7.55 (d, 2H, CH, Im,<br />
3 J HH = 1.9 Hz), 7.48 (d, 2H, CH, Im, 3 J HH = 1.9 Hz), 4.02 (t, 4H,<br />
CH 2 CH 2 N, 3 J HH = 6.2 Hz), 3.76 (s, 6H, Me), 2.44 (quint, 4H,<br />
CH 2 CH 2 N, 3 J HH = 6.2 Hz). 13 C{ 1 H} NMR (75.5 MHz, CDCl 3 ): δ<br />
169.7 (C2, Im), 123.6 (C4, Im), 120.0 (C5, Im), 46.1 (CH 2 CH 2 N),<br />
37.6 (Me), 28.8 (CH 2 CH 2 N).<br />
L 5 MeAu 2 Cl 2 . This was prepared in the same way as L 1 BzAu 2 Cl 2<br />
starting from L 5 MeAg 2 Br 2 (482 mg, 0.79 mmol) and [AuCl(SMe 2 )]<br />
(515 mg, 1.75 mmol). Yield: 524 mg, 0.75 mmol, 95%. Mp: 77−78 °C.<br />
Anal. Calcd for C 13 H 20 N 4 Au 2 Cl 2 : C, 22.40; H, 2.89; N, 8.04. Found: C,<br />
22.21; H, 2.54; N, 7.65. 1 H NMR (200.1 MHz, CDCl 3 ): δ 7.09 (d, 2H,<br />
CH, Im, 3 J HH = 1.9 Hz), 6.99 (d, 2H, CH, Im, 3 J HH = 1.9 Hz), 4.17 (t,<br />
4H, CH 2 CH 2 CH 2 N, 3 J HH = 6.9 Hz), 3.86 (s, 6H, Me), 1.89 (quint,<br />
4H, CH 2 CH 2 CH 2 N, 3 J HH = 6.9 Hz), 1.39 (m, 2H, CH 2 CH 2 CH 2 N).<br />
13 C{ 1 H} NMR (75.5 MHz, CDCl 3 ): δ 170.6 (C2, Im), 122.2 (CH,<br />
Im), 120.6 (CH, Im), 50.6 (CH 2 CH 2 CH 2 N), 38.4 (Me), 30.1<br />
(CH 2 CH 2 CH 2 N), 22.9(CH 2 CH 2 CH 2 N).<br />
L 1 Bz(AuCCPh) 2 . Method A: To a solution of L 1 BzAu 2 Cl 2 (120 mg,<br />
0.15 mmol) in dry CH 2 Cl 2 (7 mL) was added Tl(acac) (96 mg, 0.32<br />
mmol). The white suspension formed was stirred for 10 min and<br />
filtered through Celite. Then, HCCPh (42 mg, 45 μL, 0.38 mmol)<br />
was added, and the solution was stirred for 6 h. The reaction mixture<br />
was filtered through Celite to remove a small amount of colloidal gold<br />
and concentrated under vacuum to ca. 1 mL. Addition of Et 2 O (30<br />
mL) gave a white precipitate, which was filtered off, washed with Et 2 O<br />
(3 × 5 mL), and dried under vacuum. Yield: 122 mg, 0.13 mmol, 88%.<br />
Method B: To a suspension of L 1 BzAg 2 Br 2 (81 mg, 0.12 mmol) in<br />
CH 2 Cl 2 (7 mL) was added [AuCCPh] n (77 mg, 0.26 mmol). The<br />
gray suspension was stirred overnight at room temperature in the dark<br />
and filtered through Celite. The filtrate was stirred with<br />
Na 2 S 2 O 3·5H 2 O (0.5 g) for 5 h, filtered through Celite, and<br />
concentrated under vacuum to ca. 1 mL. Addition of Et 2 O (20 mL)<br />
gave a white precipitate, which was filtered off, washed with Et 2 O(3×<br />
5 mL), and dried under vacuum. Yield: 100 mg, 0.11 mmol, 90%. Mp:<br />
140−142 °C dec. Anal. Calcd for C 37 H 30 N 4 Au 2 : C, 48.06; H, 3.27; N,<br />
6.06. Found: C, 48.39; H, 3.04; N, 6.17. IR (KBr, cm −1 ): ν(CC)<br />
2115. 1 H NMR (400.9 MHz, CDCl 3 ): δ 7.81 (d, 2H, H5, Im, 3 J HH =<br />
1.8 Hz), 7.48 (m, 4H, H2, PhCC), 7.36−7.30 (m, 10H, PhCH 2 ),<br />
7.24−7.16 (m, 6H, H3 and H4, PhCC), 6.86 (d, 2H, H4, Im, 3 J HH =<br />
1.9 Hz), 6.58 (s, 2H, NCH 2 N), 5.40 (s, 4H, PhCH 2 ). 13 C{ 1 H} NMR<br />
(100.8 MHz, CDCl 3 ): δ 187.8 (C2, Im), 134.3 (C1, PhCH 2 ), 132.3<br />
5421<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
(C2, PhCC), 129.2 (C3, PhCH 2 ), 129.0 (C4, PhCH 2 ), 128.2 (C2,<br />
PhCH 2 ), 127.9 (C3, PhCC), 127.1 (C1, PhCC), 126.7 (C4,<br />
PhCC), 125.1 (CCAu), 121.6 (C4, Im), 121.6 (C5, Im), 105.8<br />
(CCAu), 62.6 (NCH 2 N), 55.2 (PhCH 2 ).<br />
L 1 Bz(AuCC t Bu) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 . Method A: From L 1 BzAu 2 Cl 2 (71 mg, 0.090<br />
mmol), Tl(acac) (57 mg, 0.19 mmol), and HCC t Bu (27 μL, 0.22<br />
mmol). Yield: 58 mg, 0.066 mmol, 73%. Method B: From L 1 BzAg 2 Br 2<br />
(117 mg, 0.17 mmol) and [AuCC t Bu] n (92 mg, 0.33 mmol). Yield:<br />
105 mg, 0.12 mmol, 70%. Mp: 195 °C dec. Anal. Calcd for<br />
C 33 H 38 N 4 Au 2 : C, 44.81; H, 4.33; N, 6.33. Found: C, 44.54; H, 4.36; N,<br />
6.26. IR (KBr, cm −1 ): ν(CC) 2116. 1 H NMR (400.9 MHz, CDCl 3 ):<br />
δ 7.73 (d, 2H, H5, Im, 3 J HH = 2.0 Hz), 7.36−7.25 (m, 10H, Ph), 6.81<br />
(d, 2H, H4, Im, 3 J HH = 2.0 Hz), 6.58 (s, 2H, NCH 2 N), 5.38 (s, 4H,<br />
CH 2 Ph), 1.31 (s, 9H, t Bu). 13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ): δ<br />
188.4 (C2, Im), 134.5 (C1, Ph), 129.1 (C3, Ph), 128.9 (C4, Ph), 128.1<br />
(C2, Ph), 121.4 (C4, Im), 121.3 (C5, Im), 116.1 (CCAu), 111.3<br />
(CCAu), 62.4 (NCH 2 N), 55.0 (PhCH 2 ), 32.4 (CMe 3 ), 28.3<br />
(CMe 3 ).<br />
L 3 Bz(AuCCPh) 2 . Prepared in the same way as L 1 Bz(AuCCPh) 2 .<br />
Method A: From L 3 BzAu 2 Cl 2 (127 mg, 0.15 mmol), Tl(acac) (99 mg,<br />
0.33 mmol), and HCCPh (42 μL, 0.39 mmol). Yield: 99 mg, 0.10<br />
mmol, 69%. Method B: From L 3 BzAg 2 Br 2 (100 mg, 0.14 mmol) and<br />
[AuCCPh] n (85 mg, 0.29 mmol). Yield: 83 mg, 0.09 mmol, 62%.<br />
Mp: 143−144 °C. Anal. Calcd for C 39 H 34 N 4 Au 2 : C, 49.17; H, 3.60; N,<br />
5.88. Found: C, 48.74; H, 3.43; N, 5.87. IR (KBr, cm −1 ): ν(CC)<br />
2105. 1 H NMR (400.9 MHz, CDCl 3 ): δ 7.50−7.47 (m, 4H, H2,<br />
PhCH 2 ), 7.33−7.18 (m, 16H, Ph), 7.03 (d, 2H, H5, Im, 3 J HH = 2.0<br />
Hz), 6.78 (d, 2H, H4, Im, 3 J HH = 2.0 Hz), 5.47 (s, 4H, CH 2 Ph), 4.31<br />
(t, 4H, CH 2 CH 2 N, 3 J HH = 6.8 Hz), 2.55 (quint, 2H, CH 2 CH 2 N, 3 J HH =<br />
6.8 Hz). 13 C{ 1 H} NMR (110.8 MHz, CDCl 3 ): δ 187.1 (C2, Im),<br />
135.3 (C1, CH 2 Ph), 132.2 (C2, PhCC), 129.0 (C3, PhCH 2 ), 128.5<br />
(C4, PhCH 2 ), 128.3 (C2, PhCH 2 ), 127.9 (C3, PhCC), 126.4 (C4,<br />
PhCC), 125.7 (CCAu), 121.2 (C4, Im), 120.5 (C5, Im), 105.3<br />
(CCAu), 55.0 (PhCH 2 ), 47.5 (CH 2 CH 2 N), 31.4 (CH 2 CH 2 N); the<br />
signal of C1 of PhCC was not detected.<br />
