20.10.2014 Views

Alternatives to Methyl Bromide - DTIE

Alternatives to Methyl Bromide - DTIE

Alternatives to Methyl Bromide - DTIE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sourcebook of<br />

Technologies for Protecting<br />

the Ozone Layer:<br />

<strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong><br />

United Nations Environment Programme<br />

Division of Technology, Industry and Economics<br />

OzonAction Programme


Sourcebook of Technologies for Protecting the Ozone Layer:<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Acknowledgments<br />

This publication was produced by the United Nations Environment Programme Division of Technology, Industry and<br />

Economics (UNEP <strong>DTIE</strong>) as part of its OzonAction Programme under the Multilateral Fund.<br />

The team at UNEP <strong>DTIE</strong> that managed this publication was:<br />

Jacqueline Aloisi de Larderel, Direc<strong>to</strong>r, UNEP <strong>DTIE</strong><br />

Rajendra Shende, Chief, Energy and OzonAction Unit, UNEP <strong>DTIE</strong><br />

Cecilia Mercado, Information Officer, UNEP <strong>DTIE</strong><br />

Corinna Gilfillan, Associate Programme Officer, UNEP <strong>DTIE</strong><br />

Susan Ruth Kikwe, Programme Assistant, UNEP <strong>DTIE</strong><br />

Project Administration: The Danish Institute of Agricultural Sciences<br />

Author: Dr Melanie Miller, Member of MBTOC<br />

Edi<strong>to</strong>r: Velma Smith<br />

Technical reviewers: Dr Jonathan Banks, Dr Tom Batchelor, Prof Rodrigo Rodríguez-Kábana<br />

Edi<strong>to</strong>rial reviewers: Mr Jorge Leiva, Ms Jessica Vallette<br />

Design and layout: ampersand graphic design, inc.<br />

UNEP <strong>DTIE</strong> would like <strong>to</strong> thank the following individuals and organisations for contributing technical information and/or contact<br />

addresses: Dr Jonathan Banks, Mr Marten Barel, Dr Tom Batchelor, Dr An<strong>to</strong>nio Bello, Mr F Benoit, Prof Mohamed Besri, Dr<br />

Clyde Elmore, Dr Peter Förster, Mr Jan van S Graver, Prof ML Gullino, Dr Volkmar Haase, Dr Saad Hafez, HortResearch,<br />

International Institute of Biological Control, Prof Jaacov Katan, Dr Jürgen Kroschel, Dr López, Dr Gerhard Lung, Mr Henk<br />

Nuyten, Ms Marta Pizano, Prof Rodrigo Rodríguez-Kábana, Eng. Rafael Sanz, Ms Velma Smith, Dr Anne Turner, and other specialists<br />

and agricultural suppliers in many countries.<br />

This document is available and will be periodically updated on the UNEP OzonAction website at:<br />

www.uneptie.org/ozonaction.html<br />

© 2001 UNEP<br />

This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special<br />

permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a<br />

copy of any publication that uses this publication as a source.<br />

No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in<br />

writing from UNEP.<br />

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion<br />

whatsover on the part of the United Nations Environment Programme concerning the legal status of any country, terri<strong>to</strong>ry, city<br />

or area or of its authorities, or concerning delimitation of its frontiers or boundaries. Moreover, the views expressed do not<br />

necessarily represent the decision of the stated policy of the United Nations Environment Programme, nor does citing the trade<br />

names or commercial processes constitute endorsement.<br />

UNITED NATIONS PUBLICATION<br />

ISBN: 92-807-1974-2


Sourcebook of<br />

Technologies for Protecting<br />

the Ozone Layer:<br />

<strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong><br />

United Nations Environment Programme<br />

Division of Technology, Industry and Economics<br />

OzonAction Programme


Disclaimer<br />

This document has followed the general format for other Sourcebooks of ozone protection technologies developed<br />

by the United Nations Environment Programme Division of Technology, Industry and Economics (UNEP <strong>DTIE</strong>).<br />

UNEP, its consultants and reviewers of this document and their employees do not endorse the performance,<br />

worker safety or environmental acceptability of any of the technical options described in this document.<br />

While the information contained herein is believed <strong>to</strong> be accurate, it is of necessity presented in a summary and<br />

general fashion. The decision <strong>to</strong> implement one of the alternatives presented in this document is a complex one<br />

that requires careful consideration of a wide range of situation-specific parameters, many of which may not be<br />

addressed by this document. Responsibility for this decision and all of its resulting impacts rests exclusively with<br />

the individual or entity choosing <strong>to</strong> implement the alternative.<br />

UNEP, its consultants and reviewers of this document and their employees do not make any warranty or representation,<br />

either express or implied, with respect <strong>to</strong> its accuracy, completeness or utility; nor do they assume any liability<br />

for events resulting from the use of, or reliance upon, any information, material or procedure described<br />

herein, including but not limited <strong>to</strong> any claims regarding health, safety, environmental effects, efficacy, performance<br />

or cost made by the source of the information.<br />

The lists of vendors provided in this document are not comprehensive. Mention of any company, association or<br />

product in this document is for informational purposes only and does not constitute a recommendation of any<br />

such company, association or product, either express or implied, by UNEP, its consultants, the reviewers of this<br />

document or their employees.<br />

The reviewers listed in this document have reviewed one or more interim drafts of this document but have not<br />

reviewed this final version. These reviewers are not responsible for any errors that may be present in this document<br />

or for any effects that may result from such errors.


Table of Contents<br />

List of tables, boxes and figures ................................................................................................vi<br />

Foreword...................................................................................................................................1<br />

1. Introduction ......................................................................................................................3<br />

<strong>Methyl</strong> <strong>Bromide</strong>...................................................................................................................3<br />

Purpose of the Sourcebook .................................................................................................4<br />

Contents of the Sourcebook................................................................................................4<br />

How <strong>to</strong> use this Sourcebook................................................................................................7<br />

2. Guidance for selecting non-ODS technologies ..............................................................9<br />

Selecting and evaluating alternatives ..................................................................................9<br />

Organisational considerations .............................................................................................9<br />

Technical considerations ...................................................................................................10<br />

Economic considerations ..................................................................................................10<br />

Regula<strong>to</strong>ry considerations .................................................................................................11<br />

Health and safety considerations ......................................................................................12<br />

Market and consumer considerations ...............................................................................13<br />

Environmental considerations ...........................................................................................13<br />

3. Control of soil-borne pests ...........................................................................................15<br />

MB-based control .............................................................................................................18<br />

Overview of alternative pest control techniques ...............................................................18<br />

Examples of alternatives in commercial use ......................................................................19<br />

Uses without alternatives .................................................................................................19<br />

Strategies for controlling pests .........................................................................................21<br />

Crops and crop production systems ..................................................................................25<br />

Identifying suitable alternatives ........................................................................................26<br />

4. Alternative techniques for controlling soil-borne pests .............................................29<br />

4.1 IPM and cultural practices......................................................................................29<br />

Importance of IPM and combined techniques............................................................29<br />

Components of IPM ..................................................................................................29<br />

Cultural practices ......................................................................................................30<br />

Hygienic practices......................................................................................................30<br />

Crop rotation.............................................................................................................31<br />

Resistant varieties and grafting ..................................................................................33<br />

Mulches and cover crops ...........................................................................................33<br />

Nutrient management ...............................................................................................33<br />

Time of planting........................................................................................................33<br />

Trap crops..................................................................................................................33<br />

iTable of Contents


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

ii<br />

Water management...................................................................................................35<br />

Specialists and information resources.........................................................................35<br />

4.2 Biological controls ..................................................................................................38<br />

Advantages and disadvantages .................................................................................38<br />

Technical description .................................................................................................38<br />

Current uses..............................................................................................................42<br />

Variations under development ...................................................................................42<br />

Material inputs ..........................................................................................................42<br />

Fac<strong>to</strong>rs required for use .............................................................................................42<br />

Pests controlled .........................................................................................................42<br />

Yields and performance.............................................................................................44<br />

Other fac<strong>to</strong>rs affecting use ........................................................................................44<br />

Registration and regula<strong>to</strong>ry restrictions ......................................................................45<br />

Suppliers of products and services .............................................................................46<br />

4.3 Fumigants and other chemical products ..............................................................51<br />

Advantages and disadvantages .................................................................................51<br />

Technical description .................................................................................................51<br />

Current uses..............................................................................................................55<br />

Variations under development ...................................................................................55<br />

Material inputs ..........................................................................................................55<br />

Fac<strong>to</strong>rs required for use .............................................................................................55<br />

Pests controlled .........................................................................................................56<br />

Yields and performance.............................................................................................57<br />

Other fac<strong>to</strong>rs affecting use ........................................................................................57<br />

Suppliers of products and services .............................................................................59<br />

4.4 Soil amendments and compost .............................................................................61<br />

Advantages and disadvantages .................................................................................61<br />

Technical description .................................................................................................61<br />

Current uses..............................................................................................................64<br />

Variations under development ...................................................................................65<br />

Material inputs ..........................................................................................................65<br />

Fac<strong>to</strong>rs required for use .............................................................................................65<br />

Pests controlled .........................................................................................................65<br />

Yields and performance.............................................................................................66<br />

Other fac<strong>to</strong>rs affecting use ........................................................................................66<br />

Suppliers of products and services .............................................................................67<br />

4.5 Solarisation .............................................................................................................70<br />

Advantages and disadvantages .................................................................................70<br />

Technical description .................................................................................................70<br />

Current uses..............................................................................................................74<br />

Variations under development ...................................................................................75<br />

Material inputs ..........................................................................................................75<br />

Fac<strong>to</strong>rs required for use .............................................................................................75<br />

Pests controlled .........................................................................................................75<br />

Yields and performance.............................................................................................75<br />

Other fac<strong>to</strong>rs affecting use ........................................................................................75<br />

Suppliers of products and services .............................................................................77<br />

4.6 Steam treatments ...................................................................................................79<br />

Advantages and disadvantages .................................................................................79


Technical description .................................................................................................79<br />

Current uses..............................................................................................................82<br />

Variations under development ...................................................................................82<br />

Material inputs ..........................................................................................................82<br />

Fac<strong>to</strong>rs required for use .............................................................................................82<br />

Pests controlled .........................................................................................................82<br />

Yields and performance.............................................................................................83<br />

Other fac<strong>to</strong>rs affecting use ........................................................................................83<br />

Suppliers of products and services .............................................................................84<br />

4.7 Substrates................................................................................................................87<br />

Advantages and disadvantages .................................................................................87<br />

Technical description .................................................................................................87<br />

Current uses..............................................................................................................90<br />

Variations under development ...................................................................................91<br />

Material inputs ..........................................................................................................91<br />

Fac<strong>to</strong>rs required for use .............................................................................................91<br />

Pests controlled .........................................................................................................92<br />

Yields and performance.............................................................................................92<br />

Other fac<strong>to</strong>rs affecting use ........................................................................................92<br />

Suppliers of products and services .............................................................................94<br />

5. Control of pests in commodities and structures..........................................................97<br />

Types of commodities and structures .................................................................................97<br />

Durable products.......................................................................................................97<br />

Perishable commodities .............................................................................................97<br />

Structures ..................................................................................................................97<br />

Pests in durable commodities ............................................................................................97<br />

Pests in perishable commodities ........................................................................................99<br />

Pests in structures............................................................................................................100<br />

Overview of alternatives ..................................................................................................100<br />

Commercially available alternatives..................................................................................101<br />

Uses without alternatives.................................................................................................102<br />

Identifying suitable alternatives........................................................................................104<br />

6. Alternative techniques for controlling pests in commodities and structures.........107<br />

6.1 IPM and preventive measures .............................................................................107<br />

Pest management for durables and structures .........................................................107<br />

Preventive measures for perishable commodities......................................................108<br />

Specialists and suppliers of IPM services...................................................................111<br />

6.2 Cold treatments and aeration .............................................................................112<br />

Advantages and disadvantages................................................................................112<br />

Technical description................................................................................................112<br />

Current uses............................................................................................................113<br />

Material inputs ........................................................................................................114<br />

Fac<strong>to</strong>rs required for use ...........................................................................................114<br />

Pests controlled .......................................................................................................114<br />

Other fac<strong>to</strong>rs affecting use ......................................................................................115<br />

Suppliers of products and services ...........................................................................119<br />

6.3 Contact insecticides ..............................................................................................120<br />

Advantages and disadvantages................................................................................120<br />

Table of Contents<br />

iii


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Technical description................................................................................................120<br />

Current uses............................................................................................................123<br />

Variations under development .................................................................................123<br />

Material inputs ........................................................................................................123<br />

Fac<strong>to</strong>rs required for use ...........................................................................................123<br />

Pests controlled .......................................................................................................123<br />

Other fac<strong>to</strong>rs affecting use ......................................................................................124<br />

Suppliers of products and services ...........................................................................125<br />

6.4 Controlled and modified atmospheres ...............................................................127<br />

Advantages and disadvantages................................................................................127<br />

Technical description................................................................................................127<br />

Variations under development .................................................................................129<br />

Material inputs ........................................................................................................129<br />

Fac<strong>to</strong>rs required for use ...........................................................................................130<br />

Pests controlled .......................................................................................................130<br />

Current uses............................................................................................................130<br />

Other fac<strong>to</strong>rs affecting use ......................................................................................131<br />

Suppliers of products and services ...........................................................................133<br />

6.5 Heat treatments....................................................................................................135<br />

Advantages and disadvantages................................................................................135<br />

Technical description................................................................................................135<br />

Current uses............................................................................................................137<br />

Variations under development .................................................................................137<br />

Material inputs ........................................................................................................138<br />

Fac<strong>to</strong>rs required for use ...........................................................................................138<br />

Pests controlled .......................................................................................................138<br />

Other fac<strong>to</strong>rs affecting use ......................................................................................138<br />

Suppliers and specialists...........................................................................................141<br />

6.6 Inert dusts .............................................................................................................143<br />

Advantages and disadvantages................................................................................143<br />

Technical description................................................................................................143<br />

Current uses............................................................................................................145<br />

Variations under development .................................................................................145<br />

Material inputs ........................................................................................................145<br />

Fac<strong>to</strong>rs required for use ...........................................................................................146<br />

Pests controlled .......................................................................................................146<br />

Other fac<strong>to</strong>rs affecting use ......................................................................................146<br />

Suppliers and specialists...........................................................................................148<br />

6.7 Phosphine and other fumigants..........................................................................150<br />

Advantages and disadvantages................................................................................150<br />

Technical description................................................................................................150<br />

Current uses............................................................................................................155<br />

Variations under development .................................................................................155<br />

Material inputs ........................................................................................................156<br />

Fac<strong>to</strong>rs required for use ...........................................................................................156<br />

Pests controlled .......................................................................................................156<br />

Other fac<strong>to</strong>rs affecting use ......................................................................................156<br />

Suppliers and specialists...........................................................................................160<br />

iv


Annex 1 About the UNEP <strong>DTIE</strong> OzonAction Programme ..................................................163<br />

Annex 2<br />

Glossary, acronyms and units.............................................................................167<br />

Annex 3 Chemical safety data sheets ..............................................................................171<br />

Annex 4<br />

Annex 5<br />

Annex 6<br />

Annex 7<br />

Steps for identifying appropriate alternatives.....................................................201<br />

Information resources........................................................................................207<br />

Address list of suppliers and specialists in alternatives........................................215<br />

References, websites and further information....................................................257<br />

Annex 8 Index .................................................................................................................307<br />

Annex 9<br />

Contacts for Implementing Agencies.................................................................316<br />

A Word from the Chief of UNEP <strong>DTIE</strong> Energy and OzonAction Unit ..................inside back cover<br />

vTable of Contents


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

vi<br />

List of Tables, Boxes and Figures<br />

Table 1.1 Major applications of MB fumigant ......................................................................3<br />

Table 1.2 Montreal Pro<strong>to</strong>col control schedules for MB phase out .........................................4<br />

Figure 1.1 Breakdown of MB applications .............................................................................5<br />

Figure 1.2 Using the Sourcebook...........................................................................................8<br />

Table 3.1 Soil-borne nema<strong>to</strong>de pests controlled by MB in various regions of the world .....16<br />

Table 3.2 Soil-borne fungal pests controlled by MB in various regions of the world ...........16<br />

Table 3.3 Soil-borne bacteria and virus pests controlled by MB in various<br />

regions of the world ...........................................................................................17<br />

Table 3.4 Soil-borne insect pests controlled by MB in various regions of the world ............17<br />

Table 3.5 Weeds controlled by MB in various regions of the world ....................................17<br />

Table 3.6 Range of soil-borne pests controlled by MB and alternative techniques ..............18<br />

Table 3.7 Overview of efficacy and timing of pest control techniques and<br />

examples of appropriate combinations of techniques .........................................20<br />

Table 3.8 Summary of Techniques in widespread use in some countries.............................21<br />

Table 3.9 Cucurbits: melons, watermelons, courgettes (zucchini), cucumbers:<br />

examples of alternatives in commercial use.........................................................21<br />

Table 3.10 Toma<strong>to</strong>es and peppers: examples of alternatives in commercial use....................22<br />

Table 3.11 Strawberries (runner and fruit production): examples of alternatives<br />

in commercial use...............................................................................................22<br />

Table 3.12 Cut flowers: examples of alternatives in commercial use.....................................23<br />

Table 3.13 Roses: examples of alternatives in commercial use..............................................23<br />

Table 3.14 Tobacco seedlings: examples of alternatives in commercial use ...........................23<br />

Table 3.15 Nursery crops (vegetables and fruit): examples of alternatives in<br />

commercial use...................................................................................................24<br />

Table 3.16 Perennial crops such as banana, orchard trees, vines (re-plant):<br />

examples of alternatives in commercial use.........................................................24<br />

Table 4.1.1 Examples of crops for which IPM systems are used commercially ........................30<br />

Table 4.1.2 Efficacy and timing of various cultural practices ..................................................31<br />

Box 4.1.1 Examples of preventive practices for soil-borne pests: nema<strong>to</strong>de<br />

management ......................................................................................................31<br />

Box 4.1.2 Examples of preventive practices for soil-borne pests: disease<br />

management ......................................................................................................32<br />

Box 4.1.3 Examples of preventive practices for soil-borne pests: weed<br />

management ......................................................................................................32<br />

Table 4.1.4 Examples of suppliers of resistant varieties, roots<strong>to</strong>cks for grafting and<br />

disease-free planting materials............................................................................34<br />

Table 4.1.5 Examples of specialists and consultants in preventive methods and<br />

integrated management of soil-borne pests........................................................36<br />

Table 4.2.1 Examples of commercial use of biological controls (normally combined<br />

with other techniques)........................................................................................39<br />

Table 4.2.2 Examples of biological control agents and formulations<br />

for soil-borne diseases ........................................................................................40<br />

Table 4.2.3 Characteristics of several groups of biological controls........................................41


Table 4.2.4 Examples of nema<strong>to</strong>de pests controlled or suppressed by biological controls .........42<br />

Table 4.2.5 Examples of soil-borne fungi and bacteria controlled or<br />

suppressed by biological controls........................................................................43<br />

Table 4.2.6 Examples of insect pests (soil-dwelling larvae and pupae) controlled or<br />

suppressed by biological controls........................................................................44<br />

Table 4.2.7 Examples of companies that supply biological control products and services ..........46<br />

Table 4.3.1 Comparison of technical characteristics of selected fumigants ............................52<br />

Table 4.3.2 Efficacy of fumigants and pesticides ...................................................................53<br />

Table 4.3.3 Examples of commercial use of fumigants ..........................................................54<br />

Table 4.3.4 Examples of yields from fumigants and pesticides...............................................56<br />

Table 4.3.5 Examples of fumigants producers and specialists ................................................59<br />

Table 4.4.1 Mechanisms in the control of Verticillium dahliae in soil following the<br />

addition of nitrogen-rich amendments................................................................61<br />

Table 4.4.2 Examples of commercial use of soil amendments (normally used with<br />

other techniques)................................................................................................63<br />

Table 4.4.3 Comparison of yields from soil amendments and other techniques<br />

versus MB...........................................................................................................64<br />

Table 4.4.4 Examples of companies that supply products and services for soil<br />

amendments and compost .................................................................................67<br />

Table 4.5.1 Length of solarisation treatment required <strong>to</strong> kill 90 <strong>to</strong> 100% of<br />

Verticillium dahliae sclerotia at various soil depths in Israel..................................70<br />

Table 4.5.2 Examples of commercial use of solarisation ........................................................71<br />

Table 4.5.3 Nema<strong>to</strong>des controlled by solarisation, California, USA ........................................72<br />

Table 4.5.4 Fungi and bacteria controlled by solarisation, California USA..............................72<br />

Table 4.5.5 Weeds controlled by solarisation, California USA ................................................73<br />

Table 4.5.6 Examples of nema<strong>to</strong>des, weeds and fungi and bacteria that are not<br />

controlled effectively by solarisation....................................................................74<br />

Table 4.5.7 Examples of yields from solarisation and MB.......................................................74<br />

Table 4.5.8 Examples of suppliers of solarisation products and services.................................77<br />

Table 4.6.1 Comparison of steam techniques for greenhouses..............................................80<br />

Table 4.6.2 Examples of commercially used steam treatments...............................................80<br />

Table 4.6.3 Examples of steam treatments required <strong>to</strong> kill soil-borne pests ...........................81<br />

Table 4.6.5 Examples of suppliers of products and services for steam and heat treatments .......85<br />

Table 4.7.1 Characteristics of various substrate materials ......................................................87<br />

Table 4.7.2 Comparison of two substrate systems ................................................................89<br />

Table 4.7.3 Examples of commercial use of substrates ..........................................................90<br />

Table 4.7.4 Examples of yields from substrates......................................................................91<br />

Table 4.7.5 Examples of suppliers of products and services for substrates .............................94<br />

Table 5.1 Principal pests of cereal grains and similar durable commodities .........................98<br />

Table 5.2 Examples of quarantine pests found on perishable commodities.........................99<br />

Table 5.3 Examples of pests fumigated with MB in structures ..........................................100<br />

Table 5.4 Effective techniques for pest suppression and pest elimination (disinfestation)<br />

in commodities and structures ..........................................................................101<br />

Table of Contents<br />

vii


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

viii<br />

Table 5.5 Examples of alternatives used for durable commodities ...................................102<br />

Table 5.6 Examples of quarantine treatments approved for perishable commodities........103<br />

Table 5.7 Examples of alternative techniques used for structures ....................................104<br />

Table 6.1.1 Examples of pest-free zones that are accepted instead of<br />

quarantine treatments .....................................................................................109<br />

Table 6.1.2 Examples of combined alternative treatments for commodities<br />

and structures..................................................................................................110<br />

Table 6.1.3 Examples of specialists, consultants and suppliers of services for IPM and<br />

preventive pest management techniques .........................................................111<br />

Table 6.2.1 Examples of commercial use of cool and cold treatments ................................114<br />

Table 6.2.2 Comparison of aeration, cold treatments and freezer treatments.....................115<br />

Table 6.2.3 Examples of quarantine treatment schedules utilising cold treatments .............116<br />

Table 6.2.4 Products where cold treatments are approved as quarantine treatments..........117<br />

Table 6.2.5 Suppliers of products and services for cold treatments.....................................119<br />

Table 6.3.1 Comparison of contact insecticides with fumigants..........................................122<br />

Table 6.3.2 Examples of commercial use of contact insecticides .........................................123<br />

Table 6.3.3 Examples of suppliers of products and services for contact insecticides ............126<br />

Table 6.4.1 Comparison of hermetic s<strong>to</strong>rage, nitrogen and carbon dioxide treatments..........129<br />

Table 6.4.2 Carbon dioxide disinfestation schedules for s<strong>to</strong>red grain in Japan....................131<br />

Table 6.4.3 Examples of commercial use of controlled and modified atmospheres .............131<br />

Table 6.4.4 Examples of specialists and suppliers of products and services for<br />

controlled and modified atmospheres ..............................................................134<br />

Table 6.5.1 Examples of commercial use of heat treatments ..............................................137<br />

Table 6.5.2 Temperatures for killing pests of s<strong>to</strong>red products and structures ......................138<br />

Table 6.5.3 Examples of heat treatments approved for quarantine purposes for<br />

durable commodities and artifacts, USA ..........................................................139<br />

Table 6.5.4 Examples of heat treatments approved for quarantine purposes for<br />

perishable commodities, USA...........................................................................139<br />

Table 6.5.5 Examples of specialists and suppliers of products and services for<br />

heat treatments ...............................................................................................142<br />

Table 6.6.1 Examples of commercial use of inert dusts.......................................................145<br />

Table 6.6.2 Pests that can be controlled by certain DE formulations – examples<br />

from USA.........................................................................................................147<br />

Table 6.6.3 Examples of specialists and suppliers of products and services for<br />

inert dusts........................................................................................................149<br />

Table 6.7.1 Physical and chemical properties of various fumigants compared with MB...........153<br />

Table 6.7.2 Comparison of suitability of MB and various fumigants for grain .....................154<br />

Table 6.7.3 Examples of commercial use of fumigants .......................................................155<br />

Table 6.7.4 Minimum treatment time for phosphine fumigation of various s<strong>to</strong>red<br />

product pests (all stages)..................................................................................157<br />

Table 6.7.5 Approved quarantine treatments for durable commodities –<br />

examples from USA (USDA-APHIS)...................................................................158<br />

Table 6.7.6 Examples of specialists and suppliers of products and services for fumigants ...160


Foreword<br />

The threats of a depleted ozone layer and the<br />

binding Montreal Pro<strong>to</strong>col have stirred<br />

unprecedented action around the world.<br />

Already, industries and manufacturers around<br />

the world are replacing many ozone depleting<br />

substances (ODS) with less damaging substances<br />

and practices. However, more remains<br />

<strong>to</strong> be done. The ozone layer is not yet healed.<br />

<strong>Methyl</strong> bromide, a potent pest control chemical,<br />

was identified as an ODS in 1992. In<br />

1997, countries agreed <strong>to</strong> the Montreal<br />

Amendment <strong>to</strong> the Pro<strong>to</strong>col that established<br />

a global schedule <strong>to</strong> eliminate methyl bromide<br />

use and production. Developed countries<br />

will phase out MB by 2005 while<br />

developing countries are committed <strong>to</strong> eliminate<br />

it by 2015.<br />

The phase out of this <strong>to</strong>xic chemical - widely<br />

used in agriculture and other sec<strong>to</strong>rs by both<br />

large and small enterprises - presents a special<br />

challenge. To replace methyl bromide,<br />

many users around the world must have<br />

access <strong>to</strong> reliable and useful technical information<br />

on non-ozone-depleting alternatives.<br />

They must learn how <strong>to</strong> select appropriate<br />

options and be able <strong>to</strong> identify and locate<br />

worldwide suppliers of information, equipment<br />

and products. Some will also require<br />

additional technical and/or financial assistance<br />

made possible by the Pro<strong>to</strong>col’s<br />

Multilateral Fund, which was specifically created<br />

<strong>to</strong> help developing countries fulfill their<br />

obligations <strong>to</strong> eliminate ODS use.<br />

and training. Accordingly, UNEP considers the<br />

methyl bromide phase out <strong>to</strong> be a priority.<br />

UNEP has prepared this Sourcebook <strong>to</strong> provide<br />

critical technical descriptions of the<br />

range of methyl bromide alternatives, data on<br />

cost and efficacy, and an outline of advantages<br />

and disadvantages of each option.<br />

Extensive tables, reference lists, and annexes<br />

provide readers with practical information,<br />

including names and addresses of businesses<br />

and individuals who are experts, as well as<br />

vendors of products and services related <strong>to</strong><br />

methyl bromide alternatives.<br />

This publication is part of a package of<br />

resources (videos, awareness-raising<br />

brochures, policy and training manuals, etc.)<br />

developed by UNEP <strong>to</strong> promote the methyl<br />

bromide phase out. Using this sourcebook,<br />

current users of methyl bromide will be able<br />

<strong>to</strong> carefully and thoroughly assess many available<br />

alternatives and decide on the best<br />

option for their situation. Collectively, these<br />

informed decisions can promote a rapid and<br />

successful phase out of methyl bromide,<br />

thereby protecting the earth’s ozone layer,<br />

agricultural production and, importantly, the<br />

economic interests of methyl bromide users.<br />

Jacqueline Aloisi de Larderel<br />

Direc<strong>to</strong>r,<br />

Division of Technology, Industry<br />

and Economics<br />

UNEP<br />

UNEP is committed <strong>to</strong> continue its efforts <strong>to</strong><br />

enable developing countries <strong>to</strong> meet these<br />

challenges with funding from the Multilateral<br />

Fund. Because of the nature of methyl bromide<br />

use, many activities <strong>to</strong> control consumption<br />

will be related <strong>to</strong> knowledge building<br />

1Foreword


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

2


1 Introduction<br />

<strong>Methyl</strong> <strong>Bromide</strong><br />

In many parts of the world, methyl bromide<br />

(MB) helps <strong>to</strong> control a wide range of pests,<br />

such as soil nema<strong>to</strong>des and insects in s<strong>to</strong>red<br />

products. It is used mainly in the production<br />

of high value crops like strawberries and<br />

<strong>to</strong>ma<strong>to</strong>es, while lesser amounts are used for<br />

grains and traded commodities (Table 1.1).<br />

In 1997, global production of MB was about<br />

71,400 <strong>to</strong>nnes, with an estimated 68,650<br />

<strong>to</strong>nnes used for agricultural and related purposes,<br />

and the remaining 2,750 <strong>to</strong>nnes used<br />

as a feeds<strong>to</strong>ck for chemical synthesis. Sale<br />

and consumption of MB around the globe<br />

increased at a rate of about 3,700 <strong>to</strong>nnes per<br />

year between 1984 and 1992.<br />

MB is a versatile pesticide that is effective<br />

against a broad spectrum of pests. It is relatively<br />

easy <strong>to</strong> use and penetrates in<strong>to</strong> soil,<br />

commodities and structures, reaching the<br />

more inaccessible pests. Effective against<br />

most pests at moderate concentrations, MB<br />

provides a relatively rapid treatment.<br />

On the downside, MB can alter the colour<br />

and smell of certain commodities; it produces<br />

bromide ion residues - a cause of concern if<br />

they accumulate in food or water; and it is<br />

highly <strong>to</strong>xic <strong>to</strong> humans, requiring special<br />

training and equipment (MBTOC 1994).<br />

MB is also a powerful ozone deple<strong>to</strong>r, and in<br />

1992 it was added <strong>to</strong> the list of ozonedepleting<br />

substances (ODS) controlled by the<br />

Montreal Pro<strong>to</strong>col, an international agreement<br />

aimed at protecting the earth’s ozone<br />

layer. In 1997, governments around the world<br />

established a global phase-out schedule for<br />

MB: industrialised countries will phase out<br />

MB by 2005, while developing countries will<br />

phase it out by 2015 (see Table 1.2).<br />

Table 1.1 Major applications of MB fumigant<br />

Structures &<br />

Soil Durable Products Perishable Products Transport<br />

Pre-plant: fumigation S<strong>to</strong>rage: fumigation of Quarantine: Structures: fumigation<br />

prior <strong>to</strong> planting crops eg. s<strong>to</strong>red products eg. fumigation of traded of buildings eg. food<br />

strawberries, <strong>to</strong>ma<strong>to</strong>es, grains, dried fruits perishable commodities processing facilities,<br />

peppers eg. fresh fruits flour mills<br />

Re-plant: fumigation Export/import and Transport: fumigation<br />

prior <strong>to</strong> re-planting quarantine: fumigation of transport vessels<br />

perennial crops eg. of traded commodities) eg. ships aircraft,<br />

fruit trees, vines eg. grains, logs freight containers<br />

Seedbeds and<br />

nurseries: fumigation<br />

prior <strong>to</strong> planting seeds<br />

& propagation materials<br />

3Section 1: Introduction


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

4<br />

MB used for quarantine and pre-shipment<br />

(QPS) purposes is exempt from Pro<strong>to</strong>col controls.<br />

However, Denmark phased out QPS<br />

uses of MB by 1998, and the European Union<br />

has decided <strong>to</strong> restrict QPS consumption.<br />

Experts estimate that global QPS consumption<br />

has increased (TEAP 1999), and QPS may<br />

become controlled by the Pro<strong>to</strong>col in the<br />

future. A decision under the Pro<strong>to</strong>col in 1999<br />

makes it manda<strong>to</strong>ry for governments <strong>to</strong> report<br />

data on the amount of MB used for QPS.<br />

Technically feasible MB alternatives have been<br />

identified for more than 90% of MB applications.<br />

These include a variety of chemical and<br />

non-chemical measures and carefully selected<br />

combinations of several techniques linked<br />

<strong>to</strong>gether in an approach called Integrated<br />

Pest Management or IPM.<br />

Table 1.2 Montreal Pro<strong>to</strong>col control<br />

schedules for MB phase out<br />

Developed countries Developing countries<br />

1991: base level 1995-98 average:<br />

1995: freeze (1) base level<br />

1999: 75% of base 2002: freeze (1)<br />

2001: 50% of base 2003: review of<br />

reductions<br />

2003: 30% of base 2005: 80% of base<br />

2005: phase out (2) 2015: phase out (2)<br />

(1) QPS applications — as defined by the Pro<strong>to</strong>col —<br />

are currently exempt from reductions and phase out.<br />

(2) Limited exemptions may be granted for ‘critical’<br />

and ‘emergency’ uses.<br />

Purpose of the Sourcebook<br />

The aim of this Sourcebook is <strong>to</strong> assist MB<br />

users <strong>to</strong> phase out their use of the fumigant<br />

by providing:<br />

Information about major technical<br />

options, particularly techniques that are<br />

in commercial use.<br />

Questions for users <strong>to</strong> consider when<br />

selecting alternatives.<br />

Addresses of experts and product<br />

suppliers.<br />

Sourcebook information is based on the alternatives<br />

identified by UNEP’s <strong>Methyl</strong> <strong>Bromide</strong><br />

Technical Options Committee (MBTOC)<br />

(MBTOC 1994, 1998). Specialist information<br />

and technical details were compiled by contacting<br />

scientists and extension specialists in<br />

the relevant areas of agricultural technology.<br />

In addition, surveys were conducted in many<br />

countries <strong>to</strong> identify suppliers of alternative<br />

products and services.<br />

Contents of the Sourcebook<br />

MB is used primarily as a soil fumigant <strong>to</strong><br />

control soil-borne pests such as nema<strong>to</strong>des,<br />

fungi and weeds. It is also used for controlling<br />

s<strong>to</strong>red product pests and quarantine<br />

pests in import/export commodities, such as<br />

grain and timber. To a lesser extent it is<br />

applied <strong>to</strong> buildings and transport, such as<br />

food s<strong>to</strong>rage facilities and ships. The major<br />

applications of MB are broken down in Figure<br />

1.1. The Sourcebook divides MB uses in<strong>to</strong><br />

two major groups:<br />

Soil uses.<br />

S<strong>to</strong>red products, traded commodities,<br />

structures and transport.<br />

For each of the two groupings, the<br />

Sourcebook covers the following areas:<br />

General guidance for selecting non-ODS<br />

techniques.<br />

Importance of pest identification and<br />

management.<br />

Description of major alternative<br />

techniques.<br />

Efficacy, uses and limitations of each<br />

alternative technique.<br />

Lists of material inputs and suppliers.<br />

Questions <strong>to</strong> consider when selecting<br />

specific alternatives.<br />

Sources of further information.


Figure 1.1 Breakdown of MB applications<br />

Seedbeds,<br />

nursery beds<br />

Tobacco<br />

Forest trees<br />

Turf<br />

Nursery<br />

Plants<br />

Citrus<br />

Coffee, tea<br />

Potting<br />

Media<br />

Soil<br />

Fumigation<br />

Soil-borne<br />

pests<br />

Greenhouses,<br />

plastic tunnels<br />

Field crops<br />

Cut flowers<br />

Toma<strong>to</strong>es<br />

Peppers<br />

Eggplant<br />

Melons<br />

Cucumber,<br />

Zucchini<br />

Strawberries<br />

Root crops<br />

Herbs<br />

Perennial crops<br />

Vines<br />

Pomefruit<br />

trees<br />

S<strong>to</strong>nefruit<br />

trees<br />

Nut trees<br />

Banana<br />

plants<br />

Golf courses<br />

Flowers,<br />

e.g., roses<br />

Durable<br />

Commodities<br />

S<strong>to</strong>red product<br />

pests, quarantine<br />

pests<br />

Fixed facilities, e.g.,<br />

chambers, s<strong>to</strong>res<br />

Temporary facilities,<br />

e.g., docksides<br />

In transport vessels,<br />

e.g., barges, ships<br />

Grains<br />

Pulses, Beans<br />

Seeds for<br />

planting<br />

Nuts<br />

Dried Fruit<br />

Spices, Herbs<br />

Tea, Coffee<br />

Cocoa<br />

Tobacco<br />

Logs<br />

Wood<br />

products<br />

Artifacts<br />

Packaging<br />

Perishable<br />

Commodities<br />

Structures and<br />

transport<br />

Quarantine<br />

pests primarily<br />

S<strong>to</strong>red product<br />

pests, wood &<br />

quarantine pests<br />

Fixed fumigation<br />

chambers<br />

Tarpaulins,<br />

temporary facilities<br />

S<strong>to</strong>rage, processing<br />

facilities<br />

Transportation<br />

Fresh fruit<br />

Vegetables<br />

Cut flowers<br />

S<strong>to</strong>rage<br />

facilities<br />

Food facilities<br />

Freight<br />

containers<br />

Ships, Aircraft<br />

Bulbs<br />

Propagation<br />

Materials<br />

Flour & feed<br />

mills<br />

Buildings<br />

Other<br />

transport<br />

5Section 1: Introduction


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

6<br />

The information is arranged in the following<br />

sections:<br />

Section 2 provides general guidance for<br />

selecting non-ODS techniques. It outlines<br />

the criteria <strong>to</strong> be considered when evaluating<br />

alternative options and offers a framework<br />

for organising the wealth of information that<br />

might be considered for selection of MB<br />

alternatives.<br />

Section 3 discusses generally the control of<br />

soil-borne pests. It identifies the main<br />

groups of soil pests, outlines the major strategies<br />

for controlling pests and provides steps<br />

for identifying effective alternatives for a<br />

given situation. It also provides examples of<br />

alternatives that are in commercial use in<br />

diverse countries.<br />

Section 4 describes the major alternatives<br />

for soil-borne pests. After a description of<br />

IPM and cultural practices (Section 4.1), it<br />

describes the following techniques in alphabetical<br />

order:<br />

Biological controls (Section 4.2).<br />

Fumigants and other chemical products<br />

(Section 4.3).<br />

Soil amendments and compost<br />

(Section 4.4).<br />

Solarisation (Section 4.5).<br />

Steam treatments (Section 4.6).<br />

Substrates (Section 4.7).<br />

For each, it outlines suitable applications and<br />

provides examples of companies that supply<br />

alternative products, as well as specialists and<br />

sources of further information.<br />

Section 5 discusses generally the control of<br />

pests in commodities and structures. It<br />

identifies the main groups of commodities<br />

and structures and their principal pests. It<br />

provides an overview of the range of alternatives<br />

<strong>to</strong> disinfest and protect commodities<br />

and structures from pest damage, notes the<br />

MB uses for which alternatives are not<br />

currently available and recommends steps <strong>to</strong><br />

be used in identifying suitable alternatives. It<br />

also provides examples of alternatives which<br />

are in commercial use in various countries.<br />

Section 6 describes the major alternatives<br />

for s<strong>to</strong>red products, traded commodities<br />

and structures. It starts with a brief description<br />

of IPM and preventive measures<br />

(Section 6.1). This section includes examples<br />

of practical activities which prevent pest populations<br />

thriving. The following techniques<br />

are described in more detail:<br />

Cold treatments and aeration<br />

(Section 6.2).<br />

Contact insecticides (Section 6.3).<br />

Controlled and modified atmospheres<br />

(Section 6.4).<br />

Heat treatments (Section 6.5).<br />

Inert dusts (Section 6.6).<br />

Phosphine and other fumigants<br />

(Section 6.7).<br />

For each, it outlines suitable applications and<br />

provides examples of companies that supply<br />

alternative products, as well as specialists and<br />

sources of further information.<br />

The Annexes provide additional information,<br />

including references and addresses:<br />

Information about the UNEP <strong>DTIE</strong> Ozon-<br />

Action Programme (Annex 1).<br />

Glossary, acronyms and units (Annex 2).<br />

Chemical safety data sheets (Annex 3).<br />

Steps for identifying appropriate<br />

alternatives (Annex 4).<br />

Information resources (Annex 5).<br />

Address list of suppliers and specialists in<br />

alternatives (Annex 6).<br />

References, websites and other sources<br />

of information (Annex 7).<br />

Index (Annex 8).


How <strong>to</strong> use this Sourcebook<br />

The flowchart labeled Figure 1.2 can serve as<br />

a guide for using the Sourcebook.<br />

The recommended approach is <strong>to</strong> begin with<br />

Section 2, which offers general guidance on<br />

selecting non-ODS techniques.<br />

From there you may decide whether you are<br />

interested in controlling pests in soil, s<strong>to</strong>red<br />

products, traded commodities or structures<br />

(see Figure 1.2).<br />

For soil and pre-plant uses of MB,<br />

read Sections 3 and 4 for information<br />

about alternatives.<br />

For s<strong>to</strong>red products, traded<br />

commodities, such as grain, and<br />

structures, read Sections 5 and 6 for<br />

information about alternatives.<br />

For each major alternative technique covered,<br />

the Sourcebook provides information on the<br />

following <strong>to</strong>pics:<br />

The pests it controls.<br />

Current uses.<br />

A brief technical description.<br />

Main equipment and materials required.<br />

Information on efficacy and<br />

performance.<br />

Suitable climates and crops.<br />

Safety aspects.<br />

Environmental impacts.<br />

Regula<strong>to</strong>ry and market issues.<br />

Questions <strong>to</strong> ask about the system.<br />

Cost considerations.<br />

Lists of suppliers of relevant services<br />

and products.<br />

Other useful contacts.<br />

References (provided in Annex 7).<br />

It is recognised that the alternatives often<br />

have <strong>to</strong> be adapted when applied <strong>to</strong> new<br />

regions and situations.<br />

When you have read the relevant alternative<br />

techniques section, make a note of the<br />

options that seem <strong>to</strong> hold promise for your<br />

situation and draw up a list of information<br />

you already have and questions that need <strong>to</strong><br />

be answered. You may find it useful <strong>to</strong> work<br />

through the tables in Annex 4, which contain<br />

detailed steps for evaluating options and<br />

selecting the most appropriate technique for<br />

a given situation.<br />

When you have identified areas for which<br />

you need more information, read the tables<br />

of specialists and suppliers, and review the<br />

references and other information resources<br />

listed in Annex 5. The addresses of companies<br />

and specialists are listed alphabetically in<br />

Annex 6.<br />

7Section 1: Introduction


Figure 1.2 Using the Sourcebook<br />

Start<br />

Read Section 2 and the Disclaimer.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

8<br />

In which sec<strong>to</strong>r is your application of methyl bromide?<br />

? ?<br />

Durable products, perishable<br />

products or structures<br />

Read Sections 5 and 6 Read Sections 3 and 4<br />

No<br />

Select the<br />

appropriate<br />

alternative for<br />

demonstration<br />

and/or adaptation<br />

and adoption<br />

Consider the information provided<br />

on alternatives.<br />

Collect additional information about pests,<br />

materials and costs from the information<br />

sources and suppliers listed<br />

for each section.<br />

Consider the issues and questions about<br />

selecting appropriate alternatives. Annex 4<br />

provides additional guidance.<br />

Do you require additional information?<br />

Yes<br />

Soil uses — pre-plant,<br />

re-plant, seedlings or nurseries<br />

Yes<br />

Contact further suppliers<br />

and specialists<br />

using the address lists<br />

Do you require additional<br />

information?<br />

No


2 Guidance for Selecting<br />

Non-ODS Techniques<br />

A successful and timely transition away from<br />

ozone-depleting MB rests upon sound decision-making<br />

by many thousands of growers<br />

and pest control managers in diverse settings<br />

around the globe. In order <strong>to</strong> control harmful<br />

pests successfully without using this traditional<br />

fumigant, each user must carefully<br />

consider and weigh a complex array of fac<strong>to</strong>rs<br />

unique <strong>to</strong> his or her situation, ultimately<br />

choosing an alternative that fits their particular<br />

circumstances.<br />

This Sourcebook is a <strong>to</strong>ol for assisting in that<br />

effort and provides detailed information and<br />

references for individual MB users <strong>to</strong> draw<br />

upon. This Section offers a broad framework<br />

for decision-makers <strong>to</strong> use in selecting and<br />

organising information relevant <strong>to</strong> their own<br />

situation. In addition, Annex 4 includes a<br />

step-wise guide for evaluation and selection<br />

of alternative techniques.<br />

Selecting and evaluating alternatives<br />

Growers and others trying <strong>to</strong> identify suitable<br />

replacement options for MB must gather a<br />

good deal of information - not only about<br />

the technical efficacy and requirements of a<br />

single, promising approach - but also about<br />

other options, costs, secondary impacts and<br />

compatibility with overall goals and operations.<br />

There are numerous trade-offs that<br />

must be considered when evaluating the pest<br />

control options.<br />

In general, the fac<strong>to</strong>rs that decision-makers<br />

must review can be grouped in<strong>to</strong> seven broad<br />

categories:<br />

Organisational.<br />

Technical.<br />

Economic.<br />

Regula<strong>to</strong>ry.<br />

Health and safety.<br />

Market and consumer.<br />

Environmental.<br />

Applicable <strong>to</strong> most MB users, these fac<strong>to</strong>rs<br />

are discussed in turn below. It will be difficult<br />

for many MB users <strong>to</strong> envisage life without<br />

MB. But the experience of phasing out other<br />

ODS which were once seen as essential has<br />

highlighted the necessity of ‘thinking outside<br />

the square’ and the importance of leadership<br />

by innovative individuals and companies.<br />

Organisational considerations<br />

Decision-makers in farms and other MB-using<br />

enterprises need <strong>to</strong> consider the relationship<br />

between an organisation’s phase-out efforts<br />

and its other activities and priorities.<br />

Competing or conflicting elements must be<br />

recognised and reconciled in a fashion appropriate<br />

<strong>to</strong> the organisation in question.<br />

Important organisational fac<strong>to</strong>rs are listed<br />

below.<br />

Commitment by decision-makers<br />

Clearly, an enterprise’s phase out of ODS is<br />

greatly facilitated when key managers and<br />

decision-makers throughout the organisation<br />

are fully committed <strong>to</strong> achieving such a goal.<br />

Programmes <strong>to</strong> build support within an<br />

organisation will be an important part of an<br />

alternative strategy.<br />

Company policies on pest control,<br />

environmental issues or other matters<br />

Some enterprises may have specific policies<br />

on pest management, including policies that<br />

favour or even require the use of MB fumigation.<br />

They may have corporate policies that<br />

9Section 2: Guidance for Selecting Non-ODS Techniques


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

10<br />

address particular residues, air emissions,<br />

quantity of waste generation, recycling, or<br />

other fac<strong>to</strong>rs that may be relevant <strong>to</strong> MB or<br />

certain alternatives. An important step is <strong>to</strong><br />

review existing policies and practices, in order<br />

<strong>to</strong> amend any policies that encourage use of<br />

MB, inhibit the adoption of alternatives, or<br />

otherwise impede the transition away from<br />

MB. It is also desirable <strong>to</strong> examine relevant<br />

policies of the company’s suppliers and<br />

purchasers.<br />

Production methods and schedules<br />

Changing the pest control system for an<br />

operation normally requires changes in other<br />

activities, such as management and daily<br />

practices on the farm or enterprise. Some<br />

alternatives may require higher levels of skill,<br />

and higher or lower labour inputs, for example.<br />

Successful adoption of a non-ODS alternative<br />

may therefore require adjustments <strong>to</strong><br />

management, the organisation of work,<br />

staffing levels, staff selection, and/or training.<br />

Early consideration and planning <strong>to</strong> address<br />

these changes will ease the transition <strong>to</strong> new<br />

pest control practices.<br />

Availability of resources<br />

Access <strong>to</strong> technical and financial resources<br />

may be the fac<strong>to</strong>r that has the single greatest<br />

impact on the selection of MB alternatives,<br />

particularly for small and medium-sized enterprises<br />

with limited resources. Often a a company<br />

has <strong>to</strong> re-prioritize its existing resources,<br />

and draw on external resources for technical<br />

expertise, advice, information or training. The<br />

Multilateral Fund of the Montreal Pro<strong>to</strong>col<br />

was created <strong>to</strong> address this problem in developing<br />

countries, by providing essential equipment<br />

and training for enterprises and farms.<br />

Technical considerations<br />

The selected alternative must be technically<br />

effective in controlling the pest problems in<br />

your local climate and circumstances. MB is<br />

one of many pest control methods, but few<br />

can control the same very wide range of<br />

pests that MB controls. In most cases, MB<br />

must be replaced by a combination of several<br />

techniques which, <strong>to</strong>gether, will control the<br />

range of pests likely <strong>to</strong> be encountered.<br />

Integrated Pest Management (IPM), is based<br />

on pest identification, moni<strong>to</strong>ring, establishment<br />

of pest injury levels and a combination<br />

of strategies <strong>to</strong> prevent and manage pest<br />

problems in an environmentally sound and<br />

cost-effective manner (MBTOC 1998). It<br />

offers a useful overall approach for selecting<br />

and implementing effective, workable alternatives<br />

for a wide range of MB uses. Many<br />

specialists around the world recommend this<br />

general approach for dealing with pest problems,<br />

and IPM is being used on a wide scale<br />

in some sec<strong>to</strong>rs, generally for controlling<br />

pests found on the stems and leaves of crops.<br />

Some IPM programmes have been developed<br />

for soil-borne pests and s<strong>to</strong>red product pests.<br />

The careful tailoring of pest management<br />

practices <strong>to</strong> a specific situation is fundamental<br />

<strong>to</strong> the IPM approach. Each application of IPM<br />

involves its own combination of several techniques<br />

selected from biological, cultural,<br />

physical, mechanical and chemical control<br />

methods. Formulating and applying a successful<br />

IPM programme, therefore, requires<br />

information, analysis, planning, and much<br />

more know-how than does the use of MB.<br />

Sections 3, 4, 5, and 6 give further information<br />

about IPM practices and important technical<br />

fac<strong>to</strong>rs <strong>to</strong> consider in the evaluation of<br />

alternative pest control methods.<br />

Economic considerations<br />

Operating costs and profitability, like access<br />

<strong>to</strong> capital, are critical fac<strong>to</strong>rs in the selection<br />

of alternatives. Initial costs associated with an<br />

MB alternative may include capital costs of<br />

equipment, additional costs associated with<br />

handling that new equipment, costs of new<br />

permits or licenses, and costs of training personnel<br />

in new systems and methods.<br />

Operating costs may include ongoing costs<br />

for materials and supplies, labour, maintenance<br />

or servicing of equipment, or energy<br />

and transportation costs.


In evaluating these points, it will be important<br />

<strong>to</strong> consider the long-term cost package. At<br />

first glance some alternatives may appear<br />

unreasonably costly because they require a<br />

large initial investment in training, equipment,<br />

etc. But when costs over the long term<br />

are considered, the same alternatives can<br />

actually be cost-effective.<br />

What’s more, an assessment of costs alone<br />

does not provide a complete picture.<br />

<strong>Alternatives</strong> which have higher operating<br />

costs can be as profitable as MB if they give<br />

higher crop yields or raise the market value of<br />

products. Likewise, an alternative that results<br />

in reduced yields can be as profitable as MB if<br />

the costs are sufficiently lower, as found with<br />

solarisation for example. So the profitability<br />

or net revenue needs <strong>to</strong> be examined.<br />

In future, the price of alternatives will<br />

become more favourable when the inputs<br />

become widely available and the techniques<br />

are optimised. The cost of MB itself will be<br />

much less attractive in future because the<br />

prices of MB will tend <strong>to</strong> rise as supplies<br />

dwindle. While traditional economic evaluation<br />

is very important, it is also necessary <strong>to</strong><br />

recognise that an MB reduction programme is<br />

justified on the basis of environmental protection<br />

and the need <strong>to</strong> reduce ‘externalised<br />

costs’ in agriculture.<br />

Finally, the economic analysis could also consider<br />

the possibility of accessing funds from<br />

the Montreal Pro<strong>to</strong>col’s Multilateral Fund. The<br />

fund was established <strong>to</strong> provide financial and<br />

technical assistance for ODS users in developing<br />

countries who wish <strong>to</strong> adopt alternative<br />

techniques.<br />

Funds for MB projects have been made available<br />

in the last few years. By the end of 2000<br />

the Multilateral Fund had approved about<br />

100 MB projects, including information materials,<br />

workshops and projects <strong>to</strong> demonstrate<br />

alternatives. In 1999 the Fund decided <strong>to</strong> give<br />

priority <strong>to</strong> projects that will phase out MB in<br />

specific sec<strong>to</strong>rs, via investment, training and<br />

policy development.<br />

The national ozone protection offices of governments<br />

are normally able <strong>to</strong> provide information<br />

about the procedures for applying for<br />

this assistance. Alternatively, the Multilateral<br />

Fund Secretariat website provides information.<br />

(See Information Resources in Annex 5.)<br />

Regula<strong>to</strong>ry considerations<br />

Pesticides and fumigants, like MB, normally<br />

have <strong>to</strong> be registered by the government<br />

authorities responsible for pesticide safety, so<br />

the availability of particular chemicals will vary<br />

from country <strong>to</strong> country or even within different<br />

regions of a country. For example, phosphine,<br />

an alternative fumigant for s<strong>to</strong>red<br />

grains, is registered in many countries, while<br />

some other chemical alternatives are registered<br />

in only a few countries. Biological controls<br />

and soil amendments also require<br />

registration in some countries.<br />

Prospective users of alternative chemicals will<br />

usually find that official approval or registration<br />

of a chemical product is accompanied by<br />

diverse safety requirements which limit the<br />

way a product can be applied. The use of<br />

registered pesticides is normally restricted <strong>to</strong><br />

specific crops and operations; the application<br />

rates (doses) may be limited; and there are<br />

special conditions on sales, safety equipment,<br />

training and disposal of waste chemicals and<br />

containers. In many instances, restrictions are<br />

set on the levels of pesticide residues that<br />

may remain in foods. Some chemical alternatives,<br />

such as sulphuryl fluoride, are not permitted<br />

for treating food products at present.<br />

The process of applying for a new pesticide<br />

registration is very expensive, and this task is<br />

normally carried out by companies that wish<br />

<strong>to</strong> sell the product in countries where they<br />

expect <strong>to</strong> gain a large market.<br />

To find out whether a product is registered<br />

for use in your country and for your type of<br />

crop or application, it is best <strong>to</strong> contact the<br />

Section 2: Guidance for Selecting Non-ODS Techniques<br />

11


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

12<br />

government authority responsible for pesticide<br />

safety and registration - often found in<br />

the Ministry of Agriculture or Health. Local<br />

agricultural product suppliers are normally<br />

able <strong>to</strong> give information on registered products<br />

and uses, although their information<br />

may not be up-<strong>to</strong>-date or completely reliable.<br />

Under international guidelines, registered<br />

products are supposed <strong>to</strong> carry labels that<br />

inform users on approved uses, application<br />

rates and safety precautions.<br />

On the other hand, many non-chemical alternatives,<br />

such as steam, substrates and solarisation,<br />

are not subject <strong>to</strong> registration and,<br />

therefore, are accessible immediately <strong>to</strong> users.<br />

In addition <strong>to</strong> issues related <strong>to</strong> the registration<br />

and use of chemical alternatives, there may<br />

be other regula<strong>to</strong>ry issues that affect choices.<br />

Local, state or national regulations may govern<br />

emissions, wastes generated or other<br />

aspects of agriculture for example. Exporters<br />

also need <strong>to</strong> be aware of relevant regulations<br />

in the countries <strong>to</strong> which they export.<br />

Health and safety considerations<br />

Worker health and safety should be considered<br />

in the selection of an MB alternative.<br />

MB itself has high acute <strong>to</strong>xicity, and in a<br />

number of countries can be used only by<br />

licensed, trained fumiga<strong>to</strong>rs. Many chemical<br />

alternatives require significant safety precautions<br />

as well. In contrast, many non-chemical<br />

alternatives have little or no <strong>to</strong>xicity, although<br />

a few pose risks of dust or other physical<br />

hazards.<br />

The following are among the health and safety<br />

fac<strong>to</strong>rs that should be examined as part of<br />

the selection process.<br />

Toxicity. The potential for problems of<br />

acute <strong>to</strong>xicity — resulting from exposure<br />

<strong>to</strong> significant levels of <strong>to</strong>xic compounds<br />

over short periods — or chronic <strong>to</strong>xicity<br />

— resulting from low dose exposure over<br />

longer periods — must be carefully considered<br />

for any pest control product. As<br />

with MB, pest control managers should<br />

establish safety management procedures<br />

for avoiding worker exposure and keeping<br />

within the safety limits set by health<br />

agencies. It is also necessary <strong>to</strong> provide<br />

adequate safety training, safety equipment,<br />

protective apparel and health<br />

moni<strong>to</strong>ring.<br />

Flammability. Fire and explosion risks<br />

should be evaluated, and preventive<br />

measures instituted if required.<br />

Dust. Workers must be protected from<br />

dusts that can irritate lungs and eyes in<br />

the short-term or lead <strong>to</strong> lung disease<br />

over the long term.<br />

Suffocation. Certain alternatives, such<br />

as controlled atmospheres, have the<br />

potential <strong>to</strong> present suffocation hazards<br />

if managed improperly. In considering<br />

these alternatives, safety measures and<br />

training are required <strong>to</strong> ensure that<br />

workers are not exposed <strong>to</strong> an environment<br />

with insufficient oxygen.<br />

Extreme heat or cold. In adopting an<br />

MB alternative that employs extreme<br />

heat or cold, appropriate measures must<br />

be taken <strong>to</strong> assure that accidental exposures<br />

<strong>to</strong> extreme temperatures do not<br />

cause injury <strong>to</strong> workers.<br />

Mechanical hazard. Poorly designed<br />

equipment, lack of safety guards on<br />

moving parts, or worker unfamiliarity<br />

with new equipment can lead <strong>to</strong> injury.<br />

The need for special training, safety<br />

equipment or other measures <strong>to</strong> protect<br />

workers must be fac<strong>to</strong>red in<strong>to</strong> the selection<br />

of MB alternatives.<br />

Problems can be avoided by selecting alternatives<br />

free from these problems. Where this is<br />

not possible, safety management is important.<br />

This means having a plan and procedures<br />

in place <strong>to</strong> ensure that safety precautions are


introduced, workers are trained and workplace<br />

practices are carried out safely.<br />

Market and consumer<br />

considerations<br />

Agricultural products have <strong>to</strong> be acceptable<br />

<strong>to</strong> purchasers. Visual appearance and commercial<br />

grade standards are significant fac<strong>to</strong>rs,<br />

particularly for supermarkets, and<br />

alternatives must provide products that meet<br />

these standards.<br />

Purchasers of agricultural products, from<br />

supermarkets <strong>to</strong> individual consumers, are<br />

becoming increasingly concerned about pesticide<br />

residues and the environmental impacts<br />

of agriculture. Supermarkets in northern<br />

Europe are requiring fruit and vegetable producers<br />

<strong>to</strong> introduce IPM and other production<br />

methods with reduced environmental<br />

impacts. These trends and consumer concerns<br />

will affect the long-term market acceptability<br />

of chemical alternatives, and of MB itself.<br />

Environmental considerations<br />

Like MB, certain alternatives pose risks <strong>to</strong><br />

human health or the environment. In the<br />

context of the Montreal Pro<strong>to</strong>col we take a<br />

step forward when we replace an ODS with a<br />

non-ODS. But it also makes sense, from both<br />

marketing and environmental perspectives, <strong>to</strong><br />

select alternatives that do not contribute significantly<br />

<strong>to</strong> other environmental problems.<br />

Issues <strong>to</strong> consider include those listed below.<br />

Ozone depletion and global<br />

warming. Each alternative must be evaluated<br />

for its contribution <strong>to</strong> global<br />

warming and ozone depletion. It would<br />

generally be considered undesirable <strong>to</strong><br />

replace an ozone-depleting chemical like<br />

MB with a non-ozone-depleting chemical<br />

that has a significant global warming<br />

potential.<br />

Use of non-renewable sources of<br />

energy and materials. Wherever possible,<br />

MB should be replaced with alternatives<br />

that conserve energy. In some situations<br />

it may be feasible <strong>to</strong> use renewable<br />

sources of energy or waste heat from<br />

local industries. It can also be feasible <strong>to</strong><br />

use renewable waste materials as soil<br />

amendments or substrates, for example.<br />

Air pollution. Many pesticides and<br />

other chemicals create fine mists that<br />

pollute the local environment and in<br />

some cases travel thousands of miles <strong>to</strong><br />

pollute other regions. Selection of alternatives<br />

should seek <strong>to</strong> avoid or minimise<br />

all forms of air pollution.<br />

Water contamination (surface and<br />

groundwater). Some agricultural practices<br />

result in residues and breakdown<br />

products that leach in<strong>to</strong> water, impacting<br />

plants and animals that live in the<br />

ponds, rivers and seas. The vulnerability<br />

of water <strong>to</strong> contamination from everyday<br />

operations and/or accidents should be<br />

considered.<br />

Soil contamination. Some pest control<br />

techniques - notably pesticides - leave<br />

residues and breakdown products in soil<br />

and crop debris, affecting beneficial soil<br />

organisms and non-target plants and<br />

animals. Although active ingredients may<br />

break down quickly, some breakdown<br />

products can persist for long periods.<br />

Food contamination. Some pesticides<br />

can leave undesirable residues and<br />

breakdown products in food, creating<br />

potential problems for consumers, especially<br />

young children, or leading <strong>to</strong> products<br />

being rejected by markets.<br />

Increasingly, supermarkets favour pest<br />

control methods that avoid the risk of<br />

food residues.<br />

Solid waste. Waste containers, plastic<br />

and other materials can litter the countryside<br />

or fill up large areas of landfill<br />

sites. Where possible, it is advisable <strong>to</strong><br />

avoid generating waste, <strong>to</strong> reduce the<br />

Section 2: Guidance for Selecting Non-ODS Techniques<br />

13


use of items that create waste, and/or <strong>to</strong><br />

set up local recycling schemes.<br />

Identify the environmental impacts<br />

resulting from your operations.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Habitat and biodiversity. Some agricultural<br />

practices reduce the diversity of<br />

plants or animals, often by destroying<br />

their habitats. Broad-spectrum treatments<br />

like MB, fumigants and steam<br />

sterilisation destroy much of the biodiversity<br />

in the soil. Where possible, it is<br />

desirable <strong>to</strong> use methods which foster<br />

local habitat development, wildlife, and<br />

organisms that benefit crop production.<br />

The following steps can help <strong>to</strong> avoid or mitigate<br />

potential environmental problems:<br />

Consider the entire life cycle of inputs,<br />

including their extraction, transportation,<br />

use and disposal.<br />

Where possible, modify practices <strong>to</strong><br />

avoid or reduce negative impacts.<br />

Moni<strong>to</strong>r the efficacy of changes.<br />

Carry out regular reviews, so that the<br />

enterprise’s environmental performance<br />

can be continuously improved.<br />

14


3 Control of Soil-borne Pests<br />

Soil-borne pests can cause substantial crop<br />

damage and economic losses. This is particularly<br />

true in intensive agriculture where crops<br />

are planted in the same place year after year,<br />

creating conditions that foster pest populations<br />

in the soil.<br />

The five main categories of soil-borne pests<br />

are as follows:<br />

Nema<strong>to</strong>des. Tiny worm-like creatures<br />

that live in the soil, nema<strong>to</strong>des vary in<br />

size from microscopic <strong>to</strong> about 5 millimetres<br />

in length. Some species are agricultural<br />

pests, while others are actually<br />

advantageous <strong>to</strong> agriculture. Pest nema<strong>to</strong>des,<br />

generally called plant parasitic<br />

nema<strong>to</strong>des, feed in or on the roots of<br />

crops. Root knot nema<strong>to</strong>des for example,<br />

cause large swellings in plant roots.<br />

These root galls drain a plant’s energy<br />

resources and limit the uptake of water<br />

and nutrients, thus reducing crop<br />

growth and yields (Strand et al 1998).<br />

Some nema<strong>to</strong>des transmit harmful viruses<br />

or leave open wounds that allow<br />

pathogenic fungi <strong>to</strong> enter roots.<br />

Fungi. Certain soil-dwelling fungi (such<br />

as species of Fusarium, Verticillium and<br />

Phy<strong>to</strong>phthora) attack plant roots or the<br />

base of stems, causing diseases in the<br />

plants and reducing crop yields.<br />

Bacteria and viruses. A number of soilborne<br />

bacteria and viruses are also<br />

harmful (pathogenic) and cause diseases<br />

in crops. As with nema<strong>to</strong>des and fungi,<br />

the soil contains some beneficial bacteria<br />

that help <strong>to</strong> protect plant health.<br />

Soil insects. Certain soil-dwelling<br />

insects, such as cutworms and false<br />

wireworms, damage plants by eating<br />

roots or infecting them with fungi or<br />

bacteria. Some of the insects that eat or<br />

damage plant leaves and fruit spend certain<br />

stages of their lives in the soil, typically<br />

as larvae or pupae.<br />

Weeds. A range of weeds and weed<br />

seeds cause problems by competing with<br />

crops for root space, nutrients, water<br />

and sunlight. These include annual and<br />

perennial broadleaf weeds, grasses and<br />

sedges. A few weeds, such as broomrape,<br />

are actually parasitic on crops.<br />

Though it is capable of controlling many<br />

pests (see Table 3.1 through 3.5), MB is often<br />

applied <strong>to</strong> control just one or two groups of<br />

pests or used as general insurance against the<br />

broad range of soil pest problems. Frequently,<br />

farmers who use MB do not know which<br />

pests are present in soil. Thus some MB is<br />

applied when it is not actually necessary.<br />

Though sometimes portrayed as the perfect<br />

pest control <strong>to</strong>ol, MB does not control all<br />

pests. For example, MB has only limited effect<br />

in controlling the disease caused by<br />

Phomopsis sclerotioides in cucumber<br />

(Gyldenkaerne et al 1997). Likewise, corms<br />

and seeds of weeds such as horseweed, mallow<br />

and legumes, and many bacteria are not<br />

effectively controlled by MB (Klein 1996).<br />

There are other disadvantages as well. MB<br />

kills many of the soil organisms that benefit<br />

agricultural production. It is highly <strong>to</strong>xic;<br />

some forms of application are rather complicated;<br />

it may leach in<strong>to</strong> water in some areas;<br />

Section 3: Control of Soli-borne Pests<br />

15


Table 3.1 Soil-borne nema<strong>to</strong>de pests controlled by MB in various regions of the world<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

16<br />

Pests Africa Mediterranean South America Japan USA<br />

Nema<strong>to</strong>des<br />

Aphelenchoides spp.<br />

Ditylenchus spp. • • • • •<br />

Globodera spp. • • • • •<br />

Heterodera spp. • • • • •<br />

Longidorus spp. • •<br />

Meloidogyne spp. • • • • •<br />

Nacobbus sp.<br />

(seedbeds only)<br />

•<br />

Paratrichodorus spp. • • •<br />

Pratylenchus spp. • • • • •<br />

Rotylenchulus spp. • • • •<br />

Xiphinema spp. • • • •<br />

•<br />

Sources: MBTOC 1994, 1998<br />

Table 3.2 Soil-borne fungal pests controlled by MB in various regions of the world<br />

Pests Africa Mediterranean South America Japan USA<br />

Fungi<br />

Alternaria spp. •<br />

Armillaria spp. • • •<br />

Cli<strong>to</strong>cybe spp.<br />

•<br />

Colle<strong>to</strong>trichum spp. • • •<br />

Cylindrocladium spp.<br />

•<br />

Fusarium spp. • • • • •<br />

Glomus spp.<br />

•<br />

Macrophomina spp. • •<br />

Mucor spp.<br />

•<br />

Phoma spp. • •<br />

Phyma<strong>to</strong>trichum • • •<br />

Phy<strong>to</strong>phthora spp. • • • • •<br />

Plasmodiophora spp.<br />

•<br />

Pyrenochaeta spp. • • •<br />

Pythium spp. • • • • •<br />

Rhizoc<strong>to</strong>nia spp. • • • • •<br />

Rhizopus spp.<br />

•<br />

Rosellinia spp. • • •<br />

Sclerotinia spp. • • • • •<br />

Sclerotium rolfsii • • • • •<br />

Thielayiopsis spp.<br />

Verticillium spp. • •<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Sources: MBTOC 1994, 1998


Table 3.3 Soil-borne bacteria and virus pests controlled by MB<br />

in various regions of the world<br />

Pests Africa Mediterranean South America Japan USA<br />

Bacteria and viruses<br />

Agrobacterium spp. • •<br />

Clavibacter spp. • •<br />

Cucumber mosaic<br />

•<br />

Erwinia spp. • • •<br />

Grape fanleaf<br />

•<br />

Pseudomonas spp. • • • • •<br />

Strep<strong>to</strong>myces spp.<br />

•<br />

Tobacco mosaic • •<br />

Toma<strong>to</strong> spotted wilt<br />

•<br />

Xanthomonas spp.<br />

•<br />

Sources: MBTOC 1994, 1998<br />

Table 3.4 Soil-borne insect pests controlled by MB in various regions of the world<br />

Pests Africa Mediterranean South America Japan USA<br />

Insects<br />

Agrotis spp. (cutworms) • • • •<br />

Frankliniella occidentalis<br />

•<br />

Lyriomyza trifolii<br />

•<br />

Mole crickets • •<br />

Otiorhynchus spp.<br />

•<br />

Root weevils • • •<br />

Symphylans<br />

•<br />

Termites<br />

•<br />

Tetranychus urticae • • •<br />

White grubs • • •<br />

Wireworms • • •<br />

Sources: MBTOC 1994, 1998<br />

Table 3.5 Weeds controlled by MB in various regions of the world<br />

Pests Africa Mediterranean South America Japan USA<br />

Weeds<br />

Cyperus spp. • • • •<br />

Orobanche spp. • • •<br />

Broad leaf<br />

(perennial and annual) • • • • •<br />

Grasses • • • • •<br />

Sedges • • • •<br />

Section 3: Control of Soli-borne Pests<br />

Sources: MBTOC 1994, 1998<br />

17


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

18<br />

andbromide residues may accumulate in<br />

crops (Katan 1999).<br />

MB-based control<br />

One of many pest control methods, MB is<br />

versatile and effective against a broad spectrum<br />

of pests, including weeds. (See Tables<br />

3.1 through 3.5.) It is effective at relatively<br />

low temperatures and penetrates soil well,<br />

reaching pests in different areas and soil<br />

depths.<br />

Decades of accumulated experience in some<br />

regions of the world have allowed farmers <strong>to</strong><br />

make optimal use of MB while avoiding situations<br />

in which it is not effective or has severe<br />

local side effects (Katan 1999). As a result,<br />

MB has become highly acceptable and popular<br />

with many farmers. Still, around the world<br />

many crops are also produced successfully<br />

without MB (MBTOC 1998).<br />

Overview of alternative pest<br />

control techniques<br />

The techniques identified by the <strong>Methyl</strong><br />

<strong>Bromide</strong> Technical Options Committee<br />

(MBTOC) for controlling soil-borne pests<br />

(MBTOC 1994, 1998) can be divided in<strong>to</strong> the<br />

two broad categories listed below. Each technique<br />

is further described in Section 4.<br />

Non-chemical methods<br />

Cultural practices, such as crop rotation,<br />

resistant varieties, grafting, mulching,<br />

cover crops, ploughing, tillage, hygienic<br />

practices or sanitation, and water management.<br />

Biological controls, i.e. beneficial soil<br />

organisms that control or suppress pests.<br />

Soil amendments and compost.<br />

Solarisation.<br />

Table 3.6 Range of soil-borne pests controlled by MB and alternative techniques<br />

Non-chemical techniques<br />

Spectrum of soil pests that can be controlled<br />

Nema<strong>to</strong>des Fungi Weeds Insects<br />

Biological controls • • • •<br />

Crop rotation •• •• • •<br />

Grafting • •<br />

Resistant varieties • •<br />

Soil amendments •• •• • •<br />

Solarisation ••• •• ••• ••<br />

Steam ••• ••• ••• •••<br />

Substrates (soil substitutes) ••• ••• ••• •••<br />

Chemical treatments<br />

MB ••• ••• ••• •••<br />

Chloropicrin •• ••• •• ••<br />

Dazomet •• ••• •• ••<br />

1,3-dichloropropene ••• • • ••<br />

Metam sodium •• ••• ••• ••<br />

MITC •• ••• ••• ••<br />

Nematicides<br />

•••<br />

Fungicides<br />

•••<br />

Herbicides<br />

•••<br />

Key: • narrow range of pest species •• intermediate range ••• wide range


Steam heat.<br />

Substrates or soil substitutes.<br />

Chemical methods<br />

Fumigants, such as chloropicrin,<br />

dazomet, 1,3-dichloropropene, MITC,<br />

metam sodium.<br />

Non-fumigant pesticides, primarily<br />

nematicides, fungicides and herbicides.<br />

While steam treatments control the same<br />

broad spectrum of pests as MB, most other<br />

techniques control a smaller range of pest<br />

species. Table 3.6 illustrates the range or<br />

spectrum of soil pests controlled by chemical<br />

and non-chemical techniques.<br />

Where a narrow range of pests is present,<br />

one technique may give sufficient control.<br />

However, in situations involving a wide spectrum<br />

of pests, it is often necessary <strong>to</strong> replace<br />

MB with a combination of several techniques.<br />

So a combination might comprise, for example,<br />

a fumigant or solarisation <strong>to</strong> control certain<br />

nema<strong>to</strong>des, fungi and weeds, plus a<br />

second technique <strong>to</strong> control a problematic<br />

nema<strong>to</strong>de species, and a third technique <strong>to</strong><br />

manage problem weeds. Identifying suitable<br />

combinations is the key <strong>to</strong> developing effective<br />

MB alternatives.<br />

Table 3.7 provides a comparative overview of<br />

the efficacy of different techniques, examples<br />

of techniques that are compatible in combination,<br />

and information on timing of applications<br />

(see also Section 4).<br />

Examples of alternatives in<br />

commercial use<br />

MBTOC has identified a wide variety of cases<br />

in which alternative techniques are being<br />

used commercially for control of one or more<br />

soil-borne pests (MBTOC 1998). Table 3.8<br />

provides a summary of the main techniques<br />

known <strong>to</strong> be in widespread commercial use in<br />

some countries. (See Section 4 for additional<br />

detail on each technique.) The countries<br />

cover diverse climatic regions of the world,<br />

including Brazil, Canada, Chile, Colombia,<br />

Egypt, Germany, Japan, Jordan, Malawi,<br />

Mexico, Morocco, Netherlands, Spain, USA<br />

and Zimbabwe.<br />

Tables 3.9 through 3.16 provide, for each<br />

major crop, examples of countries in which<br />

MB alternatives are in commercial use. The<br />

tables specify whether such uses is widespread<br />

(W) or limited (L). Data is provided for<br />

the following crops:<br />

Cucurbits- melons, courgettes (zucchini),<br />

cucumbers (Table 3.9).<br />

Toma<strong>to</strong>es and peppers (Table 3.10).<br />

Strawberries (Table 3.11).<br />

Cut flowers (Table 3.12).<br />

Roses (perennials) (Table 3.13).<br />

Tobacco seedbeds (Table 3.14).<br />

Nurseries (vegetables and fruit)<br />

(Table 3.15).<br />

Perennial crops, e.g., orchard trees,<br />

banana plants (Table 3.16).<br />

Uses without alternatives<br />

MBTOC noted that there is no single crop<br />

that cannot be produced successfully without<br />

MB (MBTOC 1998). However, MBTOC identified<br />

a limited number of pests and specific<br />

situations where it is currently difficult <strong>to</strong><br />

achieve control without MB, and these<br />

include the following (MBTOC 1994, 1998):<br />

Certain soil-borne viruses that affect a<br />

few specific crop situations.<br />

Deep fumigation of almond groves for<br />

root rot in the USA.<br />

Replant problems in areas where limited<br />

land is available.<br />

Some certified pest-free propagation<br />

materials.<br />

MBTOC has estimated that these difficult<br />

uses account for less than 5% of the MB<br />

Section 3: Control of Soli-borne Pests<br />

19


Table 3.7 Overview of efficacy and timing of pest control techniques and<br />

examples of appropriate combinations of techniques<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Examples of<br />

Timing<br />

Techniques Efficacy compatible techniques of treatment<br />

Non-chemical techniques<br />

Biological Suppression of Solarisation, substrates, cover Before and<br />

controls certain species of crops, other cultural practices during crop<br />

fungi and nema<strong>to</strong>des<br />

production<br />

Crop rotation Leads <strong>to</strong> decline in certain Fumigants, solarisation, biological Crop cycle of<br />

types of pathogens; not controls, resistant varieties, at least 3 years<br />

effective against pathogens grafting, other cultural practices<br />

with wide host range<br />

Grafting and Middle <strong>to</strong> high against specific Fumigants, solarisation, trap At planting time<br />

resistant pathogens, depending on crops, other cultural practices<br />

varieties roots<strong>to</strong>ck and conditions<br />

Soil Good suppression of fungi and Solarisation, biofumigation, Applied 2 weeks<br />

amendments some nemaodes; not effective biological controls, resistant <strong>to</strong> several months<br />

and compost against most weeds and insects varieties, other cultural practices before planting<br />

Solarisation Effective against many Fumigants, biofumigation, 4 - 7 week<br />

fungi, nema<strong>to</strong>des and biological controls, resistant treatment prior<br />

weeds, except weeds with varieties, grafting, crop rotation, <strong>to</strong> planting<br />

deeply buried structures other cultural practices<br />

Steam Highly effective against many Resistant varieties, grafting, 20-minute <strong>to</strong><br />

fungi, nema<strong>to</strong>des and weeds, biological controls, other IPM 8-hour treatment<br />

provided treatment is taken methods immediately<br />

<strong>to</strong> sufficient soil depth<br />

before planting<br />

Substrates Highly effective Biological controls No treatment<br />

(soil substitutes)<br />

required for<br />

clean substrates<br />

Chemical treatments<br />

MB Highly effective against Biological controls applied after 7 -14 days<br />

many fungi, nema<strong>to</strong>des fumigation before planting<br />

and weeds<br />

Chloropicrin Highly effective against fungi Fumigants, pesticides, resistant At least 14<br />

and some arthropods; varieties, grafting, cultural days before<br />

nematicide; weak herbicide practices planting<br />

Dazomet Satisfac<strong>to</strong>ry against fungi Fumigants, pesticides, 10 - 60 days<br />

weeds, and certain solarisation, resistant varieties, before planting<br />

nema<strong>to</strong>des<br />

grafting, cultural practices<br />

1,3- Effective nematicide, Fumigants, pesticides, resistant 7 - 45 days<br />

dichloropropene suppresses some fungi varieties, grafting, cultural before planting<br />

and weeds (limited)<br />

practices<br />

Metam sodium Highly effective against Fumigants, pesticides, About 14 - 50<br />

fungi; effective against solarisation, resistant varieties, days before<br />

arthropods; controls grafting, cultural practices planting<br />

some weeds and certain<br />

nema<strong>to</strong>des<br />

20<br />

Compiled from: Lung et al 1999, MBTOC 1998


Table 3.8 Summary of techniques in widespread use in some countries<br />

Techniques<br />

Biological controls<br />

Crop rotation, fallow<br />

Grafting<br />

Fumigants other than MB<br />

Resistant varieties<br />

Solarisation<br />

Steam<br />

Substrates<br />

Crops or uses<br />

Tobacco seedlings, citrus trees<br />

Cucurbits, strawberries, cut flowers, nursery crops<br />

Cucurbits, open field <strong>to</strong>ma<strong>to</strong>es and peppers, nursery crops, pip and<br />

s<strong>to</strong>ne fruit trees, nut trees, perennial vines<br />

Cucurbits, open field <strong>to</strong>ma<strong>to</strong>es and peppers, strawberries<br />

Cucurbits, open field <strong>to</strong>ma<strong>to</strong>es and peppers, strawberries,<br />

cut flowers<br />

Cucurbits, protected <strong>to</strong>ma<strong>to</strong>es and peppers, cut flowers,<br />

nursery crops<br />

Cucurbits, protected <strong>to</strong>ma<strong>to</strong>es and peppers, cut flowers,<br />

protected nursery crops<br />

Cucurbits, protected <strong>to</strong>ma<strong>to</strong>es and peppers, <strong>to</strong>bacco seedlings,<br />

strawberries, cut flowers, protected nursery crops, banana plants<br />

Compiled from: MBTOC 1998<br />

Table 3.9 Cucurbits: melons, watermelons, courgettes (zucchini), cucumbers:<br />

examples of alternatives in commercial use<br />

Alternative techniques<br />

Countries<br />

Resistant varieties<br />

Developing countries (W), developed countries (W)<br />

Grafting<br />

Egypt (L), developed countries (L-W), Jordan (L), Lebanon (L),<br />

Morocco (L), Spain (W), Tunisia (L)<br />

Solarisation<br />

Developed countries (L), Jordan (L-W)<br />

Steam<br />

Europe (W)<br />

Biological controls Brazil (L), Europe (L)<br />

Biofumigation<br />

Developed countries (L)<br />

Substrates<br />

Europe (W)<br />

Crop rotation<br />

Universal (W)<br />

Fumigants<br />

Costa Rica (L-W), Egypt (L-W), Honduras (L-W), developed countries<br />

(L-W), Jordan (L-W), Mexico (L-W), Morocco (L-W), Zimbabwe (L)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

used for soil-borne pest control around the<br />

world.<br />

Strategies for controlling pests<br />

Some pest control techniques are primarily<br />

curative and applied after a pest has become<br />

established in the soil. Others aim <strong>to</strong> prevent<br />

pest populations from building up and thus<br />

avoid the need for curative treatments. After<br />

a plant has become infected, control of many<br />

soil-borne diseases becomes difficult. So, tactics<br />

<strong>to</strong> control diseases must normally be<br />

Compiled from: MBTOC 1998, Rodríguez-Kábana 1999<br />

implemented prior <strong>to</strong> planting. In addition,<br />

some form of continued protection during<br />

crop production is desirable.<br />

Examples of curative treatments include fumigants,<br />

fungicides, herbicides and steam treatments.<br />

Preventive techniques include hygienic<br />

practices, crop rotation (i.e. planting crops in<br />

a planned sequence <strong>to</strong> disrupt pest life<br />

cycles), use of substrates with inherent pestsuppressive<br />

properties, and application of soil<br />

amendments <strong>to</strong> create an environment antagonistic<br />

<strong>to</strong> specific pests, such as a change in<br />

Section 3: Control of Soli-borne Pests<br />

21


Table 3.10 Toma<strong>to</strong>es and peppers: examples of alternatives in commercial use<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

22<br />

Alternative techniques Countries<br />

Protected cultivation<br />

Steam<br />

Belgium (W), Netherlands (W), UK (L)<br />

Solarisation<br />

Japan (L), Jordan (W), Morocco (L)<br />

Substrates<br />

Belgium (W), Canada (L), Denmark (W), Morocco (L),<br />

Netherlands (W), Spain (L), UK (L)<br />

Fumigants<br />

Egypt (L), Europe (L-W), Jordan (L), Lebanon (L), Morocco (L),<br />

Tunisia (L)<br />

Open field<br />

Solarisation<br />

Israel (L-W), Japan (L), USA (L)<br />

Substrates<br />

Canary Islands (L)<br />

Crop rotation, fallow Universal (L-W)<br />

Resistant varieties<br />

Developing countries (W), Japan (W), Spain (W), USA (W)<br />

Grafting<br />

Japan (W)<br />

Fumigants<br />

Australia (W), Brazil (W), Costa Rica (W), Egypt (W), Europe (L-W),<br />

Japan (L), Jordan (W), Lebanon (W), Mexico (W), Morocco (W),<br />

Spain (W), Tunisia (W), USA (L-W), Zimbabwe (W)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

Alternative techniques<br />

Substrates<br />

Organic amendments,<br />

composts, etc.<br />

Crop rotation, fallow<br />

Resistant varieties<br />

Fumigants<br />

Solarisation<br />

Biocontrols<br />

Table 3.11 Strawberries (runner and fruit production):<br />

examples of alternatives in commercial use<br />

soil pH. Some preventive techniques can also<br />

be used as curative treatments in certain circumstances.<br />

Combining several ”weaker” methods of pest<br />

control can give sufficient control of pests.<br />

When a pathogen is exposed <strong>to</strong> a sub-lethal<br />

treatment, it is not killed immediately but is<br />

damaged and weakened, becoming more<br />

Countries<br />

Indonesia (L), Malaysia (L), Netherlands (W), UK (L)<br />

Universal (W)<br />

Universal (W)<br />

Denmark (W), Japan (L)<br />

Egypt (L), Japan (L), Jordan (L), Lebanon (L), Morocco (L-W),<br />

Netherlands (W), Spain (W), Tunisia (L-W), UK (L)<br />

Developed countries (L)<br />

Japan (L)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

Compiled from: MBTOC 1998<br />

Compiled from: MBTOC 1998<br />

vulnerable <strong>to</strong> other treatments and <strong>to</strong> control<br />

by beneficial microorganisms in the environment<br />

(Katan 1999).<br />

The approaches for controlling soil-borne<br />

pests can be categorised in two broad<br />

groups:<br />

a) Sterile or near-sterile conditions.


Alternative techniques<br />

Protected cultivation<br />

Steam<br />

Solarisation<br />

Substrates<br />

Organic amendments,<br />

composts, etc.<br />

Crop rotation, fallow<br />

Resistant varieties<br />

Open field cultivation<br />

Fumigants<br />

Organic amendments,<br />

composts etc.<br />

Crop rotation, fallow<br />

Solarisation<br />

Resistant varieties<br />

Table 3.12 Cut flowers: examples of alternatives in commercial use<br />

Countries<br />

Colombia (W), Europe (W)<br />

Developed countries (L), Lebanon (L-W)<br />

Brazil (L), Canada (W), Europe (W)<br />

Universal (W)<br />

Universal (W)<br />

Universal (L-W)<br />

Brazil (L), Colombia (L-W), Costa Rica (L), developed countries (L-W),<br />

Morocco (L-W), Zimbabwe (L)<br />

Universal (W)<br />

Universal (W)<br />

Developed countries (L)<br />

Universal (L-W)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

Compiled from: MBTOC 1998<br />

Table 3.13 Roses: examples of alternatives in commercial use<br />

Alternative techniques Countries<br />

Resistant varieties<br />

Universal (L-W)<br />

Grafting<br />

Universal (L-W)<br />

Substrates<br />

Belgium (W), Denmark (W), Netherlands (W)<br />

Biological controls Morocco (L), USA (L)<br />

Fumigants<br />

Morocco (L), Spain (L), Tunisia (L), others (L)<br />

Steam (protected<br />

cultivation)<br />

Belgium (W), Netherlands (W)<br />

Solarisation<br />

Israel (W)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

Compiled from: MBTOC 1998<br />

Table 3.14 Tobacco seedlings: examples of alternatives in commercial use<br />

Alternative techniques Countries<br />

Fumigants<br />

Brazil (L-W), Japan (L-W), USA (L-W)<br />

Biocontrols (Trichoderma) Malawi (W), Zambia (L), Zimbabwe (W)<br />

Biofumigation<br />

South Africa (L), USA (L), Zimbabwe (L)<br />

Substrates<br />

Brazil (L-W), South Africa (L-W), USA (L-W)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

Section 3: Control of Soli-borne Pests<br />

Compiled from: MBTOC 1998<br />

23


Table 3.15 Nursery crops (vegetables and fruit):<br />

examples of alternatives in commercial use<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

24<br />

Alternative techniques<br />

Steam<br />

Solarisation<br />

Biocontrols<br />

Substrates (protected<br />

cultivation)<br />

Soil amendments,<br />

composts, etc.<br />

Crop rotation, fallow<br />

Resistant varieties<br />

Grafting<br />

Biofumigation<br />

Countries<br />

For protected cultivation: Many countries (W)<br />

For open fields: Denmark (L)<br />

Widespread countries (L-W)<br />

Canada (L), Germany (L), Israel (L), Mauritius (L), Netherlands (L),<br />

Switzerland (L), UK (L)<br />

Brazil (W), Canada (W), Chile (W), Denmark (W), Germany (W),<br />

Israel (W), Mexico (W), Morocco (W), Netherlands (W), Spain (W),<br />

Switzerland (W), UK (W), USA (W), Zimbabwe (W)<br />

Widespread countries (W)<br />

Widespread countries (W)<br />

Widespread countries (L), including Egypt, Jordan, Lebanon,<br />

Morocco, Tunisia<br />

Widespread countries (W)<br />

Brazil (L), Israel (L), Mexico (L), USA (L)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

Table 3.16 Perennial crops such as banana, orchard trees, vines (re-plant):<br />

examples of alternatives in commercial use<br />

Alternative techniques Countries<br />

Apple, pear, s<strong>to</strong>ne fruit trees<br />

Biological controls USA (specific pests, L)<br />

Grafting<br />

Universal (specific pests, L-W)<br />

Fumigants<br />

Spain (L-W), USA (L-W) (s<strong>to</strong>ne fruit only)<br />

Banana plants<br />

Soil amendments Universal (L-W)<br />

Substrates<br />

Canary Islands (W)<br />

Fumigants<br />

Costa Rica (L-W)<br />

Citrus trees<br />

Biological controls Florida USA (root weevil, W)<br />

Fumigant<br />

Florida USA (L), Spain (L)<br />

Nut trees<br />

Grafting Universal (pest specific, W)<br />

Perennial vines<br />

Substrates<br />

Canary Islands (L)<br />

Grafting Universal (pest specific, W)<br />

Key: W - Widespread commercial use L - Limited commercial use<br />

Compiled from: MBTOC 1998<br />

Compiled from: MBTOC 1998


) Tolerable levels of pests.<br />

Sterile conditions: here, the aim of soil<br />

treatment is <strong>to</strong> kill or eliminate most organisms<br />

in the soil in order <strong>to</strong> create a semi-sterile<br />

or sterile medium in which <strong>to</strong> grow<br />

seedlings, greenhouse crops or very intensive<br />

field crops. MB and other broad-spectrum<br />

treatments fall in<strong>to</strong> this category.<br />

Other techniques in this category include certain<br />

combinations of fumigants and pesticides,<br />

inert substrates, steam treatments and<br />

solarisation combined with fumigants. A<br />

drawback of creating near-sterile conditions is<br />

that if pathogens enter the system they can<br />

spread rapidly in the absence of natural preda<strong>to</strong>rs.<br />

However, the addition of beneficial soil<br />

organisms <strong>to</strong> the sterile medium after treatment<br />

can help <strong>to</strong> reduce this problem.<br />

Tolerable levels of pests: in this approach,<br />

key soil pests are reduced <strong>to</strong> economically<br />

acceptable levels in order <strong>to</strong> obtain a profitable<br />

crop. The aim is not <strong>to</strong> kill all pests but<br />

<strong>to</strong> suppress pest activity and reduce pest<br />

numbers <strong>to</strong> <strong>to</strong>lerable levels. This approach<br />

relies heavily on the identification and moni<strong>to</strong>ring<br />

of pests and is often referred <strong>to</strong> as an<br />

IPM approach. Methods used in this approach<br />

may include a combination of cultural practices<br />

along with mechanical, physical, biological<br />

and pest-specific chemical techniques.<br />

In practice, IPM approaches and techniques<br />

vary greatly from one farm or region <strong>to</strong> the<br />

next. At one end of the spectrum, farmers<br />

may focus heavily on preventive methods,<br />

working, for example, <strong>to</strong> create soil conditions<br />

that suppress pests. Other IPM users<br />

may rely more on curative treatments, such<br />

as target-specific chemicals.<br />

There are many cases in which a broad spectrum<br />

of pest control is not required, because<br />

particular pests are absent or below damage<br />

thresholds. When deciding which pest control<br />

techniques <strong>to</strong> use, therefore, it is always<br />

desirable <strong>to</strong> first identify the pests present in<br />

soil and then <strong>to</strong> select the combination of<br />

techniques appropriate for those particular<br />

pests. This identification of pests and selection<br />

of targeted control methods is fundamental<br />

<strong>to</strong> the IPM approach.<br />

Crops and crop production<br />

systems<br />

The general techniques available for replacing<br />

MB are broadly similar for most crops, as<br />

shown by the examples given in Tables 3.9<br />

through 3.16. Horticultural crops, however,<br />

can be classified in<strong>to</strong> groups that tend <strong>to</strong><br />

have different production problems and<br />

needs:<br />

Vegetables, such as <strong>to</strong>ma<strong>to</strong>es, peppers<br />

and courgettes (zucchini).<br />

Soft fruit, such as strawberries.<br />

Orchard trees and vines.<br />

Annual ornamentals.<br />

Perennial ornamentals, such as roses.<br />

Tobacco.<br />

Turf and golf courses.<br />

The spectrum of techniques suitable for each<br />

crop and variety varies, as does the opportunity<br />

<strong>to</strong> intervene and control soil-borne pests.<br />

Different varieties or strains of the same crop<br />

can have very different susceptibilities <strong>to</strong><br />

pests. This means that changing from one<br />

variety <strong>to</strong> another may be part of a transition<br />

away from MB.<br />

The details of each pest control technique<br />

must vary according <strong>to</strong> the production<br />

system:<br />

Seedbeds, propagation beds and nurseries<br />

generally require a high degree of<br />

freedom from pests. This is particularly<br />

true for certified propagation materials.<br />

<strong>Alternatives</strong> which provide this level of<br />

pest freedom include substrates and efficient<br />

steam techniques.<br />

Greenhouses tend <strong>to</strong> need a high degree<br />

of pest control.<br />

Section 3: Control of Soli-borne Pests<br />

25


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

26<br />

Open field crops tend <strong>to</strong> <strong>to</strong>lerate slightly<br />

lower levels of pest control, except in<br />

very intensive systems.<br />

The needs of re-planted crops vary<br />

greatly from site <strong>to</strong> site.<br />

<strong>Alternatives</strong> therefore need <strong>to</strong> be selected<br />

and adapted <strong>to</strong> suit the specific crop system,<br />

and <strong>to</strong> fit the timing of crop production<br />

cycles. For example, if two or more crops are<br />

produced each season, a grower must either<br />

use a technique that fits with the double- or<br />

multi-cropping pattern, or alter the cropping<br />

pattern <strong>to</strong> accommodate a new approach.<br />

Likewise, for growers who aim <strong>to</strong> meet particular<br />

market windows, it is important <strong>to</strong><br />

find techniques which enable the harvest <strong>to</strong><br />

be ready when market prices are high.<br />

Identifying suitable alternatives<br />

As noted earlier, MB is effective against a<br />

broad range of pests. In making a transition<br />

away from this fumigant, therefore, many MB<br />

users will find that while a variety of alternative<br />

control methods are available, simple<br />

substitution is generally not possible. As<br />

explained above, a mix of alternatives will<br />

often be required.<br />

The selection of appropriate combinations of<br />

alternatives is inherently more complicated<br />

than the traditional use of MB, but the selection<br />

process can be simplified and made<br />

manageable by organising information and<br />

following a step-wise decision-making<br />

process.<br />

The key <strong>to</strong> identifying an alternative for a<br />

specific field or greenhouse is <strong>to</strong> start by listing<br />

the soil-borne pests of the crop or area,<br />

and then list the alternative methods that<br />

could be used <strong>to</strong> control each pest. Working<br />

from a list of techniques effective for the specific<br />

pests, it is possible <strong>to</strong> identify combinations<br />

of techniques that would be effective<br />

for the precise range of pests.<br />

The next stage involves gathering information<br />

about the profitability, advantages and drawbacks<br />

of the main combinations. Only with<br />

this sort of information in hand is it possible<br />

<strong>to</strong> select the most appropriate approach for a<br />

given situation.<br />

For guidance in using this selection approach<br />

along with the information in this<br />

Sourcebook, consider the steps listed below<br />

and review the templates for decision-making<br />

provided in Annex 4.<br />

1. Identify problem pests at your site.<br />

In addition <strong>to</strong> current pests, list the pest<br />

problems that existed prior <strong>to</strong> any use of<br />

MB.<br />

2. Determine the level of control<br />

required.<br />

3. For each pest you have listed, write<br />

down the control methods that<br />

would be technically effective.Table E<br />

in Annex 4 provides a template: list your<br />

key pests in column 1, and list effective<br />

controls in column 2.<br />

4. Use the lists prepared for each pest<br />

<strong>to</strong> identify combinations of techniques<br />

that would control your full list<br />

of pests. (Annex 4: Table E, column 3).<br />

Once you have identified combinations that<br />

would be technically effective in controlling<br />

all relevant pests, the next stage is <strong>to</strong> identify<br />

and evaluate the advantages, disadvantages,<br />

profitability and suitability of these combinations<br />

for your situation. The following steps<br />

are suggested:<br />

5. List the technical advantages and<br />

disadvantages of each alternative<br />

combination identified in the previous<br />

stage.<br />

6. Consider the following issues for<br />

each alternative combination in turn<br />

(refer <strong>to</strong> Section 2):<br />

Organisational.<br />

Health and safety.