L 3 Bz(AuCC t Bu) 2 . Prepared in the same way as L 1 Bz(AuC<br />
CPh) 2 . Method A: From L 3 BzAu 2 Cl 2 (61 mg, 0.074 mmol), Tl(acac)<br />
(48 mg, 0.16 mmol), and HCC t Bu (23 μL, 0.19 mmol). Yield: 54<br />
mg, 0.059 mmol, 80%. Method B: From L 3 BzAg 2 Br 2 (138 mg, 0.19<br />
mmol) and [AuCC t Bu] n (105 mg, 0.38 mmol). Yield: 102 mg, 0.11<br />
mmol, 59%. Mp: 170 °C dec. Anal. Calcd for: C 35 H 42 N 4 Au 2 : C, 46.06;<br />
H, 4.64; N, 6.14. Found: C, 45.98; H, 5.00; N, 6.21. IR (KBr, cm −1 ):<br />
ν(CC) 2112. 1 H NMR (400.9 MHz, CDCl 3 ): δ 7.35−7.25 (m,<br />
10H, Ph), 7.03 (d, 2H, H5, Im, 3 J HH = 2.0 Hz), 6.67 (d, 2H, H4, Im,<br />
3 J HH = 2.0 Hz), 5.38 (s, 4H, PhCH 2 ), 4.26 (t, 4H, CH 2 CH 2 N, 3 J HH =<br />
7.1 Hz), 2.56 (quint, 2H, CH 2 CH 2 N, 3 J HH = 7.1 Hz), 1.30 (s, 9H,<br />
t Bu). 13 C{ 1 H} NMR (110.8 MHz, CDCl 3 ): δ 187.6 (C2, Im), 135.3<br />
(C1, Ph), 128.9 (C3, Ph), 128.5 (C4, Ph), 128.1 (C2, Ph), 121.1 (C5,<br />
Im), 120.5 (C4, Im), 115.7 (CCAu), 112.0 (CCAu), 54.8<br />
(CH 2 Ph), 47.9 (CH 2 CH 2 N), 32.5 (CMe 3 ), 32.0 (CH 2 CH 2 N), 28.3<br />
(CMe 3 ).<br />
L 3 Bz(AuCCC 6 H 4 NO 2 -4) 2 . Method C: To a solution of L 3 BzAu 2 Cl 2<br />
(180 mg, 0.22 mmol) in acetone (15 mL) were added K 2 CO 3 (69 mg,<br />
0.50 mmol) and HCCC 6 H 4 NO 2 -4 (65 mg, 0.44 mmol). The<br />
reaction mixture was stirred for 24 h, and the solvent was removed<br />
under vacuum. The residue was stirred with 20 mL of CH 2 Cl 2 . After<br />
filtration through Celite, the solution was concentrated under vacuum<br />
to ca. 1 mL. Addition of Et 2 O (20 mL) gave a yellow solid, which was<br />
filtered, washed with Et 2 O(3× 5 mL), and dried under vacuum. Yield:<br />
208 mg, 0.20 mmol, 91%. Mp: 160 °C dec. Anal. Calcd for<br />
C 39 H 32 N 6 Au 2 O 4 : C, 44.93; H, 3.09; N, 8.06. Found: C, 44.97; H, 2.80;<br />
N, 8.05. IR (KBr, cm −1 ): ν(CC) 2107. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 8.13−8.10 (m, 4H, H2, C 6 H 4 ), 7.57−7.54 (m, 4H, H3,<br />
C 6 H 4 ), 7.37−7.28 (m, 10H, Ph), 7.04 (d, 2H, H5, Im, 3 J HH = 1.8 Hz),<br />
6.83 (d, 2H, H4, Im, 3 J HH = 1.8 Hz), 5.48 (s, 4H, CH 2 Ph), 4.31 (t, 4H,<br />
CH 2 CH 2 N, 3 J HH = 6.6 Hz), 2.55 (quint, 2H, CH 2 CH 2 N, 3 J HH = 6.6<br />
Hz). 13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ): δ 186.6 (C2, Im), 145.6<br />
(C1, C 6 H 4 ), 137.3 (br s, CCAu), 135.0 (C1, PhCH 2 ), 133.0 (C4,<br />
C 6 H 4 ), 132.6 (C3, C 6 H 4 ), 129.1 (C3, PhCH 2 ), 128.7 (C4, PhCH 2 ),<br />
Article<br />
128.2 (C2, PhCH 2 ), 123.4 (C2, C 6 H 4 ), 121.4 (C4, Im), 120.3 (C5,<br />
Im), 104.0 (br s, CCAu), 55.2 (PhCH 2 ), 47.4 (CH 2 CH 2 N), 31.3<br />
(CH 2 CH 2 N).<br />
L 1 Bu(AuCCPh) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 . Method A: From L 1 BuAu 2 Cl 2 (115 mg, 0.16<br />
mmol), Tl(acac) (101 mg, 0.33 mmol), and HCCPh (44 μL,<br />
0.40 mmol). Yield: 75 mg, 0.088 mmol, 55%. Method B: From<br />
L 1 BuAg 2 Br 2 (105 mg, 0.16 mmol) and [AuCCPh] n (98 mg, 0.33<br />
mmol). Yield: 93 mg, 0.11 mmol, 68%. Mp: 144 °C dec. Anal. Calcd<br />
for C 31 H 34 N 4 Au 2 : C, 43.47; H, 4.00; N, 6.54. Found: C, 43.55; H,<br />
4.24; N, 6.73. IR (KBr, cm −1 ): ν(CC) 2111. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 7.86 (d, 2H, H5, Im, 3 J HH = 2.0 Hz), 7.52−7.50 (m, 4H,<br />
H2, Ph), 7.28−7.18 (m, 6H, H3 and H4, Ph), 6.96 (d, 2H, H4, Im,<br />
3 J HH = 2.0 Hz), 6.53 (s, 2H, NCH 2 N), 4.20 (t, 4H, H1, n Bu, 3 J HH = 7.2<br />
Hz), 1.78 (m, 4H, H2, n Bu), 1.83 (m, 4H, H3, n Bu), 0.95 (t, 6H, Me,<br />
3 J HH = 7.2 Hz). 13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ): δ 187.5 (C2,<br />
Im), 132.3 (C2, Ph), 127.9 (C3, Ph), 127.2 (CCAu), 126.6 (C4,<br />
Ph), 125.1 (C1, Ph), 121.6 (C4, Im), 121.0 (C5, Im), 105.5 (C<br />
CAu), 62.5 (NCH 2 N), 51.4 (C1, n Bu), 33.0 (C2, n Bu), 19.7 (C3, n Bu),<br />
13.6 (Me).<br />
L 1 Bu(AuCC t Bu) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 . Method A: From L 1 BuAu 2 Cl 2 (156 mg, 0.22<br />
mmol), Tl(acac) (131 mg, 0.43 mmol), and HCC t Bu (68 μL,<br />
0.55 mmol). Yield: 107 mg, 0.13 mmol, 60%. Method B: From<br />
L 1 BuAg 2 Br 2 (99 mg, 0.14 mmol) and [AuCC t Bu] n (75 mg, 0.27<br />
mmol). Yield: 67 mg, 0.08 mmol, 59%. Mp: 114−115 °C. Anal. Calcd<br />
for C 27 H 42 N 4 Au 2 : C, 39.71; H, 5.18; N, 6.86. Found: C, 39.51; H,<br />
5.38; N, 6.86. IR (KBr, cm −1 ): ν(CC) 2112. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 7.72 (d, 2H, H5, Im, 3 J HH = 2.0 Hz), 6.89 (d, 2H, H4, Im,<br />
3 J HH = 2.0 Hz), 6.50 (s, 2H, NCH 2 N), 4.1 (t, 4H, H1, n Bu, 3 J HH = 7.2<br />
Hz), 1.78 (m, 4H, H2, n Bu), 1.32 (m, 22H, H3, n Bu, and t Bu), 0.93 (t,<br />
6H, H4, n Bu, 3 J HH = 7.2 Hz). 13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ): δ<br />
188.1 (C2, Im), 121.3 (C4, Im), 120.7 (C5, Im), 115.9 (CCAu),<br />
111.5 (CCAu), 62.4 (NCH 2 N), 51.2 (C1, n Bu), 33.0 (C2, n Bu),<br />
32.5 (CMe 3 ), 28.3 (CMe 3 ), 19.7 (C3, n Bu), 13.6 (C4, n Bu).<br />
L 3 Bu(AuCCPh) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 . Method A: From L 3 BuAu 2 Cl 2 (141 mg, 0.19<br />
mmol), Tl(acac) (120 mg, 0.38 mmol), and HCCPh (52 μL,<br />
0.48 mmol). Yield: 142 mg, 0.16 mmol, 83%. Method B: From<br />
L 3 BuAg 2 Br 2 (94 mg, 0.14 mmol) and [AuCCPh] n (85 mg, 0.29<br />
mmol). Yield: 97 mg, 0.11 mmol, 77%. Mp: 134−135 °C. Anal. Calcd<br />
for C 33 H 38 N 4 Au 2·(H 2 O) 0.7 : C, 44.18; H, 4.43, N, 6.24. Found: C,<br />