Regula<strong>to</strong>ry – present and future.<br />

Market and consumer, including<br />

acceptability <strong>to</strong> purchasers, market<br />

requirements and opportunities..<br />

Environmental.<br />

7. Find the following information:<br />

Sources of materials and expertise.<br />

Short and long-term costs, including<br />

capital costs, operating costs, yields,<br />

profitability and pay-back period.<br />

Ways in which costs could be<br />

reduced.<br />

Ways in which the system could be<br />

improved.<br />

Steps or changes that would make<br />

adoption possible.<br />

Annex 4 contains templates for all these<br />

steps, while Annex 5 lists many useful<br />

sources of information. Contact addresses,<br />

listed alphabetically, are provided in Annex 6.<br />

Section 3: Control of Soli-borne Pests<br />

27


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

28


4 Alternative Techniques for<br />

Controlling Soil-borne Pests<br />

4.1 IPM and cultural<br />

practices<br />

Importance of IPM and combined<br />

techniques<br />

As discussed in Section 3, few alternatives<br />

control the wide range of soil pests controlled<br />

by MB, and MB replacement normally<br />

requires a combination of several practices<br />

<strong>to</strong> achieve a similar level of control. An IPM<br />

approach — which identifies the problem<br />

pests and uses several targeted control<br />

techniques, is therefore important in<br />

replacing MB.<br />

Increasingly recommended as a modern<br />

means of controlling pests, IPM has been<br />

defined in many different ways. MBTOC<br />

describes it as a system ”based on pest moni<strong>to</strong>ring<br />

techniques, establishment of pest<br />

injury levels and a combination of strategies<br />

and tactics <strong>to</strong> prevent or manage pest problems<br />

in an environmentally sound and costeffective<br />

manner” (MBTOC 1998). Treatment<br />

programmes are site-specific and combine<br />

two or more techniques selected from biological,<br />

cultural, physical, mechanical and chemical<br />

methods.<br />

This sub-section provides a brief introduction<br />

<strong>to</strong> the principles of IPM and the major types<br />

of cultural practices that can be utilized for<br />

pest control as part of an IPM approach.<br />

Additional sub-sections discuss the many control<br />

techniques that fall under the remaining<br />

categories of biological, physical, mechanical<br />

and chemical methods. As is emphasized<br />

throughout the Sourcebook, virtually all of<br />

these options are best used as part of a wellthought<br />

out, comprehensive IPM approach.<br />

Components of IPM<br />

Typical components or steps in an IPM programme<br />

may include:<br />

Identification of soil pests and possible<br />

beneficial soil organisms.<br />

A determination of the level of pests<br />

that can be <strong>to</strong>lerated before treatment is<br />

used. This threshold level is based on the<br />

amount of economic damage that can<br />

be <strong>to</strong>lerated, the size of the populations<br />

of pests and beneficial organisms, the<br />

time in the growing season, and the life<br />

stage of key organisms and their hosts.<br />

Regular moni<strong>to</strong>ring and record-keeping<br />

on the types and levels of pests and beneficial<br />

organisms.<br />

A system of practices <strong>to</strong> prevent pests<br />

from building up or spreading, such as<br />

cleaning and hygienic practices in greenhouses,<br />

and removal of diseased crop<br />

residues.<br />

Application of treatments, as necessary,<br />

<strong>to</strong> control specific target pests, selecting<br />

treatments that avoid or minimise health<br />

risks <strong>to</strong> humans, the environment and<br />

beneficial organisms.<br />

Evaluation of the results of practices and<br />

improvements in the system as<br />

necessary.<br />

In IPM programmes, treatments should not<br />

be applied according <strong>to</strong> a calendar schedule.<br />

Instead, they are applied only when moni<strong>to</strong>ring<br />

indicates that the pest will cause<br />

unacceptable damage. Treatments are<br />

restricted <strong>to</strong> the particular area or spot where<br />

pest problems occur.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

29


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

IPM approaches are knowledge-based,<br />

because they require growers and their advisers<br />

<strong>to</strong> recognise key pests and beneficials and<br />

<strong>to</strong> know about effective techniques of prevention<br />

and target-specific control. The development<br />

and establishment of IPM systems<br />

therefore requires significant effort for local<br />

adaptation and the training of technicians<br />

and growers.<br />

IPM systems are used commercially by at least<br />

some growers in many countries. Table 4.1.1<br />

provides examples of crops for which IPM is<br />

used <strong>to</strong> control soil-borne pests.<br />

Table 4.1.1 Examples of crops<br />

for which IPM systems<br />

are used commercially<br />

Crops<br />

Containerised<br />

conifer nurseries<br />

Fresh market<br />

<strong>to</strong>ma<strong>to</strong>es<br />

Cut flowers<br />

Flower bulbs<br />

Strawberries<br />

Vegetables<br />

Toma<strong>to</strong>es, peppers<br />

Countries<br />

Canada<br />

Northern Florida<br />

Colombia<br />

Australia<br />

Germany<br />

Netherlands<br />

Spain<br />

Source: MBTOC 1998, Ketzis 1992<br />

Cultural practices<br />

In general, the most reliable way <strong>to</strong> deal with<br />

pest problems is <strong>to</strong> anticipate and avoid them<br />

(Strand et al 1998), and a wide variety of<br />

standard cultural practices can be used for<br />

this purpose. Selection of fields, sequence of<br />

crops, soil preparation, planting method, timing<br />

of planting, choice of variety, fertiliser<br />

application and water management can all be<br />

manipulated <strong>to</strong> minimise the chances of pest<br />

damage (Strand et al 1998). None of these<br />

techniques on their own can replace MB, but<br />

all can contribute <strong>to</strong> IPM systems.<br />

Cultural and preventive practices for managing<br />

fungal diseases, for example, include the<br />

use of disease-free seeds and resistant varieties,<br />

cleaning of <strong>to</strong>ols after use <strong>to</strong> avoid<br />

spreading pathogens, and removal of dead<br />

and diseased crop debris. Table 4.1.2 provides<br />

a brief overview of the timing and effectiveness<br />

of several cultural practices for controlling<br />

pests. All of these are discussed in more<br />

detail below. Boxes 4.1.1 through 4.1.3 give<br />

other examples of preventive practices that<br />

assist in the management of nema<strong>to</strong>des, diseases<br />

and weeds.<br />

Hygienic practices<br />

Good standards of hygiene and cleanliness<br />

are fundamental <strong>to</strong> avoiding or reducing the<br />

need for curative treatments such as MB.<br />

Such practices prevent pests from entering or<br />

spreading within the cropping system by<br />

removing sources of pests and preventing<br />

new pathogen inoculum from entering fields<br />

and greenhouses. Many seedling pests, for<br />

example, can be controlled by preventive hygienic<br />

practices such as those listed below:<br />

Cleaning <strong>to</strong>ols, equipment and greenhouses<br />

thoroughly after use.<br />

Removing infected plant residues from<br />

the previous crop.<br />

Ensuring that contaminated soil or<br />

equipment is not brought in<strong>to</strong> the system<br />

or transferred from one greenhouse<br />

or production area <strong>to</strong> another.<br />

Restricting access <strong>to</strong> greenhouses,<br />

seedbeds and other areas, <strong>to</strong> prevent visi<strong>to</strong>rs<br />

and non-essential personnel from<br />

transferring pathogens on footwear or<br />

clothing.<br />

Using pathogen-free transplants, seeds<br />

and bulbs <strong>to</strong> avoid introducing new<br />

pathogens in<strong>to</strong> the soil.<br />

Ensuring that irrigation water is free<br />

from pathogens and, if necessary, using<br />

gravel-bed filters or other methods <strong>to</strong><br />

clean water before irrigation.<br />

30


Table 4.1.2 Efficacy and timing of various cultural practices<br />

Techniques Efficacy Timing of treatment<br />

Crop rotation Can be high, depends on the pathogen. Cycles cover a minimum of<br />

Not effective against pathogens with 3 years<br />

wide host range.<br />

Cover crops and Low for fungal pathogens; trap crops Can be grown with crop,<br />

living mulches are highly effective against some or for 2-3 months in<br />

nema<strong>to</strong>des; possible control of weeds off season<br />

Nutrient management Middle effect; necessary for good crop Before and during crop<br />

management, promoting <strong>to</strong>lerance <strong>to</strong> production<br />

pathogens<br />

Resistant cultivars Middle <strong>to</strong> high for very specific pests, No waiting period before<br />

and grafting depending on roots<strong>to</strong>ck and conditions planting<br />

Trap crops and Effective against certain fungi and Can be grown with crop,<br />

enemy plants nema<strong>to</strong>des or for 2-3 months in off<br />

season<br />

Water management Low <strong>to</strong> middle efficacy, depends on soil Before and during crop<br />

type and pests<br />

production<br />

Compiled from: Lung et al 1999<br />

Box 4.1.1 Examples of preventive practices for soil-borne pests:<br />

nema<strong>to</strong>de management<br />

• Establish local certification schemes <strong>to</strong> prevent the importation of nema<strong>to</strong>des on<br />

planting materials.<br />

• Before use, check manure and other materials that may harbour nema<strong>to</strong>des.<br />

• Avoid the introduction or spread of nema<strong>to</strong>des in irrigation water.<br />

• Clean equipment and <strong>to</strong>ols before moving them.<br />

• Moni<strong>to</strong>r nema<strong>to</strong>de populations and estimate future populations.<br />

• Examine the possible use of other high-value crops for rotation.<br />

• Where available, use resistant varieties or grafted roots<strong>to</strong>ck.<br />

• Remove weeds that are hosts <strong>to</strong> nema<strong>to</strong>des or act as reservoirs of infection.<br />

Compiled from: Department of Nema<strong>to</strong>logy University of California website, Peet 1995, Strand et al 1998<br />

In a number of cases disease-free planting<br />

materials are commercially available; some of<br />

these are certified and regulated. Table 4.1.4<br />

provides a few examples of companies that<br />

supply certified disease-free planting materials.<br />

To identify suppliers of certified diseasefree<br />

planting materials, contact the relevant<br />

government department (normally the<br />

Ministry or Department of Agriculture) for<br />

information about approved suppliers.<br />

Crop rotation<br />

Rotation involves planting a succession of different<br />

crops, each selected for its ability <strong>to</strong><br />

withstand or suppress pests that are likely <strong>to</strong><br />

have built up during the previous crop’s<br />

growing season. Pathogens that attack only a<br />

few crop species can be controlled by rotation,<br />

but rotation is not suitable for<br />

pathogens that remain in soil for a long time<br />

or affect a wide range of crops. Rotation is an<br />

ancient and reliable method, but rotations<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

31


Box 4.1.2 Examples of preventive practices for soil-borne pests:<br />

disease management<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

32<br />

• Use disease-free seeds or planting material.<br />

• Avoid old or poor quality seeds.<br />

• Where available, use resistant varieties or grafted plants with resistant roots<strong>to</strong>ck.<br />

• Select planting sites so that susceptible crops are not planted in heavily infested fields.<br />

• Use transplants where feasible, because damping-off fungi rarely attack established seedlings.<br />

• Clean <strong>to</strong>ols and equipment after use <strong>to</strong> avoid spreading pathogenic organisms.<br />

• Clean footware before entering greenhouses and seedbed areas.<br />

• Remove diseased crop residues.<br />

• Rotate <strong>to</strong> non-host crops where feasible. (Various guides are available for choosing rotations<br />

of vegetables according <strong>to</strong> disease problems, e.g. Peet 1995.)<br />

• Be aware of the impact of organic matter. Soils high in organic matter may have higher populations<br />

of damping-off fungi, but they can also increase the activity of beneficial microorganisms<br />

that suppress pathogenic fungi.<br />

• Manage water and drainage <strong>to</strong> keep soil around roots from becoming waterlogged, because<br />

root rots and damping-off occur in areas with poor drainage.<br />

• Avoid practices that encourage damping-off, including deep planting, planting in<strong>to</strong> cold, wet<br />

or poorly prepared soil and inadequate soil nutrition.<br />

• Balance watering and fertiliser applications carefully, because excess water and nitrogen<br />

encourage certain pathogens.<br />

• Avoid under-nutrition, because stressed plants that are low in potassium and calcium are<br />

more vulnerable <strong>to</strong> diseases.<br />

• Avoid <strong>to</strong>o much fertiliser, because the salts may damage roots, opening the way for secondary<br />

infections by opportunistic pathogens.<br />

• Control virus-transmitting insects very early in the season, using oils, soaps and baits, for<br />

example.<br />

• Remove and destroy weeds that transmit viruses, such as solanaceous weeds.<br />

Compiled from: Department of Nema<strong>to</strong>logy University of California website; Peet 1995; Strand et al 1998<br />

Box 4.1.3 Examples of preventive practices for soil-borne pests: weed management<br />

• Identify weed species and map their location and populations in each field.<br />

• Update the weed map two <strong>to</strong> three times each year.<br />

• Note features such as wet areas, well-drained areas, pH and field borders that may increase<br />

or inhibit weed growth.<br />

• Determine the critical weed-free period, that is, the length of time during which the crop<br />

should be practically weed-free <strong>to</strong> avoid reductions in yield or quality.<br />

• Make sure that crop seed and mulches do not contain weed seeds.<br />

• Mow around the field borders <strong>to</strong> remove sources of weed seeds.<br />

• Prevent weeds from producing seeds by removing them before seeds develop, for example.<br />

• Band fertilisers five <strong>to</strong> ten centimetres from the plants, rather than broadcasting.<br />

• Rotate crops where feasible.<br />

• Compost any manure before use <strong>to</strong> reduce weed seeds.<br />

Compiled from: Department of Nema<strong>to</strong>logy University of California website, Peet 1995.


have traditionally included lower value crops<br />

that do not suit MB users. New rotations<br />

involving only high-value crops are now being<br />

developed. For example, a three-year rotation<br />

including melon, hot pepper, peas, cucumber,<br />

<strong>to</strong>ma<strong>to</strong> and squash is used with metam sodium<br />

as part of an IPM system in Morocco<br />

(Besri 1997).<br />

Resistant varieties and grafting<br />

Some varieties are resistant <strong>to</strong> specific pests,<br />

and resistant varieties are widely used in<br />

Spain, Portugal, Greece, Morocco, France,<br />

Israel, Italy and Colombia <strong>to</strong> help substitute<br />

for soil fumigation (MBTOC 1998). The range<br />

of resistant varieties is limited <strong>to</strong> specific<br />

pests. In some varieties the resistance can<br />

break down under certain conditions, such as<br />

high soil temperatures or saline water. Target<br />

pests must be identified before the appropriate<br />

resistant or partly resistant cultivar can be<br />

selected. Table 4.1.4 lists examples of companies<br />

that supply resistant varieties.<br />

Grafting plants on<strong>to</strong> resistant roots<strong>to</strong>ck has<br />

traditionally been used for fruit trees, citrus<br />

trees and grape vines, but is now being used<br />

for annual crops such as <strong>to</strong>ma<strong>to</strong>es, cucumber<br />

and melon. This practice is increasingly popular<br />

in countries such as Morocco, Tunisia,<br />

Lebanon, Egypt, Jordan and Cyprus. The<br />

watermelon crop in Almería (Spain), for<br />

example, is raised from grafted plants, eliminating<br />

use of MB (Tello 1998). In some<br />

regions of China, cucumber and watermelon<br />

are grafted on<strong>to</strong> Cucurbita moschata roots<strong>to</strong>ck<br />

because it is resistant <strong>to</strong> Fusarium oxysporium<br />

f.sp. cucumerinum (Tang 1999).<br />

Grafting can be done mechanically by nurseries<br />

or specialised farms. It can also be done<br />

by small farmers using simple equipment<br />

such as clean, sharp blades, sticky tape and<br />

small tubes or clips <strong>to</strong> stabilise the joined<br />

stems (Lung 1999). Table 4.1.4 lists examples<br />

of companies who supply grafted plants and<br />

roots<strong>to</strong>ck for grafting. See Annex 6 for an<br />

alphabetical listing of suppliers, specialists<br />

and experts. See also Annex 5 and Annex 7<br />

for additional information resources.<br />

Mulches and cover crops<br />

Mulches are materials that cover the soil,<br />

helping <strong>to</strong> suppress weeds and certain other<br />

pests. For example, opaque black plastic or a<br />

thick layer of waste material can exclude or<br />

reduce the light that triggers weed seed germination.<br />

The use of cover crops <strong>to</strong> smother<br />

weeds is a long-established and widely used<br />

cultural practice that can also contribute <strong>to</strong><br />

the management of diseases and nema<strong>to</strong>des<br />

(Peet 1995).<br />

Cover crops must be correctly selected and<br />

managed <strong>to</strong> compete with weeds for<br />

resources, and preferably <strong>to</strong> possess chemical<br />

or allelopathic properties that reduce weed<br />

growth. Certain grasses have been used <strong>to</strong><br />

suppress Sclerotinia sclerotiorum, for example<br />

(Ferraz et al 1996). Living mulches composed<br />

of miniature brassicas or clovers grown with<br />

the main crop can also suppress weeds and<br />

reduce insect pests without reducing yields in<br />

some cropping systems (Thurs<strong>to</strong>n et al 1994).<br />

Nutrient management<br />

Manipulation of plant nutrition and fertilisation<br />

can reduce or suppress some soil-borne<br />

pathogens and nema<strong>to</strong>des by stimulating<br />

antagonistic microorganisms, increasing<br />

resistance of host plants, and/or other mechanisms<br />

(Cook and Baker 1983).<br />

Time of planting<br />

Selection of a planting time that coincides<br />

with environmental conditions unfavourable<br />

<strong>to</strong> pest activity can reduce problems with<br />

some diseases (Heald 1987, Trivedi and Barker<br />

1986). For example, relatively high temperatures<br />

do not favour Verticillium spp., while relatively<br />

low temperatures do not favour<br />

Fusarium spp. Selecting the appropriate planting<br />

time can also help <strong>to</strong> control root-knot<br />

nema<strong>to</strong>des in some regions (Bello 1998).<br />

Trap crops<br />

Some plants kill or suppress specific pests.<br />

Tagetes, a type of marigold, for example, suppresses<br />

specific nema<strong>to</strong>de species, and can be<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

33


Table 4.1.4 Examples of suppliers of resistant varieties, roots<strong>to</strong>cks for grafting<br />

and disease-free planting materials<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Plant materials<br />

Grafted plants<br />

Toma<strong>to</strong> and cucurbits –<br />

resistant varieties,<br />

resistant roots<strong>to</strong>ck<br />

for grafting<br />

Flowers – resistant<br />

varieties<br />

Disease-free planting<br />

materials<br />

Specialists, advisory<br />

services and consultants<br />

in the use of resistant<br />

varieties and/or grafting<br />

Examples of companies<br />

Grow Group International Nursery SARL, Morocco<br />

Hishtil Ashkelon Nursery Ltd, Israel<br />

Vivaio Leopardi, Italy<br />

De Ruiter Seeds, Netherlands<br />

INRA, France<br />

Novartis Seeds, Netherlands<br />

Rijk-Zwaan, Netherlands<br />

Sluis & Groot, Netherlands<br />

SPIROU Co, Greece<br />

Tézier, France<br />

American Rose Society, USA<br />

High Country Roses, USA<br />

Hortica Inc, Canada<br />

Jackson & Perkins, USA<br />

P Kooij & Zonen, Netherlands<br />

Santamaria, Colombia and Italy<br />

SB Talee, Colombia<br />

Selecta Klemm, Colombia, Germany and Israel<br />

Suata Plants SA, Chile, Colombia, Ecuador and Mexico<br />

Yoder Brothers, USA<br />

Aplicaciones Bioquímicas SL, Spain<br />

Empresa Colombiana de Biotecnología, Colombia<br />

Hishtil Ashkelon Nursery Ltd, Israel<br />

Propagar Plantas SA, Colombia<br />

Rancho Tissue Technologies, USA<br />

CCMA, CSIC, Madrid, Spain<br />

GTZ IPM project, Egypt<br />

GTZ IPM project, Morocco<br />

HortiTecnia, Colombia<br />

P Kooij & Zonen, Netherlands<br />

Santamaria, Italy<br />

Selecta Klemm, Germany<br />

Statewide IPM Project, University of California, USA<br />

Suata Plants, Chile, Colombia, Ecuador and Mexico<br />

Van Staaveren BV, Netherlands and Colombia<br />

Dr M Besri, Institut Agronomique et Vétérinaire Hassan II, Morocco<br />

Dr Ron Cohen, Dept of Vegetable Crops, Ramat Yishay, Israel<br />

Dr M Eddauodi, Institut National de la Recherche Agronomique, Morocco<br />

Dr Gerhard Lung, University of Hohenheim, Germany<br />

Dr E Paplomatas, Benaki Phy<strong>to</strong>pathological Institute, Athens, Greece<br />

Dr Gerson Reis, Estaçao Agronomica Nacional, Oeiras, Portugal<br />

Dr J Tello, University of Almería, Spain<br />

Dr D Vakalounakis, Plant Protection Institute, Heraklion, Greece<br />

Prof Tang Wenhau, China Agricultural University, Beijing, China<br />

34<br />

Note: Contact information for these companies are provided in Annex 6.


useful if combined with other techniques.<br />

Tagetes patula decreases the populations of<br />

Pratylenchus spp., Meloidogyne arenaria,<br />

Meloidogyne hapla and Meloidogyne<br />

javanica, but it does not suppress<br />

Meloidogyne incognita. (See Lung 1997 for a<br />

comparison of the efficacy of four species of<br />

Tagetes against 14 different species of nema<strong>to</strong>des.)<br />

In Morocco, Tagetes patula and<br />

Tagetes erecta have given good results when<br />

planted as green manure after <strong>to</strong>ma<strong>to</strong> harvesting<br />

and then incorporated in<strong>to</strong> the soil<br />

after 6 <strong>to</strong> 8 weeks (Kaack 1999). The efficacy<br />

of trap crops varies according <strong>to</strong> the method<br />

and timing of application.<br />

Water management<br />

Excessive water creates conditions that favour<br />

infection by some soil-borne fungi, such as<br />

Phy<strong>to</strong>phthora root rot and damping-off diseases<br />

in <strong>to</strong>ma<strong>to</strong> or root and crown diseases in<br />

strawberry (Strand 1994, Strand et al 1998).<br />

Too little water, on the other hand, stresses<br />

plants and may also make them more vulnerable<br />

<strong>to</strong> attack. Proper water management<br />

contributes <strong>to</strong> disease control in vegetables in<br />

southeastern Spain and USA (MBTOC 1998).<br />

In areas where excess water is available at<br />

appropriate times of the year, temporary<br />

flooding or flooding alternated with dry soil<br />

can be used <strong>to</strong> suppress insects or weeds.<br />

Specialists and information<br />

resources<br />

Table 4.1.5 provides a list of specialists and<br />

consultants in preventive methods and integrated<br />

management of soil-borne pests. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

35


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

36<br />

Table 4.1.5 Examples of specialists and consultants in preventive methods<br />

and integrated management of soil-borne pests<br />

Admagro Ltda, Colombia<br />

Africa Program, Asian Vegetable Research and Development Centre, Tanzania<br />

Agrindex Consulting and Project, Israel<br />

Agriphy<strong>to</strong>, Perpignan, France<br />

Aplicaciones Bioquímicas SL, Spain<br />

Asistec, Ecuador<br />

Asociación Colombiana de Exortadores de Flores (ASOCOLFLORES), Colombia<br />

Biocaribe SA, Colombia<br />

BPO Research Station for Nursery S<strong>to</strong>ck, Netherlands<br />

CCMA, CSIC, Madrid, Spain<br />

Cenibanano Banana Research Center, Colombia<br />

CIAA Agricultural Research and Consultancy Center, Colombia<br />

Danish Institute of Agricultural Sciences, Denmark<br />

Department of Nema<strong>to</strong>logy, University of California, Davis, USA<br />

DLV Horticultural Advisory Service, Netherlands<br />

Empresa Colombiana de Biotecnología, Colombia<br />

Escuela Agricola Panamericana, Honduras<br />

FHIA Foundation for Agricultural Research, Honduras<br />

FPO Fruit Research Centre, Netherlands<br />

FUSADES Foundation for Economic and Social Development, El Salvador<br />

GTZ IPM projects, Argentina, Benin, Costa Rica, Egypt, Fiji, Jordan, Kenya, Madagascar, Malawi,<br />

Morocco, Panama, Tanzania<br />

Indian Agricultural Research Institute, India<br />

International Institute for Biological Control, Malaysia<br />

Jordanian-GTZ IPM programme, Jordan<br />

PBG Research Station for Floriculture and Glasshouse Vegetables, Netherlands<br />

Spectrum Technologies Inc, USA<br />

Statewide IPM Project, University of California, USA<br />

Sustainable Agriculture Research and Education Program, University of California, USA<br />

University of Bonn, Germany<br />

Vegetable Research and Information Center, University of California, USA<br />

Dr Miguel Altieri, University of California, USA<br />

Dr An<strong>to</strong>nio Bello and colleagues, CCMA, CSIC, Madrid, Spain<br />

Prof Mohamed Besri, Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco<br />

Dr Robert Bugg and Dr Chuck Ingels, SAREP, University of California, USA<br />

(cover crops and cultural practices)<br />

Dr G Cartia, Universita di Reggio Calabria, Italy<br />

Mr Dermot Cassidy, Geest, South Africa<br />

Dr V Cebolla, Institu<strong>to</strong> Valenciano de Investigaciones Agrarias, Spain<br />

Dr Dan Chellemi, USDA-ARS, USA<br />

Dr Angelo Correnti, ENEA Departimen<strong>to</strong> Innovazione, Italy<br />

Dr FV Dunkel, Montana State University, USA<br />

Dr Mohamed Eddauodi, Institut National de la Recherche Agronomique, Morocco<br />

(nema<strong>to</strong>de control)<br />

Dr Clyde Elmore, Vegetable Crops Department, University of California, USA<br />

continued


Table 4.1.5 continued<br />

Dr J Fresno, INIA, Spain (IPM for vineyards)<br />

Dr Walid Abu Gharbieh, University of Jordan, Jordan<br />

Dr A López García, FECOM, Spain (IPM for cut flowers)<br />

Dr Rober<strong>to</strong> García Espinosa, Colegio de Postgraduados en Ciencias Agricolas IFÍT, Mexico<br />

Dr Raquel Ghini, EMBRAPA/CNPMA, Brazil<br />

Mr Zoraida Gutierrez, Cultivos Miramonte, Colombia<br />

Dr Thaís Tostes Graziano, Institu<strong>to</strong> Agronomico de Campinas, Brazil<br />

Prof M Lodovica Gullino, University of Turin, Italy<br />

Dr Saad Hafez, University of Idaho, USA<br />

Dr Tim Herman, Crop and Food Research, New Zealand<br />

Dr Seizo Horiuchi, National Research Institute of Vegetables, Ornamental Plants & Tea, MAFF, Japan<br />

Prof Jaacov Katan, Hebrew University, Israel<br />

Dr Nancy Kokalis-Burelle, Horticultural Research Labora<strong>to</strong>ry, USDA-ARS, USA<br />

Dr Jürgen Kroschel, University of Kassel, Germany (parasitic weeds)<br />

Dr Alfredo Lacasa, CIDA, Spain<br />

Dr Leonardo de León, Dirección General de Servicios Agrícolas, Uruguay<br />

Dr Gerhard Lung, University of Hohenheim, Germany<br />

Dr Nahum Marbán Mendoza, Universidad Autónoma de Chapingo, Mexico<br />

Ing Juan Carlos Magunacelaya, Chile<br />

Dr Nicholas Martin, Crop and Food Research, New Zealand<br />

Dr Mark Mazzola, Tree Fruit Research Labora<strong>to</strong>ry, USDA-ARS, USA (fruit trees)<br />

Prof Keigo Minami, ESALQ, University of São Paulo, Brazil<br />

Ing Camilla Montecinos, Centro de Educacion y Tecnologia, Santiago, Chile (vegetables)<br />

Dr Peter Ooi, FAO Integrated Pest Control Intercountry Programme, Philippines<br />

Ms Marta Pizano, HortiTecnia, Colombia (cut flowers)<br />

Dr Ian Porter, Agriculture Vic<strong>to</strong>ria, Australia<br />

Dr William Quarles, Bio-Integral Resource Center, USA<br />

Dr Gerson Reis, Estaçao Agronomica Nacional, Portugal<br />

Dr Rodrigo Rodríguez-Kábana and Dr Joseph Kloepper, Department of Plant Paghology, Auburn<br />

University, USA<br />

Dr F Romero, Centro de Investigación Las Torres, Spain<br />

Dr Yitzhak Spiegel, Agricultural University, Israel<br />

Dr James Staple<strong>to</strong>n, Kearney Agricultural Center, Univerisity of California, USA<br />

Dr Donald Sumner, Dept Plant Pathology, University of Georgia, USA<br />

Dr J Tello, University of Almería, Spain<br />

Prof Franco Tognoni, Dipartemen<strong>to</strong> di Biologia delle Plante Agrarie, Italy<br />

Dr Anne Turner, Agricultural consultant, Zimbabwe<br />

Mr Peter Wilkinson, Xylocopa, Zimbabwe<br />

Dr Peter Workman, Crop and Food Research, New Zealand<br />

Note: Contact information for these specialists and consultants is provided in Annex 6.<br />

Please refer also <strong>to</strong> the specialists listed in Sections 4.2 through 4.7. Additional specialists can be identified in<br />

resources such as the National IPM Network (www.reeusda.gov/agsys/nipmn), the Agriculture Network<br />

Information Center (www.agnic.org), and the OzonAction Programme’s Inven<strong>to</strong>ry of Technical and Institutional<br />

Resources for Promoting <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> (www.unepie.org/ozat/tech/main.html#mebrinvent).<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

37


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

38<br />

4.2 Biological controls<br />

Advantages<br />

Generally safe for non-target species and<br />

not <strong>to</strong>xic <strong>to</strong> humans.<br />

Improve soil biodiversity.<br />

Some biological controls promote plant<br />

growth.<br />

Do not produce undesirable residues in<br />

food.<br />

Can lead <strong>to</strong> antagonistic activity in the<br />

soil for long periods.<br />

Disadvantages<br />

Target specific pests, so must be combined<br />

with other techniques.<br />

Not compatible with conventional pesticides,<br />

since pesticides kill or inactivate<br />

the organisms.<br />

Must be applied regularly in order <strong>to</strong><br />

establish populations of biological organisms<br />

in the soil.<br />

Normally require a certain range of pH,<br />

temperature and moisture <strong>to</strong> be active.<br />

Often need <strong>to</strong> be registered as pesticide<br />

products, which may initially delay their<br />

availability.<br />

Technical description<br />

Biological control involves the use of living<br />

organisms, such as fungi, bacteria or beneficial<br />

nema<strong>to</strong>des, <strong>to</strong> control or inhibit pest populations.<br />

Biological control agents can act<br />

against pests in diverse ways, including those<br />

listed below:<br />

Eating or feeding on pests.<br />

Parasitising or living in pests.<br />

Repelling pests.<br />

Competing with pests for space and<br />

nutrients.<br />

Establishing a kind of ‘biological shield’<br />

around crop roots and protecting them<br />

against infection.<br />

Inducing systemic resistance in crops,<br />

i.e., improving the plants’ own defense<br />

systems, enabling them <strong>to</strong> resist pest<br />

attacks more effectively.<br />

Stimulating crop growth.<br />

Biological controls are normally highly specific,<br />

which means that each organism or agent<br />

acts against a narrow range of pests —<br />

typically between one and a dozen pest<br />

species (Table 4.2.2). Generally, biological<br />

controls cannot, of themselves, replace MB.<br />

Rather they must be used as part of an IPM<br />

system that includes other practices, such as<br />

resistant cultivars, soil amendments, solarisation<br />

or alternative pesticide products.<br />

Biological controls are effective only when<br />

present in sufficient numbers in the root<br />

zone, so success depends on selecting the<br />

appropriate method of delivery, establishing<br />

an environment in which the organisms can<br />

thrive, or re-applying the organisms at regular<br />

intervals. They are often most effective when<br />

applied as seed dressings and root dips or<br />

applied <strong>to</strong> the soil regularly via irrigation<br />

pipes.<br />

Biological control products are made commercially<br />

or, in some cases, on-farm.<br />

Commercially produced biological controls<br />

can be categorized as follows:<br />

Fungi or bacteria<br />

Fungi or bacteria are primarily soil-dwelling<br />

organisms that prey upon or out-compete<br />

some of the pathogenic fungi that attack<br />

plants. Examples of commercial products<br />

include the following:<br />

Beauveria spp. – a fungus (commercial<br />

products in Colombia and Switzerland).<br />

Fusarium oxysporum (nonpathogenic)<br />

– a fungus (commercial<br />

product in France, Hungary, Italy).


Table 4.2.1 Examples of commercial use of biological controls<br />

(normally combined with other techniques)<br />

Crop Biological control agents Country<br />

Various crops Strep<strong>to</strong>myces lydicus USA<br />

Various crops Strep<strong>to</strong>myces griseoviridis strain K61 USA<br />

Sweet pota<strong>to</strong> Non-pathogenic Fusarium spp. Japan<br />

Various crops PGPR bacteria China, Germany, USA<br />

Cut flowers Paecilomyces lilacinus, Trichoderma spp., Colombia, Germany,<br />

Beauveria bassiana, Bacillus popilliae, Netherlands<br />

Metarhizium anisopliae, microbial broths<br />

Greenhouse <strong>to</strong>ma<strong>to</strong>es Trichoderma applied regularly in New Zealand<br />

irrigation water<br />

Greenhouse <strong>to</strong>ma<strong>to</strong>es PGPR bacteria (seed coating) Germany<br />

and cucumber<br />

Turf Beauveria bassiana, Metarhizium anisopliae, Germany, Switzerland<br />

PGPR bacteria (seed coating)<br />

Compiled from: MBTOC 1998, Cherim 1998, Gutierrez 1997, Lung 1999<br />

Gliocladium virens – a fungus (commercial<br />

products in USA).<br />

Paecilomyces lilacinus – a fungus (commerical<br />

products in Colombia).<br />

Pseudomonas spp. – beneficial bacteria<br />

(commercial products in China,<br />

Germany, USA).<br />

Trichoderma spp. – various species of<br />

fungi (commercial products in China,<br />

UK, USA, Zimbabwe and many other<br />

countries).<br />

Nema<strong>to</strong>des<br />

Nema<strong>to</strong>des are soil-dwelling animals that<br />

look like microscopic worms. Some preda<strong>to</strong>ry<br />

nema<strong>to</strong>des prey upon root-knot nema<strong>to</strong>des<br />

while other types of nema<strong>to</strong>des act as parasites<br />

and destroy the larve and pupae of<br />

insects (Table 4.2.3). Examples of commercial<br />

products include:<br />

Heterorhabditis bacteriophora – beneficial<br />

nema<strong>to</strong>de (commercial products in<br />

USA).<br />

Mononchus sp. – beneficial nema<strong>to</strong>de<br />

(commercial product in USA).<br />

Phasmarhabditis hermaphrodita – beneficial<br />

nema<strong>to</strong>de (commercial product in UK).<br />

Steinernema spp. – beneficial nema<strong>to</strong>de<br />

(commercial products in USA).<br />

Biological controls come in a wide variety of<br />

formulations such as wettable powders, granules,<br />

pellets and suspensions. They can be<br />

applied as <strong>to</strong>p dressings, sprays, drenches,<br />

seed coatings or root-dips prior <strong>to</strong> planting.<br />

They can also be applied via sprinklers, drip<br />

lines and injection equipment, or can be<br />

mixed with substrates (potting mixes or<br />

growth media) prior <strong>to</strong> filling nursery trays<br />

or bags.<br />

Seed coatings and root dips are effective<br />

methods of application, because they allow<br />

the beneficial organisms <strong>to</strong> become established<br />

in the root zone from the earliest<br />

stages. Depending on the pest pressure and<br />

situation, it may be necessary <strong>to</strong> create a soil<br />

environment that fosters the biological control<br />

agent and provides appropriate nutrients<br />

for it, or it may be necessary <strong>to</strong> re-inoculate<br />

the soil with the organisms at regular intervals.<br />

An effective way <strong>to</strong> ensure that organisms<br />

remain present during the entire<br />

growing season is <strong>to</strong> apply them regularly<br />

through the irrigation pipes (using special<br />

valves that will not become blocked).<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

39


Table 4.2.2 Examples of biological control agents and formulations<br />

for soil-borne diseases<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

40<br />

Biological Type of Soil-borne<br />

control agent organism pests and diseases Formulations<br />

Agrobacterium Bacteria Crown gall disease caused by Culture or suspension, applied<br />

radiobacter Agrobacterium tumefaciens <strong>to</strong> seeds, seedlings and cuttings,<br />

or as soil drench or spray<br />

Ampelomyces Fungi Powdery mildew, Oidium spp. Water-dispersible granules<br />

quisqualis isolate<br />

for spray<br />

Bacillus subtilis Bacteria Rhizoc<strong>to</strong>nia solani, Fusarium Granule or powder, for seed<br />

spp., Alternaria spp., Sclerotinia treatment, dip, hopper box,<br />

spp., Verticillium spp., Strep<strong>to</strong>- soil drench or spray<br />

myces scabies, Aspergillus spp.<br />

that attack roots<br />

Burkholderia Bacteria Rhizoc<strong>to</strong>nia spp., Pythium spp., Powder and aqueous suspension<br />

cepacia Fusarium spp. and others for seed treatment or drip<br />

irrigation<br />

Candida Fungi Botrytis spp. Wettable powder<br />

oleophila<br />

Coniothyrium Fungi Sclerotinia sclerotiorum, Water dispersible granule<br />

minitans Sclerotinia minor for spray<br />

Fusarium Fungi Fusarium oxysporum, Fusarium Dust and alginate granule<br />

oxysporum moniliforme for seed treatment or soil incorporation etc.<br />

non-pathogenic<br />

Gliocladium Fungi Damping-off and root rot Granules, liquid<br />

virens<br />

pathogens especially Rhizoc<strong>to</strong>nia<br />

solani and Pythium spp.<br />

Gliocladium Fungi Pythium spp., Rhizoc<strong>to</strong>nia solani, Wettable powder, liquid<br />

catenulatum<br />

Botrytis spp., Didymella spp<br />

Phlebia Fungi Heterobasidium annosum Powder<br />

gigantea<br />

Pseudomonas Bacteria Rhizoc<strong>to</strong>nia solani, Wettable powder or suspension<br />

cepacia Fusarium spp., for spray<br />

Pythium sp.<br />

Pythium Fungi Pythium ultimum Granule and powder for seed<br />

oli-gandrum<br />

treatment or soil incorporation<br />

Strep<strong>to</strong>myces Bacteria Fusarium spp., Alternaria brassi- Powder for drench, spray or<br />

griseoviridis cola, Phomopsis spp., Botrytis irrigation system<br />

spp., Pythium spp., Phy<strong>to</strong>phthora<br />

spp. that cause seed, root and<br />

stem rot and wilt disease<br />

Trichoderma Fungi Sclerotinia spp., Phy<strong>to</strong>phthora Granules, wettable powder for<br />

harzanium, spp., Rhizoc<strong>to</strong>nia solani, Pythium seed treatments, dips, soil incor-<br />

Trichoderma spp., Fusarium spp., Verticillium poration, injection, or irrigation<br />

polysporum and spp., Sclerotium rolfsii systems<br />

other Trichoderma<br />

species<br />

Compiled from: Fravel 1999, Lung 1999


Table 4.2.3 Characteristics of several groups of biological controls<br />

Group of<br />

organisms<br />

Examples<br />

of organisms<br />

Type of<br />

organism Target pests Mode of action<br />

Gliocladium Gliocladium virens Soil fungi Damping-off diseases, Parasitises some organ<br />

particularly those isms (e.g., R. solani) and<br />

caused by Pythium and suppress-es by compet-<br />

Rhizoc<strong>to</strong>nia; seed rot ition, exclusion and<br />

diseases<br />

excretion of substances<br />

Mycorrhizae Glomus brasilianum, Soil fungi Promote root health, Form symbiotic relation-<br />

Glomus clarum, increase plant’s ability ship with crop roots,<br />

Gigaspora margarita <strong>to</strong> resist some diseases aiding uptake of water<br />

and nutrients especially<br />

Nema<strong>to</strong>des: Heterorhabditis Parasitic Larvae and pupae of Enter insect larvae and<br />

Heterohabditis, bacteriophora, nema<strong>to</strong>des insects; certain cutworm snails/slugs as parasites;<br />

Phasmarhabditis Phasmarhabditis species; snails and slugs their metabolites kill<br />

& Steinernema hermaphrodita, these organisms<br />

Steinernema<br />

carpocapsae<br />

Nema<strong>to</strong>des: Mononchus Preda<strong>to</strong>ry Root-knot Prey on root-knot<br />

Mononchus aquaticus Coetzee nema<strong>to</strong>des nema<strong>to</strong>des nema<strong>to</strong>des<br />

Plant growth- Rhizobacteria spp. Bacteria Certain pests and Create a biological shield<br />

promoting living in pathogens around roots, preventing<br />

Rhizobacteria roots or delaying invasion of<br />

pest or pathogen;<br />

promote plant growth<br />

Step<strong>to</strong>myces Strep<strong>to</strong>myces Soil-dwelling Certain pathogenic Out-compete several<br />

lydicus, bacteria fungi pathogens; some create<br />

Strep<strong>to</strong>myces<br />

protective mycelia layer<br />

griseoviridis<br />

around roots or excrete<br />

metabolites that inhibit<br />

fungi<br />

Trichoderma. Trichoderma Fungi Certain pathogenic Create a biological shield<br />

harzianum, fungi, e.g., Pythium, around roots, promoting<br />

Trichoderma Rhizoc<strong>to</strong>nia Fusarium plant growth and<br />

polysporum,<br />

preventing growth of<br />

Trichoderma viride<br />

pathogenic fungi<br />

Compiled from: MBTOC 1998, Cherim 1998, Lung 1999, commercial product information<br />

Users need <strong>to</strong> be knowledgeable about<br />

appropriate conditions. As living organisms,<br />

most biological control agents are active<br />

within a certain range of temperatures and<br />

soil conditions. For example, Trichoderma<br />

needs a soil temperature of at least 10°C and<br />

a soil pH that is neutral <strong>to</strong> slightly acidic. The<br />

beneficial nema<strong>to</strong>de Steinernema needs<br />

slightly moist soil and temperatures of 4.5 <strong>to</strong><br />

32°C, with optimum temperatures of 15.5<br />

<strong>to</strong> 21°C.<br />

Normally biocontrols will be killed or deactivated<br />

by pesticides. A notable exception,<br />

however, is the bacteria Pseudomonas, which<br />

has <strong>to</strong>lerance against some fungicides. In<br />

general biological controls are best suited for<br />

use with non-chemical techniques such as<br />

grafting, substrates or solarisation.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

41


Table 4.2.4 Examples of nema<strong>to</strong>de pests controlled<br />

or suppressed by biological controls<br />

Nema<strong>to</strong>de pests Biological control agents Efficacy comments<br />

Meloidogyne spp. Paecilomyces lilacinus Slow effect; best results in<br />

Pasteuria penetrans<br />

2nd or 3rd years<br />

Meloidogyne incognita<br />

Mononchus aquaticus<br />

Pratylenchus spp. Paecilomyces lilacinus Parasitises eggs of nema<strong>to</strong>des<br />

Various nema<strong>to</strong>de species Myrothecium verrucaria Effective nematicide<br />

Pleurotus ostreatus<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

42<br />

Compiled from: MBTOC 1998, Cherim 1998, Gutierrez 1997, Kwok 1992, Lung 1999, Warrior 1996,<br />

commercial product information<br />

Current uses<br />

Biological controls are used commercially in a<br />

number of countries, normally as one part of<br />

a comprehensive IPM or non-chemical system.<br />

Table 4.2.1 provides examples of biological<br />

control agents in commercial use.<br />

Variations under development<br />

Additional species with pest control effects<br />

are being identified. Studies of the microbial<br />

communities of roots in undisturbed ecosystems<br />

where major diseases rarely occur can<br />

assist in determining the key microorganisms<br />

that play a role in plant health (Linderman<br />

1998). Improved formulations and delivery<br />

systems are also under development.<br />

Material inputs<br />

Biological control organisms —<br />

purchased or made on-farm.<br />

Mechanism for conveying or incorporating<br />

biological controls in<strong>to</strong> the soil.<br />

Equipment, such as irrigation pipes,<br />

sprayers, or fertiliser injec<strong>to</strong>rs, is often<br />

already available on farms.<br />

Fac<strong>to</strong>rs required for use<br />

Know-how and training. Users must first<br />

identify biological controls that will be<br />

effective in the region. They must also<br />

be knowledgeable about pest and<br />

preda<strong>to</strong>r life cycles, appropriate timing<br />

of treatments, temperature, irrigation,<br />

soil types, application methods and optimal<br />

s<strong>to</strong>rage of products.<br />

In some countries official registration by<br />

pesticide authorities is required before<br />

products can be marketed.<br />

Users must be able <strong>to</strong> control or manipulate<br />

soil temperature, acidity and/or<br />

moisture <strong>to</strong> be within the appropriate<br />

range for activation.<br />

Biological controls are not compatible<br />

with some pesticide treatments. Steam<br />

treatments and fumigants also kill biocontrols,<br />

unless the biological controls<br />

are applied after the other treatment.<br />

Pests controlled<br />

Biological controls can suppress or control<br />

specific species of nema<strong>to</strong>des, fungi and soildwelling<br />

stages of insect pests. They are normally<br />

highly specific and cannot replace MB<br />

on their own, so they are best used as one<br />

part of a combined system.<br />

Tables 4.2.4 through 4.2.6 provide examples<br />

of biological agents that can be used for control<br />

of nema<strong>to</strong>des, fungi, and bacteria and<br />

insects, respectively. Certain biological control<br />

agents can be applied <strong>to</strong>gether <strong>to</strong> increase<br />

the range of pests controlled. They can be<br />

used curatively <strong>to</strong> reduce an existing infestation<br />

and/or as maintenance treatments <strong>to</strong>


Table 4.2.5 Examples of soil-borne fungi and bacteria<br />

controlled or suppressed by biological controls<br />

Pathogenic fungi and bacteria<br />

Biological control agents<br />

Agrobacterium tumefaciens Agrobacterium radiobacter strain 84<br />

Alternaria brassicicola<br />

Strep<strong>to</strong>myces griseoviridis strain K61<br />

Alternaria spp.<br />

Bacillus subtilis<br />

Armillaria spp.<br />

Trichoderma harzianum, Trichoderma viride<br />

Botryosphaeria spp.<br />

Trichoderma harzianum, Trichoderma viride<br />

Botrytis cinerea<br />

Trichoderma harzianum<br />

Trichoderma spp.<br />

Botrytis spp.<br />

Strep<strong>to</strong>myces griseoviridis strain K61<br />

Collec<strong>to</strong>trichum spp.<br />

Trichoderma harzianum<br />

Damping off diseases (fungi)<br />

Pseudomonas fluorescens<br />

Trichoderma spp.<br />

Didymella spp.<br />

Gliocladium catenulatum<br />

Erwinia amylovora<br />

Pseudomonas fluorescens A506<br />

Fulvia fulva<br />

Trichoderma harzianum<br />

Fusarium oxysporum,<br />

Fusarium oxysporum non-pathogenic<br />

Fusarium moniliforme<br />

Fusarium spp.<br />

Bacillus subtilis<br />

Burkholderia cepacia type Wisconsin<br />

Gliocladium sp.<br />

Pseudomonas cepacia<br />

Strep<strong>to</strong>myces griseoviridis strain K61<br />

Trichoderma harzianum, Trichoderma viride<br />

Heterobasidium annosum<br />

Phlebia gigantea<br />

Monilia laxa<br />

Trichoderma harzianum<br />

Phomopsis spp.<br />

Strep<strong>to</strong>myces griseoviridis strain K61<br />

Phy<strong>to</strong>phthora spp.<br />

Strep<strong>to</strong>myces griseoviridis strain K61<br />

Trichoderma harzianum, Trichoderma viride<br />

Powdery mildew<br />

Ampelomyces quisqualis<br />

Pseudomonas solanacearum<br />

Pseudomonas solanacearum non-pathogenic<br />

Pseudomonas <strong>to</strong>lassii<br />

Pseudomonas fluorescens<br />

Pythium ultimum<br />

Pythium spp.<br />

Pythium sp.<br />

Rhizoc<strong>to</strong>nia solani<br />

Rhizoc<strong>to</strong>nia spp.<br />

Sclerotinia homeocarpa<br />

Sclerotinia sclerotiorum and Sclerotinia minor<br />

Sclerotinia sclerotiorum and other<br />

Sclerotinia species<br />

Sclerotinia spp.<br />

Sclerotium rolfsii<br />

Verticillium spp.<br />

Pythium oligandrum<br />

Burkholderia cepacia type Wisconsin<br />

Gliocladium virens, Gliocladium catenulatum<br />

Strep<strong>to</strong>myces griseoviridis strain K61<br />

Trichoderma harzianum, Trichoderma viride<br />

Pseudomonas cepacia<br />

Bacillus subtilis<br />

Gliocladium virens, Gliocladium catenulatum<br />

Pseudomonas cepacia<br />

Trichoderma spp.<br />

Burkholderia cepacia type Wisconsin<br />

Trichoderma harzianum<br />

Coniothyrium minitans<br />

Trichoderma harzianum and certain other<br />

species of Trichoderma<br />

Bacillus subtilis<br />

Trichoderma spp.<br />

Trichoderma spp.<br />

Bacillus subtilis<br />

Trichoderma spp.<br />

Compiled from: MBTOC 1998, Fravel 1999, Gutierrez 1997, Lung 1999<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

43


Table 4.2.6 Examples of insect pests (soil-dwelling larvae and pupae)<br />

controlled or suppressed by biological controls<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

44<br />

Insect pests<br />

Agrotis ipsilon (cutworms)<br />

Bradysia spp. (a)<br />

Lycoriella mali (a)<br />

Peridroma sauci (cutworms)<br />

Popillia japonica (a)<br />

Sciara spp. (a)<br />

Various armyworms<br />

Various beetle larvae<br />

Various cutworms<br />

Fruit borer species (a)<br />

(a) Soil-dwelling larvae and/or pupae<br />

provide ongoing protection from pests.<br />

Preda<strong>to</strong>ry nema<strong>to</strong>des can act swiftly, while<br />

other nema<strong>to</strong>des have a slow effect, so efficacy<br />

can vary according <strong>to</strong> the type of biological<br />

control agent, the type of pest, the<br />

original level of infestation and soil conditions<br />

such as temperature.<br />

Yields and performance<br />

Biological controls need <strong>to</strong> be combined with<br />

other techniques in order <strong>to</strong> give efficacy and<br />

yields equal <strong>to</strong> MB fumigation.<br />

Other fac<strong>to</strong>rs affecting use<br />

Suitable crops and uses<br />

Biological control products have been<br />

approved in some countries for many horticultural<br />

crops, nurseries, trees, turf, mushrooms<br />

and other crops. They can be used in<br />

greenhouses, seedbeds, nurseries and open<br />

fields. However, the appropriate applications<br />

vary greatly from one product <strong>to</strong> the next, so<br />

it is important <strong>to</strong> check local suitability before<br />

Biological controls<br />

Heterorhabditis bacteriophora<br />

+ Steinernema carpocapsae<br />

Steinernema carpocapsae<br />

Steinernema carpocapsae<br />

Heterorhabditis bacteriophora<br />

+ Steinernema carpocapsae<br />

Heterorhabditis bacteriophora<br />

Steinernema carpocapsae<br />

Steinernema carpocapsae,<br />

Steinernema feltiae<br />

Bacillus popilliae<br />

Beauveria bassiana<br />

Metarhizium anisopliae<br />

Steinernema feltiae<br />

Steinernema carpocapsae,<br />

Steinernema feltiae<br />

Steinernema carpocapsae<br />

Compiled from: Gutierrez 1997, Cherim 1998, commercial product information<br />

purchasing products. They are suitable for<br />

single, double- and multi-cropping systems.<br />

Suitable climate and soil types<br />

Biological controls need <strong>to</strong> be selected <strong>to</strong> suit<br />

the temperature range of the area where<br />

they will be used, because each organism has<br />

an optimum range for biological activity. They<br />

can be used in many soil types, although this<br />

may vary with the specific organism. The soil<br />

pH (acidity or alkalinity) can enhance or limit<br />

some biological controls.<br />

Toxicity and health risks<br />

Approved biological controls are generally<br />

safe for humans because they act against<br />

selected soil organisms. However, it is desirable<br />

<strong>to</strong> avoid breathing dusts or spray formulations,<br />

because dust in general is a health<br />

hazard and there is a possibility of allergic or<br />

in<strong>to</strong>lerant reactions <strong>to</strong> foreign protein.


Safety precautions for users<br />

Approved biological controls are generally<br />

considered safe <strong>to</strong> users and rural communities,<br />

because their action is confined <strong>to</strong> specific<br />

soil pests. Special safety training is not<br />

required for registered products. Protective<br />

equipment should be used with formulations<br />

that generate dust or spray particles.<br />

Residues in food and environment<br />

Biological controls make a positive contribution<br />

<strong>to</strong> the soil environment. Approved<br />

organisms do not leave undesirable residues<br />

in food or the environment.<br />

Phy<strong>to</strong><strong>to</strong>xicity<br />

Approved biological controls are not <strong>to</strong>xic <strong>to</strong><br />

crops. Some actively promote crop growth.<br />

Impact on beneficial organisms<br />

Use of biological controls increases the population<br />

of beneficial organisms and generally<br />

increases biodiversity and antagonistic activity<br />

in the soil. Some preda<strong>to</strong>ry nema<strong>to</strong>des, however,<br />

may prey on certain beneficial organisms<br />

as well as pests.<br />

Ozone depletion<br />

Biological controls are not listed as ODS.<br />

Global warming and energy<br />

consumption<br />

Manufacturing of biological controls uses less<br />

energy than does production of MB. Trac<strong>to</strong>r<br />

application requires use of fuel, similar <strong>to</strong><br />

mechanised MB application; application via<br />

irrigation water does not.<br />

Other environmental considerations<br />

Product packaging produces small amounts<br />

of solid waste.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Biological controls are very acceptable <strong>to</strong><br />

supermarkets, purchasing companies and<br />

consumers because they enhance biological<br />

diversity and are seen <strong>to</strong> be a positive<br />

replacement for pesticides.<br />

Registration and regula<strong>to</strong>ry<br />

restrictions<br />

Regula<strong>to</strong>ry approval is required in some countries.<br />

In the past, some biological controls<br />

(e.g. cane <strong>to</strong>ads in Australia) have been<br />

released without adequate scrutiny, leading<br />

<strong>to</strong> problems for indigenous species. For some<br />

years there has existed an international code<br />

of practice on the introduction of non-native<br />

organisms in<strong>to</strong> new regions, and this is<br />

applied in many cases. Quality assurance<br />

schemes are necessary for manufacturers<br />

who produce biological controls.<br />

Cost considerations<br />

Material costs of biological controls are<br />

lower than MB.<br />

Labour costs for applying biological controls<br />

would be similar <strong>to</strong> the cost of a<br />

conventional pesticide spray or <strong>to</strong>p<br />

dressing; application via irrigation systems<br />

entails negligible labour.<br />

Since biological controls need <strong>to</strong> be used<br />

as part of a combined system, it is necessary<br />

<strong>to</strong> calculate the cost of the other<br />

components before comparing <strong>to</strong> MB.<br />

Questions <strong>to</strong> ask when selecting the<br />

system<br />

Which soil pests need <strong>to</strong> be controlled?<br />

What degree of pest control is needed?<br />

Which biological controls will control<br />

these pests? To what degree?<br />

What practices are required <strong>to</strong> ensure<br />

that the biological control agent reaches<br />

the roots, thrives and is effective in the<br />

soil?<br />

What is the most effective form in which<br />

<strong>to</strong> apply the organism?<br />

What amount needs <strong>to</strong> be applied and<br />

how often?<br />

What measures need <strong>to</strong> be taken <strong>to</strong> control<br />

other key pests (IPM system)?<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

45


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

46<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Biological control products are produced in a<br />

number of countries, including China, Czech<br />

Republic, Finland, France, Germany, Hungary,<br />

Italy, Jordan, Mexico, New Zealand, UK and<br />

USA.<br />

Suppliers of products and services<br />

Table 4.2.7 gives examples of suppliers of biological<br />

control products and services. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources. Note that this table does not provide<br />

a complete list, and additional products<br />

can be identified by contacting your local agricultural<br />

supplier. It is always wise <strong>to</strong> consult<br />

independent sources of information in addition<br />

<strong>to</strong> commerical information about products.<br />

Table 4.2.7 Examples of companies that supply biological<br />

control products and services<br />

Products or services<br />

Agrobacterium radiobacter<br />

Ampelomyces quisqualis<br />

Bacillus spp.<br />

Beauveria spp.<br />

Burkholderia cepacia<br />

Candida oleophila<br />

Coniothyrium minitans<br />

Fusarium spp.<br />

Gliocladium spp.<br />

Examples of companies (product name)<br />

AgBioChem Inc, USA (Galltrol-A)<br />

Bio-Care Technology Pty Ltd, Australia (Nogall, Diegall)<br />

New BioProducts Inc, USA (Norbac 84C)<br />

Ecogen Inc, USA (AQ10)<br />

Ecogen Inc, Israel (AQ10)<br />

AgraQuest Inc, USA (Serenade)<br />

Bayer Vital GmbH, Germany (FZB24)<br />

Gustafson Inc, USA (Kodiak, Epic)<br />

Helena Chemical Co, USA (System 3)<br />

KFZB Biotechnik GmbH, Germany (Rhizo-Plus)<br />

Lipha Tech, USA<br />

Microbial Solutions Ltd, South Africa<br />

Plant Health Care, USA<br />

Rincon-Vi<strong>to</strong>va Insectaries Inc, USA (Activate)<br />

Minfeng Industrial Co, China (Miankangning)<br />

Biocaribe SA, Colombia<br />

Biological Control Products Pty Ltd, South Africa<br />

CV Solanindo Duta Kencana, Indonesia<br />

AgroSolutions, USA (Deny)<br />

Ecogen Inc, Israel and USA (Aspire)<br />

Bioved Ltd, Hungary (KONI)<br />

Prophyta Biologischer Pflanzenschutz GmbH, Germany (Contans)<br />

Agrifutur, Italy<br />

ICC-SIAPA, CER, Italy<br />

Natural Plant Protection, France (Fusaclean)<br />

SIAPA, Italy (Biofox)<br />

AgBio Development Inc, USA (PreS<strong>to</strong>p, Primas<strong>to</strong>p)<br />

Harmony Farm Supply, USA (SoilGard)<br />

Hyrdo-Gardens, USA (Gliomix)<br />

Kemira Agro Oy, Finland (PreS<strong>to</strong>p, Primas<strong>to</strong>p)<br />

continued


Products or services<br />

Gliocladium spp.<br />

(continued)<br />

Heterorhabditis sp.<br />

Mycorrhizae mixtures, e.g.,<br />

Glomus brasilianum,<br />

Glomus clarum,<br />

Gigaspora margarita<br />

and others<br />

Myrothecium spp.<br />

Paecilomyces spp.<br />

Phlebia spp.<br />

Pseudomonas spp.<br />

Steinernema spp.<br />

Strep<strong>to</strong>myces spp.<br />

Table 4.2.7 continued<br />

Examples of companies (product name)<br />

Thermo-Trilogy, USA (SoilGard)<br />

WR Grace & Co, USA<br />

ARBICO, USA<br />

BioLogic, USA<br />

E-Nema, Germany (Nemagreen)<br />

Green Spot Ltd, USA<br />

Hydro-Gardens Inc, USA<br />

ARBICO, USA (BioTerra Plus Mycorrhizae Inoculant; BioBlend<br />

Root Dip, Power Organics)<br />

BioOrganic Supply, USA<br />

BioScientific, USA<br />

BioTerra Technologies Inc, USA (BioTerraPlus Mycorrhizae<br />

Inoculant)<br />

EcoLife Corporation, USA<br />

Green Releaf, USA<br />

Plant Health Care, USA<br />

SouthPine Inc, USA<br />

Abbott Labora<strong>to</strong>ries, USA (DiTera)<br />

Biocaribe SA, Colombia<br />

BioPre, Netherlands<br />

Microbial Solutions Ltd, South Africa<br />

Kemira Agro Oy, Finland (Rots<strong>to</strong>p)<br />

Hydro-Gardens Inc, USA (Rots<strong>to</strong>p)<br />

BioGreen Technologies, USA (BioReleaf)<br />

CCT Corporation, USA (Deny)<br />

EcoScience Inc, USA (Bio-save)<br />

EcoSoil, USA (BioJect system)<br />

Green Releaf, USA<br />

Mauri Foods, Australia (Conquer)<br />

Minfeng Industrial Co, China (Miankangning)<br />

Natural Plant Protection, France (PSSOL)<br />

Plant Health Technologies, USA (BlightBan)<br />

Soil Technologies Corp, USA (Intercept)<br />

Sylvan Spawn Labora<strong>to</strong>ry, USA (Conquer, Victus)<br />

All Natural Pest Control Co, Canada<br />

Apply Chem (Thailand) Ltd, Thailand<br />

ARBICO, USA<br />

BioLogic, USA<br />

Green Spot Ltd, USA<br />

Hyrdo-Gardens Inc, USA (Guardian nema<strong>to</strong>des)<br />

Johnny’s Selected Seeds, USA<br />

Nitron Industries Inc, USA<br />

Thermo Trilogy, USA<br />

AgBio Development Inc, USA (Mycos<strong>to</strong>p)<br />

Green Spot Ltd, USA<br />

continued<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

47


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

48<br />

Products or services<br />

Strep<strong>to</strong>myces spp.<br />

(continued)<br />

Trichoderma spp.<br />

Other products and<br />

microbial antagonists<br />

(various formulations)<br />

Table 4.2.7 continued<br />

Examples of companies (product name)<br />

Harmony Farm Supply, USA<br />

Kemira Agro Oy, Finland (Mycos<strong>to</strong>p)<br />

Peaceful Valley Farm Supply, USA<br />

Plant Health Care, USA<br />

Rincon-Vi<strong>to</strong>va Insecctaries Inc, USA;<br />

San Jacin<strong>to</strong>, USA (Actinovate)<br />

Abbott Labora<strong>to</strong>ries, USA (Trichodex)<br />

Agricola Mas Viader, Spain<br />

Agrimm Technologies Ltd, New Zealand (Trichoflow-T,<br />

Trichodowels, Trichopel, Trichoject, Trichoseal)<br />

Al Baraka Farms Ltd, Jordan (Bio Cont-T)<br />

Aplicaciones Bioquímicas SL, Spain<br />

Biocaribe SA, Colombia<br />

Bio-Innovation AB, Sweden (Binab T)<br />

Biotechnology Research Unit for Estate Crops, Indonesia<br />

(Greemi-G)<br />

BioWorks Inc, USA (Rootshield, Bio-Trek T-22G, T-22 Planter Box)<br />

Borregaard and Reitzel, Denmark (Supresivit)<br />

CV Solanindo Duta Kencana, Indonesia (Bio-Job T01)<br />

De Ceuster Mests<strong>to</strong>ffen nv, Belgium;<br />

Fruitfed Supplies Ltd, New Zealand (Trichoflow-T)<br />

FUNDASES Foundation, Colombia<br />

Green Spot Ltd, USA<br />

Grondortsmettingen DeCeuster nv, Belgium (Bio-Fungus)<br />

Henry Doubleday Research Association Sales, UK<br />

Jörgen Reitzel, Denmark<br />

Makhteshim Chemical Works Ltd, Israel (Trichodex)<br />

Makhteshim Ltd, USA (Trichodex)<br />

Microbial Solutions Ltd, South Africa<br />

Minfeng Industrial Co, China (Biocon-Tk)<br />

Mycontrol Ltd, Israel (Trichoderma 2000)<br />

NOCON SA de CV, Mexico (Control TL-2N)<br />

Plant Health Care,USA<br />

Wilbur Ellis, USA (Bio-Trek)<br />

Abbott Labora<strong>to</strong>ries, USA, Malaysia (DiTera)<br />

ARBICO, USA<br />

Arbolan-PHC, Spain<br />

Asistec, Ecuador<br />

Bioma Agro Ecology, Switzerland<br />

Colegío de Posgraduados en Ciencias Agrícolas, Mexico<br />

Consejo Nacional de Agroinsumos Bioracionales, Mexico<br />

Eden BioScience, USA<br />

Fenic Co Inc, USA (F-68 Plus)<br />

Fruitfed Supplies Ltd, New Zealand (SC27)<br />

FUNDASES Foundation, Colombia<br />

continued


Products or services<br />

Other products and<br />

microbial antagonists<br />

(various formulations)<br />

(continued)<br />

Specialists and consultants<br />

on the selection and use of<br />

biological controls<br />

Table 4.2.7 continued<br />

Examples of companies (product name)<br />

Laverlam, Colombia<br />

Megafarma SA de CV, Mexico<br />

Microbial Solutions Ltd, South Africa<br />

Min Feng Shi Ye Company, China<br />

Mycor Plant, Spain<br />

Natural Plant Protection, France (Phagus)<br />

NOCON SA de CV, Mexico<br />

Qingzhou Sheng Hua Zhi Pin Fac<strong>to</strong>ry, China<br />

Rincon-Vi<strong>to</strong>va Insectaries Inc, USA<br />

San Jacin<strong>to</strong>, USA (MicroGro)<br />

Tri<strong>to</strong>n Umweltschutz GmbH, Germany<br />

Biocontrol of Plant Diseases Labora<strong>to</strong>ry, US Department of<br />

Agriculture, USA<br />

Biological Control Institute, Auburn University, USA<br />

Bio-Integral Resource Center, USA<br />

CIAA Agricultural Research and Consultancy Center, Colombia<br />

Consejo Nacional de Agroinsumos Bioracionales, Mexico<br />

Cornell University, USA<br />

EMBRAPA Biological Control Information System, Brazil<br />

FUNDASES Foundation, Colombia<br />

GTZ Integrated Pest Management project, Jordan<br />

Indian Agricultural Research Institute, India<br />

International Institute of Biological Control, Kenya, Malaysia and UK<br />

International Mycological Institute, UK<br />

International Organisation of Biological Control, Malaysia,<br />

Trinidad & Tobago, France, UK, Pakistan, Kenya<br />

National IPM Network, USA<br />

PBG Research Station for Floriculture and Glasshouse Vegetables,<br />

Netherlands<br />

University of California IPM Program, USA<br />

Dr Keith Davis, Rothamstead Experimental Station, UK<br />

Dr Mahomed Eddauodi, Institut National de la Recherche<br />

Agronomique, Morocco<br />

Dr Ronald Ferrera-Cerra<strong>to</strong>, Institu<strong>to</strong> de Recursos Naturales,<br />

Mexico<br />

Dr D Fravel, Biocontrol of Plant Diseases Labora<strong>to</strong>ry, USDA, USA<br />

Dr Rober<strong>to</strong> García Espinosa, Colegio de Postgraduados en<br />

Ciencias Agricolas IFÍT, Mexico<br />

Dr Robert Hill, HortResearch, New Zealand<br />

Prof Harry Hoitink, Department of Plant Pathology, Ohio State<br />

University, USA<br />

Dr TA Jackson, AgResearch, New Zealand<br />

Dr Joseph Kloepper, University of Auburn, USA<br />

Dr Robert Linderman, Horticultural Crops Research Labora<strong>to</strong>ry,<br />

USDA-ARS, USA<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

continued<br />

49


Products or services<br />

Specialists and consultants<br />

on the selection and use of<br />

biological controls<br />

(continued)<br />

Table 4.2.7 continued<br />

Examples of companies (product name)<br />

Dr Gerhard Lung, Institute of Phy<strong>to</strong>medicine, University of<br />

Hohenheim, Germany<br />

Dr Yitzhak Spiegel, Agricultural University, Israel<br />

Prof Alison Stewart, Lincoln University, New Zealand<br />

Prof Tang Wenhau, China Agricultural University, China<br />

Prof Gerhard Wolf, Institut für Pflanzenpathologie, Germany<br />

Note: Contact information for these companies is provided in Annex 6.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

50


4.3 Fumigants and<br />

other chemical<br />

products<br />

Advantages<br />

Fumigants generally control a relatively<br />

wide range of pests.<br />

Fumigants and pesticides can be as<br />

effective as MB, if several techniques are<br />

combined.<br />

Some products are widely used, so<br />

materials and information are<br />

accessible.<br />

Application methods, equipment and<br />

pest control approaches are more akin <strong>to</strong><br />

MB fumigation than are other types of<br />

alternatives.<br />

Disadvantages<br />

Most products are <strong>to</strong>xic <strong>to</strong> humans and<br />

non-target organisms.<br />

Many leave residues or breakdown products<br />

in water, air, soil, wildlife and/or<br />

crops, thus leading <strong>to</strong> concerns about<br />

environmental polution.<br />

Correct application techniques vary from<br />

product <strong>to</strong> product and are very important<br />

for efficacy.<br />

Products are not registered in some<br />

countries, restricting availability.<br />

Many require waiting periods longer<br />

than MB.<br />

Use requires safety equipment and compliance<br />

with safety restrictions.<br />

Technical description<br />

Fumigants are volatile chemicals that exist as<br />

gases or are converted in<strong>to</strong> gases under typical<br />

field conditions. In contrast <strong>to</strong> other<br />

chemical products, which are normally active<br />

in solid or liquid form, fumigants move<br />

through the soil principally as a gas or<br />

vapour.<br />

Both types of products control pests because<br />

they are highly <strong>to</strong>xic <strong>to</strong> pests or because they<br />

generate <strong>to</strong>xic substances. To be effective<br />

they have <strong>to</strong> be present in sufficient concentrations<br />

<strong>to</strong> kill the target pests. Alternative<br />

fumigants and other chemical products do<br />

not kill the same wide range of pests as MB.<br />

Therefore, they are best used with other<br />

treatments or practices and/or employed<br />

selectively within an IPM system.<br />

Depending on the formulation, chemicals can<br />

be injected, sprayed on the soil surface,<br />

mechanically incorporated or distributed via<br />

irrigation pipes. Products <strong>to</strong> control nema<strong>to</strong>des<br />

are normally applied before planting, in<br />

the case of fumigants, or at the time of<br />

planting, in the case of pesticides. To prevent<br />

re-contamination of soil, hygienic practices,<br />

such as cleaning equipment before moving it<br />

and avoiding infected seeds and contaminated<br />

irrigation water, should be followed.<br />

Fumigants are often supplied in liquid form<br />

and require a minimum temperature of about<br />

5 <strong>to</strong> 7°C. They include two groups:<br />

True fumigants, such as 1,3-dichloropropene<br />

and chloropicrin, which are<br />

volatile and able <strong>to</strong> move through the<br />

soil airspaces as gases or vapours.<br />

“Non-true” fumigants, such as metam<br />

sodium and dazomet, which act more<br />

like contact pesticides.<br />

For non-true fumigants, water is very important<br />

in moving the chemical through the soil<br />

<strong>to</strong> target pests. So in general soil should be<br />

quite moist when applying non-true fumigants<br />

and rather dry when applying true<br />

fumigants (Hafez 1999). True fumigants are<br />

often described as better nematicides than<br />

non-true fumigants, but non-true fumigants<br />

can be effective nematicides if applied in<br />

ways that ensure they reach target pests.<br />

Most are not effective against weed seeds<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

51


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

but can control weeds if they are germinated<br />

by irrigation prior <strong>to</strong> the fumigation.<br />

Table 4.3.1 compares the characteristics of<br />

some major fumigants. Table 4.3.2 shows the<br />

categories of pests controlled by fumigants<br />

and pesticides. Fumigants registered in some<br />

or many countries include the following:<br />

Chloropicrin or trichloronitromethane is<br />

a liquid, which is injected in<strong>to</strong> the soil,<br />

typically <strong>to</strong> a depth of 15 <strong>to</strong> 28 cm. The<br />

soil is subsequently covered with plastic<br />

or sealed. It diffuses well through soil<br />

but needs <strong>to</strong> be combined with other<br />

techniques <strong>to</strong> fully control weeds and<br />

nema<strong>to</strong>des. The acute <strong>to</strong>xicity and noxious<br />

smell of chloropicrin may limit its<br />

use in some areas.<br />

Dazomet’s primary ingredient is tetrahy-<br />

dro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-<br />

thione. It is registered or approved for<br />

use in many countries and formulated as<br />

a solid material in granular form, making<br />

it easier <strong>to</strong> handle than other fumigants.<br />

It is generally incorporated in<strong>to</strong> the soil<br />

by ro<strong>to</strong>-tilling. To aid distribution of<br />

dazomet, soil needs <strong>to</strong> be prepared prior<br />

<strong>to</strong> application, finely cultivated, above<br />

Table 4.3.1 Comparison of technical characteristics of selected fumigants<br />

Physical Active Application Application Time before<br />

Fumigant form ingredient method rates planting Comments<br />

1,3-D Liquid and 1,3-dichloro- Injected in<strong>to</strong> soil, 100 - 620 About 7-45 Soil temp<br />

emulsion propene then sealed or L/ha days before 5 - 25°C; at<br />

covered with planting least 10 -<br />

sheets; or via<br />

15°C in<br />

drip irrigation<br />

wetter soils<br />

Chloro- Colourless Trichloronitro- Injected in<strong>to</strong> soil, 165 - 560 More than 14 Optimum<br />

picrin liquid methane covered with kg/ha days before soil temp<br />

plastic; or via planting 15 - 30˚C<br />

drip irrigation<br />

Dazomet Granules Tetrahydro- Mechanical 190 - 590 10 - 60 days Not suitable<br />

3,5,-dimethyl- distribution in kg/ha before for soil temp<br />

2H-1,3,5- soil planting below 6°C;<br />

thiadiazine-2-<br />

soil must not<br />

thione<br />

be <strong>to</strong>o wet or<br />

(produces MITC)<br />

<strong>to</strong>o dry<br />

MB Gas <strong>Methyl</strong> Injected in<strong>to</strong> soil 100 - 975 About 7 - 14 Optimum soil<br />

bromide or released on kg/ha days before temp 5 -<br />

soil surface, planting 25°C<br />

under sheets<br />

Metam Liquid Sodium Applied on 375 - 700 About 14 - 50 Efficacy desodium<br />

methyl-dithio- soil, injected L/ha days before pends on<br />

carbamate or via drip planting application<br />

(produces inrrigation method. Soil<br />

MITC)<br />

temp 5 - 32°C;<br />

moisture at<br />

least 50 - 75%<br />

of field<br />

capacity<br />

52


10°C and moist; soil covering is not necessary.<br />

Dazomet generates a fumigant<br />

gas called methyl isothiocyanate (MITC)<br />

and other fumigant breakdown products,<br />

such as carbon bisulphide and<br />

formaldehyde (MBTOC 1994). The soil<br />

persistence of these is influenced by<br />

temperature and moisture. If application<br />

conditions are sub-optimal, such as cool<br />

and wet, a longer waiting period before<br />

planting crops may be necessary <strong>to</strong> avoid<br />

phy<strong>to</strong><strong>to</strong>xicity (<strong>to</strong>xicity <strong>to</strong> crops).<br />

1,3-dichloropropene (1,3-D) is a halogenated<br />

hydrocarbon. It is formulated as<br />

a liquid and injected in<strong>to</strong> soil, followed<br />

by sealing of the soil surface with a<br />

roller, water or plastic <strong>to</strong> trap the gas.<br />

Newer formulations can be applied via<br />

drip irrigation pipes under impermeable<br />

plastic sheets. The soil may be moist<br />

before application and the temperature<br />

should be at least 10°C. The <strong>to</strong>xicological<br />

profile of 1,3-D may limit its use in<br />

some areas.<br />

<strong>Methyl</strong> isothiocyanate (MITC) is a liquid<br />

that is injected in<strong>to</strong> soil. It is mostly<br />

used in combination with 1,3-D <strong>to</strong><br />

enhance nema<strong>to</strong>de control. A waiting<br />

period of up <strong>to</strong> eight weeks may be<br />

Table 4.3.2 Efficacy of fumigants and pesticides<br />

Fungal<br />

required for MITC and MITC-genera<strong>to</strong>rs,<br />

such as metam sodium and dazomet.<br />

Problems with product stability and corrosion<br />

have limited the use and distribution<br />

of MITC (MBTOC 1994).<br />

Metam sodium consists of sodium<br />

methyl-dithiocarbamate, which generates<br />

MITC in the soil. Formulated as a<br />

liquid, it may be applied <strong>to</strong> the soil by<br />

injection or drip irrigation or sprayed<br />

on<strong>to</strong> the soil surface prior <strong>to</strong> tilling. The<br />

soil must be prepared and free from<br />

clods before application. Metam sodium<br />

does not distribute easily in the soil and<br />

can give variable pest control depending<br />

on soil temperature, texture, organic<br />

matter, moisture, pH and distribution.<br />

Water is essential for good movement in<br />

the soil. With improved application techniques<br />

and better surface sealing,<br />

metam sodium can give results equal <strong>to</strong><br />

MB fumigation (MBTOC 1998). It can be<br />

combined with solarisation or other pesticides<br />

for greater efficacy. Metam sodium<br />

is registered in many countries and<br />

has been used for more than four<br />

decades in California USA for the production<br />

of <strong>to</strong>ma<strong>to</strong>, strawberry and<br />

pepper crops.<br />

Pathogens Nema<strong>to</strong>des Insects Weeds Bacteria<br />

1,3-D ++ ++++ +++ ++ ++<br />

Chloropicrin ++++ +++ +++ ++ ++++<br />

Dazomet +++ +++ +++ +++ +++<br />

MB +++ +++ +++ +++ +++<br />

Metam sodium +++ +++ +++ +++ ++<br />

MITC +++ +++ +++ +++ ++<br />

Fungicides +++<br />

Herbicides +++<br />

Insecticides +++<br />

Nematicides +++<br />

Adapted : Porter 1999<br />

Key: MITC-methylisothiocyanate 1,3-D-1,3-dichloropropene<br />

++++ high degree of pest control +++ good control ++ some control + little control<br />

Soil<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

53


Table 4.3.3 Examples of commercial use of fumigants<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

54<br />

Chemical Crop Examples of countries<br />

Metam sodium Cucurbits (cucumber, melon, etc.) Costa Rica, Egypt, Jordan,<br />

Mexico, Morocco<br />

Metam sodium Strawberries Netherlands, Morocco, Spain<br />

Metam sodium Open field <strong>to</strong>ma<strong>to</strong>es and peppers Australia, Costa Rica, Egypt,<br />

Mexico, Morocco, Spain,<br />

Zimbabwe<br />

Dazomet Open field <strong>to</strong>ma<strong>to</strong>es and peppers Europe, Japan<br />

Dazomet Strawberries Netherlands, Spain<br />

Dazomet Tobacco seedlings Brazil, USA<br />

Chloropicrin Cucurbits, <strong>to</strong>ma<strong>to</strong>es Japan, Zimbabwe<br />

1,3- dichloropropene S<strong>to</strong>ne fruit Spain, USA<br />

1,3- dichloropropene Open field <strong>to</strong>ma<strong>to</strong>es and peppers Costa Rica, Honduras, Italy,<br />

Japan, Mexico, Spain, USA<br />

Metam sodium + Cut flowers, flower bulbs Netherlands<br />

1,3- dichloropropene<br />

Mixtures of soil fumigants provide a<br />

spectrum of pest control similar <strong>to</strong> MB.<br />

Mixtures of 1,3-D and chloropicrin, for<br />

example, are registered in some regions.<br />

Soil may be pre-irrigated <strong>to</strong> stimulate<br />

nema<strong>to</strong>de development <strong>to</strong> active forms<br />

and then allowed <strong>to</strong> become fairly dry<br />

by the time the fumigant product is<br />

applied. The liquid is often applied<br />

mechanically by soil injection <strong>to</strong> a depth<br />

of about 46 cm, with the soil surface<br />

sealed. The soil should usually be left<br />

undisturbed for at least 7 days and<br />

planting should be delayed for 21 days<br />

or more if conditions have been cold<br />

and wet.<br />

The efficacy of fumigants depends greatly on<br />

the preparation and application method,<br />

because many fac<strong>to</strong>rs influence efficacy,<br />

including the pest species, degree of infestation,<br />

type of fumigant, soil preparation, soil<br />

type, pH, organic matter, presence of crop<br />

residues, soil depth, soil temperature, application<br />

rate and application method. Soil pests<br />

should be identified before selecting the<br />

appropriate fumigant and co-treatments.<br />

Compiled from: MBTOC 1998<br />

Good soil preparation (e.g., producing a fine<br />

tilth) is normally important for helping fumigants<br />

<strong>to</strong> diffuse through the soil and reach<br />

the pests. Finer soil textures with a high percentage<br />

of silt and clay have smaller pore<br />

sizes, and this characteristic tends <strong>to</strong> block<br />

the movement of fumigants. So these soils<br />

generally require higher application rates.<br />

Debris from the previous crop may harbour<br />

pests and should be chopped up and incorporated<br />

in<strong>to</strong> the <strong>to</strong>p 10 cm of soil and<br />

allowed <strong>to</strong> decompose before fumigation.<br />

Fumigants are generally most effective when<br />

the soil temperature is 21 <strong>to</strong> 27°C at a depth<br />

of 20 cm, although fumigation can be carried<br />

out when soil temperatures are 7 <strong>to</strong> 30°C at<br />

20 cm depth (Hafez 1999).<br />

All fumigants and pesticides are normally<br />

required <strong>to</strong> carry instructions for application<br />

methods and safety precautions, and these<br />

instructions should be followed in all cases.<br />

In general, deep placement of a fumigant in<br />

the soil (e.g. injecting it <strong>to</strong> 38 <strong>to</strong> 46 cm<br />

depth) gives better pest control than with<br />

shallow placement (e.g. 15 <strong>to</strong> 23 cm depth).


Likewise, applying the fumigant <strong>to</strong> the entire<br />

field area is more effective than placing it<br />

only along the rows where crops will be<br />

planted.<br />

A number of fac<strong>to</strong>rs influence the rate at<br />

which fumigants become active. For example,<br />

clay soils tend <strong>to</strong> slow the conversion of 1,3-<br />

D with chloropicrin <strong>to</strong> the gas phase, while<br />

they increase the rate at which metam sodium<br />

is converted <strong>to</strong> MITC. A higher soil pH<br />

and available copper, iron or manganese in<br />

the soil can speed up the conversion of<br />

metam sodium <strong>to</strong> MITC. Raised soil temperatures<br />

also increase the rate of conversion of<br />

metam sodium <strong>to</strong> MITC and the conversion<br />

of 1,3-D + chloropicrin <strong>to</strong> the gas phase<br />

(Hafez 1999).<br />

Pesticide products<br />

Pesticide products are chemicals with <strong>to</strong>xic<br />

properties. They are available as liquids, granules<br />

or powders. Their modes of action vary;<br />

for example, some kill by contact and others<br />

by systemic action. They tend <strong>to</strong> be effective<br />

against specific sub-groups or groups of<br />

pests. Some control a wide range of species,<br />

while others control a very limited range, so<br />

soil pests must be identified before appropriate<br />

products can be selected. The names of<br />

the main groups of pesticides indicate the<br />

types of pests that they control:<br />

Nematicides control nema<strong>to</strong>des.<br />

Fungicides control fungi.<br />

Herbicides control weeds.<br />

Insecticides control insects.<br />

These groups are not discussed in detail,<br />

because the available pesticide products vary<br />

greatly from country <strong>to</strong> country, depending<br />

on the approved formulations. Relevant information<br />

can be obtained from agricultural<br />

suppliers and the government departments<br />

responsible for pesticide registration.<br />

Current uses<br />

Both fumigants and non-fumigant pesticides<br />

are used commercially. The fumigant metam<br />

sodium is used in many countries, including<br />

Israel, Italy, Morocco, Spain, southern France<br />

and USA, while dazomet is used in regions<br />

such as Argentina, Australia, Europe and<br />

Japan (MBTOC 1998). Mixtures of 1,3-<br />

dichloropropene with methylisothiocyanate<br />

and 1,3-dichloropropene with chloropicrin<br />

have been used for many years on a variety<br />

of crops in North America (MBTOC 1994).<br />

Table 4.3.3 provides more examples of the<br />

commercial use of fumigants.<br />

Variations under development<br />

Some potential fumigants are being examined<br />

in trials, including:<br />

<strong>Methyl</strong> iodide.<br />

Ozone.<br />

Sodium tetrathiocarbonate.<br />

Anhydrous ammonia.<br />

Furfuraldehyde.<br />

Material inputs<br />

Fumigant or pesticide products.<br />

Equipment for injecting, spreading or<br />

distributing the products in<strong>to</strong> soil.<br />

Equipment <strong>to</strong> seal the soil surface or<br />

plastic sheets <strong>to</strong> cover the soil.<br />

Safety equipment.<br />

Fac<strong>to</strong>rs required for use<br />

Fumigants and pesticides should only be<br />

used where government registration of<br />

the chemical has been given for the specific<br />

crop/situation in question. This will<br />

vary markedly from one country <strong>to</strong> the<br />

next, and even from state <strong>to</strong> state in<br />

some countries. To determine the registration<br />

status and permitted uses of<br />

products, contact the national or state<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

55


Table 4.3.4 Examples of yields from fumigants and pesticides<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

56<br />

Yields from<br />

Crop/Region Treatment chemical treatments Yields from MB<br />

Toma<strong>to</strong>es in Florida 1,3-D + oxamyl (trial) 4.3 - 4.4 kg/m 2 4.5 - 4.8 kg/ m 2<br />

Toma<strong>to</strong>es in Florida dazomet + pebulate 4.1 kg/ m 2 4.5 - 4.8 kg/ m 2<br />

herbicide (trial)<br />

Toma<strong>to</strong>es in Florida metam sodium + 33.0 - 42.0 kg/plot 44.5 kg/plot<br />

chloropicrin + pebulate<br />

herbicide (trials, various rates)<br />

Toma<strong>to</strong>es in Florida 1,3-D + pebulate herbicide 35.7 - 45.2 kg/plot 44.5 kg/plot<br />

(trial, various rates)<br />

Toma<strong>to</strong>es Olympic metam sodium or 1,3-D 86.4 t/ha 87.1 t/ha<br />

cultivar<br />

with chloropicrin<br />

Toma<strong>to</strong>es Sunny metam sodium or 70.5 t/ha 67.5 t/ha<br />

cultivar<br />

1,3-D with chloropicrin<br />

Cucurbits in Spain metam sodium (trials) 1,928 kg/plot 1,991 kg/plot<br />

Strawberries in Spain chloropicrin (trials) 796 g/plant 768 g/plant<br />

Strawberries in Spain 1,3-D + chloropicrin (trials) 779 g/plant 768 g/plant<br />

Strawberries in Florida 1,3-D + chloropicrin (trials) 3,333 - 3,620 flats/ha 3,511 - 4,131<br />

flats/ha<br />

Strawberries in Florida chloropicrin (trials) 3,311 - 4,040 flats/ha 3,511 - 4,131<br />

flats/ha<br />

Strawberries in dazomet + chloropicrin 4.4 kg/plot (av.) 4.6 kg/plot (av.)<br />

California<br />

+ 1,3-D<br />

Compiled from: MBTOC 1998, Dickson et al 1995, Dickson et al 1998, Locascio et al 1999, López-Aranda<br />

1999, McGovern 1994, Sanz et al 1998, Webb 1998<br />

authority responsible for pesticide registration,<br />

which is often located in the<br />

Ministry of Agriculture or Health.<br />

Know-how is important for proper application<br />

of the products, since efficacy<br />

depends greatly on good distribution in<br />

the soil. Most fumigants need a particular<br />

soil temperature range, soil texture<br />

and moisture level for even distribution.<br />

Fumigants and pesticides require knowledge<br />

of safety measures.<br />

Pests controlled<br />

Fumigants and other pesticides vary in the<br />

range and efficacy with which they kill pests.<br />

In general, they do not kill as wide a range of<br />

pests as MB, so they are best used with other<br />

treatments as part of an IPM system. Table<br />

4.3.2 indicates the main pest groups controlled<br />

by available chemicals:<br />

Chloropicrin is highly effective for the<br />

control of soil-borne fungi, about 20<br />

times more effective than MB in this<br />

respect (Desmarchelier 1998). It controls<br />

germinated weeds and some arthropods.<br />

It is a weak nematicide and does not kill<br />

dormant or non-germinating weed seeds<br />

(MBTOC 1998).<br />

Dazomet provides control of soilborne<br />

fungi, some weeds and certain<br />

nema<strong>to</strong>des.<br />

1,3-dichloropropene provides effective<br />

control of nema<strong>to</strong>des but little control of<br />

diseases and weeds (Johnson and


Feldmesser 1987, Rodríguez-Kábana et<br />

al 1977).<br />

Mixtures of 1,3-dichlorpropene and<br />

chloropicrin are effective in controlling<br />

nema<strong>to</strong>des, deep-rooted perennial<br />

weeds and soil-borne insects.<br />

MITC is highly effective for controlling a<br />

wide range of soil-borne fungi, arthropods,<br />

some weeds and limited species of<br />

nema<strong>to</strong>de species (MBTOC 1998).<br />

Metam sodium provides effective control<br />

of fungal pathogens, arthropods,<br />

certain weeds and a limited number of<br />

nema<strong>to</strong>de species (MBTOC 1998).<br />

Nematicides control nema<strong>to</strong>des or specific<br />

types of nema<strong>to</strong>des, and some soil<br />

insects.<br />

Fungicides control specific fungi or<br />

groups of fungi.<br />

Herbicides can control a narrow or<br />

wide range of weeds, depending on the<br />

specific product.<br />

As mentioned previously, efficacy can be<br />

affected greatly by soil type, soil preparation<br />

and application methods. The efficacy of<br />

fumigants against nema<strong>to</strong>des and weeds<br />

can be improved by pre-irrigation <strong>to</strong> encourage<br />

nema<strong>to</strong>de development and weed<br />

germination.<br />

Additional information on the types of pests<br />

that specific products will control can be<br />

obtained from approved product labels and<br />

extension authorities. Regional information is<br />

also available on extension websites, such as<br />

the University of California Pest Managment<br />

Guidelines (see list of websites included in<br />

Annex 7).<br />

Yields and performance<br />

Yields can be lower than, equal <strong>to</strong>, or higher<br />

than those achieved using MB, depending on<br />

the chemical and application method. Table<br />

4.3.4 provides some examples of yields.<br />

Other fac<strong>to</strong>rs affecting use<br />

Suitable crops and uses<br />

Fumigants and pesticides can be used for the<br />

horticultural crops for which they are registered<br />

in a country or state. It is feasible <strong>to</strong> use<br />

them in open fields, greenhouses, tunnels,<br />

seedbeds, nurseries. However, the permitted<br />

applications will vary greatly from country <strong>to</strong><br />

country. They can be used in single and double-cropping<br />

systems.<br />

Suitable climates and soil types<br />

Most fumigants work within certain temperature<br />

ranges and require a minimum of about<br />

5 - 7°C. Some chemicals are not effective if<br />

the climate or soil is <strong>to</strong>o wet or <strong>to</strong>o dry.<br />

Efficacy also varies with the soil type, particle<br />

size, pH and percentage of organic matter.<br />

Lighter soils generally require lower fumigant<br />

application rates, while heavier soils generally<br />

require higher application rates. Additional<br />

information on appropriate conditions can be<br />

obtained from product labels or extension<br />

agencies.<br />

Toxicity and health risks<br />

Fumigants and pesticides are designed <strong>to</strong> be<br />

<strong>to</strong>xic <strong>to</strong> living organisms. The main hazard <strong>to</strong><br />

field workers is during mixing and handling,<br />

but they can also drift <strong>to</strong> neighbouring farms<br />

and communities, posing risks <strong>to</strong> human<br />

health, crops and wildlife. Fumigants and<br />

some pesticides are acutely <strong>to</strong>xic, i.e. exposure<br />

<strong>to</strong> sufficient concentrations can rapidly<br />

produce symp<strong>to</strong>ms of poisoning or ill health.<br />

Others may be associated with chronic <strong>to</strong>xicity,<br />

i.e. symp<strong>to</strong>ms of ill health may develop a<br />

long time after exposure has occurred. Annex<br />

3 gives data sheets for the major fumigants.<br />

Safety precautions for users<br />

Safety equipment and training is necessary<br />

for users and for the protection of local communities.<br />

All safety instructions given by<br />

product labels and health authorities must be<br />

followed.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

57


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Residues in food and environment<br />

Many fumigants and pesticides leave undesirable<br />

residues and metabolites in air, soil,<br />

crops and food. Some residues can move in<strong>to</strong><br />

surface or groundwater, and some persist in<br />

the environment for a long time and may<br />

accumulate in the tissues of living organisms.<br />

Phy<strong>to</strong><strong>to</strong>xicity<br />

Fumigants often leave phy<strong>to</strong><strong>to</strong>xic residues,<br />

but this problem is normally overcome with a<br />

waiting period of about two <strong>to</strong> three weeks<br />

or longer before planting.<br />

Impact on beneficial organisms<br />

Fumigants generally kill many beneficial<br />

organisms in the soil, while pesticides kill certain<br />

groups of organisms. For example, fungicides<br />

often kill or suppress beneficial fungi.<br />

Ozone depletion<br />

Commercially available fumigants such as<br />

metam sodium and 1,3-D are not ODS.<br />

<strong>Methyl</strong> iodide has a low ODP.<br />

Global warming and energy<br />

consumption<br />

As with MB, energy is used in the production,<br />

transportation, use and disposal of fumigants<br />

and pesticides and related equipment, such<br />

as application machinery and plastic sheets.<br />

Other environmental considerations<br />

Some fumigants and pesticides are manufactured<br />

from non-renewable resources such as<br />

oil. After use, chemical residues do not disappear<br />

but are converted in<strong>to</strong> metabolites and<br />

other residues, some of which are harmful <strong>to</strong><br />

wildlife and the environment. Empty containers<br />

contain <strong>to</strong>xic residues and pose a special<br />

waste problem, which some regions are<br />

addressing with waste collection<br />

programmes.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Consumers have concerns about undesirable<br />

pesticide residues in food, water and the<br />

environment. Purchasing companies generally<br />

accept the use of fumigants and pesticides<br />

where they meet the regula<strong>to</strong>ry requirements<br />

for application and residues. However, some<br />

major supermarkets are demanding minimal<br />

residues and reduced reliance on pesticides.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Fumigants and other pesticides have <strong>to</strong> be<br />

registered (approved and permitted) by<br />

national and/or state pesticide regulation<br />

authorities, and regulation may restrict sale,<br />

use and disposal. Authorities normally specify<br />

the crops for which particular products can<br />

be used, the maximum application rates, and<br />

other conditions that may limit their use.<br />

To find out whether a fumigant or pesticide is<br />

registered for your crop/application, contact the<br />

pesticide registration authority at the appropriate<br />

national or state level. Agrochemical suppliers<br />

can also provide information on the<br />

regula<strong>to</strong>ry status of chemicals, but the information<br />

may not be up <strong>to</strong> date or reliable.<br />

The sale of pesticides is also restricted by a<br />

number of international agreements. An<br />

international code of practice developed by<br />

the Food and Agriculture Organization of the<br />

United Nations provides guidelines for the<br />

marketing and use of pesticides. Certain pesticides<br />

are subject <strong>to</strong> the Rotterdam<br />

Convention, an international agreement that<br />

requires Prior Informed Consent or PIC procedures<br />

<strong>to</strong> be followed before import. A new<br />

agreement will limit specific Persistent<br />

Organic Pollutants (POPs); international trade<br />

and disposal of pesticides is subject <strong>to</strong> the<br />

Basel Convention on hazardous wastes.<br />

58


Cost considerations<br />

Examples of chemical costs per hectare in the<br />

USA (UCD Dept Nema<strong>to</strong>logy 1999, EPA<br />

1997):<br />

MB with plastic sheets US$ 1,410 - 2,985<br />

MB without sheets US$ 690 - 1,000<br />

Chloropicrin US$ 1,600 - 2,965<br />

Dazomet US$ 1,792 - 2,990<br />

1,3-dichloropropene US$ 250 - 1,235<br />

Metam sodium US$ 370 - 1,000<br />

Nematicides US$ 125 - 615<br />

In practice, overall costs may be higher than<br />

with MB, because several treatments or combinations<br />

are often required <strong>to</strong> replace MB.<br />

Where specially adapted machinery is necessary,<br />

capital costs will be higher. Labour costs<br />

vary and can be higher than MB if additional<br />

soil preparation is necessary.<br />

Questions <strong>to</strong> ask when selecting the<br />

system<br />

Which soil pests need <strong>to</strong> be controlled?<br />

Which registered fumigants or pesticides<br />

would control those specific pests?<br />

What other components would need <strong>to</strong><br />

be used in an IPM system?<br />

What is the optimal application method<br />

and equipment?<br />

What safety equipment and/or training is<br />

required?<br />

Will the residues fall within regula<strong>to</strong>ry<br />

and market requirements?<br />

What is the cost and profitability of the<br />

system compared <strong>to</strong> other options?<br />

Availability<br />

Some fumigants and a range of non-fumigant<br />

pesticides are available in most countries.<br />

The precise list will vary from one<br />

country or state <strong>to</strong> the next, depending on<br />

regula<strong>to</strong>ry and marketing policies.<br />

Suppliers of products and services<br />

Table 4.3.5 lists manufacturers of major fumigants<br />

and gives examples of specialists. A<br />

detailed list is not provided, because the<br />

available products vary so greatly from one<br />

country <strong>to</strong> the next. In most cases your local<br />

agricultural supplier can provide information<br />

about products available locally, while permitted<br />

uses can be checked with the pesticide<br />

registration authority at the national or state<br />

level. See Annex 6 for an alphabetical listing<br />

of suppliers, specialists and experts. See<br />

also Annex 5 and Annex 7 for additional<br />

information resources.<br />

Table 4.3.5 Examples of fumigants producers and specialists<br />

Products and services<br />

1,3-dichloropropene<br />

Chloropicrin<br />

Dazomet<br />

Metam sodium<br />

Nematicides<br />

Specialists, advisory<br />

services and consultants<br />

Companies<br />

DowAgroScience, USA<br />

Refer <strong>to</strong> local agrochemicals suppliers<br />

Great Lakes Chemical Corp, USA<br />

Refer <strong>to</strong> local agrochemicals suppliers<br />

BASF, Germany<br />

Refer <strong>to</strong> local agrochemicals suppliers<br />

Amvac Chemical Corp, USA<br />

Refer <strong>to</strong> local agrochemicals suppliers<br />

Refer <strong>to</strong> local agrochemicals suppliers<br />

Agriphy<strong>to</strong>, France<br />

Aplicaciones Bioquímicas SL, Spain<br />

Asociación Colombiana de Exortadores de Flores (ASO<br />

COLFLORES) Colombia<br />

Danish Institute of Agricultural Science, Denmark<br />

continued<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

59


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

60<br />

Products and services<br />

Specialists, advisory<br />

services and consultants<br />

(continued)<br />

Table 4.3.5 continued<br />

Companies<br />

Department of Nema<strong>to</strong>lody, University of California at Davis,<br />

USA – for nema<strong>to</strong>de management information<br />

DLV Advisory Service, Netherlands<br />

FMC Foret Grupo Agroquimicos, Spain<br />

PBG Research Station for Floriculture and Glasshouse<br />

Vegetables, Netherlands<br />

Statewide Integrated Pest Managment Project, University of<br />

California, USA – for management of a wide range of pests<br />

and diseases<br />

Dr An<strong>to</strong>nio Bello and colleagues, CCMA, CSIC, Spain<br />

Dr Mohamed Besri, Institut Agronomique et Vétérinaire<br />

Hassan II, Morocco<br />

Dr William Carey, Auburn University, USA<br />

Dr G Cartia, Universita di Reggio Calabria, Italy<br />

Mr Dermot Cassidy, Geest, South Africa<br />

Dr Vincent Cebolla, Institu<strong>to</strong> Valenciano de Investigaciones<br />

Agrarias, Spain<br />

Dr Dan Chellemi, USDA-ARS, USA<br />

Dr Don Dickson, University of Florida, USA<br />

Dr John M Duniway, University of California, USA<br />

Dr Clyde Elmore, Weed Science Program, University of<br />

California, USA<br />

Dr J Fresno, INIA, Spain (vineyards)<br />

Dr Abraham Gamliel, Institute of Agricultural Engineering, Israel<br />

Dr A López García, FECOM, Spain<br />

Dr James Gilreath, IFAS, University of Florida, USA<br />

Prof M Lodovica Gullino, University of Turin, Italy<br />

Dr A Minu<strong>to</strong>, University of Turin, Italy<br />

Dr Saad Hafez, University of Idaho, USA<br />

Dr Seizo Horiuchi, National Research Institute of Vegetables,<br />

Ornamental Plants & Tea, MAFF, Japan<br />

Dr Steven Fennimore, Department of Vegetable Crops,<br />

University of California, USA (weeds)<br />

Prof Jaacov Katan, Hebrew University, Israel<br />

Dr Nancy Kokalis-Burelle, Horticultural Research Labora<strong>to</strong>ry,<br />

USDA-ARS, USA<br />

Dr Kirk Larson, University of California, USA<br />

Dr Michael McKenry, University of California, USA<br />

Dr Robert McSorley, Department of Nema<strong>to</strong>logy and<br />

En<strong>to</strong>mology, USA<br />

Dr Peter Ooi, FAO Integrated Pest Control Intercountry<br />

Programme, Philippines<br />

Ms Marta Pizano, Hortitecnia, Colombia (cut flowers)<br />

Dr Ian Porter, Knoxfield Research Station, Australia<br />

Dr Rodrigo Rodríguez-Kábana, Univeristy of Auburn, USA<br />

Dr Lim Guan Soon, International Institute of Biological<br />

Control, Malaysia<br />

Dr Donald Sumner, Dept. Plant Pathology, University of<br />

Georgia, USA<br />

Dr J Tello, Dp<strong>to</strong> Biología, University of Almería, Spain<br />

Dr Thomas Trout, USDA-ARS, USA<br />

Dr Husein Ajwa, USDA-ARSUSA<br />

Mr Peter Wilkinson, Xylocopa, Zimbabwe<br />

Note: Contact information for these producers and specialists is provided in Annex 6.


4.4 Soil amendments<br />

and compost<br />

Advantages<br />

Soil amendments stimulate the activity<br />

of beneficial soil organisms and lead <strong>to</strong><br />

other soil changes that directly or indirectly<br />

reduce or suppress pests.<br />

Pest suppression can continue for several<br />

seasons.<br />

Organic matter improves soil texture,<br />

providing crop nutrients and reducing<br />

fertiliser costs.<br />

Raw materials that are suitable as soil<br />

amendments are often non-<strong>to</strong>xic and do<br />

not require special safety training.<br />

A wide range of waste materials can be<br />

used as amendments.<br />

Use may be limited <strong>to</strong> localities where<br />

materials are readily available, otherwise<br />

transport costs may be unacceptable.<br />

It is necessary <strong>to</strong> have quality controls<br />

and <strong>to</strong> avoid materials that may be contaminated<br />

with undesirable components<br />

such as heavy metals or weed seeds.<br />

Know-how is required for effective use;<br />

efficacy varies with the type of soil and<br />

type of amendment.<br />

Technical description<br />

Soil amendments are organic materials, such<br />

as crop residues and waste materials from<br />

forestry and food processing industries.<br />

These amendments decompose when they<br />

are added <strong>to</strong> soil, supporting and promoting<br />

the activity of beneficial soil microorganisms<br />

that suppress certain pathogenic fungi and<br />

nema<strong>to</strong>des.<br />

Disadvantages<br />

Amendments suppress specific<br />

pathogens and nema<strong>to</strong>des and do not<br />

control weeds and insects, so they need<br />

<strong>to</strong> be combined with other techniques.<br />

Amendments are normally applied in<br />

large quantities.<br />

While MB kills pathogens very quickly,<br />

amendments and composts typically suppress<br />

or eradicate pathogens slowly over a long<br />

period of time (Cohen et al 1998, De Ceuster<br />

and Hoitink 1999). Amendments, therefore,<br />

must be applied well before pathogens reach<br />

populations capable of causing losses, and<br />

this requires more management. Use of soil<br />

Table 4.4.1 Mechanisms in the control of Verticillium dahliae in soil<br />

following the addition of nitrogen-rich amendments<br />

Fac<strong>to</strong>r NH 3 mechanism HNO 2 mechanism<br />

Minimum lethal concentration > 170 ppm (N) in solution > 2ppm (N) in solution<br />

(24 hours)<br />

Location Soil solution or atmosphere Soil solution or gas<br />

Type of amendment Organic-N products (> 8% N), Organic-N products, fertiliser -<br />

urea, anhydrous NH 3 N (not NO 3 )<br />

Rate of application > 1,600 kg N/ha or > 20 t/ha > 400 kg N/ha or > 20 kg<br />

organic-N product<br />

NO -- 2 -N/ha<br />

Determining soil properties Organic matter pH < 6.0, poor acid buffering<br />

ability, rapid nitrification<br />

Time after amendment 4 - 14 days 2 - 6 weeks<br />

Phy<strong>to</strong><strong>to</strong>xicity Planting delayed 1 - 2 months Not evident<br />

Source: Tenuta and Lazarovits 1999<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

61


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

62<br />

amendments requires careful moni<strong>to</strong>ring for<br />

particular pest problems, with greater attention<br />

<strong>to</strong> pest biology. To replace MB, amendments<br />

generally need <strong>to</strong> be used with other<br />

control techniques as part of an IPM system.<br />

Amendments are incorporated in<strong>to</strong> the soil in<br />

substantial quantities, normally in excess of<br />

30 t/ha. Use of locally available waste materials<br />

can keep transport costs at an acceptable<br />

level. Soil amendments should be derived<br />

from materials that are free from plant pests<br />

and pathogens, or they should be composted<br />

at temperatures that kill pathogens. They<br />

must also be free from contaminants that<br />

could cause pho<strong>to</strong><strong>to</strong>xicity (<strong>to</strong>xicity <strong>to</strong> plants)<br />

or undesirable food residues.<br />

Substances that can be used as soil amendments<br />

include the following:<br />

Compost made from a wide variety of<br />

waste materials, e.g. crop residues and<br />

animal manure.<br />

Composted sewage sludge, if it is free<br />

from pathogenic organisms and heavy<br />

metals.<br />

Mushroom industry waste.<br />

Animal manures and wastes from meat,<br />

dairy and poultry production.<br />

Green manures, i.e. crops that are specially<br />

grown and incorporated in<strong>to</strong> the<br />

soil while they are still green.<br />

Oil cakes or oilseed meals such as cot<strong>to</strong>nseed<br />

meal or soy meal.<br />

By-products from food processing, e.g.<br />

fruit skin, pulp and culls.<br />

By-products from fish processing, e.g.<br />

fishmeal, fish emulsion, shellfish waste,<br />

and chitin from the pulverised shells of<br />

crabs and lobsters.<br />

By-products from the forest and paper<br />

industries, e.g. waste wood, bark, sawdust<br />

and paper mill digests.<br />

When amendments are added <strong>to</strong> soil, they<br />

are decomposed by microorganisms. This<br />

stimulates microbial activity and increases the<br />

<strong>to</strong>tal number of soil fungi and bacteria by<br />

100- <strong>to</strong> 1000-fold, while decreasing the number<br />

of pathogens (Lazarovits et al 1997, Anon<br />

1997). The chemical composition and physical<br />

properties of the amendments determine the<br />

types of microorganisms involved in decomposition<br />

and hence their efficacy.<br />

Certain nitrogen-rich amendments are<br />

capable of being converted in the soil <strong>to</strong><br />

nitrate or yielding nitrous acid directly. Such<br />

amendments can kill the microsclerotia of<br />

Verticillium dahliae and other soil-borne<br />

pathogens, providing an effective broad-spectrum<br />

alternative <strong>to</strong> MB for certain soils<br />

(Tenuta and Lazarovits 1999). Examples of<br />

these amendments include poultry manure,<br />

soy meal and feather meal. Soil pH values<br />

above 8.5 are required for the ammonia<br />

mechanism, while pH values below 5.5 are<br />

required for the nitrous acid mechanism<br />

(Tenuta and Lazarovits 1999). The more successful<br />

nitrogen-rich amendments are reported<br />

<strong>to</strong> be ones that raise soil pH temporarily<br />

above 8.5 for a few weeks, allowing ammonia<br />

<strong>to</strong> be effective, and then falling back <strong>to</strong> a<br />

pH below 5.5, allowing the action of nitrous<br />

acid for 2 <strong>to</strong> 6 weeks (Table 4.4.1).<br />

Composting of organic materials speeds up<br />

the rate at which they decompose. Compost,<br />

used for centuries <strong>to</strong> maintain plant health<br />

(Hoitink et al 1997), can be made from many<br />

types of organic waste, provided the wastes<br />

are free from harmful contaminants or diseased<br />

crop residues. Each type of compost<br />

has its own characteristics.<br />

A compost pile, typically several metres wide,<br />

is made of layers of crop residues and animal<br />

manure, kept slightly moist but not wet. The<br />

site must be protected from sun and windblown<br />

seeds. Raw organic material is converted<br />

in<strong>to</strong> compost, decomposed by the action<br />

of bacteria and fungi. Temperatures in the<br />

centre of the pile can reach 60 <strong>to</strong> 70°C,


killing some weed seeds and pathogens.<br />

Pests in cooler sections of the pile are not<br />

killed, but many pathogens will be killed if<br />

the compost is turned or mixed frequently<br />

and thoroughly. Turning also prevents the<br />

development of undesirable ‘sour’ compost<br />

and offensive odours. Composting time can<br />

vary from three weeks <strong>to</strong> many months,<br />

depending on the method.<br />

Compost is widely used in the Colombian cut<br />

flower industry and is typically made in four<br />

<strong>to</strong> five months. Production time is reduced by<br />

several practices:<br />

Cutting raw materials in small pieces<br />

(< 4 cm long).<br />

Selecting raw materials <strong>to</strong> provide a<br />

carbon/nitrogen ratio of about 30:1.<br />

Adding material containing beneficial<br />

microorganisms, such as old compost<br />

or manure.<br />

Controlling pH and moisture.<br />

Turning the pile frequently.<br />

Disease-suppressive compost is also used<br />

by some cut flower producers in Colombia,<br />

where a microbial broth is made on-farm and<br />

added <strong>to</strong> the compost pile <strong>to</strong> increase the<br />

variety and numbers of beneficial soil<br />

microorganisms. The resulting compost helps<br />

<strong>to</strong> suppress many soil-borne pathogens, provides<br />

nutrients and improves soil texture.<br />

A number of fac<strong>to</strong>rs must be controlled for<br />

consistent effects. These include the composition<br />

of the organic matter; the type of<br />

composting process, if any; the stability or<br />

maturity of the material; available plant nutrients;<br />

application rates; and time of application.<br />

Some important issues <strong>to</strong> consider are<br />

outlined below:<br />

Large quantities of amendments are<br />

required. This makes them expensive,<br />

unless cheap or waste materials are<br />

available locally.<br />

Because the effectiveness of nitrogenrich<br />

amendments varies from one soil <strong>to</strong><br />

another, amendments can give inconsistent<br />

control of pathogens from field <strong>to</strong><br />

field. Scientists in Ontario have developed<br />

a pre-application soil test that will<br />

test the suitability of a specific amendment<br />

for the field (Tenuta and Lazarovits<br />

1999).<br />

The composition and quality of raw<br />

materials varies greatly and must be<br />

managed with quality control systems.<br />

Amendments and composts prepared<br />

from manures may contain high<br />

amounts of sodium and chlorides.<br />

Application of such materials well ahead<br />

Table 4.4.2 Examples of commercial use of soil amendments<br />

(normally used with other techniques)<br />

Crops Soil amendments Examples of countries<br />

Toma<strong>to</strong>es Cattle manure Morocco<br />

Toma<strong>to</strong>es, cucurbits Farm-made compost Egypt<br />

Watermelons Manure Mexico<br />

Cut flowers Farm-made compost from mixed wastes Mexico<br />

Cut flowers Farm-made compost Colombia<br />

Nurseries Compost from municipal waste USA (California)<br />

Vineyards Manure Spain<br />

Various crops Various soil amendments Many countries<br />

Compiled from: MBTOC 1998, Batchelor 1999<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

63


of planting time, however, can alleviate<br />

problems with these materials.<br />

In addition <strong>to</strong> suppressing pests, soil amendments<br />

provide the major advantages of<br />

improving soil texture and structure and providing<br />

a range of nutrients for plants, which<br />

can save fertiliser costs.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

64<br />

The level of plant nutrients may vary<br />

from batch <strong>to</strong> batch, so crop fertilisers<br />

must be adjusted <strong>to</strong> compensate.<br />

Excessive nitrogen can be a problem<br />

with manures, while nitrogen deficiency<br />

is a danger with wood residues. In some<br />

cases, amendments need <strong>to</strong> be diluted<br />

by mixing with other types of<br />

amendments.<br />

The level of decomposition of amendments<br />

and composts affects pest control.<br />

Fresh organic matter does not support<br />

beneficial microorganisms, even when<br />

inoculated with the best strains. High<br />

concentrations of free nutrients, such as<br />

glucose or amino acids, in fresh crop<br />

residues repress the production of<br />

enzymes required for beneficial organisms<br />

such as Trichoderma. Composts<br />

must therefore be stabilised well enough<br />

and colonised <strong>to</strong> the degree that they<br />

support microbial activity (De Ceuster<br />

and Hoitink 1999).<br />

The variability of amendments and composts<br />

can make them difficult for farmers<br />

<strong>to</strong> use successfully, but this can be<br />

addressed by introducing quality controls<br />

on production and establishing guidelines<br />

for the use of specific formulations<br />

(De Ceuster and Hoitink 1999).<br />

Current uses<br />

Soil amendments were traditionally used as a<br />

method of controlling soil-borne pests and<br />

are now receiving renewed attention.<br />

Compost, for example, has reduced or eliminated<br />

MB use in a number of large commercial<br />

nurseries in California (Quarles and<br />

Grossman 1995). In Morocco, cattle manure<br />

reduces the incidence of Fusarium and<br />

Verticillium wilts in <strong>to</strong>ma<strong>to</strong>es (Besri 1997).<br />

Other examples of commercial use of soil<br />

amendments are provided in Table 4.4.2.<br />

Biofumigation is another recently developed<br />

alternative, employing specific types of<br />

amendments that produce fumigant gases<br />

when they decompose (Kirkegaard et al<br />

1993, Mathiessen and Kirkegaard 1993, Bello<br />

1998, Bello et al 1997, 1998 and 1999).<br />

Brassica crop residues, for example, produce<br />

volatile chemicals such as methyl isothiocyanate<br />

and phenethyl isothiocyanate<br />

(Gamliel and Staple<strong>to</strong>n 1997). Biofumigation<br />

stimulates soil microbial activity and increases<br />

populations of nema<strong>to</strong>des that feed on bacteria<br />

or fungi and populations of benefical<br />

preda<strong>to</strong>ry nema<strong>to</strong>des (MBTOC 1998).<br />

Biofumigation is more effective when combined<br />

with solarisation, because the plastic<br />

traps gases and raises soil temperatures (Bello<br />

et al 1998). It has been used successfully in<br />

the production of bananas, <strong>to</strong>ma<strong>to</strong>es, grapes,<br />

melons, peppers and other vegetables (Bello<br />

et al 1999, Sanz et al 1998).<br />

Table 4.4.3 Comparison of yields from soil amendments<br />

and other techniques versus MB — examples<br />

Yields from soil amendments<br />

Crop/country combined with other techniques Yields from MB<br />

Watermelons, Mexico 45 <strong>to</strong>nnes/hectare 20 <strong>to</strong>nnes/hectare<br />

Cut flowers, Mexico 10,800 stems/160 m 2 8,400 stems/160 m 2<br />

Carnations, Colombia 10.5 bunches/ m 2 10.5 bunches/ m 2<br />

Chrysanthemums (Fuji), Colombia 5.8 bunches/ m 2 5.8 bunches/ m 2<br />

Compiled from: Batchelor 1999


Variations under development<br />

Research on how amendments work in different<br />

types of soil is currently underway, and<br />

improved understanding in this area could<br />

increase efficacy and reduce application rates<br />

and related costs.<br />

Material inputs<br />

Organic materials (30 - 100t/ha).<br />

Transport for bringing material <strong>to</strong> the<br />

farm and equipment for incorporating<br />

amendments in<strong>to</strong> the soil.<br />

For biofumigation, plastic sheets laid<br />

mechanically or by hand.<br />

Fac<strong>to</strong>rs required for use<br />

Local sources of cheap organic matter,<br />

such as wastes or by-products.<br />

Quality control <strong>to</strong> ensure that harmful<br />

contaminants are avoided.<br />

For compost: adequate space and wellaerated<br />

areas, careful sorting of residues<br />

and regular turning and management.<br />

Good management <strong>to</strong> ensure the<br />

efficacy of disease-suppressive compost.<br />

Know-how, training and careful<br />

management.<br />

Pests controlled<br />

Soil amendments do not control weeds and<br />

soil insects, but until the 1930s, organic<br />

amendments consisting of animal and green<br />

manures were among the principal methods<br />

of controlling soil-borne diseases. The following<br />

are among the soil-borne fungi and<br />

nema<strong>to</strong>des that can be controlled or suppressed<br />

by various types of soil amendments:<br />

Blood or fishmeal incorporated in<strong>to</strong> the<br />

soil at 10 <strong>to</strong>nnes per acre has been<br />

shown <strong>to</strong> completely inhibit Verticillium<br />

infection in <strong>to</strong>ma<strong>to</strong>es (Anon 1997).<br />

Poultry manure, urea, soy meal and<br />

other amendments that can be converted<br />

<strong>to</strong> nitrate or HNO 2 in the soil can kill<br />

the microsclerotia of Verticillium dahliae<br />

(Tenuta and Lazarovits 1999).<br />

Composted softwood and hardwood<br />

bark reduce pathogens such as Pythium<br />

ultimum.<br />

Composted bark amendments control<br />

Pythium and Phy<strong>to</strong>phthora root rots<br />

most effectively in container media<br />

(Hardy and Sivasithamparam 1991,<br />

Ownley and Benson 1991); however the<br />

physical and chemical properties of the<br />

mixes must be ideal for this <strong>to</strong> occur.<br />

A composted pine bark mix fortified<br />

with Flavobacterium balustinum and<br />

Trichoderma hamatum is very effective in<br />

controlling Fusarium wilt of cyclamen<br />

and Rhizoc<strong>to</strong>nia diseases as well as<br />

Pythium and Phy<strong>to</strong>phthora root rots in<br />

potted greenhouse crops (Krause et al<br />

1997).<br />

Rhizoc<strong>to</strong>nia solani is not normally controlled<br />

in the first few weeks after applying<br />

amendments but can be controlled<br />

by well-cured composts or by incorporating<br />

composts in the fields well ahead of<br />

planting (Kuter et al 1988, Tuitert et al<br />

1998).<br />

Fusarium crown rot of Chinese yam is<br />

suppressed in sandy soil amended with<br />

composted larch bark, replacing MB if a<br />

spray of benomyl is also applied <strong>to</strong> the<br />

soil at planting (Sekiguchi 1977).<br />

Chitin increases populations of beneficial<br />

actinomycetes and other microorganisms<br />

and suppresses some plant-parasitic<br />

nema<strong>to</strong>des (MBTOC 1998, Chaney et al<br />

1992).<br />

Cattle manure application (>60t/ha) has<br />

been shown <strong>to</strong> reduce incidence of<br />

Fusarium and Verticillium wilts in <strong>to</strong>ma<strong>to</strong><br />

in Morocco (Besri 1997).<br />

Disease-suppressive compost used in<br />

Colombia helps <strong>to</strong> suppress many soilborne<br />

pathogens in cut flower production<br />

(Batchelor 1999).<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

65


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

66<br />

The action of amendments can be relatively<br />

rapid. Nitrogen-rich amendments, for example,<br />

kill microsclerotia within 7 <strong>to</strong> 10 days (at<br />

7 <strong>to</strong> 24°C) when the soil pH is high (Tenuta<br />

and Lazarovits 1999).<br />

Yields and performance<br />

Organic amendments need <strong>to</strong> be combined<br />

with other techniques in order <strong>to</strong> give yields<br />

equal <strong>to</strong> MB fumigation. Repeated trials in<br />

nurseries producing Douglas fir and ponderosa<br />

pine in Oregon and Idaho USA found<br />

that bare fallow with sawdust soil amendments<br />

resulted in seedling quality and quantity<br />

comparable <strong>to</strong> fumigation (USDA 1999).<br />

Other examples of yields from soil amendments<br />

used in combination with other techniques<br />

are provided in Table 4.4.3.<br />

Other fac<strong>to</strong>rs affecting use<br />

Suitable crops<br />

Soil amendments can be used for most horticultural<br />

crops, although some materials, such<br />

as municipal compost, may be suitable only<br />

for non-food crops. Amendments and compost<br />

can be used in open fields, greenhouses,<br />

seedbeds and nurseries. They can be used for<br />

single and double cropping.<br />

Suitable climates and soil types<br />

The use of soil amendments is restricted <strong>to</strong><br />

climates and times of year when temperatures<br />

are conducive <strong>to</strong> biological activity. Soil<br />

amendments can be used with many different<br />

types of soil, but some materials need <strong>to</strong><br />

be matched <strong>to</strong> specific types of soil. They<br />

improve the texture of poor soils.<br />

Toxicity and health risks<br />

Soil amendments are not normally <strong>to</strong>xic in<br />

themselves, although materials like sewage<br />

sludge can contain organisms that are pathogenic<br />

<strong>to</strong> humans and undesirable for use with<br />

crops. Certain amendment materials could<br />

generate noxious substances if improperly<br />

handled. There are no risks of <strong>to</strong>xicity if<br />

amendments are selected and used properly.<br />

Safety precautions for users<br />

Safety training is desirable for anyone handling<br />

animal wastes. Materials that contain or<br />

generate contaminants must be avoided. For<br />

example, sewage is not suitable as a soil<br />

amendment if it contains heavy metals or<br />

pathogenic microorganisms.<br />

Residues in food and environment<br />

Provided soil amendments are properly selected,<br />

there will be no undesirable residues in<br />

food or the environment.<br />

Phy<strong>to</strong><strong>to</strong>xicity<br />

A waiting period of approximately two <strong>to</strong><br />

four weeks may be necessary before planting<br />

crops. For certain types of amendments and<br />

crops the waiting period may be substantially<br />

longer. Compost must be produced under<br />

quality control standards <strong>to</strong> exclude unsuitable<br />

raw materials, maintain aerobic conditions,<br />

and prevent the compost from<br />

producing certain acids that can be <strong>to</strong>xic <strong>to</strong><br />

plants.<br />

Impact on beneficial organisms<br />

Soil amendments have a positive effect on<br />

beneficial organisms.<br />

Ozone depletion<br />

Soil amendments are not ODS.<br />

Global warming and energy<br />

consumption<br />

The energy use associated with transportation<br />

of organic amendments can be minimised by<br />

using local supplies.<br />

Other environmental considerations<br />

Soil amendments normally come from renewable<br />

resources. Use of soil amendments does<br />

not generate waste. On the contrary, it provides<br />

an opportunity <strong>to</strong> use waste materials<br />

constructively.


Acceptability <strong>to</strong> markets and consumers<br />

Soil amendments are very acceptable <strong>to</strong> consumers<br />

because they are seen as natural<br />

treatments. They are increasingly acceptable<br />

<strong>to</strong> companies that purchase fresh produce,<br />

provided that quality controls are used.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Soil amendments do not require registration<br />

as pesticides. However, it is desirable that<br />

health authorities place restrictions on the<br />

types of materials that can be used as<br />

amendments <strong>to</strong> prevent use of materials containing<br />

undesirable contaminants or dangerous<br />

microorganisms. The US California<br />

Department of Food and Agriculture, for<br />

example, regulates the manufacture, labeling<br />

and marketing of amendments in the state.<br />

Questions <strong>to</strong> ask when selecting the<br />

system<br />

What sources of clean, cheap, waste<br />

organic materials are available locally?<br />

Which soil pests need <strong>to</strong> be controlled?<br />

Which available materials will control<br />

these pests?<br />

What amounts needs <strong>to</strong> be applied and<br />

how?<br />

What is the most effective time <strong>to</strong> apply<br />

the amendments?<br />

What other measures need <strong>to</strong> be taken<br />

<strong>to</strong> control the pests?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Cost considerations<br />

Costs depend mainly on the source of<br />

the amendment and its transportation.<br />

To be cost-effective, soil amendments<br />

generally need <strong>to</strong> be waste materials or<br />

by-products from local sources.<br />

Material costs can be similar <strong>to</strong> or<br />

cheaper than MB if amendments are<br />

waste products; the costs are likely <strong>to</strong> be<br />

higher than those associated with MB if<br />

amendments are specially manufactured.<br />

Labour costs may be slightly higher for<br />

incorporating organic amendments in<strong>to</strong><br />

soil; a study in Spain found that labour for<br />

biofumigation was US$ 584/ha compared<br />

<strong>to</strong> $478/ha for MB (Bello et al 1999).<br />

Availability<br />

Organic waste materials are available in<br />

most areas.<br />

Suppliers of products and services<br />

Table 4.4.4 provides examples of suppliers<br />

and specialists in soil amendments, composts<br />

and biofumigation. See Annex 6 for an<br />

alphabetical listing of suppliers, specialists<br />

and experts. See also Annex 5 and Annex 7<br />

for additional information resources.<br />

Table 4.4.4 Examples of companies that supply products and services<br />

for soil amendments and compost<br />

Products and services<br />

Soil amendments such as<br />

nitrogen-rich materials,<br />

chitin-protein products,<br />

composts<br />

Examples of companies (product name)<br />

Abonos Naturales Hnos Aguado SL, Spain<br />

Agro-Shacam SL, Spain<br />

Aplicaciones Bioquímicas SL, Spain<br />

ARBICO, USA<br />

Biocaribe SA, Colombia<br />

BioComp Inc, USA<br />

continued<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

67


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

68<br />

Products and services<br />

Soil amendments such as<br />

nitrogen-rich materials,<br />

chitin-protein products,<br />

composts<br />

(continued)<br />

Compost inoculants<br />

Compost maturity test kit,<br />

thermometers, etc.<br />

Biofumigation products<br />

and specialists<br />

Specialists, advisory services<br />

and consultants<br />

Table 4.4.4 continued<br />

Examples of companies (product name)<br />

Calmax, USA<br />

Cántabra de Turba Coop Ltda, Spain<br />

CETAP/An<strong>to</strong>nio Ma<strong>to</strong>s Ltda, Portugal<br />

Comercial Projar SA, Spain<br />

De Baat BV, Netherlands<br />

DIREC-TS, Spain; Earthgro, USA<br />

IFM, USA<br />

Igene Biotechnology Inc, USA<br />

Italoespañola de Correc<strong>to</strong>res SL, Spain<br />

Harmony Farm Supply, USA<br />

Lombricompues<strong>to</strong>s de la Sabana, Colombia<br />

Louisiana Pacific, USA<br />

Megafarma SA de CV, Mexico<br />

New Era Farm Service, USA<br />

OM Scotts and Sons, USA (Hyponex)<br />

Paygro, USA<br />

Peaceful Valley, USA (ClandoSan)<br />

Planet Natural, USA<br />

Prodeasa, Spain<br />

Pro-Gro Products Inc, USA<br />

Reciorganic Ltda, Colombia<br />

RECOMSA Reciclado de Compost SA, Spain<br />

Rexius Forest Products, USA<br />

Sonoma Composts, USA<br />

Turbas GF, Spain<br />

ARBICO, USA (Compost Tea, Bio-Dynamic Compost Inoculant)<br />

NOCON SA de CV, Mexico<br />

ARBICO, USA (Compost Thermometer)<br />

Woods End Research Labora<strong>to</strong>ry, USA (Solvita maturity test kit)<br />

Aplicaciones Bioquímicas SL, Spain<br />

Wrightson Seeds, Australia and New Zealand (BQMulch,<br />

BioQure)<br />

Dr An<strong>to</strong>nio Bello and colleagues, CCMA, CSIC, Spain<br />

Dr Abraham Gamliel, Institute of Agricultural Engineering,<br />

Israel<br />

Dr JA Kirkegaard, CSIRO, Australia<br />

Dr James Staple<strong>to</strong>n, University of California, USA<br />

Dr J Tello, Dpt Biología, University of Almería, Spain<br />

Agrocol Ltda, Colombia<br />

Agroshacam SL, Spain<br />

Asociación Colombiana de Exortadores de Flores (ASO<br />

COLFLORES) Colombia<br />

Bio-Integral Resource Center, USA<br />

Calmax, USA<br />

CIAA Agricultural Research and Consultancy Center, Colombia<br />

Comercial Projar SA, Spain<br />

Comité Jean Pain, Belgium<br />

De Ceuster NV, Sint-Katelijne-Waver, Belgium<br />

Demeter Guild, Darmstadt, Germany


Products and services<br />

Specialists, advisory services<br />

and consultants<br />

(continued)<br />

continued<br />

Table 4.4.4 continued<br />

Examples of companies (product name)<br />

École Nationale Supérieure de Technologie, Université Cheikh<br />

Anta Diop, Senegal<br />

FUNDASES Foundation, Colombia<br />

Reciorganic Ltda, Colombia<br />

Dr An<strong>to</strong>nio Bello and colleagues, CCMA, CSIC, Spain<br />

Ing. Sergio Trueba Castillo, NOCON SA, Mexico<br />

Dr Michael Dann, Penn State University, USA<br />

Dr Rober<strong>to</strong> García Espinosa, Colegio de Postgraduados en<br />

Ciencias Agricolas IFÍT, Mexico<br />

Ing. Zoraida Gutierrez, Cultivos Miramonte, Colombia<br />

Prof Harry Hoitink, Department of Plant Pathology, Ohio State<br />

Universiy, USA<br />

Dr George Lazarovits, Pest Management Research Centre,<br />

Canada<br />

Dr Mario Tenuta, Pest Management Research Centre, Canada<br />

Dr Frank Louws, North Carolina State University, USA<br />

Dr Nahum Marban Mendoza, Universidad Autónoma de<br />

Chapingo, Mexico<br />

Dr Klaus Merckens, Egyptian Biodynamic Association, Egypt<br />

Ing. Marta Pizano, Hortitecnia, Colombia<br />

Dr Rodrigo Rodríguez-Kábana, Department of Plant Pathology,<br />

Auburn University, USA<br />

Dr Yitzhak Spiegel, Agricultural Research Organisation, Israel<br />

Dr J Tello, Dpt Biología, University of Almería, Spain<br />

Prof Tang Wenhau, China Agricultural University, China<br />

Note: Contact information for these companies and specialists is provided in Annex 6.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

69


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

70<br />

4.5 Solarisation<br />

Advantages<br />

Relatively simple application procedures.<br />

Cheaper than MB.<br />

Non-<strong>to</strong>xic treatment; no health or safety<br />

problems for users.<br />

Registration is not required.<br />

Promotes beneficial microorganisms in<br />

the soil.<br />

Tends <strong>to</strong> increase soil fertility; increases<br />

soluble nitrogen (NO 3 , NH 4 ), calcium,<br />

magnesium and potassium.<br />

Long-term beneficial effects on disease<br />

control.<br />

Disadvantages<br />

Requires time for treatment, with land<br />

typically taken out of production for four<br />

<strong>to</strong> seven weeks.<br />

Limited <strong>to</strong> regions with sufficient solar<br />

radiation.<br />

Does not control all soil-borne pests, so<br />

may need <strong>to</strong> be combined with other<br />

techniques.<br />

Needs <strong>to</strong> be adapted <strong>to</strong> the local crop<br />

production systems.<br />

Like MB fumigation, it generates plastic<br />

waste.<br />

Technical description<br />

In solarisation treatments, transparent plastic<br />

sheets are placed on the soil <strong>to</strong> trap heat<br />

from the sun and raise the soil temperature<br />

<strong>to</strong> levels that kill or suppress pests. The thin<br />

sheets are made of UV-resistant polyethylene<br />

about 30 <strong>to</strong> 100 microns thick. Treatment is<br />

carried out prior <strong>to</strong> planting crops and can<br />

also be applied as a post-plant treatment in<br />

orchards and vineyards.<br />

The soil is normally prepared by disking, ro<strong>to</strong>tilling<br />

or otherwise turning <strong>to</strong> break up clods.<br />

Large rocks, weeds or other debris that may<br />

raise or puncture the plastic sheets are<br />

removed. The land surface is smoothed so<br />

the plastic can rest directly on the soil, since<br />

air pockets reduce the heating effect. The<br />

sheets are then placed on the soil by hand or<br />

machine; several techniques are described in<br />

Grinstein and Hetzroni (1991) and Elmore et<br />

al (1997). Care must be taken <strong>to</strong> avoid<br />

stretching or tearing the plastic. If holes or<br />

tears do occur they must be patched with<br />

clear plastic tape, otherwise solarisation will<br />

not be effective.<br />

The sheets may cover an entire field or greenhouse<br />

floor or be placed only along the strips<br />

or rows where crops will be planted. Sheet<br />

edges are sealed with UV-resistant glue or<br />

buried and covered with soil. Thermometers<br />

can be placed in the soil at specific depths <strong>to</strong><br />

record soil temperatures during the treatment.<br />

Typically, the plastic sheets remain in<br />

place for four <strong>to</strong> seven weeks. Treatment<br />

Table 4.5.1 Length of solarisation treatment required <strong>to</strong> kill 90 <strong>to</strong> 100%<br />

of Verticillium dahliae sclerotia at various soil depths in Israel<br />

Soil depth (cm)<br />

Time <strong>to</strong> kill 90 <strong>to</strong> 100% of sclerotia (days)<br />

10 3 - 6<br />

30 14 - 20<br />

40 20 - 30<br />

50 30 - 42<br />

60 35 - 60<br />

70 35 - 60<br />

Source: Katan and DeVay 1991.


times may be shorter, however, for certain<br />

susceptible pests or for crops with very shallow<br />

roots. Solarisation of containerised substrates<br />

or growth media and closed<br />

greenhouses may take only a few days during<br />

strong summer heat (Elmore et al 1997).<br />

The aim of solarisation is <strong>to</strong> ensure that soil<br />

at the depth below root level reaches at least<br />

about 40°C for the required number of days.<br />

Many soil pests are killed at temperatures<br />

above 33°C, although others require significantly<br />

higher temperatures (Elmore et al<br />

1997). In general, good results can be<br />

achieved if soil temperatures of 47, 45, 43<br />

and 39°C are achieved at soil depths of 10,<br />

15, 20 and 30 cm, respectively (Katan 1996,<br />

1999).<br />

Adequate soil moisture is important for conducting<br />

the heat through the soil and <strong>to</strong><br />

make weed seeds and pathogens vulnerable<br />

<strong>to</strong> heat. At the start of the treatment, the soil<br />

should be saturated <strong>to</strong> at least 70% of field<br />

capacity in the upper layers and moist <strong>to</strong><br />

depths of 60 cm (Elmore et al 1997). If soil<br />

moisture drops <strong>to</strong> less than 50% of field<br />

capacity, or if the soil is well drained, it may<br />

be necessary <strong>to</strong> irrigate during the solarisation<br />

treatment. Over-watering, however, must<br />

be avoided because it cools the soil and<br />

reduces the efficacy of solarisation.<br />

When removing sheets, care must be taken<br />

<strong>to</strong> ensure that untreated soil does not contaminate<br />

treated soil. If laid manually and<br />

handled carefully, sheets may be used for<br />

more than one season.<br />

As noted earlier, there are several major variations<br />

of solarisation:<br />

Complete cover of the area<br />

Plastic sheets are laid in a continuous surface,<br />

covering the entire field or greenhouse floor.<br />

Edges may be joined with UV-resistant glue<br />

or by overlapping and burying the edges. If<br />

beds are formed after solarisation, deep<br />

tillage must be avoided because it may bring<br />

untreated soil <strong>to</strong> the surface. After solarisation<br />

the sheets are removed and crops are<br />

planted as normal. Complete cover is recommended<br />

where the soil is heavily infested<br />

with pathogens, because it is more effective<br />

than strip solarisation.<br />

Strip solarisation<br />

Beds are formed in the soil and plastic sheets<br />

are laid along them, forming strips on the<br />

field. Wide strips are more effective than narrow<br />

strips, because pathogens are not controlled<br />

in the uncovered soil between strips. It<br />

is recommended that strips be a minimum of<br />

75 cm wide, but beds up <strong>to</strong> 1.5 m wide are<br />

more effective and allow several crop rows <strong>to</strong><br />

be planted on each bed (Elmore et al 1997).<br />

When solarisation has finished, the plastic<br />

Table 4.5.2 Examples of commercial use of solarisation<br />

Crops<br />

Greenhouse <strong>to</strong>ma<strong>to</strong>es and other vegetables<br />

Open-field winter <strong>to</strong>ma<strong>to</strong>es<br />

Peppers, eggplant, onions<br />

Vegetable nurseries, musk melons<br />

Greenhouse crops<br />

Containerised nursery soil<br />

Stakes for supporting plants<br />

Orchards of s<strong>to</strong>ne fruit, citrus, olives, nuts and avocado<br />

Vineyards<br />

Examples of countries<br />

Southern Italy, Greece, Jordan,<br />

Morocco<br />

USA (Florida)<br />

Israel<br />

Mexico, Caribbean, South America<br />

Japan<br />

USA<br />

Morocco<br />

USA (California)<br />

USA (California)<br />

Compiled from: Elmore et al 1997, MBTOC 1998, Katan 1996, Katan 1999, Batchelor 1999<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

71


Table 4.5.3 Nema<strong>to</strong>des controlled by solarisation in California USA<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

72<br />

Nema<strong>to</strong>des<br />

Criconemella xenoplax<br />

Ditylenchus dipsaci<br />

Globodera ros<strong>to</strong>chiensis<br />

Helicotylenchus digonicus<br />

Heterodera schachtii<br />

Meloidogyne hapla<br />

Meloidogyne javanica<br />

Pratylenchus hamatus<br />

Pratylenchus penetrans<br />

Pratylenchus thornei<br />

Pratylenchus vulnus<br />

Tylenchulus semipenetrans<br />

Xiphinema spp.<br />

Common names<br />

Ring nema<strong>to</strong>de<br />

Stem and bulb nema<strong>to</strong>de<br />

Pota<strong>to</strong> cyst nema<strong>to</strong>de<br />

Spiral nema<strong>to</strong>de<br />

Sugarbeet cyst nema<strong>to</strong>de<br />

Northern root knot nema<strong>to</strong>de<br />

Javanese root knot nema<strong>to</strong>de<br />

Pin nema<strong>to</strong>de<br />

Lesion nema<strong>to</strong>de<br />

Lesion nema<strong>to</strong>de<br />

Lesion nema<strong>to</strong>de<br />

Citrus nema<strong>to</strong>de<br />

Dagger nema<strong>to</strong>de<br />

Source: Elmore et al 1997<br />

Table 4.5.4 Fungi and bacteria controlled by solarisation in California USA<br />

Fungi Disease caused Crops<br />

Didymella lycopersici Didymella stem rot Toma<strong>to</strong>es<br />

Fusarium oxysporum f.sp.conglutinans Fusarium wilt Cucumbers<br />

Fusarium oxysporum f.sp.fragariae Fusarium wilt Strawberries<br />

Fusarium oxysporum f.sp.lycopersici Fusarium wilt Toma<strong>to</strong>es<br />

Plasmodiophora brassicae Club root Cruciferae<br />

Phoma terrestris Pink root Onions<br />

Phy<strong>to</strong>phthora cinnamomi Phy<strong>to</strong>phthora root rot Many crops<br />

Phy<strong>to</strong>phthora lycopersici Corky root Toma<strong>to</strong>es<br />

Pythium ultimum, Pythium spp. Seed rot or seedling disease Many crops<br />

Rhizoc<strong>to</strong>nia solani Seed rot or seedling disease Many crops<br />

Sclerotinia minor Drop Lettuce<br />

Sclerotium cepivorum White rot Garlic, onions<br />

Sclerotium rolfsii Southern blight Many crops<br />

Thielaviopsis basicola Black root rot Many crops<br />

Verticillium dahliae Verticillium wilt Many crops<br />

Bacteria Disease caused Crops<br />

Agrobacterium tumefaciens Crown gall Many crops<br />

Clavibacter michiganensis Canker Toma<strong>to</strong>es<br />

Strep<strong>to</strong>myces scabies Scab Pota<strong>to</strong>es<br />

Source: Elmore et al 1997<br />

may be painted and left on the soil <strong>to</strong> serve<br />

as a mulch. Strip solarisation is generally<br />

cheaper than complete cover. It is effective<br />

against certain weeds, but long-term control<br />

of fungi and nema<strong>to</strong>des may not be sufficient,<br />

because pests in the untreated soil can<br />

spread <strong>to</strong> treated areas. Strip solarisation is<br />

not recommended for soil that is heavily<br />

infested.


Table 4.5.5 Weeds controlled by solarisation in California USA<br />

Weeds<br />

Abutilon theophrasti<br />

Amaranthus albus<br />

Amaranthus retroflexus<br />

Amsinckia douglasiana<br />

Avena fatua<br />

Brassica nigra<br />

Capsella bursa-pas<strong>to</strong>ris<br />

Chenopodium album<br />

Clay<strong>to</strong>nia perfoliata<br />

Convolvulus arvensis (seed)<br />

Conyza canadensis<br />

Cynodon dactylon (seed)<br />

Digitaria sanguinalis<br />

Echinochloa crus-galli<br />

Eleusine indica<br />

Lamium amplexicaule<br />

Malva parviflora<br />

Orobanche ramosa<br />

Oxalis pes-caprae<br />

Poa annua<br />

Portulaca oleracea<br />

Senecio vulgaris<br />

Sida spinosa<br />

Solanum nigrum<br />

Solanum sarrachoides<br />

Sonchus oleraceus<br />

Sorghum halepense (seed)<br />

Stellaria media<br />

Trianthema portulacastrum<br />

Xanthium strumarium<br />

Space solarisation<br />

This technique is used in greenhouses <strong>to</strong> kill<br />

pests surviving in crop debris in the structure<br />

of a greenhouse. If the greenhouse surface is<br />

dusty, it must be washed before the treatment<br />

begins, <strong>to</strong> allow solar radiation <strong>to</strong> penetrate.<br />

The greenhouse is then closed during<br />

summer time, so that inside air temperatures<br />

reach 60 <strong>to</strong> 70°C. Equipment such as <strong>to</strong>ma<strong>to</strong><br />

stakes or canes can also be disinfested in<br />

closed greenhouses.<br />

Common names<br />

Velvetleaf<br />

Tumble pigweed<br />

Redroot pigweed<br />

Fiddleneck<br />

Wild oat<br />

Black mustard<br />

Shepherd’s purse<br />

Lambsquarters<br />

Minerslettuce<br />

Field bindweed<br />

Horseweed<br />

Bermuda grass<br />

Large crabgrass<br />

Barnyard grass<br />

Goose grass<br />

Henbit<br />

Cheeseweed<br />

Branched broomrape<br />

Bermuda buttercup<br />

Annual bluegrass<br />

Purslane<br />

Common groundsel<br />

Prickly sida<br />

Black nightshade<br />

Hairy nightshade<br />

Sawthistle<br />

Johnson grass<br />

Common chickweed<br />

Horse purslane<br />

Common cocklebur<br />

Source: Elmore et al 1997<br />

The treatment time for solarisation varies<br />

according <strong>to</strong> the target organisms, soil conditions<br />

and temperature. Under Mediterranean<br />

conditions, for example, a period of 30 <strong>to</strong> 40<br />

days between June and September is suitable<br />

for solarization for many purposes (Katan<br />

1999). As a general rule, the longer the solarisation<br />

period, the deeper the effect in the<br />

soil. See Table 4.5.1 for examples.<br />

The best control of pests is usually achieved<br />

in the upper 10 <strong>to</strong> 30 cm of soil. The efficacy<br />

of solarisation can be increased and/or treatment<br />

time reduced by using a double layer of<br />

plastic or by combining solarisation with one<br />

of the following:<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

73


Biological antagonists such as<br />

Trichoderma (as used in Jordan, for<br />

example).<br />

Reduced doses of fumigants such as<br />

metam sodium.<br />

Certain organic amendments, such as<br />

chicken manure or brassica residues, that<br />

release volatile compounds and provide<br />

a biofumigation treatment.<br />

Current uses<br />

Solarisation is used commercially for a variety<br />

of crops in warm climates. For example, solarisation<br />

has been used for more than a decade<br />

in California USA for field, vegetable and<br />

flower crops and in orchards, vineyards,<br />

greenhouses and landscapes (Elmore et<br />

al 1997). Other examples are given in<br />

Table 4.5.2.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Table 4.5.6 Examples of nema<strong>to</strong>des, weeds and fungi and bacteria<br />

that are not controlled effectively by solarisation<br />

Nema<strong>to</strong>des<br />

Meloidogyne incognita<br />

Monosporascus spp.<br />

Weeds<br />

Convolvulus arvenis (plant)<br />

Cynodon dactylon (plant)<br />

Cyperus esculentus<br />

Cyperus rotundus<br />

Eragrostis sp.<br />

Malva niceansis<br />

Melilotus alba<br />

Sorghum halepense (plant)<br />

Common names<br />

Southern root knot nema<strong>to</strong>de<br />

Sudden wilt of melon<br />

Common names<br />

Field bindweed (plant)<br />

Bermuda grass (plant)<br />

Yellow nutsedge<br />

Purple nutsedge<br />

Lovegrass<br />

Bull mallow<br />

White sweetclover<br />

Johnson grass (plant)<br />

Fungi and bacteria Disease caused Crops<br />

Fusarium oxysporum f.sp. pini Fusarium wilt Pines<br />

Macrophomina phaseolina Charcoal rot Many crops<br />

Pseudomonas solanacearum Bacterial wilt Several crops<br />

Source: Elmore et al 1997, Strand 1998 1998, Katan 1999<br />

Table 4.5.7 Examples of yields from solarisation and MB<br />

Crops Country Yields from solarisation Yields from MB<br />

Open-field pepper Israel 40 -50 t/ha Similar<br />

Open-field eggplant Israel 60 - 80 t/ha Similar<br />

Greenhouse pepper Israel 120 - 150 t/ha Similar<br />

Greenhouse <strong>to</strong>ma<strong>to</strong> Jordan 144 - 184 t/ha 144 - 180 t/ha<br />

Greenhouse cucumber Jordan 153 - 200 t/ha 145 - 200 t/ha<br />

Greenhouse eggplant Jordan 162 t/ha Similar<br />

Israel 100 - 120 t/ha Similar<br />

Greenhouse strawberry Jordan 35 - 40 t/ha Similar<br />

74<br />

Compiled from: Katan 1999, Batchelor 1999, Vickers 1995


Variations under development<br />

Sprayable mulches.<br />

Biodegradable covers (mulches or<br />

plastic).<br />

Double-layer plastic.<br />

Wavelength-selective mulch films that<br />

are translucent, pho<strong>to</strong>-selective and<br />

transmit infrared light.<br />

Material inputs<br />

Water.<br />

Transparent UV resistant polyethylene<br />

sheets, normally 40 <strong>to</strong> 100 microns thick.<br />

Thermometers <strong>to</strong> measure soil temperatures<br />

at root depth.<br />

For mechanical application:<br />

trac<strong>to</strong>r and sheet layer<br />

For large areas laid by hand:<br />

mechanical trencher<br />

Fac<strong>to</strong>rs required for use<br />

Sufficient sunlight hours and daily temperatures<br />

<strong>to</strong> attain necessary soil temperatures.<br />

A time period, typically four <strong>to</strong> seven<br />

weeks, when field or greenhouse is not<br />

used for crops.<br />

Training and know-how.<br />

Pests controlled<br />

Solarisation can control many soil-borne pests<br />

such as fungi, weeds, insects and mites<br />

(Katan and DeVay 1991, DeVay et al 1991).<br />

In addition, solarisation frequently promotes<br />

the growth of beneficial soil microorganisms<br />

that reduce populations of soil pests during<br />

the growing season. Tables 4.5.3, 4.5.4 and<br />

4.5.5 give examples of nema<strong>to</strong>des, fungi,<br />

bacteria and weeds controlled by solarisation<br />

in California, USA. Some of these results have<br />

been verified in other countries, such as<br />

Israel, Jordan, Greece and southern Italy<br />

(Katan 1996). The technique must be adapted<br />

<strong>to</strong> different climatic regions and cropping<br />

systems.<br />

Certain pathogens, such as Verticillium fungi<br />

and Ditylenchus nema<strong>to</strong>des, are sensitive <strong>to</strong><br />

solarisation and are more easily controlled by<br />

it. Solarisation controls many annual weeds<br />

effectively but does not control perennial<br />

weeds that have deeply buried roots or rhizomes,<br />

unless the heat penetrates <strong>to</strong> those<br />

levels. In some areas solarisation does not<br />

adequately control root-knot nema<strong>to</strong>des and<br />

heat-resistant pests, such as nutsedge weeds<br />

and certain fungi. To control these pests,<br />

solarisation should be combined with other<br />

techniques or used as part of an IPM system.<br />

Table 4.5.6 gives examples of nema<strong>to</strong>des,<br />

fungi, bacteria and weeds that are not controlled,<br />

or are not controlled reliably, by solarisation.<br />

Yields and performance<br />

Where the technique is applied properly in<br />

the appropriate climate, solarisation results in<br />

yields similar <strong>to</strong> those achieved with MB fumigation<br />

(see Table 4.5.7).<br />

Solarisation leads <strong>to</strong> changes in the physical<br />

and chemical features of soil, often improving<br />

the growth and development of plants. It<br />

releases soluble nutrients such as nitrogen,<br />

calcium, magnesium, potassium and fulvic<br />

acid, making them more available <strong>to</strong> crops<br />

(Elmore et al 1997).<br />

Other fac<strong>to</strong>rs affecting use<br />

Suitable crops and uses<br />

Solarisation is suitable for all horticultural<br />

crops, including orchards and vineyards. For<br />

perennial crops solarisation can be applied as<br />

a post-plant treatment. It can be used in<br />

open fields, greenhouses, tunnels, seedbeds<br />

and nurseries. Solarisation can also be used<br />

<strong>to</strong> control pests in substrates, containers or<br />

cold frames. In these cases, the soil or substrates<br />

can be placed in bags or flats covered<br />

with transparent plastic or in layers that are<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

75


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

76<br />

7.5 <strong>to</strong> 22.5 cm wide sandwiched between<br />

two sheets of plastic (Elmore et al 1997).<br />

The US California Department of Agriculture<br />

has approved a pro<strong>to</strong>col for using solarisation<br />

<strong>to</strong> kill nema<strong>to</strong>de and fungal pests in soil and<br />

containers used for raising clean nursery<br />

s<strong>to</strong>ck. The soil temperature must be raised by<br />

solarisation <strong>to</strong> 70°C for at least 30 minutes.<br />

Use of solarisation is often limited <strong>to</strong> production<br />

systems that allow a downtime of four<br />

<strong>to</strong> seven weeks for the treatment, unless<br />

combined with other treatments.<br />

Suitable climates and soil types<br />

Solarisation is suitable for many soil types,<br />

although water must be applied during treatment<br />

in sandy soils. Its use is limited <strong>to</strong> geographical<br />

regions that have sufficient solar<br />

radiation <strong>to</strong> achieve high temperatures in the<br />

soil. Highest soil temperatures are attained<br />

when days are long, air temperatures are<br />

high, skies are clear, and there is no wind<br />

(Elmore et al 1997). Clouds and wind diminish<br />

the heating effect. Solarisation is most<br />

effective in warm, sunny locations. It has also<br />

been used successfully in cooler areas during<br />

periods of high air temperatures and clear<br />

skies. In cooler climates, solarisation of greenhouses,<br />

nurseries, seedbeds and containerised<br />

soil or substrates is more effective than solarisation<br />

of fields (Katan et al 1998).<br />

Toxicity and health risks<br />

Solarisation treatments do not pose any safety<br />

risks <strong>to</strong> users or local communities.<br />

Safety precautions for users<br />

Safety measures are not required. No safety<br />

training or safety equipment is required.<br />

Residues in food and environment<br />

Solarisation does not produce undesirable<br />

chemical residues in air, water or food.<br />

However, plastic waste may remain in soil and<br />

the surrounding environment, as is the case<br />

with MB fumigation sheets.<br />

Phy<strong>to</strong><strong>to</strong>xicity<br />

The treatment does not normally produce<br />

<strong>to</strong>xicity problems for crops.<br />

Impact on beneficial organisms<br />

Many beneficial soil organisms recolonise the<br />

soil rapidly after solarisation. Solarised soil<br />

frequently becomes more pest-suppressive<br />

due <strong>to</strong> the establishment of fluorescent<br />

pseudomonads (Katan 1996). Solarisation<br />

shifts the soil population in favour of beneficial<br />

organisms and makes it more resistant <strong>to</strong><br />

pathogens than non-solarised or fumigated<br />

soil (Elmore et al 1997).<br />

Ozone depletion<br />

Solarisation does not use ODS.<br />

Global warming and energy<br />

consumption<br />

Energy is used for production of plastic<br />

sheets, any mechanical application used and<br />

recycling of plastic, where available. Energy<br />

consumption is less than that with MB<br />

fumigation.<br />

Other environmental considerations<br />

Like MB, solarisation sheets generate significant<br />

quantities of waste plastic. In a few<br />

regions, including parts of Brazil, Italy and<br />

Greece, agricultural plastic recycling schemes<br />

have been established.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Solarisation is very acceptable <strong>to</strong> markets and<br />

consumers, because it is a non-chemical<br />

treatment and does not leave undesirable<br />

residues in food.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Solarisation does not require regula<strong>to</strong>ry<br />

approval.


Cost considerations<br />

Strip solarisation is cheaper than complete<br />

cover but less effective.<br />

Material costs are lower than for MB.<br />

Plastic sheets that are 50 microns thick<br />

are generally cheaper than 100-micron<br />

sheets, although the thicker sheets may<br />

be re-used.<br />

Manual application allows re-use of plastic,<br />

whereas mechanised application precludes<br />

re-use.<br />

Labour is about 10 <strong>to</strong> 20 man-days for<br />

manual cover of 1 ha with continuous<br />

sheets, about 3 man-days/ha for<br />

mechanical application, or about 0.5<br />

man-days/ha for mechanical strip<br />

application.<br />

The <strong>to</strong>tal cost of solarisation is normally<br />

less than MB application.<br />

Questions <strong>to</strong> ask when selecting the<br />

system<br />

Which soil-borne pests need <strong>to</strong> be<br />

controlled?<br />

What depth will crop roots grow <strong>to</strong>?<br />

Is the sunlight/temperature sufficient <strong>to</strong><br />

heat soil <strong>to</strong> the required temperature<br />

and depth?<br />

What method will be used <strong>to</strong> check that<br />

soil depths have reached sufficient temperature?<br />

Does solarisation need <strong>to</strong> be combined<br />

with another technique <strong>to</strong> control the<br />

full range of soil pests?<br />

Does the production system allow sufficient<br />

time for treatment? If not, can the<br />

system be amended <strong>to</strong> accommodate<br />

the treatment?<br />

Can solarisation be combined with<br />

another technique <strong>to</strong> reduce treatment<br />

time?<br />

What are the costs and benefits of solarising<br />

the entire area versus strips?<br />

Will the plastic sheets be re-used?<br />

What type and thickness of plastic<br />

sheets would be cost-effective?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Materials are available in many countries.<br />

Suppliers of products and services<br />

Table 4.5.8 provides examples of suppliers of<br />

products and services related <strong>to</strong> solarisation.<br />

Please refer <strong>to</strong> local agricultural suppliers for<br />

additional names of manufacturers and suppliers.<br />

See Annex 6 for an alphabetical listing<br />

of suppliers, specialists and experts. See also<br />

Annex 5 and Annex 7 for additional information<br />

resources.<br />

Table 4.5.8 Examples of suppliers of solarisation products and services<br />

Products or services<br />

Sheets for solarisation<br />

Examples of companies<br />

AEP Industries Inc, USA<br />

Agrocomponentes SL, Spain<br />

Agroplas SA de CV, Mexico<br />

Aplicaciones Bioquímicas SL, Spain<br />

CETAP/An<strong>to</strong>nio Ma<strong>to</strong>s Ltda, Portugal<br />

Comercial Projar SA, Spain<br />

Dura Green Marketing, USA<br />

LS Horticultura España SA, Spain<br />

Plastigómez SA, Ecuador<br />

continued<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

77


Table 4.5.8 continued<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

78<br />

Products or services<br />

Sheets for solarisation<br />

(continued)<br />

Specialists, advisory<br />

services and consultants<br />

in solarisation<br />

Plastic recycling services<br />

or equipment<br />

Examples of companies<br />

Plastilene SA, Ecuador and Colombia<br />

Plastlit – Plásticos del Li<strong>to</strong>ral, Ecuador<br />

Polyon Inc, Israel<br />

Poly West, USA<br />

Produc<strong>to</strong>s Químicos Andinos, Colombia and Ecuador<br />

Solplast, Spain<br />

Sotrafa, Spain<br />

CCMA, CSIS, Spain<br />

DI.VA.P.R.A. – Pa<strong>to</strong>logia Vegetale, University of Torino, Italy<br />

FHIA Foundation for Agricultural Research,Honduras<br />

Dr Walid Abu Gharbieh, University of Jordan, Jordan<br />

Dr Bassam Bayaa, Aleppo University, Syria<br />

Prof Mohamed Besri, Institut Agronomique et Vétérinaire<br />

Hassan II, Morocco<br />

Dr G Cartia, University of Reggio Calabria, Italy<br />

Dr Jean-Pierre Caussanel, Centre de Recherches de Dijon,<br />

France<br />

Dr Vincent Cebolla, Institu<strong>to</strong> Valenciano de Investigaciones<br />

Agraria, Spain<br />

Dr Dan Chellemi, Florida Horticultural Research Labora<strong>to</strong>ry,<br />

USDA-ARS, USA<br />

Dr Angelo Correnti, ENEA Departimen<strong>to</strong> Innovazione, Italy<br />

Prof James DeVay, University of California, USA<br />

Dr Clyde Elmore, University of California, USA<br />

Dr A Gamliel, Agricultural Research Organization, Israel<br />

Dr Raquel Ghini, EMBRAPA/CNPMA, Brazil<br />

Prof Ludovica Gullino, University of Torino, Italy<br />

Dr Volkmar Hasse, GTZ-Jordanian IPM project, Jordan<br />

Dr Barakat Abu Irmalieh, Univeristy of Jordan, Jordan<br />

Dr Florencio Jiménez Díaz, INIFAP Institu<strong>to</strong> Nacional de<br />

Investigaciones Forestales, Agricolas y Pecuarias, Mexico<br />

Prof R Jiménez Díaz, CSIC Córdoba, Spain<br />

Prof Jaacov Katan, Hebrew University of Jerusalem, Israel<br />

Dr Franco Lamberti, Institu<strong>to</strong> di Nema<strong>to</strong>logia Agraria CNR,<br />

Italy<br />

Dr Hülya Pala, Plant Protection Research Institute, Turkey<br />

Dr Satish Lodha, Central Arid Zone Research Institute, India<br />

Mr C Martin, Agriphy<strong>to</strong>, France<br />

Dr Abdur-Rahman Saghir, NCSR, Lebanon<br />

Prof M Sa<strong>to</strong>ur, Agricultural Institute, Egypt<br />

Prof E Tjamos, Agricultural University of Athens, Greece<br />

Prof James Staple<strong>to</strong>n, Kearney Agricultural Center, University<br />

of California, USA<br />

Kennco<br />

RECOMSA Reciclado de Compost SA, Spain<br />

Contact local government authorities <strong>to</strong> find out if there is a<br />

local recycling scheme for plastic waste<br />

Note: Contact information for these suppliers and specialists are provided in Annex 6.


4.6 Steam treatments<br />

Advantages<br />

Modern techniques are highly effective.<br />

Controls the same range of pests as MB.<br />

Does not entail the use of <strong>to</strong>xic<br />

chemicals.<br />

Treatment time is rapid compared <strong>to</strong> MB<br />

and other alternatives.<br />

Crops may be planted immediately after<br />

treatment.<br />

Some steam methods are easy <strong>to</strong> use.<br />

Negative pressure and fink systems can<br />

provide deep soil treatments.<br />

Disadvantages<br />

Significant initial capital investment,<br />

unless a boiler is hired.<br />

Consumes more energy than does MB.<br />

Requires a supply of water at treatment<br />

time.<br />

Some older methods are complicated <strong>to</strong><br />

apply.<br />

High-temperature methods (above 82°C)<br />

can produce phy<strong>to</strong><strong>to</strong>xicity.<br />

Sterilization method (90 <strong>to</strong> 100°C) creates<br />

a ‘biological desert’ in the soil, like<br />

MB.<br />

Boilers can be difficult <strong>to</strong> transport on<br />

poor roads.<br />

Technical description<br />

When the soil temperature is raised <strong>to</strong> at<br />

least 65°C for 30 minutes, heat kills many<br />

pathogenic fungi, bacteria, nema<strong>to</strong>des and<br />

weed seeds. Steam treatments are traditionally<br />

conducted at temperatures between 60<br />

and 100°C. Soils may be sterilised at high<br />

temperatures for short periods (a few minutes<br />

at 90 <strong>to</strong> 100°C) or pasteurised at lower temperatures<br />

for longer periods (such as 30 minutes<br />

at 72°C). This lower temperature controls<br />

most pests but does not eliminate all the<br />

organisms in the soil. Steam treatments are<br />

fast and there is no waiting time because<br />

crops can be planted as soon as the soil has<br />

cooled.<br />

The soil is prepared for steam treatment by<br />

removing clods and covering with material<br />

such as insulated sheets. A conventional boiler<br />

or steam genera<strong>to</strong>r provides the steam.<br />

Steam can be released on<strong>to</strong> the soil surface,<br />

ploughed or raked in<strong>to</strong> the soil, but it is normally<br />

more effective <strong>to</strong> inject steam in<strong>to</strong> the<br />

soil or <strong>to</strong> pull steam through the soil by negative<br />

pressure. The efficacy of the treatment<br />

requires an application method that distributes<br />

steam evenly through the soil and carries<br />

it <strong>to</strong> sufficient depths <strong>to</strong> kill pests. As with<br />

other techniques, steam treatments require<br />

know-how and attention <strong>to</strong> detail during<br />

application.<br />

Steam may be applied alone or mixed with<br />

air. Aerated steam has the advantage of<br />

being cooler (e.g. 72°C), moving faster and<br />

more uniformly through soil and, in some<br />

cases, reducing energy consumption.<br />

Available boilers range in capacity from about<br />

65 kg/hour <strong>to</strong> at least 4,500 kg/hour for<br />

treating larger areas. Large areas are treated<br />

in batches, one plot at at time. Boilers can be<br />

fixed in one place or moved from one area <strong>to</strong><br />

another. In some countries, companies provide<br />

mobile steam boilers as a contracted<br />

service for many greenhouses.<br />

The following are among the many varieties<br />

of steam treatment:<br />

Sheet steaming<br />

The traditional method of steaming is <strong>to</strong><br />

cover the soil with sheets, seal the edges and<br />

release steam under the sheets for about 4 <strong>to</strong><br />

8 hours. This method provides a shallow<br />

treatment and is very inefficient in energy<br />

use. It does not control pests reliably unless<br />

carried out with great care and skill.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

79


Table 4.6.1 Comparison of steam techniques for greenhouses<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

80<br />

Treatment<br />

Negative<br />

Fac<strong>to</strong>r pressure Sheet Hood Fink<br />

Equipment Drainpipes buried Sheets laid on soil Hood pressed Vertical pipes in<br />

in soil; sheets laid surface on<strong>to</strong> soil surface soil; pipe grid and<br />

on surface<br />

sheets on surface<br />

Treatment depth 50 - 60 cm 15 - 30 cm 15 cm 50 cm<br />

Treatment time 3 - 5 hours 4 - 8 hours


Hood or metal box method<br />

In this method a shallow, inverted aluminum<br />

or steel box is pressed in<strong>to</strong> the soil surface.<br />

The large box may cover an area of approximately<br />

6 x 2.5 m. Steam is applied inside the<br />

box for 20 <strong>to</strong> 25 minutes, so that the <strong>to</strong>p 20<br />

<strong>to</strong> 25 cm of soil reaches about 80°C. In au<strong>to</strong>mated<br />

systems, a winch moves the machine<br />

along the bed, and the box is raised and lowered<br />

by pneumatics. This type of system may<br />

be operated by one labourer and can treat<br />

field areas of up <strong>to</strong> 2,000 m 2 in 10 hours. It<br />

is more energy efficient but provides a shallow<br />

treatment suitable only for certain crops<br />

and pests.<br />

Steam ploughs<br />

Various forms of steam ploughs are available.<br />

The “NIAE” mobile grid, for example, has a<br />

transverse leading blade, which breaks up the<br />

soil across the width of the grid, enabling<br />

steam <strong>to</strong> spread sideways from perforated<br />

pipes. The motion of soil over the transverse<br />

blade encourages steam penetration, forming<br />

a bow wave that opens up the soil vertically.<br />

The NIAE grid moves at 7 <strong>to</strong> 8 m per hour,<br />

treating a width of about 1.7 m and a depth<br />

of 40 <strong>to</strong> 45 cm of soil.<br />

Steam chambers<br />

Airtight chambers or steam boxes provide<br />

rapid steam treatments for soil, substrates<br />

and agricultural equipment. In some nurseries,<br />

soil is placed in containers and forklifted<br />

in<strong>to</strong> steam boxes for treatment. In a<br />

few countries mobile steam chambers —<br />

trucks fitted with boilers and large air-tight<br />

chambers — serve many greenhouses in a<br />

locality. Substrates are removed from plastic<br />

wraps or containers and placed inside the<br />

chamber. Steam from the mounted boiler is<br />

introduced in<strong>to</strong> the sealed chamber, until the<br />

substrates have reached the required temperature.<br />

After cooling, the substrates are reused<br />

in the greenhouse.<br />

Negative pressure steam chambers<br />

Super-heated steam, up <strong>to</strong> 160°C, is forced<br />

through material in a chamber, and negative<br />

pressure sucks out condensed steam. Heating<br />

time is very short, approximately five minutes.<br />

This system can be used for substrates, peat,<br />

pots, trays and certain plants. At present<br />

there are about 12 chambers operating in<br />

Belgium and the Netherlands, each with the<br />

capacity <strong>to</strong> treat about 2.5 hectares of substrate<br />

in 24 hours. A smaller-scale negative<br />

pressure chamber is used for nursery equipment,<br />

trays and plants in Norway.<br />

Table 4.6.3 Examples of steam treatments required <strong>to</strong> kill soil-borne pests<br />

Soil-borne pests<br />

Nema<strong>to</strong>des<br />

Rhizoc<strong>to</strong>nia solani, Sclerotium and<br />

Sclerotinia sclerotiorum<br />

Botrytis grey mould<br />

Most plant pathogenic fungi and most<br />

plant pathogenic bacteria<br />

Soil insects<br />

Virtually all plant pathogenic bacteria<br />

and most plant viruses<br />

Most weed seeds<br />

Toma<strong>to</strong> mosaic virus in root debris<br />

A few species of resistant weed seeds<br />

and resistant plant viruses<br />

Lethal soil temperature and duration<br />

49°C for 30 minutes in moist conditions<br />

52°C for 30 minutes in moist conditions<br />

54.5°C for 30 minutes in moist conditions<br />

62°C for 30 minutes in moist conditions<br />

60 - 71°C for 30 minutes in moist conditions<br />

71°C for 30 minutes in moist conditions<br />

71 - 82°C for 30 minutes in moist conditions<br />

90°C for more than 10 minutes<br />

93 - 100°C for 30 minutes in moist conditions<br />

Compiled from: Ellis 1991, Agrelek 1995<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

81


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

82<br />

In general, negative pressure and fink steaming<br />

are preferable <strong>to</strong> traditional sheet steaming,<br />

because they disperse steam more evenly<br />

in the soil, give better results and use less<br />

energy. Hood and chamber methods are also<br />

efficient for specialist applications. Older<br />

techniques can take soil temperatures <strong>to</strong>o<br />

high, sterilising soil and releasing heavy metals<br />

and phy<strong>to</strong><strong>to</strong>xic materials. They also give<br />

uneven results or fail <strong>to</strong> reach sufficient<br />

depth. Negative pressure methods give better<br />

results than traditional sheet methods on clay,<br />

peat, loam and sandy soils (Ellis 1991). See<br />

Table 4.6.1 for a comparison of some greenhouse<br />

methods.<br />

Current uses<br />

Steam is widely used for greenhouses, nurseries,<br />

bulk soil, containerised soil and substrates.<br />

It is also used in a limited number of<br />

small-scale fields. In the Netherlands, up <strong>to</strong><br />

10% of cucurbit production utilises negative<br />

pressure steaming (De Barro 1995), for example,<br />

and in the USA small portable steam<br />

genera<strong>to</strong>rs have been used successfully in<br />

greenhouses for more than 20 years (USDA<br />

1997). Table 4.6.2 provides other examples of<br />

commercial uses.<br />

Variations under development<br />

Improved versions of steam ploughs.<br />

Au<strong>to</strong>mated equipment that lifts the <strong>to</strong>p<br />

layer of soil and moves it through a<br />

steam bed for open field applications.<br />

Material inputs<br />

Sheet steaming requires:<br />

Water.<br />

Boiler or steam genera<strong>to</strong>r and fuel.<br />

Heat resistant pipes <strong>to</strong> distribute steam<br />

over soil surface.<br />

Heat resistant insulated sheets <strong>to</strong> cover<br />

soil.<br />

Thermocouple <strong>to</strong> moni<strong>to</strong>r soil temperature.<br />

Negative pressure steaming requires:<br />

Equipment listed above.<br />

Perforated pipes (preferably polypropylene<br />

pipes of about 60 mm diameter)<br />

buried permanently under the soil.<br />

Fan with a capacity of 1,800 m 3 /hour for<br />

an area of 2,500 m 2 ; capacity of 1,000<br />

m 3 /hour for an area of 1,000 m 2 .<br />

Pump and sump.<br />

Fac<strong>to</strong>rs required for use<br />

Supply of water at the time of year<br />

when steam treatments are carried out.<br />

Capital for initial investment.<br />

Roads suitable for transporting heavy<br />

boiler equipment.<br />

Know-how and training.<br />

Pests controlled<br />

Steam treatments control a wide range of<br />

soil-borne pests, including nema<strong>to</strong>des, fungal<br />

pathogens, weeds and insects. Some steam<br />

methods control a wider range of pests than<br />

MB. It is necessary <strong>to</strong> select a steam delivery<br />

method that will control pests <strong>to</strong> the required<br />

depth.<br />

Few organisms can withstand a moist soil<br />

temperature of 65°C maintained for ten minutes<br />

(Ellis 1991). Nema<strong>to</strong>des, insects, many<br />

fungi, weed seeds and many bacteria are<br />

killed at even lower temperatures (Table<br />

4.6.3), but higher temperatures are recommended<br />

<strong>to</strong> deal with heat-<strong>to</strong>lerant pests and<br />

cool patches that occur in soil. Efficacy<br />

depends mainly on the soil temperature,<br />

treatment duration and application method<br />

<strong>to</strong> provide a thorough distribution of heat in<br />

the soil. In the Netherlands, for example, a<br />

temperature of 70°C maintained for 30 minutes<br />

is generally recommended <strong>to</strong> control<br />

soil-borne pathogens (Runia 1983, Ellis 1991).<br />

Lower temperatures could be applied for a<br />

longer time or higher temperatures for a<br />

shorter time.


Yields and performance<br />

Where the technique is properly applied,<br />

yields are equal <strong>to</strong> those achieved with MB.<br />

Other fac<strong>to</strong>rs affecting use<br />

Suitable crops and uses<br />

Steam can be used in greenhouses, seedbeds<br />

and small-scale field nurseries, for containerised<br />

soil, substrates (e.g. perlite, rockwool,<br />

polyurethane foam, rice hulls, compost), nursery<br />

<strong>to</strong>ols, pots and surfaces that are contaminated<br />

with pathogens. Steam can be<br />

economically viable for high value crops such<br />

as ornamental bedding plants, potted foliage,<br />

flowering house plants, fresh cut flowers and<br />

greens, bulbs, container perennials, and<br />

greenhouse vegetables (EPA 1997). Steam<br />

treatments are particularly suitable for multicropping,<br />

because treatment is rapid and<br />

waiting periods can be avoided.<br />

Suitable climates and soil types<br />

Steam can be used in all climates, from cool<br />

temperate <strong>to</strong> tropical. UNIDO has carried out<br />

effective demonstrations of steam in regions<br />

as diverse as Argentina, China, Guatemala,<br />

Syria and Zimbabwe (Castellá 1999). Steam<br />

treatments are suitable for clay, loam, sand<br />

and substrates. Steam-treating peat is difficult<br />

but feasible.<br />

Toxicity and health risks<br />

Steam is not <strong>to</strong>xic. The associated heat, however,<br />

can pose a risk of burns if handled<br />

improperly or if accidents occur, so boilers<br />

and operating procedures must meet safety<br />

standards. Steam treatments do not pose<br />

risks <strong>to</strong> the health of local communities or<br />

farm workers in fields next <strong>to</strong> the treatment<br />

areas.<br />

Safety precautions for users<br />

Measures need <strong>to</strong> be taken <strong>to</strong> prevent users<br />

from coming in<strong>to</strong> contact with steam. In<br />

addition, safety training and safety equipment<br />

are needed for the use of boilers.<br />

Residues in food and environment<br />

Steaming <strong>to</strong> high temperatures (about 100°C)<br />

can lead <strong>to</strong> undesirable levels of ammonia<br />

and nitrite in soils that have been fertilised or<br />

have a high content of organic matter. This<br />

problem can be avoided by keeping the soil<br />

temperature below 82°C.<br />

Phy<strong>to</strong><strong>to</strong>xicity<br />

When certain soils are heated <strong>to</strong> about<br />

100°C, manganese, ammonia and nitrites<br />

may be released. Excess manganese can produce<br />

problems of pho<strong>to</strong><strong>to</strong>xicity in crops, but<br />

this problem is normally avoided by keeping<br />

treatment temperatures below 82°C.<br />

Impact on beneficial organisms<br />

Like MB, steam has a significant negative<br />

impact on beneficial organisms in the soil. If<br />

soil is heated <strong>to</strong> 100°C, virtually all organisms<br />

are killed, creating a biological desert. The<br />

impact is reduced if lower temperatures are<br />

used and the soil is pasteurised rather than<br />

sterilised.<br />

Ozone depletion<br />

Steam is not an ODS.<br />

Global warming and energy<br />

consumption<br />

Steam generation normally consumes more<br />

energy than does MB fumigation. Negative<br />

pressure systems are generally considered<br />

energy-efficient steaming methods, because<br />

they use less than half the energy of traditional<br />

sheet steaming (Ellis 1991). In some<br />

cases it is possible <strong>to</strong> use alternative fuel<br />

sources, such as methane from landfills, biogas,<br />

hot water from electric power stations,<br />

sawdust, wind or geothermal vents (EPA<br />

1997, Davis 1994).<br />

Other environmental considerations<br />

Some steam techniques use significant<br />

amounts of water, making them unsuitable<br />

for areas with limited water supplies.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

83


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

84<br />

Acceptability <strong>to</strong> markets and consumers<br />

Steam is very acceptable <strong>to</strong> supermarkets,<br />

purchasing companies and consumers,<br />

because it is a non-chemical treatment and<br />

does not leave pesticide residues in food.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Registration and regula<strong>to</strong>ry approval are not<br />

required for steam treatments for soil.<br />

However, boilers must meet all necessary<br />

safety standards.<br />

Cost considerations<br />

The initial capital cost of steam is substantially<br />

higher than the cost of MB.<br />

Depending on capacity, a boiler may cost<br />

from about US$ 4,000 <strong>to</strong> more than US$<br />

100,000. A boiler with an output of 90<br />

kg steam per hour costs approximately<br />

US$ 5,700 in the USA. A portable electric<br />

boiler with the same capacity costs<br />

about US$ 4,665 in South Africa.<br />

In the USA, a farm that usually fumigates<br />

12 hectares per year can recover<br />

the capital costs of steam in 1 year<br />

(Quarles 1997).<br />

Where investment capital is not available,<br />

growers could consider hiring a<br />

boiler instead of purchasing it (Ellis<br />

1991).<br />

Operating costs of steam can be similar<br />

<strong>to</strong> MB in northern Europe (De Barro<br />

1995), while the operating costs for<br />

steam treatments in the USA are less<br />

than the typical cost of US$ 1,000 <strong>to</strong><br />

1,500 per acre for MB fumigation<br />

(Quarles 1997).<br />

In the Netherlands, the annual cost of<br />

using steam in greenhouses is in the<br />

same range as the cost of MB fumigation<br />

(De Barro 1995).<br />

Labour costs for manual steaming are<br />

generally higher than the costs of MB,<br />

while labour for au<strong>to</strong>mated steaming is<br />

often cheaper. Labour time for treating<br />

1000 m 2 can vary from 5 <strong>to</strong> 80 hours,<br />

depending on the steaming method.<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

What area needs <strong>to</strong> be treated?<br />

What soil depth does the treatment<br />

need <strong>to</strong> reach?<br />

What is the best method for distributing<br />

steam evenly and <strong>to</strong> the necessary<br />

depth?<br />

What boiler size is required?<br />

In the long-term, is it cost-effective <strong>to</strong><br />

hire a boiler or <strong>to</strong> buy one?<br />

Is a fixed or movable steam system more<br />

appropriate?<br />

How will measurements be taken <strong>to</strong><br />

assure that sufficient temperature has<br />

been reached at the required depth?<br />

What are the costs and benefits of different<br />

methods of steam treatment?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Boilers are manufactured in many countries,<br />

so it is normally possible <strong>to</strong> purchase one<br />

locally. The materials for negative pressure<br />

and Fink systems are simple and readily available,<br />

while steam ploughs and hood systems<br />

involve specialist equipment and are not yet<br />

widely available.<br />

Suppliers of products and services<br />

Examples of suppliers of steam equipment<br />

and services are given in Table 4.6.5. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources.


Table 4.6.5 Examples of suppliers of products and services<br />

for steam and heat treatments<br />

Products and services<br />

Steam boilers, steam<br />

genera<strong>to</strong>rs, related<br />

equipment, and steam<br />

treatment services<br />

Steam / heat chambers<br />

for sterilising substrates,<br />

agricultural equipment<br />

and plants etc.<br />

Specialists, advisory<br />

services and consultants<br />

in steam treatments<br />

Examples of companies<br />

Bast Co, Germany<br />

Bel Import 2000 SL, Spain<br />

Boverhuis Boilers BV, Netherlands<br />

Celli SpA, Italy<br />

Colmáquinas SA, Colombia<br />

Comercial Projar SA, Spain<br />

Crone Asme Boilers, Netherlands<br />

De Ceuster, Belgium<br />

Egedal, Denmark<br />

Exportserre-Excoserre SRL, Italy<br />

Hans Dieter Siefert GmbH, Germany<br />

HKB, Netherlands<br />

Ingauna Vapore, Italy<br />

Marshall Fowler, South Africa<br />

Marten Barel Beheer BV, Netherlands<br />

Metalúrgica Manllenense SA, Spain<br />

Saska<strong>to</strong>on Boiler Manufacturing, Canada (boilers only)<br />

Sioux Steam Cleaner Corp, USA<br />

Steamist Company, USA<br />

Thermeta, Netherlands<br />

Tur-Net, Netherlands<br />

Aquanomics International, New Zealand<br />

De Ceuster BV, Belgium<br />

Marten Barel BV, Netherlands<br />

Ole Myhrene, Norway<br />

Thermo Lignum, Austria, Germany and UK<br />

Tur-Net, Netherlands<br />

Quarantine Technologies International, New Zealand<br />

Dr Bill Brodie, Department of Plant Pathology, Cornell<br />

University, USA<br />

Agrelek, South Africa<br />

Aquanomics International, New Zealand<br />

CCMA, CSIC, Madrid, Spain<br />

Comercial Projar SA, Spain<br />

DVL Advisory Office, Netherlands<br />

FUSADES Foundation for Economic and Social Development,<br />

El Salvador<br />

Marten Barel Beheer BV, Netherlands<br />

PBG Research Station for Floriculture and Glasshouse<br />

Vegetables, Netherlands<br />

Quarantine Technologies International, New Zealand<br />

Sino Dutch Training and Demonstration Centre, China<br />

Thermo Lignum, Austria, Germany and UK<br />

Weyerhaeuser Corporation, USA<br />

Dr Leigh Molys, Department of Agriculture, Canada<br />

continued<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

85


Table 4.6.5 continued<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Products and services<br />

Hot water soil<br />

treatments and electric<br />

heat soil sterilizers<br />

Heat equipment for<br />

weed control, including<br />

flamers and hot water<br />

systems<br />

Examples of companies<br />

Aqua Heat, USA<br />

Gempler’s Inc, USA<br />

Great Lakes IPM, USA<br />

Olson Products Inc, USA<br />

Aqua Heat, USA<br />

Ben Meadows, USA<br />

Flame Engineering Inc, USA<br />

Harmony Farm Supply, USA (Red Dragon)<br />

Peaceful Valley Farm Supply, USA<br />

Planet Natural, USA<br />

Waipuna International Ltd, New Zealand and USA (Waipuna<br />

System)<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.<br />

86


4.7 Substrates<br />

entails costs for recycling or disposing of<br />

substrate materials.<br />

Organic<br />

Advantages<br />

Often give higher yields than MB.<br />

Increase opportunities for extending the<br />

growing season and harvesting at times<br />

when prices are better.<br />

Produce more uniform fruit and<br />

vegetables.<br />

Non-<strong>to</strong>xic <strong>to</strong> farm workers and local<br />

communities.<br />

Can be adapted <strong>to</strong> suit a wide variety of<br />

economic situations, ranging from lowcapital<br />

systems that are simple <strong>to</strong> use, <strong>to</strong><br />

capital-intensive systems that require<br />

substantial management.<br />

Disadvantages<br />

Water-based hydroponic systems require<br />

specialist know-how and may fail if not<br />

well managed.<br />

Water-based systems generate nutrient<br />

solution waste which must be managed<br />

or cleaned and re-circulated.<br />

Inert substrates need <strong>to</strong> be disposed of<br />

at the end of their useful life, and this<br />

Technical description<br />

Substrates replace soil by providing a clean<br />

medium for plants <strong>to</strong> grow in. Substrate<br />

materials can be taken from a wide variety of<br />

sources, if the sources are free from pests and<br />

pathogens and free from contaminants that<br />

could cause crop <strong>to</strong>xicity or undesirable food<br />

residues. Substrates also need <strong>to</strong> have pore<br />

spaces and other characteristics that allow<br />

good retention and movement of nutrients,<br />

water and air for the plant roots. Where necessary,<br />

several materials can be mixed <strong>to</strong>gether<br />

<strong>to</strong> create a substrate with optimum<br />

characteristics. If the raw materials are not<br />

free from pathogens, they can be treated<br />

with steam (see Section 4.6) or solarised (see<br />

Section 4.5) prior <strong>to</strong> use.<br />

Substrate materials differ in their physical<br />

properties, providing different conditions for<br />

root growth, transport of water, nutrients and<br />

air, and consequently for crop yield.<br />

Substrates with low water-holding capacity<br />

need frequent watering. The acidity/alkalinity,<br />

salt content and other characteristics of the<br />

chosen substrate materials need <strong>to</strong> suit the<br />

Table 4.7.1 Characteristics of various substrate materials<br />

Decomposition<br />

substrates Bulk density Water-holding Air Electrical rate (carbon:<br />

(weight) capacity content conductivity nitrogen)<br />

Bagasse +++ +++ + ++ +<br />

Bark +++ ++ +++ +++ ++<br />

Coir dust +++ +++ +++ ++ ++<br />

Peat sphagnum +++ +++ +++ +++ ++<br />

Rice hulls +++ + +++ +++ +<br />

Sawdust +++ +++ ++ +++ +<br />

Inert substrates<br />

Sand + + + ++ +++<br />

Vermiculite +++ +++ +++ +++ ++<br />

Key: + undesirable, +++ desirable characteristics<br />

Adapted from: Johnson (undated),<br />

Kipp & Weaver 2000<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

87


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

88<br />

requirements of specific crops. For example,<br />

strawberries grow very successfully on peat,<br />

while some flowers and vegetables grow successfully<br />

on coconut fibre. The PBG Research<br />

Station for Floriculture and Glasshouse<br />

Vegetables in the Netherlands has published<br />

a handbook on the physical and chemical<br />

characteristics of a variety of substrate materials<br />

and suitable crops (Kipp et al 1999, 2000).<br />

In general, desirable characteristics include<br />

low weight, high water-holding capacity,<br />

medium porosity and low cation exchange<br />

capacity. A low carbon:nitrogen decomposition<br />

rate is desirable for hydroponic production.<br />

See Table 4.7.1 for information on the<br />

characteristics of various substrate materials.<br />

For detailed technical information on the<br />

characteristics of a range of substrate materials<br />

refer <strong>to</strong> Kipp et al (1999, 2000).<br />

Substrate materials can be divided in<strong>to</strong> two<br />

broad types:<br />

Organic substrates<br />

Organic substrates are made from agricultural<br />

products or dead organic matter. Many are<br />

biologically active and have a high carbon:<br />

nitrogen ratio, which means they are broken<br />

down during the growing season by microorganisms,<br />

changing texture, pH and nutrients.<br />

Organic substrates are not suited for hydroponic<br />

systems, but they are very effective for<br />

crop production when used like potting mixes<br />

in bags, pots, trenches or other containers.<br />

The biologically active nature of organic substrates<br />

helps <strong>to</strong> provide a buffer if pathogens<br />

are accidentally introduced in<strong>to</strong> the system.<br />

Some organic substrates strongly suppress<br />

pathogens. For others, biological controls can<br />

be added <strong>to</strong> give pest-suppressive properties.<br />

Sources of organic substrate materials include<br />

the following:<br />

Coconut plant fibres or coir.<br />

Composted plant residues or agricultural<br />

waste.<br />

Rice hulls (waste from grain milling).<br />

Bagasse or sugarcane waste.<br />

Peat and past substitutes.<br />

Reed fibres.<br />

Pine bark, sawdust and other waste<br />

from the forest industry.<br />

Straw bales.<br />

Mushroom industry waste.<br />

Some of these materials must be mixed with<br />

others <strong>to</strong> achieve successful substrate textures<br />

and characteristics. Bagasse, for example, has<br />

low porosity and high water-holding capacity,<br />

which would lead <strong>to</strong> poor aeration for plant<br />

roots if used alone . Sawdust also has a high<br />

water-holding capacity that can lead <strong>to</strong> poor<br />

aeration. Rice hulls, in contrast, have low<br />

water-holding capacity and high pore space,<br />

so plants would be vulnerable <strong>to</strong> water stress<br />

if rice hulls were used alone (Johnson undated).<br />

Each of these materials, however, can be useful<br />

as one component of a substrate mixture.<br />

Certain materials need <strong>to</strong> be treated before<br />

use. Coconut, for example, sometimes has a<br />

high salt content which makes it unsuitable for<br />

strawberries unless it is washed before use.<br />

Inert substrates<br />

Inert substrates are made from materials such<br />

as rocks or polyurethane. They do not have<br />

the ability <strong>to</strong> suppress the spread of<br />

pathogens introduced accidentally, so they<br />

demand a high degree of sanitation and<br />

hygiene. Some growers now add biological<br />

controls such as Trichoderma (see Section 4.2)<br />

<strong>to</strong> inert substrates <strong>to</strong> give them pest-suppressive<br />

properties. Inert substrates normally<br />

require a high degree of water/nutrient management,<br />

because the plant gets all its nutrients<br />

from the delivered nutrient solution.<br />

When selecting materials, weight is a consideration<br />

because heavy materials like gravel or<br />

sand are more difficult for growers <strong>to</strong> move<br />

around. Lightweight materials, such as pumice<br />

or vermiculite, can be moved more readily.


Table 4.7.2 Comparison of two substrate systems<br />

Potting mix system: coconut<br />

Hydroponic system: rockwool<br />

substrate in plastic bags<br />

substrate in controlled greenhouse<br />

Substrate Local waste material placed in Manufactured substrate wrapped in<br />

farm-made plastic bags<br />

plastic sleeves<br />

Equipment Plastic tunnel, plastic cover on floor Greenhouse, plastic cover on floor (or<br />

(<strong>to</strong> separate substrate bags from soil), tables <strong>to</strong> hold substrate and nutrient<br />

irrigation pipes; meters for ph solution), irrigation system, water<br />

and electrical conductivity<br />

management equipment, meters for<br />

measuring pH and electrical conductivity<br />

Infrastructure Minimal High level of management and control<br />

Capital Low capital input High capital input<br />

Know-how Some know-how required Substantial know-how required; technical<br />

consultant visits regularly <strong>to</strong> advise on<br />

nutrients and other aspects of the system<br />

Water system Conventional drip irrigation pipes System for circulating, cleaning and<br />

recirculating water<br />

Soil pest control Biological controls may be added Strict hygiene and application of<br />

during growing via irrigation system once a month fungicides if necessary or suppressive<br />

season<br />

biological controls<br />

Examples of inert substrates include the<br />

following:<br />

Expanded clay granules<br />

Glass wool, rock wool (fibres of melted<br />

basalt, limes<strong>to</strong>ne, granite and silica).<br />

Gravel (small s<strong>to</strong>nes or pebbles).<br />

Perlite, pumice (volcanic rock).<br />

Vermiculite (expanded mica).<br />

Recycled polyurethane foam.<br />

Slag from steel mill operations.<br />

In practice, substrates are used with a wide<br />

variety of irrigation systems, from simple<br />

punctured hoses <strong>to</strong> fully computerised, recirculated<br />

systems. Substrate systems can be<br />

divided in<strong>to</strong> two broad groupings listed<br />

below. (See Table 4.7.2 for a comparison.)<br />

Potting mixes<br />

Substrates are used in a similar way <strong>to</strong> containerised<br />

soil or potting mix, held in some<br />

form of container, such as bags, buckets,<br />

pots, lined beds (with wood, concrete or<br />

brick sides), lined trenches in the soil, plastic<br />

sleeves, hand-made tubes laid along the<br />

greenhouse floor, or other simple devices. To<br />

s<strong>to</strong>p soil pests from migrating in<strong>to</strong> the substrate,<br />

a barrier or space is needed <strong>to</strong> separate<br />

the drainage holes of the container from<br />

the soil below. Examples of barriers include a<br />

plastic sheet or thick layer of drainage gravel.<br />

As with soil in pots or bags, water is applied<br />

<strong>to</strong> the <strong>to</strong>p surface of the substrates or via irrigation<br />

pipes or sprinklers. Any excess water<br />

drains from the base of the containers and is<br />

not re-circulated.<br />

Some but not all of these systems require a<br />

high capital investment and substantial knowhow.<br />

They can give high yields with low risk,<br />

provided that suitable substrate materials are<br />

used. Their use is increasingly common in<br />

greenhouses and tunnels around the world.<br />

They are also used in open fields in a few<br />

cases.<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

89


Table 4.7.3 Examples of commercial use of substrates<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

90<br />

Crop<br />

Protected <strong>to</strong>ma<strong>to</strong>es on various substrate materials<br />

Protected cucurbits on various substrates<br />

Protected vegetables on various substrates<br />

Strawberries – normally on peat or peat + coconut<br />

Protected cut flowers<br />

Carnations on scoria beds<br />

Roses on coconut and other substrates<br />

Nursery crops (vegetables and fruit)<br />

Tobacco seedlings<br />

Bananas<br />

Various protected crops on gravel substrates<br />

Water-based and hydroponic systems<br />

Hydroponic means “water working,” and<br />

in these systems water is the principal<br />

constituent. Substrates such as rock wool or<br />

polyurethane foam provide support for the<br />

plants, retaining nutrients and water.<br />

Hygiene, water circulation and nutrient levels<br />

are critical parts of the system and need <strong>to</strong> be<br />

carefully controlled.<br />

Hydroponic systems generally require significant<br />

capital investment, infrastructure and a<br />

high degree of know-how and management.<br />

The Nutrient Flow Technique (NFT) is one type<br />

of hydroponic system in which a shallow<br />

depth of nutrient solution is recirculated by<br />

pump, through a series of narrow channels<br />

where the plants sit. Water-based systems<br />

can produce very high yields but have a high<br />

risk of failure if not properly managed. They<br />

are common in northern Europe and Canada,<br />

and are used increasingly in many other<br />

countries.<br />

It is important <strong>to</strong> keep substrate systems free<br />

from contamination by pathogens. Accidental<br />

introduction of pathogens can be avoided by<br />

using the following techniques:<br />

Countries<br />

Spain, Belgium, Germany, Netherlands, UK<br />

Belgium, Egypt, Jordan, Lebanon, Morocco,<br />

Netherlands, UK, USA<br />

Belgium, Canada, France, Germany, Morocco,<br />

Netherlands, UK, USA (Florida)<br />

Belgium, Indonesia, Malaysia, Netherlands, UK<br />

Brazil, Canada, China, Colombia, Belgium,<br />

Netherlands, USA<br />

Australia<br />

Australia, Belgium, Denmark, Netherlands<br />

Brazil, Canada, Chile, Germany, Israel, Mexico,<br />

Morocco, Netherlands, Spain, Switzerland, UK,<br />

USA, Zimbabwe<br />

Brazil, Argentina, USA<br />

Canary Islands<br />

South Africa and some other countries in Africa<br />

Compiled from: MBTOC 1998, MHSPE 1997, Environment Australia 1998, Gyldenkaerne 1997, Batchelor 1999,<br />

Peter van Luijk BV 1999, Nuyten 1999, Benoit and Ceustermans 1996, Benoit 1999<br />

Good standards of hygiene, such as<br />

cleaning equipment after use.<br />

Use of pathogen-free plant materials.<br />

Placing substrates in many separate containers<br />

(e.g. pots or bags) rather than<br />

one continuous container, <strong>to</strong> prevent the<br />

spread of pathogens if contamination<br />

occurs.<br />

Use of clean water (e.g. filtering water<br />

prior <strong>to</strong> use).<br />

After use, organic substrate materials can be<br />

disposed of by spreading them on fields <strong>to</strong><br />

improve soil texture. Some organic and inert<br />

substrates can be re-used after being cleaned<br />

with steam or solarisation. Substrates can be<br />

solarised in bags or flats covered with transparent<br />

plastic or in layers 7.5 <strong>to</strong> 22.5 cm<br />

wide sandwiched between two sheets of<br />

plastic (Elmore et al 1997). In sunny areas<br />

(e.g., warmer parts of California) substrates<br />

inside black plastic sleeves can reach 70°C,<br />

achieving effective solarisation within a week.<br />

Current uses<br />

Substrates are extensively used in greenhouses<br />

and nursery operations in many countries


and <strong>to</strong> a limited extent for open-field production.<br />

They are used for numerous crops,<br />

including <strong>to</strong>ma<strong>to</strong>es, strawberries, cut flowers,<br />

melons, cucurbits, bananas, nursery-grown<br />

vegetable transplants and <strong>to</strong>bacco seedlings<br />

(MBTOC 1998). Table 4.7.3 provides examples<br />

of commercial uses.<br />

Variations under development<br />

Additional source materials from waste<br />

materials.<br />

Improved disease-suppressive substrates.<br />

New mixtures, giving optimal textures<br />

for specific crops.<br />

Material inputs<br />

Inputs for potting mix types of substrates<br />

include the following:<br />

Substrate material.<br />

Additional inputs for water-based and hydroponic<br />

systems are as follows:<br />

Container for water bed beneath the<br />

substrates.<br />

Equipment for managing water supply.<br />

If water is re-circulated, equipment for<br />

cleaning water.<br />

Meters for measuring pH and electrical<br />

conductivity.<br />

Specialist technical know-how.<br />

Fac<strong>to</strong>rs required for use<br />

For low cost systems:<br />

Local source of cheap substrate (e.g.<br />

clean waste material).<br />

Know-how and training.<br />

Containers such as plastic-lined trenches,<br />

beds, plastic bags, plastic tubes or pots<br />

for holding substrate and providing a<br />

barrier between the substrates and soil<br />

floor.<br />

Normal irrigation or manual watering.<br />

Clean planting materials (especially if<br />

inert substrates are used).<br />

For hydroponic systems:<br />

Secure supply of water <strong>to</strong> prevent plants<br />

from drying out.<br />

Attention <strong>to</strong> detail and very regular<br />

moni<strong>to</strong>ring and management.<br />

Substantial technical know-how and<br />

training.<br />

Table 4.7.4 Examples of yields from substrates<br />

Crop/country Type of substrate Yields from substrates Yields from MB<br />

Strawberry, Italy Natural substrate 4.8 kg/m 2 3 kg/m 2<br />

Protected strawberry, Peat 9 kg/m 2 4 kg/m 2<br />

Netherlands<br />

double cropping<br />

Protected strawberry, Peat or peat + coconut 22,000 kg/ha 15,000 kg/ha<br />

Scotland<br />

double-cropping<br />

Protected <strong>to</strong>ma<strong>to</strong>, Sawdust + Trichoderma 50 kg/m 2 Similar yields<br />

New Zealand<br />

Toma<strong>to</strong>, Belgium Polyurethane foam or 52 kg/m 2 normally 30 - 35 kg/m 2<br />

rock wool<br />

double cropping<br />

Melon, Netherlands Rock wool 20 kg/m 2 10 kg/m 2<br />

double cropping<br />

Protected cucumber, Rock wool 68 kg/m 2 27 - 38 kg/m 2<br />

Netherlands<br />

triple cropping<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

Compiled from: De Barro 1995, Vickers 1995, Benoit and Ceustermans 1991,<br />

Benoit and Ceustermans 1995, Batchelor 1999<br />

91


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

92<br />

Pests controlled<br />

Clean substrates are normally free from soilborne<br />

pests such as nema<strong>to</strong>des, pathogens,<br />

weeds and insects, thus avoiding the need <strong>to</strong><br />

control these pests. Control with clean substrates<br />

is generally comparable <strong>to</strong> control<br />

achieved with MB. Some natural substrates<br />

(e.g. composted pine bark) also have the ability<br />

<strong>to</strong> suppress certain pathogens, reducing<br />

risks if pathogens are introduced accidentally<br />

by irrigation water or plant material.<br />

Yields and performance<br />

Yields from substrates are equal <strong>to</strong>, and frequently<br />

higher than production with MB (see<br />

Table 4.7.4), particularly because substrates<br />

give a longer cropping period and allow double<br />

cropping or multi-cropping (Benoit &<br />

Ceustermans 1991, 1995; Nordic Council<br />

1993; Gyldenkaerne et al 1997). In addition,<br />

substrates allow more control of harvest time<br />

(such as earlier harvests) <strong>to</strong> meet more profitable<br />

market windows. Yields are generally<br />

similar for the different types of inert substrates.<br />

Yields from organic substrates can be<br />

more variable if they are used in systems with<br />

unsophisticated management.<br />

Other fac<strong>to</strong>rs affecting use<br />

Suitable crops and uses<br />

Substrates can be adapted for all types of<br />

horticultural crops. They are most appropriate<br />

for greenhouses, seedbeds and nursery containers,<br />

but they are also used <strong>to</strong> a limited<br />

extent for open field production. However,<br />

different substrates with different physical<br />

and chemical characteristics are required for<br />

different types of crops and uses. Substrates<br />

are very suitable for double cropping and<br />

multi-cropping.<br />

Suitable climates and soil types<br />

Substrates are used in virtually all climates,<br />

from the arctic <strong>to</strong> the tropics. They are suitable<br />

for all types of soils, because the soil<br />

itself becomes irrelevant.<br />

Toxicity and health risks<br />

Farm workers can normally handle substrates<br />

safely because they are composed of non<strong>to</strong>xic<br />

materials. However, if substrate materials<br />

form dusts or fine particles, normal<br />

precautions should be taken <strong>to</strong> prevent exposure<br />

<strong>to</strong> the dust while the substrate is being<br />

laid out or moved.<br />

Safety precautions for users<br />

Substrates do not normally require special<br />

safety precautions, so safety training and<br />

safety equipment are generally not required.<br />

However, substrates that form dusts require<br />

safety equipment <strong>to</strong> protect the lungs and<br />

respira<strong>to</strong>ry system. In some cases protective<br />

clothing is desirable when the substrates are<br />

lifted at the end of the season.<br />

Residues in food and environment<br />

Substrates do not pose safety risks <strong>to</strong> consumers<br />

of fruits and vegetables, provided that<br />

the quality and composition of substrates are<br />

controlled <strong>to</strong> ensure that potentially <strong>to</strong>xic or<br />

phy<strong>to</strong><strong>to</strong>xic contaminants are excluded from<br />

the raw materials.<br />

Phy<strong>to</strong><strong>to</strong>xicity<br />

Commercially available substrate materials are<br />

not phy<strong>to</strong><strong>to</strong>xic <strong>to</strong> crops. If farmers make their<br />

own substrates from locally available materials,<br />

they must avoid raw materials that may<br />

cause phy<strong>to</strong><strong>to</strong>xicity problems.<br />

Impact on beneficial organisms<br />

Substrates sit on <strong>to</strong>p of the soil and are separated<br />

from it, so they do not have a direct<br />

effect on beneficial organisms in the soil. If<br />

disease-suppressive substrates are spread on<br />

fields after their useful life, however, they<br />

contribute beneficial organisms <strong>to</strong> the soil.<br />

Substrates are compatible with the use of<br />

beneficial organisms, and many substrate systems<br />

benefit from the addition of biological<br />

control agents.