44.09; H, 4.49; N, 6.39. The amount of water was estimated from the<br />
elemental analyses and corroborated by integration of the 1 H NMR<br />
spectrum. IR (KBr, cm −1 ): ν(CC) 2109. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 7.50−7.48 (m, 4H, H2, Ph), 7.24−7.16 (m, 6H, H3 and<br />
H4, Ph), 7.12 (d, 2H, H5, Im, 3 J HH = 1.8 Hz), 6.96 (d, 2H, H4, Im,<br />
3 J HH = 1.8 Hz), 4.25 (t, 4H, CH 2 CH 2 N, 3 J HH = 7.1 Hz), 4.21 (t, 4H,<br />
H1, n Bu, 3 J HH = 7.4 Hz), 2.54 (quint, 2H, CH 2 CH 2 N, 3 J HH = 7.1 Hz),<br />
1.82 (m, 4H, H2, n Bu), 1.55 (s, 1.4H, H 2 O), 1.35 (m, 4H, H3, n Bu),<br />
0.93 (t, 6H, Me, 3 J HH = 7.4 Hz). 13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ):<br />
δ 186.8 (C2, Im), 132.2 (C2, Ph), 128.2 (CCAu), 127.9 (C3, Ph),<br />
126.3 (C4, Ph), 125.7 (C1, Ph), 121.1 (C4, Im), 120.4 (C5, Im), 105.2<br />
(CCAu), 51.2 (C1, n Bu), 47.7 (CH 2 CH 2 N), 33.2 (C2, n Bu), 32.3<br />
(CH 2 CH 2 N), 19.7 (C3, n Bu), 13.7 (Me).<br />
L 3 Bu(AuCC t Bu) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 . Method A: From L 3 BuAu 2 Cl 2 (112 mg, 0.15<br />
mmol), Tl(acac) (95 mg, 0.31 mmol), and HCC t Bu (46 μL, 0.37<br />
mmol). Yield: 81 mg, 0.096 mmol, 64%. Method B: From L 3 BuAg 2 Br 2<br />
(112 mg, 0.17 mmol) and [AuCC t Bu] n (104 mg, 0.38 mmol). Yield:<br />
72 mg, 0.09 mmol, 53%. Mp: 114 °C dec. Anal. Calcd for<br />
C 29 H 46 N 4 Au 2 : C, 41.24; H, 5.49; N, 6.63. Found: C, 41.25; H, 5.88;<br />
N, 6.61. IR (KBr, cm −1 ): ν(CC) 2109. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 7.11 (d, 2H, H5, Im, 3 J HH = 2.0 Hz), 6.90 (d, 2H, H4, Im,<br />
3 J HH = 2.0 Hz), 4.19 (m, 8H, CH 2 CH 2 N and H1, n Bu), 2.50 (quint,<br />
4H, CH 2 CH 2 N, 3 J HH = 7.2 Hz), 1.82−1.74 (m, 4H, H2, n Bu), 1.32 (s<br />
br, 22H, H3, n Bu, and t Bu), 0.94 (t, 6H, H4, n Bu, 3 J HH = 7.3 Hz).<br />
13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ): δ 187.3 (C2, Im), 120.6 (C5,<br />
Im), 120.5 (C4, Im), 115.5 (CCAu), 112.2 (CCAu), 51.0 (C1,<br />
5422<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
n Bu), 47.8 (CH 2 CH 2 N), 33.1 (C2, n Bu), 32.6 (CMe 3 ), 32.5<br />
(CH 2 CH 2 N), 28.3 (CMe 3 ), 19.7 (C3, n Bu), 16.7 (C4, n Bu).<br />
L 3 Bu(AuCCC 6 H 4 NO 2 -4) 2 . This was prepared in the same way as<br />
L 3 Bz(AuCCC 6 H 4 NO 2 -4) 2 (method C) from L 3 BuAu 2 Cl 2 (55 mg,<br />
0.073 mmol), K 2 CO 3 (44 mg, 0.32 mmol), and HCCC 6 H 4 NO 2 (24<br />
mg, 0.16 mmol). Yield: 43 mg, 0.05 mmol, 72%. Mp: 164.7 °C dec.<br />
Anal. Calcd for C 33 H 36 N 6 Au 2 O 4 : C, 40.67; H, 3.72; N, 8.62. Found: C,<br />
40.52; H, 3.61; N, 8.60. IR (KBr, cm −1 ): ν(CC) 2105. 1 H NMR<br />
(400.9 MHz, CDCl 3 ): δ 8.14−8.11 (m, 4H, H2, C 6 H 4 ), 7.58−7.55 (m,<br />
4H, H3, C 6 H 4 ), 7.10 (d, 2H, H5, Im, 3 J HH = 2.0 Hz), 7.00 (d, 2H, H4,<br />
Im, 3 J HH = 2.0 Hz), 4.26 (t, 4H, CH 2 CH 2 N, 3 J HH = 6.8 Hz), 4.23 (t,<br />
4H, H1, n Bu, 3 J HH = 7.2 Hz), 2.53 (quint, 2H, CH 2 CH 2 N, 3 J HH = 6.8<br />
Hz), 1.84 (m, 4H, H2, n Bu), 1.36 (m, 4H, H3, n Bu), 0.94 (t, 6H, Me,<br />
3 J HH = 7.2 Hz). 13 C{ 1 H} NMR (100.8 MHz, CDCl 3 ): δ 186.2 (C2,<br />
Im), 145.6 (C1, C 6 H 4 ), 137.3 (br s, CCAu), 133.1 (C4, C 6 H 4 ),<br />
132.6 (C3, C 6 H 4 ), 123.4 (C2, C 6 H 4 ), 121.3 (C4, Im), 120.2 (C5, Im),<br />
103.8 (br s, CCAu), 51.3 (C1, n Bu), 47.6 (CH 2 CH 2 N), 33.1 (C2,<br />
n Bu), 32.0 (CH 2 CH 2 N), 19.7 (C3, n Bu), 13.6 (Me).<br />
L 3 Bu(AuCCSiMe 3 ) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 (method A) from L 3 BuAu 2 Cl 2 (104 mg, 0.14<br />
mmol), Tl(acac) (88 mg, 0.29 mmol), and HCCSiMe 3 (49 μL, 0.35<br />
mmol). After filtration, Et 2 O (20 mL) was added to the CH 2 Cl 2<br />
solution, and the resulting suspension was filtered through Celite. The<br />
filtrate was concentrated under vacuum to ca. 1 mL. Addition of n-<br />
pentane (30 mL) gave a white precipitate, which was filtered, washed<br />
with Et 2 O(3× 5 mL), and dried under vacuum. Yield: 53 mg, 0.060<br />
mmol, 43%. Mp: 156−158 °C. Anal. Calcd for C 27 H 46 N 4 Au 2 Si 2 :C,<br />
36.99; H, 5.29; N, 6.39. Found: C, 36.75; H, 5.63; N, 6.45. IR (KBr,<br />
cm −1 ): ν(CC) 2051. 1 H NMR (300.1 MHz, CDCl 3 ): δ 7.08 (d, 2H,<br />
H5, Im, 3 J HH = 1.9 Hz), 6.92 (d, 2H, H4, Im, 3 J HH = 1.9 Hz), 4.18 (t,<br />
4H, CH 2 CH 2 N, 3 J HH = 7.1 Hz), 4.16 (t, 4H, H1, n Bu, 3 J HH = 7.3 Hz),<br />
2.47 (quint, 2H, CH 2 CH 2 N, 3 J HH = 7.1 Hz), 1.79 (m, 4H, H2, n Bu),<br />
1.34 (m, 4H, H3, n Bu), 0.94 (t, 6 H, H4, n Bu, 3 J HH = 7.3 Hz), 0.21 (s,<br />
18H, SiMe 3 ). 13 C{ 1 H} NMR (75.5 MHz, CDCl 3 ): δ 186.8 (C2, Im),<br />
147.5 (CCAu), 120.7 (CH, Im), 120.6 (CH, Im), 110.4 (CCAu),<br />
51.1 (C1, n Bu), 47.7 (CH 2 CH 2 N), 33.2 (C2, n Bu), 32.4 (CH 2 CH 2 N),<br />
19.7 (C3, n Bu), 13.7 (C4, n Bu), 1.1 (SiMe 3 ).<br />
L 3 Bu(AuCCC 6 H 4 CF 3 -4) 2 . This was prepared in the same way as<br />
L 3 Bz(AuCCC 6 H 4 NO 2 -4) 2 (method C), from L 3 BuAu 2 Cl 2 (160 mg,<br />
0.21 mmol), K 2 CO 3 (89 mg, 0.64 mmol), and HCCC 6 H 4 CF 3 (77<br />
μL, 0.47 mmol). Yield: 136 mg, 0.13 mmol, 63%. Mp: 84−86 °C. Anal.<br />
Calcd for C 35 H 36 N 6 Au 2 F 6 : C, 41.19; H, 3.56; N, 5.49. Found: C,<br />
41.02; H, 3.59; N, 5.54. IR (KBr, cm −1 ): ν(CC) 2112. 1 H NMR<br />
(400.9 MHz, CDCl 3 ): δ 7.57−7.55 (m, 4H, H2, C 6 H 4 ), 7.50−7.48 (m,<br />
4H, H3, C 6 H 4 ), 7.10 (d, 2H, H5, Im, 3 J HH = 1.8 Hz), 6.98 (d, 2H, H4,<br />
Im, 3 J HH = 1.8 Hz), 4.26 (t, 4H, CH 2 CH 2 N, 3 J HH = 6.9 Hz), 4.22 (t,<br />