Ozone depleting potential<br />

Substrates are not ODS.<br />

Global warming and energy<br />

consumption<br />

Substrates in themselves do not have globalwarming<br />

potential, but like MB they require<br />

energy for extraction, manufacture and transport.<br />

Some preliminary energy balances have<br />

been carried out <strong>to</strong> compare MB and some<br />

types of substrates. Available information<br />

indicates that rock wool and polyurethane<br />

foam substrates consume much more energy<br />

in their manufacture than pumice and peat.<br />

Natural substrates composed of waste materials<br />

consume the least energy, although this<br />

depends on the distance that the substance is<br />

transported.<br />

In general, the energy required for production<br />

using substrates is less than MB when measured<br />

per kg of produce. Low-technology systems<br />

have minimal use of energy, while<br />

high-tech systems such as heated glasshouses<br />

can use substantial amounts of energy.<br />

Nevertheless, in northern Europe, for example,<br />

greenhouses that use MB and soil normally<br />

use more energy for heating than<br />

greenhouses that use substrates.<br />

Other environmental considerations<br />

Substrates made from rock (e.g. mica, volcanic<br />

pumice) and peat are extracted from<br />

the natural environment and can damage<br />

natural habitats such as wetlands.To avoid<br />

this problem, it is desirable <strong>to</strong> consider other<br />

source materials for substrates.<br />

Water consumption in substrate systems<br />

depends largely on the design and management<br />

of the system. Toma<strong>to</strong>es grown in border<br />

soil or substrate systems can use the<br />

same amount of water (Gyldenkaerne et al<br />

1997). The wastewater can easily lead <strong>to</strong><br />

water pollution, if it is allowed <strong>to</strong> leach in<strong>to</strong><br />

watercourses. Where there is concern about<br />

run-off, organic substrates are preferable <strong>to</strong><br />

inert ones because they retain more nutrient<br />

solution (Hardgrave and Harrimann 1995).<br />

Various systems, such as those that clean and<br />

re-circulate water, reduce water consumption<br />

and minimise any pollution.<br />

After use, organic substrates can often be<br />

disposed of by spreading them on fields,<br />

helping <strong>to</strong> improve soil texture. Inert substrates<br />

normally create problems with solid<br />

waste, although collection and recycling<br />

schemes exist for certain substrates (e.g. rock<br />

wool) in certain countries. Most inert substrates<br />

can be cleaned and re-used. For example,<br />

polyurethane foam is treated with steam<br />

in portable lorry-mounted chambers in<br />

Belgium and can be re-used for 10 <strong>to</strong> 15 years.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Substrates are normally highly acceptable <strong>to</strong><br />

supermarkets, purchasing companies and<br />

consumers. Supermarkets often prefer crop<br />

production on substrates, because the products<br />

are generally more consistent and uniform<br />

in quality.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Normally, substrates do not have <strong>to</strong> be<br />

approved and registered in the same fashion<br />

as pesticides. Some countries have codes of<br />

practice for ensuring quality control of substrate<br />

materials. Such controls are highly<br />

desirable <strong>to</strong> ensure that substrates perform<br />

consistently and are free from pathogens,<br />

weed seeds and undesirable contaminants.<br />

Cost considerations<br />

In the case of hyrdoponic and recirculated<br />

systems, initial capital costs are<br />

generally high or very high, compared<br />

<strong>to</strong> MB.<br />

In Denmark, the payback period for a<br />

capital-intensive system is normally two<br />

<strong>to</strong> four years (Gyldenkærne et al 1997).<br />

Material costs are normally more expensive<br />

than MB, except where cheap or<br />

waste materials are used as substrates.<br />

Labour costs may be slightly higher.<br />

Overall, substrate systems are often<br />

more profitable than systems using MB,<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

93


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

94<br />

because they allow longer production<br />

periods or multi-cropping. In the<br />

Netherlands, substrate systems increased<br />

farmers’ incomes by 10 <strong>to</strong> 20% on average<br />

over previous MB systems (MHSPE<br />

1997). In Florida (USA), the cost of producing<br />

greenhouse hydroponic vegetables<br />

ranges from US$ 2 <strong>to</strong> 15 per square<br />

foot, but the costs are offset by higher<br />

production (up <strong>to</strong> 10 times higher than<br />

field-grown produce) (Hochmuth 1999).<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

What are the necessary substrate<br />

characteristics for the selected crops<br />

or seedlings?<br />

What sources of clean, pathogen-free,<br />

cheap, waste materials are available<br />

locally?<br />

Are the substrates free from contaminants<br />

that may cause undesirable<br />

residues or phy<strong>to</strong><strong>to</strong>xicity?<br />

What systems can be used for quality<br />

control?<br />

What are the cheapest options for vessels<br />

or containers <strong>to</strong> hold the substrates?<br />

Table 4.7.5 Examples of suppliers of products and services for substrates<br />

Products and services<br />

Organic substrate<br />

materials,<br />

e.g.coconut,<br />

coconut fibre,<br />

composted bark,<br />

peat, peat substitutes,<br />

stabilised composts<br />

and disease-suppressive<br />

substrates<br />

What types of watering systems are<br />

appropriate?<br />

What methods are available <strong>to</strong> moni<strong>to</strong>r<br />

and control the water quality and<br />

nutrients (pH and electrical conductivity)?<br />

What local sources of know-how are<br />

available?<br />

What is the payback period for a lowcost<br />

system versus a more capitalintensive<br />

system?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Manufactured substrate materials are available<br />

in many countries. Waste materials that<br />

can be used as substrates are available in all<br />

countries.<br />

Suppliers of products and services<br />

Examples of suppliers of substrate products<br />

and services are given in Table 4.7.5. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources.<br />

Examples of companies (product name)<br />

Abonos Naturales Hnos Aguado SL, Spain<br />

A-M Corporation, Korea (Cocovita)<br />

Aplicaciones Bioquímicas SL, Spain<br />

Arrow Ecology Ltd, Israel<br />

Asthor Agricola Mediterranean SA, Spain<br />

BioComp Inc, USA<br />

Berger Peat Moss, Canada<br />

Cántabra de Turba Coop Ltda, Spain<br />

CETAP/An<strong>to</strong>nio Ma<strong>to</strong>s Ltda, Portugal<br />

Coco Hits, Spain<br />

Comercial Projar SA, Spain<br />

Compañia Argentina Holandesa SA, Argentina<br />

Compo, Belgium (Cocovita)<br />

Cosago Ltda, Colombia<br />

De Baat BV, Netherlands<br />

DIREC-TS, Spain<br />

continued


Table 4.7.5 continued<br />

Examples of companies (product name)<br />

Durs<strong>to</strong>ns, UK (Composted Bark, Earth Friendly Peat Substitutes, Coconut-<br />

Multi-Purpose)<br />

Dutch Plantin, Netherlands<br />

Earthgro, USA<br />

Eucatex Agro Ltda, Brazil (Plantmax, Rendmax)<br />

Fabricaciones Vignolles, Spain<br />

Floragard GmbH, Germany (Floragard)<br />

Flora<strong>to</strong>rf Produckte, Spain<br />

Francisco Domingo SL, Spain<br />

Hollyland New-Tech Dev Co Ltd, China (Cocopress)<br />

Industrias Químicas Sicosa SA, Spain<br />

Inferco SL, Spain<br />

Italoespañola de Correc<strong>to</strong>res SL, Spain<br />

Jiffy Products, Colombia<br />

José Maria Pérez Ortega, Spain<br />

Klasmann-Deilmann, Germany (Klasmann)<br />

Lombricultura Técnica Mexicana, Mexico<br />

Louisiana Pacific, USA<br />

Melcourt Industries Ltd, UK (Sylvafibre, Potting Bark)<br />

Neudorff GmbH, Germany (Kokohum)<br />

Nico Haasnoot, Netherlands<br />

OM Scotts and Sons, USA (Hyponex)<br />

Paygro Co, USA<br />

Peter van Luijk bv, Netherlands (Cocopress)<br />

Pindstrup Mosebrug SAE, Spain and Scandinavia<br />

Prodeasa, Spain<br />

Pro-Gro Products Inc, USA<br />

Reciorganic Ltda, Colombia<br />

Rexius Forest Products, USA<br />

Sonoma Composts, USA<br />

Southern Importers, USA (Southland)<br />

Torfstreuverband GmbH, Germany<br />

Inter<strong>to</strong>resa AG, Germany (Toresa)<br />

Turbas GF, Spain<br />

Turco Silvestro e Figli SnC, Italy<br />

See also Table 4.4.4 for companies producing composts; some composts<br />

may have the correct composition for substrates<br />

Agglorex SA, Belgium (Aggrofoam)<br />

Aislantes Minerales SA de CV, Mexico<br />

CIA Ibérica de Paneles Sintéticos SA, Spain<br />

Cosago Ltda, Colombia, Ecuador<br />

Eucatex Agro Ltda, Brazil<br />

Grodan, Netherlands, Spain and France (Grodan)<br />

Grodania AS, Denmark (Grodan)<br />

Guohua Soilless Cultivation Tech Co Ltd, China<br />

Hortiplan, Belgium (Rockwool)<br />

Morse Growers Supplies, Canada<br />

Nordflex AB, Sweden (Recfoam)<br />

Peter van Luijk BV, Netherlands (Oxygrow, perlite, pumice, Oasis)<br />

Prodeasa, SpainRecticel, France, Germany, Netherlands, Belgium, UK (Recfoam)<br />

Rockwool International AS, Denmark (Rockwool)<br />

Torfstreuverband GmbH, Germany<br />

Compañia Argentina Holandesa SA, Argentina<br />

Asthor Agricola Mediterranean SA, Spain<br />

Products and services<br />

Organic substrate<br />

materials,<br />

e.g., coconut,<br />

coconut fibre,<br />

composted bark, peat,<br />

peat substitutes,<br />

stabilised composts<br />

and disease-suppressive<br />

substrates<br />

(continued)<br />

Inert substrates,<br />

e.g.,<br />

polyurethane foam,<br />

rock fibre, pumice,<br />

vermiculite,<br />

perlite<br />

Section 4: Alternative Techniques for Controlling Soil-borne Pests<br />

95<br />

continued


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Products and services<br />

Sleeves, bags, trays and<br />

other containers for<br />

holding substrates<br />

Specialists, advisory<br />

services<br />

and consultants<br />

Collection and/or<br />

recycling of inert<br />

substrates<br />

Table 4.7.5 continued<br />

Examples of companies (product name)<br />

Fabricaciones Vignolles, Spain<br />

Francisco Domingo SL, Spain<br />

HerkuPlast-Kubern GmbH, Germany and Netherlands (Quick Pot)<br />

Hollyland New-Tech Dev Co Ltd, China (Jiffy)<br />

Hortiplan, Belgium<br />

Jiffy Products, Colombia<br />

Panth Produkter AB, Sweden (Starpot, Panth Seedling Tray)<br />

Peter van Luijk BV, Netherlands (Jiffy, Peval)<br />

Plásticos Solanas SL, Spain<br />

Poliex SA, Spain<br />

Polygal Plastic Industries Ltd, Israel (Polygal Plant Beds)<br />

Transplant Systems, Australia and New Zealand<br />

Agricultural Demonstration Centre, China<br />

Asthor Agricola Mediterranean SA, Spain<br />

Breda Experimental Garden, Netherlands<br />

Canadian Climatrol Systems, Canada<br />

Comercial Projar SA, Spain<br />

Compañía Española de Tabaco SA, Spain<br />

Danish Institute of Agricultural Science, Denmark<br />

DLV Horticultural Advisory Service, Netherlands<br />

European Vegetable R&D Centre, Belgium<br />

FUSADES Foundation for Economic and Social Development, El Salvador<br />

Harrow Research Centre, Agriculture and Agri-Food Canada<br />

HortiTecnia, Colombia<br />

INTA Famailla, Túcúman, Argentina (<strong>to</strong>bacco float systems)<br />

Lombricultura Técnica Mexicana, Mexico<br />

National Research Centre for Strawberries, Belgium<br />

Pacific Agriculture Research Centre, Canada<br />

PBG Research Station for Floriculture and Glasshouse Vegetables,<br />

Netherlands<br />

Peter van Luijk BV, Netherlands<br />

PTG Glasshouse Crop Research Station, Netherlands<br />

Reciorganica Ltda, Colombia<br />

SIDHOC Sino Dutch Horticultural Training and Demonstration Centre, China<br />

Technisches Bericht Forschungsanstalt Geisenheim – Gemüsebau, Germany<br />

Vegetable Research and Information Center, University of California,<br />

Davis, USA<br />

VLACO, Belgium<br />

Dr An<strong>to</strong>nio Bello, CCMA, CSIC, Spain (float tray systems)<br />

Ing. R Sanz, CCMA, CSIC, Spain (float tray systems)<br />

Ing. I Blanco, CETARSA, Cáceres, Spain (<strong>to</strong>bacco)<br />

Dr Bob Hochmuth, Institute of Food and Agricultural Sciences, University<br />

of Florida, USA<br />

Prof Keigo Minami, ESALQ, University of São Paulo, Brazil<br />

Mr Henk Nuyten consultant, Netherlands<br />

Dr Tom Papadopoulos, Greenhouse and Processing Crops Research<br />

Centre, Canada<br />

Prof Rolf Röber, Institut für Zierpflanzenbau, Germany<br />

Also refer <strong>to</strong> the list of experts on composts and soil amendments<br />

in Table 4.4.4<br />

Rockwool-Industries, Denmark (Rockwool)<br />

96<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.


5 Control of Pests in<br />

Commodities and Structures<br />

Types of commodities and<br />

structures<br />

MB has been in widespread use as a fumigant<br />

for s<strong>to</strong>red grains and import/export<br />

commodities for more than 50 years because<br />

of its high <strong>to</strong>xicity <strong>to</strong> a wide range of pests,<br />

good penetration of products and rapid<br />

action. The commodities and structures that<br />

are fumigated with MB can be divided in<strong>to</strong><br />

three main groups (refer <strong>to</strong> Figure 1.1):<br />

a) Durable products<br />

Durables are commodities with low moisture<br />

content that, in the absence of pest attack,<br />

can be safely s<strong>to</strong>red for long periods. They<br />

include foods such as grains, pulses, nuts,<br />

dried fruits, herbs, spices, dried medicinal<br />

plants and beverage crops along with nonfoods<br />

such as <strong>to</strong>bacco and seeds for planting.<br />

They also include logs, sawn timber, wood<br />

products, cane and bamboo ware, craft products,<br />

museum artifacts, items of his<strong>to</strong>rical significance,<br />

packaging materials and wooden<br />

pallets.<br />

Many durable products are s<strong>to</strong>red and traded<br />

globally without the need for MB fumigation,<br />

but MB is used in a number of situations for<br />

controlling s<strong>to</strong>red product pests and quarantine<br />

pests. Fumigations are carried out in s<strong>to</strong>rage<br />

and transport areas such as grain s<strong>to</strong>res,<br />

warehouses, docksides and harbours, making<br />

use of enclosures such as fumigation sheets,<br />

silos, freight containers, railway box cars, ship<br />

holds, barges and, in some cases, fixed<br />

chambers.<br />

b) Perishable commodities<br />

Perishables are fresh commodities that generally<br />

decay quickly unless they are s<strong>to</strong>red in<br />

conditions such as cool s<strong>to</strong>rage that prolong<br />

their shelf-life. They include fresh fruit, fresh<br />

vegetables, cut flowers and ornamental<br />

plants. Many of these commodities are traded<br />

internationally without the need for fumigation,<br />

but MB is required in a number of cases<br />

for the control of quarantine pests.<br />

Fumigations are carried out in fumigation<br />

chambers or under fumigation sheets at<br />

places such as specialised farms, packhouses,<br />

ports and airports. MB fumigations are carried<br />

out either in the country of origin before<br />

export or in the importing country if products<br />

are found <strong>to</strong> contain quarantine pests.<br />

c) Structures<br />

Structures include entire buildings and portions<br />

of buildings such as food processing<br />

facilities, flour mills, feed mills, s<strong>to</strong>rage facilities<br />

and warehouses. This group also includes<br />

transport vehicles such as ship holds, aircraft<br />

and freight containers.<br />

MB is sometimes used for controlling s<strong>to</strong>red<br />

product pests, wood-destroying organisms,<br />

rodents or quarantine pests in such structures,<br />

particularly when a rapid full-site treatment<br />

is needed.<br />

Pests in durable commodities<br />

Pest control for durable products is necessary<br />

<strong>to</strong> prevent insects from eating or damaging<br />

commodities with a resultant loss of product<br />

or reduction in market value. In some cases, it<br />

is only necessary <strong>to</strong> manage and suppress<br />

pests <strong>to</strong> levels that do not cause significant<br />

damage. In other cases, it is necessary <strong>to</strong> disinfest<br />

commodities <strong>to</strong> entirely eliminate pests<br />

<strong>to</strong> meet commercial demands for products<br />

that are pest-free or <strong>to</strong> meet official preshipment<br />

requirements. Disinfestation is also<br />

Section 5: Control of Pests in Commodities and Structures<br />

97


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

required for officially controlled quarantine<br />

pests <strong>to</strong> reduce the risk of introducing or<br />

spreading pest species <strong>to</strong> geographical<br />

regions where they are not established.<br />

According <strong>to</strong> MBTOC, MB plays a relatively<br />

small but significant role in the disinfestation<br />

and protection of durables. This use adds up<br />

<strong>to</strong> an estimated 13% of worldwide MB consumption<br />

or around 19% in developing countries,<br />

making durables the second largest use<br />

of MB after soil fumigation.<br />

MB’s rapid action and reliability have led <strong>to</strong> its<br />

continued use as the treatment of choice in<br />

several specialised situations:<br />

Rapid disinfestation of bulk grain <strong>to</strong><br />

meet commercial, phy<strong>to</strong>sanitary (plant<br />

health) or quarantine requirements at<br />

the point of import or export.<br />

Quarantine treatments against specific<br />

pests, particularly khapra beetle, the<br />

house longhorn beetle and various<br />

snails.<br />

Table 5.1 Principal pests of cereal grains and similar durable commodities<br />

Common Name<br />

Dried bean beetle<br />

Flour mite<br />

Cowpea beetle<br />

Cowpea beetle<br />

Groundnut borer<br />

Rice moth<br />

Rust-red grain beetle<br />

Tropical warehouse moth<br />

Tobacco moth<br />

Mediterranean flour moth<br />

Broad horned flour beetle<br />

Booklice, psocids<br />

European grain moth<br />

Yellow spider beetle<br />

Saw-<strong>to</strong>othed grain beetle<br />

Indian meal moth<br />

White-marked spider beetle<br />

Australian spider beetle<br />

Lesser grain borer<br />

Granary weevil<br />

Rice weevil<br />

Maize weevil<br />

Angoumois grain moth<br />

Drug s<strong>to</strong>re beetle<br />

Yellow mealworm<br />

Cadelle<br />

Rust red flour beetle<br />

Confused flour beetle<br />

Khapra beetle<br />

Mexican bean beetle<br />

Scientific Name<br />

Acanthoscelides obtectus ✇<br />

Acarus siro<br />

Callosobruchus chinensis ✇<br />

Callosobruchus maculatus ✇<br />

Caryedon serratus<br />

Corcyra cephalonica<br />

Cryp<strong>to</strong>lestes ferrugineus ✇<br />

Ephestia cautella<br />

Ephestia elutella<br />

Ephestia kuehniella ✇<br />

Gna<strong>to</strong>cerus cornutus<br />

Liposcelis spp. ✇<br />

Nemapogon granellus<br />

Niptus hololeucus<br />

Oryzaephilus surinamensis ✇<br />

Plodia interpunctella ✇<br />

Ptinus fur<br />

Ptinus tectus<br />

Rhyzopertha dominica ✇<br />

Si<strong>to</strong>philus granarius ✇<br />

Si<strong>to</strong>philus oryzae ✇<br />

Si<strong>to</strong>philus zeamais ✇<br />

Si<strong>to</strong>troga cerealella ✇<br />

Stegobium paniceum ✇<br />

Tenebrio moli<strong>to</strong>r<br />

Tenebroides mauretanicus<br />

Tribolium castaneum ✇<br />

Tribolium confusum ✇<br />

Trogoderma granarium ✇<br />

Zabrotes subfasciatus<br />

98<br />

Key: ✇ - major pest Source: MBTOC 1998, Banks 1999


Table 5.2 Examples of quarantine pests found on perishable commodities<br />

Common name Scientific name or family Common commodities<br />

Mexican fruit fly Anastrepha ludens (Lw.) Citrus, other tropical and subtropical<br />

fruits<br />

Caribbean fruit fly Anastrepha suspensa (Loew) Tropical and sub-tropical fruits<br />

Mediterranean fruit Ceratitis capitata (Wied.) Deciduous, sub-tropical and<br />

fly<br />

tropical fruits<br />

Melon fly Bactrocera cucurbitae (Coq.) Cucurbits, <strong>to</strong>ma<strong>to</strong>, many other<br />

fleshy fruits<br />

Oriental fruit fly Bactrocera dorsalis (Hendel) Most fleshy fruits or vegetables<br />

Queensland Bactrocera tryoni (Froggatt) Deciduous, sub-tropical and<br />

fruit fly<br />

tropical fruits<br />

European Cherry Rhagoletis cerasi (L.) Cherry, Lonicera spp.<br />

fruit fly<br />

Cherry fruit fly Rhagoletis cingulata (Lw.) Cherry, Prunus spp.<br />

Apple maggot fly Rhagoletis pomonella (Walsh) Apple, blueberry<br />

Mealy bugs Pseudococcidae Fruit, cut flowers, nursery plants<br />

Codling moth Cydia pomonella (L.) Apple, pear, peach, Prunus spp.<br />

Mango seed weevil Stemochaetus mangiferae (Fab.) Mango<br />

Red-legged earth Halotydeus destruc<strong>to</strong>r (Tucker) Leafy vegetables<br />

mite<br />

Thrips Thysanoptera spp. Leafy vegetables, fruit and cut<br />

flowers<br />

Aphids Aphididae Leafy vegetables, cut flowers<br />

Mites Many species Fruit, vegetables, cut flowers<br />

Scale insects Hemiptera Nursery plants, fruit<br />

Disinfestation of stacks of bagged grain,<br />

particularly in Africa, including food aid<br />

at the point of import.<br />

Protection and disinfestation of dried<br />

vine fruit, some other dried fruit and<br />

nuts in s<strong>to</strong>rage and prior <strong>to</strong> sale.<br />

Although the use of MB <strong>to</strong> control pests in<br />

s<strong>to</strong>red grains has largely been replaced by<br />

other techniques in developed countries, the<br />

practice is still widely used for this purpose in<br />

a number of developing countries.<br />

Most of the target pests of durables are<br />

insects and, <strong>to</strong> a lesser extent, mites. Certain<br />

commodities have other target pests, such as<br />

fungi in unsawn timber and nema<strong>to</strong>des in<br />

seeds for planting. MB is sometimes specified<br />

as a quarantine treatment for ticks and snails<br />

Sources: Based on Paull and Armstrong 1994, with additions from Batchelor 1999b<br />

that occur as incidental contaminants of<br />

durable foods or timber. Table 5.1 provides a<br />

list of the principal pests of cereal grains and<br />

similar durable commodities.<br />

Pests in perishable commodities<br />

Fresh fruit, fresh vegetables and cut flowers<br />

can carry a wide range of pests, such as fruit<br />

flies and mites, and many of these are the<br />

subject of quarantine restrictions for<br />

import/export commodities (Table 5.2). MB<br />

treatments <strong>to</strong> kill pests in perishable commodities<br />

are estimated <strong>to</strong> account for about<br />

9% of MB consumption worldwide<br />

(MBTOC 1998).<br />

Treatments for controlling quarantine pests<br />

have <strong>to</strong> be approved by the quarantine<br />

authorities of importing countries for individ-<br />

Section 5: Control of Pests in Commodities and Structures<br />

99


Table 5.3 Examples of pests fumigated with MB in structures<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

100<br />

Type of structure<br />

Food production and s<strong>to</strong>rage facilities,<br />

e.g., food processing plants, mills, warehouses<br />

Non-food facilities,<br />

e.g., museums<br />

Wood within structures,<br />

e.g., dwellings, commercial premises,<br />

his<strong>to</strong>rical buildings, museums<br />

ual commodity/pest combinations. This normally<br />

requires scientific data <strong>to</strong> demonstrate<br />

that the treatment is virtually 100% effective<br />

in killing the target quarantine pest, as well<br />

as a process of bilateral negotiations.<br />

His<strong>to</strong>rically the process of gaining approval<br />

for quarantine treatments for perishables has<br />

been very slow, taking from 3 years <strong>to</strong> well<br />

over 10 years. Pressure from companies and<br />

governments <strong>to</strong> phase out QPS uses of MB is<br />

likely <strong>to</strong> speed up the approval process in<br />

some areas. Quarantine issues are discussed<br />

in detail in the reports of MBTOC (1998) and<br />

TEAP (1999).<br />

Pest groups<br />

S<strong>to</strong>red product insects<br />

Beetles<br />

Cockroaches<br />

Mites<br />

Psocids<br />

Rodents<br />

Silverfish<br />

S<strong>to</strong>red product insects<br />

Cigarette beetles<br />

Clothes moths<br />

Cockroaches<br />

Dermestid beetles<br />

Drugs<strong>to</strong>re beetles<br />

Rodents<br />

Cigarette beetles<br />

Clothes moths<br />

Dermestid beetles<br />

Drugs<strong>to</strong>re beetles<br />

Drywood termites<br />

Furniture beetles<br />

Long horned beetles<br />

Powder post beetles<br />

Wood boring beetles<br />

Pests in structures<br />

Pests that infest durable commodities often<br />

become established in the fabric of buildings<br />

or structures where food is s<strong>to</strong>red. Wooddestroying<br />

insects can also infest the wooden<br />

beams and wooden parts of buildings. Table<br />

5.3 lists major pest groups that are the targets<br />

of MB fumigation in structures. MBTOC<br />

estimates that these uses account for about<br />

3% of MB use worldwide (MBTOC 1998).<br />

Overview of alternatives<br />

A wide variety of measures can be incorporated<br />

in<strong>to</strong> an integrated system <strong>to</strong> disinfest<br />

and protect commodities and structures from<br />

damage by pests (MBTOC 1998). The following<br />

major techniques are described in<br />

Section 6:<br />

IPM and preventive measures.<br />

Cold treatments and aeration.<br />

Contact insecticides.<br />

Controlled and modified atmospheres.<br />

Heat treatments.<br />

Inert dusts.<br />

Source: Adapted from MBTOC 1998<br />

Phosphine and other fumigants.


Table 5.4 Effective techniques for pest suppression and<br />

pest elimination (disinfestation) in commodities and structures<br />

Techniques Pest Suppression Pest Elimination<br />

IPM Effective for suppressing pests; IPM does not provide disinfestation but can<br />

used increasingly for durable reduce the need for disinfestation treatments<br />

commodities and structures in all types of commodities and structures<br />

Cold treatments Effective for s<strong>to</strong>red grains, other Certain treatments are effective for artifacts,<br />

and aeration durable products or structures his<strong>to</strong>rical items, high value durable<br />

where cold air is readily available commodities, and perishable commodities<br />

such as citrus and temperate fruit<br />

Contact insecticides Effective for s<strong>to</strong>red grains, other Where registered, dichlorvos is effective for<br />

and other pesticides durable products, wood products bulk grain; pesticides can be effective for<br />

and some structures<br />

certain pests in logs, wooden pallets,<br />

timber, wood in buildings and aircraft<br />

Controlled and Effective for grain and durables Specific treatments can be effective for<br />

modified s<strong>to</strong>red for long periods disinfesting s<strong>to</strong>red products, artifacts and<br />

atmospheres<br />

perishable commodities<br />

Heat treatments Effective for some mills and Specific treatments can be effective for<br />

food processing facilities grains, logs, timber, <strong>to</strong>bacco and many<br />

durable commodities; and for quarantine<br />

treatments in perishable products such as<br />

mango, grapefruit, <strong>to</strong>ma<strong>to</strong> and bell peppers<br />

Inert dusts Effective in assisting with pest Not effective<br />

management in s<strong>to</strong>red grain<br />

and structures<br />

Phosphine and Effective for durable commodities Phosphine is effective for bagged and bulk<br />

other fumigants and diverse uses — generally grains, in-transit ship treatments where<br />

used for disinfestation<br />

permitted, logs and a wide variety of other<br />

durable commodities; it is not generally<br />

suitable for perishable commodities.<br />

Sulphuryl fluoride is effective for non-food<br />

items and structures where registered.<br />

All techniques listed above can suppress<br />

pests, but some can also be applied <strong>to</strong> provide<br />

disinfestation in certain commodities,<br />

allowing them <strong>to</strong> meet commercial, preshipment<br />

and quarantine requirements for<br />

pest-free products. Table 5.4 provides an<br />

overview of the types of commodities and<br />

structures for which alternative techniques<br />

can be effective.<br />

None of the techniques, however, can be used<br />

for all of the applications for which MB is<br />

used. Each alternative has different advantages<br />

and disadvantages and must be selected<br />

Compiled from: MBTOC 1998, TEAP 1999<br />

for the appropriate commodity or structure<br />

and circumstances. Section 6 covers the<br />

advantages, limitations and suitability of<br />

alternatives for different situations and<br />

climates.<br />

Commercially available alternatives<br />

Many alternatives have been developed <strong>to</strong><br />

the commercial level. Some techniques are<br />

used by a small number of enterprises or in a<br />

few countries, while others, such as phosphine,<br />

have widespread adoption. Examples<br />

of alternatives used for grain and other<br />

s<strong>to</strong>red products are given in Table 5.5, for<br />

Section 5: Control of Pests in Commodities and Structures<br />

101


Table 5.5 Examples of alternatives used for durable commodities<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

102<br />

Examples of countries where<br />

Durable commodities Treatments alternatives used commercially<br />

S<strong>to</strong>red grains, pulses, Phosphine Germany, Philippines, Thailand, UK,<br />

oilseeds<br />

Zimbabwe and many other developed<br />

and developing countries<br />

Carbon dioxide<br />

Australia, Indonesia, Philippines, Vietnam<br />

In-transit carbon dioxide Australia<br />

In-transit phosphine Europe, USA<br />

Phosphine mixed with<br />

carbon dioxide or nitrogen Australia, Cyprus and Germany<br />

Nitrogen<br />

Australia, Germany<br />

Gas-flushed retail packs Thailand<br />

Hermetic s<strong>to</strong>rage<br />

Cyprus, Israel, Philippines<br />

Heat treatment<br />

Australia (pro<strong>to</strong>type)<br />

Cold treatments<br />

Mediterranean, USA<br />

Freezing<br />

Europe (for premium grains)<br />

Inert dusts<br />

Australia, Canada, Germany<br />

Other food products,<br />

e.g., coffee, cocoa beans, Phosphine Used in many countries<br />

black pepper, dried fruits, Nitrogen and low temperature Australia<br />

most types of nuts, coconut Carbon dioxide and pressure France, Germany<br />

products, pet foods Carbon dioxide Australia (commercial trials)<br />

Tobacco Phosphine Zimbabwe, Philippines and many<br />

other countries<br />

Steam conditioning<br />

Many countries<br />

Methoprene<br />

Used in some countries<br />

Wood and wooden items Nitrogen or carbon dioxide Germany<br />

Kiln drying, heat treatments UK, Denmark, Germany, Austria, USA<br />

Phosphine<br />

Routine use in some countries<br />

Sulphuryl fluoride,<br />

Routine use in some countries<br />

Borate or bifluorides Germany, USA<br />

Artifacts, museum items Heat treatment with Austria, Germany, UK<br />

controlled humidity<br />

Heat treatment<br />

Denmark<br />

Nitrogen<br />

Germany<br />

Compiled from: MBTOC 1997, Prospect 1997, GTZ 1998, USDA-APHIS 1993, Batchelor 1999a<br />

perishable commodities in Table 5.6, and for<br />

structures in Table 5.7.<br />

These examples are intended <strong>to</strong> illustrate the<br />

diversity of techniques available, but it is<br />

important <strong>to</strong> note that each technique is suitable<br />

for different and specific situations. For<br />

example, a slow-acting nitrogen treatment is<br />

not suitable for a situation where a rapid<br />

treatment is required. Likewise, cold treatments<br />

cannot be used for cold-sensitive commodities<br />

that could be damaged by cold.<br />

Uses without alternatives<br />

There is a limited number of commodities<br />

and uses for which MB alternatives have not


Table 5.6 Examples of quarantine treatments approved for perishable commodities<br />

Treatment<br />

Cold treatments<br />

Heat treatments<br />

Certified pest-free zones<br />

or pest-free periods<br />

Systems approach<br />

Pre-shipment inspection<br />

and certification<br />

Inspection on arrival<br />

Physical removal of pests<br />

Controlled atmospheres<br />

Pesticides, fumigants,<br />

aerosols<br />

Combination treatments<br />

Approved quarantine applications<br />

Apples from Australia, Chile, Ecuador, France, Israel, Italy, Jordan,<br />

South Africa and Zimbabwe <strong>to</strong> USA<br />

Cherries from Argentina, Chile and Mexico <strong>to</strong> USA<br />

Grapes from Chile <strong>to</strong> Japan<br />

Grapes from Brazil, Colombia, Dominican Republic, Ecuador, India<br />

and South Africa <strong>to</strong> USA<br />

Citrus from Australia, Florida (USA), Israel, South Africa, Spain,<br />

Swaziland and Taiwan <strong>to</strong> Japan<br />

Mangoes from Australia, Philippines, Taiwan and Thailand <strong>to</strong> Japan<br />

Papaya from Hawaii <strong>to</strong> Japan<br />

Toma<strong>to</strong>, bell pepper, zucchini, eggplant, squash, mango, pineapple,<br />

papaya and mountain papaya <strong>to</strong> USA<br />

Orange, grapefruit, clementine, mango from Mexico <strong>to</strong> USA<br />

Mountain papaya from Chile <strong>to</strong> USA<br />

Citrus, papaya, lychee, from Hawaii <strong>to</strong> mainland USA<br />

Papaya from Belize <strong>to</strong> USA<br />

Mango from Taiwan <strong>to</strong> USA<br />

Ear corn <strong>to</strong> USA<br />

Orchids, plants and cuttings <strong>to</strong> USA<br />

Chrysanthemum cuttings <strong>to</strong> USA<br />

Plant materials unable <strong>to</strong> <strong>to</strong>lerate MB fumigation <strong>to</strong> USA<br />

Banana roots for propagation <strong>to</strong> USA<br />

Many bulbs and tubers <strong>to</strong> USA<br />

Narcissus bulbs <strong>to</strong> Japan<br />

Melons from a region of China and from the Netherlands <strong>to</strong> Japan<br />

Squash, <strong>to</strong>ma<strong>to</strong>es, green pepper, eggplant from Tasmania<br />

(Australia) <strong>to</strong> Japan<br />

Cucurbits <strong>to</strong> Japan and USA<br />

Nectarines from USA <strong>to</strong> New Zealand<br />

Immature banana <strong>to</strong> Japan<br />

Some avocado exports<br />

Citrus from Florida <strong>to</strong> Japan<br />

Certain cut flowers from Netherlands and Colombia <strong>to</strong> Japan<br />

Apples from Chile and New Zealand <strong>to</strong> USA<br />

Garlic from Italy and Spain <strong>to</strong> USA<br />

Nectarines from New Zealand <strong>to</strong> Australia<br />

Green vegetables <strong>to</strong> many countries<br />

Small batches of seeds for propagation <strong>to</strong> USA<br />

Root crops are accepted by many countries if all soil is removed<br />

Hand removal of certain pests from cut flowers <strong>to</strong> USA<br />

Propagative plant materials unable <strong>to</strong> <strong>to</strong>lerate MB fumigation <strong>to</strong> USA<br />

Apples from Canada <strong>to</strong> California<br />

Cut flowers from New Zealand <strong>to</strong> Japan<br />

Asparagus <strong>to</strong> Japan<br />

Cut flowers from Thailand and Hawaii <strong>to</strong> Japan<br />

Bulbs <strong>to</strong> Japan<br />

Toma<strong>to</strong>es from Australia <strong>to</strong> New Zealand<br />

Propagative plant material <strong>to</strong> USA<br />

Certain ornamental plants <strong>to</strong> USA<br />

Soapy water and wax coating for cherimoya and limes from Chile <strong>to</strong> USA<br />

Warm soapy water and brushing for durian and other large fruit <strong>to</strong> USA<br />

Vapor heat and cold treatment for litchi from China and Taiwan <strong>to</strong> Japan<br />

Pressure water spray and insecticide for certain cut flowers <strong>to</strong> USA<br />

Hand removal and pesticide for certain ornamental plants, Christmas<br />

trees and propagative plant materials <strong>to</strong> USA<br />

Heat treatment + removal of pulp from seeds for propagation <strong>to</strong> USA<br />

Compiled from: MBTOC 1998, USDA-APHIS 1998<br />

Section 5: Control of Pests in Commodities and Structures<br />

103


Table 5.7 Examples of alternative techniques used for structures<br />

Treatments<br />

Heat treatments<br />

Heat treatments + IPM<br />

Phosphine + carbon dioxide + heat<br />

Sulphuryl fluoride<br />

Intensive moni<strong>to</strong>ring + IPM<br />

Cold treatment (freeze-out)<br />

Structures<br />

His<strong>to</strong>ric buildings and mills in Scandinavia<br />

Food processing facilities and mills in Canada, USA<br />

Food processing facilities and mills in USA<br />

Wooden constructions, domestic buildings<br />

and railcars in USA<br />

Food warehouses in Hawaii, USA, UK<br />

Food facilities in Canada.<br />

Compiled from: Mueller 1998, GTZ 1998, MBTOC 1998, Batchelor 1999a<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

104<br />

been identified. MBTOC recently reviewed<br />

alternatives and failed <strong>to</strong> identify existing<br />

alternatives for the following quarantine and<br />

pre-shipment uses of MB for durable commodities<br />

and structures (MBTOC 1998, TEAP<br />

1999):<br />

Disinfestation of fresh walnuts for immediate<br />

sale.<br />

Disinfestation of fresh chestnuts.<br />

Disinfestation of oak logs with oak wilt<br />

fungus.<br />

Elimination of seed-borne nema<strong>to</strong>des in<br />

alfalfa and some other seeds for<br />

planting.<br />

Control of organophosphate resistant<br />

mites in traditional cheese s<strong>to</strong>res.<br />

Mills and food processing facilities where<br />

IPM systems have not been implemented<br />

successfully.<br />

Some cases of aircraft disinfestation.<br />

Worldwide, these uses are unlikely <strong>to</strong> exceed<br />

50 <strong>to</strong>nnes of MB per year in <strong>to</strong>tal (MBTOC<br />

1998).<br />

For perishable commodities, MBTOC failed <strong>to</strong><br />

identify approved quarantine treatments <strong>to</strong><br />

replace MB in the following commodities and<br />

situations:<br />

Apples potentially infested with codling<br />

moth and exported from New Zealand<br />

and USA <strong>to</strong> Japan.<br />

S<strong>to</strong>nefruit (peaches, plums, cherries,<br />

apricots, nectarines) potentially infested<br />

with codling moth and exported <strong>to</strong><br />

countries free from codling moth.<br />

Grapes potentially infested with<br />

Brevipalpis chilensis mites exported from<br />

Chile <strong>to</strong> the USA.<br />

Grape exports from USA <strong>to</strong> countries<br />

that require MB fumigation.<br />

Berryfruit (strawberry, raspberry, blueberry<br />

and blackberry) exports from countries<br />

such as Australia, Brazil, Canada,<br />

Colombia, Israel, New Zealand, South<br />

Africa, USA and Zimbabwe.<br />

Root crop exports (carrot, cassava, garlic,<br />

ginger, onion, pota<strong>to</strong>, sweet pota<strong>to</strong>, taro<br />

and yam) where infested with quarantine<br />

pests.<br />

While viable alternatives are not available for<br />

the above uses <strong>to</strong>day, it should be noted that<br />

MBTOC (1994, 1998) has identified many<br />

potentially effective alternatives that will<br />

require additional research and development<br />

for application <strong>to</strong> these specific commodities<br />

and pests.<br />

Identifying suitable alternatives<br />

The identification of a technique appropriate<br />

for a specific situation can be complex,<br />

because it requires consideration of a wide<br />

range of technical, economic, market, regula<strong>to</strong>ry,<br />

safety, environmental and organisational<br />

fac<strong>to</strong>rs (see also Section 2). The process may<br />

be simplified by following the five steps outlined<br />

below:


1. Develop a thorough understanding<br />

of the pest problems by identifying the<br />

pests and learning about their life<br />

stages, habits, preferences and the fac<strong>to</strong>rs<br />

that keep them from thriving.<br />

2. Be clear about the market and regula<strong>to</strong>ry<br />

requirements for pest control.<br />

What degree of pest control is needed?<br />

Will pest suppression suffice or is virtual<br />

elimination of pests necessary? What<br />

practices could be introduced <strong>to</strong> prevent<br />

pest populations from building up and<br />

<strong>to</strong> reduce the frequency of disinfestation<br />

treatments?<br />

3. List the techniques that would be<br />

effective in controlling the pests in your<br />

commodity/structure. Initially, focus solely<br />

on technical issues and be sure <strong>to</strong><br />

make a full list of all possible options.<br />

You could start by making a list of all<br />

pests that affect the commodity or structure.<br />

For each pest, identify all the remedial<br />

treatments and preventive practices<br />

that would control each pest <strong>to</strong> a satisfac<strong>to</strong>ry<br />

level. Then use the list <strong>to</strong> identify<br />

the different combinations of techniques<br />

that could control the full range of pests<br />

you will encounter. Annex 4 provides<br />

template tables <strong>to</strong> guide you through<br />

these steps.<br />

4. Evaluate the suitability of each technical<br />

option for your situation. For<br />

each option, list the technical requirements,<br />

advantages and disadvantages,<br />

and consider the relevant issues, such as<br />

staff requirements, logistics, equipment<br />

and materials, costs, regula<strong>to</strong>ry requirements<br />

and safety and environmental<br />

issues. (Refer <strong>to</strong> Section 2 for a brief discussion<br />

of these issues.) You may find it<br />

useful <strong>to</strong> summarise the information in a<br />

table format, as shown in Annex 4.<br />

Specific questions relating <strong>to</strong> your commodity<br />

and situation can include the following:<br />

Which pest species and life stages need<br />

<strong>to</strong> be controlled?<br />

What degree of pest control is required?<br />

What are the habits and preferences of<br />

these pests? Which fac<strong>to</strong>rs favour or discourage<br />

their presence, stage development<br />

and reproduction? Where and<br />

when is each pest species vulnerable?<br />

Which procedures and treatments are<br />

technically capable of controlling the<br />

pests?<br />

What steps can be taken <strong>to</strong> prevent the<br />

entry of pests, prevent the build-up of<br />

pest populations, and reduce the need<br />

for disinfestation treatments?<br />

How much time is available for carrying<br />

out treatments?<br />

Where time is a problem, can commodities<br />

be managed differently <strong>to</strong> allow<br />

more time for treatments <strong>to</strong> be carried<br />

out? For example, can treatments be<br />

carried out at an earlier stage of s<strong>to</strong>rage<br />

and handling, or while in transit?<br />

Which treatments can the commodity or<br />

structure safely withstand without damage<br />

or effects on commercial quality?<br />

Would residues or other effects present<br />

a problem for companies that purchase<br />

the products?<br />

Which treatments do pesticide safety<br />

authorities already permit? Which treatments<br />

do not need <strong>to</strong> be registered?<br />

What safety measures need <strong>to</strong> be taken<br />

<strong>to</strong> protect staff, local communities and<br />

the environment?<br />

Which treatments and practices will<br />

allow staff continuous access <strong>to</strong> commodities<br />

and working areas?<br />

What facilities, equipment and staff skills<br />

are currently available?<br />

What changes in equipment, materials<br />

and staff skills would be required by the<br />

alternatives?<br />

What changes in management and<br />

working procedures would be<br />

necessary?<br />

Section 5: Control of Pests in Commodities and Structures<br />

105


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

What activities or steps would have <strong>to</strong><br />

be carried out <strong>to</strong> introduce each alternative?<br />

What are the capital and set-up costs,<br />

operating costs, profitability and payback<br />

period for each alternative system?<br />

How can the alternatives be adapted<br />

and improved <strong>to</strong> better suit local<br />

circumstances?<br />

5. Develop a plan. Once you have chosen<br />

the most promising techniques, identify<br />

the main steps and activities that adoption<br />

of the technique(s) will require. Try<br />

<strong>to</strong> talk with specialists and suppliers <strong>to</strong><br />

find ways <strong>to</strong> adapt systems <strong>to</strong> your<br />

needs, <strong>to</strong> make change feasible, <strong>to</strong><br />

improve efficacy and <strong>to</strong> reduce costs. For<br />

assistance, refer <strong>to</strong> the information in<br />

Sections 6.1 through 6.7, consult the<br />

specialists and suppliers listed <strong>to</strong>ward the<br />

end of each Section and the reading<br />

material listed in the corresponding section<br />

of Annex 7. See Annex 6 for an<br />

alphabetical listing of supplier names<br />

and contact information.<br />

106


6<br />

Alternative Techniques for<br />

Controlling Pests in Commodities<br />

and Structures<br />

6.1 IPM and preventive<br />

measures<br />

In order <strong>to</strong> replace a particular use of MB, it is<br />

often necessary <strong>to</strong> combine several different<br />

alternatives in IPM or Integrated Commodity<br />

Management (ICM). In most situations with<br />

s<strong>to</strong>red products and structures, it is possible<br />

<strong>to</strong> avoid or minimise pest infestation so that<br />

”clean up” with MB is not needed. This type<br />

of pest management is not just a replacement<br />

for MB but often avoids the need for<br />

MB or other remedial treatments.<br />

The term IPM is used <strong>to</strong> describe diverse combinations<br />

of treatments and practices <strong>to</strong> control<br />

pests. Development of an IPM system<br />

starts with the identification of existing and<br />

potential pests and an understanding of the<br />

causes of their presence, the fac<strong>to</strong>rs that<br />

allow them <strong>to</strong> thrive, and their vulnerabilities.<br />

Prevention is a major component of IPM and<br />

involves activities such as the removal of pest<br />

refuges, regular cleaning of s<strong>to</strong>rage areas,<br />

and use of physical barriers <strong>to</strong> prevent pests<br />

from entering products. Products and structures<br />

are moni<strong>to</strong>red regularly for insects, and<br />

action is taken if an ”action threshold” is<br />

exceeded. The threshold notion involves<br />

determining the level of pest activity that can<br />

be <strong>to</strong>lerated without significant product loss<br />

or damage. Such a threshold is based on the<br />

amount of economic damage that can be <strong>to</strong>lerated<br />

as well as the size and life stage of the<br />

populations of pests — detailed informai<strong>to</strong>n<br />

about IPM approaches for s<strong>to</strong>red products<br />

can be found in Subramanyam and Hagstrum<br />

1996.<br />

The components of an IPM system will vary<br />

greatly from one situation <strong>to</strong> another,<br />

because the system and practices are tailored<br />

<strong>to</strong> a specific location. Some IPM systems<br />

require constant maintenance in order <strong>to</strong> succeed,<br />

and occasional full-site or curative treatments<br />

may be required <strong>to</strong> supplement IPM<br />

systems. An IPM system for grain s<strong>to</strong>red in<br />

bulk or bags, for example, may include cleaning,<br />

pest detection procedures, insecticide<br />

sprays, s<strong>to</strong>ck rotation and control of the s<strong>to</strong>rage<br />

environment.<br />

IPM requires knowledge about the interactions<br />

between s<strong>to</strong>red products, the s<strong>to</strong>rage<br />

environment and the insects associated with<br />

the products. It requires significantly more<br />

know-how than does MB use, and substantial<br />

effort needs <strong>to</strong> be put in<strong>to</strong> training technicians<br />

and commodity managers.<br />

Pest management for durables and<br />

structures<br />

Three important components of pest management<br />

for s<strong>to</strong>red products include prevention,<br />

moni<strong>to</strong>ring and control (Mueller 1998).<br />

a) Prevention<br />

For an IPM programme <strong>to</strong> succeed, the<br />

largest proportion of time and effort (about<br />

75%) should go in<strong>to</strong> the tasks of preventing<br />

pests from entering s<strong>to</strong>rage areas and products,<br />

where possible, and preventing them<br />

from thriving and accumulating. These aims<br />

require changes in commodity management<br />

practices, adaptations <strong>to</strong> the physical environment<br />

of s<strong>to</strong>rage areas, and the introduction<br />

of measures <strong>to</strong> ensure high levels of<br />

cleanliness. Typical prevention activities<br />

include the following:<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

107


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

108<br />

Changing farm practices, where possible,<br />

so that products are kept in clean<br />

conditions as soon as they are harvested.<br />

Using physical barriers (e.g., insect-proof<br />

s<strong>to</strong>rage containers, insect screens on<br />

windows and openings) <strong>to</strong> prevent<br />

insects from entering structures or gaining<br />

access <strong>to</strong> products.<br />

Removing articles and altering s<strong>to</strong>rage<br />

areas <strong>to</strong> eliminate crevices and places<br />

that could provide refuge for pests, both<br />

inside and outside the s<strong>to</strong>rage facility.<br />

Drawing up a work programme for frequent<br />

cleaning (including sweeping and<br />

vacuuming) of all parts of the s<strong>to</strong>rage<br />

premises, <strong>to</strong> assure that they are free<br />

from food residues and debris that<br />

attract insects and rodents.<br />

Maintaining a 45-cm (18-inch) gap<br />

between s<strong>to</strong>red products and interior<br />

walls, <strong>to</strong> assist cleaning.<br />

Keeping outside areas clean of food<br />

residues that might attract pests.<br />

Cleaning all empty commodity receptacles<br />

before re-filling, so that no insects<br />

remain.<br />

Establishing procedures <strong>to</strong> verify that<br />

new batches of products are free from<br />

pests and only clean products are<br />

brought in<strong>to</strong> s<strong>to</strong>res. Such procedures<br />

would include inspecting incoming products<br />

and packaging materials for pests<br />

and placing contaminated products in<strong>to</strong><br />

separate holding areas until they have<br />

been disinfested.<br />

Keeping products cool and/or aerated,<br />

where feasible.<br />

Keeping moisture levels low.<br />

b) Moni<strong>to</strong>ring<br />

About 20% of the time and effort of an IPM<br />

system involves moni<strong>to</strong>ring for pests and carrying<br />

out inspections <strong>to</strong> ensure that prevention<br />

practices are properly implemented.<br />

Diligent moni<strong>to</strong>ring allows for early action<br />

when pests are found. Common activities<br />

include the following:<br />

Using effectively designed insect and<br />

rodent traps with correct pheromone or<br />

bait for attracting target pests.<br />

Having the correct number (density) and<br />

placement of traps.<br />

Inspecting batches visually.<br />

Examining samples of incoming products<br />

and s<strong>to</strong>red batches of products.<br />

Using records <strong>to</strong> identify old s<strong>to</strong>ck, since<br />

pest outbreaks often start from pallets of<br />

old products that have not been rotated<br />

or moni<strong>to</strong>red.<br />

Maintaining records and rotating s<strong>to</strong>ck.<br />

Checking moisture, temperature and<br />

other conditions that favour or discourage<br />

pests.<br />

Inspecting premises regularly <strong>to</strong> ensure<br />

that cleaning has been done thoroughly.<br />

c) Control<br />

If prevention and moni<strong>to</strong>ring are carried out<br />

effectively,then less than 5% of time and<br />

effort will go in<strong>to</strong> treatments <strong>to</strong> eliminate<br />

pest infestations. Curative treatments become<br />

necessary if pest populations become established,<br />

often an indication that prevention<br />

and moni<strong>to</strong>ring have not been thorough.<br />

In contrast <strong>to</strong> the approach outlined above,<br />

enterprises generally put most effort in<strong>to</strong> disinfestation<br />

treatments and put little effort<br />

in<strong>to</strong> prevention and moni<strong>to</strong>ring. MBTOC<br />

points out that many MB alternatives are not<br />

direct replacements for MB; rather they are<br />

measures designed <strong>to</strong> avoid the need for MB<br />

(MBTOC 1998).<br />

Preventive measures for perishable<br />

commodities<br />

For perishable commodities, some measures<br />

can be introduced in the field and after harvest<br />

<strong>to</strong> avoid the need for MB fumigation or<br />

other quarantine treatments. This is an


Table 6.1.1 Examples of pest-free zones that are accepted<br />

instead of quarantine treatments<br />

Perishable commodities Countries Quarantine pests<br />

Capsicum, aubergine Exports from Tasmania Tobacco blue mold<br />

(eggplant) and <strong>to</strong>ma<strong>to</strong>es (Australia) <strong>to</strong> Japan (Peronospora tabacina),<br />

Mediterranean fruit fly (Ceratitis<br />

capitata), Queensland fruit fly<br />

(Bactrocera tryoni)<br />

Melons Exports from Hsingchang Melon fly (Bactrocera cucurbitae<br />

Uighur Au<strong>to</strong>nomous Region Coq.)<br />

in China <strong>to</strong> Japan<br />

Strawberries, grapes, melons, Exports from the Netherlands Mediterranean fruit fly<br />

<strong>to</strong>ma<strong>to</strong>es, peppers, <strong>to</strong> Japan (Ceratitis capitata)<br />

cucumbers, aubergine<br />

and squash<br />

Grapes, kiwifruit and other Exports from Chile <strong>to</strong> Japan Mediterranean fruit fly (Ceratitis<br />

products<br />

capitata)<br />

advantage, because MB and other treatments<br />

can reduce the shelf life and market quality<br />

of perishable commodities. Examples include:<br />

a) Inspection and certification<br />

In some circumstances, it is feasible <strong>to</strong> establish<br />

a system for inspecting and certifying that<br />

products are free from target pests before they<br />

are exported. For example, Japanese quarantine<br />

officials inspect cut flowers in the<br />

Netherlands and Colombia prior <strong>to</strong> shipment;<br />

this reduces the need for inspection and disinfestation<br />

treatments on arrival in Japan.<br />

Inspection is labour intensive and needs <strong>to</strong> be<br />

carried out by personnel who are well trained<br />

and accepted as competent and independent<br />

by the importing country. Inspection may<br />

become simpler in the future with the<br />

development of au<strong>to</strong>matic equipment <strong>to</strong> scan<br />

products and detect pests. For example,<br />

chemical sensors may be designed <strong>to</strong> detect<br />

or “smell” specific compounds emitted by<br />

pests.<br />

b) Pest-free zones<br />

Some countries have certain geographic<br />

regions that are free from quarantine pests of<br />

concern, even though the pest is established<br />

Compiled from: MBTOC 1998 (See Riherd et al 1994 for further examples.)<br />

in other parts of the country (Shannon 1994).<br />

Where regions can be proven and certified as<br />

pest-free zones, products can be exported<br />

from them without a quarantine treatment.<br />

A substantial amount of scientific survey data<br />

is required <strong>to</strong> demonstrate that an area is free<br />

from the target pest. In addition, regula<strong>to</strong>ry<br />

measures are required <strong>to</strong> keep the area<br />

pest-free, and on-going surveillance must<br />

be carried out. Pest-free zones have been<br />

established in a number of countries, including<br />

Australia, China, the Netherlands and<br />

Chile. Further examples of approved pest-free<br />

zones can be found in Table 6.1.1 and in<br />

Riherd et al (1994).<br />

c) Systems approach<br />

For certain commodities and pests it is feasible<br />

<strong>to</strong> set up procedures on farms and after<br />

harvest <strong>to</strong> ensure that many small steps eliminate<br />

quarantine pests. Examples of measures<br />

include the following:<br />

Planting commodities that are not the<br />

preferred host of the quarantine pest<br />

(Armstrong 1994a).<br />

Harvesting when the commodity is not<br />

susceptible <strong>to</strong> attack by the pest.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

109


Table 6.1.2 Examples of combined alternative treatments<br />

for commodities and structures<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

110<br />

Commodities or structures Treatments Countries<br />

Durable commodities and structures<br />

Grains for export IPM + nitrogen treatment Australia<br />

Food processing facilities Phosphine + carbon dioxide + heat USA<br />

Approved quarantine treatments for perishable commodities<br />

Cherimoya and limes Soapy water + wax coating on fruit Exports from Chile <strong>to</strong> USA<br />

Cut flowers (robust types) Pressured water spray + insecticide Exports from various<br />

countries <strong>to</strong> USA<br />

Durian and other large fruit Warm soapy water + brushing Exports from various<br />

countries <strong>to</strong> USA<br />

Litchi fruit Vapour heat + cold treatment Exports from China and<br />

Taiwan <strong>to</strong> Japan<br />

Ornamental plants (certain Removal of pests by hand + Exports from various countypes),<br />

Christmas trees and pesticide treatment tries <strong>to</strong> USA<br />

propagative materials<br />

Seeds for propagation Heat treatment + removal of pulp Exports from various<br />

countries <strong>to</strong> USA<br />

Harvesting when the pest is not active.<br />

Covering picked fruit <strong>to</strong> avoid<br />

”hitchhiker” pests.<br />

The systems approach for achieving quarantine<br />

security has been described by Jang and<br />

Moffitt (1994) and includes the following<br />

steps:<br />

Consistent and effective management<br />

for reducing pest populations in farm<br />

fields.<br />

Preventing the commodity from becoming<br />

contaminated with pests after harvest<br />

and during shipping.<br />

Culling in the pack house.<br />

Moni<strong>to</strong>ring, inspecting and certifying the<br />

critical parts of the system.<br />

The systems approach can achieve or even<br />

exceed the level of quarantine security<br />

required by an importing country (Moffitt<br />

1990, Vail et al 1993). It depends heavily on<br />

knowledge of the pest-host biology and life<br />

Compiled from: MBTOC 1994, MBTOC 1998, Batchelor 1999a, USDA-APHIS 1998<br />

cycles, well-trained staff and implementation<br />

of effective management systems.<br />

Among the cases of commercial application<br />

(MBTOC 1997, MBTOC 1998), is the export<br />

of avocados from Mexico <strong>to</strong> 19 Northeastern<br />

states in the USA. Products protected in this<br />

manner are certified free from avocado seed<br />

weevil, avocado seed moth, avocado stem<br />

weevil, fruit fly and other hitchhiker pests,<br />

based on field surveys, trapping, field treatments,<br />

field sanitation, host resistance, postharvest<br />

safeguards, pack house inspection,<br />

fruit culling, shipping only in winter, and<br />

inspection on arrival in the importing country<br />

(Firko 1995, Miller et al 1995). Other examples<br />

of the systems approach for quarantine<br />

purposes include citrus exported from Florida<br />

USA <strong>to</strong> Japan and apples exported from USA<br />

<strong>to</strong> Brazil.<br />

d) Combined treatments<br />

Combined treatments can be very useful in<br />

replacing MB for perishable commodities,<br />

because they allow several narrow-spectrum


Table 6.1.3 Examples of specialists, consultants and suppliers of services for IPM<br />

and preventive pest management techniques<br />

Items<br />

Durable commodities<br />

and structures<br />

Perishable commodities<br />

or less effective techniques <strong>to</strong> attain a cumulative<br />

impact equivalent <strong>to</strong> MB. There are several<br />

cases where combined treatments have<br />

been used commercially for products and<br />

have been approved for quarantine purposes.<br />

Examples are given in Table 6.1.2.<br />

Technical information about alternative techniques<br />

is found later in this Section.<br />

Specialists and consultants<br />

Canadian Grain Commission, Canada<br />

Canadian Pest Control Association, Canada<br />

Cereal Research Station, Canada<br />

CSIRO, Canberra, Australia<br />

Cyprus Grain Commission, Cyprus<br />

Food Protection Services, USA<br />

Fumigation Services and Supply Inc, USA<br />

Grainco Australia Ltd, Australia<br />

Grainsmith Pty, Australia<br />

GTZ, Germany<br />

HortResearch Natural Systems Group, New Zealand<br />

Insects Limited Inc, USA<br />

Natural Resources Institute, UK<br />

Ren<strong>to</strong>kil, Germany<br />

Pacific Southwest Forest and Range Experiment Station,<br />

Forest Service USDA, USA<br />

For information and examples of commercial application:<br />

Bio-Integral Resource Center, USA<br />

Quaker Oats Canada Ltd, Canada<br />

Crop & Food Research, New Zealand<br />

HortResearch Market Access Group, New Zealand<br />

Dr Jack Armstrong and Dr Eric Jang, Tropical Fruit and<br />

Vegetable Research Labora<strong>to</strong>ry, USDA, USA<br />

Dr Arnold Hara, University of Hawaii, USA<br />

Dr Robert Hill, HortResearch, Ruakura, New Zealand<br />

Dr Adel Kader, Dr Elizabeth Mitcham, Pomology Dept,<br />

University of California, USA<br />

Dr Michael Lay-Yee, HortResearch, New Zealand<br />

Prof Eugenio López L, Universidad Católica de Valparaiso,<br />

Chile<br />

Dr Robert Mangan, Subtropical Agriculture Research<br />

Labora<strong>to</strong>ry, USDA, USA<br />

Dr Lisa Neven and Dr Harold Moffitt, Yakima Agricultural<br />

Research Labora<strong>to</strong>ry, USDA, USA<br />

Dr Jennifer Sharp, Dr Walter Gould and Dr Guy Hallman,<br />

Subtropical Horticulture Research Station, USDA, USA<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.<br />

Specialists and suppliers of IPM<br />

services<br />

Table 6.1.3 provides examples of specialists,<br />

consultants and suppliers of services related<br />

<strong>to</strong> IPM and preventive practices in pest management.<br />

See Annex 6 for an alphabetical<br />

listing of suppliers, specialists and experts.<br />

See also Annex 5 and Annex 7 for additional<br />

information resources.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

111


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

112<br />

6.2 Cold treatments<br />

and aeration<br />

Advantages<br />

No residues left in food.<br />

High consumer acceptance.<br />

Safe for workers.<br />

Relatively easy <strong>to</strong> use.<br />

Cold s<strong>to</strong>rage extends shelf-life.<br />

Some cold treatments provide<br />

disinfestation.<br />

Disadvantages<br />

Relatively long treatment times (with<br />

some exceptions).<br />

Relatively expensive.<br />

Consumes energy.<br />

Not suitable for products that cannot<br />

withstand cold temperatures.<br />

Technical description<br />

Cold treatments can be used for s<strong>to</strong>red products<br />

as part of an IPM system, and can also<br />

be used for disinfestation <strong>to</strong> meet QPS<br />

requirements. Below about 10°C insect reproduction<br />

ceases and the populations of most<br />

pests of durable products slowly decline.<br />

Temperatures of -15°C for a few days control<br />

most pest species in durable commodities.<br />

Temperatures around 0°C kill certain quarantine<br />

pests of perishable commodities, particularly<br />

fruit fly species.<br />

Several cold treatment techniques may be<br />

used:<br />

Aeration<br />

Aeration is used in many temperate regions<br />

with the aim of cooling grain soon after harvest<br />

<strong>to</strong> a temperature low enough <strong>to</strong> prevent<br />

the development of major insect species (typically<br />

less than 14°C). Aeration is typically<br />

used <strong>to</strong> prevent damage, pest multiplication<br />

and reinvasion, and a high mortality of s<strong>to</strong>red<br />

product pests can be achieved if grain is kept<br />

below 5°C for at least four months (MBTOC<br />

1994). Ambient cold air — such as cool, dry<br />

night air — is fed in<strong>to</strong> the s<strong>to</strong>red commodity<br />

through an aeration system, typically consisting<br />

of ventilation ducts, fans and a control<br />

system. Cooling can also be achieved by<br />

transferring commodities from one bin <strong>to</strong><br />

another in cold weather, exposing them <strong>to</strong><br />

the cold air.<br />

Aeration must be combined with other techniques<br />

<strong>to</strong> give control equivalent <strong>to</strong> repeated<br />

fumigations with MB, but of itself can give<br />

sufficient insect control <strong>to</strong> meet the requirements<br />

of some markets. Well-controlled aeration<br />

and cooling result in negligible grain<br />

losses due <strong>to</strong> insect pests.<br />

Refrigerated cooling<br />

If cool, dry ambient air is not available for<br />

aerating grain, it is feasible <strong>to</strong> use refrigeration<br />

units <strong>to</strong> chill and dehumidify incoming<br />

air, even in humid sub-tropical environments.<br />

Many grain silos in the Mediterranean and<br />

sub-tropical regions use this technique<br />

(MBTOC 1998). Other durable products can<br />

be held at refrigeration temperatures (preferably<br />

less than 5°C) <strong>to</strong> delay the development<br />

of pests.<br />

Cold treatments<br />

Cold s<strong>to</strong>rage at temperatures down <strong>to</strong> about<br />

0°C is suitable for long-term protection of<br />

certain types of durable products, such as<br />

prunes, dried pears, nuts and beverage crops.<br />

Commodities can be s<strong>to</strong>red in cold s<strong>to</strong>res and<br />

other warehouse facilities equipped for refrigeration.<br />

Cold treatments in the range of -1 <strong>to</strong><br />

+2°C are important quarantine treatments for<br />

certain perishable commodities, such as citrus<br />

fruit, and a number of different treatment<br />

schedules have been approved by quarantine<br />

authorities. These vary with the type of fruit,<br />

target pest and destination country. Table<br />

6.2.3 provides examples of quarantine cold<br />

treatment schedules. Cold treatments can


only be used for perishable and durable commodities<br />

that <strong>to</strong>lerate cold temperatures<br />

without suffering quality damage.<br />

Freezer treatments<br />

All common s<strong>to</strong>red grain insect pests can be<br />

controlled when grain is exposed for 2 weeks<br />

<strong>to</strong> temperatures lower than -18°C (MBTOC<br />

1998). Such freezer treatments are used for<br />

the disinfestation of small batches of high<br />

value grain, including special seed s<strong>to</strong>cks and<br />

organically grown rice. Exposure <strong>to</strong> -10°C for<br />

about 11 hours disinfests dates, for example.<br />

This treatment is particularly effective when<br />

combined with a brief exposure <strong>to</strong> 2.8% oxygen<br />

or <strong>to</strong> low pressure, which causes insects<br />

<strong>to</strong> leave the centre of the fruit and become<br />

vulnerable <strong>to</strong> the cold (Donahaye et al 1991,<br />

Donahaye et al 1992).<br />

While freezer treatments are effective for certain<br />

types of durables, they are sometimes<br />

only practicable for treating small quantities<br />

in batches. Freezing cannot normally be used<br />

for perishable commodities, because such<br />

commodities have a high moisture content<br />

and fragile cell walls that make them vulnerable<br />

<strong>to</strong> severe damage.<br />

For quarantine purposes, freezer temperatures<br />

are typically required <strong>to</strong> eliminate pests<br />

sufficiently in durable products. In the case of<br />

perishable commodities, quarantine treatments<br />

are based on higher temperatures, typically<br />

-1°C <strong>to</strong> +2°C, although the exact<br />

temperature and duration depends on the<br />

susceptibility of the target pest and the commodity’s<br />

<strong>to</strong>lerance of cold.<br />

Cold temperatures have <strong>to</strong> be carefully selected<br />

<strong>to</strong> kill target pests while avoiding damage<br />

<strong>to</strong> products, particularly those of tropical origin,<br />

which are more sensitive <strong>to</strong> cold. In some<br />

cases it is possible <strong>to</strong> prevent damage by<br />

using two-stage treatments (Houck et al<br />

1990a, Aung et al 1997).<br />

Many commodities, such as grain, are poor<br />

thermal conduc<strong>to</strong>rs and provide pests with<br />

some protection against the cold, so it is necessary<br />

<strong>to</strong> ensure that cold temperatures are<br />

achieved within the commodities, not simply<br />

in the air spaces between them. The required<br />

treatment times vary greatly according <strong>to</strong> the<br />

following fac<strong>to</strong>rs:<br />

Temperature.<br />

Rate at which the commodity conducts<br />

the cold.<br />

Pest species and pest life stage.<br />

A treatment period of between 12 and 24<br />

days at about 0°C is generally required <strong>to</strong> disinfest<br />

perishable commodities of fruit flies,<br />

while a 2-week treatment below -18°C is<br />

required <strong>to</strong> disinfest grain of common pests.<br />

On the other hand, some cold treatments are<br />

considerably faster than this and faster than<br />

MB fumigation. For example, a treatment <strong>to</strong><br />

disinfest dates requires 10.5 hours of exposure<br />

<strong>to</strong> -10°C or only 2.25 hours exposure at<br />

-18°C (Donahaye et al 1991).<br />

Where feasible, it is desirable <strong>to</strong> carry out<br />

cold treatments as part of the normal cool<br />

s<strong>to</strong>rage or handling of products. Cold treatments<br />

can sometimes be carried out in refrigerated<br />

shipping containers while products are<br />

in transit <strong>to</strong> markets. One of the advantages<br />

of cold treatments is that staff members have<br />

continued access <strong>to</strong> commodities at all times.<br />

This contrasts with MB fumigation, during<br />

which staff cannot enter the commodity area<br />

for safety reasons.<br />

Current uses<br />

Diverse types of cold treatments are used<br />

commercially for a wide range of products in<br />

both warm and cool climates (Table 6.2.1).<br />

Cold treatments are used as part of IPM systems<br />

for grain in the Mediterranean region,<br />

North America, Australia and other areas.<br />

Cold treatments are also used where cold<br />

s<strong>to</strong>rage warehouses are part of a s<strong>to</strong>rage system,<br />

for example for prunes in the USA and<br />

France.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

113


Table 6.2.1 Examples of commercial use of cool and cold treatments<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

114<br />

Products<br />

S<strong>to</strong>red grains in temperate climates<br />

Freeze treatment for disinfestation<br />

Cold s<strong>to</strong>rage (below 1°C) for long-<br />

term protection from pests<br />

Cold treatments for disinfestation<br />

Cold treatments for quarantine<br />

Cold treatments for quarantine<br />

Cold treatments for quarantine<br />

Grain in silos in the Mediterranean<br />

and sub-tropical regions<br />

High-value grains for export,<br />

e.g., organically grown rice<br />

Small volumes of seeds<br />

Dehydrated raisins in the USA.<br />

prunes and dried pears<br />

Museum objects<br />

Fresh apple and pear exports <strong>to</strong> the USA<br />

Table grapes exported from Chile <strong>to</strong> Japan<br />

Grapefruit and other citrus fruit exported<br />

from many countries <strong>to</strong> Japan<br />

Warehouses or grain s<strong>to</strong>res in<br />

countries with low winter temperatures<br />

such as Canada<br />

Freezer treatments are used for disinfestation<br />

of durable commodities in a few cases, such<br />

as museum objects, small quantities of seed<br />

and high value grain products. Cold treatments<br />

are also used as quarantine treatments<br />

for perishable commodities, such as citrus<br />

and fruit from temperate climates.<br />

Material inputs<br />

For aeration: ducts, fans and control systems<br />

in s<strong>to</strong>rage structures.<br />

Additional electrical services.<br />

Refrigeration treatments require the use<br />

of a cool s<strong>to</strong>re or cold s<strong>to</strong>rage warehouse,<br />

or require refrigeration equipment<br />

<strong>to</strong> be fitted <strong>to</strong> the s<strong>to</strong>rage or<br />

shipping containers.<br />

Freezer treatments require the use of<br />

premises with freezer s<strong>to</strong>rage, or require<br />

freezer equipment <strong>to</strong> be fitted <strong>to</strong> s<strong>to</strong>rage<br />

or shipping containers.<br />

Equipment <strong>to</strong> moni<strong>to</strong>r and control temperatures<br />

and in some cases humidity.<br />

Know-how and training.<br />

Treatments<br />

Aeration <strong>to</strong> slow down insect<br />

development<br />

Refrigerated aeration <strong>to</strong> delay insect<br />

development<br />

Freeze treatment for disinfestation<br />

“Freeze-outs” as structural or<br />

space treatments<br />

Fac<strong>to</strong>rs required for use<br />

Compiled from: MBTOC 1998<br />

For ambient air aeration: cool or cold<br />

ambient air during day or night, with<br />

low or moderate humidity.<br />

Where disinfestation is required, sufficient<br />

time during s<strong>to</strong>rage or transportation<br />

<strong>to</strong> allow a treatment <strong>to</strong> kill all target<br />

pests at all life stages.<br />

Pests controlled<br />

Cool temperatures provide pest management,<br />

while freezing temperatures are normally necessary<br />

for disinfestation. If grain is held at less<br />

than 5°C for several months, most of the<br />

immature stages of s<strong>to</strong>red product pests die<br />

off, although some adult pests may survive.<br />

Cool temperatures (below about 10-15°C)<br />

generally do not kill insects but s<strong>to</strong>p their<br />

feeding and reproduction, with a resulting<br />

slow decline of most pest populations in<br />

durable products. Temperatures of -15°C for<br />

a few days control most pests (Chauvin and<br />

Vannier 1991, Fields 1992).<br />

All stages of Si<strong>to</strong>philus granarius,<br />

Callosobruchus rodesianus, Ephestia cautella<br />

and Ephestia kuehniella are killed at -18°C for


5 hours in wheat, maize and soy bean<br />

(Dohino et al 1999). Woollen artifacts can be<br />

disinfested from clothes moths by exposure<br />

<strong>to</strong> -18°C for a few days (Brokerhof et al<br />

1993). Additional information on the effects<br />

of cold treatments on various pest species<br />

can be found in Johnson and Valero (1999).<br />

In general eggs are more cold-sensitive, while<br />

adults and larvae are often more <strong>to</strong>lerant of<br />

cold. Species of tropical origin, such as<br />

Si<strong>to</strong>philus oryzae, Si<strong>to</strong>philus zeamais,<br />

Tenebroides mauritanicus and Lasioderma serricorne,<br />

tend <strong>to</strong> be cold sensitive, although<br />

some important pests including Cryp<strong>to</strong>lestes<br />

spp., bruchids, mites and some Lepidoptera<br />

species are very <strong>to</strong>lerant of cold temperatures<br />

(Armitage 1987, Lasseran and Fleurat-Lessard<br />

1991, Fields 1992). The diapausing moth<br />

larva is highly resistant <strong>to</strong> cold, requiring<br />

more than 14 days at -10°C or 1 day at<br />

-15°C; the adult rusty grain beetle, on the<br />

other hand, requires 8 weeks at a grain<br />

temperature of -5°C, 6 weeks at a grain<br />

temperature of -10°C, or 2 weeks at a grain<br />

temperature of -15°C (Banks and Fields<br />

1995). Some species of insects have the ability<br />

<strong>to</strong> acclimatise <strong>to</strong> cold and may become <strong>to</strong>lerant<br />

<strong>to</strong> temperatures that would normally be<br />

lethal. Rapid cooling may be necessary <strong>to</strong> prevent<br />

such adaptation.<br />

Other fac<strong>to</strong>rs affecting use<br />

Product quality<br />

Cool and cold treatments for s<strong>to</strong>red grain<br />

give grain quality that is the same as or better<br />

than MB fumigation. Cool s<strong>to</strong>rage maintains<br />

the quality and extends the shelf life of perishable<br />

products. Cold temperatures down <strong>to</strong><br />

about 0°C can be <strong>to</strong>lerated by a number of<br />

perishable commodities, but in some cases a<br />

pre-conditioning treatment, such as exposure<br />

<strong>to</strong> 15°C, is necessary <strong>to</strong> prevent damage <strong>to</strong><br />

products.<br />

Table 6.2.2 Comparison of aeration, cold treatments and freezer treatments<br />

Aeration Cold treatments Freezer treatments<br />

Temperatures < 5-15°C -1 <strong>to</strong> +2°C -15 <strong>to</strong> -19 °C<br />

Degree of Pest Disinfestation or pest Disinfestation<br />

pest control suppression suppression<br />

Pests S<strong>to</strong>red product Quarantine pests (mainly S<strong>to</strong>red product pests<br />

pests fruit flies) in perishable and quarantine pests<br />

commodities; s<strong>to</strong>red<br />

product pests in durables<br />

Suitable products S<strong>to</strong>red grains, Certain perishable High-value durable<br />

pulses, oilseeds commodities such as products such as<br />

citrus, carambola, organically grown<br />

kiwifruit and grapes; rice, special seeds<br />

certain s<strong>to</strong>red products, and museum objects<br />

such as prunes and nuts<br />

Equipment Ventilation ducts, Refrigerated warehouse Freezer chamber or<br />

fans and control or s<strong>to</strong>rage area; refrig- warehouse; s<strong>to</strong>rage<br />

system erated shipping container area for frozen foods<br />

or meat<br />

Treatment time Cool For perishable products, From 2 hours <strong>to</strong> 2<br />

temperature about 12 - 24 days. weeks, depending on<br />

maintained For durables, cool the pest, treatment<br />

continuously temperature maintained temperature and rate<br />

throughout the throughout the s<strong>to</strong>rage at which cold is<br />

s<strong>to</strong>rage period period conducted through<br />

the treated objects<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

115


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

116<br />

Temperatures around 0°C can be <strong>to</strong>lerated by<br />

many durable products but leads <strong>to</strong> quality<br />

degradation in others. For example, longterm<br />

s<strong>to</strong>rage can lead <strong>to</strong> crystallisation of<br />

fruit sugars in processed sultanas. A disinfestation<br />

treatment of -18°C for 5 hours has no<br />

observable effect on the quality of wheat,<br />

maize and soybean (Dohino et al 1999).<br />

Freezer temperatures are acceptable for the<br />

quality of some durable products, such as<br />

rice, but would normally destroy perishable<br />

commodities.<br />

Suitable products and uses<br />

Cool and cold treatments can be applied <strong>to</strong><br />

grains and a wide variety of durable products<br />

and artifacts – any item that can withstand<br />

cold temperatures without suffering quality<br />

damage. Due <strong>to</strong> cost, freezing treatments are<br />

limited mainly <strong>to</strong> high-value products, such as<br />

organic products. Cold treatments are suitable<br />

as part of an IPM system for cold s<strong>to</strong>rage<br />

warehouses or for structures, particularly in<br />

countries with low ambient winter temperatures.<br />

Table 6.2.4 provides examples of products<br />

where cold treatments have been approved<br />

for quarantine purposes.<br />

Suitable climates and conditions<br />

Cold treatment aeration of s<strong>to</strong>red products is<br />

suitable for temperate climates and warm climates<br />

with cool, dry night air. It can also be<br />

used in hot or humid climates, if the air is<br />

conditioned by refrigeration systems. Cold<br />

and freezer treatments are feasible in any<br />

location where refrigeration is available.<br />

Table 6.2.3 Examples of quarantine treatment schedules utilising cold treatments<br />

Commodities and countries<br />

Carambola exported from Florida USA <strong>to</strong> Japan<br />

Carambola exported from Hawaii <strong>to</strong> mainland USA<br />

Carambola shipped from Florida <strong>to</strong> California USA<br />

Citrus exported from Australia <strong>to</strong> Japan<br />

Citrus exported from Florida USA <strong>to</strong> Japan<br />

Citrus exported from Israel <strong>to</strong> Japan<br />

Citrus exported from Mexico or Central America<br />

<strong>to</strong> USA<br />

Citrus exported from South Africa and<br />

Swaziland <strong>to</strong> Japan<br />

Citrus exported from Spain <strong>to</strong> Japan<br />

Citrus exported from Taiwan <strong>to</strong> Japan<br />

Grapes exported from Chile <strong>to</strong> Japan<br />

Kiwifruit exported from Chile <strong>to</strong> Japan<br />

Items that carry insects in soil on importation<br />

in<strong>to</strong> the USA<br />

Quarantine treatment schedule<br />

1.1°C for 15 days <strong>to</strong> control<br />

Caribbean fruit fly<br />

0.6 - 1.1°C for 12 days <strong>to</strong> control<br />

fruit flies<br />

1.1°C for 15 days<br />

1°C for 14-16 days <strong>to</strong> control<br />

Mediterranean fruit fly and<br />

Queensland fruit fly (B. tryoni)<br />

2.2°C for 17-24 days <strong>to</strong> control<br />

Caribbean fruit fly (Anastraeptha<br />

suspensa)<br />

0.5 - 1.5°C for 13-16 days<br />

0.6°C - 1.7°C for 18-22 days <strong>to</strong><br />

control Mexican fruit fly (treatment<br />

not used commerically)<br />

-0.6°C for 12 days <strong>to</strong> control<br />

Mediterranean fruit fly (C.capitata)<br />

2.0°C for 16 days <strong>to</strong> control<br />

Mediterranean fruit fly<br />

1°C for 14 days <strong>to</strong> control Oriental<br />

fruit fly (B. dorsalis)<br />

0°C for 12 days <strong>to</strong> control<br />

Mediterranean fruit fly<br />

0°C for 14 days <strong>to</strong> control<br />

Mediterranean fruit fly<br />

-17.7°C for 5 days<br />

Compiled from: MBTOC 1998, USDA-APHIS 1993, 1998


Table 6.2.4 Products where cold treatments are approved as quarantine treatments<br />

Commodities<br />

Examples of approved quarantine applications<br />

Cold treatments for perishable commodities<br />

Apple<br />

From Mexico, Chile, South Africa, Israel, Argentina, Brazil, Italy, France,<br />

Spain, Portugal, Jordan, Lebanon, Australia, Hungary, Uruguay, Ecuador,<br />

Guyana and Zimbabwe <strong>to</strong> USA<br />

Cherry<br />

From Mexico, Chile and Argentina <strong>to</strong> USA<br />

Grape<br />

From Chile <strong>to</strong> Japan<br />

From South Africa, Brazil, Colombia, Dominican Republic, Ecuador, Peru,<br />

Uruguay, Venezuela and India <strong>to</strong> USA<br />

Citrus<br />

From Australia, Florida USA, Israel, South Africa, Spain, Swaziland and<br />

Taiwan shipped <strong>to</strong> Japan<br />

From South Africa (Western Cape) and 23 countries <strong>to</strong> USA<br />

Orange From Israel, Mexico, Spain, Morocco, Costa Rica, Colombia, Bolivia,<br />

Honduras, El Salvador, Nicaragua, Panama, Guatemala, Venezuela,<br />

Guyana, Belize, Trinidad & Tobago, Suriname, Bermuda, Italy, Greece,<br />

Turkey, Egypt, Algeria, Tunisia and Australia <strong>to</strong> USA<br />

Interstate USA<br />

Clementine From Israel, Spain, Morocco, Costa Rica, Colombia, Guatemala, Honduras,<br />

Ecuador, El Salvador, Nicaragua, Panama, Venezuela, Suriname, Trinidad &<br />

Tobago, Algeria, Tunisia, Greece, Cyprus and Italy <strong>to</strong> USA<br />

Interstate USA<br />

Tangerine From Mexico, Australia and Belize <strong>to</strong> USA<br />

Interstate USA<br />

Grapefruit From Israel, Mexico, Costa Rica, Guatemala, Honduras, El Salvador,<br />

Nicaragua, Panama, Colombia, Bolivia, Venezuela, Italy, Spain, Tunisia,<br />

Australia, Suriname, Trinidad & Tobago, Belize, Bermuda, Cyprus, Algeria<br />

and Morocco <strong>to</strong> USA<br />

Interstate USA<br />

Peach<br />

From Mexico, Israel, Morocco, South Africa, Tunisia, Zimbabwe, Uruguay and<br />

Argentina <strong>to</strong> USA<br />

Nectarine From Israel, Argentina, Uruguay, Zimbabwe and South Africa <strong>to</strong> USA<br />

Apricot<br />

From Mexico, Israel, Morocco, Zimbabwe, Haiti and Argentina <strong>to</strong> USA<br />

Plum<br />

From Mexico, Israel, Morocco, Colombia, Argentina, Uruguay, Guatemala,<br />

Algeria, Tunisia, Zimbabwe and South Africa <strong>to</strong> USA<br />

Plumcot From Chile <strong>to</strong> USA<br />

Kiwifruit From Chile <strong>to</strong> Japan<br />

From Chile, Italy, France, Greece, Zimbabwe and Australia <strong>to</strong> USA<br />

Pear<br />

From Israel, Chile, South Africa, Morocco, Italy, France, Spain, Portugal,<br />

Egypt, Tunisia, Algeria, Uruguay, Argentina, Zimbabwe and Australia <strong>to</strong> USA<br />

Persimmon From Israel, Italy and Jordan <strong>to</strong> USA<br />

Pomegranate From Israel, Colombia, Argentina, Haiti and Greece <strong>to</strong> USA<br />

Lychee<br />

From China, Israel and Taiwan <strong>to</strong> USA<br />

Loquat<br />

From Chile, Israel and Spain <strong>to</strong> USA<br />

Quince<br />

From Chile and Argentina <strong>to</strong> USA<br />

Carambola From Hawaii, Belize and Taiwan <strong>to</strong> USA<br />

Pummelo From Israel <strong>to</strong> USA<br />

Mountain papaya From Chile <strong>to</strong> USA<br />

Ya pear From China <strong>to</strong> USA<br />

Ethrog<br />

From Israel, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, Nicaragua,<br />

Panama, Morocco, Spain, Italy, France, Greece, Portugal, Tunisia, Syria,<br />

Turkey, Albania, Algeria, Belize, Bosnia, Macedonia, Croatia, Libya, Corsica<br />

and Cyprus <strong>to</strong> USA<br />

Durian<br />

To USA<br />

Avocado (Sharwill) From Hawaii <strong>to</strong> mainland USA<br />

Freezer treatments<br />

Items carrying To USA<br />

soil with insects<br />

Compiled from: MBTOC 1998 and USDA-APHIS 1998<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

117


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

118<br />

Toxicity and health risks<br />

Cold treatments do not involve the use of<br />

<strong>to</strong>xic fumigants. Exposure <strong>to</strong> cold temperatures<br />

can present a health hazard for staff<br />

who do not have appropriate clothing and<br />

training. Cooling and refrigeration equipment<br />

must be properly maintained, and certain<br />

refrigerants (e.g., ammonia) pose a risk of<br />

<strong>to</strong>xicity, if equipment is not properly maintained.<br />

Safety precautions for users<br />

Safety training is necessary for working in<br />

cold temperatures and handling cold<br />

products.<br />

Residues in food and environment<br />

None.<br />

Ozone depletion<br />

Many refrigeration units and freezers contain<br />

ODS, so it is highly desirable <strong>to</strong> select equipment<br />

that does not, whenever possible.<br />

Global warming and energy<br />

consumption<br />

For aeration, moderate amounts of energy<br />

are consumed in the operation of fans. The<br />

operation of refrigeration units and freezers<br />

requires substantially more energy, and some<br />

refrigeration equipment contains HFCs, which<br />

are greenhouse gases (GHG). The selection of<br />

GHG-free equipment with reasonable energyefficiency<br />

ratings can help <strong>to</strong> mitigate these<br />

undesirable impacts. In some situations, it<br />

may be possible <strong>to</strong> use local renewable<br />

sources of energy.<br />

Other environmental considerations<br />

If refrigeration equipment is not properly<br />

maintained, refrigerants may leak out. In general<br />

the equipment has a very long life, and<br />

theoretically many of the component parts<br />

could be re-used.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Cold treatments are highly acceptable <strong>to</strong><br />

supermarkets, purchasing companies and<br />

consumers, because they are non-chemical<br />

treatments. Some cold treatments give products<br />

of better quality than those with MB<br />

fumigation.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

There is no regula<strong>to</strong>ry approval required for<br />

aeration or cold treatments. However, any<br />

treatments <strong>to</strong> be used for quarantine purposes<br />

need <strong>to</strong> be approved by the importing<br />

country. (See Table 6.2.3 for examples).<br />

Cost considerations<br />

In the case of aeration, the capital costs<br />

can be less than the cost of one year’s<br />

application of MB. Bulk grain aeration<br />

needs ductwork similar <strong>to</strong> MB fumigation,<br />

as well as a control system and fans.<br />

Labour costs of aeration are probably<br />

cheaper than MB, because au<strong>to</strong>matic<br />

controls are normally used.<br />

For cool and cold treatments, the capital<br />

costs are higher than MB, while labour<br />

costs are similar.<br />

The cost of cold treatments for durables<br />

may be <strong>to</strong>o high in regions with high<br />

ambient temperatures, although cold<br />

treatments for perishable commodities<br />

can be economic where products have<br />

<strong>to</strong> be chilled in any case <strong>to</strong> extend<br />

shelf life.<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

What level of pest control needs <strong>to</strong> be<br />

achieved?<br />

What temperatures can the product<br />

withstand without damage?<br />

Can the commodity be treated while in<br />

s<strong>to</strong>rage or in transit, or does it need a<br />

special, rapid treatment?<br />

Is sufficient cool air available during the<br />

day or night?<br />

Would aeration fit in<strong>to</strong> the present commodity<br />

management system?


Table 6.2.5 Suppliers of products and services for cold treatments<br />

Type of equipment or service<br />

Equipment for grain aeration, e.g.<br />

ventilation ducts, fans and aeration<br />

control systems<br />

Equipment for cold treatments, e.g.<br />

industrial refrigeration and freezer units,<br />

heat pumps<br />

Company name<br />

Agridry Rimik, Australia<br />

AllSize Perforating Ltd, Canada<br />

Avonlea, Canada<br />

Other suppliers of aeration controllers can<br />

be found on the Internet.<br />

Contact local cool s<strong>to</strong>rage and freezer<br />

facilities (e.g. frozen food and meat s<strong>to</strong>rage<br />

facilities) <strong>to</strong> ask about surplus capacity or<br />

local sources of equipment.<br />

Specialists, advisory services and consultants<br />

on cold treatments for durable commodities<br />

and structures<br />

Specialists, advisory services and consultants<br />

treatments for perishable commodities<br />

What changes can be made <strong>to</strong> the commodity<br />

management system <strong>to</strong> enable a<br />

cold treatment <strong>to</strong> be used?<br />

Is there un-used cool s<strong>to</strong>re or freezer<br />

capacity in local food warehouses, meatprocessing<br />

facilities, etc.?<br />

What are the costs and profitability of<br />

different types of cold treatment?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Canadian Grain Commission, Canada<br />

CSIRO S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry,<br />

Australia<br />

Insects Limited, USA<br />

Dr Jonathan Donahaye and Dr Shlomo<br />

Navarro, Volcani Institute, Israel<br />

Dr Paul Fields, Cereal Research Centre,<br />

Canada<br />

Dr Judy Johnson, HCRL Fresno, USDA, USA<br />

American President Lines, USA<br />

Crop and Food Research, Postharvest<br />

Disinfestation Programme, New Zealand<br />

TransFresh, USA<br />

Dr Jack Armstrong, Tropical Fruit and<br />

Vegetable Reserach Labora<strong>to</strong>ry, USDA,<br />

Hawaii<br />

Dr Walter Gould, Subtropical Horticulture<br />

Research Station, USA<br />

Dr Michael Lay-Yee, HortResearch, New<br />

Zealand<br />

Dr Robert Mangan and Dr Krista Shellie,<br />

Subtropical Agriculture Research Labora<strong>to</strong>ry,<br />

USA<br />

Dr Lisa Neven, YARL, USDA, USA<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.<br />

Availability<br />

Equipment for aeration, cold and freezer<br />

treatments are very widely available.<br />

Suppliers of products and services<br />

Table 6.2.5 provides examples of suppliers of<br />

products and services for cold treatments, as<br />

well as specialists in these techniques. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

119


6.3 Contact insecticides<br />

not normally registered for use on processed<br />

foods.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

120<br />

Advantages<br />

Long-lasting protection against pests.<br />

Require less skill than application of MB.<br />

Gas-tight enclosures not needed.<br />

Relatively quick application time.<br />

Disadvantages<br />

Cannot replace MB entirely; normally<br />

need <strong>to</strong> be combined with other<br />

practices.<br />

Can be used only for products and uses<br />

for which they are registered or officially<br />

permitted.<br />

Slow action against pests, except for<br />

dichlorvos.<br />

Poor penetration of commodities.<br />

Insect populations can develop resistance<br />

<strong>to</strong> insecticides.<br />

Many insecticides are <strong>to</strong>xic <strong>to</strong> humans,<br />

animals and the environment.<br />

Residues in food.<br />

Technical description<br />

Contact insecticide is a term that covers a<br />

wide range of chemical products <strong>to</strong>xic <strong>to</strong><br />

pests. Contact insecticides act against insects<br />

in different ways, depending on the nature of<br />

the particular chemical. Most are directly <strong>to</strong>xic<br />

<strong>to</strong> pests, but some work by disrupting normal<br />

insect processes. As a group, they are effective<br />

in controlling a relatively wide range of<br />

pests, but they act slowly and need <strong>to</strong> be<br />

used with other treatments or practices.<br />

For s<strong>to</strong>red grain, insecticides can provide a<br />

useful means of avoiding the circumstances in<br />

which fumigation becomes necessary. Where<br />

permitted, they can be applied directly <strong>to</strong><br />

grain, s<strong>to</strong>rage buildings, transport vehicles,<br />

artifacts, wood products and non-edible perishable<br />

commodities. Contact insecticides are<br />

Application time for contact insecticides is relatively<br />

short. Unlike fumigants, they do not<br />

readily penetrate bagged or bulk grain, but<br />

they can provide persistent protection against<br />

infestation, lasting from less than 1 month <strong>to</strong><br />

24 months, depending on fac<strong>to</strong>rs such as the<br />

active ingredient, pest species, temperature<br />

and humidity (GTZ 1996). This persistence is<br />

an advantage in products s<strong>to</strong>red for long<br />

periods but a disadvantage if significant<br />

residues remain when products are sold.<br />

After continued use, insects may develop<br />

resistance <strong>to</strong> particular insecticides or groups<br />

of insecticides, so resistance management<br />

strategies are necessary. In a number of situations,<br />

resistance can be managed by using<br />

different treatments in rotation.<br />

Contact insecticides are <strong>to</strong>xic not only <strong>to</strong> target<br />

pests but also <strong>to</strong> humans, animals and the<br />

environment (see Annex 3), so they are subject<br />

<strong>to</strong> a number of regula<strong>to</strong>ry controls and<br />

should be used only by trained personnel. As<br />

with other pesticides, insecticides have <strong>to</strong> be<br />

registered for specific commodities and purposes,<br />

and their use varies widely with the<br />

country, market preference and local regulations.<br />

In part because they leave residues in<br />

food, some countries have been moving away<br />

from this method of pest control.<br />

Commercial formulations contain one or<br />

more active ingredients as well as carriers and<br />

special additives. The active ingredients are<br />

the chemicals that act against pests; additives<br />

and carriers improve adhesion, act as synergists<br />

or otherwise affect performance. The<br />

main groups of active ingredients are as follows:<br />

Organophosphate (OP) compounds<br />

OPs, such as chlorpyrifos methyl, dichlorvos,<br />

fenitrothion, malathion and pirimiphos<br />

methyl, are used in many countries. They can<br />

be effective against many of the s<strong>to</strong>rage


pests, but most OPs have limited efficacy<br />

against bostrichids. The stability of their<br />

deposits on grain varies widely according <strong>to</strong><br />

the formulation and ambient conditions, particularly<br />

temperature and moisture. For<br />

example, dichlorvos typically acts quickly and<br />

degrades within a few days; malathion takes<br />

several weeks <strong>to</strong> degrade; and pirimiphos<br />

methyl degrades over many months<br />

(MBTOC 1998).<br />

Borates<br />

Borates, such as boric acid and disodium<br />

octaborate tetrahydrate, are inorganic compounds<br />

based on boron. When ingested by<br />

pests, borates are effective against many<br />

wood-destroying organisms and cockroaches.<br />

They can be used as remedial treatments for<br />

timbers, artifacts and wood in structures<br />

(Lloyd et al 1997, Dickson 1996). They have<br />

low <strong>to</strong>xicity <strong>to</strong> humans (Olkowski et al 1991).<br />

Concern with the <strong>to</strong>xicity of OPs may lead <strong>to</strong><br />

additional restrictions in the USA and other<br />

countries. Dichlorvos differs from other OPs in<br />

its rapid action against pests and volatility on<br />

grain. Where permitted, it can be sprayed<br />

on<strong>to</strong> bulk grain during grain turning a few<br />

days prior <strong>to</strong> export <strong>to</strong> disinfest a cargo. In<br />

some cases it can replace MB directly.<br />

Pyrethroids<br />

Pyrethroids, such as permethrin, cypermethrin,<br />

cyhalothrin and deltamethrin, are<br />

chemicals based on the active ingredient of<br />

pyrethrum. They are particularly effective<br />

against bostrichid and dermestid beetles.<br />

Some pyrethroids are very stable on grain and<br />

their insecticidal activity may persist up <strong>to</strong><br />

two years (Snelson 1987). Their activity is<br />

much less sensitive <strong>to</strong> temperature than that<br />

of the OPs, but they are relatively expensive.<br />

Most pyrethroids have low acute <strong>to</strong>xicity <strong>to</strong><br />

human beings.<br />

Insect growth regula<strong>to</strong>rs (IGRs)<br />

IGRs are not normally directly <strong>to</strong>xic <strong>to</strong> adult<br />

pests but disrupt or interfere with the life<br />

cycle or development of pests. Methoprene,<br />

for example, is an analogue of a juvenile hormone.<br />

IGRs are considered <strong>to</strong> be more pestspecific<br />

than conventional contact<br />

insecticides. One disadvantage is their long<br />

persistence on foodstuffs, which may limit<br />

their use <strong>to</strong> non-food products like s<strong>to</strong>red<br />

<strong>to</strong>bacco. IGRs tend <strong>to</strong> have low <strong>to</strong>xicity <strong>to</strong><br />

vertebrates (Menn et al 1989 in MBTOC<br />

1994). They are relatively expensive.<br />

Combined products<br />

Combined products are also available in some<br />

cases, providing a broader spectrum insecticide.<br />

Examples of OPs mixed with pyrethroids<br />

include pirimiphos methyl with permethrin<br />

and fenitrothion with cyfluthrin.<br />

Insecticide products are available in a variety<br />

of formulations, including:<br />

Dusts – ready for use, for mixture with<br />

commodities or surface treatments.<br />

Emulsifiable concentrates – mixed<br />

with water, mainly for surface treatments.<br />

Wettable powders – mixed with water<br />

for surface treatments.<br />

Flowable concentrates – for surface<br />

treatments.<br />

Hot fogging concentrates – ready for<br />

use or diluted with diesel or kerosene for<br />

space treatments.<br />

Application of insecticides varies as well. The<br />

following are the primary methods of<br />

application:<br />

Admixture with commodities. Where<br />

registered, insecticides can be applied<br />

directly <strong>to</strong> grain during handling, e.g.<br />

prior <strong>to</strong> bagging or on grain conveyors<br />

and eleva<strong>to</strong>rs.<br />

Surface treatments. Insecticides can be<br />

sprayed on<strong>to</strong> the surfaces of bagstacks,<br />

walls and floors of empty structures,<br />

transport vehicles, artifacts and timber.<br />

In general, contact insecticides work bet-<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

121


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

ter on clean, smooth surfaces than they<br />

do on dirty or rough ones; they persist<br />

better on surfaces such as metal, wood<br />

and polypropylene packaging than they<br />

do on concrete, bricks, alkaline paint,<br />

whitewash and jute bags (GTZ 1996).<br />

Repeated surface spraying can lead <strong>to</strong><br />

the development of pest resistance.<br />

Space treatments. Spaces of structures<br />

can be treated by “fogging” or spraying<br />

with small particles (often less than 50<br />

microns in size). This treatment assists in<br />

the control of flying pests but usually has<br />

<strong>to</strong> be combined with other practices or<br />

treatments, because it does not penetrate<br />

between stacked bags and fails <strong>to</strong><br />

control many hidden insects.<br />

Aerosol formulations. Aerosol formulations<br />

of insecticides, such as dichlorvos<br />

and permethrin, are used on cut flower<br />

exports as a quarantine treatment in<br />

limited cases (i.e., New Zealand and<br />

Hawaii). They do not penetrate as well<br />

as MB and require long exposures, from<br />

3 <strong>to</strong> 16 hours (MBTOC 1998,<br />

Hara 1994).<br />

Chemical dips. Certain perishable commodities<br />

can be dipped in insecticide<br />

solutions <strong>to</strong> control pests. Insecticide<br />

dips can provide an effective treatment<br />

for some cut flowers (Hara 1994).<br />

Application techniques and safety precautions<br />

for contact insecticides are described in publications<br />

such as GTZ (1996) and the instructions<br />

or manuals of product manufacturers.<br />

Instructions should always be followed, and<br />

products should only be used where they are<br />

registered.<br />

Table 6.3.1 Comparison of contact insecticides with fumigants<br />

Insecticides<br />

Fumigants<br />

Physical Liquids or powders Gases<br />

Time <strong>to</strong> kill pests Longer period, because insects in 2 - 15 days, depending on<br />

pre-adult stages are not affected temperature, pest stages and<br />

until they develop in<strong>to</strong> adults sealing of enclosure<br />

Application manner Commodity normally has <strong>to</strong> be Normally treated in-situ; bulk<br />

moved <strong>to</strong> apply insecticide grains can be treated<br />

Pest protection Pest suppression mainly Disinfestation mainly<br />

Pests controlled Individual products are selectively Generally effective against many<br />

effective against different insect insect species<br />

species or groups<br />

Pest resistance With continued use most insect No incidence of significant<br />

pests develop resistance <strong>to</strong> MB <strong>to</strong>lerance is known, but<br />

particular insecticides or groups development of resistance <strong>to</strong><br />

of insecticides<br />

phospine is a concern<br />

Duration of effect Long-lasting pest control Short-lived control<br />

Commodity range Products which will be processed, Most products<br />

and non-food products<br />

Personnel Semi-skilled opera<strong>to</strong>rs Skilled, certified personnel<br />

122


Table 6.3.2 Examples of commercial use of contact insecticides<br />

Commodities/uses<br />

S<strong>to</strong>red grains in many countries<br />

S<strong>to</strong>red <strong>to</strong>bacco<br />

Artifacts in museums and reposi<strong>to</strong>ries<br />

Museum items, artifacts, books and antiques<br />

in Japan<br />

Wood preservation in Germany, Australia<br />

and New Zealand<br />

Sawn timber in USA and Japan<br />

Logs imported in<strong>to</strong> Japan<br />

Spot treatments of wood in structures<br />

in many countries<br />

Wooden pallets in Australia infested<br />

with wood pests<br />

Cut flowers in Hawaii and Thailand<br />

Fresh <strong>to</strong>ma<strong>to</strong>es exported from Australia <strong>to</strong><br />

New Zealand<br />

Current uses<br />

A variety of contact insecticides are in commercial<br />

use. (See Table 6.3.2.) OPs, for example,<br />

are used on s<strong>to</strong>red grain and s<strong>to</strong>rage<br />

structures. Insecticides are used in food production<br />

plants in many countries. In some<br />

cases they have been approved as quarantine<br />

treatments; Japan, for example, has approved<br />

a combination treatment where logs are<br />

immersed in water and an insecticide mixture<br />

is applied <strong>to</strong> the exposed surface (MBTOC<br />

1998). Insecticide dips provide a common<br />

post-harvest treatment for cut flowers (Hara<br />

1994). However, the use of insecticides is<br />

restricted <strong>to</strong> the products and countries<br />

where they are registered.<br />

Variations under development<br />

Botanical insecticides derived from<br />

plants, e.g., azadirachtin.<br />

Additional types of IGRs (MBTOC 1994).<br />

Material inputs<br />

Pesticide product.<br />

Treatments<br />

OPs, pyrethroids or IGRs<br />

Methoprene (an IGR)<br />

Pyrethroids or OPs<br />

Cyphenothrin<br />

Borates<br />

Borates<br />

Water immersion + insecticide<br />

quarantine treatment<br />

OPs, pyrethroids or borates<br />

Insecticide mixtures applied under<br />

pressure<br />

Malathion dip<br />

Dimethoate dip<br />

Compiled from: MBTOC 1998, Olkowski et al 1991<br />

Application equipment appropriate for<br />

the product, e.g., dusters, sprayers, fogging<br />

machines.<br />

Safety equipment, such as protective<br />

overalls, face shield or respira<strong>to</strong>r, goggles,<br />

gloves and boots.<br />

Personnel moni<strong>to</strong>ring devices for safety.<br />

Fac<strong>to</strong>rs required for use<br />

Appropriate temperature and moisture<br />

range for the formulation.<br />

Products that are registered for the specific<br />

commodity or use.<br />

Pests controlled<br />

Insecticides are effective against selected<br />

groups of s<strong>to</strong>red product pests. Where registered,<br />

some can contribute <strong>to</strong> an IPM programme<br />

for pest suppression. Over longer<br />

periods some can achieve disinfestation when<br />

the immature pests in the product develop<br />

in<strong>to</strong> adults and are killed by the insecticide.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

123


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

124<br />

Organophosphate compounds can be<br />

effective against a wide range of s<strong>to</strong>red<br />

product pests although higher doses are<br />

necessary for certain pest groups such as<br />

bostrichids. Dichlorvos acts rapidly.<br />

Pyrethroids are effective against<br />

bostrichid and dermestid beetles at a<br />

much lower dosage than that required<br />

for most other insect pests (MBTOC<br />

1998, Snelson 1987).<br />

IGRs can be pest-specific, but methoprene<br />

is effective against many s<strong>to</strong>red<br />

product pests including Lasioderma serricorne,<br />

Ephestia cautella, Oryzaephilus<br />

surinamensis, Plodia interpunctella,<br />

Rhyzopertha dominica and Trogoderma<br />

granarium. It is not very effective against<br />

Si<strong>to</strong>philus spp. (Mkhize 1986, Snelson<br />

1987).<br />

Borates are effective against many<br />

wood-destroying organisms (Carr 1959,<br />

Barnes et al 1989, Dickinson and<br />

Murphy 1989, Drysdale 1994, Nunes<br />

1997, Manser and Lanz 1998). Higher<br />

application rates are required for controlling<br />

termites (Lloyd et al 1998). Boric<br />

acid dusts control cockroaches in 5 <strong>to</strong>10<br />

days, as well as silverfish, carpet beetle<br />

and certain other insects (Olkowski et<br />

al 1991).<br />

Other fac<strong>to</strong>rs affecting use<br />

Product quality<br />

Insecticide residues remaining in food products<br />

can reduce the market value in some<br />

countries. Purchasers increasingly demand<br />

commodities with negligible residues.<br />

Suitable commodities and uses<br />

Insecticides can be used on a wide range of<br />

durable products, artifacts and structures.<br />

Some formulations are only suitable for nonfood<br />

products. The approved uses of<br />

insecticides vary greatly from one country <strong>to</strong><br />

the next, but regula<strong>to</strong>ry authorities and<br />

product labels should provide the relevant<br />

information.<br />

Suitable climates and conditions<br />

Insecticides are effective in most climates,<br />

although the rate at which they degrade normally<br />

increases with temperature and moisture.<br />

They can be used in bulk bins, silos,<br />

bags, stacks or structures, provided they can<br />

be applied at an appropriate stage, such as<br />

when grain is being moved.<br />

Toxicity and health risks<br />

Pesticides, designed <strong>to</strong> kill living organisms,<br />

are by definition <strong>to</strong>xic substances. Most are<br />

acutely <strong>to</strong>xic, while some also pose chronic<br />

health risks (see pesticide data sheets in<br />

Annex 3). The mixing and application of pesticides<br />

can pose health and safety risks <strong>to</strong><br />

applica<strong>to</strong>rs and staff. Empty containers and<br />

improperly s<strong>to</strong>red pesticides pose health risks<br />

<strong>to</strong> local communities. Accumulated residues<br />

in food can pose risks <strong>to</strong> consumers.<br />

Safety precautions for users<br />

Handling of pesticides requires thorough safety<br />

training, safety equipment and appropriate<br />

management and emergency procedures.<br />

Product labels and safety instructions must be<br />

followed.<br />

Residues in food and environment<br />

Pesticides can leave undesirable residues in<br />

products, water and other parts of the environment,<br />

particularly when applications are<br />

repeated or where pesticide containers<br />

are dumped.<br />

Ozone depletion<br />

None of the insecticides listed in this chapter<br />

are known <strong>to</strong> be ODS.<br />

Global warming and energy<br />

consumption<br />

These insecticides are not known <strong>to</strong> be greenhouse<br />

gases. Pesticide products require energy<br />

for their manufacture and distribution.


Other environmental considerations<br />

Some insecticides are derived from nonrenewable<br />

materials. Empty product containers<br />

can be a source of environmental<br />

pollution and must be disposed of properly.<br />

Acceptability <strong>to</strong> markets and consumers<br />

There is increasing concern about insecticide<br />

use and residues. In general, consumers do<br />

not like chemical treatments for food products,<br />

and supermarkets increasingly favour<br />

residue-free foods.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Normally, insecticide products can only be<br />

marketed, if the government authorities that<br />

control pesticide registration have approved<br />

them. In addition, food or health authorities<br />

normally limit residues in food products.<br />

Pesticide use is normally restricted <strong>to</strong> specific<br />

products and applications. Most governments<br />

also place restrictions on pesticide marketing,<br />

labels, disposal and other aspects of pesticide<br />

use.<br />

Cost considerations<br />

Insecticides are typically cheaper than MB,<br />

although some of the new insecticide products<br />

are more expensive. The labour costs<br />

associated with insecticides are often less<br />

than those associated with MB, because they<br />

require semi-skilled personnel rather than<br />

skilled, certified personnel.<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

What level of pest control needs <strong>to</strong> be<br />

achieved?<br />

Which pests need <strong>to</strong> be controlled, and<br />

which insecticides would control them?<br />

If disinfesta<strong>to</strong>n is required, will there be<br />

sufficient time <strong>to</strong> achieve it?<br />

Is there a suitable stage of product<br />

handling during which insecticides can<br />

be applied?<br />

Can the product-handling procedures<br />

be changed <strong>to</strong> accommodate pesticide<br />

applications?<br />

Which formulations are permitted for<br />

the commodity and situation?<br />

What residue limits apply <strong>to</strong> the<br />

commodity?<br />

Will cus<strong>to</strong>mers or supermarkets be<br />

concerned about residues or use of<br />

<strong>to</strong>xic substances?<br />

What safety procedures, equipment and<br />

training would be required?<br />

What precautions can be taken against<br />

pest resistance?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Contact insecticides are available in many<br />

countries.<br />

Suppliers of products and services<br />

Examples of specialists and consultants are<br />

given in Table 6.3.3. Since the permitted pesticide<br />

products vary greatly from one country<br />

<strong>to</strong> another, individual suppliers are not listed.<br />

Contact with local pest control product suppliers<br />

is recommended, as is verification of<br />

registration information with national or state<br />

pesticide authorities. See Annex 6 for an<br />

alphabetical listing of suppliers, specialists<br />

and experts. See also Annex 5 and Annex 7<br />

for additional information resources.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

125


Table 6.3.3 Examples of suppliers of products and services for contact insecticides<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Type of equipment or service<br />

OPs<br />

IGRs<br />

Borates<br />

Safety equipment<br />

Specialists, advisory services<br />

and consultants<br />

Organization or company<br />

Approved formulations vary from country <strong>to</strong> country;<br />

refer <strong>to</strong> local pest control product suppliers.<br />

Refer <strong>to</strong> local pest control product suppliers.<br />

Borax Europe Ltd, UK<br />

NISUS Corp, USA<br />

Permachink Systems, USA<br />

Remmers, Germany<br />

Sashco Sealants, USA<br />

Seabright Labora<strong>to</strong>ries, USA (cockroach traps)<br />

Van Waters & Rogers, USA<br />

US Borax Inc, USA (TIM-BOR wood treatment)<br />

Refer <strong>to</strong> local pest control product suppliers.<br />

Refer <strong>to</strong> local pest control product suppliers.<br />

Canadian Grain Commission, Canada<br />

Cereal Research Centre, Canada<br />

CSIRO S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry, Australia<br />

GTZ, Germany<br />

Insects Limited, USA<br />

Mission de Coopération Phy<strong>to</strong>sanitaire, France<br />

Natural Resources Institute, UK (s<strong>to</strong>red products)<br />

Technical Centre for Agricultural and Rural Cooperation,<br />

Netherlands<br />

Timber Technology Research Group, Department<br />

of Biology, Imperial College, UK (timber)<br />

Urban Pest Control Research Center, Virginia<br />

Polytechnic Institute and State University, USA<br />

Dr Jonathon Banks, Piallaigo, Australia (s<strong>to</strong>red<br />

products)<br />

Dr Brad White, University of Washing<strong>to</strong>n, Seattle<br />

WA, USA (timber treatments)<br />

Dr LH Williams, USDA Forest Experimental Station,<br />

USA. (timber)<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.<br />

126


6.4 Controlled and<br />

modified<br />

atmospheres<br />

Advantages<br />

Effectively controls a wide range of pests<br />

including rodents.<br />

Most methods pose relatively few safety<br />

issues and normal work can continue<br />

near treatment areas.<br />

Nitrogen and carbon dioxide do not<br />

leave undesirable residues in food.<br />

Treatments can be carried out in-transit.<br />

Can be <strong>to</strong>lerated by all durable<br />

commodities.<br />

Disadvantages<br />

Treatments are normally slow, unless<br />

combined with pressure or heat.<br />

Most methods require good sealing.<br />

Treatments do not kill fungal pests.<br />

Technical description<br />

Because insects need oxygen <strong>to</strong> breathe and<br />

survive, the percentage of oxygen in s<strong>to</strong>rage<br />

containers can be reduced <strong>to</strong> levels at which<br />

insects s<strong>to</strong>p feeding and reproducing.<br />

Normally air contains 21% oxygen, but if<br />

oxygen levels are held below 1% for 2 <strong>to</strong><br />

3 weeks, most insect species are killed.<br />

Rodents are killed when oxygen is reduced<br />

<strong>to</strong> about 5%.<br />

Controlled and modified atmospheres are<br />

normally used as part of an IPM system for<br />

managing s<strong>to</strong>red product pests or for disinfestation.<br />

When used in well-sealed s<strong>to</strong>res, a<br />

single treatment gives a high level of protection<br />

against pests, because it controls pests<br />

already in the commodity and the seal prevents<br />

re-invasion. It is suitable for bagged or<br />

bulk grain and other durable commodities,<br />

where it is feasible <strong>to</strong> arrange treatments of<br />

more than two weeks (MBTOC 1998).<br />

Oxygen is reduced passively in the case of<br />

modified atmospheres and hermetic s<strong>to</strong>rage,<br />

for example, by putting grain in sealed s<strong>to</strong>rage<br />

units so that insects slowly use up the<br />

available oxygen and cease activity or die.<br />

Alternatively, high levels of carbon dioxide or<br />

nitrogen gas can be pumped in<strong>to</strong> s<strong>to</strong>rage<br />

containers or sealed sheets. The objective is<br />

either <strong>to</strong> provide a level of carbon dioxide<br />

<strong>to</strong>xic <strong>to</strong> insects (more than 60% in air) or <strong>to</strong><br />

reduce oxygen levels <strong>to</strong> less than 1%. Some<br />

of these techniques are approved quarantine<br />

treatments.<br />

Treatment times for disinfestation can vary<br />

from one <strong>to</strong> four weeks or up <strong>to</strong> eight weeks<br />

in the case of artifacts and museum items,<br />

depending on the insect species, its life stage,<br />

temperature, commodity, and the method<br />

used. Treatment times can be reduced substantially<br />

by adding pressure or heat. There<br />

are several techniques for creating controlled<br />

or modified atmospheres described below<br />

(see Table 6.4.1 for summary).<br />

Hermetic s<strong>to</strong>rage<br />

Hermetic s<strong>to</strong>rage involves sealing products in<br />

air-tight containers or enclosures with minimal<br />

air-space, so that insects slowly use up<br />

the oxygen and many die (Annis and Banks<br />

1993, Navarro et al 1984, Navarro et al 1993,<br />

Varnava et al 1994). Once the unit has been<br />

properly sealed, no further treatment is necessary,<br />

but the container must be checked<br />

regularly <strong>to</strong> ensure it remains sealed and oxygen<br />

remains low. If the initial number of<br />

insects is low and the container allows some<br />

air leakage, however, pest populations may<br />

survive indefinitely at very low levels. In<br />

regions with significant temperature fluctuations,<br />

it is normally necessary <strong>to</strong> place a thick<br />

layer of absorbent waste material, such as<br />

maize cobs, on <strong>to</strong>p of the grain so that<br />

moulds do not produce myco<strong>to</strong>xins in the<br />

s<strong>to</strong>red product. Hermetic s<strong>to</strong>rage is best done<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

127


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

128<br />

underground <strong>to</strong> reduce gas losses and keep<br />

termperatures stable.<br />

Hermetic s<strong>to</strong>rage systems can include:<br />

Concrete platforms, bunkers and silos.<br />

Portable cocoons.<br />

Vacuum-sealed retail packs; sealed packs<br />

(up <strong>to</strong> 50kg) containing sachet of oxygen-remover<br />

e.g. activated iron powder.<br />

Nitrogen s<strong>to</strong>rage<br />

Products are sealed in silos, containers or<br />

inside well-sealed, gas-tight fumigation<br />

sheets (Banks and Annis 1997, Cassells et al<br />

1994, Hill 1997). Nitrogen, an inert gas, is<br />

released in<strong>to</strong> the container and pushes out<br />

the air, with the aim of reducing oxygen levels<br />

<strong>to</strong> less than 1%. The gas must be <strong>to</strong>pped<br />

up from time <strong>to</strong> time <strong>to</strong> ensure oxygen levels<br />

remain at the desired level. Nitrogen can be<br />

supplied as a liquefied gas in cylinders from<br />

commercial suppliers or made on site with<br />

machines that remove oxygen from the air<br />

and deliver a gas stream containing about<br />

0.5% oxygen.<br />

The treatment time for <strong>to</strong>tal disinfestation<br />

depends heavily on the temperature of the<br />

commodity but is typically one <strong>to</strong> four weeks.<br />

Nitrogen s<strong>to</strong>rage is most effective when grain<br />

is more than 20°C; at lower temperatures a<br />

very long treatment time is needed for complete<br />

disinfestations if <strong>to</strong>lerant pests and<br />

stages (such as Si<strong>to</strong>philus pupae), are present<br />

(Banks 1999). Nitrogen systems are effective<br />

in reducing mould growth in higher s<strong>to</strong>rage<br />

moistures (16 <strong>to</strong> 18% moisture), but anaerobic<br />

fermentation can take place at moisture<br />

levels above this. A major export terminal in<br />

Australia regularly treats bins of grain (2,000-<br />

<strong>to</strong>nne capacity) with nitrogen, requiring<br />

about 1m 3 of nitrogen per <strong>to</strong>nne of grain<br />

(Batchelor 1999).<br />

Carbon dioxide s<strong>to</strong>rage or treatment<br />

Effective treatments involve the release of carbon<br />

dioxide gas in<strong>to</strong> well-sealed enclosures.<br />

The gas displaces the air, with a typical initial<br />

target atmosphere of more than 60% carbon<br />

dioxide. In some cases, 80% carbon dioxide is<br />

required (Banks et al 1991). Depending upon<br />

the target pest, carbon dioxide concentration<br />

should not fall below 40 or 50% in the first<br />

10 days of treatment. At 25°C the <strong>to</strong>tal treatment<br />

period should be at least 15 days<br />

(MBTOC 1998). Carbon dioxide works faster<br />

than nitrogen because it has a direct <strong>to</strong>xic<br />

effect on insects. The gas may have <strong>to</strong> be<br />

<strong>to</strong>pped up <strong>to</strong> keep carbon dioxide levels high.<br />

The treatment time for disinfestation of grain<br />

is typically two <strong>to</strong> three weeks. An in-transit<br />

treatment is used for groundnuts shipped<br />

from Australia.<br />

Carbon dioxide and pressure<br />

The combination of carbon dioxide and pressure<br />

(e.g., about 25 bar) can reduce the disinfestation<br />

time <strong>to</strong> less than 3 hours (Caliboso<br />

et al 1994, Reichmuth and Wohlgemuth<br />

1994, Prozell and Reichmuth 1991, Prozell et<br />

al 1997). Treatments are typically conducted<br />

in pressure-proof chambers with 20 mm steel<br />

walls. The equipment has a high capital cost<br />

but provides a very rapid quarantine treatment<br />

for high value durable products.<br />

For all of the modified atmosphere treatments<br />

discussed above, the air-tightness of<br />

s<strong>to</strong>res or containers is an important fac<strong>to</strong>r for<br />

effective control. Some existing structures can<br />

be adapted. In the case of silo bins, the level<br />

of sealing required for carbon dioxide or<br />

nitrogen is greater than the level of sealing<br />

typically used for MB fumigations in developing<br />

countries but similar <strong>to</strong> the level of sealing<br />

required for MB for safety reasons in a<br />

number of developed countries.<br />

Where systems provide a continuous flow of<br />

gas, such as with a gas burner, the use of<br />

somewhat less gas-tight enclosures is feasible<br />

as well (Bell et al 1993, 1997a). Certain conditions,<br />

such as a large difference between<br />

the grain and ambient air temperatures, can<br />

cause moisture <strong>to</strong> migrate <strong>to</strong> the grain surface.<br />

Precautions <strong>to</strong> prevent or ameliorate


moisture migration are required for long-term<br />

s<strong>to</strong>rage.<br />

Improved application systems <strong>to</strong> reduce<br />

cost and increase convenience.<br />

A wide range of techniques has been developed<br />

for bulk or bagged commodities held in<br />

different types of structures.<br />

Carbon dioxide and nitrogen systems can<br />

include:<br />

Fixed bunkers and silos.<br />

Portable cocoons.<br />

Fumigation under sealed sheets.<br />

Retail packs.<br />

In-transit treatments for export products.<br />

Port-side treatments prior <strong>to</strong> export.<br />

Carbon dioxide, however, may be unsuitable<br />

for concrete structures such as grain silos,<br />

because the gas can cause corrosion in concrete<br />

(Taylor et al 1998).<br />

Variations under development<br />

Hermetic s<strong>to</strong>re with vacuum pump for<br />

rapid disinfestation (GrainPro).<br />

Material inputs<br />

For hermetic s<strong>to</strong>rage: gas-tight containers,<br />

e.g., semi-underground bunkers,<br />

plastic (PVC) sheets, PVC cocoons; waste<br />

material <strong>to</strong> place on <strong>to</strong>p layer of grain;<br />

reflective sheet or cover for <strong>to</strong>p of container<br />

<strong>to</strong> reduce moisture migration.<br />

For nitrogen treatments: gas-tight containers<br />

or fumigation sheets sealed with<br />

gas-tight glues; supply of nitrogen gas in<br />

cylinders, or equipment for extracting<br />

nitrogen from air; moni<strong>to</strong>ring device.<br />

For carbon dioxide treatments: gas-tight<br />

containers or fumigation sheets sealed<br />

with gas-tight glues; source of carbon<br />

dioxide; moni<strong>to</strong>ring device.<br />

For in-transit systems: as above, plus a<br />

system for <strong>to</strong>pping up the carbon dioxide<br />

concentration <strong>to</strong> replace losses from<br />

leakage.<br />

For retail pack systems: barrier film plastics<br />

for making packs; adaptation of<br />

Table 6.4.1 Comparison of hermetic s<strong>to</strong>rage, nitrogen and<br />

carbon dioxide treatments<br />

Hermetic Nitrogen Carbon dioxide<br />

Atmosphere Low oxygen, Less than 1% oxygen More than 60%<br />

preferably less<br />

carbon dioxide<br />

than 1%<br />

Degree of Pest management; Pest management; Pest management<br />

pest control disinfestation in disinfestation is feasible and disinfestation<br />

long-term s<strong>to</strong>rage<br />

Pests S<strong>to</strong>rage pests S<strong>to</strong>rage pests S<strong>to</strong>rage and quarantine<br />

pests<br />

Equipment Very well sealed Very well sealed containers, Very well sealed<br />

containers nitrogen gas and applica<strong>to</strong>r containers, carbon<br />

dioxide gas and<br />

applica<strong>to</strong>r<br />

Typical 4 weeks or more 3 weeks 2 weeks<br />

treatment<br />

times<br />

Suitable S<strong>to</strong>red products S<strong>to</strong>red products, S<strong>to</strong>red and export<br />

products museum objects products, museum<br />

objects<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

129


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

130<br />

packing system <strong>to</strong> allow gas flushing and<br />

good sealing when packages are filled.<br />

Fac<strong>to</strong>rs required for use<br />

For hermetic s<strong>to</strong>rage: a long period for<br />

treatment, e.g., s<strong>to</strong>rage period of more<br />

than four weeks.<br />

For nitrogen treatments: a cheap source<br />

of nitrogen gas; several weeks for treatment<br />

if long-term s<strong>to</strong>rage is required<br />

subsequently.<br />

For carbon dioxide treatments: a cheap<br />

source of carbon dioxide gas, preferably<br />

captured from a local industrial process;<br />

at least two weeks for carrying out treatment<br />

if long-term s<strong>to</strong>rage is required.<br />

Pests controlled<br />

Oxygen levels of less than 1% for at least 2<br />

weeks (at > 20ºC) kill most s<strong>to</strong>red product<br />

insects, but the response of different species<br />

<strong>to</strong> low oxygen levels varies widely. Many are<br />

killed in a day or less at 25°C, but certain<br />

stages of some <strong>to</strong>lerant pests (such as grain<br />

weevils) may survive for 2 weeks or more.<br />

Low temperatures protect insects against the<br />

effect of low oxygen atmospheres, extending<br />

the necessary treatment period. In general,<br />

hermetic s<strong>to</strong>rage is suitable for pest suppression,<br />

while carbon dioxide and nitrogen can<br />

be used successfully for pest suppression or<br />

disinfestations. Specific examples of pest control<br />

include the following:<br />

High carbon dioxide atmospheres (above<br />

60% CO 2 ) control most s<strong>to</strong>red product<br />

pests in 2 <strong>to</strong> 3 weeks at 25 <strong>to</strong> 30°C. As<br />

an extreme case, Trogoderma granarium<br />

in diapause stage requires exposures<br />

longer than 17 days (at 30°C or less)<br />

(Spratt et al 1985).<br />

Carbon dioxide concentrations of 40 -<br />

80% (depending on the species) provide<br />

disinfestation in warehouses and silos<br />

for a number of s<strong>to</strong>red grain pests.<br />

Necessary exposure periods vary from<br />

5 <strong>to</strong> 35 days depending on the pest<br />

species and temperature (Table 6.4.2)<br />

(Soma et al 1995, Kishino et al 1996,<br />

Kawakami 1999).<br />

Humidified nitrogen in gas-tight enclosures<br />

can control all stages of museum<br />

insect pests, if oxygen levels are less than<br />

1% for up <strong>to</strong> 30 days (Strang 1996).<br />

Exposure <strong>to</strong> carbon dioxide and pressure<br />

of 30 kg/cm 2 kills all insects including<br />

immature stages (Caliboso et al 1994,<br />

Reichmuth and Wohlgemuth 1994).<br />

Controlled atmospheres can control<br />

some pest species in perishables, such as<br />

thrips, aphids and beetles (Anon 1993b,<br />

Kader 1985, 1994).<br />

In general, hermetic s<strong>to</strong>rage is suitable for<br />

pest management, while carbon dioxide and<br />

nitrogen can be used for both disinfestation<br />

and pest management. Table 6.4.2 provides<br />

examples of carbon dioxide disinfestation<br />

schedules developed in Japan for major pests<br />

of s<strong>to</strong>red grain. Additional data on exposure<br />

times for controlling many species and stages<br />

of s<strong>to</strong>red product pests under specific conditions<br />

can be found in Annis (1987), Banks<br />

and Annis (1990), Bell and Armitage (1992),<br />

Bell (1996), Kishino et al (1996), Navarro<br />

(1978), Soma et al (1995) and S<strong>to</strong>rey (1975).<br />

Data on exposures <strong>to</strong> control pest species of<br />

perishable products can be found in Kader<br />

(1985, 1994), Shellie (1999) and Hallman<br />

(1994).<br />

Current uses<br />

Controlled atmospheres have been used for<br />

disinfesting some dried fruits and beverage<br />

crops for many years. Carbon dioxide treatment<br />

is used on a large scale in Indonesia for<br />

long-term s<strong>to</strong>rage of bagged milled rice<br />

s<strong>to</strong>cks (Nataredja and Hodges 1990,<br />

Suprakarn et al 1990). Hermetic s<strong>to</strong>rage, carbon<br />

dioxide and nitrogen treatments are used<br />

commercially for diverse products (Table<br />

6.4.3). Hermetic systems are used for s<strong>to</strong>ring<br />

grains for periods of three months <strong>to</strong> several<br />

years in Cyprus (Varnava and Mouskos 1996,<br />

Batchelor 1999). Various hermetic systems


Table 6.4.2 Carbon dioxide disinfestation schedules for s<strong>to</strong>red grain in Japan<br />

Pests CO2 concentration Temperature Duration<br />

Granary weevil 40 - 80% 20 - 25°C 35 days<br />

25°C or above 21 days<br />

Rice weevil 40 - 80% 20 - 25°C 21 days<br />

Small rice weevil 25 - 30°C 14 days<br />

Red flour beetle More than 50% 20 - 25°C 14 days<br />

Cigarette beetle 25°C or above 10 days<br />

Lesser grain borer 30°C or above 10 days<br />

Indian meal moth More than 50% 20 - 25°C 7 days<br />

Mediterranean flour moth 25°C or above 5 days<br />

Almond moth<br />

have been successfully tested or used in<br />

diverse climates, including China, India, Israel,<br />

Ethiopia, Brazil and USA.<br />

Other fac<strong>to</strong>rs affecting use<br />

Product quality<br />

If the correct concentration, temperature and<br />

duration are chosen, product quality is not<br />

diminished by the use of controlled atmospheres.<br />

On the contrary, the quality of rice<br />

s<strong>to</strong>red for long periods has been found <strong>to</strong> be<br />

significantly better using carbon dioxide<br />

rather than MB, probably because repeated<br />

Source: Kawakami 1999.<br />

Table 6.4.3 Examples of commercial use of controlled and modified atmospheres<br />

Products<br />

S<strong>to</strong>red grains in Israel and Cyprus<br />

Carry-over s<strong>to</strong>cks of rice in long-term<br />

s<strong>to</strong>rage in Indonesia<br />

Groundnuts exported from Australia<br />

Premium grains exported from Thailand<br />

Various grains exported from Australia<br />

Artifacts and museum items in Germany<br />

and UK<br />

Beverage crops and spices in Germany<br />

Apples exported from Canada <strong>to</strong><br />

California state, USA<br />

Treatment<br />

Hermetic s<strong>to</strong>rage has been used for more<br />

than a decade for bulk grains<br />

Carbon dioxide treatment is used<br />

routinely for pest management<br />

In-transit carbon dioxide treatment is<br />

applied while products are being shipped<br />

Retail packs are flushed with carbon dioxide<br />

for disinfestation and protection<br />

Nitrogen treatment (with IPM) is applied at<br />

port terminal prior <strong>to</strong> export<br />

Controlled atmospheres are increasingly<br />

used for insect control<br />

Carbon dioxide + pressure provide a rapid<br />

disinfestation treatment<br />

A controlled atmosphere treatment has<br />

been approved for quarantine purposes<br />

Compiled from: MBTOC 1998, GrainPro Inc 1999<br />

fumigations with MB reduce grain quality and<br />

produce bromide residues. Unlike MB, controlled<br />

atmospheres do not affect the viability<br />

of dry grains such as malting barley.<br />

Suitable commodities and uses<br />

Hermetic s<strong>to</strong>rage and modified atmospheres<br />

are suitable for s<strong>to</strong>red durable products.<br />

Controlled atmospheres are suitable for pest<br />

management and disinfestation of grains,<br />

nuts, dried fruits, beverage crops, herbs,<br />

spices, other durable commodities, artifacts<br />

and museum items where time allows.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

131


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Structures may be treated only if they can be<br />

well sealed and closed for several weeks. Intransit<br />

controlled atmospheres and refrigeration<br />

can be used for perishable commodities<br />

<strong>to</strong> reduce the need for quarantine treatments<br />

on arrival in the importing country (Gay<br />

1995, EPA 1997).<br />

Suitable climates and conditions<br />

Carbon dioxide and nitrogen can be used in<br />

temperate <strong>to</strong> tropical climates. Hermetic s<strong>to</strong>rage<br />

can be used in a wide variety of climates<br />

provided that one of two conditions is met:<br />

Either the grain is initially sufficiently infested<br />

<strong>to</strong> assure that insects in the s<strong>to</strong>rage area use<br />

up all the available oxygen or the moisture<br />

content is in the range of 13 <strong>to</strong> 18%.<br />

Precautions against moisture migration are<br />

needed in climates where temperatures<br />

fluctuate.<br />

Toxicity and health risks<br />

Hermetic s<strong>to</strong>rage does not involve the use of<br />

<strong>to</strong>xic substances and poses no health risk<br />

(except those normally found at any grain<br />

s<strong>to</strong>rage area). Nitrogen is inert and not <strong>to</strong>xic<br />

in itself, while carbon dioxide is <strong>to</strong>xic at higher<br />

concentrations. Controlled atmosphere<br />

silos and containers lack sufficient oxygen for<br />

humans <strong>to</strong> breathe. There is no risk of flammability<br />

with controlled atmospheres.<br />

Safety precautions for users<br />

Hermetic s<strong>to</strong>rage does not require special<br />

safety precautions, but precautions and training<br />

are required for use of nitrogen and carbon<br />

dioxide gas.<br />

Residues in food and environment<br />

Nitrogen and carbon dioxide do not leave any<br />

undesirable residues in food products. For<br />

hermetic s<strong>to</strong>rage and situations where moisture<br />

migration may occur, suitable steps must<br />

be taken <strong>to</strong> prevent mould affecting food<br />

products.<br />

Ozone depletion<br />

Carbon dioxide and nitrogen are not ODS.<br />

Global warming and energy<br />

consumption<br />

Nitrogen is not a greenhouse gas; but carbon<br />

dioxide is. The impact of using carbon dioxide<br />

may be mitigated <strong>to</strong> some extent by using<br />

gas captured from local industries, such as<br />

smelters and distilleries. Nitrogen treatments<br />

require energy for generating the nitrogen<br />

gas and for transporting cylinders (if the gas<br />

is not extracted from air on-site). Carbon<br />

dioxide requires energy for the generation or<br />

capture of gas and transportation of cylinders.<br />

Hermetic s<strong>to</strong>rage does not consume<br />

energy.<br />

Other environmental considerations<br />

Controlled and modified atmospheres do not<br />

normally generate waste products. Gas cylinders<br />

are generally re-used.<br />

Acceptability <strong>to</strong> markets and consumers<br />

These treatments are regarded as non-chemical<br />

by consumers and are very acceptable <strong>to</strong><br />

purchasing companies.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Regula<strong>to</strong>ry approval is not normally required<br />

for hermetic s<strong>to</strong>rage. It may be required for<br />

nitrogen and carbon dioxide treatments.<br />

Cost considerations<br />

For hermetic s<strong>to</strong>rage the initial capital<br />

costs may be higher than one year’s<br />

application of MB, while the labour and<br />

operating costs are similar. In Cyprus, for<br />

example, the <strong>to</strong>tal capital and operating<br />

costs for a hermetic s<strong>to</strong>rage platform<br />

system for 4,000 <strong>to</strong>nnes of grain is<br />

about $4,500 for 1-year s<strong>to</strong>rage, $6,500<br />

for 2 years s<strong>to</strong>rage and $8,400 for 3<br />

years s<strong>to</strong>rage. This works out at about<br />

$1.12 per <strong>to</strong>nne/year for grain s<strong>to</strong>red for<br />

1 year, and $0.80 per <strong>to</strong>nne/year for<br />

132


grain s<strong>to</strong>red for 2 years. (Batchelor<br />

1999).<br />

Converting existing grain bins for nitrogen<br />

treatments involves a small capital<br />

outlay. The operating cost depends primarily<br />

on the source of nitrogen gas.<br />

Licensed fumiga<strong>to</strong>rs and expensive safety<br />

measures are not needed. A typical<br />

3-week nitrogen treatment, using gas<br />

supplied in cylinders, in Newcastle<br />

Australia, for example, costs about<br />

$0.39 per <strong>to</strong>nne of grain for materials<br />

and labour. This compares with about<br />

$0.35 per <strong>to</strong>nne for one MB treatment<br />

(Batchelor 1999).<br />

In general, nitrogen and carbon dioxide<br />

treatments have capital costs lower than<br />

MB, while operating costs may be similar,<br />

cheaper or more expensive, depending<br />

mainly on the source of the gas.<br />

Finding a cheap source of gas can<br />

reduce the cost substantially.<br />

For s<strong>to</strong>rage periods of about one year or<br />

longer, carbon dioxide and nitrogen are<br />

often cheaper than MB.<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

Which pests need <strong>to</strong> be controlled?<br />

What degree of control is necessary?<br />

Can the s<strong>to</strong>re be made adequately<br />

gas-tight?<br />

Can the commodity be treated while<br />

in s<strong>to</strong>rage or does it need a special,<br />

rapid treatment?<br />

Can logistical changes accommodate a<br />

longer treatment period?<br />

Would in-transit treatments or retail<br />

packing be feasible and useful?<br />

Is a cheap source of nitrogen or carbon<br />

dioxide available locally?<br />

Do temperature and commodity moisture<br />

affect the treatment choices?<br />

What changes need <strong>to</strong> be made <strong>to</strong> the<br />

commodity management system?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Materials and equipment are widely available.<br />

Suppliers of products and services<br />

Table 6.4.4 provides examples of specialists<br />

and suppliers of products and services. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

133


Table 6.4.4 Examples of specialists and suppliers of products and services for<br />

controlled and modified atmospheres<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Type of equipment or service<br />

Containers and systems for hermetic<br />

s<strong>to</strong>rage<br />

Containers and gas-tight sheets for<br />

nitrogen and carbon dioxide treatments<br />

Equipment for generating nitrogen on-site<br />

e.g., nitrogen membrane systems<br />

Suppliers of nitrogen gas and<br />

carbon dioxide gas<br />

Controlled atmosphere treatments -<br />

a wide variety of contract services<br />

Specialists, advisory services and<br />

consultants<br />

Organization or company<br />

CSIRO, Australia<br />

GrainPro Inc, USA<br />

Haogenplast, Israel<br />

GrainPro Inc, USA<br />

Power Plastics, UK<br />

Ren<strong>to</strong>kil, Germany, UK<br />

Gas Process Control, Australia<br />

Oxair Australia Pty, Australia<br />

There are many other suppliers, typically gas<br />

companies<br />

BOC Gases, most countries<br />

Consolidated Industrial Gases Inc, Philippines<br />

Industrial Oxygen Inc, Malaysia<br />

IMS Gas and Equipment Pte Ltd, Singapore<br />

Island Air Products Corp, Philippines<br />

Malaysia Oxygen Berhad, Malaysia<br />

Praxair Canada Inc, Canada<br />

PT Aneka Gases, Indonesia<br />

Thai Industrial Gases Ltd, Thailand<br />

Also contact local gas suppliers<br />

American President Lines Ltd, USA<br />

Insects Limited, USA<br />

Fumigation Services and Supply, USA<br />

GrainPro Inc, USA<br />

Permea Inc, USA<br />

SiberHegner Lenersan Poortman BV, Netherlands<br />

Ren<strong>to</strong>kil, Germany and UK<br />

Thermo Lignum, Germany and UK<br />

TransFresh Corp., USA<br />

Canadian Grain Commission, Canada<br />

Cereal Research Centre, Canada<br />

CSIRO S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry,<br />

Australia<br />

Cyprus Grain Commission, Cyprus<br />

Federal Biological Research Centre for<br />

Agriculture and Forestry, Germany<br />

GrainPro Inc, USA<br />

GTZ, Germany<br />

Home Grown Cereals Authority, UK<br />

HortResearch, New Zealand<br />

Dr Jonathon Banks, Pialligo, Australia<br />

Dr John Conway, Natural Resources Institute,<br />

Chatham Maritime, UK<br />

Dr Jonathan Donahaye, Volcani Institute, Israel<br />

Dr Shlomo Navarro, Volcani Institute, Israel<br />

Dr Adel Kader, University of California, USA<br />

Dr Fusao Kawakami, MAFF Yokohama Plant<br />

Protection Station, Japan<br />

Dr Krista Shellie, USDA-ARS, USA<br />

Dr Thomas Phillips, Oklahoma University, USA<br />

134<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.


6.5 Heat treatments<br />

Advantages<br />

Very rapid treatment, often faster than<br />

MB fumigation.<br />

No undesirable residues in food<br />

products.<br />

Effective for disinfestation, including<br />

control of khapra beetle.<br />

Requires less sealing than MB for<br />

durable commodities.<br />

Safe for users and local communities.<br />

Does not require access restrictions<br />

near site.<br />

Disadvantages<br />

Not suitable for commodities that are<br />

damaged by heat.<br />

Not available for large grain terminals<br />

that handle more than 500 <strong>to</strong>nnes of<br />

grain per hour.<br />

Consumes substantial energy and may<br />

cost more than MB.<br />

Technical description<br />

Heat can be used <strong>to</strong> manage or kill a wide<br />

range of pests by inducing dehydration<br />

and/or coagulating proteins and destroying<br />

enzymes in organisms. S<strong>to</strong>red product pest<br />

insects, for example, can be eradicated by<br />

exposing them <strong>to</strong> temperatures of about<br />

50°C. In general, commodities are heated <strong>to</strong><br />

temperatures ranging from 43 <strong>to</strong> 100°C, with<br />

treatment times varying from one minute <strong>to</strong><br />

several days depending on the commodity,<br />

pest and situation (see Tables 6.5.2).<br />

During treatments, the temperature needs <strong>to</strong><br />

be moni<strong>to</strong>red and achieved within the commodity<br />

itself, not simply in the air spaces.<br />

Both the temperature and time need <strong>to</strong> be<br />

controlled <strong>to</strong> kill the target pests yet avoid<br />

damage <strong>to</strong> products from excessive heat, loss<br />

of moisture or other changes due <strong>to</strong> heat.<br />

The speed of treatment is generally determined<br />

by the rate at which heat penetrates<br />

thick objects or commodity bulks, not by the<br />

intrinsic speed at which heat kills insects.<br />

The heat for treatments is normally generated<br />

using conventional means such as oil, electricity<br />

or gas, although in some situations it is<br />

feasible <strong>to</strong> use waste heat from other<br />

processes. Numerous techniques are available<br />

for delivering heat <strong>to</strong> durable commodities,<br />

including hot air, fluid beds and kiln drying.<br />

Steam treatments are specialised and suitable<br />

only for durable items that can sustain high<br />

humidity, such as dunnage, logs and some<br />

types of wood. In the case of perishable commodities,<br />

hot water dips, vapour heat and<br />

hot forced air techniques are in use. The<br />

many diverse techniques can be divided in<strong>to</strong><br />

the following broad groups:<br />

Heated air<br />

Air heated <strong>to</strong> a temperature of approximately<br />

90°C is used <strong>to</strong> heat grain briefly <strong>to</strong> above<br />

65°C. In the case of cereal grain processing<br />

plants, the typical target temperature is 50 <strong>to</strong><br />

55°C for 20 <strong>to</strong> 30 hours for controlling<br />

insects (Dowdy 1997). Heat applied in the<br />

process of kiln drying disinfests sawn timber<br />

and actually adds value <strong>to</strong> it. Convection<br />

heaters or existing air ducts applying temperatures<br />

above 50°C for 20 <strong>to</strong> 30 hours are<br />

used in some structures for controlling most<br />

pests except cockroaches (Heaps 1998,<br />

MBTOC 1998). Target temperatures must be<br />

achieved in places where insects may be hidden,<br />

such as ducts, voids and pipe work.<br />

Structural heat treatments are normally combined<br />

with IPM and applied several times a<br />

year.<br />

Fluid bed system<br />

High-speed “fluid bed” systems for treating<br />

bulk grain have been built and developed <strong>to</strong><br />

commercial pro<strong>to</strong>type stage and successfully<br />

handle up <strong>to</strong> 150 <strong>to</strong>nnes of grain per hour<br />

(Sutherland et al 1987, Evans et al 1983,<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

135


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

136<br />

Thorpe et al 1984, Fleurat-Lessard 1985).<br />

Typical temperatures are 65°C within the<br />

commodity for about one minute. Installation<br />

of large-scale treatment facilities, however, is<br />

likely <strong>to</strong> be capital intensive. There are currently<br />

no heat installations of the size<br />

required <strong>to</strong> meet the typical handling speeds<br />

of large modern grain terminals, which often<br />

handle 500 <strong>to</strong>nnes/hour or more on one belt.<br />

Heat treatments with controlled<br />

humidity<br />

Artifacts and durable commodities normally<br />

lose moisture during heating, but moni<strong>to</strong>ring<br />

and maintaining the moisture content of<br />

items at the same level throughout the heating<br />

and cooling process can prevent this.<br />

Artifacts and durable commodities can be<br />

treated in chambers or other containers, or<br />

the treatment may be applied as a space or<br />

structural treatment. This process is more<br />

expensive than heat alone but is very suitable<br />

for his<strong>to</strong>rical objects and other delicate<br />

artifacts that would normally be damaged<br />

by heat.<br />

For certain perishable commodities, such as<br />

grapefruit, papaya and mango, high temperature<br />

forced air (HTFA) treatments have been<br />

approved for quarantine. After loading commodities<br />

in<strong>to</strong> a chamber, humidified air (typically<br />

40 <strong>to</strong> 80% relative humidity) at 40 <strong>to</strong><br />

50°C is forced over fruit surfaces <strong>to</strong> raise the<br />

internal temperature. The temperature and<br />

relative humidity are controlled precisely <strong>to</strong><br />

prevent condensation inside the treatment<br />

area and on commodities, protecting fruit<br />

from desiccation and scalding (Gaffney and<br />

Armstrong 1990, Sharp et al 1991).<br />

Certain perishable commodities are given<br />

vapour heat treatments that are broadly similar<br />

<strong>to</strong> HTFA, except that the relative humidity<br />

is kept above 80%. Information on HTFA and<br />

vapour heat treatments can be found in the<br />

Textbook of Vapour Heat Disinfestation of<br />

Japan (Anon. 1996), UDSA-APHIS (1998),<br />

Armstrong (1994), Hallman and Armstrong<br />

(1994), Sharp (1994) and Williamson and<br />

Winkelman (1994).<br />

Hot water immersion<br />

Water is inherently more effective than humid<br />

air as a heat transfer medium, and provides a<br />

uniform temperature profile if properly circulated<br />

through the load of commodities<br />

(Couey 1989). Hot water dips can be used <strong>to</strong><br />

control fungi as well as insects and snails in<br />

wood and timber (MBTOC 1998). Depending<br />

on the pest and commodity, quarantine treatments<br />

for specific perishables may be accomplished<br />

with submersion in hot baths, often<br />

at temperatures between 43 and 47°C for<br />

periods from 35 <strong>to</strong> 90 minutes (MBTOC<br />

1998, Hara et al 1994). Such treatment provides<br />

the additional benefit of control of<br />

post-harvest microbial diseases, such as<br />

anthracnose and stem end rot (Couey 1989,<br />

McGuire 1991).<br />

In-transit steaming<br />

In the USA, a method of in-transit steam<br />

heating has been developed for bulk timber<br />

and wood chips, allowing large cargoes (up<br />

<strong>to</strong> 35,000 m 3 ) <strong>to</strong> be treated hold by hold.<br />

Low-pressure steam and/or hot water at 65<br />

<strong>to</strong> 90°C is provided by a boiler, heating the<br />

centre of the timber <strong>to</strong> at least 56°C for 30<br />

minutes or more (Seidner 1997).<br />

Combination treatments<br />

Heat can be successfully combined with other<br />

treatments, such as controlled atmospheres<br />

and phosphine. Heat often acts as a synergist,<br />

increasing the diffusion and distribution<br />

of gases and their powers of penetration; it<br />

reduces the physical sorption of gases and<br />

increases the <strong>to</strong>xicity or level of stress <strong>to</strong> target<br />

pests (Mueller 1998).<br />

To avoid damage by heat, some durable<br />

products need <strong>to</strong> be rapidly cooled <strong>to</strong> room<br />

temperature after treatment. Delicate<br />

artifacts and antiques can withstand heat<br />

if their internal humidity is moni<strong>to</strong>red and<br />

maintained at the same level throughout the


treatment. Some structures cannot <strong>to</strong>lerate<br />

the stresses caused by the rapid change in<br />

temperature and the differential expansion of<br />

structural components such as concrete and<br />

steel. Sensitive electrical equipment and other<br />

heat-sensitive items must be temporarily<br />

removed from structures or modified <strong>to</strong><br />

avoid damage. Some types of grease are liquefied<br />

by heat and have <strong>to</strong> be re-applied<br />

after a treatment.<br />

Because they are susceptible <strong>to</strong> heat damage,<br />

perishable commodities require heat treatments<br />

specially tailored for each variety.<br />

Perishables that can <strong>to</strong>lerate certain heat<br />

treatments for quarantine include <strong>to</strong>ma<strong>to</strong>,<br />

pepper, aubergine (eggplant), melon,<br />

cucumber, papaya, some citrus fruits, litchi,<br />

mango and cut flowers (Paull and Armstrong<br />

1994).<br />

Computer-controlled heating techniques<br />

allow greater control and shorter treatment<br />

periods. Treatment times can also be reduced<br />

with engineering improvements that move<br />

hot air faster and more uniformly through the<br />

commodity (Paull and Armstrong 1994). The<br />

gradual heating of perishables is generally<br />

preferable <strong>to</strong> rapid heating, and a pretreatment<br />

may increase the commodity’s<br />

<strong>to</strong>lerance. Heat is unsuitable for highly<br />

perishable products, such as asparagus,<br />

nectarines, avocados or leafy vegetables<br />

(MBTOC 1994, Couey 1989).<br />

Current uses<br />

Heat treatments were once widely used in<br />

warm climates for disinfestation of commodities,<br />

such as grain in Australia and cot<strong>to</strong>n and<br />

cot<strong>to</strong>n seed in Egypt, with large <strong>to</strong>nnages<br />

being treated (Banks 1999). In some countries<br />

heat has been routinely used <strong>to</strong> control<br />

wood-boring pests in wooden buildings for<br />

many years. Heat is also used commercially<br />

for some wood products (Table 6.5.1). Heat<br />

treatments are increasingly being adopted as<br />

part of IPM systems for food processing facilities<br />

and mills in Canada. More than 75 commercial<br />

heat facilities have been built for<br />

quarantine treatments for perishable commodities<br />

in Mexico and other countries of<br />

Latin America (EPA 1996).<br />

Variations under development<br />

Other sources of heat, such as<br />

microwaves, radio frequency heating,<br />

dielectric heating and infrared.<br />

Pre-treatments and lower temperature<br />

treatments <strong>to</strong> reduce commodity stress,<br />

allowing a wider range of commodities<br />

<strong>to</strong> be treated with heat.<br />

Improvements in the energy-efficiency of<br />

treatments.<br />

Table 6.5.1 Examples of commercial use of heat treatments<br />

Products<br />

Wood products<br />

Wood products<br />

Food processing facilities and mills in<br />

Canada and the Netherlands<br />

Artifacts and museum items in Germany,<br />

Austria and UK<br />

Mangoes exported from the Caribbean Basin,<br />

Latin America, Australia<br />

Papaya exported from Hawaii <strong>to</strong> mainland<br />

USA, and from the Cook Islands <strong>to</strong> New Zealand<br />

Treatment<br />

Kiln drying<br />

Steam heat<br />

Hot air treatments + IPM<br />

Heat with controlled humidity<br />

Hot water immersion – quarantine<br />

treatment for fruit fly<br />

Treatment with vapour heat or forced<br />

hot air – quarantine treatment for<br />

fruit fly<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

Compiled from: MBTOC 1998, Batchelor 1999, Paull and Armstrong 1994<br />

137


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Material inputs<br />

Equipment for generating heat.<br />

Fuel.<br />

Containment or insulated sheets <strong>to</strong> place<br />

around the commodity.<br />

Temperature gauges and moni<strong>to</strong>ring<br />

probes <strong>to</strong> insert in different parts of the<br />

commodity load or structure.<br />

Where humidity is important, probes and<br />

equipment for moni<strong>to</strong>ring and controlling<br />

humidity.<br />

Fac<strong>to</strong>rs required for use<br />

Products, structures and equipment<br />

that can withstand heat without being<br />

damaged by it.<br />

Know-how and training.<br />

Pests controlled<br />

All stages of s<strong>to</strong>red product pest insects can<br />

be eradicated in less than one minute if<br />

they are exposed <strong>to</strong> a temperature of 65°C.<br />

Temperatures above 47°C for longer exposures<br />

are also lethal for many s<strong>to</strong>red product<br />

pests (Barks & Fields 1998). Tables 6.5.2 show<br />

the temperatures and exposure times necessary<br />

<strong>to</strong> kill pests in certain commodities.<br />

Further examples can be found in Forbes and<br />

Ebling, Banks & Fields (1998).<br />

Lethal temperatures for insects and fungal<br />

pests of perishable commodities can be<br />

found in Jang (1986), Yokoyama et al (1987,<br />

1991) and Moss and Jang (1991). Insect mortality<br />

due <strong>to</strong> heat varies according <strong>to</strong> fac<strong>to</strong>rs<br />

such as the species, insect stage, insect age,<br />

availability of oxygen, pH, previous temperatures,<br />

and general energy status of the insect<br />

(Moss and Jang 1991).<br />

Heat treatments can be used for pest suppression<br />

and disinfestation purposes. There<br />

are a number of heat treatments approved by<br />

quarantine authorities for particular products,<br />

and examples of these are listed in Table<br />

6.5.3 and Table 6.5.4. Heat is effective in<br />

replacing MB for some quarantine disinfestations<br />

targeted at Trogoderma granarium, an<br />

important quarantine pest of grain (MBTOC<br />

1998). Heat is one of the few treatments that<br />

is effective at disinfesting bulk grain from live<br />

snails (Cassells et al 1994).<br />

Other fac<strong>to</strong>rs affecting use<br />

Product quality<br />

Depending on the temperature, the quality of<br />

some grains may be affected by heat, thus<br />

limiting the application <strong>to</strong> grains that will be<br />

processed. Under good process control there<br />

is no damage <strong>to</strong> the end-use qualities of cereals,<br />

such as bread-making wheat or rice, and<br />

malting quality of barley (Fleurat-Lessard<br />

1985, Sutherland et al 1987). However, the<br />

Table 6.5.2 Temperatures for killing pests of s<strong>to</strong>red products and structures<br />

Pests and commodities Commodity temperature Further information<br />

and exposure time<br />

Cigarette beetle (Lasioderma 50°C for 24 hours kills all Meyer 1980,<br />

serricorne, all stages) stages Banks & Fields 1998<br />

All <strong>to</strong>bacco pests Vacuum steam conditioning at Ryan 1995<br />

60°C for 3 minutes<br />

Wide range of fungi in timber Steam treatment held at 66°C Chidester 1991,<br />

for 1.25<br />

Miric and Willeitner<br />

1990, Newbill and 1991<br />

Dry wood termites Heating <strong>to</strong> above 44°C Lewis and Haverty 1996<br />

138


Table 6.5.3 Examples of heat treatments approved for quarantine purposes<br />

for durable commodities and artifacts, USA<br />

Treatments and commodities<br />

Temperature and duration<br />

Heat treatments<br />

Any durable commodity that can <strong>to</strong>lerate<br />

65.5°C for 7 minutes<br />

heat <strong>to</strong> control Khapra beetle<br />

Feeds & milled products for processing<br />

65.5°C for 7 minutes<br />

Bagasse/sugarcane<br />

70°C for 2 hours<br />

Bags for seeds<br />

100°C for 1 hour<br />

Lumber (3" thick) with wood borers<br />

54.4°C for 14 hours<br />

or 60°C for 7 hours<br />

Corn (maize) ears not for propagation<br />

75.5°C for 2 hours<br />

Rice straw novelties and articles<br />

82.2°C for 2 hours<br />

Niger seeds with soil or Khapra beetle<br />

100°C for 15 minutes<br />

Steam treatments<br />

Niger seeds with soil or Khapra beetle<br />

100°C for 15 minutes<br />

Seeds not for propagation 100°C<br />

Steam treatments with pressure<br />

Rice straw and hulls, straw mats<br />

30 minutes<br />

Rice straw novelties<br />

30 minutes<br />

Novelties and articles from broomcorn<br />

30 minutes<br />

Vacuum steam flow process<br />

Leaf <strong>to</strong>bacco for export<br />

76.7°C for 15 minutes<br />

Blended strip <strong>to</strong>bacco for export<br />

71.1°C for 3 minutes<br />

Hot water dips<br />

Bulbs with Ditylenchus nema<strong>to</strong>des<br />

24°C for 2 hours and 43.3°C for 4 hours<br />

Lily bulbs with Aphelenchoides nema<strong>to</strong>des<br />

38.8°C<br />

Senecio with Aphelenchoides nema<strong>to</strong>des<br />

43.3°C for 1 hour<br />

Narcissus bulbs with bulb scale mite<br />

43.3°C for 1 hour<br />

Certain tubers with Meloidogyne spp.<br />

47.8°C for 30 minutes<br />

Horseradish root with golden nema<strong>to</strong>de<br />

47.8°C for 30 minutes<br />

Banana roots<br />

43.4°C for 30 minutes and 48.9°C for<br />

60 minutes<br />

Sugarcane<br />

43.3°C for 4 hours<br />

Compiled from: USDA-APHIS 1993, 1998<br />

Table 6.5.4 Examples of heat treatments approved for quarantine purposes<br />

for perishable commodities, USA<br />

Perishable commodities (1)<br />

Grapefruit infested with Caribbean fruit fly<br />

Mango infested with Caribbean fruit fly<br />

Papaya, pineapple, <strong>to</strong>ma<strong>to</strong>, zucchini, squash,<br />

aubergine (eggplant) and bell peppers infested<br />

with Mediterranean, Oriental or melon fruit flies<br />

Temperature and duration<br />

Vapour heat at 43.3 - 43.7°C for 5 hours<br />

Hot water at 46.1 - 46.7°C for 75 minutes<br />

<strong>to</strong> 2 hours, depending on variety<br />

or cultivar<br />

Vapour heat at 44.4°C for 8.75 hours<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

(1) The approved treatments relate <strong>to</strong> specific varieties or cultivars in some cases<br />

Compiled from: Paull and Armstrong 1994<br />

139


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

140<br />

margin of error is small and slight excesses in<br />

treatment can adversely affect the product.<br />

High temperatures lead <strong>to</strong> detrimental colour<br />

changes or rancidity in many dried fruit<br />

and nuts.<br />

If humidity is carefully controlled throughout<br />

the treatment, heat damage from moisture<br />

loss can be avoided, even in many delicate<br />

museum objects. Heat damage and protection<br />

measures for perishable commodities are<br />

outlined in Paull and Armstrong (1994), Sharp<br />

and Hallman (1994) and Lay-Yee (1994). Heat<br />

treatments can also have beneficial effects on<br />

quality, such as reducing susceptibility <strong>to</strong> chilling<br />

injury in persimmons or increasing firmness<br />

in apples and pears (Lay-Yee 1994,<br />

Neven and Drake 1998).<br />

Suitable products and uses<br />

Heat treatments at moderate temperatures<br />

are suitable for durable products, artifacts<br />

and structures that can withstand heat without<br />

damage <strong>to</strong> their market quality. The<br />

range of suitable products can be extended<br />

substantially if heat is combined with controlled<br />

humidity, because this prevents or<br />

reduces heat damage in many situations.<br />

Heat is not suitable for highly perishable<br />

products, such as asparagus, nectarines, avocados<br />

or leafy vegetables (Couey 1989) or for<br />

seeds that will be germinated (GTZ 1996).<br />

Suitable climates and conditions<br />

Heat treatments are not limited by climate<br />

and can be conducted in a wide range of<br />

regions from temperate <strong>to</strong> tropical.<br />

Toxicity and health risks<br />

Heat treatments do not involve the use of<br />

<strong>to</strong>xic substances. Heat itself, however, can<br />

present an occupational hazard, so proper<br />

safety management is required.<br />

Safety precautions for users<br />

It is necessary <strong>to</strong> have safety training for<br />

workers.<br />

Residues in food and environment<br />

Heat treatments do not leave undesirable<br />

residues in treated products.<br />

Ozone depletion<br />

Heat treatments do not use ODS.<br />

Global warming and energy<br />

consumption<br />

Heat treatments use energy for heat generation.<br />

The problem of carbon dioxide emissions<br />

from fossil fuels can be addressed by<br />

using renewable sources of energy or local<br />

sources of waste heat, where possible. A<br />

Danish project has recently improved the<br />

energy efficiency of heat treatments for<br />

wood-boring beetles, reducing energy consumption<br />

by up <strong>to</strong> 50% (Host Rasmussen<br />

1998). Computer-control of heat treatments<br />

often allows improved energy efficiency.<br />

Other environmental considerations<br />

Surplus heat is the main waste product.<br />

Where possible, it is desirable <strong>to</strong> capture this<br />

for other constructive purposes.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Properly conducted heat treatments are very<br />

acceptable <strong>to</strong> supermarkets and purchasing<br />

companies. They are highly acceptable <strong>to</strong><br />

consumers, because they are traditional, nonchemical<br />

treatments.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

Registration is not normally required for heat<br />

treatments for general pest control. Prior<br />

approval is required for heat treatments <strong>to</strong> be<br />

used as quarantine treatments. Examples of<br />

approved quarantine treatments for durables<br />

are given in Table 6.5.3, while examples for<br />

perishable commodities are given in Table<br />

6.5.4. Normal safety restrictions apply <strong>to</strong> the<br />

use of heating appliances in workplaces.<br />

Cost considerations<br />

Heat treatments normally require a high<br />

capital investment and, in some cases,


involve relatively high fuel costs. Over<br />

several years, however, costs can be similar<br />

<strong>to</strong> MB in some applications.<br />

Kiln drying of softwood (e.g., Douglas<br />

fir) in the USA costs about US$ 85 <strong>to</strong><br />

155 per 1,000 bd. foot, while steam<br />

treatments cost US$ 35 <strong>to</strong> 60 per 1,000<br />

bd. ft. For hardwoods (e.g., oak, cherry),<br />

kiln drying costs about US$ 100 <strong>to</strong> 200,<br />

while steam treatments cost about US$<br />

41 <strong>to</strong> 77 per 1,000 bd.ft. In contrast,<br />

MB fumigation costs only US$ 1 <strong>to</strong> 3 per<br />

1,000 bd. ft. However, the heat treatments<br />

add 30 <strong>to</strong> 50% extra value <strong>to</strong><br />

timber, so the net cost of heat treatments<br />

can be zero (US EPA 1996).<br />

For perishable products, heat treatments<br />

generally cost more than MB fumigation<br />

(Paull and Armstrong 1994). The capital<br />

cost of a hot water immersion system<br />

varies from less than US$ 8,000 <strong>to</strong> more<br />

than $ 200,000. For forced air and<br />

vapour heat systems, the capital costs<br />

vary from US$ 20,000 <strong>to</strong> about 200,000,<br />

while the capital and operating costs are<br />

estimated <strong>to</strong> be about US$ 29.40 per<br />

<strong>to</strong>nne of commodity compared <strong>to</strong> about<br />

US$ 4.37 per <strong>to</strong>nne for MB (US EPA<br />

1996). The cost of heat treatment equipment<br />

has been reduced in recent years,<br />

however (Williamson 1999).<br />

Structural heat treatments (e.g., for food<br />

facilities) cost approximately 75 <strong>to</strong> 200%<br />

of the cost of MB fumigation (Mueller<br />

1998), depending on the size of the<br />

treatment area, the source of heat and<br />

the temperature/time equation. If a company<br />

already owns heaters, heat treatments<br />

are less expensive than MB (Heaps<br />

1998). Otherwise a significant capital<br />

investment is required: One 250,000<br />

BTU platform steam convection heater,<br />

for example, costs about US$ 2,300 in<br />

the USA (Heaps 1998). The operating<br />

cost of heat treatments at a US food<br />

processing plant is US$ 747 <strong>to</strong> 830 per<br />

1 million cubic feet compared <strong>to</strong> US$<br />

2,000 <strong>to</strong> 4,500 for MB (US EPA 1995).<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

What level of pest control needs <strong>to</strong> be<br />

achieved?<br />

What temperatures are required <strong>to</strong> control<br />

the target pests?<br />

What time is available <strong>to</strong> conduct the<br />

treatment?<br />

What temperature/exposure can be <strong>to</strong>lerated<br />

by the commodity or structure<br />

and equipment?<br />

Is there an available source of ”waste”<br />

heat or steam, for example, from local<br />

food-processing operations?<br />

What changes could be made <strong>to</strong> the<br />

commodity management system <strong>to</strong><br />

accommodate heat treatments?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

General heating equipment, such as steam<br />

boilers and convection heaters, are widely<br />

available. Special equipment, such as heat<br />

units for perishable treatments, is available in<br />

some countries.<br />

Suppliers and specialists<br />

Examples of specialists and suppliers of products<br />

and services are listed in Table 6.5.5. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

141


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

142<br />

Table 6.5.5 Examples of specialists and suppliers of products and<br />

services for heat treatments<br />

Type of equipment or service<br />

Equipment for various types of<br />

heat treatments<br />

Consultants, specialists and advisory<br />

services for durable commodities,<br />

timber, structures<br />

Consultants, specialists and<br />

advisory services for perishable<br />

commodities<br />

Organization or company<br />

Aggreko Inc, USA<br />

Aquanomics International, New Zealand<br />

Boverhuis Boilers BV, Netherlands<br />

Department of Agricultural Engineering, University of<br />

Hawaii, USA<br />

FibreForm Wood Products Inc, USA<br />

HKB, Netherlands<br />

Ole Myhrene Krike, Norway<br />

Thermeta, Netherlands<br />

Thermo Lignum, Austria, Germany and UK<br />

Topp Construction Services Inc, USA (Safe-Heat)<br />

Tur-Net, Netherlands<br />

Quarantine Technologies, New Zealand<br />

Contact neighbouring fac<strong>to</strong>ries and food processing<br />

facilities <strong>to</strong> ask if they generate surplus heat or steam<br />

For other suppliers of steam boilers refer <strong>to</strong> Table 4.6.5<br />

Cereal Research Centre, Canada<br />

Canadian Pest Control Association, Canada<br />

Copesan Services Inc, USA<br />

CSIRO S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry, Australia<br />

FibreForm Wood Products Inc, USA<br />

Fumigation Services and Supply, USA<br />

HortResearch, New Zealand<br />

Insects Limited, USA<br />

Quaker Oats Canada Ltd, Canada<br />

Thermo Lignum, Germany and UK<br />

Dr Bill Brodie, USDA-ARS, Department of Plant<br />

Pathology, Cornell University, Ithaca NY, USA<br />

Dr Alan Dowdy, Grain Marketing and Production<br />

Research Center, USDA-ARS, Kansas, USA<br />

Aquanomics International, New Zealand<br />

Ole Myhrene Krike, Norway (propagation plants)<br />

Thermo Lignum, Germany and UK<br />

Dr Jack Armstrong, Tropical Fruit and Vegetable<br />

Research Labora<strong>to</strong>ry, USDA-ARS, USA<br />

Dr Eric Jang, Tropical Fruit and Vegetable Research<br />

Labora<strong>to</strong>ry, USDA-ARS, USA<br />

Dr Arnold Hara, University of Hawaii, USA (cut flowers)<br />

Dr K Jacobi, Department of Primary Industry,<br />

Indooroopily, Australia<br />

Dr Michael Lay-Yee and colleagues, HortResearch,<br />

New Zealand<br />

Dr Robert Mangan, Subtropical Agriculture Research<br />

Labora<strong>to</strong>ry, USDA-ARS, USA<br />

Dr Krista Shellie, Subtropical Agriculture Research<br />

Labora<strong>to</strong>ry, USDA-ARS, Weslaco TX, USA<br />

Dr Harold Moffitt, Yakima Agricultural Research<br />

Labora<strong>to</strong>ry, USDA-ARS, USA<br />

Dr Jennifer Sharp, Subtropical Horticulture Research<br />

Station, USDA-ARS, USA<br />

Dr Guy Hallman, Dr WP Gould, Subtropical<br />

Horticulture Research Station, USDA-ARS, Miami FL,<br />

USA<br />

Dr Michael Williamson, Quarantine Technologies,<br />

New Zealand<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.


6.6 Inert dusts<br />

Advantages<br />

Little or no capital equipment required.<br />

Relatively non-<strong>to</strong>xic.<br />

Generally simple <strong>to</strong> apply.<br />

Provide continued protection against<br />

insects.<br />

Repeated treatments are not necessary.<br />

Do not affect the baking characteristics<br />

of grains.<br />

Disadvantages<br />

Effective for a much smaller range of<br />

commodities and uses compared <strong>to</strong><br />

other techniques.<br />

Not a rapid treatment.<br />

Adversely affects handling qualities of<br />

grain, e.g., decreased flowability,<br />

reduced bulk density.<br />

Dusts have <strong>to</strong> be separated from grain<br />

before human consumption.<br />

Visible residues in grain affect grading<br />

and market quality.<br />

Can cause excessive wear (abrasion) in<br />

grain-handling machinery.<br />

Do not control Trogoderma.<br />

Technical description<br />

His<strong>to</strong>rically, inert dusts such as clays and<br />

ashes have been applied <strong>to</strong> grain <strong>to</strong> protect<br />

against insect attack (Ebeling 1971, Golob<br />

and Webley 1980, Quarles 1992a,b). More<br />

recent versions of dusts are generally more<br />

effective and require much lower application<br />

rates. Inert dusts can be divided in<strong>to</strong> three<br />

main groups:<br />

a) Traditional materials<br />

Traditional materials include clays, sands,<br />

ashes, earths, phosphate and lime. Some are<br />

used as a protective layer on <strong>to</strong>p of s<strong>to</strong>red<br />

seed, while others are mixed with grain. To<br />

be effective, ashes and dusts generally had <strong>to</strong><br />

be mixed with grain at extremely high rates,<br />

such as 40% or more (GTZ 1996).<br />

b)Dia<strong>to</strong>maceous earth (DE)<br />

DE dusts are composed mainly of silicon dioxide<br />

with small amounts of other minerals.<br />

They are produced from the fossilised remains<br />

of dia<strong>to</strong>ms, microscopic single-celled aquatic<br />

plants that have fine shells made of amorphous<br />

hydrated silica. They have abrasive and<br />

sorptive properties and are effective against a<br />

wide range of pests when mixed with grain<br />

at rates of 1 kg per <strong>to</strong>nne (MBTOC 1994). DE<br />

adheres <strong>to</strong> insect bodies, damaging the protective<br />

waxy layer of the insect cuticle or<br />

outer coat by sorption and, <strong>to</strong> a lesser<br />

degree, by abrasion. Water is lost from the<br />

insect, resulting in death. DE is also known <strong>to</strong><br />

repel insects (Korunic 1999).<br />

c) Silica aerogels<br />

Silica aerogels are very light, non-hygroscopic<br />

powders or gels that are formed by a reaction<br />

of sodium silicate and sulfuric acid. They are<br />

chemically inert, non-abrasive and effective at<br />

slightly lower doses than DE formulations.<br />

Modern formulations of inert dusts are typically<br />

composed of DE, sometimes combined<br />

with silica aerogels. Formulations differ in<br />

their characteristics and efficacy against<br />

insects. Additives can give improved properties:<br />

ammonium fluosilicate, for example,<br />

improves adhesion <strong>to</strong> treated surfaces and<br />

insects. Certain sources of DE have naturally<br />

higher levels of insecticidal activity, while<br />

some formulations can be activated or<br />

enhanced, for example by heat treatment.<br />

Activated formulations are generally more<br />

effective than untreated DE (Golob 1997,<br />

McLaughlin 1994).<br />

Modern DE formulations used as part of an<br />

IPM system can provide effective pest control<br />

for several years in dry grain and structures.<br />

The application time for DE is short, normally<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

143


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

144<br />

less than one day, and DE can control adult<br />

insects in about seven days in favourable conditions<br />

(MBTOC 1994). DE dusts remain<br />

effective for years if they are kept in sealed,<br />

dry conditions, but they become ineffective in<br />

moist or humid conditions. Successful use of<br />

DE as part of an IPM system requires knowlege<br />

of fac<strong>to</strong>rs such as grain moisture content,<br />

grain temperature, amount of dockage (chaff,<br />

weed seeds) and broken kernels, grain type<br />

and quality, and insect species and numbers<br />

(Korunic 1999).<br />

DE is not suitable for heavily infested commodities.<br />

It provides a protective, prophylactic<br />

treatment <strong>to</strong> prevent pest build-up, so it is<br />

best used as part of an IPM system or as follow-up<br />

<strong>to</strong> another treatment such as aeration<br />

(Section 6.2) or phosphine flow fumigation<br />

(Section 6.7).<br />

Inert dusts are suitable for a relatively small<br />

range of products and uses. There are four<br />

main application areas:<br />

Admixture with s<strong>to</strong>red grains<br />

In several countries, specific formulations of<br />

DE have been approved for admixture with<br />

s<strong>to</strong>red grains, such as wheat, corn, barley,<br />

buckwheat, oats, pea, sorghum, seed, rye,<br />

soybeans, peanuts, cocoa beans and feed<br />

grains. In this technique, DE dust is mixed<br />

with grain when it is bagged or loaded in<strong>to</strong><br />

silos, bulk bins or bunkers. Enhanced DE is<br />

applied at the rate of about 100 g per <strong>to</strong>nne<br />

of grain and must be distributed evenly in the<br />

bulk. The moisture content of grain is critical:<br />

Less than 12% prior <strong>to</strong> s<strong>to</strong>rage is recommended<br />

(Banks pers. comm.). One application<br />

of DE can provide protection from<br />

infestation for several years, because the dust<br />

continues <strong>to</strong> exert its effects on insects.<br />

When the grain is milled, the dust is removed<br />

along with the grain husks. However, remaining<br />

particles in grain can reduce its market<br />

value. Inert dusts can have adverse effects on<br />

the handling qualities of grain, decreasing its<br />

flowability and its bulk density and causing<br />

excessive wear <strong>to</strong> grain handling machinery.<br />

While some technical problems have been<br />

overcome by new DE formulations (Korunic et<br />

al 1996), these problems tend <strong>to</strong> prevent the<br />

use of inert dusts in large-scale grain facilities.<br />

Admixtures are considered more appropriate<br />

for s<strong>to</strong>red seed (for planting), smaller-scale<br />

farm s<strong>to</strong>rage of animal feed and organic<br />

grains (MBTOC 1994).<br />

Grain surface treatments<br />

DE can be applied <strong>to</strong> the surface layer of bulk<br />

grain <strong>to</strong> kill insects in the <strong>to</strong>p layer where<br />

they tend <strong>to</strong> congregate. This treatment is<br />

best applied as a protective measure for grain<br />

that is already free from insects, after cooling<br />

or flow-through phosphine fumigation, for<br />

example (Bridgeman 1998). When combined<br />

with aeration in a silo, at least 300 mm of DE<br />

is applied on <strong>to</strong>p of the bulk. Moisture content<br />

needs <strong>to</strong> be less than 12% when the<br />

grain is put in<strong>to</strong> s<strong>to</strong>rage, and grain temperatures<br />

need <strong>to</strong> be kept below 20°C. In this situation,<br />

DE controls immigrant insects as well<br />

as those herded <strong>to</strong> the <strong>to</strong>p of the silo by the<br />

cooling front (Bridgeman 1998).<br />

Structural treatments<br />

In the USA, certain formulations of DE have<br />

been approved for insect control in structures,<br />

such as food handling establishments,<br />

warehouses, restaurants, office buildings,<br />

homes, motels, hotels and schools. These formulations<br />

are used on wall and floor surfaces,<br />

in cracks, crevices, hiding and running<br />

areas, and under and behind appliances.<br />

DE is used commercially with IPM as a treatment<br />

for grain s<strong>to</strong>rage facilities in dry regions<br />

of Australia. Normal formulations of DE can<br />

pose a dust hazard <strong>to</strong> workers applying it <strong>to</strong><br />

walls, but this problem can be overcome by<br />

using DE slurries. Although DE is normally<br />

deactivated by moisture, slurries are special<br />

formulations that can be mixed with water<br />

and become reactivated on drying. In this<br />

treatment, empty grain s<strong>to</strong>res are cleared of<br />

debris and thoroughly washed and cleaned.<br />

A slurry of 0.1 kg DE per litre of water is


sprayed on<strong>to</strong> the walls of the s<strong>to</strong>rage facility<br />

with a high pressure pump, giving an application<br />

rate of about 6 g a.i. per m 2 . It takes<br />

about 20 minutes <strong>to</strong> apply the slurry <strong>to</strong> a<br />

structure that holds 5,000 <strong>to</strong>nnes of grain<br />

(Bridgeman 1998). One treatment lasts several<br />

years and is very effective in controlling<br />

pests in drier regions with relative humidity<br />

below 70% (Batchelor 1999).<br />

Spot treatments in structures<br />

DE can provide long-lasting insect control in<br />

cracks and crevices of structures. For example,<br />

dusts can be applied inside electrical panels,<br />

control panels and “dead” spaces behind<br />

walls before they are closed up, providing<br />

lasting control in locations that are normally<br />

inaccessible (MBIGWG 1998). Spot treatments<br />

have been used in this way by a<br />

Canadian flour mill.<br />

Current uses<br />

Inert dusts such as ash and lime have had a<br />

long his<strong>to</strong>ry of use for grain protection. Use<br />

of modern formulations has increased significantly<br />

in the last decade (Bridgeman 1998).<br />

DE is in widespread use for controlling insects<br />

in s<strong>to</strong>rage facilities in Australia and is used<br />

commercially for structures in Brazil, Canada,<br />

Products<br />

S<strong>to</strong>red grains in Australia<br />

Europe and the USA (Batchelor 1999). Table<br />

6.6.1 provides examples of commercial uses<br />

of inert dusts. A combination of DE with heat<br />

has been trialled successfully in a Canadian<br />

flour mill (Fields et al 1998).<br />

Variations under development<br />

New formulations <strong>to</strong> minimise abrasive<br />

properties and protect grain-handling<br />

machinery, such as conveyors, and <strong>to</strong><br />

enhance desiccant properties of DE by<br />

promoting its ability <strong>to</strong> selectively absorb<br />

the waxes of insect cuticles.<br />

New methods of application (Fields et al<br />

1997, Korunic et al 1996).<br />

Trials in damp climates such as the UK<br />

(Cook, Armitage and Collins 1999).<br />

Enhanced DE combined with heat or<br />

in various combinations with heat and<br />

phosphine <strong>to</strong> achieve higher pest<br />

mortality (Fields et al 1997).<br />

Material inputs<br />

DE product.<br />

Application equipment.<br />

Table 6.6.1 Examples of commercial use of inert dusts<br />

S<strong>to</strong>red grains in eastern Australia<br />

S<strong>to</strong>red animal feed and seeds in Australia<br />

Wheat and empty wheat bins in parts<br />

of Canada<br />

Organic grains<br />

S<strong>to</strong>rage facilities (structures) for grains,<br />

pulses and oilseeds in Australia<br />

Spot treatments for inaccessible spaces in<br />

flour mill in Canada<br />

Treatment<br />

Aeration + DE on surface layer of<br />

grain<br />

Phosphine flow fumigation + DE cap<br />

on surface layer of grain<br />

DE mixed with commodity<br />

DE mixed with commodity or<br />

applied <strong>to</strong> walls of bins<br />

Inert dusts of various types<br />

IPM + DE slurry applied <strong>to</strong> walls<br />

IPM + DE<br />

Compiled from: MBTOC 1998, Batchelor 1999, Bridgeman 1998, MBIGWG 1998, Nickson et al 1994<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

145


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

146<br />

Examples of equipment for slurry applications<br />

in structures:<br />

High pressure slurry pump and hose —<br />

available off the shelf with minor<br />

modifications.<br />

Small mo<strong>to</strong>r (e.g., 3.5 horse power).<br />

Water tank for mixing slurry (e.g., 180-<br />

<strong>to</strong> 220-litre tank for a 5,000-<strong>to</strong>nne<br />

grain s<strong>to</strong>re).<br />

Safety dust mask for mixing.<br />

Fac<strong>to</strong>rs required for use<br />

For grain admixtures:<br />

Dry grain (moisture content below about<br />

12%) and low humidity (normally below<br />

about 70% relative humidity).<br />

Grain-handling machinery that can withstand<br />

abrasion and different flow properties<br />

in grain.<br />

Purchasers who will accept dust particles<br />

in grain.<br />

For slurry applications in facilities:<br />

Low humidity (normally below about<br />

70% relative humidity).<br />

Low moisture content in grain or other<br />

s<strong>to</strong>red commodities.<br />

Pests controlled<br />

Inert dusts, particularly when used as part of<br />

an IPM programme, can effectively manage<br />

insects and mites. DE can act quite rapidly<br />

under favourable dry conditions, achieving<br />

complete mortality of adult insects within<br />

seven days (MBTOC 1994). DE does not<br />

effectively control some pests, notably<br />

Trogoderma. Insect species vary in their susceptibility<br />

<strong>to</strong> DE as follows (most susceptible<br />

<strong>to</strong> least susceptible):<br />

Rusty grain beetle, Cryp<strong>to</strong>lestes<br />

ferrugineus (Stephens).<br />

Saw <strong>to</strong>othed grain beetle, Oryzaephilus<br />

surinamensis (L.)<br />

Granary weevil, Si<strong>to</strong>philus granarius (L.)<br />

Rice weevil, Si<strong>to</strong>philus oryzae (L.)<br />

Lesser grain borer, Rhyzopertha<br />

dominica F.<br />

Red flour beetle, Tribolium castaneum<br />

(Herbst).<br />

Larger grain borer, Prostephanus<br />

truncatus (Horn).<br />

Further information on pest species affected<br />

by inert dusts can be found in Korunic (1999)<br />

and Cook, Armitage and Collins (1999). Table<br />

6.6.2 gives examples of s<strong>to</strong>red grain insects<br />

and other pests that are controlled by certain<br />

DE formulations in the USA.<br />

There is also a significant variation in the efficacy<br />

of DE in different types of commodities<br />

against the same insect species. The commodities,<br />

in order of highest <strong>to</strong> lowest doses<br />

for LD 50 (dose required for killing 50% of<br />

insects) are (Korunic et al 1997):<br />

Rice.<br />

Corn.<br />

Oats.<br />

Barley.<br />

Wheat.<br />

Other fac<strong>to</strong>rs affecting use<br />

Product quality<br />

Admixing inert dusts with grain alters the<br />

angle at which individual grains sit, changing<br />

the way grain flows and making it more difficult<br />

<strong>to</strong> handle. Admixing can also leave visible<br />

dust particles in grain, reducing its market<br />

grade and value. Structural treatments do not<br />

normally suffer from these problems. DE is<br />

odourless and does not stain grain, nor does<br />

it affect the germination and baking properties<br />

of grains.<br />

Suitable products and uses<br />

While DE is technically effective for most<br />

s<strong>to</strong>red products, its use is limited by humidity,<br />

dust residue and the handling problems


Table 6.6.2 Pests that can be controlled by certain DE formulations<br />

– examples from USA<br />

Formulations for s<strong>to</strong>red grain insects<br />

Exposed stages of pests<br />

Angoumois grain moths<br />

Cigarette beetle<br />

Flat grain beetle<br />

Granary weevil<br />

Larger grain borer<br />

Lesser grain beetle<br />

Lesser grain borer<br />

Mediterranean flour moths<br />

Merchant grain beetle<br />

Red flour beetle<br />

Rice weevil<br />

Rusty grain beetle<br />

Saw<strong>to</strong>othed grain beetle<br />

Newly-hatched larvae<br />

Indian meal moth<br />

Red flour beetle<br />

Saw<strong>to</strong>othed grain beetle<br />

described above. It is suitable for admixture<br />

with s<strong>to</strong>red seeds that will be used for planting<br />

and for smaller scale s<strong>to</strong>rage of animal<br />

feed. Some formulations of DE are permitted<br />

for certified organic grains. Surface treatments<br />

and structures also offer suitable uses.<br />

Inert dusts are not used for perishable<br />

commodities.<br />

Suitable climates and conditions<br />

DE treatments are suitable for many geographical<br />

regions, provided the relative<br />

humidity in the facility is normally less than<br />

about 70%.<br />

Toxicity and health risks<br />

DE has low or no <strong>to</strong>xicity <strong>to</strong> mammals and is<br />

widely used as a permitted food additive. As<br />

with any dust, dust from DE is a potential<br />

health hazard <strong>to</strong> lungs and eyes. Certain<br />

geological sources of DE contain crystabolite,<br />

which is also a hazard <strong>to</strong> lungs in dusty<br />

conditions.<br />

Formulations for other purposes<br />

Indoor and outdoor crawling insects<br />

Ants<br />

Bedbugs<br />

Boxelder bugs<br />

Carpet beetles<br />

Centipedes<br />

Cockroaches<br />

Earwigs<br />

Fleas<br />

Millipedes<br />

Scorpions<br />

Silverfish<br />

Slugs<br />

Ticks<br />

Safety precautions for users<br />

Precautions and safety equipment are necessary<br />

against dust exposure. For structures it is<br />

often feasible <strong>to</strong> apply DE as a slurry rather<br />

than a powder <strong>to</strong> minimise the dust.<br />

Residues in food and environment<br />

When DE is admixed with grain, some dust<br />

may remain in the commodity. This does not<br />

pose a health risk <strong>to</strong> consumers and animals.<br />

DEs are permitted food additives.<br />

Ozone depletion<br />

DE is not an ODS.<br />

Compiled from: EPA, ARBICO<br />

Global warming and energy<br />

consumption<br />

DE is not a greenhouse gas. Like MB, it<br />

requires some energy for extraction, formulation<br />

and transportation. Application normally<br />

uses little energy.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

147


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Other environmental considerations<br />

DE is extracted from geological deposits in<br />

the ground, so there is a risk of destroying<br />

natural habitats, as with MB extraction from<br />

lakes like the Dead Sea.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Mixing DE with grain is not acceptable <strong>to</strong><br />

many grain handlers and markets, although<br />

certain milling companies favour its use<br />

(MBIGWG 1998). Structural and surface treatments<br />

are often preferable. Consumers find<br />

DE treatment acceptable in that it is a nonchemical<br />

treatment.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

DE often requires registration. Certain DE formulations<br />

are registered as insecticides in<br />

Australia, Brazil, Canada, China, Croatia,<br />

Germany and USA (Batchelor 1999). It is<br />

desirable <strong>to</strong> limit the amount of crystabolite<br />

allowed in products, as is done in Australia.<br />

Cost considerations<br />

For admixtures, little capital equipment is<br />

required. The material costs for one<br />

treatment are normally higher than the<br />

cost of MB, costing approximately US$<br />

8.80 per <strong>to</strong>nne of grain in some countries<br />

(GTZ 1998).<br />

For structures such as grain s<strong>to</strong>res, the<br />

capital cost of a high pressure pump for<br />

slurry applications is about US$ 4,200 in<br />

Australia, but the pay-back period is<br />

rapid. Over 2 years, the <strong>to</strong>tal average<br />

annual cost (capital and operating) is<br />

US$ 3,200 for DE slurry treatment compared<br />

<strong>to</strong> US$ 5,150 for MB fumigation<br />

(Batchelor 1999).<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

What level of infestation exists?<br />

What level of pest control needs <strong>to</strong> be<br />

achieved?<br />

Will DE control the target pest species<br />

sufficiently?<br />

What is the normal humidity range of<br />

the air and commodities in the facility?<br />

Is there an opportunity <strong>to</strong> mix inert<br />

dusts with products when being<br />

bagged or loaded?<br />

If DE is admixed, will handling machinery<br />

have <strong>to</strong> be adapted?<br />

Will purchasing companies accept the<br />

dust or its residues?<br />

For structures, can a slurry formulation<br />

be used <strong>to</strong> minimise dust?<br />

What time is available for achieving<br />

pest control?<br />

Which types of DE would be most<br />

suitable and effective?<br />

What types of IPM systems or<br />

co-treatments are feasible?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Products are available in some countries, such<br />

as Australia, Canada and USA.<br />

Suppliers and specialists<br />

Examples of specialists and suppliers of products<br />

and services are listed in Table 6.6.3. See<br />

Annex 6 for an alphabetical listing of suppliers,<br />

specialists and experts. See also Annex 5<br />

and Annex 7 for additional information<br />

resources. Note that some DE products (such<br />

as Dryacide, Insec<strong>to</strong>, PermaGuard D10 and<br />

Protect-It) are formulated for grain and grain<br />

insects, while others are targeted at other<br />

types of insects.<br />

148


Table 6.6.3 Examples of specialists and suppliers of products<br />

and services for inert dusts<br />

Type of equipment or service<br />

Inert dusts – different formulations<br />

for s<strong>to</strong>red products and structures<br />

Specialists, advisory services and<br />

consultants<br />

Organization or company<br />

ARBICO, USA<br />

CR Minerals Corp, USA (Diafil)<br />

Dryacide Australia Pty Ltd, Australia (Dryacide)<br />

Eagle Picher Minerals Inc, USA (Crop Guard)<br />

En<strong>to</strong>sol, Australia (Dryacide)<br />

Green Spot Ltd, USA<br />

Harmony Farm Supply, USA<br />

Hedley Technologies Inc, Canada (Protect-It)<br />

JT Ea<strong>to</strong>n & Co Inc, USA<br />

Natural Insect Control, Canada<br />

Natural Insec<strong>to</strong> Products, USA (Insec<strong>to</strong>)<br />

Nature’s Control, USA<br />

Nitron Industries Inc, USA<br />

Organic Plus, USA<br />

Peaceful Valley Farm Supply, USA<br />

PermaGuard Inc, USA (PermaGuard D10)<br />

Pristine Products, USA (Perma Guard D10)<br />

White Mountain Natural Products Inc, USA<br />

WholeWheat Enterprises, USA (PermaGuard D10)<br />

Canadian Pest Control Association, Canada<br />

CSIRO S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry, Australia<br />

En<strong>to</strong>sol, Australia<br />

Grain Marketing Production and Research Center,<br />

USDA-ARS, USA<br />

Dr Jonathan Banks, Pialligo, Australia<br />

Mr Barry Bridgeman, Grainco Australia Ltd,<br />

Australia<br />

Dr Paul Fields, Cereal Research Station, Agriculture<br />

and Agri-Food Canada, Canada<br />

Dr P Golob, Tropical Products Institute, UK<br />

Dr Zlatko Korunic, Hedley Technologies Inc,<br />

Mississauga, Canada<br />

SM Lazzari, institute, Brazil<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

149


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

150<br />

6.7 Phosphine and<br />

other fumigants<br />

Advantages<br />

General technique and pest control<br />

approach akin <strong>to</strong> MB fumigation.<br />

Effective against a broad range of pests<br />

including rodents.<br />

Fumigants diffuse well in commodities<br />

<strong>to</strong> reach pests.<br />

Phosphine is available worldwide.<br />

Some fumigants provide rapid<br />

treatments.<br />

Fumigants can provide a direct replacement<br />

for MB in some situations.<br />

Disadvantages<br />

Phosphine involves long treatment time<br />

compared <strong>to</strong> MB.<br />

Like MB, fumigants provide no on-going<br />

protection against pests after the<br />

treatment.<br />

Fumigants can only be used in the countries<br />

and for the commodities and situations<br />

for which they have been<br />

registered.<br />

Fumigants are highly <strong>to</strong>xic, requiring<br />

trained personnel, special safety precautions<br />

and equipment.<br />

Like MB, fumigants can leave undesirable<br />

residues in commodities or affect<br />

the quality of certain commodities or<br />

materials.<br />

Technical description<br />

Fumigants are <strong>to</strong>xic chemicals that act against<br />

pests while in a gaseous state, though they<br />

may be applied in liquid or solid formulations<br />

(Bond 1984, Price 1985, Stark 1994). They<br />

have relatively low molecular weight and are<br />

generally capable of diffusing rapidly through<br />

commodities and buildings <strong>to</strong> reach infestations.<br />

Fumigants are highly <strong>to</strong>xic <strong>to</strong> humans,<br />

other mammals and insects. Their use is generally<br />

controlled under regulations covering<br />

pesticides, hazardous substances and occupational<br />

health and safety. Properly conducted<br />

fumigations are complex procedures that<br />

should be carried out only by trained fumiga<strong>to</strong>rs<br />

in situations where they are able <strong>to</strong> work<br />

<strong>to</strong> high safety standards.<br />

In applying a fumigant, the aim is <strong>to</strong> ensure<br />

that a certain concentration of gas is kept in<br />

the commodity or space for sufficient time <strong>to</strong><br />

kill the target pests. The appropriate concentration,<br />

exposure time and manner of application<br />

will depend on a number of fac<strong>to</strong>rs<br />

including those listed below (ASEAN 1989,<br />

Graver and Annis 1994, MAFF 1999):<br />

Nature of infestation (e.g., pest species,<br />

stage of life cycle, position in<br />

structure).<br />

Nature and quantity of commodity and<br />

commodity packaging — or nature and<br />

volume of structure.<br />

Temperature and humidity of commodity<br />

and treatment areas.<br />

Degree of sealing.<br />

Wind velocity.<br />

Potential for undesirable residues,<br />

corrosion or other undesirable effects<br />

in commodities, structures and contents<br />

of structures.<br />

Properties of the fumigant.<br />

Measures for ensuring adequate distribution<br />

of the gas.<br />

Necessary safety precautions for opera<strong>to</strong>rs,<br />

site staff and the public.<br />

Moni<strong>to</strong>ring systems.<br />

Fumigants approved for such purposes can be<br />

very effective for pest management and disinfestation<br />

for official QPS purposes.<br />

Fumigations can be carried out in commodities<br />

or structures enclosed in gas-tight sheets<br />

or in places (such as silos, buildings, ship


holds, gas-tight shipping containers and specially<br />

designed chambers) provided the<br />

required gas concentrations can be maintained<br />

for sufficient time <strong>to</strong> kill pests.<br />

When applying phosphine <strong>to</strong> a bag stack, for<br />

example, the stack is covered with gas-tight<br />

fumigation sheets and sealed around the<br />

base with sand snakes or similar devices.<br />

Tablets of aluminium phosphide are placed<br />

within the enclosure, releasing phosphine<br />

gas. After the necessary treatment period<br />

(5 <strong>to</strong> 15 days), the stack is aerated and the<br />

sheets removed.<br />

Fumigants control the pests present in the<br />

commodity or structure at the time of fumigation,<br />

but they do not provide on-going protection<br />

against pests. Thus, it is necessary <strong>to</strong><br />

use some other protective measures or <strong>to</strong> refumigate<br />

after three <strong>to</strong> six months.<br />

Phosphine is the only fumigant other than<br />

MB that is registered in many countries for<br />

disinfestation of durable commodities.<br />

Sulphuryl fluoride is registered in several<br />

countries for structures and a few other<br />

applications. Other fumigants have very limited<br />

registration, and are described briefly<br />

below.<br />

Phosphine<br />

Phosphine (hydrogen phosphide or phosphorus<br />

trihydride, PH 3 ) is a colourless gas with a<br />

characteristic odour. It is used extensively for<br />

durable commodities, principally s<strong>to</strong>red cereals<br />

and legumes, and is approved for some<br />

quarantine applications (Table 6.7.5).<br />

Normally phosphine is generated from solid<br />

formulations of aluminium phosphide (e.g.,<br />

pellets, tablets or sachets) that decompose on<br />

contact with water vapour in the air <strong>to</strong><br />

release phosphine gas inside the fumigation<br />

enclosure. Adequate temperature and humidity<br />

are required; the equilibrium relative<br />

humidity produced by the commodity should<br />

be more than 30%. Solid formulations based<br />

on magnesium phosphide release phosphine<br />

faster and can be used at lower temperatures,<br />

e.g. 5˚C.<br />

More recently developed phosphine-generating<br />

equipment, such as the Horn genera<strong>to</strong>r,<br />

has allowed rapid production of phosphine<br />

gas on site and is being used in several countries,<br />

including Chile and Argentina (Horn<br />

1997, Horn and Luzaich 1998, Kawakami<br />

1998). Phosphine gas in pressurised cylinders<br />

as a 2% phosphine mixture with carbon dioxide<br />

propellant is widely used in Australia, and<br />

a similar formulation is in the process of registration<br />

in the USA (Winks 1990, Winks<br />

1993, Mueller 1998). Phosphine with nitrogen<br />

gas in cylinders has been developed in<br />

Germany (Böye 1998). When phosphine is<br />

supplied as a gas it can be released at lower<br />

temperatures, and doses can be precisely<br />

administered.<br />

For phosphine, a commodity temperature of<br />

at least 15°C is recommended, but certain<br />

pests are susceptible down <strong>to</strong> 5°C with long<br />

exposures (MBTOC 1998). Effective exposure<br />

periods are typically 5 <strong>to</strong> 15 days, depending<br />

on the temperature, target species and developmental<br />

stages of pests. Use of phosphine<br />

supplied as a gas may allow a slight reduction<br />

in the treatment times.<br />

Phosphine has the following characteristics:<br />

Good penetration in<strong>to</strong> s<strong>to</strong>red products<br />

(better than MB).<br />

Effective against a broad range of insect<br />

pests, although resistance has developed<br />

in several species.<br />

Disperses well in enclosed spaces.<br />

Rapidly disperses on ventilation after<br />

fumigation.<br />

Can leave residues in food commodities<br />

or affect marketable qualities in certain<br />

cases (e.g., taint and colour change in<br />

walnuts).<br />

Generally no negative effects on the germination<br />

of treated seeds.<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

151


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

152<br />

Forms an explosive mixture with air if the<br />

concentration exceeds 1.8% by volume<br />

at normal atmospheric pressure; this<br />

level is not reached in normal fumigation<br />

practice.<br />

Reacts with noble metals, such as copper,<br />

silver and gold, corroding items such<br />

as electric cables, electrical equipment,<br />

telephones, sprinkler heads and computers.<br />

Measures can be taken <strong>to</strong> avoid or<br />

lessen these effects (Brigham 1998,<br />

Brigham 1999, Mueller 1998).<br />

Insect populations can develop resistance <strong>to</strong><br />

phosphine relatively easily (Chaudhry 1997)<br />

due <strong>to</strong> problems such as insufficient treatment<br />

times and low concentrations caused by<br />

leaky enclosures. Presently resistance can be<br />

managed by longer exposure periods and<br />

improved gas-tightness. Important steps for<br />

resistance management are described in<br />

Taylor and Gudrups (1997). Codes of practice<br />

and descriptions of the application methods<br />

for phosphine for durable products can be<br />

found in many sources (ASEAN 1989, Banks<br />

1986, Bond 1984, Degesch America 1997,<br />

Graver and Annis 1994, GTZ 1996). New<br />

phosphine formulations and techniques are<br />

also outlined in numerous documents (Taylor<br />

and Harris 1994, Reichmuth 1994,<br />

Agriculture and Agri-Food Canada 1996,<br />

Horn 1997, Horn and Luzaich 1998, Mueller<br />

1998, Fields and Jones 1999).<br />

Sulphuryl fluoride<br />

Sulphuryl fluoride or sulfuryl fluoride (F 2 SO 2 )<br />

is an inorganic, colourless, odourless gas supplied<br />

as a liquid in pressurised cylinders. In<br />

several countries, including the USA, Sweden<br />

and China, it is registered for specific uses,<br />

such as structures where food is not present<br />

or wood products. It is used primarily <strong>to</strong> kill<br />

termites and wood-damaging insects in structures,<br />

such as residences and non-food facilities,<br />

and is suitable for wood and wood<br />

products. It is approved in some countries as<br />

a quarantine treatment for certain non-food<br />

durables (Table 6.7.5).<br />

Sulphuryl fluoride requires a short fumigation<br />

period of approximately 24 hours and has a<br />

6- <strong>to</strong> 8-hour aeration period (MBTOC 1998).<br />

Application rates are determined by fac<strong>to</strong>rs<br />

such as target pests, their life stages, temperature<br />

at the pest site, volume of fumigation<br />

space, degree of sealing/leakiness and target<br />

exposure period. High doses (up <strong>to</strong> 10 times<br />

the normal rate for adult termites) are<br />

required <strong>to</strong> kill the egg stage of many<br />

insects and can lead <strong>to</strong> high chemical<br />

residues (Bell et al 1998, Taylor et al 1998).<br />

Longer exposure periods and good sealing<br />

techniques allow for use of lower doses.<br />

The characteristics of sulphuryl fluoride<br />

include the following:<br />

Volatilises readily, giving good penetration<br />

and distribution.<br />

Effective against a broad range of pests.<br />

Short treatment time (similar <strong>to</strong> MB).<br />

Faster aeration than MB.<br />

Low sorption <strong>to</strong> materials.<br />

No objectionable odours or colours in<br />

treated materials.<br />

Does not react with materials normally<br />

found in structures.<br />

Non-flammable.<br />

Not registered for use where food, feed<br />

and medicinal products are present,<br />

because it can leave residues; permitted<br />

residue levels (food <strong>to</strong>lerances) have not<br />

been established.<br />

Descriptions of the procedures for using sulphuryl<br />

fluoride in structures can be found in<br />

DowElanco (1995) and treatments for quarantine<br />

in USDA-APHIS (1998).<br />

Other fumigants<br />

Fumigants that have been used commercially<br />

and are available and registered in certain<br />

countries include the following:<br />

Carbon bisulphide or carbon disulfide<br />

(CS2) is used in parts of Australia and


China for small lots (about 50 <strong>to</strong>nnes) of<br />

grain in farm s<strong>to</strong>rage. It was once widely<br />

used as a fumigant for bulk and bagged<br />

grain, but application <strong>to</strong> large bulk s<strong>to</strong>rage<br />

is limited by the potential fire hazard.<br />

In most countries its use has been<br />

discontinued and registration has lapsed.<br />

Carbon dioxide (CO 2 ). Refer <strong>to</strong> information<br />

on Controlled and modified<br />

atmospheres in Section 6.4.<br />

Ethyl formate (C 3 H 6 O 2 ) is now restricted<br />

<strong>to</strong> dried fruit and processed cereal<br />

products. It was formerly used as a grain<br />

fumigant, but registration has lapsed in<br />

most countries. It acts rapidly (Hil<strong>to</strong>n and<br />

Banks 1997) but is highly sorbed by<br />

commodities. Adequate distribution can<br />

be difficult.<br />

Ethylene oxide (C 2 H 4 O) is used in<br />

some countries <strong>to</strong> reduce microbial contamination<br />

in food commodities such as<br />

spices, and provides insect control coincidentally.<br />

It was widely used for insect<br />

control on grain and dates in the past,<br />

but has been withdrawn in many countries<br />

because it is carcinogenic in animal<br />

tests and can produce potentially carcinogenic<br />

residues (NIEHS 1991). It is<br />

more appropriate for non-food uses such<br />

as artifacts and archive materials<br />

(MBTOC 1998). Ethylene oxide is flammable,<br />

so it is normally supplied in mixtures<br />

with inert diluents such as carbon<br />

dioxide or HCFCs.<br />

Hydrogen cyanide (HCN) is currently<br />

registered in a few countries for specific<br />

uses, such as treating aircraft in France.<br />

It was previously widely used as a fumigant<br />

for durable commodities, mills and<br />

other structures. It provides a rapid treatment<br />

against rodents, where permitted.<br />

It can be lethal <strong>to</strong> humans by skin<br />

absorption alone at the concentrations<br />

Table 6.7.1 Physical and chemical properties of various fumigants compared with MB<br />