4H, H1, n Bu, 3 J HH = 7.3 Hz), 2.53 (quint, 2H, CH 2 CH 2 N, 3 J HH = 6.9<br />
Hz), 1.83 (m, 4H, n Bu, H2), 1.35 (m, 4H, H3, n Bu), 0.94 (t, 6H, Me,<br />
3 J HH = 7.3 Hz). 13 C{ 1 H} NMR (75.5 MHz, CDCl 3 ): δ 186.5 (C2, Im),<br />
132.2 (C3, C 6 H 4 ), 129.5 (C4, C 6 H 4 ), 127.9 (q, C1, C 6 H 4 , 2 J CF = 32.3<br />
Hz), 124.9 (q, C2, C 6 H 4 , 3 J CF = 3.7 Hz), 124.3 (q, CF 3 , 1 J CF = 272.0<br />
Hz), 121.2 (C4, Im), 120.3 (C5, Im), 103.9 (CCAu), 51.2 (C1,<br />
n Bu), 47.6 (CH 2 CH 2 N), 33.1 (C2, n Bu), 32.1 (CH 2 CH 2 N), 19.7 (C3,<br />
n Bu), 13.6 (Me). 19 F NMR (282.4 MHz, CDCl 3 ): δ −62.4.<br />
L 3 Bu(AuCCC 6 H 4 OMe-4) 2 . This was prepared in the same way as<br />
L 3 Bz(AuCCC 6 H 4 NO 2 -4) 2 (method C), from L 3 BuAu 2 Cl 2 (73 mg,<br />
0.097 mmol), K 2 CO 3 (54 mg, 0.39 mmol), and HCCC 6 H 4 OMe (32<br />
mg, 0.24 mmol). Yield: 82 mg, 0.087 mmol, 89%. Mp: 90−92 °C.<br />
Anal. Calcd for C 35 H 42 N 4 Au 2 O 2 : C, 44.50; H, 4.48; N, 5.93. Found: C,<br />
44.24; H, 4.88; N, 5.90. IR (KBr, cm −1 ): ν(CC) 2109. 1 H NMR<br />
(400.9 MHz, CDCl 3 ): δ 7.45−7.41 (m, 4H, H3, C 6 H 4 ), 7.11 (d, 2H,<br />
H5, Im, 3 J HH = 1.8 Hz), 6.95 (d, 2H, H4, Im, 3 J HH = 1.8 Hz), 6.81−<br />
6.77 (m, 4H, H2, C 6 H 4 ), 4.25 (t, 4H, CH 2 CH 2 N, 3 J HH = 6.8 Hz), 4.20<br />
(t, 4H, H1, n Bu, 3 J HH = 7.3 Hz), 3.79 (s, 6H, OMe), 2.53 (quint, 2H,<br />
CH 2 CH 2 N, 3 J HH = 6.8 Hz), 1.81 (m, 4H, H2, n Bu), 1.34 (m, 4H, H3,<br />
n Bu), 0.93 (t, 6H, H4, n Bu, 3 J HH = 7.3 Hz). 13 C{ 1 H} NMR (75.5 MHz,<br />
CDCl 3 ): δ 186.7 (C2, Im), 158.1 (C1, C 6 H 4 ), 133.3 (C3, C 6 H 4 ), 126.2<br />
(br s, CCAu), 120.9 (C4, Im), 120.4 (C5, Im), 117.9 (C4, C 6 H 4 ),<br />
113.4 (C2, C 6 H 4 ), 104.9 (br s, CCAu), 55.1 (OMe), 51.1 (C1,<br />
5423<br />
Article<br />
n Bu), 47.7 (CH 2 CH 2 N), 33.1 (C2, n Bu), 32.3 (CH 2 CH 2 N), 19.7 (C3,<br />
n Bu), 13.6 (C4, n Bu).<br />
L 3 Bu(AuCCPyl) 2 . This was prepared in the same way as<br />
L 3 Bz(AuCCC 6 H 4 NO 2 -4) 2 (method C), from L 3 BuAu 2 Cl 2 (91 mg,<br />
0.12 mmol), K 2 CO 3 (44 mg, 0.32 mmol), and 3-ethynylpyridine (29<br />
mg, 0.28 mmol). Yield: 101 mg, 0.11 mmol, 95%. Mp: 63−64 °C.<br />
Anal. Calcd for C 31 H 36 N 6 Au 2 : C, 42.00; H, 4.09; N, 9.48. Found: C,<br />
41.81; H, 4.25; N, 9.48. IR (KBr, cm −1 ): ν(CC) 2112. 1 H NMR<br />
(400.9 MHz, CDCl 3 ): δ 8.72 (dd, 2H, H2, Py, 4 J HH = 2.0 and 0.8 Hz),<br />
8.40 (dd, 2H, H6, Py, 3 J HH = 4.8 Hz, 4 J HH = 1.6 Hz), 7.74 (dt, 2H, H4,<br />
Py, 3 J HH = 8.0 Hz, 4 J HH = 1.6 Hz), 7.18 (m, 2H, H5, Py), 7.11 (d, 2H,<br />
H5, Im, 3 J HH = 2.0 Hz), 6.98 (d, 2H, H4, Im, 3 J HH = 2.0 Hz), 4.26 (t,<br />
4H, CH 2 CH 2 N, 3 J HH = 6.9 Hz), 4.23 (t, 4H, H1, n Bu, 3 J HH = 7.3 Hz),<br />
2.54 (quint, 2H, CH 2 CH 2 N, 3 J HH = 6.9 Hz), 1.83 (m, 4H, H2, n Bu),<br />
1.35 (m, 4H, H3, n Bu), 0.94 (t, 6H, Me, 3 J HH = 7.3 Hz). 13 C{ 1 H}<br />
NMR (75.5 MHz, CDCl 3 ): δ 186.3 (C2, Im), 153.0 (C2, Py), 146.6<br />
(C6, Py), 138.8 (C4, Py), 132.7 (CCAu), 122.7 (C5, Py), 121.2<br />
(C4, Im), 120.3 (C5, Im), 101.5 (CCAu), 51.2 (C1, n Bu), 47.6<br />
(CH 2 CH 2 N), 33.1 (C2, n Bu), 32.1 (CH 2 CH 2 N), 19.7 (C3, n Bu), 13.6<br />
(Me); the signal of C3 of Py was not detected.<br />
L 3 Me(AuCCBpyl) 2 . This was prepared in the same way as<br />
L 3 Bz(AuCCC 6 H 4 NO 2 -4) 2 (method C), from L 3 MeAu 2 Cl 2 (104 mg,<br />
0.16 mmol), K 2 CO 3 (107 mg, 0.78 mmol), and HCCBpyl (66 mg,<br />
0.37 mmol). Yield: 120 mg, 0.12 mol, 77%. Mp: 165 °C dec. Anal.<br />
Calcd for C 35 H 30 N 8 Au 2·H 2 O: C, 43.13; H, 3.31; N, 11.50. Found: C,<br />
43.15; H, 3.03; N, 11.50. The amount of water was estimated from the<br />
elemental analyses and corroborated by integration of the 1 H NMR<br />
spectrum. IR (KBr, cm −1 ): ν(CC) 2107. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 8.77 (dd, 2H, H6, Bpyl, 4 J HH = 2.0 Hz, 5 J HH = 0.8 Hz), 8.67<br />
(ddd, 2H, H6′, Bpyl, 3 J HH = 4.8 Hz, 4 J HH = 1.6 Hz, 5 J HH = 0.8 Hz),<br />
8.36 (dt, 2H, H3, Bpyl, 3 J HH = 8.0 Hz, 4 J HH = 5 J HH = 1.2 Hz), 8.30 (dd,<br />
2H, H3′, Bpyl, 3 J HH = 8.4 Hz, 5 J HH = 0.8 Hz), 7.86 (dd, 2H, H4, Bpyl,<br />
3 J HH = 8.4 Hz, 4 J HH = 2.0 Hz), 7.80 (td, 2H, H4′, Bpyl, 3 J HH = 8.0 Hz,<br />
4 J HH = 1.6 Hz), 7.30−7.27 (m, 2H, H5′, Bpyl), 7.09 (d, 2H, H5, Im,<br />
3 J HH = 2.0 Hz), 7.01 (d, 2H, H4, Im, 3 J HH = 2.0 Hz), 4.26 (t, 4H,<br />
CH 2 CH 2 N, 3 J HH = 6.8 Hz), 3.96 (s, 6H, Me), 2.49 (quint, 2H,<br />
CH 2 CH 2 N, 3 J HH = 6.8 Hz), 1.58 (s, 2H, H 2 O). 13 C{ 1 H} NMR (75.5<br />
MHz, CDCl 3 ): δ 187.2 (C2, Im), 156.0 (C2′, Bpyl), 152.9 (C2, Bpyl),<br />
152.3 (C6, Bpyl), 149.2 (C6′, Bpyl), 139.7 (C4, Bpyl), 136.8 (C4′,<br />
Bpyl), 134.2 (br s, CCAu), 123.4 (C5′, Bpyl), 123.0 (C4, Im), 122.9<br />
(C5, Bpyl), 121.0 (C3′, Bpyl), 120.2 (C3, Bpyl), 119.7 (C5, Im), 102.0<br />
(br s, CCAu), 46.9 (CH 2 CH 2 N), 38.2 (Me), 31.1 (CH 2 CH 2 N).<br />
L 5 Me(AuCCPh) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 . Method A: From L 5 MeAu 2 Cl 2 (141 mg, 0.20<br />
mmol), Tl(acac) (129 mg, 0.43 mmol), and HCCPh (56 μL, 0.51<br />
mmol). Yield: 142 mg, 0.17 mmol, 89%. Method B: From L 5 MeAg 2 Br 2<br />
(82 mg, 0.15 mmol) and [AuCCPh] n (90 mg, 0.30 mmol). Yield: 66<br />
mg, 0.08 mmol, 53%. Mp: 92−93 °C. Anal. Calcd for C 29 H 30 N 4 Au 2 :<br />
42.04; H, 3.65; N, 6.76. Found: C, 41.99; H, 3.78; N, 6.87. IR (KBr,<br />
cm −1 ): ν(CC) 2111. 1 H NMR (300.1 MHz, CDCl 3 ): δ 7.50−7.47<br />