Carbon Carbon <strong>Methyl</strong> Sulphuryl<br />

Properties dioxide bisulphide bromide Phosphine fluoride<br />

Chemical formula CO 2 CS 2 CH 3 Br PH 3 F 2 SO 2<br />

Molecular weight 44 76 95 34 102<br />

Boiling point (°C) -78.5 46.5 3.6 -87.0 -19.4<br />

Specific gravity 1.5 1.3 3.3 1.2 -<br />

(air = 1.0)<br />

Physical description Colourless, Colourless Colourless Colourless Colourless<br />

odourless gas or pale liquid, and odour- gas with odour odourless<br />

sweet ether- less gas like fish or garlic gas<br />

like odour<br />

Flammability rating: Non- Flammable Flammable in Flammable Non-<br />

0 = none/very low flammable 3 presence of 4 flammable<br />

4 = high 0 high-energy 0<br />

ignition sources<br />

1<br />

Toxicity Toxic at high Highly <strong>to</strong>xic Highly <strong>to</strong>xic Highly <strong>to</strong>xic Highly <strong>to</strong>xic<br />

concentrations gas gas gas gas<br />

Occupational 9000 mg/m 3 3 mg/m 3 Varies from 0.4 mg/m 3 20 mg/m 3<br />

exposure limits (time- in USA in USA 20 mg/m 3 in in USA in USA<br />

weighted average) USA <strong>to</strong> 1 mg/m 3<br />

in the Netherlands<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

Compiled from: data sheets in Annex 3<br />

153


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

normally used (Bell 1998). International<br />

Codex Alimentarius limits for hydrogen<br />

cyanide residues in grain and flour have<br />

lapsed due <strong>to</strong> lack of government<br />

support.<br />

In-transit fumigation<br />

Where regulations permit, fumigation of bulk<br />

and bagged commodities can take place on<br />

board ship while commodities are in transit.<br />

In-transit carbon dioxide treatments are<br />

carried out on groundnuts exported from<br />

Australia. In-transit fumigation with phosphine<br />

is a well-developed technology (Davis<br />

1986, Leesch et al 1978, Redlinger et al<br />

1979, Semple and Kirenga, Zettler et al<br />

1982) but requires ships of appropriate<br />

design and stringent safety precautions<br />

(Snelson and Winks 1981, IMO 1996). In this<br />

method the slow action of phosphine does<br />

not interfere with the flow of trade through<br />

export ports and thus presents a feasible<br />

alternative <strong>to</strong> some rapid on-shore MB treatments<br />

(MBTOC 1998).<br />

Table 6.7.2 Comparison of suitability of MB and various fumigants for grain<br />

Situations where fumigant<br />

Situations where fumigant<br />

Fumigant may be suitable is not suitable<br />

Carbon dioxide For s<strong>to</strong>rage of more than 15 days,<br />

especially long-term s<strong>to</strong>rage<br />

Where freedom from residues is valued<br />

Where other fumigants are not accepted<br />

by markets<br />

Where a rapid kill of rodents is desirable<br />

Where treatments are carried out close<br />

<strong>to</strong> work areas and habitations<br />

<strong>Methyl</strong> bromide<br />

Phosphine<br />

When a treatment must be completed<br />

in 4 days or less; in this situation, rapid<br />

alternatives such as heat and pressure<br />

should be examined<br />

When it is the only treatment allowed<br />

by quarantine authorities<br />

In well-sealed systems<br />

When a treatment time of 7-16 days<br />

is feasible<br />

When treating seeds which will be<br />

germinated eventually<br />

When Trogoderma granarium is present<br />

To avoid residues by repeated MB<br />

fumigations<br />

When the treatment must be completed<br />

in less than 15 days<br />

In enclosures that are not well sealed<br />

Where Trogoderma species are<br />

present<br />

When seed viability and germination are<br />

important<br />

When there is no trained, qualified fumigation<br />

team<br />

On seed required for planting or malting<br />

In poorly sealed enclosures<br />

On commodities that are very absorbent<br />

or contain fat/oils, e.g., expeller cake,<br />

oilseeds and oily nuts<br />

On commodities previously fumigated<br />

with MB (residue problem)<br />

Where there is no trained, qualified and<br />

properly protected fumigation team<br />

In areas immediately adjacent <strong>to</strong> workspaces<br />

and habitations<br />

If inadequate sealing or treatment time<br />

will not allow control of resistant insects<br />

At temperatures below 15°C (although<br />

there are exceptions)<br />

When treating flour, fishmeal, cot<strong>to</strong>nseed,<br />

linseed<br />

When there is no trained, qualified and<br />

properly protected fumigation team<br />

In areas immediately adjacent <strong>to</strong> works<br />

areas and habitations<br />

Compiled from: ASEAN 1989<br />

154


Combination treatmens<br />

To overcome some of the disadvantages of<br />

traditional fumigants, a combination of heat,<br />

phosphine and carbon dioxide has been<br />

developed (McCarthy 1996, Agriculture and<br />

Agri-Food Canada 1996, Mueller 1996,<br />

1998). Carbon dioxide at high pressure is<br />

used <strong>to</strong> treat beverage crops, nuts and spices<br />

(Gerard et al 1988, Prozell and Reichmuth<br />

1991, Prozell et al 1997).<br />

Current uses<br />

Phosphine is registered in most countries and<br />

widely used for bulk and bagged grain and<br />

other durable commodities, such as herbs,<br />

spices and <strong>to</strong>bacco. It is also used for fumigating<br />

wooden objects, paper and other<br />

durable materials of vegetable origin.<br />

Sulphuryl fluoride has been used for many<br />

years in the USA, principally <strong>to</strong> control wooddestroying<br />

termites in structures (Table 6.7.3).<br />

Use of other fumigants is restricted <strong>to</strong> the<br />

countries and commodities/uses for which<br />

they are officially permitted or “registered”<br />

for use as pesticides.<br />

Products<br />

S<strong>to</strong>red grains and legumes worldwide<br />

Grains in Australia<br />

Variations under development<br />

Carbonyl sulphide is being considered<br />

for registration for durables, including<br />

timber (MBTOC 1998, Banks et al<br />

1993a, Plarre and Reichmuth 1996,<br />

Zettler et al 1998).<br />

Other potential fumigants under investigation<br />

include cyanogen, methyl isothiocyanate,<br />

methyl phosphine, ozone, and<br />

propylene oxide (MBTOC 1998, Griffith<br />

1999).<br />

New formulations of phosphine are<br />

being tested <strong>to</strong> overcome normal phy<strong>to</strong>xicity<br />

<strong>to</strong> perishable comodities<br />

(Kawakami 1999).<br />

The manufacturer of sulphuryl fluoride is<br />

investigating the possibility of extending<br />

the registration <strong>to</strong> cover food commodities<br />

and other uses (Chambers and<br />

Millard 1995, Schneider and Williams<br />

1999).<br />

Additional work is being conducted <strong>to</strong><br />

develop combination treatments.<br />

Table 6.7.3 Examples of commercial use of fumigants<br />

Export grains, where permitted<br />

Groundnuts exported from Australia<br />

Dried fruits, peanuts and tree nuts in USA<br />

Dried vine fruit in Australia and South Africa<br />

(at time of packing)<br />

Exports of cot<strong>to</strong>n seeds, coconut products,<br />

handicrafts and other durables from the<br />

Philippines<br />

Tobacco disinfestation in USA and many countries<br />

Disinfestation of logs in USA<br />

Wooden products from Malaysia, the Philippines<br />

and Vietnam<br />

Wood products and artefacts exported from China<br />

Buildings infested with termites in USA<br />

Fumigants<br />

Phosphine<br />

Phosphine gas with carbon dioxide<br />

propellent<br />

In-transit phosphine treatment<br />

In-transit carbon dioxide treatment<br />

Phosphine<br />

Ethyl formate<br />

Phosphine<br />

Phosphine<br />

Sulphuryl fluoride<br />

Phosphine<br />

Sulphuryl fluoride<br />

Sulphuryl fluoride<br />

Compiled from: MBTOC 1998, Mueller 1998, Taylor et al 1998, UNDP 1995<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

155


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

156<br />

Material inputs<br />

Fumigant.<br />

Gas-tight enclosure, e.g., gas-tight fumigation<br />

sheets with tear resistance, UVresistance<br />

and low weight.<br />

Application equipment appropriate for<br />

the fumigant formulation.<br />

Safety equipment, e.g., respira<strong>to</strong>ry<br />

protection.<br />

Moni<strong>to</strong>ring devices, e.g., fumigant gas<br />

detec<strong>to</strong>r.<br />

Fac<strong>to</strong>rs required for use<br />

Sufficient temperature and humidity for<br />

the fumigant <strong>to</strong> work effectively.<br />

Sufficient sealing and treatment time <strong>to</strong><br />

kill pests and ensure that pest resistance<br />

does not increase.<br />

Fully trained fumigation personnel.<br />

Robust system of safety practices and<br />

moni<strong>to</strong>ring.<br />

Pests controlled<br />

Fumigants, like MB, can control a wide range<br />

of pests. Some are approved as quarantine<br />

treatments for specific pests/commodities<br />

(Table 6.7.5).<br />

Phosphine<br />

With sufficient temperature and adequate<br />

exposure period, phosphine is effective in<br />

controlling major s<strong>to</strong>red product pests, such<br />

as confused flour beetle, granary weevil,<br />

Indian meal moth, khapra beetle, lesser grain<br />

borer, Mediterranean flour moth, rice weevil,<br />

rust-red grain beetle and saw-<strong>to</strong>othed grain<br />

beetle (MBTOC 1998). Table 6.7.4 shows the<br />

treatment times for various pests. As indicated<br />

in the table, phosphine is highly effective<br />

against all stages of khapra beetle<br />

(Trogoderma granarium) in grain, but this<br />

treatment has not been approved for quarantine<br />

purposes (Bell et al 1984, 1985, MBTOC<br />

1998). Phosphine is effective in controlling<br />

bark beetles, wood-wasps, longhorn beetles<br />

and platypodids at 15°C or more, but it is not<br />

typically effective against seed-infesting<br />

nema<strong>to</strong>des (MBTOC 1998).<br />

The <strong>to</strong>lerance of the developmental stages of<br />

insects <strong>to</strong> phosphine varies considerably. Eggs<br />

and pupae are much more <strong>to</strong>lerant of phosphine<br />

than larvae or adults, so fumigation<br />

must be continued long enough for the more<br />

<strong>to</strong>lerant eggs and pupae <strong>to</strong> continue their<br />

development <strong>to</strong> larvae and adults (ASEAN<br />

1989). Control of mite eggs is difficult, but<br />

for certain commodities control can be<br />

achieved by carrying out a second fumigation<br />

after the eggs have been allowed <strong>to</strong> hatch<br />

(an interval of 2 weeks at 20°C or 6 weeks at<br />

10°C) (Bowley and Bell 1981). Information on<br />

phosphine’s efficacy against pest species and<br />

life stages can be found in Phillips (1998).<br />

Sulphuryl fluoride<br />

Sulphuryl fluoride is effective against major<br />

insect pests of timber, including bark beetles,<br />

wood-wasps, longhorn beetles, powderpost<br />

beetles and dry wood termites, and pests<br />

commonly found in structures such as wooddestroying<br />

beetles, furniture and carpet beetles,<br />

clothes moths, cockroaches and rodents<br />

(MBTOC 1998). It is <strong>to</strong>xic <strong>to</strong> the post-embryonic<br />

stages of insects, but the eggs of many<br />

species are <strong>to</strong>lerant especially at low temperatures.<br />

Information on the efficacy of sulphuryl<br />

fluoride against a range of pest species and<br />

stages is provided in Bond and Monro (1961),<br />

Kenaga (1957), Mizobuchi et al (1996),<br />

Reichmuth et al (1996), Thoms and<br />

Scheffrahn (1994), Dow Agrosciences.<br />

Carbon dioxide<br />

Refer <strong>to</strong> information given in Section 6.4.<br />

Other fac<strong>to</strong>rs affecting use<br />

Product quality<br />

Phosphine can leave residues in food products<br />

and can taint certain commodities such<br />

as walnuts, herbs and spices. Normal formulations<br />

of phosphine are phy<strong>to</strong><strong>to</strong>xic <strong>to</strong> perish-


able commodities. Phosphine is less phy<strong>to</strong><strong>to</strong>xic<br />

than MB <strong>to</strong> seeds, so it can be used where<br />

germination is important. Sulphuryl fluoride<br />

does not normally affect the quality of materials<br />

found in structures, but leaves residues in<br />

food commodities.<br />

Suitable products and uses<br />

Fumigants must only be used for the commodities<br />

and uses for which they have been<br />

officially permitted, and pesticide registration<br />

authorities should be able <strong>to</strong> provide up-<strong>to</strong>date<br />

information relating <strong>to</strong> your country or<br />

state. Fumigants can be effective in bulk bins,<br />

silos, bags, stacks, chambers, structures and<br />

transportation, provided sufficient sealing and<br />

exposures can be achieved.<br />

Phosphine is effective for a wide range<br />

of grains and durable commodities<br />

including oilseeds, expeller cake, meal,<br />

flour and seeds for germination and<br />

wooden items. It is also suitable for<br />

structures in cases where corrosion will<br />

not be a problem.<br />

Sulphuryl fluoride is suitable for structures<br />

that do not contain food or feed,<br />

as well as vehicles, railcars, furnishings<br />

and non-edible durable commodities,<br />

such as timber, wood products and artifacts.<br />

Examples of some approved quarantine uses<br />

are given in Table 6.7.5.<br />

Suitable climates and conditions<br />

Fumigants can generally be used in temperate<br />

<strong>to</strong> tropical climates. However, temperatures<br />

of more than 15°C are desirable for<br />

phosphine use, while relative humidity greater<br />

than about 30% is necessary for aluminium<br />

phosphide use.<br />

Toxicity and health risks<br />

Fumigants are by nature highly poisonous.<br />

They pose acute <strong>to</strong>xicity risks if mis-handled,<br />

and some pose chronic health risks. (Toxicity<br />

data sheets are given in Annex 3.)<br />

The occupational Permissible Exposure<br />

Limit (PEL) for phosphine is 0.3ppm<br />

(0.4 mg/m 3 ) in the USA. Chronic poisoning<br />

symp<strong>to</strong>ms from significant exposure<br />

include anemia and potentially fatal pulmonary<br />

edema, while exposure <strong>to</strong> higher<br />

concentrations can cause renal and liver<br />

failure, coma and death (NTP 1990).<br />

Table 6.7.4 Minimum treatment time for phosphine fumigation of various<br />

s<strong>to</strong>red product pests (a) (all stages)<br />

Pest species Common name Minimum exposure period (b)<br />

10 - 20°C 20 - 30°C<br />

Acanthoscelides obtectus Dried bean beetle 8 days 5 days<br />

Caryedon serratus Groundnut borer 10 days 8 days<br />

Cryp<strong>to</strong>lestes pusillus Flat grain beetle 5 days 4 days<br />

Ephestia cautella Tropical warehouse moth 10 days 5 days<br />

Lasioderma serricorne Cigarette beetle 5 days 5 days<br />

Oryzaephilus surinamensis Saw-<strong>to</strong>othed grain beetle 3 days 3 days<br />

Si<strong>to</strong>philus granarius Grain/granary weevil 16 days 8 days<br />

Trogoderma granarium Khapra beetle 5 -10 days (c)<br />

(a) Based on a phosphine concentration of 1.0 g/m 3 in gas-tight conditions<br />

(b) At temperatures of 30°C or more, many species are controlled by a 4-day exposure.<br />

(c) At temperature above 15°C.<br />

Compiled from: MBTOC 1998<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

157


Table 6.7.5 Approved quarantine treatments for durable commodities<br />

– examples from USA (USDA-APHIS)<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

158<br />

Commodities Fumigants Typical duration (a)<br />

Wooden items with wood borers Phosphine 72 hours<br />

Wooden items with wood borers Sulphuryl fluoride 24 hours<br />

Wood products, containers with termites Sulphuryl fluoride 24 hours<br />

Tobacco for export Phosphine 96 hours<br />

Cot<strong>to</strong>n, cot<strong>to</strong>n waste and cot<strong>to</strong>n products Phosphine 120 hours<br />

in bulk – against boll weevil etc.<br />

Bales of hay Phosphine 72 hours<br />

Non-plant articles infested with ticks Sulphuryl fluoride 24 hours<br />

Seeds of cot<strong>to</strong>n, packaged or bulk Phosphine 120 hours<br />

Seeds and dried pods, okra, kenaf, etc. Phosphine 120 hours<br />

(a) Duration of treatment can vary according <strong>to</strong> temperature and dose.<br />

The occupational Permissible Exposure<br />

Limit for sulphuryl fluoride is 5 ppm (y<br />

mg/m 3 ) in the USA. Chronic exposure <strong>to</strong><br />

significantly higher levels than the PEL<br />

may result in fluorosis of teeth and<br />

bones, while short-term inhalation exposure<br />

<strong>to</strong> high concentrations may cause<br />

respira<strong>to</strong>ry irritation followed by pulmonary<br />

edema, numbness and central<br />

nervous system depression (NTP 1990).<br />

The <strong>to</strong>xicity of sulphuryl fluoride <strong>to</strong><br />

mammals by inhalation is similar <strong>to</strong> that<br />

of MB (Bond 1984).<br />

The emissions of fumigant gases after treatment<br />

can pose safety risks <strong>to</strong> staff and<br />

neighbouring communities. Some fumigant<br />

formulations are flammable.<br />

Safety precautions for users<br />

Handling of fumigants requires full safety<br />

training, safety equipment and implementation<br />

of appropriate management and emergency<br />

procedures. Occupational safety<br />

authorities have set exposure limits and can<br />

provide guidance on safety procedures and<br />

equipment for registered fumigants.<br />

Fumigants should only be handled by fully<br />

Compiled from: USDA-APHIS 1993, 1998<br />

trained personnel. Other safety controls and<br />

requirements include:<br />

Respira<strong>to</strong>ry protection.<br />

Detailed safety equipment.<br />

Training and licensing.<br />

Personal moni<strong>to</strong>rs.<br />

Regular medical check-ups.<br />

Fumigant chemicals should be s<strong>to</strong>red in<br />

appropriate conditions in special locked areas.<br />

Information on safety procedures can be<br />

found in HSE (1996a, 1996b) and IMO (1996).<br />

Residues in food and environment<br />

Fumigants leave residues in food products.<br />

Unless precautions are taken, phosphine<br />

tablets or pellets can leave powdery residues<br />

on commodities that are likely <strong>to</strong> contain<br />

unreacted metal phosphides (MAFF 1999).<br />

The Codex Alimentarius Commission of the<br />

Food and Agriculture Organization (FAO) and<br />

the World Health Organization (WHO) has<br />

established maximum residue limits for some<br />

fumigant residues in specific foods. Residues<br />

are also generally controlled under pesticide<br />

residue regulations at national or state levels.


Ozone depletion<br />

The fumigants in this section are not known<br />

<strong>to</strong> be ODS. However, carbon disulfide has<br />

been noted as a catalyst for ozone depletion<br />

if the gas reaches the upper atmosphere<br />

(WMO 1991).<br />

Global warming and energy<br />

consumption<br />

Fumigants described in this section are not<br />

known <strong>to</strong> be greenhouse gases, except for<br />

carbon dioxide. Like MB, the products consume<br />

energy during their manufacture and<br />

transport. Some formulations consume energy<br />

during use.<br />

Other environmental considerations<br />

After a fumigation has finished, the unused<br />

gases are released <strong>to</strong> the air, contributing <strong>to</strong><br />

local air contamination. Some durable commodities<br />

will desorb or slowly release fumigants<br />

for a long period after fumigation.<br />

Waste from solid phosphine formulations can<br />

be a source of environmental pollution; it is<br />

normally deactivated in water and detergent<br />

and then placed in landfill sites. Large cylinders<br />

containing fumigants are normally re-used.<br />

Acceptability <strong>to</strong> markets and consumers<br />

Phosphine is widely used for food commodities<br />

and well accepted by supermarkets and<br />

purchasing companies. Sulphuryl fluoride is<br />

likewise well accepted by cus<strong>to</strong>mers for structural<br />

treatments and non-food commodities.<br />

Consumers in general do not like chemical<br />

treatments for food products, however, and<br />

there is increasing public concern about safety<br />

issues for communities near fumigation<br />

sites.<br />

Registration and regula<strong>to</strong>ry restrictions<br />

All fumigants have <strong>to</strong> be registered as permitted<br />

pesticides for specific commodities and<br />

uses. Phosphine is registered in many countries,<br />

while the other fumigants are registered<br />

in some cases. Registration may be the<br />

responsibility of the government authorities<br />

that control pesticides and, in some cases,<br />

the authorities responsible for food, grain and<br />

quarantine. The s<strong>to</strong>rage, sale, use and/or<br />

transportation of fumigants are often restricted<br />

by regulations on hazardous substances<br />

and occupational safety and may also be<br />

restricted by local by-laws. In-transit fumigations<br />

are subject <strong>to</strong> shipping regulations and<br />

codes of the International Maritime<br />

Organisation (IMO 1996).<br />

Cost considerations<br />

Phosphine generally requires less equipment<br />

than does MB, but the chemical<br />

products often cost more than MB. In<br />

Zimbabwe, for example, the chemical<br />

costs were approximately US$ 0.14 per<br />

<strong>to</strong>nne of grain for phosphine, compared<br />

<strong>to</strong> about $ 0.09 for MB. In Indonesia the<br />

chemical cost was about US$ 0.20 <strong>to</strong><br />

0.29 for phosphine and about $0.09 for<br />

MB. For six months of grain s<strong>to</strong>rage in<br />

Indonesia, the equipment and operating<br />

costs were about US$ 0.61 <strong>to</strong> 0.79 per<br />

<strong>to</strong>nne for phosphine, compared <strong>to</strong><br />

$ 0.50 for MB (Sidik 1995, Miller 1996).<br />

For six months of grain s<strong>to</strong>rage in the<br />

Philippines, the <strong>to</strong>tal fixed and variable<br />

costs were about US$ 7.17 per <strong>to</strong>nne for<br />

phosphine and about $ 6.30 per <strong>to</strong>nne<br />

for MB (NAPHIRE 1995, Miller 1996).<br />

When longer phosphine treatment is<br />

involved, additional fumigation sheets<br />

may be required, and those additional<br />

sheets add <strong>to</strong> costs. In Zimbabwe, for<br />

example, each additional sheet would<br />

cost approximately US$ 2,330 (Miller<br />

1996).<br />

The chemical cost of sulphuryl fluoride is<br />

higher than MB, for example, about US$<br />

0.75 <strong>to</strong> 1.37 per ft 2 for sulphuryl fluoride<br />

compared <strong>to</strong> $ 0.69 <strong>to</strong> 1.37 for MB<br />

for eliminating drywood termites in a<br />

large commercial structure (EPA 1996).<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

159


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

160<br />

Questions <strong>to</strong> ask when selecting<br />

the system<br />

Which pest species and life stages are<br />

present?<br />

What level of pest control needs <strong>to</strong> be<br />

achieved?<br />

What time is available <strong>to</strong> conduct the<br />

treatment?<br />

Can improved sealing or a combination<br />

of a fumigant with another treatment,<br />

such as heat, reduce treatment times?<br />

What is the temperature and humidity<br />

of structures and commodities?<br />

Which fumigants are effective in these<br />

conditions?<br />

Is the fumigant registered for this<br />

commodity/use?<br />

What degree of sealing is necessary?<br />

What other regula<strong>to</strong>ry restrictions are<br />

placed on fumigant use and s<strong>to</strong>rage?<br />

Will cus<strong>to</strong>mers or supermarkets be<br />

concerned about residues or quality<br />

changes?<br />

Type of equipment<br />

or service<br />

Phosphine-generating<br />

products and equipment<br />

What safety management systems,<br />

safety equipment and training are<br />

required?<br />

What other equipment and materials<br />

are required?<br />

What are the costs and profitability of<br />

this system compared <strong>to</strong> other options?<br />

Availability<br />

Phosphine is available in many countries.<br />

The other fumigants are available only in<br />

the countries where they are registered.<br />

Suppliers and specialists<br />

Examples of specialists and suppliers of<br />

fumigant products and services are given in<br />

Table 6.7.6. See Annex 6 for an alphabetical<br />

listing of suppliers, specialists and experts.<br />

See also Annex 5 and Annex 7 for additional<br />

information resources. Information about<br />

fumigant products and services can also be<br />

obtained from local agrochemical and pest<br />

control suppliers and from national pesticide<br />

registration authorities.<br />

Table 6.7.6 Examples of specialists and suppliers of products and<br />

services for fumigants<br />

Organization or company (product name)<br />

Adalia Services Ltd, Canada<br />

Ag Pesticides (Private) Ltd, Pakistan (Ag<strong>to</strong>xin)<br />

Beyer (M) Sdn. Bhd., Malaysia<br />

Casa Bernado Ltda, Brazil (Gas<strong>to</strong>xin, Phostek)<br />

Degesch America Inc, USA (Phos<strong>to</strong>xin, Mag<strong>to</strong>xin)<br />

Degesch de Chile Ltda, Chile (Horn genera<strong>to</strong>r)<br />

Detia Degesch GmbH, Germany (Phos<strong>to</strong>xin)<br />

Excel Industries Ltd, India (Celphos)<br />

Fumigation Service and Supply Inc, USA<br />

Gardex Chemicals, Canada<br />

Hoechst Far East Marketing Corp, Philippines<br />

MC Solvents Co Ltd, Thailand<br />

Pawa International Sales Agency PL, Thailand<br />

PT Elang Laut, Indonesia<br />

PT Petrokimiya Kayaku, Indonesia<br />

PT Sarana Agropratama, Indonesia<br />

continued


Type of equipment<br />

or service<br />

Phosphine + carbon<br />

dioxide and phosphine +<br />

nitrogen mixtures<br />

Sulphuryl fluoride<br />

manufacturers<br />

Fumigation services<br />

(contract services)<br />

In-transit phosphine<br />

fumigations<br />

(contract services)<br />

Fumigation sheets and<br />

enclosures<br />

Safety equipment<br />

Specialists, advisory services<br />

and consultants<br />

Table 6.7.6 continued<br />

Organization or company (product name)<br />

SGS Far East Ltd, Thailand<br />

United Phosphorus, India (Quickphos)<br />

Westco Agencies (M) Sdn. Bhd., Malaysia<br />

BOC Gases, Australia<br />

CIG Ltd, Australia (Phosfume)<br />

CSIRO S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry, Australia (Siroflo,<br />

Sirocirc)<br />

Cytec Canada Inc, Canada (Siroflo, ECO2FUME)<br />

Fumigation Services and Supply Inc, USA (ECO2FUME)<br />

S&A GmbH, Germany (Frisin)<br />

Dow AgroSciences, USA (Vikane, ProFume)<br />

Note: This fumigant is registered in only a few countries<br />

Fumigation Services and Supply Inc, USA<br />

Food Protection Services, Hawaii, USA<br />

Igrox Ltd, UK<br />

Pest Control Services Inc, Philippines<br />

S&A GmbH, Germany<br />

SCC Products, USA<br />

SGS Far East Ltd, Thailand<br />

SGS Far East Ltd, Thailand<br />

International Maritime Fumigation Organisation, UK<br />

Austral Cathay, Australia<br />

Commodity S<strong>to</strong>rage, Australia<br />

GrainPro, USA<br />

Haogenplast, Israel<br />

Power Plastics, UK<br />

PT Abdi Ishan Medel General Trading, Indonesia<br />

PT Sarana Utama Jaya, Indonesia<br />

Refer <strong>to</strong> government authorities responsible for occupational<br />

safety and <strong>to</strong> pest control product suppliers.<br />

Department of Agriculture, Bangkok, Thailand<br />

ASEAN Food Handling Bureau, Malaysia<br />

Canadian Grain Commission, Canada<br />

Canadian Pest Control Association, Canada<br />

Central Science Labora<strong>to</strong>ry, York, UK<br />

Cereal Research Centre, Agriculture and Agri-Food Canada,<br />

Canada<br />

CSIRO S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry, Australia<br />

Department of S<strong>to</strong>red Products, The Volcani Center, Israel<br />

Fumigation Service and Supply Inc, USA<br />

GTZ, Germany<br />

Food Protection Services, Hawaii, USA<br />

Home Grown Cereals Authority, London, UK (procedures for phosphine)<br />

HortResearch, Natural Systems Group, Ruakura, New Zealand<br />

Insects Limited, USA<br />

Institute of Plant Quarantine, Ministry of Agriculture, Beijing, China<br />

Section 6: Alternative Techniques for Controlling Pests in Commodities and Structures<br />

continued<br />

161


UNEP Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Methyl</strong> <strong>Bromide</strong><br />

Type of equipment<br />

or service<br />

Table 6.7.6 continued<br />

Organization or company (product name)<br />

Institu<strong>to</strong> de Tecnologia de Alimen<strong>to</strong>s, Campinas SP, Brazil<br />

National Postharvest Institute for Research and Extension, the<br />

Philippines<br />

Natural Resources Institute, UK<br />

SCC Products, USA<br />

Dr Jonathon Banks, Pialligo, Australia<br />

Mr Patrick Ducom, Labora<strong>to</strong>ire Dendrées S<strong>to</strong>ckées, France<br />

Dr Paul Fields, Cereal Research Centre, Canada<br />

Dr Fusao Kawakami, MAFF Yokohama Plant Protection Station,<br />

Japan<br />

Dr Geoffry Kirenga, Dar es Salaam University, Dar es Salaam,<br />

Tanzania<br />

Dr Thomas Phillips and Dr Ronald Noyes, Department of<br />

En<strong>to</strong>mology, Oklahoma State University, USA<br />

Dr. Elmer Schmidt, Department of Wood Science, University of<br />

Minnesota, USA<br />

Dr Bob Taylor, Natural Resources Institute, UK<br />

Dr Brad White, University of Washing<strong>to</strong>n, USA (timber treatments)<br />

Dr Larry Zettler, USDA-ARS, Horticultural Crops Research<br />

Labora<strong>to</strong>ry, USA<br />

Note: Contact information for these suppliers and specialists is provided in Annex 6.<br />

162


Annex 1<br />

About the UNEP <strong>DTIE</strong><br />

OzonAction Programme<br />

The UNEP Division of Technology,<br />

Industry and Economics<br />

The mission of the UNEP Division of<br />

Technology, Industry and Economics is <strong>to</strong> help<br />

decision-makers in government, local authorities,<br />

and industry develop and adopt policies<br />

and practices that:<br />

Are cleaner and safer.<br />

Make efficient use of natural resources.<br />

Ensure adequate management of<br />

chemicals.<br />

Incorporate environmental costs.<br />

Reduce pollution and risks for humans<br />

and the environment.<br />

The UNEP Division of Technology, Industry<br />

and Economics (UNEP <strong>DTIE</strong>), with its head<br />

office in Paris, is composed of one centre and<br />

four units:<br />

The International Environmental<br />

Technology Centre (Osaka), which<br />

promotes the adoption and use of environmentally<br />

sound technologies with a<br />

focus on the environmental management<br />

of cities and freshwater basins, in<br />

developing countries and countries in<br />

transition.<br />

Production and Consumption (Paris),<br />

which fosters the development of cleaner<br />

and safer production and consumption<br />

patterns that lead <strong>to</strong> increased<br />

efficiency in the use of natural resources<br />

and reductions in pollution.<br />

Chemicals (Geneva), which promotes<br />

sustainable development by catalysing<br />

global actions and building national<br />

capacities for the sound management of<br />

chemicals and the improvement of<br />

chemical safety world-wide, with a priority<br />

on Persistent Organic Pollutants<br />

(POPs) and Prior Informed Consent (PIC,<br />

jointly with FAO).<br />

Energy and OzonAction (Paris), which<br />

supports the phase-out of ozone depleting<br />

substances in developing countries<br />

and countries with economies in transition,<br />

and promotes good management<br />

practices and use of energy, with a focus<br />

on atmospheric impacts. The UNEP/RISØ<br />

Collaborating Centre on Energy and<br />

Environment supports the work of the<br />

Unit.<br />

Economics and Trade (Geneva), which<br />

promotes the use and application of<br />

assessment and incentive <strong>to</strong>ols for environmental<br />

policy and helps improve the<br />

understanding of linkages between trade<br />

and environment and the role of financial<br />

institutions in promoting sustainable<br />

development.<br />

UNEP <strong>DTIE</strong> activities focus on raising awareness,<br />

improving the transfer of information,<br />

building capacity, fostering technology cooperation,<br />

partnerships and transfer, improving<br />

understanding of environmental impacts of<br />

trade issues, promoting integration of environmental<br />

considerations in<strong>to</strong> economic policies,<br />

and catalysing global chemical safety.<br />

Annex 1: About the UNEP <strong>DTIE</strong> OzonAction Programme<br />

163


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

164<br />

The OzonAction Programme<br />

Nations around the world are taking concrete<br />

actions <strong>to</strong> reduce and eliminate production<br />

and consumption of CFCs, halons, carbon<br />

tetrachloride, methyl chloroform, methyl bromide<br />

and HCFCs. When released in<strong>to</strong> the<br />

atmosphere these substances damage the<br />

stra<strong>to</strong>spheric ozone layer — a shield that protects<br />

life on Earth from the dangerous effects<br />

of solar ultraviolet radiation. Nearly every<br />

country in the world — currently 172 countries<br />

— has committed itself under the<br />

Montreal Pro<strong>to</strong>col <strong>to</strong> phase out the use and<br />

production of ODS. Recognizing that developing<br />

countries require special technical and<br />

financial assistance in order <strong>to</strong> meet their<br />

commitments under the Montreal Pro<strong>to</strong>col,<br />

the Parties established the Multilateral Fund<br />

and requested UNEP, along with UNDP,<br />

UNIDO and the World Bank, <strong>to</strong> provide the<br />

necessary support. In addition, UNEP supports<br />

ozone protection activities in Countries with<br />

Economies in Transition (CEITs) as an implementing<br />

agency of the Global Environment<br />

Facility (GEF).<br />

Since 1991, the UNEP <strong>DTIE</strong> OzonAction<br />

Programme has strengthened the capacity of<br />

governments (particularly National Ozone<br />

Units or “NOUs”) and industry in developing<br />

countries <strong>to</strong> make informed decisions about<br />

technology choices and <strong>to</strong> develop the policies<br />

required <strong>to</strong> implement the Montreal<br />

Pro<strong>to</strong>col. By delivering the following services<br />

<strong>to</strong> developing countries, tailored <strong>to</strong> their individual<br />

needs, the OzonAction Programme has<br />

helped promote cost-effective phase-out<br />

activities at the national and regional levels:<br />

Information Exchange<br />

Provides information <strong>to</strong>ols and services <strong>to</strong><br />

encourage and enable decision makers <strong>to</strong><br />

make informed decisions on policies and<br />

investments required <strong>to</strong> phase out ODS. Since<br />

1991, the Programme has developed and disseminated<br />

<strong>to</strong> NOUs over 100 individual publications,<br />

videos, and databases that include<br />

public awareness materials, a quarterly<br />

newsletter, a web site, sec<strong>to</strong>r-specific technical<br />

publications for identifying and selecting<br />

alternative technologies and guidelines <strong>to</strong><br />

help governments establish policies and<br />

regulations.<br />

Training<br />

Builds the capacity of policy makers, cus<strong>to</strong>ms<br />

officials and local industry <strong>to</strong> implement<br />

national ODS phase-out activities. The<br />

Programme promotes the involvement of local<br />

experts from industry and academia in training<br />

workshops and brings <strong>to</strong>gether local<br />

stakeholders with experts from the global<br />

ozone protection community. UNEP conducts<br />

training at the regional level and also supports<br />

national training activities (including providing<br />

training manuals and other materials).<br />

Networking<br />

Provides a regular forum for officers in NOUs<br />

<strong>to</strong> meet <strong>to</strong> exchange experiences, develop<br />

skills, and share knowledge and ideas with<br />

counterparts from both developing and<br />

developed countries. Networking helps<br />

ensure that NOUs have the information, skills<br />

and contacts required for managing national<br />

ODS phase-out activities successfully. UNEP<br />

currently operates 8 regional/sub-regional<br />

Networks involving 109 developing and 8<br />

developed countries, which have resulted in<br />

member countries taking early steps <strong>to</strong> implement<br />

the Montreal Pro<strong>to</strong>col.<br />

Refrigerant Management Plans<br />

(RMPs)<br />

Provide countries with an integrated,<br />

cost-effective strategy for ODS phase-out in<br />

the refrigeration and air conditioning sec<strong>to</strong>rs.<br />

RMPs have <strong>to</strong> assist developing countries<br />

(especially those that consume low volumes<br />

of ODS) <strong>to</strong> overcome the numerous obstacles<br />

<strong>to</strong> phase out ODS in the critical refrigeration<br />

sec<strong>to</strong>r. UNEP <strong>DTIE</strong> is currently providing specific<br />

expertise, information and guidance <strong>to</strong><br />

support the development of RMPs in 60<br />

countries.


Country Programmes and<br />

Institutional Strengthening<br />

Support the development and implementation<br />

of national ODS phase-out strategies<br />

especially for low-volume ODS-consuming<br />

countries. The Programme is currently assisting<br />

90 countries <strong>to</strong> develop their Country<br />

Programmes and 76 countries <strong>to</strong> implement<br />

their Institutional-Strengthening projects.<br />

For more information about these services<br />

please contact:<br />

Mr. Rajendra Shende, Chief<br />

Energy and OzonAction Unit<br />

UNEP Division of Technology, Industry<br />

and Economics<br />

OzonAction Programme<br />

39-43, quai André Citroën<br />

75739 Paris Cedex 15 France<br />

Email: ozonaction@unep.fr<br />

Tel: +33 1 44 37 14 50<br />

Fax: +33 1 44 37 14 74<br />

www.uneptie.org/ozonaction.html<br />

Annex 1: About the UNEP <strong>DTIE</strong> OzonAction Programme<br />

165


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

166


Annex 2<br />

Glossary, Acronyms and Units<br />

Term<br />

Glossary of terms used in this report<br />

Description<br />

Allelopathy Use of plant materials (e.g., exudates, residues) <strong>to</strong> benefit crop health.<br />

APHIS<br />

Animal and Plant Health Inspection Service, the USA’s regula<strong>to</strong>ry agency responsible<br />

for quarantine.<br />

Article 5(1) A developing country whose annual per capita ODS consumption is less than 0.3<br />

kg per capita.<br />

Biofumigation Amendment of soil with organic matter that releases gases that eliminate or<br />

control pests.<br />

Biological Living organisms or insects used <strong>to</strong> control pests and diseases.<br />

controls<br />

Controlled Typically, low-oxygen and high-carbon-dioxide atmospheres that are externally<br />

atmosphere controlled. Used for extending the life of fresh and durable products. Some<br />

atmospheres have pesticidal qualities. Also know as modified atmosphere(s).<br />

Compost Decomposed waste plant or animal materials.<br />

Crop rotation Growing different crops each year in a field in a sequence that helps <strong>to</strong> interrupt<br />

the life cycles of pests.<br />

ct-product The product of the fumigant concentration multiplied by the time or duration of<br />

application. This figure is often used as a guide in calculating correct doses for<br />

fumigation treatments.<br />

Damping off Plant diseases caused by certain pathogens such as Rhizoc<strong>to</strong>nia solani.<br />

Dia<strong>to</strong>maceous Abrasive, fossilised remains of dia<strong>to</strong>ms consisting mainly of silica with small<br />

earth (DE) amounts of other minerals that cause damage mainly <strong>to</strong> arthropod pests.<br />

Double-cropping Production of two crops per year in a greenhouse or field.<br />

Drip irrigation Watering system comprised of pipes laid along crop rows with drippers <strong>to</strong> supply<br />

water <strong>to</strong> the soil.<br />

Durables Products with low moisture content that, in the absence of pest attack, can be<br />

safely s<strong>to</strong>red for long periods.<br />

Fungal wilts Plant diseases caused by certain species of fungi.<br />

Grafting Use of resistant roots<strong>to</strong>cks <strong>to</strong> protect susceptible annual and perennial crops against<br />

soil-borne pathogens.<br />

Heat treatment Use of heat <strong>to</strong> kill insect and/or other pests.<br />

Hermetic s<strong>to</strong>rage Sealed s<strong>to</strong>rage containers where insects perish from lack of oxygen.<br />

Hydroponics Soil substitute system where the substrates sit on a bed of water and water<br />

circulation is carefully managed.<br />

Integrated Management of s<strong>to</strong>red products <strong>to</strong> minimise environmental and health impacts.<br />

Commodity It includes the use of Integrated Pest Management (IPM).<br />

Management<br />

(ICM)<br />

Annex 2: Glossary, Acronyms and Units<br />

167


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Insect Growth<br />

Regula<strong>to</strong>r (IGR)<br />

Integrated Pest<br />

Management<br />

(IPM)<br />

Modified<br />

atmosphere(s)<br />

Multi-cropping<br />

Nema<strong>to</strong>des<br />

Organic<br />

amendments<br />

Pathogens<br />

Perishables<br />

Permeability<br />

Pest-free zone<br />

pH<br />

Pheromone<br />

Phosphine<br />

Phy<strong>to</strong><strong>to</strong>xic,<br />

phy<strong>to</strong><strong>to</strong>xicity<br />

Quarantine<br />

and preshipment<br />

(QPS)<br />

Resistant<br />

varieties<br />

Sanitation<br />

Soil<br />

amendments<br />

Soil-less culture<br />

Solarisation<br />

Specific chemical that disrupts the life cycle of a pest.<br />

Pest moni<strong>to</strong>ring techniques, establishment of pest injury levels and a combination of<br />

strategies and tactics <strong>to</strong> prevent or manage pest problems in an environmentally<br />

sound and cost-effective manner.<br />

See controlled atmosphere(s).<br />

Production of two or more crops per year in a greenhouse or field.<br />

Microscopic worms that live in soil; some are pests while others are advantageous<br />

<strong>to</strong> agriculture.<br />

Organic materials added <strong>to</strong> the soil <strong>to</strong> improve texture, nutrition and/or assist in<br />

controlling pests.<br />

Organisms that cause damage or disease.<br />

Fresh fruit and vegetables, cut flowers, ornamental plants, fresh root crops and<br />

bulbs that generally have limited s<strong>to</strong>rage life.<br />

The degree <strong>to</strong> which a gas can move through a thin membrane or sheet.<br />

Establishment of a certified area where a regulated quarantine pest does not exist.<br />

Degree of acidity or alkalinity.<br />

A chemical produced by one member of a species that is externally transmitted<br />

and influences the behaviour or physiology of other members of the same species.<br />

Phosphorus trihydride (hydrogen phosphide), a fumigant gas.<br />

A substance or activity that is <strong>to</strong>xic <strong>to</strong> plants.<br />

Uses of methyl bromide that are defined by the Montreal Pro<strong>to</strong>col as “quarantine”<br />

and “pre-shipment” and are exempt from Pro<strong>to</strong>col controls.<br />

Plant varieties that are able <strong>to</strong> resist attack by specific pests.<br />

Activities <strong>to</strong> prevent the introduction or spread of pathogen inoculum or pest<br />

sources, such as removing infected plant residues before planting.<br />

Organic materials added <strong>to</strong> the soil <strong>to</strong> improve texture, nutrition and/or assist in<br />

controlling pests.<br />

A method in which plant growth substrates provide an anchoring medium that<br />

allows nutrients and water <strong>to</strong> be absorbed by plant roots.<br />

When heat from solar radiation is trapped under clear plastic sheeting <strong>to</strong> elevate<br />

the temperature of moist soil <strong>to</strong> a level lethal <strong>to</strong> soil-borne pests, including<br />

pathogens, weeds, insects and mites.<br />

Steam treatment Use of steam (water vapour) <strong>to</strong> kill pests.<br />

Strip solarisation Solarisation carried out on the strips or rows where crops will be planted.<br />

Substrates Materials or growth media that provide an anchoring medium <strong>to</strong> replace the soil<br />

and allow nutrients and water <strong>to</strong> be absorbed by plant roots.<br />

Systems<br />

approach<br />

Combines biological knowledge with scientifically derived, quantifiable operational<br />

actions that <strong>to</strong>gether act as multiple safeguards. In the context of quarantine, a<br />

systems approach may be applied in the country of export and results in a consignment<br />

meeting the requirements of the importing country.<br />

168


Acronyms<br />

Acronym<br />

APHIS<br />

ATSDR<br />

CA<br />

DE<br />

DHHS<br />

FAO<br />

GHG<br />

IARC<br />

ICM<br />

IGR<br />

IPCS<br />

IPM<br />

MA<br />

MB<br />

MBTOC<br />

MF<br />

NIOSH<br />

NTP<br />

ODS<br />

OSHA<br />

QPS<br />

UN<br />

US DOT<br />

Meaning<br />

Animal and Plant Health Inspection Service, Dept Agriculture, USA<br />

Agency for Toxic Substances and Disease Registry, Department of Health and<br />

Human Services, USA<br />

Controlled atmosphere<br />

Dia<strong>to</strong>maceous earth<br />

Department of Health and Human Services, USA<br />

Food and Agriculture Organization of the United Nations<br />

Greenhouse Gas<br />

International Agency for Research on Cancer, World Health Organisation<br />

Integrated Commodity Management<br />

Insect growth regula<strong>to</strong>r<br />

International Programme on Chemical Safety, World Health Organisation and<br />

International Labour Organisation, Switzerland<br />

Integrated Pest Management<br />

Modified atmosphere<br />

<strong>Methyl</strong> bromide<br />

<strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee of UNEP and the Montreal Pro<strong>to</strong>col<br />

Multilateral Fund of the Montreal Pro<strong>to</strong>col<br />

National Institute of Occupational Safety and Health, USA.<br />

National Toxicology Program, USA<br />

Ozone-depleting substance<br />

Occupational Safety and Health Administration, Department of Labor, USA<br />

Quarantine and pre-shipment uses of methyl bromide<br />

United Nations<br />

Department of Transportation, USA<br />

Toxicological acronyms<br />

LC50<br />

Concentration which killed 50% of test population in animal tests.<br />

LD50<br />

Dose which killed 50% of test population in animal tests.<br />

LCLo<br />

Lowest lethal concentration.<br />

LDLo<br />

Lowest lethal dose.<br />

TCLo<br />

Lowest <strong>to</strong>xic concentration.<br />

TDLo<br />

Lowest <strong>to</strong>xic dose.<br />

Annex 2: Glossary, Acronyms and Units<br />

169


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Unit<br />

Units and conversions<br />

Meaning<br />

Hectare, ha area of 10,000 square metres (m 2 )<br />

or 2.47 acres<br />

Micron thickness (length) of 0.001 millimetre (mm)<br />

or 0.000089 inches<br />

Metre, m length of 100 centimetres (cm)<br />

or 39.37 inches<br />

or 3.28 feet<br />

Square metre, area measuring 1 metre long by 1 metre wide<br />

m 2<br />

or 1.19 square yards<br />

or 10.76 square feet<br />

Cubic metre, m 3 volume measuring 1 metre long by 1 metre wide by 1 metre high<br />

or 1 kilolitre<br />

or 264.17 US gallons (219.97 UK gallons)<br />

Litre, l<br />

capacity (volume) of 0.035 cubic feet<br />

or 2.11 US pints (1.76 UK pints)<br />

or 0.26 US gallons (0.22 UK gallons)<br />

Millilitre, ml capacity (volume) of 0.001 litre (l)<br />

Gram, g weight of 0.032 ounces<br />

Kilogram, kg weight of 1000 grams (g)<br />

or 2.21 pounds<br />

or 32.15 ounces<br />

Tonne, t weight of 1000 kilograms (kg)<br />

or 2204.62 pounds<br />

°C temperature measured in degrees Celsius or degrees centigrade<br />

0°C equals 32°F (degrees Fahrenheit)<br />

15°C equals 59°F<br />

37°C equals 98.6°F<br />

60°C equals 140°F<br />

100°C equals 212°F<br />

170


Annex 3<br />

Chemical Safety Data Sheets<br />

This Annex provides chemical<br />

safety data sheets for:<br />

<strong>Methyl</strong> <strong>Bromide</strong><br />

Boric acid, borates<br />

Carbon dioxide<br />

Carbon bisulphide<br />

Chloropicrin<br />

Dazomet<br />

1,3-Dichloropropene<br />

Dichlorvos<br />

Ethyl formate<br />

Ethylene oxide<br />

Hydrogen cyanide<br />

Malathion<br />

Metam sodium<br />

<strong>Methyl</strong> iodide<br />

Nitrogen<br />

Phosphine<br />

Sulphuryl fluoride<br />

Information in the data sheets in this Annex<br />

was taken from material safety data sheets<br />

and <strong>to</strong>xicological information published by:<br />

Agency for Toxic Substances and Disease<br />

Registry (ATSDR), Department of Health<br />

and Human Sciences, USA.<br />

American Conference of Governmental<br />

Industrial Hygienists (ACGIH), USA.<br />

Cornell University, USA.<br />

Fisher Scientific, Canada.<br />

International Programme on Chemical<br />

Safety (IPCS) of World Health<br />

Organisation and International Labour<br />

Organisation, Switzerland.<br />

JT Baker, Mallinckrodt Baker Inc, New<br />

Jersey, USA.<br />

National Institute of Occupational Safety<br />

and Health (NIOSH), USA.<br />

National Toxicology Program (NTP),<br />

National Institutes of Health, USA.<br />

Occupational Safety and Health Administration,<br />

Department of Labor, USA.<br />

Useful sources of health and<br />

safety information<br />

Websites<br />

One easy starting point is a website called<br />

Where <strong>to</strong> Find Material Safety Data Sheets on<br />

the Internet hosted by Interactive Learning<br />

Paradigms Incorporated; it explains <strong>to</strong>xicological<br />

terminology and gives hotlinks <strong>to</strong> many<br />

websites:<br />

http://www.ilpi.com/msds/index.html<br />

Agency for Toxic Substances and Disease<br />

Registry (ATSDR), Department of Health<br />

and Human Services, USA:<br />

http://www.atsdr.cdc.gov<br />

American Conference of Governmental<br />

Industrial Hygienists (ACGIH), USA:<br />

http://www.acgih.org<br />

Fisher Scientific, Canadian web page with<br />

material safety data sheets: http://www.fishersci.ca/msds.nsf<br />

Health and Safety Executive, UK:<br />

http://www.hse.gov.uk<br />

Annex 3: Chemical Safety Data Sheets<br />

171


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

172<br />

International Programme on Chemical<br />

Safety (IPCS) of the United Nations<br />

Environment Programme (UNEP), the World<br />

Health Organisation (WHO)and the<br />

International Labour Organisation:<br />

http://www.unep.org/unep/partners/un/ipcs<br />

Health Organisation, (WHO) and the<br />

International Labour Organisation:<br />

http://www.unep.org/unep/partners/un/ipcs<br />

National Institute for Occupational Safety<br />

and Health (NIOSH), USA:<br />

http://www.cdc.gov/niosh<br />

National Toxicity Program (NTP) of the<br />

Department of Health and Human<br />

Services, USA: http://ntp-server.niehs.nih.gov<br />

Occupational Safety and Health<br />

Administration, Department of Labor,<br />

USA: http://www.osha.gov<br />

Pesticide Management Education<br />

Program, Cornell University, New York,<br />

USA: http://pmep.cce.cornell.edu<br />

Organisations<br />

You can ask the following types of organisations<br />

for safety information:<br />

Government bodies responsible for:<br />

Occupational safety.<br />

Human health, public health and<br />

community safety.<br />

Environmental protection, air pollution<br />

and water pollution.<br />

Pesticide registration and regulation.<br />

Transportation and disposal of hazardous<br />

substances and wastes.<br />

Fire prevention.<br />

Professional organisations and research<br />

departments in the areas of:<br />

Occupational safety.<br />

Public health, human health and<br />

community hazards.<br />

Environmental protection, air<br />

pollution and water pollution.<br />

Plant protection products, agriculture.<br />

Transportation of hazardous substances<br />

and wastes.<br />

Fire brigade, fire prevention.<br />

Poison information centers.<br />

Chemical product manufacturers and<br />

suppliers.<br />

NGOs working on pesticides, health<br />

issues, environmental issues.<br />

References on use of fumigants and<br />

pesticides<br />

ASEAN 1989. Suggested Recommendations for<br />

the Fumigation of Grain in the ASEAN Region.<br />

Part 1: Principles and General Practice. ASEAN<br />

Food Handling Bureau, Kuala Lumpur and<br />

CSIRO and ACIAR, Canberra, Australia.<br />

GASCA 1996. Risks and Consequences of the<br />

Misuse of Pesticides in the Treatment of S<strong>to</strong>red<br />

Products. Technical Leaflet 2. Group for<br />

Assistance on Systems relating <strong>to</strong> Grain After<br />

Harvest. CTA, Wageningen, Netherlands.<br />

MAFF 1999. Fumigation Guidelines. Ministry of<br />

Agriculture, Fisheries and Food, London, UK.<br />

Disclaimer<br />

Note that the information given about chemicals<br />

in this Annex represents the information<br />

available from the organisations listed above.<br />

We cannot assure the accuracy of that information,<br />

so users must make their own investigations<br />

<strong>to</strong> determine the latest information<br />

and suitability of chemicals for their particular<br />

purposes. You should examine safety information<br />

provided by chemical manufacturers,<br />

consult safety authorities for detailed and<br />

up-<strong>to</strong>-date information, identify the safer<br />

options, and comply fully with all safety<br />

precautions.<br />

Occupational exposure limits and recommended<br />

safety precautions are subject <strong>to</strong><br />

change, so it is important <strong>to</strong> find out the latest<br />

information and national or state requirements<br />

and recommendations.


<strong>Methyl</strong> bromide<br />

Chemical formula: CH 3 Br CAS number: 74-83-9 UN number: 1062<br />

Synonyms: bromomethane, monobromomethane, halon 1001.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic gas.<br />

Occupational hazard rating (IPCS): Highly <strong>to</strong>xic gas.<br />

Health rating (NFPA): 3<br />

Transportation hazard class (US DOT): hazard class 2, division 2.3, Poison gas.<br />

Exposure limits:<br />

Occupational exposure limits: (USA NIOSH, UK, Australia): 20 mg/m 3 TWA, skin.<br />

Bulgaria, Hungary: 10 mg/m 3 . Netherlands: 1 mg/m 3 time-weighted average, skin.<br />

Permissible exposure limit (OSHA): 5 ppm (20mg/m 2) time-weighted average, skin.<br />

Physical description:<br />

Odourless and colourless gas. Liquid below about 4°C.<br />

Molecular weight: 95 Boiling point: 4°C (38°F) Vapour pressure: 1420 mm Hg at 20°C<br />

Specific gravity: 1.73 Melting point: -94°C Vapour density: 3.3 (air = 1)<br />

Solubility in water: 16-18 g/litre at 25°C<br />

Fire hazard: flammable gas only in presence of a high energy ignition source. On heating or burning<br />

produces <strong>to</strong>xic or corrosive fumes including hydrogen bromide, bromine and carbon oxybromide.<br />

Explosion limits: 8.6 - 20 vol%. Flammability rating (NFPA): 1<br />

Incompatibilities and reactivities: avoid open flames; risk of fire and explosion on contact with aluminum,<br />

zinc or magnesium. Reacts with strong oxidisers, attacks many metals in presence of water,<br />

some plastics, rubber and coatings. Reactivity rating (NFPA): 0.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: severe irritant, exposure symp<strong>to</strong>ms include redness, pain, blurred vision, temporary blindness.<br />

Skin: exposure symp<strong>to</strong>ms include tingling, itching, burning sensation, redness, blisters, pain. Can be<br />

absorbed through the skin causing systemic <strong>to</strong>xicity with symp<strong>to</strong>ms similar <strong>to</strong> inhalation (below) and<br />

can be fatal (IPCS). Risk of frostbite if contact with liquid.<br />

Inhalation: exposure symp<strong>to</strong>ms include dizziness, headache, abdominal pain, vomiting, weakness,<br />

hallucinations, lack of coordination, laboured breathing, possibly convulsions, coma, death.<br />

Ingestion: highly irritant <strong>to</strong> mucous membranes and extremely poisonous if ingested.<br />

Short-term exposure: irritation <strong>to</strong> eyes, skin, respira<strong>to</strong>ry tract; inhalation may cause long edema; may<br />

cause effects on central nervous system, kidneys and lungs; exposure <strong>to</strong> high concentrations may result<br />

in death (IPCS); effects may be delayed. Acute poisoning is characterised by marked irritation of respira<strong>to</strong>ry<br />

tract, which in severe cases may lead <strong>to</strong> pulmonary edema; high concentrations may damage<br />

the liver, kidneys and central nervous system.<br />

Long-term or repeated exposure (IPCS): long-term exposure <strong>to</strong> low concentrations may affect central<br />

nervous system – signs include mental confusion, lethargy, inability <strong>to</strong> focus eyes, lack of coordination<br />

and muscle weakness. May have effects on kidneys, heart muscle, liver, nose and lungs; may<br />

cause genetic damage; may impair male fertility.<br />

Annex 3: Chemical Safety Data Sheets<br />

173


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Toxicity profile:<br />

TDLo skin: human 40 g/m 3 /40M-C.<br />

LC50 inhalation: rabbit 28900 mg/m 3 /30M; rat 302 ppm/8H; mouse 1540 mg/m 3 /2H.<br />

TCLo inhalation: human 35 ppm.<br />

LCLo inhalation: human 1583 ppm/10-20H (6.2 mg/l); human7890 ppm/1.5H (30.9mg/l); chd 1<br />

g/m 3 /2H.<br />

LD50 oral: rat 04 - 214 mg/kg.<br />

Human non-fatal poisoning (IPCS): from exposures as low as 100 ppm (389 mg/m 3 ).<br />

Carcinogenicity (IARC): group 3, limited evidence in animals; inadequate evidence in humans .<br />

Tera<strong>to</strong>genicity/ reproductive effects: insufficient information.<br />

Mutagenicity/genetic <strong>to</strong>xicology: positive in Ames test, salmonella and micronucleus tests.<br />

Neuro<strong>to</strong>xicity: Neuro<strong>to</strong>xic effects.<br />

Environment: hazardous <strong>to</strong> environment: ozone depleting substance. Hazardous <strong>to</strong> mammals, insects,<br />

aquatic animals, plants, soil organisms.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear safety goggles,<br />

face shield or supplied - air breathing apparatus. Wear loose-fitting clothing because MB permeates<br />

many materials). Do not wear gloves, contact lenses, rings or adhesive bandages. Refer <strong>to</strong> safety recommendations.<br />

Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 20 minutes, medical attention.<br />

Skin: remove contaminated clothing, wash immediately for at least 15 minutes, medical attention.<br />

Inhalation: respira<strong>to</strong>ry support, medical attention.<br />

Ingestion: medical attention immediately.<br />

Sources: Chemical data sheets of NIOSH, NTP, IPCS, Cornell University, Great Lakes Chemical Corp.<br />

174


Boric acid (borates)<br />

Chemical formula: H 3 BO 3 and Na 2 B 4 O 7 .10H 2 O CAS number: 10043-35-3 and 1303-96-4<br />

UN number: -<br />

Synonyms: borax, sodium borate, boracic acid, orthoboric acid. Information below is for boric acid only.<br />

Hazard classification for boric acid:<br />

Harmful if swallowed or if dust is inhaled.<br />

Occupational hazard rating (OSHA): no information<br />

Health rating (NFPA): 1 = slight.<br />

Transportation hazard class (US DOT): not regulated.<br />

Exposure limits:<br />

Occupational exposure limit (ACGICH, California OSHA): 10mg/m 2 (inhalable particulate)..<br />

Permissible exposure limit (OSHA): 15 mg/m 3 <strong>to</strong>tal dust, 5 mg/m 3 respirable fractions for<br />

nuisance dusts.<br />

Physical description:<br />

Odourless crystals or white powder.<br />

Molecular weight: 61.8 Boiling point: decomposes Vapour pressure: 2.6 mm Hg at<br />

20°CSpecific gravity: 1.5 Melting point: 170°C (336°F) Vapour density: no information<br />

Solubility in water: 5.6g/100mL<br />

Fire hazard: not flammable, not a fire hazard. Flammability rating (NFPA): 0 = none.<br />

Incompatibilities and reactivities: incompatible with potassium, alkalis, hydroxides. In moist conditions<br />

can be corrosive <strong>to</strong> iron. Reactivity rating (NFPA): 0 = none.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: irritation, redness.<br />

Skin: irritation; not significantly absorbed through intact skin; prevent all contact with broken skin.<br />

Inhalation: irritation <strong>to</strong> mucous membranes and respira<strong>to</strong>ry tract.<br />

Ingestion: harmful if swallowed, may affect fertility.<br />

Chronic: prolonged exposure <strong>to</strong> high concentrations may cause weight loss, vomiting, diarrhea, skin<br />

rash, convulsions and anaemia; susceptibility of liver and kidneys.<br />

Toxicity profile:<br />

LD50 skin: rabbit > 2000 mg,kg.<br />

Tera<strong>to</strong>genicity/ reproductive effects: at high exposures.<br />

LC50 inhalation: rat > 2 mg/L.<br />

Mutagenicity: not reported.<br />

LD50 oral: rat 2660 mg/kg.<br />

Neuro<strong>to</strong>xicity: no information.<br />

Carcinogenicity: not known carcinogen. Environment: can be harmful <strong>to</strong> aquatic life.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Avoid breathing dust, contact with eyes, skin and clothing. Wear safety goggles/glasses, protective<br />

gloves, clothing <strong>to</strong> prevent skin contact; if dust use supplied-air respira<strong>to</strong>r or similar – refer <strong>to</strong> safety<br />

instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes and get medical attention.<br />

Skin: soap wash.<br />

Inhalation of dust: remove <strong>to</strong> fresh air, seek medical attention if symp<strong>to</strong>ms.<br />

Ingestion: drink water and seek medical attention.<br />

Sources: Chemical data sheets of NIOSH, Fisher, NTP, IPCS, Baker, US Borax Inc., Anachemica<br />

Annex 3: Chemical Safety Data Sheets<br />

175


Carbon dioxide<br />

Chemical formula: CO 2 CAS number: 124-38-9 UN number: 1013<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Synonyms: carbonic acid gas, carbonic anhydride; normal constituent of air (about 300 ppm).<br />

Hazard classification:<br />

Normal component of air, but <strong>to</strong>xic at high concentrations.<br />

Occupational hazard rating (OSHA): no information.<br />

Health rating (NFPA): no rating.<br />

Transportation hazard class (UN): class 2.2.<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): 5000 ppm (9000 mg/m 3 ) time-weighted average.<br />

Permissible exposure limit (OSHA): 5000 ppm (9000 mg/m 3 ) time-weighted average.<br />

Physical description:<br />

Colourless, odourless gas – compressed and liquefied. Free-flowing liquid condenses <strong>to</strong> form dry ice.<br />

Molecular weight: 44.0 Boiling point: -79°C Vapour pressure: 5900 kPa at 21°C<br />

Specific gravity: 1.65 Melting point:: -79°C (-109°F) Vapour density: 1.5<br />

sublimes Solubility in water: 88ml/100ml at 20°C<br />

Fire hazard: non-flammable gas. Flammability rating (NFPA): 0 = none.<br />

Incompatibilities and reactivities: reacts with strong bases, alkali and several metal dusts eg. magnesium,<br />

aluminium. Reactivity rating (NFPA): no rating.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: frostbite if contact with liquid CO 2 (dry ice).<br />

Skin: frostbite if skin contact with liquid CO 2 (dry ice).<br />

Inhalation: high concentrations cause dizziness, headache, elevated blood pressure, tachycardia; vomiting,<br />

coma, asphyxiation; lack of sufficient oxygen in the air can lead <strong>to</strong> unconsciousness, suffocation.<br />

Ingestion: no information.<br />

Chronic: target organs of high concentrations are respira<strong>to</strong>ry system and cardiovascular system.<br />

Toxicity profile:<br />

LD50 skin: no information.<br />

Tera<strong>to</strong>genicity/ reproductive effects: no information.<br />

LC50 inhalation: no information.<br />

Mutagenicity: no information.<br />

LD50 oral: no information.<br />

Neuro<strong>to</strong>xicity: raised concentrations affect central<br />

Carcinogenicity: no information.<br />

nervous system.<br />

Environment: global-warming gas.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Prevent contact with liquid and dry ice. Do not enter areas where there is risk of exceeding exposure<br />

limit, unless wearing mask with positive pressure airline, or breathing apparatus - refer <strong>to</strong> safety<br />

instructions.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye contact with liquid: irrigate immediately for several minutes, medical attention.<br />

Skin frostbite: rinse with water, medical attention.<br />

Inhalation: fresh air, respira<strong>to</strong>ry support if necessary, medical attention.<br />

176<br />

Sources: Chemical data sheets of NIOSH, IPCS


Carbon bisulphide<br />

Chemical formula: CS 2 CAS number: 75-15-0 UN number: 1131<br />

Synonyms: carbon disulfide, carbon disulphide, carbon bisulfide, carbon sulfide.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic; highly flammable.<br />

Occupational hazard rating (OSHA): no information<br />

Health rating (NFPA): 3<br />

Transportation hazard class (US DOT): Poison 3<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): 1 ppm (3 mg/m 3 ) time-weighted average<br />

Permissible exposure limit (OSHA): 20 ppm time-weighted average<br />

Physical description:<br />

Mobile, volatile, colourless <strong>to</strong> faint-yellow liquid with sweet ether-like odour, although impure grades<br />

have unpleasant odour like rotting radishes.<br />

Molecular weight: 76.1 Boiling point: 46.5°C (116°F) Vapour pressure: 300 mm Hg at 20°C<br />

Specific gravity: 1.26 Melting point: -111°C Vapour density: 2.64<br />

Solubility in water: 0.2 g/100g at 20°C<br />

Fire hazard: Highly flammable - vapours may be ignited by contact with ordinary light bulb or hot<br />

steam pipes. Flash point: -30°C (-22°F). Au<strong>to</strong>ignition temperature: 90°C (194°F). Explosive limits: 1-50<br />

vol% in air. Flammability rating (NFPA): 4. Class 1B Flammable Liquid. Gives off irritating or <strong>to</strong>xic fumes<br />

in a fire.<br />

Incompatibilities and reactivities: strong oxidisers, chemically active metals such as sodium, potassium<br />

and zinc; azides; rust; halogens; amines. Reactivity rating (NFPA): 0.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: irritation, redness, pain.<br />

Skin: can be absorbed through the skin; may cause burning pain, erythema and exfoliation.<br />

Inhalation: irritant <strong>to</strong> nose and throat; may damage nervous system, liver and kidneys, may exacerbate<br />

coronary heart disease; convulsions, coma.<br />

Ingestion: harmful if swallowed, may cause effects similar <strong>to</strong> inhalation.<br />

Chronic: chronic exposure may lead <strong>to</strong> hallucinations, tremors, audi<strong>to</strong>ry disturbances, visual disturbances,<br />

weight loss and blood dyscrasias; may damage liver, CNS; possible effects on fertility and<br />

foetus.<br />

Symp<strong>to</strong>ms: exposure symp<strong>to</strong>ms may include narcotic effects, anxiety, depression and excitability leading<br />

<strong>to</strong> unconsciousness, eye irritation, central nervous system damage, failure of vision, mental disturbances<br />

and paralysis. Acute poisoning symp<strong>to</strong>ms include irritation, nausea, vomiting, convulsions,<br />

unconsciousness, coma, death.<br />

Toxicity profile:<br />

LD50 skin: no information.<br />

LC50 inhalation: rat 25 g/m 3 /2H; mouse 10 g/m 3 /2H.<br />

LCLo inhalation: human 2000 ppm/5M; mammal 2000 ppm/5M.<br />

LD50 oral: rabbit 2550 mg/kg; rat 3188 mg/kg; mouse 2780 mg/kg.<br />

Carcinogenicity: not identified as a carcinogen by IARC, NIOSH, NTP.<br />

Tera<strong>to</strong>genicity/ reproductive effects: reproductive effects in animal tests (inhalation and oral routes).<br />

Mutagenicity: possibly mutagenic.<br />

Neuro<strong>to</strong>xicity: severe neurobehavioural effects, neuro<strong>to</strong>xic <strong>to</strong> humans and animals.<br />

Environment: hazardous <strong>to</strong> wildlife; classed as hazardous substance under US Clean Water Act.<br />

Annex 3: Chemical Safety Data Sheets<br />

177


Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear face shield,<br />

protective gloves, loose-fitting clothing; preferably supplied-air respira<strong>to</strong>r or similar – refer <strong>to</strong> safety<br />

instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: wash immediately for at least 15 minutes, medical attention.<br />

Inhalation: respira<strong>to</strong>ry support, medical attention.<br />

Ingestion: medical attention immediately.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Sources: Chemical data sheets of NIOSH, Fisher, NTP, IPCS, ATSDR<br />

178


Chloropicrin<br />

Chemical formula: CCl 3 NO 2 CAS number: 76-06-2 UN number: 1580<br />

Synonyms: nitrochloroform, nitrotrichloromethane, trichloronitromethane<br />

Hazard classification:<br />

Highly <strong>to</strong>xic gas.<br />

Hazard rating (OSHA): Highly hazardous<br />

Health rating (NFPA): 4<br />

Transportation hazard class (US DOT): 6.1, poison inhalation hazard zone B.<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH, Germany, UK, Philippines, Japan and several other countries):<br />

0.1 ppm (0.7 mg/m 3 ) time-weighted average.<br />

Permissible exposure limit (OSHA): 0.1 ppm (0.7 mg/m 3 ) time-weighted average.<br />

Physical description:<br />

Colourless <strong>to</strong> faint-yellow, oily liquid with intensely irritating tear gas odour.<br />

Molecular weight: 164.4 Boiling point: 112°C (234°F) Vapour pressure: 24 mm 25°C<br />

Specific gravity: 1.67 Freezing point: -64°C (-93°F) Vapour density: 5.67<br />

Solubility in water: 0.2 g/100g<br />

Fire hazard: non-combustible liquid. When heated decomposes violently and emits various <strong>to</strong>xic substances.<br />

Avoid temperatures above 60°C. Flammability rating (NFPA): 0<br />

Incompatibilities and reactivities: reacts violently with aniline, sodium methoxide, propargyl bromide.<br />

Reacts with strong oxidisers. Attacks some forms of plastics, rubber and coatings. Corrosive <strong>to</strong><br />

iron, zinc some other metals. Avoid excess heat. Reactivity rating (NFPA): 3<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: causes severe irritation, lachrymation (tears); injury <strong>to</strong> cornea, possible blindness.<br />

Skin: causes severe irritation, may cause sensitisation by skin contact, skin burns, possible death.<br />

Inhalation: causes irritation of mucous membrane and upper respira<strong>to</strong>ry tract; inhalation may cause<br />

anemia, weak and irregular heart, recurrent asthma attacks, bronchitis, pulmonary oedema; fatal if<br />

inhaled in sufficient concentration; may cause asthmatic attacks due <strong>to</strong> allergic sensitisation.<br />

Ingestion: Harmful if swallowed; causes gastrointestinal irritation with nausea, vomiting and diarrhea;<br />

ingestion may cause death.<br />

Chronic: Chronic inhalation may cause effects similar <strong>to</strong> acute inhalation.<br />

Symp<strong>to</strong>ms: Irritates eyes, skin, respira<strong>to</strong>ry system; lacrimation (discharge of tears); cough, pulmonary<br />

edema; nausea, vomiting.<br />

Toxicity profile:<br />

LD50 skin: rabbit 62 mg/kg.<br />

LC50 inhalation: mouse 66 mg/m3/4H; rat 11.9 ppm/4H; rabbit 800 mg/m3/20M.<br />

LD50 oral: rat 250 mg/kg.<br />

LCLo inhalation: human 2000 mg/m 3 /10M. TCLo inhalation: human 2 mg/m 3<br />

Carcinogenicity (ACGIH): insufficient data, not classifiable as a human carcinogen (group A4).<br />

Tera<strong>to</strong>genicity/ reproductive effects: Rat: decrease in live birth rate, increase in spontaneous abortions.<br />

Mutagenicity: Mutation and chromosomal abnormalities in several test systems; inconclusive in others.<br />

Neuro<strong>to</strong>xicity: No information available.<br />

Environment: highly <strong>to</strong>xic <strong>to</strong> wild animals, fish, plants.<br />

Annex 3: Chemical Safety Data Sheets<br />

179


Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear face shield, loosefitting<br />

clothing; preferably supplied-air respira<strong>to</strong>r or similar – refer <strong>to</strong> safety instructions.<br />

First aid:<br />

Contact medical help immediately.<br />

Eye: irrigate immediately for at least 30 minutes.<br />

Skin: soap wash immediately for at least 15 minutes.<br />

Inhalation: respira<strong>to</strong>ry support<br />

Ingestion: medical attention immediately<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Sources: Chemical data sheets of NIOSH, Fisher, NTP, IPCS, Dow AgroSciences, Great Lakes Chemical Corp.<br />

180


Dazomet<br />

Chemical formula: C 5 H 10 N 2 S 2 CAS number: 533-74-4 UN number: 8027<br />

Synonyms: 3,5-dimethyl-1,3,5-thiadiazine-2-thione; tetrahydro-3,5-dimethyl-1,3,5-thiadiazine-2-<br />

thione; dimethylformocarbothialdine.<br />

Hazard classification:<br />

Toxic.<br />

Health rating (NFPA): 2.<br />

Transportation hazard class: 9. UN hazard class: 6.1.<br />

Exposure limits:<br />

Occupational exposure limit: no information.<br />

Permissible exposure limit (OSHA): no information.<br />

Physical description:<br />

White or colourless crystals, pungent acrid odour. Pesticide formulation is different.<br />

Molecular weight: 162.3 Boiling point: N/A Vapour pressure: 2.77 mm Hg at 20°C<br />

Density: 1.30 g/mL at 20°C Melting point: 104°C Vapour density: 5.6<br />

Solubility water: 100 mg/mL at 18°C<br />

Fire hazard: combustible under specific conditions; on heating decomposes <strong>to</strong> give <strong>to</strong>xic fumes.<br />

Flammability rating (NFPA): 3.<br />

Incompatibilities and reactivities: reacts with moisture <strong>to</strong> produce <strong>to</strong>xic gases such as methyl isothiocyanate,<br />

formaldehyde, hydrogen sulphide. Reactivity rating (NFPA): no information.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: causes severe irritation.<br />

Skin: mild primary skin irritant; moderately <strong>to</strong>xic if enters broken skin.<br />

Inhalation: product decomposes <strong>to</strong> release highly <strong>to</strong>xic gas (methyl isothiocyanate).<br />

Ingestion: <strong>to</strong>xic; may be fatal if swallowed.<br />

Chronic: little information; may damage liver kidney.<br />

Symp<strong>to</strong>ms: wheezing, coughing, shortness of breath, burning in mouth or throat or chest.<br />

Toxicity profile:<br />

LD50 skin: rabbit 7 g/kg.<br />

LC50 inhalation: rat 8.4 mg/L /4H.<br />

LD50 oral: rabbit 120 mg/kg; rat 320 mg/kg; mouse 180 mg/kg.<br />

Carcinogenicity: No information.<br />

Tera<strong>to</strong>genicity/ reproductive effects: N/A.<br />

Mutagenicity: weakly positive in salmonella test.<br />

Neuro<strong>to</strong>xicity: no information.<br />

Environment: decomposes <strong>to</strong> <strong>to</strong>xic gases that are hazardous <strong>to</strong> animals, fish, crustacea and plants.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Avoid contact. Wear chemical goggles/glasses, protective gloves, protective clothing. Supplied air respira<strong>to</strong>r<br />

if dust or fumes. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Eye: irrigate immediately 30 minutes and seek medical attention.<br />

Skin: soap wash immediately for several minutes. If redness & irritation develop, seek medical attention.<br />

Ingestion: rinse mouth, medical attention.<br />

Sources: Chemical data sheets of NTP, IPCS<br />

Annex 3: Chemical Safety Data Sheets<br />

181


1,3-Dichloropropene<br />

Chemical formula: C 3 H 4 Cl 2 CAS number: 542-75-6 UN number: 2047<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Synonyms: 1,3-D; DCP; 3-chloroallyl chloride; 1,3-dichloro-1-propene; 1,3-dichloropropylene.<br />

(Normally mixtures of cis- and trans- isomers.)<br />

Hazard classification:<br />

Highly <strong>to</strong>xic; flammable liquid, possible carcinogen.<br />

Occupational hazard rating (NIOSH): potental occupational carcinogen.<br />

Health rating (NFPA): 3<br />

Transportation hazard class (US DOT): 3<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): 1 ppm (5 mg/m 3 ) time weighted average, skin.<br />

Permissible exposure limit (OSHA): 1 ppm (5 mg/m 3 ) time-weighted average, skin.<br />

Physical description:<br />

Colourless <strong>to</strong> straw-coloured liquid with sharp, sweet, irritating chloroform-like odour.<br />

Molecular weight: 111 Boiling point: 104-108°C (266°F) Vapour pressure: 28 mm Hg at 25°C<br />

Specific gravity: 1.21 Melting point: -84°C (-119°F) Vapour density: 3.83<br />

Solubility in water: 100 mg/mL at 20°C<br />

Fire hazard: flammable Liquid (class IC). Flash point around 27-35°C (80°F). When heated it decomposes<br />

<strong>to</strong> irritating or <strong>to</strong>xic gases. Flammability rating (NFPA): 3<br />

Incompatibilities and reactivities: reacts with oxidising materials, aluminum, magnesium, halogens,<br />

acids, thiocyanates, etc. But stabilisers can be added. Corrodes some alloys. Reactivity rating (NFPA): 0<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: causes eye irritation; may cause chemical conjunctivitis and corneal damage.<br />

Skin: causes skin irritation; can be absorbed through the skin, sufficient exposure can be lethal; in animal<br />

tests significant skin exposure led <strong>to</strong> bleeding from lungs and s<strong>to</strong>mach.<br />

Inhalation: harmful, causes irritation; may lead <strong>to</strong> pulmonary edema, may be fatal.<br />

Ingestion: harmful if swallowed; may produce CNS depression, damage <strong>to</strong> s<strong>to</strong>mach lining, lung congestion,<br />

effects on liver and kidneys.<br />

Chronic: long-term exposure can damage the nose and lung tissues, central nervous system, liver and<br />

kidneys; potential carcinogen.<br />

Symp<strong>to</strong>ms: irritated eyes, skin, nose, throat; lacrimation (tears); coughing, nausea, headache; fatigue.<br />

Toxicity profile:<br />

LC50 inhalation: mouse 4650 mg/m3/2H; rat 500 ppm.<br />

LD50 oral: rat 170 mg/kg; mouse 640 mg/kg.<br />

LD50 skin: rabbit 504 mg/kg; rat 775 mg/kg.<br />

Carcinogenicity classification: IARC: possible human carcinogen (Group 2B carcinogen). NIOSH: potential<br />

occupational carcinogen. NTP: anticipated human carcinogen. ACGIH: A3 animal carcinogen.<br />

Tera<strong>to</strong>genicity/ reproductive effects: insufficient information.<br />

Mutagenicity: positive in some test systems, negative in others.<br />

Neuro<strong>to</strong>xicity: affects central nervous system.<br />

Environment: may reach underground water, listed as Hazardous Substance and Priority Pollutant<br />

under US Clean Water Act; hazardous <strong>to</strong> wildlife.<br />

182


Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear full-face respira<strong>to</strong>r,<br />

safety, protective gloves and clothing <strong>to</strong> prevent skin contact; preferably supplied-air respira<strong>to</strong>r or similar<br />

– refer <strong>to</strong> safety instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical help immediately.<br />

Eye: irrigate immediately, medical attention.<br />

Skin: soap flush immediately, medical attention.<br />

Inhalation: respira<strong>to</strong>ry support, medical attention.<br />

Ingestion: medical attention.<br />

Sources: Chemical data sheets of ATSDR, NIOSH, Fisher, NTP<br />

Annex 3: Chemical Safety Data Sheets<br />

183


Dichlorvos<br />

Chemical formula: (CH 3 O) 2 P(O)OCH=CCl 2 CAS number: 62-73-7 UN number: 3018<br />

Synonyms: DDVP, 2,2-dichlorovinyl dimethyl phosphate, 2,2-dichloroethenyl phosphoric acid<br />

dimethylester<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

184<br />

Hazard classification:<br />

Highly <strong>to</strong>xic; animal carcinogen.<br />

Occupational hazard rating (OSHA): highly <strong>to</strong>xic.<br />

Health rating (NFPA): 3.<br />

Transportation hazard class (US DOT): class 6.1, poison.<br />

Exposure limits:<br />

Occupational exposure limit (Australia, Denmark, France, Germany, India, Netherlands, UK): 0.1 ppm<br />

(1 mg/m 2) time-weighted average, skin.<br />

Permissible exposure limit (OSHA): 0.1 ppm (1 mg/m 2 ) time-weighted average, skin.<br />

Physical description:<br />

Colourless <strong>to</strong> amber liquid with mild, chemical odour. Insecticide formulation may mixed with a dry<br />

carrier.<br />

Molecular weight: 221 Boiling point: 140°C Vapour pressure: 0.012 mm Hg at 20°C<br />

Specific gravity: 1.41 Melting point: 84°C Vapour density: N/A<br />

Solubility in water: 10-50 mg/mL at 20°C<br />

Fire hazard: combustible liquid Class III; flash point of 79.4°C. Flammability rating (NFPA): 1.<br />

Incompatibilities and reactivities: incompatible with strong acids and bases; corrosive <strong>to</strong> iron and<br />

mild steel. Reactivity rating (NFPA): 0.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: harmful.<br />

Skin: harmful, readily abosorbed through skin; inhibits cholinesterase.<br />

Inhalation: harmful, main effects are on the nervous system.<br />

Ingestion: may cause nausea, vomiting, restlessness, sweating and muscle tremors; large doses may<br />

cause coma, inability <strong>to</strong> breathe, death; main effects are on the nervous system.<br />

Chronic symp<strong>to</strong>ms: include weakness, headache, nausea, vomiting, abdominal cramps, blurred<br />

vision, salivation, dizziness, muscular twitching, tightness in chest, heart irregularities, fever, coma,<br />

cyanosis, pulmonary oedema; inhibits cholinesterase.<br />

Acute symp<strong>to</strong>ms: as for chronic symp<strong>to</strong>ms, also lachrymation (tears), convulsions, unconsciousness,<br />

death in extreme cases.<br />

Toxicity profile:<br />

LD50 skin: rabbit 107 mg/kg.<br />

LC50 inhalation: rat 15 mg/m 3 /4H, mouse 13 mg/m 3 /4H.<br />

LD50 oral: rabbit 10 mg/kg; rat 25 mg/kg, mouse 61 mg/kg.<br />

Carcinogenicity: IARC: class 2B, sufficient evidence of carcinogenicity in animal tests and inadequate<br />

evidence in humans; NTP: some evidence of carcinogenicity in animal tests. DHHS: reasonably anticipated<br />

<strong>to</strong> be a carcinogen. California: Proposition 65 carcinogen list.<br />

Tera<strong>to</strong>genicity/ reproductive effects: EU: possible fertility and reproductive effects.<br />

Mutagenicity: possible mutagen; positive results in some test systems, negative in others.<br />

Neuro<strong>to</strong>xicity: affects nervous system.<br />

Environment: hazardous <strong>to</strong> wildlife.


Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear face shield, protective<br />

gloves, protective clothing <strong>to</strong> prevent skin contact - refer <strong>to</strong> safety instructions. Special disposal<br />

for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately, medical assistance.<br />

Skin: soap wash immediately, medical assistance.<br />

Inhalation: breathe fresh air, medical assistance.<br />

Ingestion: medical attention immediately. May need atropine antidote for cholinesterase inhibi<strong>to</strong>r.<br />

Sources: Chemical data sheets of NIOSH, NTP, ATSDR, Sigma-Aldrich<br />

Annex 3: Chemical Safety Data Sheets<br />

185


Ethyl formate<br />

Chemical formula: CH 3 CH 2 OCHO CAS number: 109-94-4 UN number: 1190<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Synonyms: ethyl ester of formic acid, ethyl methanoate.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic, extremely flammable.<br />

Occupational hazard rating (OSHA): no information<br />

Health rating (NFPA): 2<br />

Transportation hazard class (US DOT): 3<br />

Exposure limits:<br />

Occupational exposure limit (US NIOSH and several other countries): 100 ppm (300 mg/m 3 ) timeweighted<br />

average.<br />

Permissible exposure limit (OSHA): 100 ppm (300 mg/m 3 ) time-weighted average<br />

Physical description:<br />

Water-white liquid with pleasant, aromatic, fruit odour.<br />

Molecular weight: 74.1 Boiling point: 54°C (130°F) Vapour pressure: 194 mm Hg at 20°C<br />

Specific gravity: 0.92 Freezing point: -80°C (-113°F) Vapour density: 2.56<br />

Solubility in water: 9 g/100mL at 18°C<br />

Fire hazard: extremely flammable liquid and vapour, flash point -20°C (-4°F). Flammability rating<br />

(NFPA, Baker): 3 = severe. Class IB Flammable Liquid.<br />

Incompatibilities and reactivities: incompatible with heat, ignition sources, nitrates, strong oxidisers,<br />

strong acids, strong bases. Decomposes slowly in water <strong>to</strong> form ethyl alcohol and formic acid.<br />

Reactivity rating (NFPA): 0. Reactivity rating (Baker): 1 = slight.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: may cause severe irritation, redness, pain and possible burns.<br />

Skin: may cause severe irritation and possible burns, especially if skin is wet or moist.<br />

Inhalation: may cause severe irritation of respira<strong>to</strong>ry tract with possible burns; vapours may cause<br />

dizziness or suffocation; high concentrations can produce central nervous system depression, narcotic<br />

effects, drowsiness, unconsciousness.<br />

Ingestion: harmful if swallowed, may cause severe gastrointestinal tract irritation with nausea, vomiting<br />

and possible burns; may affect central nervous system<br />

Chronic: may damage central nervous system.<br />

Toxicity profile:<br />

LD50 skin: rabbit >20 mL/kg.<br />

Tera<strong>to</strong>genicity/ reproductive effects: no information.<br />

LC50 inhalation: no information.<br />

Mutagenicity: no information.<br />

LD50 oral: rabbit 2075 mg/kg; rat 1850 mg/kg. Neuro<strong>to</strong>xicity: affects nervous system.<br />

Carcinogenicity: no information.<br />

Environment: hazardous <strong>to</strong> wildlife.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear face shield, protective<br />

gloves, protective clothing <strong>to</strong> prevent skin contact – refer <strong>to</strong> safety instructions. Special disposal<br />

for waste chemical and packaging.<br />

186


First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: soap wash immediately for at least 15 minutes, medical attention.<br />

Inhalation: fresh air, respira<strong>to</strong>ry support, medical attention.<br />

Ingestion: rinse mouth, drink water, medical attention immediately.<br />

Sources: Chemical data sheets of NIOSH, Fisher, Baker<br />

Annex 3: Chemical Safety Data Sheets<br />

187


Ethylene oxide<br />

Chemical formula: C 2 H 4 O CAS number: 75-21-8 UN number: 1040<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

188<br />

Synonyms: 1,2-epoxy ethane, oxirane, dimethylene oxide.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic; flammable; reproductive hazard, suspected occupational carcinogen.<br />

Occupational hazard rating (OSHA): highly hazardous, cancer hazard, reproductive hazard.<br />

Health rating (NFPA): 3<br />

Transportation hazard class (UN): 2.3 Poison gas.<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): less than 0.1 ppm (< 0.18 mg/m 3 ) time-weighted average Ca; 5<br />

ppm (9 mg/m 3 ) for 10 minutes/day.<br />

Permissible exposure limit (OSHA): 1 ppm time-weighted average.<br />

Physical description:<br />

Colourless gas or liquid with ether-like odour.<br />

Molecular weight: 44.1 Boiling point: 11°C (51°F) Vapour pressure: 146 kPa 20°C<br />

Specific gravity: 0.82 Melting point: -111°C (-170°F) Vapour density: 1.5<br />

Solubility in water: miscible<br />

Fire hazard: flammable gas; gas/air mixtures can be explosive; explosive limits: 3-100 vol% in air. Flash<br />

point -20°C. Flammability rating (NFPA): 4. Flammable Gas Class IA Flammable Liquid.<br />

Incompatibilities and reactivities: strong acids, alkalis and oxidisers; chlorides of iron, aluminium<br />

and tin; oxides of iron and aluminum; water and a number of other compounds. Reactivity rating<br />

(NFPA): 3.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: symp<strong>to</strong>ms include irritation, pain, blurred vision; contact may lead <strong>to</strong> development of cataract.<br />

Skin: symp<strong>to</strong>ms include redness, dry skin, burning sensation, pain, blisters; may be absorbed through<br />

moist skin. Water solutions may cause skin burns. Contact with liquid can cause frostbite.<br />

Inhalation: symp<strong>to</strong>ms include cough, dizziness, drowsiness, headache, nausea, sore throat, vomiting,<br />

weakness; high concentrations cause lung edema; symp<strong>to</strong>ms may be delayed after exposure.<br />

Ingestion: harmful if swallowed; may cause severe irritation, vomiting, collapse, coma.<br />

Chronic exposure: repeated or prolonged contact may affect nervous system, kidney, liver; occupational<br />

carcinogen (IPCS); may cause heritable genetic damage (IPCS); reproductive disorders.<br />

Symp<strong>to</strong>ms: Irritates<br />

Toxicity profile:<br />

LD50 skin: no information.<br />

LC50 inhalation: rat 800 ppm/4H; mouse 836 ppm/4H.<br />

LD50 oral: rat 72 mg/kg.<br />

Carcinogenicity: IARC: 2A, probably carcinogenic <strong>to</strong> humans (limited evidence in humans, sufficient<br />

evidence in animal tests). NTP: 2A, reasonably anticipated <strong>to</strong> be a human carcinogen. OSHA: cancer<br />

hazard.<br />

Tera<strong>to</strong>genicity/ reproductive effects: reproductive disorders, may affect foetus; OSHA: reproductive hazard.<br />

Mutagenicity: mutagenic; ICPS: may cause heritable genetic damage.<br />

Neuro<strong>to</strong>xicity: may affect nervous system.<br />

Environment: harmful <strong>to</strong> wildlife, aquatic organisms.


Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear face shield, protective<br />

gloves, protective clothing <strong>to</strong> prevent skin contact; preferably supplied-air respira<strong>to</strong>r or similar –<br />

refer <strong>to</strong> safety instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: soap wash immediately for at least 15 minutes, medical attention.<br />

Inhalation: medical attention, respira<strong>to</strong>ry support.<br />

Ingestion: drink water, immediate medical attention.<br />

Sources: Chemical data sheets of Fisher, NTP, IPCS<br />

Annex 3: Chemical Safety Data Sheets<br />

189


Hydrogen cyanide<br />

Chemical formula: HCN CAS number: 74-90-8 UN number: 1051<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Synonyms: hydrocyanic acid, formonitrile, prussic acid.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic; flammable.<br />

Health rating (NFPA): 4<br />

Transportation hazard class (US DOT): 6.1, poison hazard, flammable<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): 4.7 ppm (5 mg/m 3 ) 10 minute period, skin.<br />

Permissible exposure limit (OSHA): 10 ppm (11 mg/m 3 ) time-weighted average, skin.<br />

Physical description:<br />

Colourless or pale blue liquid or gas with a bitter, almond-like odour.<br />

Molecular weight: 27.0 Boiling point: 20°C (78°F) Vapour pressure: 750 mm Hg<br />

25°C<br />

Specific gravity: 0.69 Melting point: -13°C (7°F) Vapour density: 0.95<br />

Solubility in water: miscible<br />

Fire hazard: flash point around -18°C (0°F). Explosive limits: 6-41 vol% in air. Flammability rating<br />

(NFPA): 4. Class IA Flammable Liquid Flammable Gas.<br />

Incompatibilities and reactivities: amines, oxidisers, acids, sodium hydroxide, calcium hydroxide,<br />

sodium carbonate, water, caustics, ammonia. Reactivity rating (NFPA): 2.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: can be absorbed through eyes; red eyes; optic nerve damage; high exposures can be fatal.<br />

Skin: can be adsorbed through skin; dissiness, nausea, altered respiration, drowsiness, may be fatal.<br />

Inhalation: can affect central nervous system, cardiovascular system, thyroid, blood pressure; high<br />

exposure can cause unconsciousness, respira<strong>to</strong>ry arrest, death.<br />

Ingestion: pink or blue skin colour, symp<strong>to</strong>ms as below.<br />

Chronic: symp<strong>to</strong>ms as below.<br />

Symp<strong>to</strong>ms: asphyxia; weakness, headache, confusion; nausea, vomiting; increased rate and depth of<br />

respiration or respiration slow and gasping; changes in blood and thyroid; symp<strong>to</strong>ms of cyanide poisoning.<br />

Toxicity profile:<br />

LD50 skin: rabbit 6.9 mg/kg<br />

Tera<strong>to</strong>genicity/ reproductive effects: no informa<br />

LD50 eye: rabbit 1.1 mg/kg<br />

tion.<br />

LC50 inhalation: rat 63 ppm / 40 min.<br />

Carcinogenicity: not listed as carcinogen.<br />

Mutagenicity: positive in one test system, negative<br />

in others.<br />

Neuro<strong>to</strong>xicity: can affect nervous system.<br />

Environment: highly <strong>to</strong>xic <strong>to</strong> wildlife, aquatic life.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear self-contained<br />

breathing apparatus and full protective gear – refer <strong>to</strong> safety instructions. Special disposal for waste<br />

chemical and packaging.<br />

190


First aid:<br />

Contact medical assistance immediately. First aid treatment for cyanide poisoning.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: remove contaminated clothes, soap wash immediately for at least 15 minutes, medical attention.<br />

Inhalation: fresh air, medical attention, respira<strong>to</strong>ry support.<br />

Ingestion: medical attention immediately.<br />

Sources: Chemical data sheets of NIOSH, IPCS, DuPont<br />

Annex 3: Chemical Safety Data Sheets<br />

191


Malathion<br />

Chemical formula: C 10 H 19 O 6 PS 2 CAS number: 121-75-5 UN number: 3082<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

192<br />

Synonyms: S-[1,2-bis(ethoxycarbonyl) ethyl]O,O-dimethyl-phosphorodithioate, diethyl<br />

(dimethoxyphosphinothioylthio) succinate.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic.<br />

Occupational hazard rating (OSHA): no information.<br />

Health rating (NFPA): no information.<br />

Transportation hazard class (US DOT): 6.1. (UN): 9.<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): 10 mg/m 3 time-weighted average, skin.<br />

Permissible exposure limit (OSHA): 10 mg/m 3 time-weighted average, skin, <strong>to</strong>tal dust.<br />

Physical description:<br />

Deep-brown <strong>to</strong> yellow, clear liquid with garlic-like odour; solid below 37°F.<br />

Molecular weight: 330.4 Boiling point: 156°C (140°F) Vapour pressure: 0.00004 mm Hg at 20°C<br />

Specific gravity: 1.21 Mellting point: 3°C (37°F) Vapour density: 11.4<br />

Solubility in water: 100 mg/mL at 22°C<br />

Fire hazard: Classified as Class IIIB Combustible Liquid, but may be difficult <strong>to</strong> ignite. Gives off irritating<br />

or <strong>to</strong>xic fumes in a fire. Flammability rating (NFPA): no information.<br />

Incompatibilities and reactivities: strong oxidisers, magnesium, alkaline materials; corrosive <strong>to</strong> metals;<br />

attacks some plastics, rubber and coatings. Starts <strong>to</strong> decompose at 49°C. Reactivity rating (NFPA):<br />

no information.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: irritation, lachrymation (tears), blurred vision.<br />

Skin: readily absorbed through skin; irritant; symp<strong>to</strong>ms below.<br />

Inhalation: symp<strong>to</strong>ms include dizziness, pupillary constriction, muscle cramp, excessive salivation,<br />

sweating, laboured breathing, unconsciousness; symp<strong>to</strong>ms may be delayed. Cholinesterase inhibi<strong>to</strong>r;<br />

acute exposure can affect the nervous system, may result in convulsions, respira<strong>to</strong>ry failure, death.<br />

Ingestion: harmful if swallowed; symp<strong>to</strong>ms include abdominal cramps, diarrhea, nausea, vomiting<br />

and symp<strong>to</strong>ms similar <strong>to</strong> inhalation exposure.<br />

Chronic: cholinesterase inhibi<strong>to</strong>r; may affect respira<strong>to</strong>ry system, liver, blood cholinesterase, central<br />

nervous system, cardiovascular system, gastrointestinal tract.<br />

Symp<strong>to</strong>ms: irritation in eyes, skin; miosis, aching eyes, blurred vision, lacrimation (discharge of tears);<br />

salivation, anorexia, nausea, vomiting, abdominal cramps, diarrhea, giddiness, confusion, ataxia;<br />

headache; chest tightness, wheezing, laryngeal spasm.<br />

Toxicity profile:<br />

LD50 skin: rabbit 4100 mg/kg; mouse 2330 mg/kg.<br />

LCLo inhalation: cat 10 mg/m3/4H.<br />

LD50 oral: rabbit 250 mg/kg, rat 290 mg/kg; mouse 190 mg/kg.<br />

LCLo oral: women 246 mg/kg.<br />

Carcinogenicity: not identified as carcinogenic in animal tests.<br />

Tera<strong>to</strong>genicity/ reproductive effects: reproductive effects in some animal tests; possible impaired fertility.<br />

Mutagenicity: some chromosome aberrations in tests.<br />

Neuro<strong>to</strong>xicity: can affect nervous system.<br />

Environment: hazardous <strong>to</strong> wildlife; <strong>to</strong>xic <strong>to</strong> aquatic organisms.


Protective measures:<br />

Follow all safety instructions precisely.<br />

Prevent generation of mists or airborne particles. Do not breathe or inhale fumes, prevent contact with<br />

skin, eyes and clothing. Wear safety face shield, chemical resistant gloves, protective clothing <strong>to</strong> prevent<br />

skin contact; preferably supplied-air respira<strong>to</strong>r or similar – refer <strong>to</strong> safety instructions.} Special disposal<br />

for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: soap wash immediately for at least 15 minutes, medical attention.<br />

Inhalation: fresh air, medical attention.<br />

Ingestion: rinse mouth, medical attention.<br />

Sources: Chemical data sheets of NIOSH, NTP, IPCS<br />

Annex 3: Chemical Safety Data Sheets<br />

193


Metam sodium<br />

CAS number: 137-42-8 UN number: 3082<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

194<br />

Synonyms: sodium methyldithiocarbamate. Decomposes <strong>to</strong> form methyl isothiocyanate.<br />

Hazard classification:<br />

Toxic.<br />

Health rating (NFPA): 2.<br />

Transportation hazard class (US DOT): class 9, <strong>to</strong>xic.<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): no information.<br />

Permissible exposure limit (OSHA): no information.<br />

Physical description:<br />

Light yellow liquid with strong sulphur-like odour.<br />

Molecular weight: N/A Boiling point: 112°C (234°F) Vapour pressure: 24 mm Hg at 25°C<br />

Specific gravity: 1.16-1.18 Melting point: 0°C Vapour density: no information.<br />

Solubility in water: miscible.<br />

Fire hazard: not classed as flammable; may support combustion in a fire,decompose <strong>to</strong> give <strong>to</strong>xic or<br />

flammable materials. Flammability rating (NFPA): 0.<br />

Incompatibilities and reactivities: corrosive <strong>to</strong> aluminum, brass, copper, zinc. If acidified, may form<br />

<strong>to</strong>xic hydrogen sulphide. Decomposes <strong>to</strong> form <strong>to</strong>xic gases. Reactivity rating (NFPA): 0.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: irritation, blurred vision.<br />

Skin: severely irritant, corrosive, may be fatal if absorbed through skin.<br />

Inhalation: decomposes <strong>to</strong> release <strong>to</strong>xic gases; symp<strong>to</strong>ms below, high exposure may be fatal.<br />

Ingestion: Harmful if swallowed.<br />

Chronic: symp<strong>to</strong>ms below, also conjunctivitis, weight loss, weakness, blurred vision.<br />

Symp<strong>to</strong>ms: salivation, sweating, fatigue, dizziness, nausea, breathing difficulties.<br />

Toxicity profile:<br />

LD50 skin MITC: rabbit 33-202 mg/kg.<br />

Tera<strong>to</strong>genicity/reproductive effects: some effects in<br />

LC50 inhalation MITC: rat 1.9 mg/L/1H.<br />

lab tests.<br />

LD50 oral MITC: rat 55-220 mg/kg.<br />

Mutagenicity: limited evidence, inconclusive.<br />

Carcinogenicity: some effects in lab tests. Neuro<strong>to</strong>xicity: effects from gaseous products.<br />

Environment: <strong>to</strong>xic <strong>to</strong> fish and wildlife.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear safety face shield,<br />

protective gloves and clothing <strong>to</strong> prevent skin contact; preferably supplied-air respira<strong>to</strong>r or<br />

similar – refer <strong>to</strong> safety instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: wash with plenty of water for at least 15 minutes, medical attention.<br />

Inhalation: respira<strong>to</strong>ry support, medical attention.<br />

Ingestion: drink water, medical attention.<br />

Sources: Chemical data sheets of NTP, Amvac Chemical Corp.