(m, 4 H, Ph), 7.26−7.19 (m, 6 H, Ph), 7.16 (d, 2H, H5, Im, 3 J HH = 1.8<br />
Hz), 6.83 (d, 2H, H4, Im, 3 J HH = 1.8 Hz), 4.20 (t, 4H, CH 2 CH 2 CH 2 N,<br />
3 J HH = 7.1 Hz), 3.85 (s, 6H, Me), 1.94 (quint, 4H, CH 2 CH 2 CH 2 N,<br />
3 J HH = 7.2 Hz), 1.40 (m, 2H, CH 2 CH 2 CH 2 N). 13 C{ 1 H} NMR (75.5<br />
MHz, CDCl 3 ): δ 187.0 (C2, Im), 132.2 (C2, Ph), 128.7 (br s, C<br />
CAu), 127.8 (C3, Ph), 126.3 (C4, Ph), 125.7 (C1, Ph), 122.0 (C4,<br />
Im), 120.7 (C5, Im), 105.3 (br s, CCAu), 50.3 (CH 2 CH 2 CH 2 N),<br />
38.0 (Me), 30.4 (CH 2 CH 2 CH 2 N), 22.6 (CH 2 CH 2 CH 2 N).<br />
L 5 Me(AuCC t Bu) 2 . This was prepared in the same way as<br />
L 1 Bz(AuCCPh) 2 (method A) from L 5 MeAu 2 Cl 2 (134 mg, 0.19<br />
mmol), Tl(acac) (123 mg, 0.41 mmol), and HCC t Bu (59 μL, 0.48<br />
mmol). Yield: 124 mg, 0.17 mmol, 83%. Mp: 124−126 °C. Anal. Calcd<br />
for C 25 H 38 N 4 Au 2 : C, 38.08; H, 4.86; N, 7.11. Found: C, 37.80; H,<br />
4.77; N, 7.03. IR (KBr, cm −1 ): ν(CC) 2078. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 7.05 (d, 2H, H5, Im, 3 J HH = 2.0 Hz), 6.86 (d, 2H, H4, Im,<br />
3 J HH = 2.0 Hz), 4.08 (t, 4H, CH 2 CH 2 CH 2 N, 3 J HH = 6.7 Hz), 3.75 (s,<br />
6H, MeN), 1.78 (quint, 4H, CH 2 CH 2 CH 2 N, 3 J HH = 7.3 Hz), 1.23 (m<br />
and s, 20H, CH 2 CH 2 CH 2 N and t Bu). 13 C{ 1 H} NMR (100.8 MHz,<br />
CDCl 3 ): δ 187.6 (C2, Im), 121.9 (C4, Im), 120.6 (C5, Im), 115.4 (br<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
Article<br />
s, CCAu), 112.7 (br s, CCAu), 50.2 (CH 2 CH 2 CH 2 N), 38.0<br />
(MeN), 32.6 (CMe 3 ), 30.4 (CH 2 CH 2 CH 2 N), 28.3 (CMe 3 ), 22.6<br />
(CH 2 CH 2 CH 2 N).<br />
L 5 Me(AuCCBpyl) 2 . This was prepared in the same way as<br />
L 3 Bz(AuCCC 6 H 4 NO 2 -4) 2 (method C), from L 5 MeAu 2 Cl 2 (77 mg,<br />
0.11 mmol), K 2 CO 3 (46 mg, 0.33 mmol), and HCCBpyl (49 mg,<br />
0.27 mmol). Yield: 103 mg, 0.10 mmol, 95%. Mp: 162 °C dec. Anal.<br />
Calcd for C 37 H 34 N 8 Au 2 : C, 45.13; H, 3.48; N, 11.38. Found: C, 44.80;<br />
H, 3.13; N, 11.18. IR (KBr, cm −1 ): ν(CC) 2111. 1 H NMR (300.1<br />
MHz, CDCl 3 ): δ 7.78 (dd, 2H, H6, Bpyl, 4 J HH = 2.0 Hz, 5 J HH = 0.7<br />
Hz), 8.67 (ddd, 2H, H6′, Bpyl, 3 J HH = 4.8 Hz, 4 J HH = 1.8 Hz, 5 J HH =<br />
0.9 Hz), 8.36 (dt, 2H, H3′, Bpyl, 3 J HH = 7.8 Hz, 4 J HH = 5 J HH = 1.2 Hz),<br />
8.29 (dd, 2H, H3, Bpyl, 3 J HH = 8.4 Hz, 5 J HH = 0.9 Hz), 7.85 (dd, 2H,<br />
H4, Bpyl, 3 J HH = 8.4 Hz, 4 J HH = 2.1 Hz), 7.80 (td, 2H, H4′, Bpyl, 3 J HH<br />
= 7.5 Hz, 4 J HH = 1.8 Hz), 7.30−7.26 (m, 2H, H5′, Bpyl), 7.14 (d, 2H,<br />
H5, Im, 3 J HH = 2.1 Hz), 6.89 (d, 2H, H4, Im, 3 J HH = 1.8 Hz), 4.22 (t,<br />
4H, CH 2 CH 2 CH 2 N, 3 J HH = 7.2 Hz), 3.87 (s, 6H, Me), 1.9 (quint, 4H,<br />
CH 2 CH 2 CH 2 N, 3 J HH = 7.2 Hz), 1.42 (m, 2H, CH 2 CH 2 CH 2 N).<br />
13 C{ 1 H} NMR (75.5 MHz, CDCl 3 ): δ 186.5 (C2, Im), 156.0 (C2′,<br />
Bpyl), 152.9 (C2, Bpyl), 152.4 (C6, Bpyl), 149.2 (C6′, Bpyl), 139.8<br />
(C4, Bpyl), 136.8 (C4′, Bpyl), 134.8 (br s, CCAu), 123.4 (C5′,<br />
Bpyl), 122.8 (C5, Bpyl), 122.1 (C4, Im), 121.0 (C3′, Bpyl), 120.7 (C5,<br />
Im), 120.1 (C3, Bpyl), 102.0 (br s, CCAu), 50.4 (CH 2 CH 2 CH 2 N),<br />
38.0 (Me), 30.4 (CH 2 CH 2 CH 2 N), 27.7 (CH 2 CH 2 CH 2 N).<br />
L Me AuCCSiMe 3 . To a solution of [AuCl(Im-Me 2 )] (84 mg, 0.26<br />
mmol) in dry CH 2 Cl 2 (10 mL) was added Tl(acac) (80 mg, 0.26<br />
mmol). The white suspension was stirred for 10 min and filtered<br />
through Celite. Then, HCCSiMe 3 (36 μL, 0.26 mmol) was added,<br />
and the solution was stirred for 3 h. The reaction mixture was<br />
concentrated under vacuum to ca. 1 mL. Addition of n-hexane (30<br />
mL) gave a white precipitate, which was filtered off, washed with n-<br />
hexane (3 × 5 mL), and dried under vacuum. Yield: 68 mg, 0.17<br />
mmol, 65%. Mp: 142 °C dec. Anal. Calcd for C 10 H 17 N 2 AuSi: C, 30.77;<br />
H, 4.39; N, 7.18. Found: C, 30.70; H, 4.27; N, 7.10. IR (KBr, cm −1 ):<br />
ν(CC) 2057. 1 H NMR (400.9 MHz, CDCl 3 ): δ 6.87 (s, 2H, CH),<br />
3.80 (s, 6H, Me), 0.20 (s, 9H, SiMe 3 ). 13 C{ 1 H} NMR (100.8 MHz,<br />
CDCl 3 ): δ 188.1 (C2, Im), 147.4 (s, CCAu), 121.8 (CH), 110.8 (s,<br />
CCAu), 38.0 (Me), 1.2 (SiMe 3 ).<br />
L Bz AuCC t Bu. To a suspension of L Bz AgBr (128 mg, 0.29 mmol)<br />
in CH 2 Cl 2 (12 mL) was added [AuCC t Bu] n (82 mg, 0.29 mmol).<br />
The gray suspension was stirred overnight at room temperature in the<br />
dark. It was filtered through Celite and stirred for 5 h with excess<br />
Na 2 S 2 O 3·5H 2 O (500 mg, 2.01 mmol). Then, it was filtered, and the<br />
filtrate was concentrated under vacuum to ca. 1 mL. Addition of n-<br />
hexane (30 mL) gave a white precipitate, which was filtered off,<br />
washed with n-hexane (3 × 5 mL), and dried under vacuum. Yield: 95<br />
mg, 0.18 mmol, 62%. Mp: 156−158 °C dec. Anal. Calcd for<br />
C 23 H 25 N 2 Au: C, 52,48; H, 4,79; N, 5.32. Found: C, 52.20; H, 4.76; N,<br />
5.42. IR (Nujol, cm −1 ): ν(CC) 2020. 1 H NMR (400.9 MHz,<br />
CDCl 3 ): δ 7.37−7.26 (m, 10H, Ph), 6.76 (s, 2H, H4 and H5), 5.44 (s,<br />
4H, CH 2 ), 1.32 (s, t Bu). 13 C{ 1 H} NMR (75.5 MHz, CDCl 3 ): δ 188.1<br />
(C2, Im), 135.5 (C1, Ph), 129.1 (C3, Ph), 128.7 (C4, Ph), 128.2 (C2,<br />
Ph), 120.8 (CH, Im), 116.0 (br s, CCAu), 111.6 (br s, CCAu),<br />
54.9 (CH 2 ), 32.7 (CMe 3 ), 28.5 (CMe 3 ).<br />
L 3 *Au 2 Cl 2 . To a solution of [AuCl(SMe 2 )] (258 mg, 0.88 mmol)<br />
in dry CH 2 Cl 2 (7 mL) were added tert-butylisocyanide (73 mg, 0.88<br />
mmol) and N,N′-diethyl-1,3-propanediamine (70 μL, 0.44 mmol).<br />
The solution was stirred at 60 °C for 3 days. The reaction mixture was<br />
filtered through Celite and concentrated under vacuum to ca. 1 mL.<br />
Addition of methanol (30 mL) gave a white precipitate, which was<br />
filtered off, washed with methanol (3 × 5 mL), and dried under<br />
vacuum. Yield: 230 mg, 0.30 mmol, 69%. Mp: 147 °C dec. Anal. Calcd<br />
for C 17 H 36 N 4 Au 2 Cl 2 : C, 26.82; H, 4.77; N, 7.36. Found: C, 26.84; H,<br />
4.69; N, 7.41. 1 H NMR (400.9 MHz, CDCl 3 ): δ 6.06 (s, 2H, NH t Bu),<br />
4.11 (t, 4H, CH 2 CH 2 N, 3 J HH = 7.2), 3.45 (q, 4H, CH 3 CH 2 N, 3 J HH =<br />
7.2 Hz), 1.98 (quint, 2H, CH 2 CH 2 N, 3 J HH = 7.2 Hz), 1.65 (s, 18H,<br />
t Bu), 1.18 (t, 6 H, CH 3 CH 2 N, 3 J HH = 7.2 Hz). 13 C{ 1 H} NMR (100.8<br />
MHz, CDCl 3 ): δ 190.1 (NCN), 57.1 (CH 2 CH 2 N), 54.6 (CMe 3 ), 41.3<br />
(CH 3 CH 2 N), 31.8 (CMe 3 ), 28.8 (CH 2 CH 2 N), 11.5 (CH 3 CH 2 N).<br />
5424<br />
[Au(CCBpyl)(CN t Bu)]. tert-Butylisocyanide (31 mg, 0.37 mmol)<br />
was added to a suspension of [Au(CCBpyl)] n (141 mg, 0.37 mmol)<br />
in CH 2 Cl 2 (10 mL). The mixture was stirred for 45 min. The solution<br />
was concentrated under vacuum to ca. 1 mL. Addition of Et 2 O (30<br />
mL) gave a beige-colored precipitate, which was filtered off, washed<br />
with Et 2 O(3× 5 mL), and dried under vacuum. Yield: 129 mg, 0.28<br />
mmol, 76%. Mp: 139−141 °C. Anal. Calcd for C 17 H 16 N 3 Au: C, 44.46;<br />
H, 3.51; N, 9.15. Found: C, 44.31; H, 3.45; N, 8.96. IR (KBr, cm −1 ):<br />
ν(CN) 2231, ν(CC) 2127. 1 H NMR (400.9 MHz, CDCl 3 ): δ<br />
8.74 (dd, 2H, H6, Bpyl, 4 J HH = 2.0 Hz, 5 J HH = 0.8 Hz), 8.66 (ddd, 2H,<br />
H6′, Bpyl, 3 J HH = 4.8 Hz, 4 J HH = 1.8, 5 J HH = 0.9 Hz), 8.36 (dt, 2H, H3′,<br />
Bpyl, 3 J HH = 8.0 Hz, 4 J HH = 5 J HH = 1.1 Hz), 8.29 (dd, 2H, H3, Bpyl,<br />
3 J HH = 7.4 Hz, 5 J HH = 0.84 Hz), 7.84 (dd, 2H, H4, Bpyl, 3 J HH = 8.2 Hz,<br />
4 J HH = 2.1 Hz), 7.80 (td, 2H, H4′, Bpyl, 3 J HH = 7.7 Hz, 4 J HH = 1.8 Hz),<br />
7.30−7.26 (m, 2H, H5′, Bpyl), 1.55 (s, 9H, Me). 13 C{ 1 H} NMR (75.5<br />
MHz, CDCl 3 ): δ 155.8, 153.4 (C2 and C2′, Bpyl), 152.6 (C6, Bpyl),<br />
149.1 (C6′, Bpyl), 140.1 (C4, Bpyl), 136.8 (C4′, Bpyl), 127.5 (C<br />
CAu), 123.5 (C5′, Bpyl), 121.8 (C5, Bpyl), 121.1 (C3′, Bpyl), 120.1<br />
(C3, Bpyl), 100.1 (br s, CCAu), 58.7 (CMe 3 ), 29.8 (CMe 3 ); the<br />
signal of AuCN was not detected.<br />
X-ray Crystallography. Crystals of L 3 Bu(AuCCPh) 2 and<br />
L 3 *Au 2 Cl 2 were obtained by liquid diffusion between a CHCl 3<br />
solution and Et 2 O. Both were measured on a Bruker Smart APEX<br />
machine at 100 K, using monochromated Mo Kα radiation (λ =<br />
0.71073 Å) in ω-scan mode. The structures were solved by direct<br />
methods and were refined anisotropically on F 2 . The nitrogen-bound<br />
hydrogen atoms of L 3 *Au 2 Cl 2 were refined freely with DFIX. The<br />
ordered methyl groups were refined using rigid groups, and the other<br />
hydrogen atoms were refined using a riding mode. Special features: In<br />
compound L 3 Bu(AuCCPh) 2 one n Bu group is disordered over two<br />
positions<br />
■<br />
with a ca. 53:47% occupancy distribution.<br />
ASSOCIATED CONTENT<br />
*S Supporting Information<br />
Crystallographic information in CIF format, supplementary<br />
emission spectra, and table of crystallographic data. This<br />
material is available free of charge via the Internet at http://<br />
pubs.acs.org.<br />
■ AUTHOR INFORMATION<br />
Corresponding Author<br />
*E-mail: jgr@um.es, jvs1@um.es, http://www.um.es/gqo/.<br />
Notes<br />
The authors declare no competing financial interest.<br />
■ ACKNOWLEDGMENTS<br />
We thank the Spanish Ministerio de Ciencia e Innovacioń<br />
(grant CTQ2007-60808/BQU, with FEDER support) and<br />
Fundacioń Seńeca (grant 04539/GERM/06) for financial<br />
support.<br />
■ REFERENCES<br />
(1) Lima, J. C.; Rodriguez, L. Chem. Soc. Rev. 2011, 40, 5442.<br />
(2) Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2008, 37, 1931.<br />
Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2012, 41, 370. Bardají, M.;<br />
Laguna, A. J. Chem. Educ. 1999, 76, 201.<br />
(3) Vicente, J.; Chicote, M. T.; Aĺvarez-Falcoń, M. M.; Fox, M. A.;<br />
Bautista, D. Organometallics 2003, 22, 4792.<br />
(4) Puddephatt, R. J. Chem. Soc. Rev. 2008, 37, 2012.<br />
(5) Lu, W.; Kwok, W.-M.; Ma, C.; Chan, C. T.-L.; Zhu, M.-X.; Che,<br />
C.-M. J. Am. Chem. Soc. 2011, 133, 14120.<br />
(6) Vicente, J.; Chicote, M. T.; Aĺvarez-Falcoń, M. M.; Jones, P. G.<br />
Organometallics 2005, 24, 2764.<br />
(7) Coco, S.; Cordovilla, C.; Dominguez, C.; Espinet, P. Dalton<br />
Trans. 2008, 6894.<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
(8) Ferrer, M.; Mounir, M.; Rodriguez, L.; Rossell, O.; Coco, S.;<br />
Goḿez-Sal, P.; Martín, A. J. Organomet. Chem. 2005, 690, 2200.<br />
(9) Vicente, J.; Chicote, M. T.; Aĺvarez-Falcon, M. M.; Jones, P. G.<br />
Chem. Commun. 2004, 2658.<br />
(10) Bruce, M. I.; Hall, B. C.; Skelton, B. W.; Smith, M. E.; White, A.<br />
H. J. Chem. Soc., Dalton Trans. 2002, 995. Tang, H.-S.; Zhu, N.; Yam,<br />
V. W.-W. Organometallics 2007, 26, 22.<br />
(11) Vicente, J.; Gil-Rubio, J.; Barquero, N.; Caḿara, V.; Masciocchi,<br />
N. Chem. Commun. 2010, 46, 1053.<br />
(12) Cordovilla, C.; Coco, S.; Espinet, P.; Donnio, B. J. Am. Chem.<br />