<strong>Methyl</strong> iodide<br />

Chemical formula: CH 3 I CAS number: 74-88-4 UN number: 2644<br />

Synonyms: iodomethane, monoiodomethane, halon 10001<br />

Hazard classification:<br />

Highly <strong>to</strong>xic, suspected carcinogen.<br />

Occupational hazard rating (OSHA): no information<br />

Health rating (NFPA): 3.<br />

Transportation hazard class (US DOT): hazard class 6.1, poison hazard zone B.<br />

Exposure limits:<br />

Occupational exposure limit (USA NIOSH, Australia, Netherlands): 2 ppm (10 mg/m 3 ) time-weighted<br />

average. Denmark, Sweden: 1 ppm (5.6 mg/m 3 ) time-weighted average.<br />

PEL (OSHA): 5 ppm (28 mg/m 3 ) time-weighted average, skin.<br />

Physical description:<br />

Colourless, transparent liquid with sweetish odour.<br />

Molecular weight: 142 Boiling point: 42°C (108°F) Vapour pressure: 400 mm Hg at 25°C<br />

Specific gravity: 2.28 Freezing point: -66°C (- 88°F) Vapour density: 4.89<br />

Solubility in water: 14 g/100g at 20°C<br />

Fire hazard: noncombustible liquid. Flammability rating (NFPA): 1<br />

Incompatibilities and reactivities: incompatible with strong oxidisers. Reactivity rating (NFPA): 0.<br />

Reactivity rating (Baker): 1 = slight.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: irritant; causes redness and pain; if splashed in eye causes conjunctivitis.<br />

Skin: irritant; may cause irritation with pain, redness and stinging. Can be absorbed through the skin;<br />

high exposure can be fatal.<br />

Inhalation: causes respira<strong>to</strong>ry tract irritation; may cause damage <strong>to</strong> lungs, spleen and liver. Initial<br />

symp<strong>to</strong>ms include lethargy, drowsiness, slurred speech, ataxia, lack of muscular coordination, visual<br />

disturbances. May progress <strong>to</strong> convulsions, coma and death. Other symp<strong>to</strong>ms include giddiness, diarrhea,<br />

sleepiness, irritability, vomiting, pallor, muscular twitching; effects on liver and kidney.<br />

Ingestion: harmful if swallowed; aspiration hazard; may cause similar effects <strong>to</strong> those for inhalation.<br />

Chronic: may affect central nervous system and may cause effects similar <strong>to</strong> those of acute inhalation.<br />

Toxicity profile:<br />

LDLo skin: rat 800 mg/kg.<br />

LC50 inhalation: rat 1300 mg/m 3/4H.<br />

LCLo inhalation: rat 3790 ppm/15M.<br />

LDLo oral: rat 76 mg/kg.<br />

Carcinogenicity (NIOSH): sufficient evidence of carcinogenicity in animals, potential occupational carcinogen.<br />

IARC: limited evidence in animals (group 3). TDLo subcutaneous: rat 50 mg/kg.<br />

Tera<strong>to</strong>genicity/ reproductive effects: No information.<br />

Mutagenicity: positive in some tests, possible mutagen.<br />

Neuro<strong>to</strong>xicity: may damage central nervous system.<br />

Environment: hazardous <strong>to</strong> wildlife.<br />

Annex 3: Chemical Safety Data Sheets<br />

195


Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear face shield, protective<br />

gloves and loose clothing <strong>to</strong> prevent skin contact; full-face chemical cartridge respira<strong>to</strong>r or similar<br />

– refer <strong>to</strong> safety instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical help immediately.<br />

Eye: irrigate immediately for at least 20 minutes and get medical assistance.<br />

Skin: remove contaminated clothing, soap wash immediately and get medical assistance.<br />

Inhalation: take deep breaths of fresh air and contact medical assistance.<br />

Ingestion: get medical aid.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Sources: Chemical data sheets of NIOSH, Fisher, NTP, IPCS, Baker.<br />

196


Nitrogen<br />

Chemical formula: N 2 CAS number: 7727-37-9 UN number: 1066<br />

Synonyms: gaseous nitrogen, azote. The information below relates <strong>to</strong> nitrogen gas.<br />

Hazard classification:<br />

Inert gas, normal component of air. Hazardous in higher concentrations due <strong>to</strong> lack of oxygen.<br />

Occupational hazard rating (OSHA): not established.<br />

Health rating (NFPA): 3 for liquid nitrogen; 1 for nitrogen gas.<br />

Transportation hazard class (UN): 2.2, nonflammable gas.<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): not established.<br />

Permissible exposure limit (OSHA): not established.<br />

Physical description:<br />

Colourless, odourless, flavourless compressed gas.<br />

Molecular weight: 28 Boiling point: -196°C (-321°F) Vapour pressure: -<br />

Specific gravity: 0.97 Melting point: -210°C (-345°F) Vapour density: 0.97<br />

Solubility in water: very slight<br />

Fire hazard: not combustible. Flammability rating (NFPA): 0.<br />

Incompatibilities and reactivities: inert gas, in presence of sparks reacts with oxygen and hydrogen;<br />

combines with lithium. Non corrosive. Reactivity rating (NFPA): 0.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: effects only at high concentrations due <strong>to</strong> absence of oxygen.<br />

Skin: not absorbed via skin.<br />

Inhalation: high concentrations of nitrogen in the air cause a deficiency of oxygen, with the risk of<br />

dizziness, weakness, unconsciousness, suffocation due <strong>to</strong> lack of oxygen.<br />

Ingestion: no effect at normal exposures.<br />

Chronic: nitrogen is non-<strong>to</strong>xic, but in confined spaces it can displace the oxygen necessary for life.<br />

Symp<strong>to</strong>ms: effects due <strong>to</strong> lack of oxygen.<br />

Toxicity profile:<br />

LD50 skin: N/A<br />

Tera<strong>to</strong>genicity/reproductive effects: none known.<br />

LC50 inhalation: N/A<br />

Mutagenicity: not mutagenic.<br />

LD50 oral: N/A<br />

Neuro<strong>to</strong>xicity: not inherently neuro<strong>to</strong>xic.<br />

Carcinogenicity: not a listed carcinogen.<br />

Environment: not hazardous.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Check oxygen concentration before entering area. Wear breathing apparatus if treatment area needs<br />

<strong>to</strong> be entered while oxygen concentration remains low – refer <strong>to</strong> safety instructions.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Inhalation: fresh air, respira<strong>to</strong>ry support if necessary, medical attention.<br />

Sources: Chemical data sheets of IPCS, AGA Gas<br />

Annex 3: Chemical Safety Data Sheets<br />

197


Phosphine<br />

Chemical formula: PH 3 CAS number: 7803-51-2 UN number: 2199<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Synonyms: hydrogen phosphide, phosphorated hydrogen, phosphorus hydride, phosphorus trihydride.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic gas. Flammable.<br />

Health rating (NFPA): 4.<br />

Transportation hazard class (US DOT): 2, poison gas, flammable gas.<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): 0.3 ppm (0.4 mg/m 3 ) time-weighted average<br />

Permissible exposure limit (OSHA): 0.3 ppm (0.4 mg/m 3 ) time-weighted average<br />

Physical description:<br />

Colourless gas with fish- or garlic-like odour. Shipped as a liquefied compressed gas, or more commonly<br />

generated on-site from aluminium phosphide or magnesium phosphide.<br />

Molecular weight: 34.0 Boiling point: -88°C (-126°F) Vapour pressure: >1 atm at 20°C<br />

Specific gravity: 0.75 Freezing point: -134°C (-209°F) Vapour density: 1.17 at BP<br />

Solubility in water: 0.04 g/100g at<br />

20°C<br />

Fire hazard: may ignite spontaneously on contact with air. Flammability rating (NFPA): 4, Flammable<br />

Gas.<br />

Incompatibilities and reactivities: air, oxidisers, chlorine, acids, moisture, halogenated hydrocarbons,<br />

copper. Hazardous decomposition products. Reactivity rating (NFPA): 2.<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: contact with liquid (compressed gas) can cause frostbite.<br />

Skin: contact with liquid can cause frostbite.<br />

Inhalation: acute effects include headache, dizziness, neurological effects; vomiting, diarrhea, gastrointestinal<br />

effects; shortness of breath, pulmonary edema, cardiac arrest, respira<strong>to</strong>ry abnormalities;<br />

lung and liver congestion; in extreme cases coma and death.<br />

Ingestion: harmful.<br />

Chronic: chronic exposure is reported <strong>to</strong> cause anorexia, anaemia, pulmonary edema.<br />

Symp<strong>to</strong>ms: nausea, vomiting, abdominal pain, diarrhea, thirst, chest tightness, dyspnea (breathing difficulty),<br />

muscle pain, chills; stupor; pulmonary edema; liquid: frostbite. Target organs: respira<strong>to</strong>ry system.<br />

Toxicity profile:<br />

LD50 skin: no information.<br />

LC50 inhalation: rat 11 ppm/4H.<br />

LCLo inhalation: human 1000 ppm/5M; rabbit 2500 ppm/20M; mouse 380 mg/m3/2H.<br />

LD50 oral: no information.<br />

Carcinogenicity: no information.<br />

Tera<strong>to</strong>genicity/ reproductive effects: no information.<br />

Mutagenicity: increase in chromosome aberrations in human study; mutagenic in Drosophila test.<br />

Neuro<strong>to</strong>xicity: affects central nervous system.<br />

Environment: hazardous <strong>to</strong> wildlife.<br />

198


Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear safety face shield,<br />

protective gloves, protective clothing <strong>to</strong> prevent skin contact; preferably supplied-air respira<strong>to</strong>r or<br />

similar – refer <strong>to</strong> safety instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: cold wash immediately for at least 15 minutes, medical attention.<br />

Inhalation: fresh air, medical attention.<br />

Sources: Chemical data sheets of NIOSH, NTP, OSHA<br />

Annex 3: Chemical Safety Data Sheets<br />

199


Sulphuryl fluoride<br />

Chemical formula: SO 2 F 2 CAS number: 2699-79-8 UN number: -<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Synonyms: sulfuryl fluoride, sulfur difluoride dioxide.<br />

Hazard classification:<br />

Highly <strong>to</strong>xic gas.<br />

Occupational hazard rating (OSHA): hazardous chemical<br />

Health rating (NFPA): 3<br />

Transportation hazard class (US DOT): no information<br />

Exposure limits:<br />

Occupational exposure limit (NIOSH): 5 ppm (20 mg/m 3 ) time-weighted average<br />

Permissible exposure limit (OSHA): 5 ppm (20 mg/m 3 ) time-weighted average<br />

Physical description:<br />

Colourless, odourless gas; shipped as liquefied compressed gas.<br />

Molecular weight: 102.1 Boiling point: -55°C (-68°F) Vapour pressure: 1.52 atmos at 20°C<br />

Specific gravity: 1.8 at -80ºC Freezing point: -137°C (-212°F) Vapour density: 14.3g at 20ºC<br />

Solubility in water: practically insoluble<br />

Fire hazard: non-flammable gas. Flammability rating (NFPA): 0<br />

Incompatibilities and reactivities: strong bases. Reactivity rating (NFPA): 1<br />

Potential health effects and symp<strong>to</strong>ms:<br />

Eyes: contact with liquid can cause frostbite.<br />

Skin: contact with liquid can cause frostbite.<br />

Inhalation: target organs are respira<strong>to</strong>ry system, central nervous system, kidneys.<br />

Ingestion: harmful if swallowed.<br />

Chronic: no information.<br />

Symp<strong>to</strong>ms: include conjunctivitis, rhinitis, pharyngitis, paresthesia; Liquid: frostbite. In animals: narcosis,<br />

tremor, convulsions, pulmonary edema, kidney injury.<br />

Toxicity profile:<br />

LD50 skin: no information.<br />

Tera<strong>to</strong>genicity/reproductive effects: no information.<br />

LC50 inhalation: rat 991 ppm/4H<br />

Mutagenicity: negative<br />

LD50 oral: rat 100 mg/kg<br />

Neuro<strong>to</strong>xicity: central nervous system depressant<br />

Carcinogenicity: not reported carcinogenic Environment: hazardous <strong>to</strong> wildlife.<br />

Protective measures:<br />

Follow all safety instructions precisely.<br />

Do not breathe or inhale fumes, prevent contact with skin, eyes and clothing. Wear safety face shield,<br />

protective gloves, protective clothing <strong>to</strong> prevent skin contact; preferably supplied-air respira<strong>to</strong>r or<br />

similar – refer <strong>to</strong> safety instructions. Special disposal for waste chemical and packaging.<br />

First aid:<br />

Contact medical assistance immediately.<br />

Eye: irrigate immediately for at least 15 minutes, medical attention.<br />

Skin: wash immediately for min. 15 minutes, medical attention.<br />

Inhalation: fresh air, respira<strong>to</strong>ry support, medical attention.<br />

Ingestion: medical attention.<br />

200<br />

Sources: Chemical data sheets of NIOSH, Dow Agrosciences


Annex 4<br />

Steps for Identifying<br />

Appropriate <strong>Alternatives</strong><br />

This Annex provides tables <strong>to</strong> help methyl bromide users <strong>to</strong> identify suitable alternatives. Refer<br />

<strong>to</strong> Section 1, 2 or 5 for further discussion of the steps below.<br />

Steps for each specific crop/use<br />

Collect background information about available alternatives:<br />

1. List alternatives used in various countries – complete Table A.<br />

2. List suppliers of alternative techniques in your region – complete Table B.<br />

3. List sources of relevant expertise in your region – complete Table C.<br />

Identify suitable pest control methods:<br />

1. List soil-borne pests that need <strong>to</strong> be controlled – complete Table D.<br />

2. For each pest, list effective pest control methods – complete column 2 of Table E.<br />

3. List combinations of techniques that would control all the pests – complete column 3 of<br />

Table E.<br />

4. For each combination, identify technical and other advantages and disadvantages –<br />

complete Table F.<br />

5. Select the best combination – compare and consider the information in Table F.<br />

Table A<br />

<strong>Alternatives</strong> used in various countries<br />

To complete this table, refer <strong>to</strong> Sections 4.1 through 4.7 or Sections 6.1 through 6.7, MBTOC<br />

report 1997 and other sources of information in Annexes 5,6 and 7.<br />

Name of crop/use___________________________________________________________________<br />

Protected or open-field? _____________________________________________________________<br />

Examples of alternatives used elsewhere<br />

__________________________________________<br />

__________________________________________<br />

__________________________________________<br />

__________________________________________<br />

Country and climate<br />

_____________________________________<br />

_____________________________________<br />

_____________________________________<br />

_____________________________________<br />

Annex 4: Steps for Identifying Appropriate <strong>Alternatives</strong><br />

__________________________________________<br />

_____________________________________<br />

201


Table B Companies supplying alternative products or services<br />

To complete this table refer <strong>to</strong> the end of each section (4.1 through 4.7 or 6.1 through 6.7) <strong>to</strong><br />

read the tables of companies. You could also carry out a survey locally. Remember <strong>to</strong> include<br />

non-chemical options.<br />

Company Services & products Pest(s) controlled<br />

________________________ __________________________ ______________________________<br />

________________________<br />

__________________________ ______________________________<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

________________________<br />

________________________<br />

________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

Table C Sources of relevant expertise<br />

The aim is <strong>to</strong> identify extension personnel, agricultural researchers, farmers, etc. who have at<br />

least several years of experience of working successfully with alternatives. You may identify some<br />

relevant experts by looking at the reference lists in Annex 7, in the tables of “suppliers” in<br />

Sections 4.1 through 4.7 and in Sections 6.1 through 6.7, and in UNEP’s Inven<strong>to</strong>ry of Technical<br />

and Institutional Resources for Promoting <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>.<br />

Specialist Areas of expertise Contact information<br />

________________________ __________________________ ______________________________<br />

________________________<br />

________________________<br />

________________________<br />

________________________<br />

________________________<br />

________________________<br />

________________________<br />

________________________<br />

________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________<br />

202<br />

________________________<br />

________________________<br />

__________________________ ______________________________<br />

__________________________ ______________________________


Table D Soil-borne pests requiring control<br />

Complete this table for each specific crop/use in question.<br />

Pest group<br />

List key pest species that need <strong>to</strong> be controlled<br />

Nema<strong>to</strong>des<br />

________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

Pathogenic fungi<br />

___________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

Weeds, weed seeds ___________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

Soil-borne insects ____________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

Others ______________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

Annex 4: Steps for Identifying Appropriate <strong>Alternatives</strong><br />

203


Table E Effective pest control methods for each pest<br />

Step 1:<br />

Step 2:<br />

Complete column 1 by taking the pest names from Table D and writing one in<br />

each cell. Add more cells if necessary.<br />

Complete column 2, using information from experts (Table C), technical literature,<br />

experiences in other countries (Table A) and from the information in<br />

Sections 4.1 through 4.7 or Sections 6.1 through 6.7. Include treatments that<br />

were used prior <strong>to</strong> the introduction of MB and note improvements that could be<br />

made <strong>to</strong> increase their efficacy.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

204<br />

Step 3:<br />

Complete column 3 by identifying combinations of techniques in column 2 that<br />

would control all the pests. Write down each combination in turn.<br />

Column 1: Pest Column 2: Column 3: Combinations that<br />

name (pest species) Effective control methods would control all the pests<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G


Table F Review of alternative techniques<br />

Pho<strong>to</strong>copy the table below and complete one for each combination of techniques that was<br />

identified in column 3 of Table E.<br />

Combination:<br />

Issues<br />

Countries where techniques are used<br />

Give data or factual descriptions<br />

Regula<strong>to</strong>ry constraints<br />

Health and safety of opera<strong>to</strong>rs<br />

Health & safety of community<br />

and consumers<br />

Environmental impacts<br />

Acceptability <strong>to</strong> purchasers<br />

Advantages of system<br />

Disadvantages of system<br />

Annex 4: Steps for Identifying Appropriate <strong>Alternatives</strong><br />

205


Steps that would improve techniques<br />

Typical yields of<br />

a) new system<br />

b) optimised system<br />

Materials required<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Labour required<br />

Material + labour costs<br />

a) short-term<br />

b) long-term<br />

Profits from:<br />

a) new system<br />

b) optimised system<br />

Pay-back period<br />

Scope for reducing costs<br />

or improving profits<br />

Steps that would be needed<br />

<strong>to</strong> adopt the system<br />

Other issues<br />

206


Annex 5<br />

Information Resources<br />

UNEP <strong>DTIE</strong> complementary resources<br />

UNEP <strong>DTIE</strong> OzonAction Programme, Paris, France<br />

Contact for publications: ozonaction@unep.fr • fax +331 44 37 14 74<br />

Website for OzonAction Programme: www.uneptie.org/ozonaction.html<br />

Website for subscribing <strong>to</strong> Regular Update on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> (RUMBA)<br />

newsletter and forum: www.uneptie.org/ozat/forum/rumba.html<br />

Website for RUMBA archives: www.uneptie.org/ozat/pub/rumba/main.html<br />

RUMBA - Email forum and newsletter. UNEP <strong>DTIE</strong> OzonAction Programme<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong><br />

<strong>Bromide</strong>. UNEP <strong>DTIE</strong> 2001<br />

Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low Environmental<br />

Impact. UNEP <strong>DTIE</strong> 2000<br />

Inven<strong>to</strong>ry of Technical and Institutional Resources for Promoting <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong>. UNEP <strong>DTIE</strong> 1999<br />

<strong>Methyl</strong> <strong>Bromide</strong> Phase-out Strategies: A Global Compilation of Laws and Regulations.<br />

UNEP <strong>DTIE</strong> 1999<br />

Towards <strong>Methyl</strong> <strong>Bromide</strong> Phase-out: A Handbook for National Ozone Units. Handbook<br />

for developing action plans. UNEP <strong>DTIE</strong> 1999<br />

<strong>Methyl</strong> <strong>Bromide</strong>: Getting Ready for the Phase out. Brief overview of issues. UNEP IE 1998<br />

Healthy Harvest: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. Video. UNEP IE 1999<br />

Public Service Announcement on methyl bromide. Video. UNEP IE 1998<br />

Other information resources<br />

Agriculture & Agri-Food Canada and Environment Canada, Ottawa, Canada<br />

Contact for publications: epspubs@ec.gc.ca<br />

Website for <strong>Methyl</strong> <strong>Bromide</strong> Compliance Guide: www.ec.gc.ca/ozone/mbrfact.htm<br />

Website for Canadian Environmental Solutions: http://strategis.ic.gc.ca/ces<br />

Improving Food and Agriculture Productivity - and the Environment: Canadian<br />

Leadership in the Development of <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. Environment Canada<br />

1995<br />

Heat, Phosphine and CO 2 Collaborative Experimental Structural Fumigation. Agriculture<br />

and Agri-Food Canada 1996<br />

Annex 5: Information Resources<br />

207


Improving Food and Agriculture Productivity – and the Environment: Canadian Initiatives<br />

in <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. Government of Canada 1998<br />

Integrated Pest Management in Food Processing: Working Without <strong>Methyl</strong> <strong>Bromide</strong>.<br />

Sustainable Pest Management Series S98-01, Pest Management Regula<strong>to</strong>ry Authority<br />

1998<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

208<br />

Bio-Integral Resource Center (BIRC), Berkeley, California, USA<br />

Contact: fax +1 510 524 1758<br />

Website: www.birc.org<br />

IPM <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. A compilation of articles from The IPM Practitioner.<br />

BIRC. Quarles & Daar (eds) 1996<br />

The IPM Practitioner. Newsletter on integrated pest management. Includes articles on<br />

alternatives <strong>to</strong> methyl bromide, such as <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> in Florida<br />

Toma<strong>to</strong>es and Peppers. Vol XX, No4, April 1998<br />

CSIRO En<strong>to</strong>mology Division, S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry, Canberra, Australia<br />

Contact for publications: yvonneh@en<strong>to</strong>.csiro.au<br />

Website: www.csiro.au<br />

Agricultural Production Without <strong>Methyl</strong> <strong>Bromide</strong> - Four Case Studies. CSIRO Division of<br />

En<strong>to</strong>mology for UNEP IE. Banks (ed) 1995<br />

Carbon Dioxide Fumigation of Bag-Stacks Sealed in Plastic Enclosures: An Operations<br />

Manual. ASEAN Food Handling Bureau, Australian Centre for International Agricultural<br />

Research. Annis and van Graver 1991<br />

Phosphine Fumigation of Bag-stacks Sealed in Plastic Enclosures: An Operations Manual.<br />

ASEAN Food Handling Bureau, Australian Centre for International Agricultural Research.<br />

Van Graver & Annis 1994<br />

Resource Centre and library of publications on treatments for durable products<br />

Centro de Ciencias Medioambientales, CSIC, Madrid, Spain<br />

Contact: evbv305@ccma.csic.es fax +34 91 564 0800 (Attn: Dr An<strong>to</strong>nio Bello)<br />

Website: www.ccma.csic.es<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. Proceedings of<br />

International Workshop, April 1997. Bello et al (ed) 1997<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Mediterranean Region. Proceedings of<br />

International Workshop, May 1998. Bello et al (ed) 1999<br />

Alternativas al Bromuro de Metilo en Agricultura. Proceedings of International Seminar,<br />

April 1996. Bello et al (ed) 1997<br />

Danish Environmental Protection Agency, Copenhagen, Denmark<br />

Contact for publications: fax +45 33 92 76 90<br />

Production of Flowers and Vegetables in Danish Greenhouses: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong><br />

<strong>Bromide</strong>. Environmental Review No 4, Danish EPA. Gyldenkaerne & Hvalsoe 1997


ENEA, Italian Committee of Innovation Technology, Energy and Environment,<br />

Rome, Italy<br />

Contact: fax +39 06 30 48 42 67 (Attn Prof L Triolo, Dr A Correnti)<br />

Attivit dell’ENEA nell’ambi<strong>to</strong> degli interventi per la salvaguardia igienico sanitaria del lage<br />

di Bracciano. Sviluppo di attivit agricole compatibili nei terri<strong>to</strong>ri prospicienti il lago.<br />

Technical Report ENEA. Correnti and Di Luzio 1994 (soil alternatives <strong>to</strong> methyl bromide<br />

for Bracciano region)<br />

Environment Australia, Canberra, Australia<br />

Contact at Environment Australia: ozone@ea.gov.au<br />

Institute for Horticultural Development: ian.j.porter@nre.vic.gov.au<br />

Website: www.environment.gov.au/epg/ozone/tex<strong>to</strong>nly/downloads/mebrhorticulturalstrategydownloadtext.htm<br />

National <strong>Methyl</strong> <strong>Bromide</strong> Update. Newsletter about MB phase-out and alternatives<br />

National <strong>Methyl</strong> <strong>Bromide</strong> Response Strategy. <strong>Methyl</strong> <strong>Bromide</strong> Consultative Group, June<br />

1998<br />

EPAGRI, Itajaí, Santa Catarina, Brazil<br />

Contact: jmuller@epagri.rct-sc.br<br />

La Reunião Brasileira sobre Alternativas ao Brome<strong>to</strong> de Metila na Agricultura. 21-23<br />

Oc<strong>to</strong>ber, Florianópolis, Brazil, Muller (ed) 1996 (Proceedings of First Brazilian Meeting on<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> in Agricultural Systems)<br />

Proceedings of other Brazilian meetings on alternatives <strong>to</strong> methyl bromide<br />

European Commission, DGXI, Brussels, Belgium<br />

Contact: Unit D4, DGXI • fax +322 296 9557<br />

Prospect Background Report on <strong>Methyl</strong> <strong>Bromide</strong>. B7-8110/95/000178/MAR/D4, Prospect<br />

Consulting and Services, 1997<br />

European Vegetable Research & Development Centre, Sint-Katelijne-Waver, Belgium<br />

Contact for information: fax +32 15 553 061<br />

Economic aspects of ecologically sound soilless growing methods. European Vegetable<br />

R&D Centre. Benoit 1990<br />

A decade of research on ecologically sound substrates in Acta Horticulturae 408, 17-29.<br />

Benoit & Ceustermans 1995<br />

Food and Agriculture Organisation (FAO), Rome, Italy<br />

Contact for publications: publications-sales@fao.org • fax +3906 570 533 60<br />

Website: www.fao.org/library/<br />

Soil Solarization and Integrated Pest Management. Plant Production and Protection<br />

Paper. FAO 1998<br />

Soil Solarization. Plant Production and Protection Paper 109. FAO 1991<br />

Annex 5: Information Resources<br />

209


Friends of the Earth, Washing<strong>to</strong>n DC, USA<br />

Contact: International program, foedc@igc.apc.org • fax +1 202 783 0444<br />

Website: www.foe.org<br />

The Technical and Economic Feasibility of Replacing <strong>Methyl</strong> <strong>Bromide</strong> in Developing<br />

Countries: Case Studies in Zimbabwe, Thailand and Chile. Research report. FoE 1996<br />

Reaping Havoc: The True Cost of Using <strong>Methyl</strong> <strong>Bromide</strong> on Florida’s Toma<strong>to</strong>es. FOE-USA<br />

1998<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Global IPM Facility, Food and Agriculture Organisation, Rome, Italy<br />

Contact: global-ipm@fao.org • fax +3906 5225 6347 (attn: Room B757)<br />

Website: www.fao.org Clearinghouse for integrated pest management (IPM) resources<br />

GTZ Proklima bilateral agency, Eschborn, Germany<br />

Contact: gtzproklima@compuserve.com • fax +49 6196 796 318 and fax +264 61 253 945<br />

Websites: www.gtz.de/proklima and www.gtz.de/home/english/index.html<br />

<strong>Methyl</strong> <strong>Bromide</strong> Substitution in Agriculture: Objectives and Activities of the Federal<br />

Republic of Germany concerning the Support <strong>to</strong> Article 5 Countries of the Montreal<br />

Pro<strong>to</strong>col. GTZ 1998<br />

Proklima Yearbook 1999. GTZ 1999<br />

Manual on the Prevention of Post-harvest Grain Losses. GTZ 1996<br />

Integrated Pest Management Guidelines. No 249, GTZ 1994<br />

HortiTecnia, Santafé de Bogotá, Colombia<br />

Contact: hortitec@unete.com • fax +571 617 0730<br />

Case studies on successful IPM systems used in Colombia cut flower industry.<br />

HortiTecnia. Pizano 1998<br />

Insects Limited, Inc and Fumigation Services & Supply, Inc, Indianapolis, USA<br />

Contact: insectsltd@aol.com • fax +1 317 846 9799<br />

Website: www.insectslimited.com<br />

Fumigants and Pheromones. Newsletter for the pest management industry<br />

S<strong>to</strong>red Product Protection. Insects Limited. Mueller 1998<br />

International Institute for Biological Control, Selangor, Malaysia<br />

Contact: L.SOON@cabi.org • fax +603 942 6490<br />

Review of methyl bromide alternatives and non-chemical soil pest control methods for<br />

horticultural crops in Asia. IIBC. Vos & Soon 1997<br />

210


International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong><br />

and Emissions Reductions<br />

Contact: gobenauf@concentric.net<br />

Available on website: www.epa.gov/ozone/mbr/mbrpro97.html<br />

Proceedings of Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. 1994 - 1998<br />

<strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee (MBTOC) of UNEP, Montreal Pro<strong>to</strong>col<br />

Website: www.teap.org/html/methyl_bromide.html<br />

MBTOC progress report on alternatives <strong>to</strong> methyl bromide in TEAP 2000 report.<br />

UNEP 2000<br />

MBTOC 1998 Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. UNEP 1998<br />

MBTOC progress report in TEAP April 1997 report. volume II, UNEP 1997<br />

MBTOC Assessment Report 1995. UNEP 1994<br />

MBTOC report on quarantine and pre-shipment in TEAP 1999 report. Volume II,<br />

UNEP 1999<br />

Ministry of Agriculture Extension Service and Hebrew University, Israel<br />

Contact: fax +972 3 6971 649 (Attn Mr A Tzafrir)<br />

Soil Solarization. Video. Ministry of Agriculture Extension Service, video No 6127, available<br />

in English, French, Spanish, Italian, Portugese, Hebrew, Arabic<br />

Natural Resources Institute, Chatham Maritime, Kent, UK<br />

Contact for publications: fax +44 1491 829 292<br />

Alternative Methods for the Control of S<strong>to</strong>red-Product Insect Pests: A Bibliographic<br />

Database. NRI. Rees, Dales & Golob (eds) 1993<br />

Using Phosphine as an Effective Commodity Fumigant. NRI. Taylor & Gudrups 1996<br />

Netherlands Ministry of the Environment, The Hague, Netherlands<br />

Contact: Dept for Information, VROM, PO Box 20951, The Hague, Netherlands<br />

Good Grounds for Healthy Growth. Ministry of Housing, Spatial Planning and the<br />

Environment, 1997. (Explains how methyl bromide phase-out boosted technical innovation<br />

and alternatives in horticulture)<br />

Good Grounds for Healthy Growth. Video<br />

Annex 5: Information Resources<br />

211


Nordic Council of Ministers, Copenhagen, Denmark<br />

Contact for publications: fax +45 33 14 35 88<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: IPM in Flour Mills; Comparison of a Norwegian and<br />

Danish Mill. TemaNord 2000.<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> - Control of Rodents on Ship and Aircraft. TemaNord<br />

1997:513. Nordic Council 1997<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. TemaNord 1995:574. Nordic Council 1995<br />

<strong>Methyl</strong> bromide in the Nordic Countries - Current Use and <strong>Alternatives</strong>. Nord 1993:34.<br />

Nordic Council 1993<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

212<br />

Pesticide Action Network (PANNA), San Francisco, California, USA<br />

Contact: panna@panna.org<br />

Website: www.panna.org/panna/<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Excerpts from the UN <strong>Methyl</strong> <strong>Bromide</strong> Technical Options<br />

Committee 1995 Assessment. PANNA, San Francisco 1995<br />

Funding a Better Ban: Smart Spending on <strong>Methyl</strong> <strong>Bromide</strong> in Developing Countries.<br />

PANNA 1997<br />

The Secretariat of the Multilateral Fund for the Implementation<br />

of the Montreal Pro<strong>to</strong>col<br />

Contact: secretariat@unmfs.org • fax +1 514 282 1122<br />

Website: www.unmfs.org<br />

US Environmental Protection Agency, Washing<strong>to</strong>n DC, USA<br />

Contact: fax +1 202 233 9637 (Attn <strong>Methyl</strong> <strong>Bromide</strong> Program)<br />

Websites: www.epa.gov/ozone/mbr/mbrqa.html<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies - Soil, Commodity and Structural Use.<br />

430-R-95-009. EPA 1995<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies - Soil, Commodity and Structural Use -<br />

Volume Two. 430-R-96-021. EPA 1996<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies - Soil, Commodity and Structural Use -<br />

Volume Three. 430-R-97-030. EPA 1997<br />

US Department of Agriculture, USA<br />

Contact for newsletter: ARS Information Staff fax +1 301 705 9834<br />

Contact for APHIS Quarantine Treatment Manual: Distribution dept. fax +1 301 734 8455<br />

Website for methyl bromide research: www.ars.usda.gov/is/mb/mebrweb.htm<br />

Website for <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Newsletter:<br />

www.ars.usda.gov/is/np/mba/mebrhp.htm<br />

Website for National Agricultural Library: www.nal.usda.gov


Website for Alternative Farming Systems Information Center: www.nal.usda.gov/afsic<br />

Website for the Sustainable Agriculture Research and Information Program’s Sustainable<br />

Agriculture Network: www.sare.org<br />

<strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. USDA newsletter<br />

Plant Protection and Quarantine Treatment Manual. USDA Animal and Plant Health<br />

Inspection Service (APHIS), 1998 (Lists alternative quarantine treatments approved for<br />

specific products)<br />

National Agricultural Library. Information on pest management, including Alternative<br />

Farming Systems Information Center (AFSIC)<br />

UNEP Ozone Secretariat, Nairobi, Kenya<br />

Websites: www.unep.org/ozone<br />

For MBTOC reports: www.teap.org<br />

Reports of the Parties <strong>to</strong> the Montreal Pro<strong>to</strong>col<br />

<strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee (MBTOC) progress report on alternatives<br />

<strong>to</strong> methyl bromide in TEAP 2000 report. UNEP 2000<br />

MBTOC 1998 Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. UNEP 1998<br />

MBTOC progress report in TEAP April 1997 report. Volume II, UNEP 1997<br />

MBTOC Assessment Report 1995. UNEP 1994<br />

MBTOC report on quarantine and pre-shipment in TEAP 1999 report. Volume II,<br />

UNEP 1999<br />

Annex 5: Information Resources<br />

213


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

214


Annex 6<br />

Address List of Suppliers and<br />

Specialists in <strong>Alternatives</strong><br />

This list includes companies that manufacture and/or supply alternatives <strong>to</strong> methyl bromide, specialists, consultants<br />

and advisory services.<br />

A<br />

Abbott Labora<strong>to</strong>ries<br />

17683 Avenue 6<br />

Madera, California 93637, USA<br />

Tel +1 209 661 6308<br />

Fax +1 209 661 6316<br />

www.abbott.com<br />

Contact: Mr Gary Kirfman<br />

Abbott Labora<strong>to</strong>ries<br />

(Malaysia) Sdn Bhd, Shah Alam, Selangor<br />

Malaysia<br />

Email bl.tay@abbott.com<br />

Contact: Boon Liang Tay<br />

Africa Program, Asian Vegetable Research<br />

and Development Centre<br />

Arusha, Tanzania<br />

Tel +255 57 8491<br />

Fax +255 57 4270<br />

Email: avrdc-arp@cybernet.co.tz<br />

Web: www.avrdc.org.tw<br />

Contact: Dr R Nono-Womdin<br />

AgBio Chem Inc<br />

3 Fleetwood Court<br />

Orinda, California 94563, USA<br />

Tel +1 530 527 8028<br />

Tel +1 510 254 0789<br />

Fax +1 530 527 6288<br />

Abonos Naturales Hnos Aguado SL<br />

Calle Molino s/n<br />

La Torre de Esteban Hambrán<br />

Toledo 45920, Spain<br />

Tel +34 925 795 463<br />

Fax +34 925 795 483<br />

Adalia Services Ltd<br />

8685 Lafrenaie, St-Leonard<br />

Quebec PQ H1P 2B6, Canada<br />

Tel +1 514 852 9800<br />

Fax +1 514 852 9809<br />

Email: adalia@videotron.ca<br />

Contact: Mr Denis Bureau<br />

Admagro Ltda<br />

Transversal 49 No. 96 – 84<br />

Santafé de Bogotá, Colombia<br />

Tel +571 617 6000<br />

Fax +571 613 3240<br />

Contact: Mr Juan José Buenahora<br />

AEP Inc.<br />

14000 Monte Vista Ave<br />

Chino, California 91710, USA<br />

Tel +1 909 465 9055<br />

AgBio Development Inc<br />

9915 Raleigh Street<br />

Westminster, Colorado 80030, USA<br />

Tel +1 303 469 9221<br />

Fax +1 303 469 9598<br />

Email: agbio-l@indra.com<br />

www.agbio-inc.com<br />

Agglorex SA<br />

Industriepark-Kerkhoven<br />

3920 Lommel, Belgium<br />

Tel +32 11 542 532<br />

Fax +32 11 545 792<br />

Aggreko Inc<br />

3732 Magnolia Street<br />

Pearland TX 77584, USA<br />

Tel +1 713 512 6787<br />

Fax +1 713 512 6788<br />

Ag Pesticides (Private) Ltd<br />

18 P.N. Fleet Club<br />

Karachi, Pakistan<br />

Fax +92 21 778 1635<br />

Agrelek<br />

Eskom Advisory Service for Agriculture<br />

Private Bag X3087<br />

Worcester 6850, South Africa<br />

Tel +27 231 223 94<br />

Tel +27 152 930 398<br />

Fax +27 152 930 399<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

215


Agricola El Sol<br />

30 Calle 11-41, zona 12<br />

Guatemala City, Guatemala<br />

Tel +502 760 496<br />

Fax +502 760 496<br />

Agricola Mas Viader<br />

Mas Viader 7, Casa de la Selva<br />

17724 Girona, Spain<br />

Tel +349 7246 0415<br />

Fax +349 7246 0415<br />

Agrocol Ltda<br />

Cerrera 10 No. 24 – 76 Of. 701<br />

Santafé de Bogotá, Colombia<br />

Tel +571 28 160 69 or 441 96<br />

Fax +571 28 417 34<br />

Agrocomponentes SL<br />

Carretera Los Alcázares km 2<br />

Torre Pacheco, Murcia 30700, Spain<br />

Tel +34 968 585 776<br />

Fax +34 968 585 770<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

216<br />

Agricultural Demonstration Centre, China,<br />

SIDHOC<br />

No.2, Zhen Dong Lu, Nanhui County<br />

Shanghai 201303, China<br />

Email: sidhoc@uninet.com.cn or<br />

wimweerd@uninet.com.cn<br />

Contact: Wim Weerdenburg<br />

Agridry Rimik<br />

14 Molloy Street, Toowoomba<br />

Queensland 4350, Australia<br />

Tel +617 4631 4300<br />

Fax +617 4631 4301<br />

Email: mail@arpl.com.au<br />

www.arpl.com.au<br />

Agrifutur<br />

Via Campagnole 8<br />

25020 Alfianello<br />

Brescia, Italy<br />

Tel +39 030 993 4776<br />

Fax +39 030 993 4777<br />

Email: agfrkm@winrete.it<br />

Agrimm Technologies Ltd<br />

PO Box 13-254, Christchurch<br />

New Zealand<br />

Tel +643 366 8671<br />

Fax +643 365 1859<br />

Email: j.hunt@agrimm.co.nz<br />

Contact: Dr John Hunt<br />

Agrindex Consulting and Projects<br />

Katzenelson 70a<br />

Gyvatayim 53276, Israel<br />

Tel +972 3571 4762<br />

Fax +972 3571 0243<br />

Email: rymon@albar.co.il<br />

Contact: Lic. Shoshana Rymon<br />

Agriphy<strong>to</strong><br />

19 Av de Grand Bretagne<br />

Perpignan, France<br />

Tel +33 4 68 35 74 12<br />

Fax +33 4 68 34 65 44<br />

Email: agriphyt@aol.com<br />

Contact: Mr Christian Martin<br />

Agroplas SA de CV<br />

Sebastián del Piombo No. 55-B<br />

Dep<strong>to</strong> 701<br />

Colonia Lardizábal Mixcoac<br />

CP 03700 México D.F. Mexico<br />

Tel +52 5 598 6243 or 611 2431<br />

Fax +52 5 598 6243 or 611 2431<br />

Email: agroplas@ri.redint.com<br />

Agro-Shacam SL<br />

Calle Cañas 6 (Administración)<br />

Madrid 28043, Spain<br />

Tel +34 914 159 881<br />

Fax +34 914 159 881<br />

Email: agroshacam@mx3.redestb.es<br />

Contact: Ing. Rafael Ortega<br />

AgroSolutions<br />

PO Box 818<br />

San Marcos, California 92079, USA<br />

Tel +1 760 591 3102<br />

Fax +1 760 591 4891<br />

Agrotex SL<br />

Hermán Cortés 36<br />

Jaraíz de la Vera<br />

Cáceres 10400, Spain<br />

Tel +34 927 461 311<br />

Fax +34 927 460 150<br />

Email: agrotex@interbook.net<br />

Contact: Ing. Gregorio Bermejo<br />

AgraQuest Inc<br />

1105 Kennedy Place<br />

Davis, California 95616-1272, USA<br />

Tel +1 530 750 0150<br />

Fax +1 530 750 0153<br />

Email: info@agraquest.com<br />

Agrium Inc<br />

402 - 15 Innovation Boulevard, Saska<strong>to</strong>on<br />

Saska<strong>to</strong>on S7J 5B7, Canada<br />

Tel +1 306 975 3843<br />

Fax +1 306 975 3750


Aislantes Minerales SA de CV<br />

Descartes # 104<br />

Colonia Nueva Azures<br />

11590 México DF, Mexico<br />

Tel +52 5 155 0822<br />

Fax +52 5 203 4739<br />

Email: rolan3@ibm.net<br />

Dr Husein Ajwa<br />

Water Management Research Labora<strong>to</strong>ry<br />

USDA-ARS<br />

2021 S. Peach Ave<br />

Fresno, California 93727, USA<br />

Tel +1 559 453 3105<br />

Email: hajwa@asrr.arsusda.gov<br />

A-M Corporation<br />

403 Renaissance Building<br />

1598-3 Socho-Dong<br />

Socho-Ku 137-070, Korea<br />

Tel +82 2 598 2292<br />

Fax +82 2 598 2293<br />

Email: sunnymh@unitel.co.kr<br />

Contact: Mr Sunny MH Cho<br />

American President Lines<br />

1111 Broadway, 9th floor<br />

Oakland, California 94607, USA<br />

Tel +1 510 272 8241<br />

Fax +1 510 272 8655<br />

Contact: Technical Services<br />

Al Baraka Farms Ltd<br />

PO Box 866<br />

Amman 11118, Jordan<br />

Tel +962 6 591 102 or 109<br />

Fax +962 6 591 100<br />

Email: nabresco@go.com.jo<br />

Contact: Dr Ali Behadli<br />

All Natural Pest Control Co<br />

4449 Ontario St<br />

Vancouver, British Columbia<br />

VSB 3H2 Canada<br />

Tel +1 604 263 2250<br />

AllSize Perforating Ltd<br />

Box 2670, Highway 32 South<br />

Winkler, Mani<strong>to</strong>ba R6W 4CS, Canada<br />

Tel +1 204 325 9457<br />

Fax +1 204 325 9998<br />

Email: allsize@escape.ca<br />

Al. Masri Agricultural Co<br />

PO Box 922004<br />

Amman 11192, Jordan<br />

Tel +962 6 566 9061<br />

Fax +962 6 568 6605<br />

Dr Miguel Altieri<br />

Associate Professor<br />

Division of Insect Biology<br />

215 Mulford Hall<br />

University of California<br />

Berkeley, California 94720-3114, USA<br />

Tel +1 510 642 9802<br />

Fax +1 510 642 7428<br />

Email: agroeco3@nature.berkeley.edu<br />

American Rose Society<br />

PO Box 30000<br />

Shreveport, Louisiana, USA<br />

Tel +1 318 938 5402<br />

Fax +1 318 938 5405<br />

Email: ars@ars-hq.org<br />

Aplicaciones Bioquímicas SL<br />

Calle Bell 3, Poligono El Montalvo<br />

Carbajosa de la Sagrada<br />

Salamanca 37008, Spain<br />

Tel +34 923 190 240<br />

Fax +34 923 190 239<br />

Email: a-bioquimicas@helcom.es<br />

Contact: Ing. Alejandro Martínez Peña<br />

Apply Chem (Thailand) Ltd<br />

1575 / 15 Phaholyothin Road 15<br />

Samsenni, Payathi<br />

Bangkok 10400, Thailand<br />

Tel +662 279 2615 or 278 1343<br />

Fax +662 278 1343<br />

Aqua Heat<br />

8030 Main Street NE<br />

Minneapolis, Minnesota 55432, USA<br />

Tel +1 612 780 4116<br />

Fax +1 612 780 4316<br />

Aquanomics International<br />

Hawaii, USA & New Zealand<br />

PO Box 1030, Queens<strong>to</strong>wn<br />

New Zealand<br />

Tel +643 441 8173<br />

Fax +643 441 8174<br />

Email: qtiiwill@queens<strong>to</strong>wn.co.nz<br />

Contact: Dr Michael Williamson<br />

ARBICO<br />

PO Box 4247 CRB<br />

Tucson, Arizona 85738, USA<br />

Tel +1 520 825 9785<br />

Fax +1 520 825 2038<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

217


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

218<br />

Arbolan-PHC<br />

Zritzola – Txiki, Urnieta<br />

Guipúzcoa 20130, Spain<br />

Tel +34 943 552 214<br />

Fax +34 943 331 130<br />

Email: vipagola@sarenet.es<br />

Dr Jack Armstrong<br />

Pacific Basin Agricultural Research Center<br />

USDA-ARS<br />

PO Box 4459<br />

Hilo, Hawaii 96720, USA<br />

Tel +1 808 959 4336<br />

Fax +1 808 959 4323<br />

Email: jarmstrong@pbarc.ars.usda.gov<br />

Arrow Ecology Ltd<br />

PO Box 25175<br />

Haifa 31250, Israel<br />

Tel +972 4841 2599<br />

Fax +972 4841 2586<br />

Email: boazz@arrowecology.com<br />

www.arrowecology.com<br />

Contact: Mr Boaz Zadik<br />

ASCO Co<br />

PO Box 8345<br />

Amman 11121, Jordan<br />

Tel +962 6 534 3692<br />

Fax +962 6 534 7246<br />

ASEAN Food Handling Bureau<br />

Level 3, G14 & G15<br />

Damansara Town Centre<br />

Kuala Lumpur 50490, Malaysia<br />

Asistec<br />

Salazar 441 y La Coruña<br />

Qui<strong>to</strong>, Ecuador<br />

Tel +593 2526 770<br />

Fax +593 2230 655<br />

Contact: Ing. Ramiro Eguiguren<br />

Asociación Colombiana de Exortadores de<br />

Flores (ASOCOLFLORES FLORVERDE)<br />

Carrera 9A # 90-53<br />

Santafé de Bogotá, Colombia<br />

Tel +571 257 9311<br />

Fax +571 218 3693<br />

Email: juan@asocolflores.org<br />

Info@asocolflores.org<br />

Contact: Mr Juan Carlos Isaza<br />

Asthor Agricola Mediterranean SA<br />

Calle Emilio Zurano 5, Pulpi-Almería<br />

Almería 04640, Spain<br />

Tel +34 968 480 468<br />

Fax +34 968 480 013<br />

Austral Cathay<br />

89 Old Pittwater Road, Brookvale<br />

New South Wales 2100, Australia<br />

Tel +612 905 7857<br />

Fax +612 905 5966<br />

Australian Grain Co<br />

PO Box 136, Toowoomba<br />

Queensland 4350, Australia<br />

Tel +617 4639 9443<br />

Fax +617 4639 9359<br />

Contact: Mr Barry Bridgeman<br />

Avonlea<br />

PO Box 45, Domain<br />

Mani<strong>to</strong>ba ROG OMO, Canada<br />

Tel +1 204 736 2893<br />

Fax +1 204 736 2785<br />

B<br />

Dr Jonathan Banks<br />

S<strong>to</strong>red products consultant<br />

10 Beltana Rd, Pialliago<br />

Canberra ACT 2609, Australia<br />

Tel +612 62 489 228<br />

Email: apples@dynamite.com.au<br />

BASF<br />

APM/FB Li 555, PO Box 220<br />

D-6703 Limburgerhof, Germany<br />

Tel +49 621 600 770<br />

Fax +49 621 602 7014<br />

Contact: Mr Jorn Tidow<br />

Bast Co<br />

Hamburg, Germany<br />

Tel +49 40 894 125<br />

Fax +49 40 895 495<br />

Dr Bassam Bayaa<br />

Faculty of Agriculture<br />

Aleppo University<br />

Aleppo, Syria<br />

Email: B.Bayaa@cgnet.com<br />

Bayer (M) Sdn. Bhd<br />

19th & 20th floors, Wisma MPSA<br />

Persiaran Perbandaran<br />

PO Box 7252, 40708 Shah Alam<br />

Selangor Darul Ehsan, Malaysia<br />

Tel +60 3 550 2818<br />

Fax +60 3 550 2704<br />

Bayer Vital GmbH<br />

Geschäftsbereich Pflanzenschutz<br />

Gebäude D 162, Leverkusen<br />

D-51368, Germany<br />

www.agrar.bayervital.de


Bel Import 2000 SL<br />

La Campana 66, Lorca<br />

Murcia 30813, Spain<br />

Tel +34 950 464 468<br />

Fax +34 950 464 013<br />

Email: bulbopulpi@futurnet.es<br />

Dr An<strong>to</strong>nio Bello and colleagues<br />

Dp<strong>to</strong> Agroecologia<br />

Centro de Ciencias Medioambientales<br />

CCMA - CSIC<br />

Serrano, 115 dpdo.<br />

28006 Madrid, Spain<br />

Tel +34 9 1562 5020 x 208 or 249<br />

Fax +34 9 1564 0800<br />

Email: evbv305@ccma.csic.es<br />

Ben Meadows Company<br />

P.O. Box 20200<br />

Can<strong>to</strong>n, Georgia 30114, USA<br />

Tel +1 770-479-3130 or 1-800-241-6401<br />

Fax 1-800-628-2068<br />

or +1 770-479-3133 for faxes outside US<br />

Email: mail@benmeadows.com or export@benmeadows.com<br />

for international<br />

Berger Peat Moss<br />

121 R.R. # 1, St. Modeste<br />

QC GOL 3W0, Canada<br />

Tel +1 418 862 4462<br />

Fax +1 418 867 3929<br />

Email: tberger@tberger.gc.ca<br />

www.tberger.qc.ca<br />

Contact: Mr Yves Gauthier<br />

Prof Mohamed Besri<br />

Institut Agronomique et Vétérinaire Hassan II, BP 6202<br />

– Instituts<br />

Rabat, Morocco<br />

Tel +212 7 675 188<br />

Fax +212 7 778 135<br />

Email: besri@acdim.net.ma<br />

Binab Bio-Innovation AB<br />

Bredholmen, Box 56<br />

Algaras S-545 02, Sweden<br />

Tel +46 50 642 005<br />

Fax +46 50 642 072<br />

BioAgri AB<br />

PO Box 914, Uppsala<br />

SE-751 09, Sweden<br />

Tel +46 1867 4900<br />

Fax +46 1867 4901<br />

www.bioagri.se<br />

Biobest NV Biological Systems<br />

Ilse Velden 18<br />

B-2260 Westerlo, Belgium<br />

Tel +32 14 257 980<br />

Fax +32 14 257 982<br />

Email: info@biobest.be<br />

www.biobest.be<br />

Contact: Marc Mertens<br />

Biocaribe SA<br />

Calle 19 No. 18-63<br />

La Ceja, Antioquia Colombia<br />

Tel +574 553 7870<br />

Fax +574 553 3330<br />

Email: bioca@epm.net.co<br />

Bio-Care Technology Pty Ltd<br />

RMB 1084, Pacific Highway<br />

Somersby NSW 2250, Australia<br />

BioComp Inc<br />

2116-B BioComp Drive<br />

Eden<strong>to</strong>n, North Carolina 27932, USA<br />

Tel +1 252 482 8528<br />

Fax +1 252 482 3491<br />

Contact: Dr Frank Regulski<br />

Biocontrol of Plant Diseases Labora<strong>to</strong>ry<br />

USDA, Agricultural Research Service<br />

Bldg, 011A, Rm. 275, BARC-West<br />

10300 Baltimore Avenue<br />

Beltsville, Maryland 20705-2350, USA<br />

Tel +1 301-504-5678<br />

Fax +1 301-504-5968<br />

www.barc.usda.gov/psi/bpdl/page5.html<br />

Contact: Dr Deborah Fravel<br />

BioGreen Technologies<br />

31324 Meadowlark<br />

Springville, California 93265, USA<br />

Tel +1 209 539 6000<br />

Fax +1 209 539 7000<br />

Bio-Innovation AB<br />

Bredholmen, Box 56<br />

S-545 02, Algaras, Sweden<br />

Tel +46 506 42005<br />

Fax +46 506 42072<br />

Bio-Integral Resource Center (BIRC)<br />

PO Box 7414<br />

Berkeley, California 94707, USA<br />

Tel +1 510 524 2567<br />

Fax +1 510 524 1758<br />

Email: birc@igc.apc.org<br />

Website www.igc.apc.org/birc<br />

Contact: Sheila Daar<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

219


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

220<br />

BioLogic<br />

PO Box 177<br />

Willow Hill, Pennsylvania 17271, USA<br />

Tel +1 717 349 2789<br />

Fax +1 717 349 2789<br />

Biological Control Institute<br />

Auburn University<br />

209 Life Sciences Building<br />

Auburn AL 36849, USA<br />

Tel +1 334 844 4000<br />

Fax +1 334 844 1948<br />

Biological Crop Protection<br />

Occupation Road, Wye, nr Ashford<br />

Kent TN25 5EN, UK<br />

Tel +44 1233 813 240<br />

Fax +44 1233 813 383<br />

Bioma Agro Ecology<br />

Via Luserte 6, Quartino<br />

CH-6572, Switzerland<br />

Tel +41 91 840 1015<br />

Fax +41 91 840 1019<br />

BioOrganics Inc<br />

31324 Meadowlark<br />

Springville, California 93265, USA<br />

Tel +1 881 332 7676<br />

Fax +1 805 389 3773<br />

Email: vam@ocsnet.net<br />

BioOrganic Supply<br />

3200 Corte Malpaso No. 107<br />

Camarillo, California 93012, USA<br />

Tel +1 880 604 0444<br />

Bio Pre<br />

Geerweg 65, 2461 TT Langeraar<br />

Netherlands<br />

Tel +31 172 539 333<br />

Fax +31 172 537 859<br />

BioQuip Products Inc<br />

17803 LaSalle Avenue<br />

Gardena, California 90248, USA<br />

Tel +1 310 324 0620<br />

Fax +1 310 324 7931<br />

BioScientific Inc<br />

4405 S Litchfield Road<br />

Avondale, Arizona 85323, USA<br />

Tel +1 602 932 4588<br />

Fax +1 602 925 0506<br />

Biotechnology Research Unit for Estate Crops<br />

Jl. Taman Kencana No. 1<br />

Bogor 16151, Indonesia<br />

Tel +62 251 324 048<br />

Fax +62 251 328 516<br />

Email: briec@indo.net.id<br />

BioTerra Technologies Inc<br />

9491 West Pioneer Avenue<br />

Las Vegas, Nevada 89117, USA<br />

Tel +1 702 256 6404<br />

Fax +1 702 255 2266<br />

Email: info@bioterra.com<br />

www.bioterra.com<br />

Bioved Ltd<br />

Ady Endre u. 10<br />

2310 Szigetszentmiklos, Hungary<br />

Tel +36 24 441 554<br />

Email: boh8457@helka.iif.hu<br />

BioWorks Inc<br />

122 N Genesee Street<br />

Geneva, New York 14456, USA<br />

Tel +1 315 781 1703<br />

Fax +1 315 781 6572 or 1793<br />

Ing. I Blanco, CETARSA<br />

Finca la Cañalera, Ctra.<br />

Santa Maria de las Lomas km 3.5<br />

10310 Talayuela, Cáceres, Spain<br />

Tel +34 927 578 230<br />

Fax +34 927 578 263<br />

BOC Gases<br />

Private Bag 93300, Otahuhu<br />

Auckland, New Zealand<br />

Tel +649 525 5600<br />

Fax +649 579 2934<br />

University of Bonn<br />

Soil-Ecosystem Phy<strong>to</strong>pathology and Nema<strong>to</strong>logy, Institut<br />

für Pflanzenkrankheiten<br />

University of Bonn<br />

Nussallee 9<br />

D-53115 Bonn, Germany<br />

Tel +49 228 732 439<br />

Fax +49 228 732 432<br />

Email: rsikora@uni-bonn.de<br />

Contact: Prof Richard Sikora<br />

Borax Europe Ltd<br />

170 Priestley Road<br />

Guildford GU2 5RQ, UK<br />

Tel +44 1483 242 034<br />

Fax +44 1483 242 097<br />

Borregaard and Reitzel<br />

Helsingforsgade 27 B, Aarhus N<br />

DK-8200, Denmark


Boverhuis Boilers BV<br />

Beatrixlaan 22, 3941 EE Doorn<br />

Netherlands<br />

BPO Research Station for Nursery S<strong>to</strong>ck<br />

PO Box 118, 2770 AC<br />

Boskoop, The Netherlands<br />

Tel +31 172 236 700<br />

Fax +31 172 236 710<br />

Email: boskoop@bpo.agro.nl<br />

www.bib.wau.nl/boskoop<br />

Contact: Ing. RB Oosting<br />

Breda Experimental Garden<br />

Heilaarstraat 230<br />

Breda, Netherlands<br />

Tel +31 76 144 382<br />

Fax +31 76 202 711<br />

Contact: Henk Nuyten<br />

Mr Barry Bridgeman<br />

Research & Development Manager<br />

Grainco Australia Ltd<br />

PO Box 136, Toowoomba<br />

Queensland 4350, Australia<br />

Tel +617 4639 9443<br />

Fax +617 4639 9359<br />

Dr Bill Brodie<br />

USDA-ARS, Department of Plant Pathology Cornell<br />

University<br />

Ithaca, New York 14853, USA<br />

Tel +1 607 255 7845<br />

Email: bbb2@cornell.edu<br />

Brokaw Nursery<br />

PO Box 4818<br />

Saticoy, California 93007, USA<br />

Tel +1 805 647 2262<br />

Dr Robert Bugg<br />

University of California<br />

Sustainable Agriculture Research<br />

and Education Program (SAREP)<br />

One Shields Avenue<br />

Davis, California 95616, USA<br />

Tel +1 530 754 8549<br />

Fax +1 530 754 8550<br />

Email: rbugg@ucdavis.edu<br />

BULOG National Food Logistics Agency,<br />

Badan Urusan Logistik<br />

Jl. Ga<strong>to</strong>t Subro<strong>to</strong> 49<br />

Jakarta, Indonesia<br />

Tel +6221 525 0075<br />

Fax +6221 520 4334 or 830 2533<br />

Contact: Dr Mulyo Sidik<br />

C<br />

University of California<br />

IPM Project<br />

Kearney Agricultural Center<br />

9240 S. Riverbend Avenue<br />

Parlier, California 93648, USA<br />

Tel +1 209 646 6000<br />

Fax +1 209 646 6015<br />

www.ipm.ucdavis.edu<br />

University of California<br />

Department of Nema<strong>to</strong>logy<br />

One Shields Avenue<br />

Davis, California 95616, USA<br />

Tel +1 530 752 1011<br />

Calmax<br />

8800 Cal Center Drive MS #23<br />

Sacramen<strong>to</strong>, California<br />

95826-3268, USA<br />

Tel +1 916-255 2369<br />

Fax +1 916 255 4580<br />

Canadian Climatrol Systems<br />

3060 D Spring Street, Port Moody<br />

British Colombia V3H 1Z8, Canada<br />

Tel +1 604 469 9119<br />

Fax +1 604 469 0099<br />

Canadian Grain Commission<br />

800 - 269 Main Street, Winnipeg<br />

Mani<strong>to</strong>ba R3C 1B2, Canada<br />

Tel +1 204 983 2788<br />

Fax +1 204 984 5138<br />

www.cgc.ca<br />

Contact: Infestation Control and Sanitation Co-ordina<strong>to</strong>r<br />

Canadian Pest Control Association<br />

208 Glen Castle Road, Kings<strong>to</strong>n<br />

Ontario K7M 4N6, Canada<br />

Tel +1 613 384 0898<br />

Fax +1 613 389 3849<br />

Email: elite1@kings<strong>to</strong>n.net<br />

Contact: Mr Dean Stanbridge<br />

Cántabra de Turba Coop Ltda<br />

B° del Cerezo 21, Torrelavega<br />

Cantabria 39300, Spain<br />

Tel +34 942 891 025<br />

Fax +34 942 891 025<br />

Dr William Carey<br />

Auburn University<br />

108 M White Smith Hall<br />

Auburn, Alabama 36849-5418, USA<br />

Tel +1 334 844 4998<br />

Fax +1 334 844 4873<br />

Email: carey@forestry.auburn.edu<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

221


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Dr G Cartia<br />

Dept Agrochimica e Agrobiologia<br />

Universita di Reggio Calabria<br />

Piazza S. Francesco di Sales 2<br />

89061 Gallina, Italy<br />

Casa Bernado Ltda<br />

Caixa Postal 365, CEP 11346-300,<br />

Samarita - Sao Vincente<br />

Sao Paulo, Brazil<br />

Tel +55 132 601 212<br />

Fax +55 132 601 318<br />

Mr Dermot Cassidy<br />

Geest,<br />

Pre<strong>to</strong>ria, South Africa<br />

Fax +27 12 809 0867<br />

Ing. Sergio Trueba Castillo<br />

NOCON SA, Apartado Postal 333<br />

San Simón, Texcoco, Mexico<br />

Tel +52 595 41576<br />

Fax +52 595 41576<br />

Dr Jean-Pierre Caussanel<br />

Centre de Recherches de Dijon<br />

UMR INRA/UNIVERSITE BBCE-IPM<br />

CMSE-INRA, BP 86510<br />

F-21065, Dijon, France<br />

Tel +333 80 69 31 67<br />

Fax +333 80 69 37 53<br />

Email: Caussanel@epoisses.inra.fr<br />

CCMA, CSIC<br />

Dp<strong>to</strong> Agroecologia<br />

Serrano, 115 dpdo.<br />

28006 Madrid, Spain<br />

Tel +34 9 1562 5020 x 208 or 249<br />

Fax +34 9 1564 0800<br />

Email: evbv305@ccma.csic.es<br />

Contact: Dr An<strong>to</strong>nio Bello<br />

CCT Corporation<br />

5115 Avenida Encinas, Suite A<br />

Carlsbad, California 92008, USA<br />

Tel +1 619 929 9228<br />

Fax +1 619 929 9522<br />

Dr Vincent Cebolla<br />

Institu<strong>to</strong> Valenciano de Investigaciones Agrarias<br />

Carretera de Moncada a Naquera<br />

46113 Moncada, Valencia, Spain<br />

Tel +34 961 391 000<br />

Fax +34 961 390 240<br />

Email: vcebolla@ivia.es<br />

www.ivia.es<br />

Celli SpA<br />

Via Masetti 32<br />

47100 Forli, Italy<br />

Tel +39 0543 794 711<br />

Fax +39 011 794 747<br />

Contact: Mr Alfredo Celli<br />

Cenibanano Banana Research Center<br />

Carrera 7 No. 32 – 33<br />

Santafé de Bogotá, Colombia<br />

Tel +57 48 786 608 or 09 or 10<br />

Fax +57 48 786 606<br />

Contact: Dr Gonzolo A Mejia<br />

Central Science Labora<strong>to</strong>ry<br />

Sand Hut<strong>to</strong>n, York YO41 1LZ, UK<br />

Tel +44 1904 462 634<br />

Fax +44 1904 462 252<br />

Email: c.bell@csl.gov.uk<br />

Contact: Dr Chris Bell<br />

Centre for Agriculture and Biosciences<br />

International, Central Office<br />

International Institute of Biological Control (CAB<br />

International)<br />

Silwood Park, Buckhurst Road, Ascot<br />

Berks SL5 7TA, UK<br />

Tel +44 1344 872 999<br />

Fax +44 1344 872 901<br />

Email: g.hill@cabi.org or j.waage@cabi.org<br />

Contact: Dr Jeff Waage or Dr Garry Hill<br />

Centre for Agriculture and Biosciences<br />

International, Regional Office for Africa<br />

PO Box 76520, Nairobi, Kenya<br />

Tel +254 2 747 329<br />

Fax +254 2 747 337<br />

Email: cabi-roaf@cabi.org<br />

Contact: Dr Brigette Nyambo or Dr Sarah Simons<br />

Centro de Ciencias Medioambientales CCMA -<br />

CSIC<br />

Serrano, 115 dpdo.<br />

28006 Madrid, Spain<br />

Tel +34 9 1562 5020<br />

Fax +34 9 1564 0800<br />

Contact: Dr An<strong>to</strong>nio Bello, Dp<strong>to</strong> Agroecologia<br />

Email: evbv305@ccma.csic.es<br />

Cereal Research Centre<br />

Agriculture and Agri-Food Canada<br />

195 Dafoe Rd, Winnipeg<br />

MB R3T 2M9, Canada<br />

Tel +1 204 983 1468<br />

Fax +1 204 983 4604<br />

Email: Pfields@em.agr.ca<br />

http://res2.agr.ca/winnipeg/home.html<br />

Contact: Dr Paul Fields<br />

222


CeRSAA<br />

Regione Rollo, 98<br />

17031 Albenga, SV, Italy<br />

Tel +39 018 255 4949<br />

Fax +39 018 255 4949<br />

Contact: Dr Giovanni Minu<strong>to</strong><br />

Climate Control Systems Inc<br />

509 Highway #77, RR #5, Leaming<strong>to</strong>n<br />

Ontario N8H 3V8, Canada<br />

Tel +1 519 322 2515<br />

Fax +1 519 322 2215<br />

Email: 102471.2570@compuserve.com<br />

CETAP/An<strong>to</strong>nio Ma<strong>to</strong>s Ltda<br />

Guimbra Anta. Apdo 60<br />

Espinho Codex P-4501, Portugal<br />

Tel +35 173 132 42<br />

Fax +35 173 414 64<br />

Email: cema<strong>to</strong>s@mail.telepac.pt<br />

Charles Keddy Farms Ltd<br />

982 North Bishop Road, Kentville<br />

Nova Scotia B4N 3V7, Canada<br />

Tel +1 902 678 4497<br />

Fax +1 902 678 0067<br />

Contact: Charles Keddy<br />

Dr Dan Chellemi, USDA-ARS<br />

Horticultural Research Labora<strong>to</strong>ry<br />

2199 South Rock Road<br />

Ft. Pierce, Florida 34945, USA<br />

Tel +1 561 467 3877<br />

Fax +1 561 460 3652<br />

Email: dchellemi@ushrl.ars.usda.gov<br />

CIA Ibérica de Paneles Sintéticos SA<br />

CIPASI, Carretera de Naquera 100<br />

Massamagrell, Valencia 46130 Spain<br />

Tel +34 961 440 311<br />

Fax +34 961 441 433<br />

Email: cipasi@vlc.servicom.es<br />

CIAA Agricultural Research and Consultancy<br />

Center<br />

PO Box 140296<br />

Chía, Colombia<br />

Tel +571 865 0219<br />

Fax +571 865 0127<br />

Email: ciaa@andinet.com<br />

www.utadeo.edu.co<br />

Contact: Ms Rebecca Lee<br />

Ciba-Geigy<br />

Plant Protection Division<br />

PO Box 18300<br />

Greensborough, North Carolina 27419, USA<br />

Tel +1 919 632 6000<br />

CIG Ltd, Australia<br />

Chatswood<br />

New South Wales, Australia<br />

Fax +613 6447 2331<br />

Coco Hits SL<br />

San Juan Bosco, 4 DE Polo 6° B<br />

Marbella, Málaga 29600, Spain<br />

Tel +34 952 771 503<br />

Fax +34 952 771 503<br />

Dr Ron Cohen<br />

Deptartment of Vegetable Crops<br />

Newe Ya’ar Research Center<br />

Agricultural Research Organization<br />

PO Box 1021<br />

Ramat Yishay 30095 Israel<br />

Tel +972 4953 9516<br />

Fax +972 4983 6936<br />

Email: ronico@netvision.net.il<br />

Colegío de Posgraduados<br />

en Ciencias Agrícolas<br />

Area de Microbiología<br />

Institu<strong>to</strong> de Recursos Naturales<br />

Km 35.5 Carretera México-Texcoco<br />

Montecillo 56230, Estado de México<br />

Mexico<br />

Tel + 52 595 11600 x 1124<br />

Fax +52 595 11593<br />

Email: melara@colpos.colpos.mx<br />

or ronaldfc@colpos.colpos.mx<br />

Contact: Maria Encarnación Lara<br />

or Dr Ronald Ferrera-Cerra<strong>to</strong><br />

Colmáquinas SA<br />

Carrera 50 # 16-21<br />

Santafé de Bogotá, Colombia<br />

Tel +571 260 1300<br />

Fax +571 290 0703<br />

Contact: Ing. Juan de los Ríos<br />

Comercial Projar SA<br />

Calle La Pineta s/n<br />

Valencia 46930, Spain<br />

Tel +34 961 920 061<br />

Fax +34 961 920 250<br />

Email: projar@projar.es<br />

Contact: Angeles Pérez Giner<br />

Comité Jean Pain<br />

Avenue Princesse Elisabeth 18<br />

1030 Brussels, Belgium<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

223


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

224<br />

Commodity S<strong>to</strong>rage<br />

PO Box 434, Rivers<strong>to</strong>ne<br />

New South Wales 2765, Australia<br />

Tel +612 838 1677<br />

Fax +612 838 1680<br />

Compañia Argentina Holandesa SA<br />

Fraga 1125 – 1427<br />

Buenos Aires, Argentina<br />

Tel +541 555 1010<br />

Fax +541 555 6420<br />

Email: cahce@overnet.com.ar<br />

Compañía Española de Tabaco SA<br />

CETARSA, Carretera de Navalmoral a Jarandilla, km 12<br />

Talayuela<br />

Cáceres 10310, Spain<br />

Tel +34 927 578 280<br />

Fax +34 927 551 291<br />

Email: cetarsa-id@teleline.es<br />

Contact: Ing. Francisco Arroyo<br />

Compo BV<br />

Filliersdreef 14<br />

B-9800 Deinze, Belgium<br />

Tel +329 381 8383<br />

Fax +329 386 7713<br />

Email: walter.stevens@skynet.be<br />

Compo GmbH<br />

Gildenstrasse 38<br />

D-48157 Münster, Germany<br />

Tel +49 251 32 770<br />

www.compo.de<br />

Consejo Nacional de Agroinsumos<br />

Bioracionales, Mexico<br />

Tel +52 714 50 694<br />

Fax +52 714 50 694<br />

Email: felixdl@dfl.telmex.net.mx<br />

Contact: Ing. Félix A Farías<br />

Consolidated Industrial Gases Inc<br />

CIGI Building, Sheridan Cor.<br />

Pioneer Street, Mandaluyong<br />

Metro Manila, Philippines<br />

Tel +63 2 773 761<br />

Fax +63 2 631 5083<br />

Dr John Conway<br />

Natural Resources Institute<br />

Central Avenue, Chatham Maritime<br />

Kent ME4 4TB, UK<br />

Tel +44 1634 880 088<br />

Fax +44 1634 880 066<br />

Email: gasca@nri.org<br />

Copesan Services Inc<br />

3490 N. 127th St.<br />

Brookfield, Wisconsin 53005, USA<br />

Tel 1 800 COPESAN or +1 262 783 6261<br />

Fax +1 262 783 6267<br />

info@copesan.com<br />

www.copesan.com/<br />

Tel +1 414 783 6261<br />

Fax +1 414 783 6224<br />

Cornell University<br />

Agricultural Experimental Station<br />

Geneva, New York 14456, USA<br />

Tel +1 607 255 2000<br />

Contact: Dr Gary Harman<br />

Dr Angelo Correnti<br />

ENEA Departimen<strong>to</strong> Innovazione<br />

Set<strong>to</strong>re Biotecnologie e Agricoltura<br />

Casaccia, Rome, Italy<br />

Tel +3906 3048 3607<br />

Fax +3906 3048 4267<br />

Cosago Ltda<br />

Carrera 38 No. 136 – 40<br />

PO Box 85324, Bogatá, Colombia<br />

Tel +571 633 0050<br />

Fax +571 633 0049<br />

Email: cosago@inter.net.co<br />

Contact: Mr Hernando Gomez<br />

Cosago Ltda (Ecuador)<br />

Av. A No. 673 y Calle N<br />

Urbanización el Condado<br />

Qui<strong>to</strong>, Ecuador<br />

Tel +59 32 491 523 or 492 355<br />

Fax +59 32 491 523<br />

Email: saymaco@yahoo.com<br />

CR Minerals Corp<br />

14142 Denver West Parkway<br />

Suite 101<br />

Golden, Colorado 80401, USA<br />

Tel +1 303 278 1706<br />

Fax +1 303 278 7729 or 279 3772<br />

Crone Asme Boilers<br />

Postbus 51, Nieuwerkerk Ijssel<br />

2910 AB, The Netherlands<br />

Tel +31 180 632 922<br />

Fax +31 180 632 678<br />

Email: info@crone.nl<br />

Contact: TGM Kleijweg<br />

Crop & Food Research<br />

Postharvest Disinfestation Program<br />

Private Bag, Kimberly Road<br />

Levin, New Zealand<br />

Contact: Dr Alan Carpenter


CSIRO Division of En<strong>to</strong>mology<br />

S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry<br />

GPO Box 1700, Canberra<br />

ACT 2601, Australia<br />

Tel +6126 246 4183 or 4201<br />

Fax +6126 246 4202<br />

Email: jane.wright@en<strong>to</strong>.csiro.au<br />

Contact: Dr Jane Wright, Dr Jonathan Banks, Dr Peter<br />

Annis, Mr Jan van S Graver<br />

CV Solanindo Duta Kencana<br />

Jl. Katelia II NO. 15<br />

Taman Yasmin, Bogor 16310<br />

Indonesia<br />

Tel +62 251 376 309<br />

Fax +62 251 347 970<br />

Email: solanindo@hotmail.com<br />

Cyprus Grain Commission<br />

PO Box 1777, Nicosia, Cyprus<br />

Tel +3572 762 131<br />

Fax +3572 752 141<br />

Email: cy.grain@cytanet.com.cy<br />

Cytec Canada Inc<br />

PO Box 240, Niagara Falls<br />

Ontario L2E 6T4, Canada<br />

Tel +1 905 374 5828<br />

Fax +1 905 374 5939<br />

Email: roger_cavasin@we.cytec.com<br />

Contact: Mr Roger Cavasin<br />

D<br />

Danish Institute of Agricultural Sciences<br />

PO Box 50, DK-8830 Tjele<br />

Slagelse, Denmark<br />

Tel +45 8999 1900<br />

Fax +45 8999 1919<br />

Dr Michael Dann<br />

Penn State University<br />

114 Tyson Building<br />

University Park, Pennsylvania 16802, USA<br />

Tel +1 814 863 7721<br />

Dr Keith Davis<br />

Rothamstead Experimental Station<br />

IACR-Rothamstead<br />

Harpenden, Herts Al5 2JQ, UK<br />

Tel +44 1582 763 133<br />

Fax +44 1582 760 981<br />

DA Wiersma Research Corp Technologies<br />

6840 East Broadway Boulevard<br />

Tucson, Arizona 85710, USA<br />

Tel +1 602 296 6400<br />

De Baat BV<br />

Marconiweg 6<br />

7740 AB Coevorden, Netherlands<br />

Tel +31 524 515 631<br />

Fax +31 524 515 663<br />

De Ceuster nv<br />

Fortsesteenweg 30<br />

B-2860 Sint-Katelijne-Waver<br />

Belgium<br />

Tel +32 15 31 22 57<br />

Fax +32 15 31 36 15<br />

Email: dcm@dcmpronatura.com<br />

Degesch America Inc<br />

PO Box 116, 275 Triange Drive<br />

Weyers Cave, Virginia 24486, USA<br />

Tel +1 504 234 9281<br />

Fax +1 504 234 8225<br />

Contact: George Luzaich<br />

Degesch de Chile Ltda<br />

Camino Antiguo a Valparaiso #1321<br />

Padre Hurtado<br />

Santiago, Chile<br />

Demeter Guild<br />

Brandschneise 2<br />

D-64295 Darmstadt, Germany<br />

Tel +49 6155 846 90<br />

Fax +49 6155 846 911<br />

Email: info@demeter.de<br />

www.demeter.net<br />

Department of Agriculture<br />

S<strong>to</strong>red Products Labora<strong>to</strong>ry<br />

Chatuchak, Bangkok, Thailand<br />

Tel +662 579 8576<br />

Fax +662 579 8535<br />

Department of Agriculture<br />

Division of En<strong>to</strong>mology and Zoology<br />

Bangkhen, Bangkok 9, Thailand<br />

Tel +662 579 8541<br />

Fax +662 561 5014<br />

Department of Nema<strong>to</strong>logy<br />

University of California<br />

One Shields Avenue<br />

Davis, California 95616, USA<br />

Tel +1 530 752 1011<br />

Department of S<strong>to</strong>red Products<br />

The Volcani Center, PO Box 6<br />

Bet-Dagan, Israel<br />

Tel +972 3 968 3587<br />

Fax +972 3 960 4428<br />

Email: vtshlo@netvision.net.il<br />

Contact: Dr Shlomo Navarro,<br />

Dr Jonathan Donahaye<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

225


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

De Ruiter Seeds Holland<br />

PO Box 1050, Bergschenhoek<br />

2660 BB, The Netherlands<br />

Tel +31 1052 92222<br />

Fax +31 1052 92400<br />

Desinsekta<br />

Schönberger Weg 3<br />

D-60488 Frankfurt am Main<br />

Germany<br />

Tel +49 69 763 040<br />

Fax +49 69 768 1036<br />

www.desinsekta.de<br />

Detia Degesch GmbH<br />

Dr Werner Freyberg Strasse 11<br />

Postfach 6947, Laudenbach-Bergstrasse, Germany<br />

Tel +49 6201 7080<br />

Fax +49 6201 708 402<br />

Contact: Mr Gunter Engel<br />

Dr James Desmarchelier<br />

S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry<br />

CSIRO En<strong>to</strong>mology<br />

16 Guilfoyle Street<br />

Yarralumla 2600<br />

Phone: + 614 1302 0958<br />

Fax: + 612 6246 4202<br />

Email: julie.carter@en<strong>to</strong>.csiro.au<br />

Internet: http://www.en<strong>to</strong>.csiro.au<br />

Prof James DeVay<br />

Department of Plant Pathology<br />

University of California<br />

One Shields Avenue<br />

Davis, California 95616, USA<br />

Tel +1 530 752 7310<br />

Fax +1 530 752 5674<br />

Email: jedevay@ucdavis.edu<br />

Dr Florencio Jiménez Díaz<br />

INIFAP Institu<strong>to</strong> Nacional de Investigaciones Forestales,<br />

Agricolas y Pecuarias<br />

Apartado Postal 247, CP 27000<br />

Torreón, Coahuila, Mexico<br />

Tel +52 176 202 02<br />

Fax +52 176 207 14 or 15<br />

Prof Rafael Jiménez Díaz<br />

Institute of Sustainable Agriculture<br />

Dept of Crop Protection<br />

CSIC, Alameda del Obispo s/n<br />

Apartado 4084<br />

14080 Córdoba, Spain<br />

Tel +34 957 499 221<br />

Fax +34 957 499 252<br />

Email: agljidir@uco.es<br />

Dr Don Dickson<br />

University of Florida<br />

PO Box 110620, Bldg 970<br />

Surge Area Drive<br />

Gainesville, Florida 32611-0620, USA<br />

Tel +1 352 392 1901 x 135<br />

Fax +1 352 392 0190<br />

Email: dwd@gnv.ifas.ufl.edu<br />

DIREC-TS<br />

Badal, 19 - 21 B En<strong>to</strong>l 1°<br />

Barcelona 08014, Spain<br />

Tel +34 933 312 753<br />

Fax +34 933 315 289<br />

Email: direc-ts@sct.ichnet.es<br />

www.sustra<strong>to</strong>s.com<br />

DI.VA.P.R.A. – Pa<strong>to</strong>logia Vegetale, University<br />

of Torino<br />

Via Leonardo da Vinci 44<br />

10095 Grugliasco, Torino, Italy<br />

Tel +39 011 670 8539<br />

Fax +39 011 670 8541<br />

Email: gullino@agraria.uni<strong>to</strong>.it<br />

Contact: Dr ML Gullino, Dr A Minu<strong>to</strong><br />

DLV Horticultural Advisory Service<br />

PO Box 6207, Horst<br />

5960 AE, The Netherlands<br />

Tel +31 77 398 7500<br />

Fax +31 77 398 6682<br />

Dr Jonathan Donahaye<br />

Agricultural Research Organisation<br />

PO Box 6, Bet-Dagan, Israel<br />

Tel +972 3 968 3585<br />

Fax +972 3 960 4428<br />

Email: jondon@netvision.net.il<br />

Dow AgroSciences<br />

9330 Zionsville Road<br />

Indianapolis, Indiania 46268-1054, USA<br />

Tel +1 317 337 4582<br />

Fax +1 317 337 4567<br />

Email: info@dowagro.com<br />

Contact: Michael W Melichar<br />

Dr Alan Dowdy<br />

Grain Marketing and Production<br />

Research Center<br />

USDA-ARS<br />

Manhatten, Kansas 66502, USA<br />

Tel +1 913 776 2719<br />

Email: dowdy@crunch.usgmrl.edu<br />

226


Dryacide Australia Pty Ltd<br />

1/20 Rye Lane Street<br />

Madding<strong>to</strong>n 6109<br />

Western Australia<br />

Tel +619 459 9849<br />

Fax +619 493 2329<br />

Dryacide USA<br />

3536 Emerson Street, San Diego<br />

California 92106, USA<br />

Tel +1 619 222 1680<br />

Fax +1 619 523 1713<br />

E<br />

Eagle Picher Minerals Inc<br />

6110 Plumas St<br />

Reno, Nevada 89509, USA<br />

Tel +1 880 366 7607<br />

Fax +1 702 824 7694<br />

Earthgro<br />

PO Box 143, Route 207<br />

Lebanon, Connecticut 06249, USA<br />

Tel +1 203 642 7531<br />

Mr Patrick Ducom<br />

Labora<strong>to</strong>ire Dendrées S<strong>to</strong>ckées,<br />

Chemin d’Artigues<br />

Cenon 33150, France<br />

Tel +33 556 326 220<br />

Fax +33 556 865 150<br />

Email: ducom@easynet.fr<br />

Dr John M Duniway<br />

University of California<br />

One Shields Ave<br />

Davis, California 95616-8680, USA<br />

Tel +1 530 752 0324<br />

Fax +1 530 752 5674<br />

Email: jmduniway@ucdavis.edu<br />

Dr Florence V Dunkel<br />

Department of En<strong>to</strong>mology<br />

Montana State University<br />

324 Leon Johnson Hall<br />

Bozeman, Montana 59717, USA<br />

Tel +1 406 994 5065<br />

Fax +1 406 585 5608<br />

Email: ueyfd@montana.edu<br />

Dura Green Marketing<br />

PO Box 1486<br />

Mount Dora, Florida 32756-1486, USA<br />

Tel +1 352 383 8811<br />

Durs<strong>to</strong>ns<br />

Durs<strong>to</strong>n Garden Products<br />

Sharpham, Street, Somerset, BA16 9SE.<br />

Tel +44 1458 442688<br />

Fax +44 1458 448327<br />

Email: durs<strong>to</strong>ns@uc-garden.co.uk<br />

Dutch Plantin<br />

De Vlonder 3, PO Box 13<br />

5427 ZG Boekel, Netherlands<br />

Tel +31 492 32 4291<br />

Fax +31 492 32 4637<br />

Email: info@dutchplantin.com<br />

www.dutchplantin.com<br />

École Nationale Supérieure de Technologie,<br />

Université Cheikh Anta Diop<br />

BP 5005, Dakar-Fann, Senegal<br />

Tel +221 825 7528<br />

Fax +221 825 3724<br />

Email: info@ucad.sn<br />

Ecogen Inc<br />

2005 Cabot Boulevard West<br />

Langhorne, Pennsylvania 19047, USA<br />

Tel +1 215 757 1590<br />

Fax +1 215 757 2956<br />

Ecogen Inc<br />

P. O. Box 4309<br />

Jerusalem, Israel<br />

Tel +972 2 733 212<br />

Fax +972 2 733 265<br />

EcoLife Corp.<br />

PO Box 2008<br />

Thousand Oaks, California 91358, USA<br />

Tel +1 805 230 2511<br />

Fax +1 805 694 1108<br />

EcoScience Corp<br />

Produce Systems Division<br />

PO Box 3228<br />

Orlando, Florida 32802-3228, USA<br />

Tel +1 407 872 2224<br />

Fax +1 407 872 2261<br />

Eco-Soil Systems<br />

10890 Thornmint Road, Suite 200<br />

San Diego, California 92127, USA<br />

Tel +1 619 675 1660<br />

Fax +1 858 675 1662<br />

www.ecosoil.com<br />

Dr Mohamed Eddaoudi<br />

Institut National de la Recherche Agronomique,<br />

Domaine Malk Al Zahar Agadir, Morocco<br />

Fax +212 8 24 23 52<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

227


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Eden BioScience<br />

11816 Northcreek Parkway North<br />

Bothell, Washing<strong>to</strong>n 98011, USA<br />

Tel +1 425 806 7300<br />

Fax +1 425 806 7400<br />

Dr Clyde Elmore, Vegetable Crops<br />

Department, University of California<br />

One Shields Avenue<br />

Davis, California 95616, USA<br />

Tel +1 530 752 0612<br />

Email: clelmore@vegmail.ucdavis.edu<br />

Empresa Colombiana de Biotecnologia SA<br />

Carrera 50 # 17 - 65<br />

Santafé de Bogotá, Colombia<br />

Tel +571 414 3851<br />

Fax +571 414 3879<br />

Email: mlleras@colomsat.net.co<br />

Contact: Mr Mauricio Lleras<br />

ENEA Departimen<strong>to</strong> Innovazione, Set<strong>to</strong>re<br />

Biotecnologie e Agricoltura<br />

Casaccia, Rome, Italy<br />

Tel +3906 3048 3607<br />

Fax +3906 3048 4267<br />

Contact: Prof Lucio Triolo, Dr Angelo Correnti<br />

E-Nema<br />

Gesellschaft für Biotechnologie und Biologischen<br />

Pflanzenschultz GmbH<br />

Klausdorfer Strasse 28-36<br />

D-24223 Raisdorf, Germany<br />

Tel +49 4307 829 50<br />

Fax +49 4307 829 514<br />

www.e-nema.de<br />

En<strong>to</strong>sol, Australia<br />

Tel +612 9718 3380<br />

Fax +612 8587 5872<br />

Email: en<strong>to</strong>sol@hotmail.com<br />

Contact: Mr Roger Allanson<br />

EPAGRI<br />

Rural de Santa Catarina SA<br />

Rodovia An<strong>to</strong>nio Heil<br />

km 6 CP 277, Fone, Brazil<br />

Tel +55 47 346 5244<br />

Fax +55 47 346 5255<br />

Contact: Juarez José Vanni Müller<br />

Escuela Agricola Panamericana<br />

Apartado Postal 93<br />

Tegucigalpa, Honduras<br />

Tel +504 776 6140<br />

Fax +504 776 6242<br />

Contact: Ing. Carlos Rogelio T.<br />

Dr Rober<strong>to</strong> García Espinosa<br />

Colegio de Postgraduados en Ciencias Agricolas, IFÍT<br />

Institu<strong>to</strong> de Fi<strong>to</strong>sanidad, Montecillos<br />

Texcoco 56230, Mexico<br />

Tel +52 595 102 20 or 115 80<br />

Fax +52 595 102 20 or 115 80<br />

Email: rogar@colpos.colpos.mx<br />

Eucatex Mineral Ltda<br />

Rua Jussara, 1273-V Tamboré<br />

Barueri São Paulo<br />

06465-070 SP, Brazil<br />

Tel +55 11 3049 2233<br />

Tel +55 11 7295 1411<br />

Fax +55 11 7295 1411<br />

Contact: JE Aquino<br />

European Vegetable R&D Centre<br />

Binnenweg 6, B-2860<br />

Sint-Katelijne-Waver, Belgium<br />

Tel +32 15 552 771<br />

Fax +32 15 553 061<br />

Contact: Prof F Benoit or Mr N Ceustermans<br />

Excel Industries Ltd, India<br />

184/87 Swami Vivekanand Road, Jogeshwari<br />

Bombay 400 102, India<br />

Tel +91 22 628 8258<br />

Fax +91 22 620 3657<br />

Exportserre-Excoserre SRL<br />

Via Mazzini 79<br />

Alassio 17021, Italy<br />

Tel +39 018 258 9045<br />

Fax +39 018 258 9898<br />

F<br />

Fabricaciones Vignolles<br />

Calle Genaro Cajal 3 3° C<br />

Navalmoral de la Mata<br />

Cáceres 10300, Spain<br />

Tel +34 927 535 216<br />

Fax +34 927 534 836<br />

Contact: Ing. Jean Vignolles<br />

FAO Integrated Pest Control<br />

Intercountry Programme<br />

FAO Regional Office, PO Box 3700<br />

MCPO, 1277 Metro Manila<br />

Philippines<br />

Tel +632 818 6478 or 813 4229<br />

Fax +632 812 7725 or 810 9409<br />

Email: ipm-manila@cgnet.com<br />

Contact: Dr Peter Ooi<br />

228


Federal Biological Research Centre for<br />

Agriculture and Forestry<br />

Königin-Luise-Strasse 19<br />

14195 Berlin, Germany<br />

Tel +49 308 3041 or 261<br />

Fax +49 308 304 2503 or 2002<br />

Contact: Dr Chris<strong>to</strong>ph Reichmuth<br />

Fenic Co Inc<br />

PO Box 1500<br />

Mercedes, Texas 78570, USA<br />

Tel +1 956 565 6120<br />

Fax +1 956 514 1712<br />

Email: fenic@hiline.net<br />

Dr Steven Fennimore<br />

Department of Vegetable Crops<br />

University of California<br />

1636 East Alisal Street<br />

Salinas, California 93905, USA<br />

Tel +1 831 755 2896<br />

Fax +1 831 755 2814<br />

Email: safennimore@ucdavis.edu<br />

Dr Ronald Ferrera-Cerra<strong>to</strong><br />

Institu<strong>to</strong> de Recursos Naturales<br />

Colegio de Posgraduados en Ciencias Agricolas, Apt<br />

Postal 264<br />

Montecillo 56230, Mexico<br />

Tel +52 595 116 00<br />

Fax +52 595 115 93<br />

Email: ronaldfc@colpos.colpos.mx<br />

FHIA Foundation for Agricultural Research<br />

PO Box 2067<br />

San Pedro Sula, Honduras<br />

Tel +504 668 2809<br />

Fax +504 668 2313<br />

Email: dinvest@simon.intertel.hn<br />

Contact: Dr Dale Krigsvold<br />

FibreForm Wood Products Inc<br />

1999 Ave. of the Stars, Ste. 250<br />

Los Angeles, California 90067-6024, USA<br />

Tel +1 310 203 5401<br />

Fax +1 310-203-5421<br />

Email: marc@fibreform.com<br />

Contact: Mr Marc A Seidner<br />

Dr Paul Fields<br />

Cereal Research Centre<br />

Agriculture and Agri-Food Canada<br />

195 Dafoe Rd, Winnipeg<br />

MB R3T 2M9, Canada<br />

Tel +1 204 983 1468<br />

Fax +1 204 983 4604<br />

Email: Pfields@em.agr.ca<br />

www.res2.agr.ca/winnipeg/s<strong>to</strong>red.htm<br />

Flame Engineering Inc<br />

PO Box 577<br />

LaCrosse, Kansas 67548, USA<br />

Tel +1 880 255 2469<br />

Fax +1 785 222 3619<br />

www.flameeng.com<br />

Floragard GmbH<br />

Gerhard-Stalling-Strasse 7<br />

D-26135 Oldenburg, Germany<br />

Tel +49 441 20 920<br />

Fax +49 441 20 922 92<br />

www.floragard.de<br />

Flora<strong>to</strong>rf Produckte<br />

Calle Real 38, Alhendín<br />

Granada 18620, Spain<br />

Tel +34 958 558 288<br />

FMC Foret Grupo Agroquimicos<br />

Barcelona, Spain<br />

Tel +34 934 167 400<br />

Food Protection Services<br />

95-715 Hinali Street<br />

Milliani, Hawaii 96789, USA<br />

Tel +1 808 625 1599<br />

Fax +1 808 625 1599<br />

Email: fps@gte.net<br />

Contact: Mr Lawrence Pierce<br />

Forestry Suppliers Inc<br />

205 West Rankin Street<br />

P. O. Box 8397<br />

Jackson, Mississippi 39284-8397, USA<br />

Tel +1 601 354 3565<br />

Fax +1 601 292 0165<br />

www.forestry-suppliers.com<br />

Marshall Fowler<br />

Randfontein, South Africa<br />

Tel +27 11 412 1130<br />

Fax +27 11 693 4024<br />

Contact: Mr Peter Hol<strong>to</strong>n<br />

FPO Fruit Research Centre<br />

Brugstraat 51, 4475 Wilhelminadorp<br />

The Netherlands<br />

Tel +31 488 473 700<br />

Email: jobsen@pfw.agro.nl<br />

www.agro.nl/fpo<br />

Contact: JA Jobsen<br />

Francisco Domingo SL<br />

Carretera Montehermoso km 1.400<br />

Coria, Cáceres 10800, Spain<br />

Tel +34 927 500 861<br />

Fax +34 927 500 756<br />

Contact: Ing. Francisco Domingo<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