Soc. 2010, 132, 1424.<br />
(13) Yam, V. W.-W.; Wong, K. M.-C. Chem. Commun. 2011, 47,<br />
11579. Yam, V. W.-W.; Cheng, E. C.-C. Chem. Soc. Rev. 2008, 37,<br />
1806.<br />
(14) He, X.; Cheng, E. C.-C.; Zhu, N.; Yam, V. W.-W. Chem.<br />
Commun. 2009, 4016.<br />
(15) He, X.; Lam, W. H.; Zhu, N.; Yam, V. W.-W. Chem. Eur. J. 2009,<br />
15, 8842.<br />
(16) Meng, X.; Moriuchi, T.; Kawahata, M.; Yamaguchi, K.; Hirao, T.<br />
Chem. Commun. 2011, 47, 4682.<br />
(17) Ikeda, S.; Nagashima, H. Patent JP2008120942A, 2008; CAplus<br />
AN 2008:639422. Fujimura, H.; Fukunaga, K.; Honma, T.; Machida,<br />
T. Patent JP2006290750A, 2006; CAplus AN 2006:1117732.<br />
(18) Fujimura, O.; Fukunaga, K.; Honma, T.; Machida, T. Patent<br />
JP2008179550A, 2008; CAplus AN 2008:939405. Fujimura, O.;<br />
Fukunaga, K.; Honma, T.; Machida, T. Patent JP2010037244A,<br />
2010; CAplus AN 2010:204975. Fujimura, O.; Fukunaga, K.; Honma,<br />
T.; Machida, T. Patent WO2009113646A1, 2009; CAplus AN<br />
2009:1137833. Fujimura, O.; Fukunaga, K.; Honma, T.; Machida, T.<br />
Patent WO2008050733A1, 2008; CAplus AN 2008:529250. Fujimura,<br />
O.; Fukunaga, K.; Honma, T.; Machida, T. Patent WO2007139001A1,<br />
2007; CAplus AN 2007:1395985. Fujimura, O.; Fukunaga, K.; Honma,<br />
T.; Machida, T.; Takahashi, T. Patent WO2006080515A1, 2006;<br />
CAplus AN 2006:768313.<br />
(19) Vicente, J.; Chicote, M. T.; Aĺvarez-Falcoń, M. M.; Jones, P. G.<br />
Organometallics 2005, 24, 5956.<br />
(20) Vicente, J.; Chicote, M. T.; Aĺvarez-Falcoń, M. M.; Jones, P. G.<br />
Organometallics 2005, 24, 4666.<br />
(21) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; de Arellano, M.<br />
C. R.; Jones, P. G.; Humphrey, M. G.; Cifuentes, M. P.; Samoc, M.;<br />
Luther-Davies, B. Organometallics 2000, 19, 2968.<br />
(22) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Jones, P. G.<br />
Organometallics 1997, 16, 5628.<br />
(23) Wang, H. M. J.; Chen, C. Y. L.; Lin, I. J. B. Organometallics<br />
1999, 18, 1216.<br />
(24) Singh, S.; Kumar, S. S.; Jancik, V.; Roesky, H. W.; Schmidt, H.-<br />
G.; Noltemeyer, M. Eur. J. Inorg. Chem. 2005, 2005, 3057.<br />
(25) Gao, L.; Partyka, D. V.; Updegraff, J. B.; Deligonul, N.; Gray, T.<br />
G. Eur. J. Inorg. Chem. 2009, 2009, 2711.<br />
(26) Fortman, G. C.; Poater, A.; Levell, J. W.; Gaillard, S.; Slawin, A.<br />
M. Z.; Samuel, I. D. W.; Cavallo, L.; Nolan, S. P. Dalton Trans. 2010,<br />
39, 10382.<br />
(27) Konkolewicz, D.; Gaillard, S.; West, A. G.; Cheng, Y. Y.; Gray-<br />
Weale, A.; Schmidt, T. W.; Nolan, S. P.; Perrier, S. Organometallics<br />
2011, 30, 1315.<br />
(28) Chow, A. L.-F.; So, M.-H.; Lu, W.; Zhu, N.; Che, C.-M. Chem.<br />
Asian J. 2011, 6, 544.<br />
(29) Manbeck, G. F.; Kohler, M. C.; Porter, M. R.; Stockland, R. A.,<br />
Jr. Dalton Trans. 2011, 40, 12595.<br />
(30) Horvath, U. E. I.; McKenzie, J. M.; Cronje, S.; Raubenheimer,<br />
H. G.; Barbour, L. J. Chem. Commun. 2009, 6598. Hashmi, A. S. K.;<br />
Braun, I.; Rudolph, M.; Rominger, F. Organometallics 2012, 31, 644.<br />
(31) Yam, V. W. W.; Cheung, K. L.; Yip, S. K.; Cheung, K. K. J.<br />
Organomet. Chem. 2003, 681, 196. Yam, V. W. W.; Choi, S. W. K.;<br />
Cheung, K. K. Organometallics 1996, 15, 1734. Yam, V. W. W.; Choi,<br />
S. W. K.; Cheung, K. K. J. Chem. Soc., Dalton Trans. 1996, 3411. Yam,<br />
V. W. W.; Choi, S. W. K. J. Chem. Soc., Dalton Trans. 1996, 4227.<br />
Irwin, M. J.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1997, 16,<br />
3541. Hong, X.; Cheung, K. K.; Guo, C. X.; Che, C. M. J. Chem. Soc.,<br />
Article<br />
Dalton Trans. 1994, 1867. Che, C. M.; Yip, H. K.; Lo, W. C.; Peng, S.<br />
M. Polyhedron 1994, 13, 887.<br />
(32) McArdle, C. P.; Van, S.; Jennings, M. C.; Puddephatt, R. J. J. Am.<br />
Chem. Soc. 2002, 124, 3959. Koshevoy, I. O.; Lin, C.-L.; Karttunen, A.<br />
J.; Haukka, M.; Shih, C.-W.; Chou, P.-T.; Tunik, S. P.; Pakkanen, T. A.<br />
Chem. Commun. 2011, 47, 5533.<br />
(33) Xiao, H.; Cheung, K. K.; Che, C. M. J. Chem. Soc., Dalton Trans.<br />
1996, 3699.<br />
(34) Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.;<br />
Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009, 109, 3561. Mata, J. A.;<br />
Poyatos, M.; Peris, E. Coord. Chem. Rev. 2007, 251, 841.<br />
(35) Lin, I. J. B.; Vasam, C. S. Coord. Chem. Rev. 2007, 251, 642.<br />
(36) Vicente, J.; Chicote, M. T.; Saura-Llamas, I.; Lagunas, M. C. J.<br />
Chem. Soc., Chem. Commun. 1992, 915. Vicente, J.; Chicote, M. T.<br />
Coord. Chem. Rev. 1999, 195, 1143. Vicente, J.; Chicote, M. T.;<br />
Abrisqueta, M. D. J. Chem. Soc., Dalton Trans. 1995, 497.<br />
(37) Lee, H. M.; Lu, C. Y.; Chen, C. Y.; Chen, W. L.; Lin, H. C.;<br />
Chiu, P. L.; Cheng, P. Y. Tetrahedron 2004, 60, 5807.<br />
(38) Hsiao, T.-H.; Wu, T.-L.; Chatterjee, S.; Chiu, C.-Y.; Lee, H. M.;<br />
Bettucci, L.; Bianchini, C.; Oberhauser, W. J. Organomet. Chem. 2009,<br />
694, 4014.<br />
(39) Lee, M.; Niu, Z.; Slebodnick, C.; Gibson, H. W. J. Phys. Chem. B<br />
2010, 114, 7312.<br />
(40) Anderson, J. L.; Ding, R.; Ellern, A.; Armstrong, D. W. J. Am.<br />
Chem. Soc. 2004, 127, 593.<br />
(41) Ahrens, S.; Zeller, A.; Taige, M.; Strassner, T. Organometallics<br />
2006, 25, 5409.<br />
(42) Nielsen, D. J.; Cavell, K. J.; Skelton, B. W.; White, A. H.<br />
Organometallics 2006, 25, 4850.<br />
(43) Paulose, T. A. P.; Wu, S.-C.; Olson, J. A.; Chau, T.; Theaker, N.;<br />
Hassler, M.; Quail, J. W.; Foley, S. R. Dalton Trans. 2012, 41, 251.<br />
(44) Manojlovic-Muir, L.; Henderson, A. N.; Treurnicht, I.;<br />
Puddephatt, R. J. Organometallics 1989, 8, 2055. McArdle, C. P.;<br />
Irwin, M. J.; Jennings, M. C.; Puddephatt, R. J. Angew. Chem., Int. Ed.<br />
1999, 38, 3376. McArdle, C. P.; Vittal, J. J.; Puddephatt, R. J. Angew.<br />
Chem., Int. Ed. 2000, 39, 3819. MacDonald, M. A.; Puddephatt, R. J.;<br />
Yap, G. P. A. Organometallics 2000, 19, 2194. McArdle, C. P.; Jennings,<br />
M. C.; Vittal, J. J.; Puddephatt, R. J. Chem. Eur. J. 2001, 7, 3572.<br />
McArdle, C. P.; Irwin, M. J.; Jennings, M. C.; Vittal, J. J.; Puddephatt,<br />
R. J. Chem. Eur. J. 2002, 8, 723. Hunks, W. J.; Lapierre, J.; Jenkins, H.<br />
A.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 2002, 2885. Mohr, F.;<br />
Eisler, D. J.; McArdle, C. P.; Atieh, K.; Jennings, M. C.; Puddephatt, R.<br />
J. J. Organomet. Chem. 2003, 670, 27. Mohr, F.; Jennings, M. C.;<br />
Puddephatt, R. J. Eur. J. Inorg. Chem. 2003, 217. Mohr, F.; Puddephatt,<br />
R. J. J. Organomet. Chem. 2004, 689, 374. Hunks, W. J.; Jennings, M.<br />
C.; Puddephatt, R. J. Z. Naturforsch., B 2004, 59, 1488. Ferguson, G.;<br />
Gallager, J. F.; Kelleher, A.-M.; Spalding, T. R.; Deeney, F. T. J.<br />
Organomet. Chem. 2005, 690, 2888. Habermehl, N. C.; Jennings, M.<br />
C.; McArdle, C. P.; Mohr, F.; Puddephatt, R. J. Organometallics 2005,<br />
24, 5004. Habermehl, N. C.; Eisler, D. J.; Kirby, C. W.; Yue, N. L. S.;<br />
Puddephatt, R. J. Organometallics 2006, 25, 2921. Ferguson, G.;<br />
Gallagher, J. F.; Kennedy, J. D.; Kelleher, A.-M.; Spalding, T. R. Dalton<br />
Trans. 2006, 2133. Burchell, T. J.; Jennings, M. C.; Puddephatt, R. J.<br />
Inorg. Chim. Acta 2006, 359, 2812. Koshevoy, I. O.; Koskinen, L.;<br />
Haukka, M.; Tunik, S. P.; Serdobintsev, P. Y.; Melnikov, A. S.;<br />
Pakkanen, T. A. Angew. Chem., Int. Ed. 2008, 47, 3942. Packheiser, R.;<br />
Ecorchard, P.; Rueffer, T.; Lang, H. Chem. Eur. J. 2008, 14, 4948.<br />
Koshevoy, I. O.; Smirnova, E. S.; Domenech, A.; Karttunen, A. J.;<br />
Haukka, M.; Tunik, S. P.; Pakkanen, T. A. Dalton Trans. 2009, 8392.<br />
Koshevoy, I. O.; Lin, Y.-C.; Karttunen, A. J.; Chou, P.-T.; Vainiotalo,<br />
P.; Tunik, S. P.; Haukka, M.; Pakkanen, T. A. Inorg. Chem. 2009, 48,<br />
2094. Constable, E. C.; Housecroft, C. E.; Kocik, M. K.; Zampese, J. A.<br />
Polyhedron 2011, 30, 2704. Koshevoy, I. O.; Lin, C.-L.; Karttunen, A.<br />
J.; Janis, J.; Haukka, M.; Tunik, S. P.; Chou, P.-T.; Pakkanen, T. A.<br />
Inorg. Chem. 2011, 50, 2395. Koshevoy, I. O.; Lin, C.-L.; Karttunen, A.<br />
J.; Jaenis, J.; Haukka, M.; Tunik, S. P.; Chou, P.-T.; Pakkanen, T. A.<br />
Chem. Eur. J. 2011, 17, 11456. Li, X.-L.; Tan, M.; Zhang, K.-J.; Yang,<br />
B.; Chen, J.; Ai, Y.-B. Inorg. Chem. 2012, 51, 109.<br />
5425<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426
Organometallics<br />
Article<br />
(45) Vicente, J.; Chicote, M. T.; Aĺvarez-Falcoń, M. M.; Abrisqueta,<br />
M. D.; Hernańdez, F. J.; Jones, P. G. Inorg. Chim. Acta 2003, 347, 67.<br />
(46) Vicente, J.; Chicote, M.-T.; Aĺvarez-Falcoń, M. M.; Bautista, D.<br />
Organometallics 2004, 23, 5707. Hogarth, G.; Alvarez-Falcon, M. M.<br />
Inorg. Chim. Acta 2005, 358, 1386.<br />
(47) Vicente, J.; Gil-Rubio, J.; Barquero, N.; Jones, P. G.; Bautista, D.<br />
Organometallics 2008, 27, 646.<br />
(48) Siemeling, U.; Rother, D.; Bruhn, C. Chem. Commun. 2007,<br />
4227. Chico, R.; Castillejos, E.; Serp, P.; Coco, S.; Espinet, P. Inorg.<br />
Chem. 2011, 50, 8654.<br />
(49) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Aĺvarez-Falcoń,<br />
M. M. J. Organomet. Chem. 2002, 663, 40.<br />
(50) Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005, 105, 3978.<br />
(51) Wang, H. M. J.; Vasam, C. S.; Tsai, T. Y. R.; Chen, S.-H.;<br />
Chang, A. H. H.; Lin, I. J. B. Organometallics 2005, 24, 486.<br />
(52) Patil, S.; Deally, A.; Hackenberg, F.; Kaps, L.; Müller-Bunz, H.;<br />
Schobert, R.; Tacke, M. Helv. Chim. Acta 2011, 94, 1551.<br />
(53) Vicente, J.; Chicote, M. T.; Abrisqueta, M. D.; Aĺvarez-Falcoń,<br />
M. M.; Ramírez de Arellano, M. C.; Jones, P. G. Organometallics 2003,<br />
22, 4327.<br />
(54) Hashmi, A. S. K.; Hengst, T.; Lothschuẗz, C.; Rominger, F. Adv.<br />
Synth. Catal. 2010, 352, 1315. Bartolomé, C.; García-Cuadrado, D.;<br />
Ramiro, Z.; Espinet, P. Inorg. Chem. 2010, 49, 9758.<br />
(55) Chao, H. Y.; Lu, W.; Li, Y. Q.; Chan, M. C. W.; Che, C. M.;<br />
Cheung, K. K.; Zhu, N. Y. J. Am. Chem. Soc. 2002, 124, 14696.<br />
(56) Li, D.; Hong, X.; Che, C. M.; Lo, W. C.; Peng, S. M. J. Chem.<br />
Soc., Dalton Trans. 1993, 2929.<br />
(57) Lu, W.; Zhu, N. Y.; Che, C. M. J. Am. Chem. Soc. 2003, 125,<br />
16081.<br />
(58) Baron, M.; Tubaro, C.; Biffis, A.; Basato, M.; Graiff, C.; Poater,<br />
A.; Cavallo, L.; Armaroli, N.; Accorsi, G. Inorg. Chem. 2012, 51, 1778.<br />
(59) Xu, H.-B.; Zhang, L.-Y.; Ni, J.; Chao, H.-Y.; Chen, Z.-N. Inorg.<br />
Chem. 2008, 47, 10744.<br />
(60) Coates, G. E.; Parkin, C. J. Chem. Soc. 1962, 3220.<br />
(61) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N.<br />
Synthesis 1980, 627.<br />
(62) Grosshenny, V.; Romero, F. M.; Ziessel, R. J. Org. Chem. 1997,<br />
62, 1491.<br />
(63) Wang, J.-W.; Song, H.-B.; Li, Q.-S.; Xu, F.-B.; Zhang, Z.-Z. Inorg.<br />
Chim. Acta 2005, 358, 3653.<br />
5426<br />
dx.doi.org/10.1021/om300431r | Organometallics 2012, 31, 5414−5426