229


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Dr Deborah Fravel<br />

Biocontrol of Plant Diseases Labora<strong>to</strong>ry USDA-ARS<br />

Building 011A Rom 275<br />

BARC-West<br />

Beltsville, Maryland 20705, USA<br />

Tel +1 301 504 5080<br />

Fax +1 301 504 5968<br />

Email: dfravel@asrr.arsusda.gov<br />

Dr J Fresno, INIA<br />

Ctra de la Coruña km 7.5<br />

28080 Madrid, Spain<br />

Tel +34 91 347 6889<br />

Fax +34 91 357 3107<br />

Email: jfresno@inia.es<br />

Fruitfed Supplies Ltd<br />

PO Box 2116<br />

Auckland, New Zealand<br />

Tel +649 525 0420<br />

Fax +649 525 0443<br />

Fumigation Service & Supply Inc<br />

10540 Jessup Boulevard<br />

Indianapolis, Indiana 46280-1451, USA<br />

Tel +1 317 846 5444<br />

Fax +1 317 846 9799<br />

Email: insectslimited@aol.com<br />

Website http://www.insectslimited.com/ Contact: David<br />

K Mueller or John Mueller<br />

FUNDASES Foundation for Consultancy of the<br />

Rural Sec<strong>to</strong>r<br />

Calle 83A # 72 – 24<br />

Santafé de Bogotá, Colombia<br />

Tel +571 430 8987<br />

Fax +571 430 8997<br />

Email: omdfrdses@impsat.net.co<br />

Contact: Mr Amilcar Salgado<br />

FUSADES Foundation for Economic and Social<br />

Development<br />

Edificio FUSADES, Vlvd. Y Urb. Santa Helena, Antiguo<br />

Cuscatlán, La Libertad, San Salvador<br />

El Salvador<br />

Tel +503 278 336<br />

Fax +503 278 3369<br />

Contact: Ing. Boris Corpeño<br />

G<br />

Dr Abraham Gamliel<br />

Institute of Agricultural Engineering<br />

Agricultural Research Organisation<br />

PO Box 6, Bet Dagan 50250, Israel<br />

Tel +972 3 968 3452<br />

Fax +972 3 960 4704<br />

Dr A López García<br />

FECOAM, c/Levante 5<br />

Murcia 30008, Spain<br />

Tel +34 968 246 562<br />

Fax +34 968 234 565<br />

Email: fecoam@forodigital.es<br />

Gardex Chemicals Ltd<br />

7 Meridian Road, E<strong>to</strong>bicoke<br />

Ontario M9W 4Z6, Canada<br />

Tel +1 416 675 1638<br />

Fax +1 416 798 1647<br />

Email: kfurgiuele@gardexinc.com<br />

www.gardexinc.com<br />

Contact: Ms Karen Furgiuele<br />

Gas Process Control<br />

16 Jessie Street<br />

Seacliffe Park, SA 5049, Australia<br />

Tel +618 8298 2932<br />

Fax +618 8298 8553<br />

Email: yandbnagle@picknow1.com.au<br />

Gempler’s Inc, IPM Supplies<br />

PO Box 270<br />

Belleville, Wisconsin 53508, USA<br />

Tel +1 608 437 4883<br />

Fax +1 608 437 6941<br />

www.gemplers.com<br />

Dr Walid Abu Gharbieh<br />

University of Jordan, Amman, Jordan<br />

Tel +962 6 534 3555 x 2530<br />

Email: snober@ju.edu.jo<br />

Dr Raquel Ghini<br />

EMBRAPA/CNPMA, Caixa Postal 69<br />

13820-000 Jaguariuna<br />

São Paulo, Brazil<br />

Tel +55 19 867 8762<br />

Fax +55 19 867 5225<br />

Email: raquel@cnpma.embrapa.br<br />

Dr James Gilreath<br />

University of Florida<br />

Gulf Coast Research & Education Center 5007 60th<br />

Street East<br />

Braden<strong>to</strong>n, Florida 34203-9425, USA<br />

Tel +1 941 751 7636<br />

Fax +1 941 751 7639<br />

Email: drgilreath@aol.com<br />

Dr P Golob<br />

Tropical Products Institute<br />

London, UK<br />

Tel +44 20 7636 8636<br />

230


Dr Walter Gould<br />

Research En<strong>to</strong>mologist<br />

Subtropical Horticulture Research Station ARS-USDA<br />

13601 Old Cutler Road<br />

Miami, Florida 33158, USA<br />

Tel +1 305 254 3623<br />

Fax +1 305 238 9330<br />

Email: miawg@ars-grin.gov<br />

WR Grace & Co<br />

1001 Yosemite Drive<br />

Milpitas, California 95035, USA<br />

Tel +1 880 492 8255<br />

Grainco Australia Ltd<br />

PO Box 136, Toowoomba<br />

Queensland 4350, Australia<br />

Tel +617 4639 9443<br />

Fax +617 4639 9359<br />

Contact: Mr Barry Bridgeman<br />

Grain Marketing Production and Research<br />

Center, USDA-ARS<br />

1515 College Avenue<br />

Manhattan, Kansas 66502, USA<br />

Tel +1 785 776 2783<br />

Fax +1 785 776 2792<br />

Email: arthur@usgmrl.ksu.edu<br />

Contact: Dr Frank H Arthur<br />

GrainPro Inc, USA<br />

200 Baker Avenue, Suite 309<br />

Concord, Massachusetts 01742, USA<br />

Tel +1 978 371 7118<br />

Fax +1 978 371 7411<br />

Email: pvillers@gc.org<br />

www.grainpro.com<br />

Grainsmith Pty, Australia<br />

10 Beltana Road, Pialliago<br />

Canberra, ACT 2609, Australia<br />

Tel +612 62 489 228<br />

Email: apples@dynamite.com.au<br />

Grasso Products BV<br />

PO Box 343<br />

5201 AH-Her<strong>to</strong>genbosch<br />

The Netherlands<br />

Tel +31 73 6203 911<br />

Fax +31 73 6214 320<br />

www.grasso.nl<br />

Dr Thaís Tostes Graziano<br />

Institu<strong>to</strong> Agronomico de Campinas<br />

Caixa Postal 28, 13001-970<br />

Campinas, SP Brazil<br />

Tel +55 19 241 9091<br />

Great Lakes Chemical Corporation<br />

One Great Lakes Boulevard<br />

West Lafayette, Indiana 47906, USA<br />

Tel +1 765 497 6100<br />

Fax +1 765 497 6123<br />

Great Lakes IPM<br />

10220 Church Road NE<br />

Vestaburg, Michigan 48891, USA<br />

Tel +1 517 268 5693 or 5911<br />

Fax +1 517 268 5311<br />

Green Oasis Co<br />

PO Box 930151<br />

Amman 11193, Jordan<br />

Tel +962 6 560 5191<br />

Fax +962 6 560 5190<br />

Green Releaf<br />

2100 Corporate Square Blvd, Suite 201<br />

Jacksonville, Florida 32216, USA<br />

Tel +1 904 723 0002<br />

Fax +1 904 723 5250<br />

Green Spot Ltd<br />

93 Priest Road<br />

Nottingham, New Hampshire 03290-6204, USA<br />

Tel +1 603 942 8925<br />

Fax +1 603 942 8932<br />

Email: GrnSpt@internetMCI.com<br />

Griffith Labora<strong>to</strong>ries<br />

Toron<strong>to</strong>, Ontario, Canada<br />

Tel +1 880 263 4476 or +1 416 288 3050<br />

www.griffithlabs.com/home.html<br />

Grodan<br />

PO Box 1160, 6040 KD Roermond<br />

The Netherlands<br />

Tel +31 475 353 010<br />

Fax +31 475 353 594<br />

Email: info@grodan.com<br />

www.grodan.com<br />

Grodan (Med)<br />

Avda de los Principes de España<br />

116 Venta del Olivo<br />

Paraje Simon Aciën<br />

04700 El Ejido, Spain<br />

Tel +34 950 489 709<br />

Fax +34 950 489 703<br />

Email: info@grodan.com<br />

Grodania AS<br />

Hovedgaden 501<br />

2640 Hedehusene, Denmark<br />

Tel +45 46 560 400<br />

Fax +45 46 561 211<br />

Email: Info@grodan.com<br />

www.grodan.com<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

231


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

232<br />

Grondortsmettingen DeCeuster nv<br />

Fortsesteenweg 30, B-2860<br />

Sint-Katelijne-Waver, Belgium<br />

Tel +32 15 31 22 57<br />

Fax +32 15 31 36 15<br />

Email: dcm@dcmpronatura.com<br />

Grow Group International Nursery SARL<br />

Route de Tiznit km 39<br />

Tin Mansour, Ch<strong>to</strong>uka Ait Baha<br />

Agadir, Morocco<br />

Tel +212 8 209 007 or 08<br />

Fax +212 8 209 006<br />

Contact: Mr Pierre Boniol<br />

Grow Group Netherlands<br />

Plantenkwekweij GNM Grootscholten BV, Postbus 118<br />

Naaldwijk AC 2670, Netherlands<br />

Tel +31 174 625 377<br />

Contact: Mr Jan Mulder<br />

GTZ Germany<br />

Proklima, Postfach 5180<br />

65756 Eschborn, Germany<br />

Tel +49 6196 79 1350<br />

Fax +49 6196 796 318<br />

Contact: Ms Sylvia Ullrich<br />

GTZ IPM project, Jordan<br />

PO Box 926238<br />

Amman, Jordan<br />

Tel +962 6 472 6682<br />

Fax +962 6 472 6683<br />

Email: gtzipm@go.com.jo<br />

Contact: Dr Volkmar Hasse<br />

GTZ IPM project, Morocco<br />

BP 43 Yacoub El Mansour<br />

10053 Rabat, Morocco<br />

Tel +212 7 690 670<br />

Fax +212 7 690 670<br />

Email: gtz-pest@mtds.com<br />

GTZ IPM project, Egypt<br />

c/o GTZ office, 3rd floor<br />

4d El Gezira Street<br />

Zamalek, Cairo 11211, Egypt<br />

Tel +202 335 3349<br />

Fax +202 360 3972<br />

Email: ipm@idsc.gov.eg<br />

Prof M Lodovica Gullino<br />

DI.VA.P.R.A. – Pa<strong>to</strong>logia Vegetale<br />

University of Turin<br />

Via Leonardo da Vinci 44<br />

Grugliasco 10095, Torino, Italy<br />

Tel +39 011 670 8539<br />

Fax +39 011 670 8541<br />

Email: gullino@agraria.uni<strong>to</strong>.it<br />

Guohua Soilless Cultivation Tech Co Ltd<br />

Beijing 100022<br />

China<br />

Tel +86 10 6515 9568<br />

Gustafson Inc<br />

1400 Pres<strong>to</strong>n Road, suite 400<br />

Plano, Texas 75003, USA<br />

Tel +1 972 985 8877<br />

Fax +1 972 985 1696<br />

Mr Zoraida Gutierrez<br />

Cultivos Miramonte, CR 43 C # 1-75<br />

Ap<strong>to</strong> 903, Medellin, Colombia<br />

Tel +574 553 2050<br />

Fax +574 553 3167<br />

Email: cultivmt@supernet.com.co<br />

H<br />

Dr Saad Hafez<br />

University of Idaho<br />

29603 University of Idaho Lane<br />

Parma, Idaho 83660, USA<br />

Tel +1 208 722 6701 x 237<br />

Fax +1 208 722 6708<br />

Email: shafez@uidaho.edu<br />

Dr Guy Hallman<br />

Kika De La Garza<br />

Subtropical Agricultural Research Center USDA-ARS<br />

2413 E. Hwy 83 Bldg 200<br />

Weslaco, Texas 78596, USA<br />

Tel +1 956 447-6313<br />

Fax +1 956 447-6345<br />

Email: ghallman@weslaco.ars.usda.gov<br />

Haogenplast<br />

Kibbutz Haogen 42880, Israel<br />

Tel +9729 898 2108<br />

Fax +9729 894 7758<br />

Email: <strong>to</strong>mdb@netvision.net.il<br />

www.haogenplast.co.il<br />

Contact: Mr Tom de Bruin<br />

Hans Dieter Siefert Machinen und<br />

Apparatbau<br />

Umwelttechnik, Ostrasse 7<br />

D-7640 Kehl/Rhein, Germany<br />

Tel +49 785 175 840<br />

Dr Arnold Hara<br />

Department of En<strong>to</strong>mology<br />

University of Hawaii<br />

461 W Lanikaula Street<br />

Hilo, Hawaii 96720, USA<br />

Tel +1 808 974 4105<br />

Fax +1 808 974 4110<br />

Email: arnold@hawaii.edu


Harmony Farm Supply<br />

3244 Gravenstein Highway, No B<br />

Sebas<strong>to</strong>pol, California 95472, USA<br />

Tel +1 707 823 9125<br />

Fax +1 707 823 1734<br />

Email: info@harmonyfarm.com<br />

www.harmonyfarm.com<br />

Harrow Research Centre<br />

Agriculture and Agri-Food Canada<br />

Harrow, Ontario NOR 1GO, Canada<br />

Tel +1 519 738 2251 x 423<br />

Fax +1 519 738 2929<br />

Email: papadopoulost@em.agr.ca<br />

Contact: Dr Tom Papadopoulos<br />

Dr Volkmar Hasse<br />

GTZ-Jordanian IPM project<br />

PO Box 926238, Amman, Jordan<br />

Tel +96 26 47 26 682<br />

Fax +96 26 47 26 683<br />

Email: gtzipm@go.com.jo<br />

University of Hawaii<br />

Department of Agricultural Engineering<br />

3050 Maile Way<br />

Honolulu, Hawaii 96822, USA<br />

Contact: Dr P Winkelman<br />

University of Hawaii<br />

Department of En<strong>to</strong>mology<br />

Beaumont Agricultural Research Center<br />

461 W Lanikaula Street<br />

Hilo, Hawaii 97620, USA<br />

Tel +1 808 974 4105<br />

Fax +1 808 974 4110<br />

Email: arnold@hawaii.edu<br />

Contact: Dr Arnold Hara<br />

Hebrew University of Jerusalem<br />

Dept of Plant Pathology<br />

Faculty of Agriculture, PO Box 12<br />

Rehovot 76100, Israel<br />

Tel +972 8 948 9217<br />

Fax +972 8 946 6794<br />

Email: gamliel@agri.huji.ac.il<br />

Contact: Prof Jaacov Katan<br />

Hedley Technologies Inc<br />

Head office: 1540,<br />

800 West Pender Street<br />

Vancouver, BC, V6C 2V6, Canada<br />

Tel +1 604 685 1247<br />

Fax +1 604 685 6039<br />

Winnipeg office (for contact):<br />

Tel +1 204 942 3770<br />

Fax +1 204 942 3779<br />

Email: hedcvn@ibm.net<br />

www.hedleytech.com<br />

Contact: Chris Van Nat<strong>to</strong> (Winnipeg office)<br />

Helena Chemical Co<br />

6075 Poplar Avenue, Suite 500<br />

Memphis, Tennessee 38119, USA<br />

Tel +1 901 761 0050<br />

Henry Doubleday Research Association<br />

Ry<strong>to</strong>n on Dunsmore, Coventry<br />

CV8 3LG, UK<br />

Tel +44 24 7630 3517<br />

Fax +44 24 7663 9229<br />

Email: enquiry@hdra.org.uk<br />

www.hdra.org.uk<br />

HerkuPlast-Kubern GmbH<br />

94140 Ering-Inn, Germany<br />

Tel +49 85 73 960 30<br />

Fax +49 85 73 960 370<br />

HerkuPlast-Kubern GmbH (export)<br />

PO Box 501, 4870 AM Etten-Leur<br />

Netherlands<br />

Tel +31 76 50 17 402<br />

Fax +31 76 50 36 645<br />

Email: quickpot@wxs.nl<br />

Dr Tim Herman<br />

Crop and Food Research<br />

Auckland, New Zealand<br />

Tel +649 849 3660<br />

High Country Roses<br />

9122 E Highway 40<br />

PO Box148<br />

Jensen, Utah 84035, USA<br />

Tel +1 435 789 5512<br />

Fax +1 435 789 5517<br />

Email: roses@easilink.com<br />

Dr Robert Hill<br />

HortResearch, Ruakura<br />

New Zealand<br />

Tel +64 78 58 4775<br />

Fax +64 78 58 4702<br />

Email: rhill@hort.cri.nz<br />

Hishtil Ashkelon Nursery Ltd<br />

PO Box 360<br />

78102 Ashkelon, Israel<br />

Tel +972 7 734 464<br />

Fax +972 7 738 831<br />

Email: hishtil@netvision.net.il<br />

Contact: Menni Shadmi<br />

HKB<br />

Ankerkade 6, Venlo<br />

5928 PL, The Netherlands<br />

Tel +31 77 387 2424<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

233


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

234<br />

Dr Bob Hochmuth<br />

Institute of Food and Agricultural Sciences (IFAS)<br />

University of Florida<br />

PO Box 7580<br />

County Road 136<br />

Live Oak, Florida 32060-7434, USA<br />

Tel +1 904 362 1725<br />

Fax +1 904 362 3067<br />

Email: bobhoch@ufl.edu<br />

Hoechst Far East Marketing Corp Philippines,<br />

Hoechst House<br />

Legaspi Village, Makati<br />

Metro Manila 3117, Philippines<br />

Tel +63 2 850 646 or 654<br />

Fax +63 2 817 794<br />

Prof Harry Hoitink<br />

Department of Plant Pathology and Env. Graduate<br />

Studies Program<br />

The Ohio State University<br />

211 Selby Hall<br />

1680 Madison Avenue<br />

Wooster, Ohio 44691-4096, USA<br />

Tel +1 330 263 3848<br />

Fax +1 330 263 3841<br />

Email: hoitink.1@osu.edu<br />

Hollyland New-Tech Dev Co Ltd<br />

Rr. 408-410 Ourdike Building No. 38<br />

You Yi Road, Hexi District,<br />

Tianjin 300061, China<br />

Tel +86 22 281 391 92<br />

Fax +86 22 281 391 10<br />

Email: peval@public.tpt.tj.cn<br />

www.peval.nl<br />

Home Grown Cereals Authority<br />

223 Pen<strong>to</strong>nville Rd<br />

London N1 9HY, UK<br />

Tel +44 207 520 3926<br />

Fax +44 20 7520 3958<br />

www.hgca.co.uk<br />

Dr Seizo Horiuchi, National Research Institute<br />

of Vegetables, Ornamental Plants & Tea<br />

MAFF<br />

Morioka<br />

Iwate 020-0123, Japan<br />

Tel +81 196 41 2031<br />

Fax +81 196 41 6315<br />

Email: hrucs:nivot-m.affrc.go.jp<br />

Hortica Inc<br />

RR 1, 723 Robson Rd<br />

Waterdown, Ontario<br />

Canada LOR 2H1<br />

Tel +1 905 689 6984<br />

Fax +1 905 689 3002<br />

Hortiplan<br />

Drevendaal 1, B-2860<br />

Sint-Katelijne-Waver, Belgium<br />

Tel +32 15 31 67 02<br />

Fax +32 15 31 41 38<br />

Contact: Mr Bogairts<br />

Hortiplan (Italy)<br />

Via Cramsci 254<br />

40014 Crevalcore BO, Italy<br />

Tel +39 51 680 0236<br />

Fax +39 51 680 0238<br />

HortiTecnia Ltd<br />

Carrera 19 No. 85 – 65 piso 2<br />

Santafé de Bogotá DC, Colombia<br />

Tel +571 621 8108<br />

Fax +571 617 0730<br />

Email: hortitec@unete.com<br />

Contact: Marta Pizano<br />

HortResearch Natural Systems Group<br />

Ruakura Research Centre<br />

Private bag 3123<br />

Hamil<strong>to</strong>n, New Zealand<br />

Tel +64 7 838 5052<br />

Fax +64 7 838 5903<br />

Email: rhill@hort.cri.nz<br />

Contact: Dr Robert Hill<br />

HortResearch Post-harvest Science<br />

Private bag 92169, Mount Albert<br />

Auckland, New Zealand<br />

Tel +64 9 815 4217<br />

Fax +64 9 849 3660<br />

Email: mlay-yee@hort.cri.nz<br />

Contact: Dr Michael Lay-Yee<br />

HortResearch Pathology Group<br />

PO Box 1401, Havelock North<br />

Hawke’s Bay, New Zealand<br />

Tel +64 6 877 8196<br />

Fax +64 6 877 4761<br />

Contact: Science Manager<br />

Hydro-Gardens Inc<br />

PO Box 25845<br />

Colorado Springs, Colorado 80936, USA<br />

Tel +1 719 495 2266<br />

Fax +1 719 531 0506<br />

Email: hgi@usa.net<br />

Website www.hydro-gardens.com<br />

Hy-Veld Seed Co<br />

Private Bag 2008, Ruwa, Zimbabwe<br />

Tel +26 373 2684 or 2685<br />

Fax +26 373 2658<br />

Email: thedges@mango.zw<br />

Contact: Trevor Hedges


I<br />

ICC-SIAPA, CER<br />

Via Vit<strong>to</strong>rio Vene<strong>to</strong> 7<br />

S. Vincenzo di Galliera<br />

Bologna 40010, Italy<br />

Contact: Claudio Aloi<br />

IFM (Integrated Fertility Management)<br />

333 Ohme Gardens Rd<br />

Wentatchee, Washing<strong>to</strong>n 98801, USA<br />

Tel +1 880 332 3179<br />

Fax +1 509 662 6594<br />

Igene Biotechnology Inc<br />

9110 Red Branch Rd<br />

Columbia, Maryland 21045, USA<br />

Tel +1 410 997 2599<br />

Fax +1 410 730 0540<br />

Igrox Ltd<br />

Worlingworth, Woodbridge<br />

Suffolk IP13 7HW, UK<br />

Tel +44 1728 628 424<br />

Fax +44 1728 628 247<br />

Email: igrox@aol.com<br />

Contact: Mr Chris Watson<br />

IMS Gas and Equipment (PTE) Ltd<br />

38 Lokyang Way, Jurong Town<br />

Singapore 2262, Singapore<br />

Tel +65 268 0847 or 265 8788<br />

Fax +65 265 7628<br />

Indian Agricultural Research Institute (IARI)<br />

KS Krishnau Marg<br />

New Delhi 110012, India<br />

Industrial Oxygen Incorporated Berhad<br />

Jalan Pengisir 15/9, PO Box 77<br />

Shah Alam<br />

Selangor, Malaysia<br />

Tel +60 3 591 0069<br />

Fax +60 3 591 059<br />

Industrias Químicas Sicosa SA<br />

Cami de Sant Roc s/n, Vilablareix<br />

Girona 17180, Spain<br />

Tel +34 972 405 095<br />

Email: sicosa@ea.ictnet.es<br />

Inferco SL<br />

Playa Almarda, Poligono 56<br />

Sagun<strong>to</strong>, Valencia 46500, Spain<br />

Tel +34 962 608 856<br />

Fax +34 962 609 024<br />

Ingauna Vapore<br />

Di Enrico De Carli & C.<br />

Regione Cianea<br />

Castelbianco, SV Italy<br />

Tel +39 0182 77 108<br />

Fax +39 0182 77 088<br />

Dr Chuck Ingels<br />

Sustainable Agriculture Research<br />

and Education Program (SAREP)<br />

University of California<br />

4145 Branch Center Road<br />

Sacramen<strong>to</strong> CA 95827-3898, USA<br />

Tel +1 916 875 6913<br />

Fax +1 916 875 6233<br />

Email: caingels@ucdavis.edu<br />

INRA Institut National de la Recherche<br />

Agronomique<br />

147 rue de l’Université<br />

75338 Paris cedex 07, France<br />

Tel +331 4275 9000<br />

Fax +331 4705 9966<br />

www.jouy.inra.fr<br />

Insects Limited<br />

10540 Jessup Boulevard<br />

Indianapolis, Indiana 46280-1451, USA<br />

Tel +1 317 846 5444 or 896 9300<br />

Tel (800) 992 1991 (only when phoning from North<br />

America)<br />

Fax +1 317 846 9799<br />

Email: insectslimited@aol.com<br />

Website www.insectslimited.com<br />

Contact: David K Mueller<br />

Institute of Biocontrol<br />

BBA, Darmstadt, Germany<br />

Tel +49 6151 407 227<br />

Email: e.koch.biocontrol.bba@t-online.de<br />

www.bba.de<br />

Institute of Plant Quarantine<br />

Ministry of Agriculture, Building 241<br />

Hui Xin Li, Chaoyang District<br />

Beijing 100029, China<br />

Tel +86 10 6492 1084<br />

Fax +86 10 6492 1084<br />

Institute of Sustainable Agriculture<br />

Dept of Crop Protection<br />

CSIC, Alameda del Obispo s/n<br />

Apartado 4084<br />

14080 Córdoba, Spain<br />

Tel +34 957 499 221<br />

Fax +34 957 499 252<br />

Email: agljidir@uco.es<br />

Contact: Prof Rafael Jiménez Díaz<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

235


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

236<br />

Institu<strong>to</strong> de Tecnologia de Alimen<strong>to</strong>s<br />

Caixa Postal 139<br />

CEP 13073-001 Campinas<br />

São Paulo, Brazil<br />

Fax +55 192 41 5034<br />

Contact: Dr Maria Regina Sar<strong>to</strong>ri<br />

INTA Famailla<br />

Túcúman, Argentina<br />

Tel +54 3863 610 48<br />

Fax +54 3863 615 46<br />

Email: avaleiro@inta.gov.ar<br />

Contact: Ing. Alejandro Valeiro<br />

International Forest Tree Seed Co<br />

Odenville, Alabama 35120, USA<br />

Tel +1 205 629 6461<br />

International Institute of Biological Control,<br />

Regional Office for Asia<br />

IIBC Station, PO Box 210<br />

43409 UPM Serdang<br />

Selangor, Malaysia<br />

Tel +603 942 6489<br />

Fax +603 942 6490<br />

Email: cabi-iibc-malaysia@cabi.org<br />

Contact: Dr Janny Vos or Dr Lim Guan Soon<br />

International Institute of<br />

Biological Control<br />

Office for Caribbean & Latin America<br />

Gordon Street, Curepe<br />

Trinidad & Tobago<br />

Tel +1 809 662 4173<br />

Fax +1 809 663 2859<br />

International Institute of Biological Control,<br />

Central Office<br />

Institute of Centre for Agriculture and Biosciences<br />

International (CAB International), Silwood Park<br />

Buckhurst Road, Ascot<br />

Berks SL5 7TA, UK<br />

Tel +44 1344 872 999<br />

Fax +44 1344 872 901<br />

Email: g.hill@cabi.org or j.waage@cabi.org<br />

Contact: Dr Jeff Waage, Direc<strong>to</strong>r or<br />

Dr Garry Hill, Direc<strong>to</strong>r of Programme Development<br />

International Institute of Biological Control,<br />

Pakistan Station<br />

PO Box 8, Rawalpindi, Pakistan<br />

Tel +92 51 842 347 or 423 210<br />

Fax +92 51 842 347<br />

Telex 55948/5949 PCORP PK BIOCONTROL<br />

International Institute of Biological Control,<br />

Regional Office for Africa<br />

PO Box 633<br />

Nairobi, ICRAF Complex, Kenya<br />

Tel +254 2 521 450<br />

Fax +254 2 521 001 or 522 150<br />

Email: arc@cabi.org<br />

International Maritime Fumigation<br />

Organisation<br />

PO Box 2022<br />

London W1A 5A, UK<br />

Tel +44 207 637 2131<br />

Fax +44 207 637 2151<br />

www.imfo.com<br />

International Mycological Institute<br />

Bakeham Lane, Egham<br />

Surrey TW2O 9TY, UK<br />

Tel +44 1784 470 111<br />

Fax +44 1784 470 909<br />

International Organisation of Biological<br />

Control<br />

Royal Veterinary & Agricultural University<br />

Bulowsvej 13, Frederiksberg C<br />

DK-1870, Denmark<br />

Inter<strong>to</strong>resa AG<br />

Baslerstrasse 42<br />

CH-4665 Oftringen, Switzerland<br />

Tel +41 627 892 800<br />

Fax +41 627 892 801<br />

Dr Barakat Abu Irmalieh<br />

Faculty of Agriculture<br />

Univeristy of Jordan<br />

Amman, Jordan<br />

Tel + 962 6 534 3555<br />

Island Air Products Corp<br />

170 Virata Street, Pasay City<br />

Metro Manila, Philippines<br />

Tel +63 2 833 0771 or 0773<br />

Italoespañola de Correc<strong>to</strong>res SL<br />

Coso, N° 100, 6° Oficina 5a<br />

Zaragoza 50001, Spain<br />

Tel +34 976 234 143<br />

Fax +34 976 226 683<br />

Email: iteco@iteco.es<br />

J<br />

Dr TA Jackson<br />

AgResearch, PO Box 60<br />

Lincoln, New Zealand<br />

Tel +643 325 6900<br />

Fax +643 325 2946<br />

Email: jacksont@agresearch.cri.nz


Jackson & Perkins<br />

1 Rose Lane<br />

Medford, Oregon 97501, USA<br />

www.jackson-perkins.com<br />

Dr K Jacobi<br />

Department of Primary Industry,<br />

Indooroopily, Brisbane<br />

Queensland, Australia<br />

Email: k.jacobi@dpi.qld.gov.au<br />

Dr Eric Jang<br />

Pacific Basin Agricultural Research Center<br />

P. O. Box 4459<br />

Hilo, Hawaii 96720, USA<br />

Tel +1 808 959 4340<br />

Email: ejang@pbarc.ars.usda.gov<br />

Jelirapest<br />

PO Box 225, UPM Post Office<br />

43400 Serdang<br />

Selangor Darul Ehsan, Malaysia<br />

Tel +603 948 7802<br />

Fax +603 948 7802<br />

Contact: Mohd. Azmi Ab. Rahim<br />

JH Biotech Inc<br />

4951 Olivas Park Drive<br />

Ventura, California 93003, USA<br />

Tel +1 805 650 8933<br />

Fax +1 805 650 8942<br />

Jiffy Products<br />

Calle 72 # 57 – 33 piso 4<br />

Barranquilla, Colombia<br />

Tel +575 358 1043<br />

Fax +575 358 2875<br />

Email: roscoltd@latino.net.co<br />

www.jiffyproducts.com<br />

Contact: Mr Gunnar Ostbye<br />

Johnny’s Selected Seeds<br />

310 Foss Hill Road<br />

Albion, Maine 04910, USA<br />

Tel +1 207 437 4301<br />

Fax +1 207 437 2165<br />

Dr Judy Johnson<br />

USDA-ARS<br />

Horticultural Crops Research Labora<strong>to</strong>ry (HCRL)<br />

2021 S. Peach Ave<br />

Fresno, California 93727, USA<br />

Tel +1 559 453 3030<br />

Email: jjohnson@asrr.arsusda.gov<br />

Jordanian-GTZ IPM programme<br />

PO Box 926238<br />

Amman, Jordan<br />

Tel +96 26 47 26 682<br />

Fax +96 26 47 26 683<br />

Email: gtzipm@go.com.jo<br />

Contact: Dr Volkmar Hasse<br />

Jörgen Reitzel A/S<br />

Lerhoj 3A, Bagsvaerd<br />

DK 2880, Denmark<br />

Tel +45 4444 4012<br />

Fax +45 4444 4019<br />

José Maria Pérez Ortega<br />

Avenida de Anaga 45<br />

Santa Cruz de Tenerife 38001, Spain<br />

Tel +34 922 259 931<br />

Fax +34 922 261 228<br />

Email: ortegajm@arrakis.es<br />

JT Ea<strong>to</strong>n & Co Inc<br />

1393 E Highland Rd<br />

Twinsburg, Ohio 44087, USA<br />

Tel +1 216 425 7801<br />

Fax +1 216 425 8353<br />

K<br />

Dr Adel Kader<br />

Pomology Department<br />

One Shields Avenue<br />

University of California<br />

Davis, California 95616, USA<br />

Tel +1 530 752 0909<br />

Email: aakader@ucdavis.edu<br />

Prof Jaacov Katan<br />

Dept of Plant Pathology<br />

Faculty of Agriculture<br />

Hebrew University, PO Box 12<br />

Rehovot 76100, Israel<br />

Tel +972 8 948 9217<br />

Fax +972 8 946 6794<br />

Email: gamliel@agri.huji.ac.il<br />

Dr Fusao Kawakami<br />

MAFF Research Division<br />

Yokohama Plant Protection Station<br />

1-16-10 Shinymashita, Naka-Ku<br />

Yokohama 231-0801, Japan<br />

Tel +81 45 622 8892<br />

Fax +81 45 621 7560<br />

Email: jdr01717@niftyserve.or.jp<br />

Kemira Agro Oy<br />

Porkkalankatu 3, PO Box 330<br />

Helsinki 00101, Finland<br />

Tel +358 10 861 1511<br />

Fax +358 10 862 1384<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

237


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

238<br />

Kennco Manufacturing<br />

PO Box 1158<br />

Ruskin, Florida 33570, USA<br />

Tel +1 813 645 2591<br />

Fax +1 813 645 7801<br />

Email: KenncoMfg@aol.com<br />

http://members.aol.com/kenncomfg/index.ht<br />

KFZB Biotechnik GmbH<br />

Glienicker Weg 185<br />

D-12489 Berlin, Germany<br />

Tel +49 30 670 570<br />

Fax +49 30 670 57233<br />

Dr Geoffry Kirenga<br />

Dar es Salaam University, PO Box 35091<br />

Dar es Salaam, Tanzania<br />

Tel +255 22 241 05008<br />

Email: caco@admin.udsm.ac.tz<br />

www.udsm.ac.tz<br />

Dr JA Kirkegaard<br />

CSIRO Division of Plant Industries<br />

GPO Box 1600<br />

Canberra 260, ACT, Australia<br />

Email: j.kirkegaard@pi.csiro.au<br />

Klasmann-Deilmann GmbH<br />

Georg-Klasmann-Strasse 2-10<br />

Geeste-Gross Hesepe<br />

D-49744, Germany<br />

Tel +49 5937 31 230<br />

Fax +49 5937 31 238<br />

Email: limbers@klasmann-deilmann.de<br />

www.klasmann-deilmann.com<br />

Dr Joseph Kloepper<br />

Department of Plant Pathology<br />

Auburn University<br />

Auburn, Alabama 36849, USA<br />

Tel +1 334 844 4714<br />

Fax +1 334 844 1948<br />

Knowzone Solutions Inc<br />

288 Mill Road, Unit C32, E<strong>to</strong>bicoke<br />

Ontario M9C 4X7, Canada<br />

Tel +1 416 622 7920<br />

Fax +1 416 622 6723<br />

Contact: Errick Willis<br />

Dr Nancy Kokalis-Burelle<br />

US Horticultural Research Labora<strong>to</strong>ry<br />

USDA-ARS<br />

2199 S. Rock Road<br />

Ft. Pierce, Florida 34945, USA<br />

Tel +561 467 6029<br />

Fax +561 467 6062<br />

Email: nburelle@saa.ars.usda.gov<br />

Koppert (Colombia)<br />

Carrera 39 No. 128A – 40<br />

Santafé de Bogotá, Colombia<br />

Tel +571 633 0111<br />

Fax +571 627 0635<br />

Email: jhoyos@latino.net.co<br />

www.koppert.nl<br />

Contact: Mr Juan Camilo Hoyos<br />

Koppert (Mexico)<br />

Andrómeda 47 1er piso<br />

Colonia Prado Churubusco<br />

México DF 14230, Mexico<br />

Tel +52 5 532 5900<br />

Fax +52 5 532 5660<br />

Email: cmexflor@mexred.net.mx<br />

Contact: Ing. Maria Eugenia Lee<br />

Koppert<br />

Veilingweg 17, PO Box 155<br />

2650 AD Berkel en Rodenrijs<br />

The Netherlands<br />

Tel +31 105 140 444<br />

Fax +31 105 115 203<br />

Email: info@koppert.nl<br />

www.koppert.nl<br />

Dr Zlatko Korunic<br />

Direc<strong>to</strong>r of Research<br />

Hedley Technologies Inc<br />

2600 Skymark Ave, Bldg 4<br />

Suite 101, Mississauga<br />

Ontario L4W 5B2, Canada<br />

Tel +1 519 821 3764<br />

Fax +1 519 821 3764<br />

Email: hedzk@ibm.net<br />

Dr Jürgen Kroschel<br />

University of Kassel<br />

Institute for Crop Science<br />

Steinstrasse 19, Witzenhausen<br />

D-37213, Germany<br />

Tel +49 55 42 98 13 11<br />

Fax +49 55 42 98 12 30<br />

Email: kroschel@wiz.uni-kassel.de<br />

L<br />

Dr Alfredo Lacasa<br />

CIDA, Estación Sericícola<br />

La Alberca, Murcia, Spain<br />

Tel +34 968 366 777<br />

Fax +34 968 366 793 or 92<br />

Email: alacasa@forodigital.es<br />

Dr Franco Lamberti<br />

Institu<strong>to</strong> di Nema<strong>to</strong>logia Agraria CNR<br />

70126 Bari, Italy<br />

Email: istnema@area.ba.cnr.it


Dr Kirk Larson<br />

University of California<br />

Irvine, California 92697, USA<br />

Tel +1 714 857 0136<br />

Email: kdlarson@ucdavis.edu<br />

Lipha Tech<br />

3600 W Elm Street<br />

Milwaukee, Wisconsin 53209, USA<br />

Tel +1 414 351 1476<br />

Fax +1 414 351 1847<br />

Laverlam<br />

Carrera 5 No. 47 – 165<br />

A. A. 9985, Cali, Colombia<br />

Tel +572 447 4411<br />

Fax +572 447 4409<br />

Email: laverlam@laverlam.com.co<br />

www.laverlam.com.co<br />

Contact: Ing. Carlos Delgado<br />

Dr George Lazarovits<br />

Pest Management Research Centre<br />

1391 Sandiford Street<br />

London, Ontario N5V 4T3, Canada<br />

Tel +1 519 663 3099<br />

Fax +1 519 663 3454<br />

Email: lazarovitsg@em.agr.ca<br />

Dr Michael Lay-Yee and colleagues,<br />

HortResearch,<br />

Mount Albert<br />

Auckland, New Zealand<br />

Tel +649 815 4200<br />

Fax +649 815 4207<br />

Email: mlay-yee@hort.cri.nz or bwaddell@hort.cri.nz<br />

Dr Leonardo de León<br />

Dirección General de Servicios Agrícolas Avenida Millán<br />

4703<br />

Montevideo CP12900, Uruguay<br />

Tel +598 2 600 0404<br />

Fax +598 2 628 3552<br />

Email: ldeleon@chasque.apc.org.uy<br />

Linde AG Refrigeration<br />

Abraham-Lincoln-Strasse 21<br />

65189 Wiesbaden, Germany<br />

Tel +49 611 7700<br />

Fax +49 611 770 269<br />

www.linde.de<br />

Dr Robert Linderman<br />

Horticultural Crops Research Labora<strong>to</strong>ry, USDA-ARS<br />

3420 NW Orchard Avenue<br />

Corvallis, Oregon 97330, USA<br />

Tel +1 541 750 8760<br />

Fax +1 541 750 8764<br />

Email: ROBERT.LINDERMAN@usda.gov<br />

Lindig Corporation<br />

Steam equipment<br />

PO Box 130130<br />

Roseville MN 55113, USA<br />

Lockheed Martin Idaho Technologies Co<br />

PO Box 1625<br />

Idaho Falls, Idaho 83415-3805, USA<br />

Tel +1 208 526 2695<br />

Fax +1 208 526 0953<br />

Contact: William J Inman<br />

Dr Satish Lodha<br />

Central Arid Zone Research Institute<br />

Jodhpur 342003, India<br />

Email: cazri@x400.nicgw.nic.in<br />

Lombricompues<strong>to</strong>s de la Sabana<br />

Calle 166 # 45 – 65 Of. 523<br />

Santafé de Bogotá, Colombia<br />

Tel +571 671 2965<br />

Fax +571 678 7874<br />

Lombricultura Técnica Mexicana<br />

Iturbide s/n, Esq Calle del Río<br />

San Diego, Texcoco<br />

Edo de México CP 56200, Mexico<br />

Tel +52 595 451 95 or 464 20<br />

Email: lombriz@citsatex.com.mx<br />

www.citsatex.com.mx<br />

Contact: Ing. Claudia Martinez Cerdas<br />

Louisiana Pacific<br />

111 SW 5th Avenue<br />

Portland, Oregon 97204, USA<br />

Tel +1 503 221 0800<br />

Dr Frank Louws<br />

North Carolina State University<br />

PO Box 7616<br />

Raleigh, North Carolina 27695, USA<br />

Tel +1 919 515 6689<br />

Email: frank_louws@ncsu.edu<br />

LS Horticultura España SA<br />

Carretera Pinatar 95, San Javier<br />

Murcia 30730, Spain<br />

Tel +34 968 190 812<br />

Fax +34 968 191 709<br />

Prof M Ludovica Gullino<br />

DI.VA.P.R.A. – Pa<strong>to</strong>logia Vegetale<br />

University of Torino<br />

Via Leonardo Da Vinci 44<br />

Grugliasco 10095, Torino, Italy<br />

Tel +39 011 670 8539<br />

Fax +39 011 670 8541<br />

Email: gullino@agraria.uni<strong>to</strong>.it<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

239


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

240<br />

Dr Gerhard Lung<br />

University of Hohenheim<br />

Institute of Phy<strong>to</strong>medicine, 360c<br />

D-70599 Stuttgart, Germany<br />

Tel +49 711 459 0, ext 2405<br />

Email: glung@uni-hohenheim.de<br />

M<br />

Ing. Juan Carlos Magunacelaya<br />

Avda. Brasil 2950<br />

Valparaiso 4059, Chile<br />

Tel +56 2 678 5821<br />

Fax +56 2 678 5700<br />

Email: edelahoz@aixi.ucv.cl<br />

Makhteshim-Agan of North America, Inc<br />

551 Fifth Ave, Suite 1100<br />

New York, NY 10175, USA<br />

Tel +1 212 661 9800<br />

Fax +1 212 661 9043 or 9038<br />

Makhteshim Chemical Works Ltd,<br />

PO Box 60 Industrial<br />

Beer-Sheva 84100, Israel<br />

Tel +972 3 517 9351<br />

Tel +972 7 629 6615<br />

Fax +972 7 628 0304 or 6280364<br />

Malaysia Oxygen Berhad<br />

13 Jalan 222, Petaling Jaya<br />

PO Box 633<br />

Kuala Lumpur 01-02, Malaysia<br />

Tel +60 3 554 233<br />

Fax: +60 3 7566389<br />

Telex MA 37663<br />

Dr Robert Mangan<br />

Kika De La Garza Subtropical Agricultural Research<br />

Center<br />

USDA-ARS<br />

2413 E. Hwy 83 Bldg 200<br />

Weslaco, Texas 78596, USA<br />

Tel +1 956 447 6316<br />

Fax +1 956 447 6345<br />

Email: rmangan@weslaco.ars.usda.gov<br />

Marten Barel Beheer BV<br />

Roskam 22, 5505 JJ<br />

Veldhoven, The Netherlands<br />

Tel +31 40 253 2726<br />

Fax +31 40 253 9565<br />

Contact: Mr Marten Barel<br />

Mr C Martin, Agriphy<strong>to</strong><br />

Av. de Grande Bretagne<br />

66025 Perpignan, France<br />

Tel +334 68 35 74 12<br />

Fax +334 68 34 65 44<br />

Email: agriphyt@aol.com<br />

Dr Nicholas Martin<br />

Crop and Food Research<br />

Auckland, New Zealand<br />

Tel +649 849 3660<br />

Fax +649 815 4201<br />

Mauri Foods<br />

67 Epping Road<br />

North Ryde, Australia<br />

or: Sylvan Spawn Labora<strong>to</strong>ry<br />

West Hills Industrial Park<br />

Kittanning, Pennsylvania 16201, USA<br />

Tel +1 412 543 2242<br />

Dr Mark Mazzola<br />

Tree Fruit Research Labora<strong>to</strong>ry<br />

USDA-ARS<br />

1104 N. Western Ave<br />

Wenatchee Washing<strong>to</strong>n 98801, USA<br />

Tel +1 509 664 2280<br />

Fax +1 509 664 2287<br />

Email: mazzola@tfrl.ars.usda.gov<br />

Dr Robert McGovern<br />

Gulf Coast Research and Education Center<br />

5007 60th Street East<br />

Braden<strong>to</strong>n, Florida 34203, USA<br />

Tel +1 941 751 7636<br />

Dr Michael McKenry<br />

University of California<br />

9240 South Riverbend Avenue<br />

Parlier, California 93720, USA<br />

Tel +1 559 646 6500<br />

Fax +1 559 646 6593<br />

Email: mckenry@uckac.edu<br />

MC Solvents Co Ltd<br />

180-184 Rajawongge Road<br />

5th floor Metro Building<br />

Bangkok 10100, Thailand<br />

Tel +66 2 223 1294<br />

Fax +66 2 224 9839<br />

Dr Robert McSorley<br />

Dept. Nema<strong>to</strong>logy & En<strong>to</strong>mology<br />

University of Florida<br />

PO Box 110620<br />

Gainesville, Florida 32611-0620, USA<br />

Tel +1 352 392 1901<br />

Email: rmcs@grv.ifas.ufl.edu<br />

Ben Meadows Company<br />

P.O. Box 20200<br />

Can<strong>to</strong>n, Georgia 30114, USA<br />

Tel +1 770-479-3130 or 1-800-241-6401<br />

Fax + 1-800-628-2068<br />

or +1 770-479-3133 for faxes outside US<br />

Email: mail@benmeadows.com or export@benmeadows.com<br />

for international contact


Medak<br />

Andhra Pradesh, India<br />

Tel +91 8458 794 74<br />

Email: somphy<strong>to</strong>@hotmail.com<br />

Megafarma SA de CV<br />

Narcisco Mendoza No. 15<br />

Col. Manuel A. Camacho<br />

Mexico DF<br />

Tel +525 589 5144<br />

Fax +525 293 1184<br />

Email: geolife@megafarma.com.mx<br />

Contact: Ing. Rosa María Rocha<br />

Melcourt Industries Ltd<br />

Eight Bells House, Tetbury<br />

Gloucestershire GL8 8JG, UK<br />

Tel +44 166 650 2711 or 3919<br />

Fax +44 166 650 4398<br />

Email: mail@melcourt.co.uk<br />

www.melcourt.co.uk<br />

Minfeng Industrial Co<br />

Min Feng Shi Ye Company<br />

Hua Yuan Road 136<br />

Jinan 250100, China<br />

Tel +86 531 891 9285<br />

Fax +86 531 825 0100<br />

Dr A Minu<strong>to</strong><br />

DI.VA.P.R.A. – Pa<strong>to</strong>logia Vegetale<br />

University of Torino<br />

Via Leonardo da Vinci 44<br />

10095 Grugliasco, Torino, Italy<br />

Tel +39 0182 554 949<br />

Fax +39 011 670 8541<br />

Email: labfi<strong>to</strong>@netscape.net<br />

Miqdadi Co<br />

PO Box 431<br />

Amman 11118, Jordan<br />

Tel +962 6 566 8973<br />

Fax +962 6 567 8973<br />

Dr Nahum Marbán Mendoza<br />

Universidad Autónoma de Chapingo,<br />

Estado de México, Mexico<br />

Tel +52 595 422 00 x 180<br />

Fax +52 595 496 92<br />

Email: nmarbanm@fc.camoapa.com.mx<br />

Dr Klaus Merckens<br />

Egyptian Biodynamic Association<br />

PO Box 1535, Alf Maskan<br />

ET 11777, Cairo, Egypt<br />

Tel +202 281 8886<br />

Fax +202 281 8886<br />

Email: ebda@sekem.com<br />

www.sekem.com<br />

Microbial Solutions Ltd<br />

PO Box 103, Kya Sand<br />

2163, South Africa<br />

Tel +27 11 462 2408 or 18<br />

Fax +27 11 462 2296<br />

Email: microsol@iafrica.com<br />

Contact: Mr Graham Limerick<br />

Mikro-Tek Labs<br />

PO Box 2120, Timmons<br />

Ontario P4N 7X8, Canada<br />

Tel +1 705 268 3536<br />

Fax +1 705 268 7411<br />

Prof Keigo Minami<br />

Horticulture Department<br />

ESALQ, University of São Paulo<br />

Piracicaba, SP, Brazil<br />

Email: celia@carpa.ciagri.usp.br<br />

Mission de Coopération Phy<strong>to</strong>sanitaire<br />

BP 7309, 34184 Montpellier<br />

Cedex 4, France<br />

Tel +33 467 753 090<br />

Fax +33 467 031 021<br />

Dr Elizabeth Mitcham<br />

University of California<br />

One Shields Avenue, Wickson Hall<br />

Davis, California 95616-8683, USA<br />

Tel +1 530 752 7512<br />

Fax +1 530 752 8502<br />

Email: ejmitcham@ucdavis.edu<br />

Metalúrgica Manllenense SA<br />

Fontcuberta 32 – 36, Manlleu<br />

Barcelona 08560, Spain<br />

Tel +34 938 511 599<br />

Fax +34 938 511 645<br />

Email: metmann@lix.intercom.es<br />

Dr Harold Moffitt<br />

Yakima Agricultural Research Labora<strong>to</strong>ry, USDA-ARS<br />

3706 W. Nob Hill Boulevard<br />

Yakima, Washing<strong>to</strong>n 98902, USA<br />

Email: HAROLD.MOFFITT@usda.gov<br />

Ing Camilla Montecinos<br />

Direc<strong>to</strong>r<br />

Centro de Educacion y Tecnologia<br />

Santiago, Chile<br />

Fax +56 22 337 239<br />

Email: adm@cet.mic.cl<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

241


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Morse Growers Supplies Inc<br />

50 Hazel<strong>to</strong>n Street, Box 33<br />

Leaming<strong>to</strong>n, Ontario<br />

N8H 3W1, Canada<br />

Tel +1 519 326 9037<br />

Fax +1 519 326 5861 or 9290<br />

Email: morse@mnsi.net<br />

Contact: Mr Kelly Devaere<br />

Mycontrol Ltd<br />

Alon Hagalil M.P.<br />

Nazereth Elit 17920, Israel<br />

Tel +972 4986 1827<br />

Fax +972 4986 1827<br />

Email: mycontro@netvision.net.il<br />

Mycor Plant<br />

General Pardiñas 99 4°D<br />

Madrid 28006, Spain<br />

Tel +34 91 561 6907<br />

Fax +34 91 561 7961<br />

Email: mycorplant@tsyt.net<br />

Contact: Angel Baron<br />

N<br />

Nabat Agricultural & Trading Co<br />

PO Box 926160<br />

Amman 11110, Jordan<br />

Tel +962 6 581 5812<br />

Fax +962 6 586 3813<br />

National IPM Network<br />

Contact: Ron Stinner<br />

Chairman of the NIPMN Coordinating Committee<br />

Tel +1 919 515 1648<br />

Email: cipm@ncsu.edu<br />

http://PlantProtection.org/nipmn/index.html<br />

National Post-harvest Institute for Research<br />

and Extension<br />

3rd floor, ATI Building, Elliptical Road, Diliman<br />

Quezon City, Philippines<br />

Tel +63 2 927 4019 or 4029<br />

Fax +63 2 926 8159<br />

National Research Centre for Strawberries<br />

Proefbedryf der Noorderkempen<br />

Voort 71, 2328 Meerle, Belgium<br />

Tel +32 33 157 052<br />

Fax +32 33 150 087<br />

Natural Insect Control (NIC)<br />

RR #2, Stevensville<br />

Ontario LOS 1S0, Canada<br />

Tel +1 905 382 2904<br />

Fax +1 905 382 4418<br />

www.natural-insect-control.com<br />

Natural Insec<strong>to</strong> Products<br />

Orange, California 92856-0915, USA<br />

Tel +1 880 332 2002<br />

Fax +1 949 548 4576<br />

Email: info@insec<strong>to</strong>.com<br />

www.insec<strong>to</strong>.com<br />

Natural Plant Protection<br />

Route d’Artix BP 80<br />

Nogueres 6450, France<br />

Tel +33 559 84 10 45<br />

Fax +33 559 84 89 55<br />

Natural Resources Institute<br />

Chatham Maritime, Chatham<br />

Kent ME4 4TB, UK<br />

Tel +44 163 488 3778<br />

Fax +44 163 488 0066<br />

Email: bob.taylor@nri.uk<br />

Contact: Robert Taylor<br />

Nature’s Alternative Insectary Ltd<br />

Box 19, Dawson Road, Nanoose Bay<br />

British Colombia V0R 2R0, Canada<br />

Tel +1 250 468 7911<br />

Fax +1 250 468 7912<br />

Email: nai@bcsupernet.com<br />

Contact: Angela Hale or Harland Culford<br />

Nature’s Control<br />

PO Box 35<br />

Medford, Oregon 97501, USA<br />

Tel +1 541 899 8318<br />

Fax +1 541 899 9121<br />

Dr Shlomo Navarro<br />

Agricultural Research Organisation<br />

PO Box 6, Bet-Dagan<br />

AL, 50250, Israel<br />

Tel +972 3 968 3585<br />

Fax +972 3 968 3587<br />

Email: navarro@qnis.net<br />

Neudorff GmbH<br />

Postfach 1209<br />

D-31857 Emmerthal, Germany<br />

Tel +49 5155 6240<br />

Fax +49 5155 6010<br />

Dr Lisa Neven<br />

USDA-ARS-YARL<br />

5230 Konnowac Pass Road<br />

Wapa<strong>to</strong>, Washing<strong>to</strong>n 98951, USA<br />

Tel +1 509 454 6556<br />

Email: neven@yarl.gov<br />

242


New BioProducts Inc<br />

4737 NW Elmwood Dr<br />

Corvallis, Oregon 97330, USA<br />

Tel +1 541 752 2045<br />

Fax +1 541 754 3968<br />

New Era Farm Service<br />

23004 Rd 140<br />

Tulare, California 93274, USA<br />

Tel +1 200 686 3833<br />

Fax +1 209 686 1453<br />

Nico Haasnoot bv<br />

Zaltbommel, Netherlands<br />

Tel +31 418 515 253<br />

Fax +31 418 515 821<br />

Contact: Mr Toon Melis<br />

O<br />

Ole Myhrene Krike<br />

3410 Sylling, Norway<br />

Fax +46 776 1285<br />

Olson Products Inc<br />

PO Box 1043<br />

Medina, Ohio 44258, USA<br />

Tel +1 330 723 3210<br />

Fax +1 330 723 9977<br />

OM Scotts and Sons<br />

14111 Scotts Lawn Road<br />

Marysville, Ohio 43041, USA<br />

Tel +1 937 644 0011<br />

Fax +1 937 644 7509<br />

NISUS Corp<br />

215 Dunavant Dr<br />

Rockford, Tennessee 37853, USA<br />

Tel +1 423 577 6119<br />

Fax +1 618 797 0212<br />

Nitron Industries Inc<br />

PO Box 1447<br />

Fayetteville, Arkansas 72702, USA<br />

Tel +1 501 587 1777<br />

Fax +1 501 587 0177<br />

NOCON Sa de CV<br />

Avenida Juárez S/N CP 56200<br />

Apartado postal 333, San Simón<br />

Texcoco, Edo de México, Mexico<br />

Tel +52 595 415 76<br />

Fax +52 595 415 76<br />

Contact: Ing. Sergio Trueba<br />

Nordflex AB<br />

Box 507, S – 332 28<br />

Gislaved, Sweden<br />

Tel +46 371 845 00<br />

Fax +46 371 108 10<br />

Novartis Agro Benelux BV<br />

Postbus 1048, Roosendaal<br />

4700 BA, The Netherlands<br />

Fax +31 228 312 818<br />

Dr Ronald Noyes<br />

Department of En<strong>to</strong>mology<br />

Oklahoma State University<br />

Stillwater, Oklahoma 11008, USA<br />

Mr Henk Nuyten<br />

Horticultural consultant<br />

Meidoormstraat 116<br />

4814 KG Breda, Netherlands<br />

Tel +31 76 520 9461<br />

Fax +31 76 520 9461<br />

Dr Peter Ooi<br />

FAO Integrated Pest Control<br />

Intercountry Programme<br />

FAO Regional Office<br />

Metro Manila, Philippines<br />

Tel +632 818 6478 or 813 4229<br />

Fax +632 812 7725 or 810 9409<br />

Email: ipm-manila@cgnet.com<br />

Organic Plus<br />

7050 Highway 123S<br />

Seguin, Texas 78155, USA<br />

Tel +1 210 372 3300<br />

Fax +1 323 937 0123<br />

P<br />

Pacific Agriculture Research Centre<br />

Agriculture and Agri-Food Canada<br />

4200 Highway 97, Summerland<br />

British Colombia VOH 1ZO, Canada<br />

Tel +1 250 494 6355<br />

Fax +1 250 494 0755<br />

Email: parc@em.agr.ca<br />

Pacific Southwest Forest and Range<br />

Experiment Station<br />

Forest Service USDA<br />

1960 Addison St<br />

Berkeley, California 94701, USA<br />

Contact: Dr Jacqueline Rober<strong>to</strong>n<br />

Dr Hülya Pala<br />

Plant Protection Research Institute<br />

Ministry of Agriculture<br />

Adana, Turkey<br />

Tel +90 322 321 1958<br />

Fax +90 322 322 4820Email: h.pala@ppri.ad.tk<br />

Contact: Dr Seral Yücel<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

243


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Panth Produkter AB<br />

Fabriksvägen 7<br />

742 34 Östhammar, Sweden<br />

Tel +46 173 12617<br />

Fax +46 173 213 27<br />

Email: kontakt@panth.se<br />

www.panth.se<br />

Dr Tom Papadopoulos<br />

Greenhouse and Processing Crops Research Centre,<br />

Research Branch<br />

Agriculture & Agri-Food Canada<br />

Harrow, Ontario<br />

NOR 1GO, Canada<br />

Tel +1 519 738 2251 x 423<br />

Fax +1 519 738 2929<br />

Email: papadopoulost@em.agr.ca<br />

www.res.agr.ca/harrow<br />

Dr E Paplomatas<br />

Benaki Phy<strong>to</strong>pathological Institute<br />

8 S. Delta Street, 145 61 Kifissia<br />

Athens, Greece<br />

Pawa International Sales Agency PL<br />

1063/3 951 Phachatipok Road<br />

Bangkok 10600, Thailand<br />

Tel +66 2 437 8952<br />

Fax +66 2 437 8952<br />

PayGro Co<br />

PO Box W<br />

S Charles<strong>to</strong>n, Ohio 45368, USA<br />

Tel +1 937 462 8358<br />

Fax +1 937 462 7180<br />

PBG Research Station for Floriculture and<br />

Glasshouse Vegetables<br />

Linnaeuslaan 2a, Aalsmeer<br />

1431 JV, The Netherlands<br />

Tel +31 297 352 525<br />

Fax +31 297 352 270<br />

Email: info@pbg.agro.nl<br />

www.agro.nl/pbg/<br />

Peaceful Valley Farm Supply<br />

PO Box 2209<br />

Grass Valley, California 95945, USA<br />

Tel +1 530 272 4769<br />

Fax +1 530 272 4794<br />

Perma-Chink Systems, Inc<br />

1605 Prosser Road<br />

Knoxville, Tennessee 37914, USA<br />

Tel +1 865 524 7343<br />

Fax +1 865 528 9471<br />

Email: pcsmail@ricochet.net<br />

www.permachink.com/<br />

Perma-Guard Inc<br />

PO Box 25282<br />

Albuquerque, New Mexico 87125, USA<br />

Tel +1 505 873 3061<br />

Permea Inc<br />

11444 Lackland Road<br />

St Louis, Missouri 63146, USA<br />

Tel +1 314 995 3440<br />

Fax +1 314 995 3500<br />

Contact: Marketing Manager Controlled Atmospheres<br />

Pest Control Services Inc<br />

Unit 101-102, G/F Don Raul Building, 77 Kamuning<br />

Road<br />

Dilliman, Philippines<br />

Tel +63 2 922 8815 or 4618<br />

fax +63 2 813 3683<br />

Contact: Mr Didi T Gonzalez<br />

Peter van Luijk bv<br />

Langewateringkade 35b<br />

2295 RP Kwintsheul<br />

The Netherlands<br />

Tel +31 174 292 662<br />

Fax +31 174 298 443<br />

Email: info@peval.nl<br />

www.peval.nl<br />

Dr Thomas Phillips<br />

Department of En<strong>to</strong>mology<br />

Oklahoma State University<br />

127 Noble Research Center<br />

Stillwater, Oklahoma 74078, USA<br />

Tel +1 405 744 9408<br />

Fax +1 405 744 6039<br />

Email: <strong>to</strong>mp@okway.okstate.edu<br />

Philom Bios<br />

318-111 Research Drive, Saska<strong>to</strong>on<br />

Saskatchewan S7N 2X8, Canada<br />

Tel +1 306 668 8220<br />

Fax +1 306 975 1215<br />

Pindstrup Mosebrug SAE<br />

Carretera Burgos – Santander<br />

km 11.700, So<strong>to</strong>palacios<br />

Burgos 09140, Spain<br />

Tel +34 947 441 000<br />

Fax +34 947 441 003<br />

Ms Marta Pizano<br />

HortiTecnia<br />

Carrera 19 No. 85 – 65 piso 2<br />

Santafé de Bogotá, Colombia<br />

Tel +571 621 8108<br />

Fax +571 617 0730<br />

Email: hortitec@unete.com<br />

244


P Kooij & Zonen BV<br />

PO Box 341, Aalsmer<br />

1430 AH, The Netherlands<br />

Tel +31 297 382038<br />

Fax +31 297 382020<br />

Email: carnation@kooij.nl<br />

Planet Natural<br />

PO Box 3146<br />

Bozeman, Montana 59772, USA<br />

Tel +1 406 587 5891<br />

Fax +1 406 587 0223<br />

Plant Health Care<br />

440 William Pitt Way<br />

Pittsburgh, Pennsylvania 15238, USA<br />

Tel +1 412 826 5488<br />

Plant Health Technologies<br />

926 E. Santa Ana<br />

Fresno, California 93704, USA<br />

Tel +1 209 226 7032<br />

Fax +1 209 226 7032<br />

Plásticos Solanas SL<br />

Constitución 30 B, Cuarte<br />

Zaragoza 50410, Spain<br />

Tel +34 976 503 092<br />

Fax +34 976 504 530<br />

Plastigomez C Ltda<br />

Avenida Vaca de Castro 164 y<br />

Avenida de la Prensa<br />

Qui<strong>to</strong>, Ecuador<br />

Tel +593 2 53 1053<br />

Fax +593 2 591 774<br />

Email: cgomez@gye.satnet.net<br />

Contact: Mr Danilo Jaramillo<br />

Plastilene SA<br />

Km 8 Au<strong>to</strong>pista Sur<br />

Zona Industrial Cazucá<br />

PO Box 11556<br />

Santafé de Bogotá, Colombia<br />

Tel +571 775 0800<br />

Fax +571 778 0700<br />

Email: plastilene@colomsat.net.co<br />

Contact: Mr Felipe Herrera<br />

Plastlit - Plásticos del Li<strong>to</strong>ral<br />

Edificio Banco La Previsora<br />

Naciones Unidas y Amazonas -<br />

Torre B 3er piso, Qui<strong>to</strong>, Ecuador<br />

Tel +593 2 460485<br />

Fax +593 2 462 749<br />

Plas<strong>to</strong>r Hazorea<br />

Kibbutz Hazorea<br />

30060 Israel<br />

Tel +972 4 959 8800<br />

Fax +972 4 989 4250<br />

Poliex SA<br />

Polígono Industrial s/n, Castalla<br />

Alicante 03420, Spain<br />

Tel +34 966 560 500<br />

Fax +34 966 560 504<br />

Polygal Plastic Industries Ltd<br />

Ramat Hashofet 19238, Israel<br />

Tel +972 4959 6222<br />

Fax +972 4959 6281<br />

Email: sales@polygal.co.il<br />

www.polygal.com<br />

Polyon Inc, Israel (PolyWest)<br />

4883 Ronson Court, Ste. R<br />

San Diego, California 92111, USA<br />

Tel +1 619 279 6393<br />

Fax +1 619 279 6394<br />

Dr Ian Porter<br />

Agriculture Vic<strong>to</strong>ria, Knoxfield<br />

Private Bag 15 SE<br />

Vic<strong>to</strong>ria VIC 3176, Australia<br />

Tel +613 9210 9217<br />

Fax +613 9800 3521<br />

Email: ian.j.porter@nre.vic.gov.au<br />

Power Plastics<br />

Station Road, Thirsk<br />

York YO7 1PZ, UK<br />

Tel +44 1845 525 503<br />

Fax +44 1845 525 485<br />

Pristine Products<br />

2311 E Indian School Road<br />

Phoenix, Arizona 85016, USA<br />

Tel +1 602 955 7031<br />

Prodeasa<br />

Cami de Sant Roc s/n, Vilablareix<br />

Girona 17180, Spain<br />

Tel +34 972 241 929<br />

Fax +34 972 231 659<br />

Email: prodeasa@ea.ichnet.es<br />

www.prodeasa.es<br />

Produc<strong>to</strong>s Químicos Andinos<br />

Parque Industrial Manizales, T6 L8<br />

Apartado Aéreo 2792<br />

Manizales, Colombia<br />

Tel +57 68 74 7626<br />

Fax +57 68 74 2055<br />

Email: pqa@emtelsa.multi.net.co<br />

Contact: Luisa Escobar<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

245


Produc<strong>to</strong>s Químicos Andinos Ecuador<br />

Panamericana Norte Km 10<br />

Sec<strong>to</strong>r Carretas Lote 7<br />

Qui<strong>to</strong>, Ecuador<br />

Tel +593 2 425 054 or 425 055<br />

Fax +593 2 425 050<br />

Pro-Gro Products Inc<br />

841 Pro-Gro Drive, PO Box 1945<br />

Elizabeth City, North Carolina 27909, USA<br />

Tel or Fax +1 252 338 5128<br />

PT Elang Laut<br />

Adi Persada Building, Jalan Raden Saleh 45, PO Box<br />

4688<br />

Jakarta 10330, Indonesia<br />

Tel +62 21 310 1764 or 1765<br />

Fax +62 21 310 1766<br />

PTG Glasshouse Crops Research Station<br />

PO Box 8, Naaldwijk, Netherlands<br />

Tel +31 174 036 700<br />

Fax +31 174 036 835<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Propagar Plantas SA<br />

Labora<strong>to</strong>rio de Cultivo de Tejidos<br />

Av Suba No 106A-28 Of. 701<br />

Santafé de Bogatá, Colombia<br />

Tel +571 91 675 1002<br />

Tel +571 825 8652<br />

Fax +571 825 8651<br />

Email: propagar@impsat.net.co<br />

Contact: Ing. Rodolfo La Rota<br />

Prophyta Biologischer Pflanzenschutz GmbH<br />

Intelstrasse 12<br />

D-23999 Malchow-Poel, Germany<br />

Tel +49 384 25 230<br />

Fax +49 384 25 2323<br />

Email: info@prophyta.com<br />

www.prophyta.com<br />

Praxair Canada Inc<br />

1 City Centre Drive, Suite 1200<br />

Mississauga, Ontario L5B 1M2, Canada<br />

Tel +1 514 856 7300<br />

Fax +1 514 335 0677<br />

www.praxair.com<br />

Contact: Talaat Girgis<br />

Premier Enterprises Ltd<br />

326 Main Street<br />

Red Hill, Pennsylvania 18076, USA<br />

Tel (800) 424 2554<br />

Fax +1 215 679 4119<br />

PT Abdi Inshan Medal General Trading<br />

Jalan Taman Sari IX No 15<br />

Jakarta, Indonesia<br />

Tel +62 21 629 0416 or 669 8937<br />

PT Aneka Gas<br />

Jalan Minangkabu 60<br />

Jakarta, Indonesia<br />

Tel +62 21 829 6108<br />

Telex 48362 AKGAS IA<br />

PT Petrokimiya Kayaku<br />

Jalan Jend A Yani, Kotak Pos 107<br />

Gresik 61101, Surabaya, Indonesia<br />

Tel +62 31 981 815 or 831<br />

Fax +62 31 981 830<br />

PT Sarana Agropratama<br />

Cabang Pulo Mas, Jalan Jendral A Yani No 2, PO Box<br />

285/JAT<br />

Jakarta 13001, Indonesia<br />

Tel +62 21 489 8118 x 211<br />

Fax +62 21 489 2464<br />

PT Sarana Utama Jaya<br />

Jalan Kelapa Lilin IV, Ng 9/3<br />

Kelapa Gading Permal<br />

Jakarta, Indonesia<br />

Tel +62 21 451 2342<br />

Fax +62 21 451 242<br />

Q<br />

Qingzhou Sheng Hua Zhi Pin Fac<strong>to</strong>ry<br />

Qingzhou City 262519<br />

Zhang Mu County, China<br />

Tel +86 5469 681 117<br />

Fax +86 5469 262 519<br />

Quaker Oats Canada Ltd<br />

34 Hunter Street West, Peterborough<br />

Ontario K9J 7B2, Canada<br />

Tel +1 705 743 6330 x 4219<br />

Fax +1 705 876 4113<br />

Contact: Mr Livings<strong>to</strong>n Clarke<br />

Quarantine Technologies<br />

PO Box 1030, Queens<strong>to</strong>wn<br />

New Zealand<br />

Tel +643 441 8173<br />

Fax +643 441 8174<br />

Email: qtiiwill@queens<strong>to</strong>wn.co.nz<br />

Contact: Dr Michael Williamson<br />

246


Dr William Quarles<br />

Bio-Integral Resource Center<br />

PO Box 7414<br />

Berkely, California 94707, USA<br />

Tel +1 510 524 2567<br />

Fax +1 510 524 1758<br />

Email: birc@igc.apc.org<br />

www.igc.apc.org/birc/<br />

R<br />

Rancho Tissue Technologies<br />

PO Box 1138, Rancho<br />

Santa Fe, California 92067, USA<br />

Tel +1 619 756 6785<br />

Fax +1 619 756 0894<br />

Email: rttinc@aol.com<br />

Contact: Ms Heather May<br />

Reciorganic Ltda<br />

Diagonal 108A No. 6-2<br />

Santafé de Bogotá, Colombia<br />

Tel +571 218 7565<br />

Fax +571 213 4234<br />

Email: guribega@latino.net.co<br />

Contact: Mr Gerardo Uribe<br />

Recticel Ltd<br />

Bluebell Close, Clover Nook<br />

Industrial Park, Alfres<strong>to</strong>n<br />

Derbyshire DE55 4RD, UK<br />

Tel +44 1773 835 721<br />

Fax +44 1773 835 563<br />

Recticel SA<br />

Boulevard du General Leclerc 6<br />

92115 Clichy, France<br />

Tel +331 45 19 22 00<br />

Fax +331 45 19 22 01<br />

RECOMSA Reciclado de Compost SA<br />

Carretera Quintanar-Casas Simarro 5, Quintanar del Rey<br />

Cuenca 16220, Spain<br />

Tel +34 967 571 041<br />

Fax +34 967 571 041<br />

Email: jcheca@interbook.net<br />

Contact: Ing. Jose Gabriel Checa<br />

Dr L Reis<br />

Estaçao Agronomica Nacional<br />

Quinta do Marques<br />

2780 Oeiras, Portugal<br />

Tel +35 11 441 6855<br />

Fax +35 11 441 6011<br />

Email: ean@mail.tel.epac.pt<br />

Remmers (borates) GmbH<br />

PO Box 12 55, Löningen<br />

D-49624, Germany<br />

Tel +49 5432 83187<br />

Fax +49 5432 83399<br />

www.remmers.de<br />

Contact: Mr HJ van Dijken<br />

Ren<strong>to</strong>kil Germany<br />

Wahlerstrasse 4, Düsseldorf<br />

D-40472, Germany<br />

Tel +49 211 9658 6101<br />

Fax +49 211 6528 46<br />

www.ren<strong>to</strong>kil.de<br />

Contact: Bio Team<br />

Ren<strong>to</strong>kil UK<br />

Felcourt, East Grinstead<br />

West Sussex RH19 2JY, UK<br />

Tel +44 115 960 2551<br />

Fax +44 134 232 6229<br />

Contact: D Nor<strong>to</strong>n<br />

Research Station for Floriculture<br />

Linnaeuslaan 2A, Aalsmeer<br />

1431 JV, The Netherlands<br />

Tel +31 297 752 525<br />

Fax +31 297 752 270<br />

Rexius Forest Products<br />

750 Chambers Street<br />

PO Box 2276<br />

Eugene, Oregon 97402, USA<br />

Tel +1 503 342 1835<br />

Fax +1 541 343 4802<br />

Email: jackh@rexius.com<br />

Rijk Zwaan Nederland BV<br />

Postbus 40<br />

2678 ZG De Lier, Netherlands<br />

Tel +31 174 532 300<br />

Fax +31 174 515 334<br />

www.rijkzwaan.nl<br />

Rincon-Vi<strong>to</strong>va Insectaries Inc<br />

PO Box 1555<br />

Ventura, California 93002, USA<br />

Tel +1 805 643 5407<br />

Fax +1 805 643 6267<br />

Email: bugnet@west.net<br />

Prof Rolf Röber<br />

Institut für Zierpflanzenbau<br />

Am Staudengarten 8<br />

D-85350 Freising, Germany<br />

Tel +49 8161 71 3363<br />

Fax +49 8161 71 5106<br />

Email: zierpflanzenbau.va@fh-weihenstephan.de<br />

www.fh-weihenstephan.de/va/<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

247


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Rockwool-Industries AS<br />

Hovedgaden 584<br />

SK-2640 Hedehusene, Denmark<br />

Tel +45 46 560 300<br />

Tel +45 46 563 311<br />

www.rockwool.sk<br />

Dr Rodrigo Rodríguez-Kábana<br />

Department of Plant Pathology<br />

Auburn University<br />

209 Life Sciences Building<br />

Auburn, Alabama 36849, USA<br />

Tel +1 334 844 4714<br />

Fax +1 224 844 1948<br />

Email: rrodrigu@acesag.auburn.edu<br />

Dr F Romero<br />

Centro de Investigación Las Torres, 41200 Alcalá del<br />

Rio, Sevilla, Spain<br />

Tel +34 5 565 0808<br />

Fax +34 5 565 0373<br />

Email: cifa<strong>to</strong>rr@cap.caan.es<br />

Rose Extermina<strong>to</strong>r Co<br />

1025 Huntly Road<br />

Niles, Michigan 49120, USA<br />

Tel +1 616 683 9129<br />

Fax +1 616 683 9249<br />

Ruffneck Heaters<br />

2827 Sunridge Blvd NE<br />

Calgary, AB, T1Y 6G1, Canada<br />

Tel +1 403 291 5488<br />

Fax +1 403 291 7042<br />

Email: alanl@ruffneckheaters.com<br />

www.ruffneckheaters.com<br />

Contact: Mr Alan LeBrun<br />

S<br />

S&A GmbH (Frisin)<br />

Bahnhofstrasse 25<br />

D-27419 Sittensen, Germany<br />

Fax +49 2764 4400<br />

Dr Abdur-Rahman Saghir<br />

NCSR, Beirut<br />

Lebanon<br />

Email: consult@cnrs.edu.lb<br />

San Jacin<strong>to</strong> Environmental Supplies<br />

2221-A West 34th Street<br />

Hous<strong>to</strong>n, Texas 77018, USA<br />

Tel +1 880 444 1290<br />

Fax +1 713 957 0707<br />

Contact: Mr Peter Cangelosi<br />

Ing. R Sanz, CCMA<br />

Dp<strong>to</strong> Agroecologia, Centro de Ciencias<br />

Medioambientales CCMA<br />

CSIC, Serrano, 115 dpdo.<br />

28006 Madrid, Spain<br />

Tel +34 91 562 5020<br />

Tel +34 981 564 0800<br />

Email: rsanz@ccma.csis.es<br />

Sashco Sealants<br />

10300 E 107th Place<br />

Brigh<strong>to</strong>n, Colorado 80601, USA<br />

Tel +1 880 767 5656<br />

Email: info@sashco.com<br />

Western USA Contact: Melani Torrez<br />

Email: m<strong>to</strong>rrez@sashco.com<br />

Eastern USA Contact: Karyn Nostrum<br />

Email: knostrum@sashco.com<br />

www.sashco.com/log/<br />

Santamaria<br />

Carrera 19 # 85 – 85<br />

Santafé de Bogotá, Colombia<br />

Tel +571 636 5937<br />

Fax +571 636 5514<br />

Contact: Mr German Salazar<br />

Santamaria<br />

Via San Rocco 19<br />

Bevera di Ventimiglia<br />

IM, Italy<br />

Tel +39 184 21 0026<br />

Fax +39 184 21 0242<br />

Contact: Mr Sergio Santamaria<br />

Sanyo Aircon & Refrigeration Div<br />

Street 1-1 Sakata 1-chome<br />

Oizumi-cho District<br />

Ora-gun City 370-05<br />

Gumma Country, Japan<br />

Tel +81 276 618 111<br />

Fax +81 276 918 838<br />

Saska<strong>to</strong>on Boiler Manufacturing<br />

2011 Quebec Avenue, Saska<strong>to</strong>on<br />

Saskatchewan S7K 1W5, Canada<br />

Tel +1 306 652 7022<br />

Fax +1 306 652 7870<br />

Prof M Sa<strong>to</strong>ur<br />

Agricultural Institute<br />

Cario, Egypt<br />

Fax +202 384 4899 or 5723 146<br />

248


SB Talee<br />

Calle 82 No. 11 – 83 Of 501<br />

Santafé de Bogotá, Colombia<br />

Tel +571 256 8640<br />

Fax +571 218 4864<br />

Email: sbcol@anditel.andinet.lat.net<br />

Contact: Mr Celiar Noreña<br />

SCC Products<br />

2641 W. Woodland Drive<br />

Anaheim, California 92801, USA<br />

Tel +1 714 761 3292<br />

Email: sansone@pacbell.net<br />

Contact: Mr John Sansone<br />

Dr Elmer Schmidt<br />

Department of Wood and Paper Science<br />

University of Minnesota<br />

203 Kaufert Lab, 2004 Folwell Avenue<br />

St. Paul, Minnesota 55108, USA<br />

Tel +1 612 624 4792<br />

Fax +1 612 625 6286<br />

Email: eschmidt@cnr.umn.ed<br />

Scotts Company<br />

Marysville, Ohio 43041, USA<br />

Tel +1 513 644 0011<br />

www.scottscompany.com<br />

Scotts-Sierra<br />

PO Box 4003<br />

Milpitas, California 95035, USA<br />

Tel +1 880 492 8255<br />

Seabright Labora<strong>to</strong>ries<br />

4067 Watts Street<br />

Emeryville, California 94608-3604, USA<br />

Tel +1 880 284 7363<br />

Fax +1 510 654 7982<br />

Email: stikem@seabrightlabs.com<br />

www.seabrightlabs.com<br />

Selecta Klemm<br />

Carrera 9 No. 80 – 15 Of. 1002<br />

Santafé de Bogotá, Colombia<br />

Tel +571 255 9048<br />

Fax +571 255 7596<br />

Email: selklemm@aol.com<br />

Contact: Mr Camilo Santamaria<br />

Selecta Klemm<br />

Hanfäcker 10<br />

70378 Stuttgart, Germany<br />

Tel +49 711 9532 50<br />

Fax +49 711 9532 540<br />

Email: office@selectaklemm.de<br />

SGS Far East Ltd<br />

994 Soi Thonglor, Sukhumvit Road 55<br />

Prakanong, Bangkok 10110, Thailand<br />

Tel +66 2 392 1066<br />

Fax +66 2 381 2022<br />

Dr Jennifer Sharp<br />

Subtropical Horticulture Research Station, USDA-ARS<br />

13601 Old Cutler Road<br />

Miami, Florida 33158, USA<br />

Dr Krista Shellie<br />

Kika De La Garza Subtropical Agricultural Research<br />

Center<br />

USDA-ARS<br />

2413 E. Hwy 83 Bldg 200<br />

Weslaco, Texas 78596, USA<br />

Tel +1 956 447 6312<br />

Fax +1 956 447-6345<br />

kshellie@weslaco.ars.usda.gov<br />

SIAPA<br />

Via Vi<strong>to</strong>rio Vene<strong>to</strong> 1 Galliera<br />

Bologna 40010, Italy<br />

Tel +39 051 815 508<br />

Fax +39 051 812 069<br />

SiberHegner Lenersan Poortman BV<br />

PO Box 889, Dordrecht<br />

3300 AW, The Netherlands<br />

Tel +31 78 622 06 22<br />

Fax +31 78 622 06 08<br />

Contact: Mr PKD de Vries<br />

SIDHOC Sino Dutch Horticultural Training and<br />

Demonstration Centre<br />

No.2, Zhen Dong Lu, Nanhui CountyShanghai 201303,<br />

China<br />

Email: sidhoc@uninet.com.cn or<br />

wimweerd@uninet.com.cn<br />

Contact: Wim Weerdenburg<br />

Prof Richard Sikora<br />

Soil-Ecosystem Phy<strong>to</strong>pathology and Nema<strong>to</strong>logy, Institut<br />

für Pflanzenkrankheiten<br />

University of Bonn<br />

Nussallee 9<br />

D-53115 Bonn, Germany<br />

Tel +49 228 732 439<br />

Fax +49 228 732 432<br />

Email: rsikora@uni-bonn.de<br />

Sino Dutch Training and Demonstration<br />

Centre, SIDHOC<br />

No.2, Zhen Dong Lu, Nanhui County<br />

Shanghai 201303, China<br />

Email: sidhoc@uninet.com.cn or<br />

wimweerd@uninet.com.cn<br />

Contact: Wim Weerdenburg<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

249


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

250<br />

Sioux Steam Cleaner Corp<br />

One Sioux Plaza<br />

Beresford, South Dakota 57004, USA<br />

Tel +1 605 763 3333<br />

Fax +1 605 763 3334<br />

Email: sioux@bmtc.net<br />

www.siouxsteam.com<br />

Sluis & Groot<br />

Postbus 26, 1600 AA<br />

Enkhuizen, Netherlands<br />

Dr Edwin Soderstrom<br />

USDA-ARS<br />

Horticultural Crops Research Labora<strong>to</strong>ry<br />

2021 Smith Peach Avenue<br />

Fresno, California 93727, USA<br />

Tel +1 209 453 3029<br />

Soil Technologies Corp.<br />

2103 185th Street<br />

Fairfield, Iowa 52556, USA<br />

Tel +1 515 472 3963<br />

Fax +1 515 472 6189<br />

Solplast<br />

Murcia, Spain<br />

Tel +34 967 461 311<br />

www.solplast.es<br />

Sonoma Composts<br />

550 Meacham Road<br />

Petaluma, California 94952, USA<br />

Tel +1 707 664 9113<br />

Fax + 1 707 664 1943<br />

www.sonomacompost.com<br />

Dr Lim Guan Soon<br />

International Institute of Biological Control, Regional<br />

Office for Asia<br />

IIBC Station, PO Box 210, 43409 UPM Serdang<br />

Selangor, Malaysia<br />

Tel +603 942 6489<br />

Fax +603 942 6490<br />

Email: cabi-iibc-malaysia@cabi.org<br />

Sotrafa<br />

Carretera Nacional 340, km 416,4<br />

El Ejido, Almería 04700, Spain<br />

Tel +34 950 580 442<br />

Fax +34 950 580 233<br />

Email: sotrafa@mundivia.es<br />

Contact: Ing. Carlos López García<br />

Southern Importers<br />

PO Box 8579<br />

Greensboro, North Carolina 27419, USA<br />

Tel +1 336 292 4521<br />

Fax +1 336 852 6397<br />

Email: sales@southernimporters.com<br />

www.southernimporters.com<br />

Contact: Ms Georgia Kinney<br />

South Pine Inc<br />

PO Box 530127<br />

Birmingham, Alabama 35253, USA<br />

Tel +1 205 879 1099<br />

Spectrum Technologies Inc<br />

23839 W. Andrew Rd<br />

Plainfield, Illinois 60544, USA<br />

Tel +1 880 248 8873<br />

Fax +1 815 436 4460<br />

Email: specmeters@aol.com<br />

www.specmeters.com<br />

Contact: Mr Kevin M Thurow<br />

Dr Yitzhak Spiegel<br />

Institute of Plant Protection<br />

Agricultural Research Organisation<br />

PO Box 6, Bet-Dagan 50250, Israel<br />

Tel +97 23 968 3437<br />

Fax +97 23 960 4180<br />

Email: vpspigl@netvision.net.il<br />

SPIROU Co<br />

S Marconi Street<br />

142 22 Athens, Greece<br />

Sprague Pest Solutions<br />

PO Box 2222<br />

Tacoma, Washing<strong>to</strong>n 98401-2222, USA<br />

Tel +1 253-272-4400<br />

Fax +1 253-272-9676<br />

Email: jweier@spraguepest.com<br />

Contact: Mr Jeff Weier<br />

Dr James Staple<strong>to</strong>n<br />

Kearney Agricultural Center<br />

Univerisity of California<br />

9240 S. Riverbend Avenue<br />

Parlier, California 93648, USA<br />

Tel +1 209 646 6536<br />

Fax +1 209 646 6593<br />

Email: jim@uckac.edu<br />

Statewide IPM Project<br />

University of California<br />

Kearney Agricultural Center<br />

9240 S. Riverbend Avenue<br />

Parlier, CA 93648, USA<br />

Tel +1 209 646 6000<br />

Fax +1 209 646 6015<br />

www.ipm.ucdavis.edu


Steamist Company<br />

PO Box 1171<br />

275 Veterans Blvd<br />

Rutherford, New Jersey 07070, USA<br />

Tel +1 201 933 0700<br />

Fax +1 201 933 0746<br />

Email: steamist@worldnet.att.net<br />

www.steamist.com<br />

Contact: John Duggan<br />

Prof Alison Stewart<br />

Plant Science Department<br />

Lincoln University, Canterbury<br />

New Zealand<br />

Tel +643 325 2811<br />

Email: stewarta@lincoln.ac.nz<br />

Stine Microbial Products<br />

6613 Haskins<br />

Shawnee, Kansas 66216, USA<br />

Tel +1 913 268 7504<br />

Fax +1 913 268 7504<br />

Stine Seed Co<br />

Adel, Iowa 50003, USA<br />

Tel +1 515 677 2605<br />

Suata Plants (Chile)<br />

Casilla 60 Lampa<br />

Santiago, Chile<br />

Tel +562 243 1611 or 842 6071<br />

Fax +562 243 3030<br />

Email: mabiggi@entelchile.net<br />

Suata Plants SA (Colombia)<br />

Calle 124 No. 35 – 15 Of 202<br />

PO Box 54399<br />

Santafé de Bogotá, Colombia<br />

Tel +571 619 8491<br />

Fax +571 215 9988<br />

Email: suatap@colomsat.net.co<br />

www.suataplants.com.co<br />

Contact: Mr Julio Piñeros<br />

Suata Plants SA (Ecuador)<br />

An<strong>to</strong>nio Navarro 148 y Whimper<br />

Qui<strong>to</strong>, Ecuador<br />

Tel +593 222 6045 or 970 6451<br />

Fax +593 222 6045<br />

Email: eorjuela@accesinter.net<br />

Suata Plants SA (Mexico)<br />

Heroes del 14 Septiembre No. 20<br />

Estado de México CP, Mexico<br />

Tel +52 714 600 34 or 67<br />

Fax +52 714 600 67<br />

Email: coxflor@mail.dsinet.com.mx<br />

Subtropical Agriculture Research Labora<strong>to</strong>ry,<br />

Kika De La Garza Subtropical Agricultural Research<br />

Center<br />

USDA-ARS<br />

2413 E Hwy 83, Bldg 200<br />

Weslaco, Texas78596, USA<br />

Contact: Dr Robert Mangan, Dr Krista Shellie<br />

Sukhtian Co<br />

PO Box 1027<br />

Amman, Jordan<br />

Tel +962 6 568 8888<br />

Fax +962 6 560 1568<br />

Sulzer GmbH<br />

Refrigeration Division<br />

Kemptener Strasse 11-15<br />

88131 Lindau<br />

Germany<br />

Tel +49 838 270 62 59<br />

Fax +49 838 273 202<br />

Dr Donald Sumner<br />

Department of Plant Pathology<br />

University of Georgia<br />

Coastal Plain Station<br />

PO Box 748<br />

Tif<strong>to</strong>n, Georgia 31793, USA<br />

Tel +1 912 386 3370<br />

Fax +1 912 386 7285<br />

Sustainable Agriculture Research and<br />

Education Program (SAREP)<br />

University of California<br />

One Shields Avenue<br />

Davis, California 95616-8716, USA<br />

Tel +1 530 752 7556<br />

Fax +1 530 754 8550<br />

Email: sarep@ucdavis.edu<br />

Sustane Corp<br />

PO Box 19<br />

Cannon Falls, Minnesota 55009, USA<br />

Tel +1 507 263 3003<br />

Fax +1 507 263 3029<br />

Sylvan Spawn Labora<strong>to</strong>ry<br />

West Hills Industrial Park<br />

Kittanning, Pennsylvania16201, USA<br />

Tel +1 412 543 2242<br />

T<br />

Tallon Termite and Pest Control<br />

5702 Pioneer<br />

Bakersville, California 93306, USA<br />

Tel +1 805 366 0516<br />

Fax +1 805 366 0573<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

251


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

252<br />

Dr Bob Taylor<br />

Natural Resources Institute<br />

Cental Avenue, Chatham Maritime<br />

Chatham, Kent ME4 4TB, UK<br />

Tel +44 1634 88 3778<br />

Fax +44 1634 88 3567<br />

Email: r.w.taylor@greenwich.ac.uk<br />

Technical Centre for Agricultural and Rural<br />

Co-operation<br />

Postbus 380, Wageningen<br />

6700 AJ, The Netherlands<br />

Tel +31 317 467 100<br />

Fax +31 317 460 067<br />

Technisches Bericht Forschungsanstalt<br />

Geisenheim – Gemüsebau<br />

Von-Lade-Strasse 1<br />

D-6222 Geisenheim/Rh., Germany<br />

Dr Javier Tello<br />

Dp<strong>to</strong> Producción Vegetal<br />

Biología Vegetal y Ecología<br />

Universidad de Almería<br />

Canada S Urbano s/n 04120<br />

Almería, Spain<br />

Tel +34 950 215 527<br />

Fax +34 950 215 519<br />

Dr Mario Tenuta<br />

Pest Management Research Centre<br />

1391 Sandiford Street<br />

London, Ontario N5V 4T3, Canada<br />

Tel +1 519 663 3099<br />

Fax +1 519 663 3454<br />

Email: tenutam@em.agr.ca<br />

Tézier roots<strong>to</strong>ck<br />

Boite postal 34A<br />

Tézier, France<br />

Fax +334 75 53 83 52<br />

TGT Inc<br />

122 North Genesee Street<br />

Geneva, New York 14456, USA<br />

Tel +1 315 781 1703<br />

Fax +1 315 781 1793<br />

Thai Industrial Gases Ltd<br />

22/26 Poochaosmingprai Road, PO Box 1026<br />

Smutprakarn 10130<br />

Bangkok, Thailand<br />

Tel +66 2 394 4219<br />

Thai Department of Agriculture<br />

S<strong>to</strong>red Products Labora<strong>to</strong>ry<br />

Chatuchak, Bangkok, Thailand<br />

Tel +662 579 8576<br />

Fax +662 579 8535<br />

The Green Spot Ltd<br />

93 Priest Road, Nottingham<br />

NH 03290-6204, USA<br />

Tel +1 603 942 8925<br />

Fax +1 603 942 8932<br />

Email: GrnSpt@internetMCI.com<br />

Thermeta<br />

Westlandse weg 14<br />

14 Wateringen, Netherlands<br />

Thermo Lignum UK<br />

Unit 19, Grand Union Centre<br />

West Row, London W10 5AS, UK<br />

Tel +44 181 964 3964<br />

Fax +44 181 964 2969<br />

Contact: Ms Karen Roux, Direc<strong>to</strong>r<br />

Thermo Lignum Germany<br />

Maschinen-Vertriebs GmbH<br />

Landhausstrasse 17<br />

D-6900 Heidelberg, Germany<br />

Tel +49 6221 163 466<br />

Fax +49 6221 200 81<br />

Contact: Mr H-W v Rotberg<br />

Thermo Trilogy<br />

9145 Guilford Road, suite 175<br />

Columbia, Maryland 21046, USA<br />

Tel +1 301 604 7340<br />

Fax +1 301 604 7015<br />

Timber Technology Research Group<br />

Department of Biology<br />

Imperial College, London SW2, UK<br />

Fax +44 20 7873 2486<br />

Prof Eleuterios Tjamos<br />

Dpt of Plant Pathology<br />

Agricultural University of Athens<br />

Votanikos 11855<br />

Athens, Greece<br />

Tobacco Research Board<br />

Kutsaga Research Station<br />

PO Box 1909<br />

Harare, Zimbabwe<br />

Tel +26 34 575 289/94<br />

Fax +26 34 575 288<br />

Contact: Dr Gareth Thomas<br />

Prof Franco Tognoni<br />

Dipartemen<strong>to</strong> di Biologia delle Plante Agrarie, Viale<br />

delle Piagga 23<br />

58124 Pisa, Italy<br />

Tel +39 050 570 420<br />

Fax +39 050 570 421


Topp Construction Services Inc<br />

PO Box 467<br />

Media, Pennsylvania 19063, USA<br />

Tel 1 800 892 TOPP (in North America only)<br />

Email: <strong>to</strong>pp@dca.net<br />

Website www.safeheat.com<br />

Torfstreuverband GmbH<br />

Bioherfelder Strasse 39<br />

Oldenburg D-2900, Germany<br />

Tel +49 441 700 30<br />

Fax +49 441 720 01<br />

TransFRESH Corp<br />

Salinas, California 93902, USA<br />

Tel +1 408 772 7269<br />

Contact: Susan Ajeska<br />

For more information:<br />

Contact: Gwen Peake<br />

Fineman Associates<br />

San Francisco, California, USA<br />

Tel +1 415 777 6933<br />

Turbas GF<br />

Carretera de Segura s/n, Idiazábal<br />

Cuipúzcoa 20213, Spain<br />

Tel +34 943 187 567<br />

Fax +34 943 187 311<br />

Turco Silvestro e Figli SnC<br />

Via Dalmazia 95<br />

17031 Albegna, SV, Italy<br />

Tel +39 0182 513 88<br />

Fax +39 0182 540 548<br />

Contact: Mr Biagio Turco<br />

Dr Anne Turner<br />

Agricultural consultant<br />

OPPAZ<br />

PO Box 34465<br />

Lusaka, Zambia<br />

Tur-Net<br />

Ringoven 20, Veldhoven<br />

5502 DB, The Netherlands<br />

Transplant Systems Ltd<br />

PO Box 295, Berwick<br />

Vic<strong>to</strong>ria 3806, Australia<br />

Tel +613 9769 9733<br />

Fax +613 9769 9722<br />

Email: transplant@moreinfo.com.au<br />

Transplant Systems Ltd<br />

Box 29-074, Christchurch<br />

New Zealand<br />

Tel +643 348 2823<br />

Fax +643 348 2824<br />

Tri<strong>to</strong>n Umweltschutz GmbH<br />

Zoebiger Strasse 24-25<br />

D-06749 Bitterfeld, Germany<br />

Tel +49 349 373 509<br />

Fax +49 349 373 909<br />

Email: tri<strong>to</strong>n@tpnet.de<br />

www.umwelt-tri<strong>to</strong>n.de<br />

Tropical Fruit and Vegetable Research<br />

Labora<strong>to</strong>ry<br />

USDA Agricultural Research Service<br />

PO Box 4459<br />

Hilo, Hawaii 96720, USA<br />

Tel +1 808 959 9138<br />

Fax +1 808 959 5470<br />

Dr Thomas Trout<br />

USDA-ARS<br />

Water Management Research Labora<strong>to</strong>ry<br />

2021 S. Peach Ave<br />

Fresno, California 93727, USA<br />

Tel +1 559 453 3101<br />

Fax +1 559 453 3122<br />

Email: ttrout@asrr.arsusda.gov<br />

U<br />

UNIFERT Co<br />

PO Box 6965<br />

Amman, Jordan<br />

Tel +962 6 568 1331 or 1332<br />

Fax +962 6 568 2465<br />

United Phosphorus<br />

167 Dr Annie Bezant Road, Worli<br />

Bombay 400 018, India<br />

Tel +91 22 493 0681 or 0560<br />

Fax +91 22 493 826<br />

Universidad Autónoma de Chapingo<br />

Estado de México, Mexico<br />

Tel +52 595 422 00 x 180<br />

Fax +52 595 496 92<br />

Email: nmarbanm@fc.camoapa.com.mx<br />

Contact: Dr Nahum Marbán Mendoza<br />

University of Bonn<br />

Soil-Ecosystem Phy<strong>to</strong>pathology and Nema<strong>to</strong>logy, Institut<br />

für Pflanzenkrankheiten<br />

University of Bonn<br />

Nussallee 9<br />

D-53115 Bonn, Germany<br />

Tel +49 228 732 439<br />

Fax +49 228 732 432<br />

Email: rsikora@uni-bonn.de<br />

Contact: Prof Richard Sikora<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

253


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

University of California<br />

IPM Project<br />

Kearney Agricultural Center<br />

9240 S. Riverbend Avenue<br />

Parlier, California 93648, USA<br />

Tel +1 209 646 6000<br />

Fax +1 209 646 6015<br />

www.ipm.ucdavis.edu<br />

University of California<br />

Department of Nema<strong>to</strong>logy<br />

One Shields Avenue<br />

Davis, California 95616, USA<br />

Tel +1 530 752 1011<br />

University of Hawaii<br />

Department of Agricultural Engineering<br />

3050 Maile Way<br />

Honolulu, Hawaii 96822, USA<br />

Contact: Dr P Winkelman<br />

University of Hawaii<br />

Department of En<strong>to</strong>mology, Beaumont Agricultural<br />

Research Center<br />

461 W Lanikaula Street<br />

Hilo, Hawaii 97620, USA<br />

Tel +1 808 974 4105<br />

Fax +1 808 974 4110<br />

Email: arnold@hawaii.edu<br />

Contact: Dr Arnold Hara<br />

University of Zimbabwe<br />

Crop Science Department<br />

PO Box MP 167, Mount Pleasant<br />

Harare, Zimbabwe<br />

Tel +26 34 303 211<br />

Fax +26 34 333 407<br />

Urban Pest Control Research Center<br />

Department of En<strong>to</strong>mology<br />

Virginia Polytechnic Institute<br />

and State University<br />

Blacksburg, Virginia 24061-0319, USA<br />

Tel +1 315 540 231<br />

US Borax Inc<br />

26877 Tourney Road<br />

Valencia, California 91355-1847, USA<br />

Tel +1 661 287 5400<br />

V<br />

Dr D Vakalounakis<br />

N.AG.RE.F, Plant Protection Institute<br />

Heraklion, Crete, Greece<br />

Email: vakalounakis@nefeli.imbb.forth.gr<br />

Van Staaveren BV (Colombia)<br />

PO Box 89477<br />

Santafé de Bogotá, Colombia<br />

Tel +571 864 0804<br />

Fax +571 864 0776<br />

Email: info@vanstaaveren.nl<br />

Contact: Mr Alvaro Velasco<br />

Van Staaveren BV<br />

PO Box 265, Aalsmeer<br />

Lavendelweg 15, Rijsenhout<br />

1430 AG, The Netherlands<br />

Tel +31 297 387 000<br />

Fax +31 297 387 070<br />

Email: info@vanstaaveren.nl<br />

Web www.vanstaaveren.nl<br />

Van Waters and Rogers<br />

P.O. Box 34325<br />

Seattle, Washing<strong>to</strong>n 98124-1325, USA<br />

Tel +1 425 889 3400<br />

Fax +1 425 889 4100<br />

www.vwr-inc.com<br />

Vegetable Research and Information Center,<br />

University of California<br />

c/o Kearney Agricultural Center<br />

9240 South Riverbend Avenue<br />

Parlier, California 93648, USA<br />

Tel +1 209 646 6000<br />

Fax +1 209 646 6015<br />

Vic<strong>to</strong>ry Upholstery and Canvas S<strong>to</strong>re<br />

672 Gandara Street, Santa Cruz<br />

Metro Manila, Philippines<br />

Tel +63 2 492 766 or 495 701<br />

Vilter Manufacturing Corp<br />

5555 South Packard Avenue<br />

PO Box 8904<br />

Cudahy, Wisconsin 53110-8904, USA<br />

Tel: +1 414 744 0111<br />

Fax: +1 414 744 3483<br />

Vivaio Leopardi<br />

Di Leopardi e C.<br />

Osimo, AN, Italy<br />

http://noria.ba.cnr.it/tepore/Convegno_innes<strong>to</strong>.htm<br />

VLACO VZW<br />

Kan. De Deckerstraat 22-26<br />

2800 Mechelen, Belgium<br />

Tel +32 15 208 320<br />

Fax +32 15 218 335<br />

254


Vortus BV<br />

Olivier van Noortstraat 4<br />

3142 LA Schiedam, Netherlands<br />

Tel +31 10 471 2858<br />

Fax +31 10 471 3158<br />

Wilbur-Ellis<br />

PO Box 1286<br />

Fresno, California 93715, USA<br />

Tel +1 209 442 1220<br />

Fax +1 209 442 4089<br />

W<br />

Waipuna International Ltd<br />

PO Box 62-140, Mount Welling<strong>to</strong>n<br />

Auckland, New Zealand<br />

Tel +649 276 5840<br />

Fax +649 276 0330<br />

Email: wil@waipuna.com<br />

www.waipuna.com<br />

Waipuna USA Inc<br />

701 West Buena #3<br />

Chicago, Illinois 60613, USA<br />

Tel +1 773 255 8355<br />

Fax +1 773 348 0516<br />

Email: mhaver2857@aol.com<br />

Dr Vern Walter<br />

WAW Inc, PO Box 465<br />

Leakey, Texas 78873, USA<br />

Tel +1 830 232 5834<br />

Email: vwalter@hctc.net<br />

Prof Tang Wenhau<br />

Dept. Plant Pathology<br />

China Agricultural University<br />

Beijing 100094, China<br />

Tel +86 10 628 930 37<br />

Fax +86 10 628 910 25<br />

Email: tangwh@public.east.cn.net<br />

Weyerhaeuser Corporation, USA<br />

Weyerhaeuser Company<br />

CH 1K35C<br />

P.O. Box 9777<br />

Federal Way, Washing<strong>to</strong>n 98063-977, USA<br />

Tel +1 253 924 2345<br />

www.weyerhaeuser.com<br />

Westco Agencies (M) Sdn. Bhd<br />

52C Jalan SS 22/25, Damansara Jaya<br />

47409 Petaling Jaya<br />

Selangor, Malaysia<br />

Tel +60 3 719 1617<br />

Fax +60 3 719 1617<br />

WholeWheat Enterprises<br />

6598 Bethany Lane<br />

Louisville, Kentucky 40272, USA<br />

Tel +1 502 935 8692<br />

Fax +1 502 935 9236<br />

Email: info@wholewheat.com<br />

www.permaguard.com<br />

Mr Peter Wilkinson<br />

IPM consultant, Xylocopa<br />

PO Box 1011, Borrowdale<br />

Harare, Zimbabwe<br />

Tel +263 488 2094<br />

Fax +263 488 3936<br />

Email: xylocopa@utande.co.zw<br />

Dr LH Williams<br />

USDA Forest Experimental Station<br />

New Orleans, LA, USA<br />

Tel +1 880 4565 7100<br />

Dr Michael Williamson<br />

Quarantine Technologies<br />

PO Box 1030, Queens<strong>to</strong>wn<br />

New Zealand<br />

Tel +643 441 8173<br />

Fax +643 441 8174<br />

Email: qtiiwill@queens<strong>to</strong>wn.co.nz<br />

Prof Gerhard Wolf<br />

Institut für Pflanzenpathologie<br />

Georg-August Universität<br />

Grisebachstrasse 6<br />

D-37077, Göttingen, Germany<br />

Tel +49 551 393 783<br />

Fax +49 551 394 187<br />

Email: gwolf@gwdg.de<br />

Woods End Research Labora<strong>to</strong>ry<br />

PO Box 297<br />

Mt Vernon, Maine 04352, USA<br />

Tel +1 207 293 2457 or 1-800-451-0337<br />

Fax +1 207 293 2488<br />

Email: weblink@woodsend.org<br />

www.woodsend.org<br />

Dr Peter Workman<br />

Crop and Food Research<br />

Auckland, New Zealand<br />

Tel +649 849 3660<br />

Fax +649 815 4201<br />

WR Grace & Co, USA<br />

7500 Grace Drive<br />

Columbia, Maryland 21044, USA<br />

Tel +1 410 531 4000<br />

Fax: +1 410 531 4367<br />

Annex 6: Address List of Suppliers and Specialists in <strong>Alternatives</strong><br />

255


Wrightson Seeds<br />

Melbourne, Australia<br />

Tel +613 9360 9910<br />

Fax +613 9360 9940<br />

Contact: Mr Rod Way<br />

X<br />

Z<br />

Zeneca<br />

Syngenta, Schwarzwald allee 215<br />

CH-4002 Basel, Switzerland<br />

Tel +41 61 697 1111<br />

www.zeneca.com<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Xylocopa Systems PL<br />

PO Box 1011, Borrowdale<br />

Harare, Zimbabwe<br />

Tel +26 34 882 094<br />

Fax +26 34 882 094<br />

Email: xylocopa@utande.co.zw<br />

Contact: Peter Wilkinson, IPM consultant<br />

Y<br />

York International GmbH<br />

Postfach 100465<br />

D-68004 Mannheim<br />

Germany<br />

Tel +49 621 4680<br />

Fax +49 621 468 654<br />

Dr Larry Zettler, USDA-ARS<br />

Horticultural Crops Research Labora<strong>to</strong>ry<br />

2021 S Peach Ave<br />

Fresno CA 93727, USA<br />

Tel +1 559 453 3023<br />

Fax +1 559 453 3088<br />

Email: lzettler@qnis.net<br />

University of Zimbabwe<br />

Crop Science Department<br />

PO Box MP 167, Mount Pleasant<br />

Harare, Zimbabwe<br />

Tel +26 34 303 211<br />

Fax +26 34 333 407<br />

Zip Research<br />

PO Box CY301, Causeway<br />

Harare, Zimbabwe<br />

Tel +26 34 726 911<br />

Contact: Dr Sam Page<br />

256


Annex 7<br />

References, Websites and<br />

Further Information<br />

Section 1 Introduction<br />

EEP 1998. Environmental Effects of Ozone Depletion: 1998 Assessment. Environmental Effects Panel.<br />

United Nations Environment Programme, Nairobi, Kenya.<br />

Le Prestre PG et al 1998. Protecting the Ozone Layer: Lessons, Models and Prospects. Kluwer Academic<br />

Publishers, Norwell, Massachusetts, USA and Dordrecht, Netherlands.<br />

MBTOC 1994. Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee. United Nations Environment<br />

Programme, Nairobi, Kenya. 303pp. Available on website: http://www.teap.org<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. 354pp. Available on website:<br />

http://www.teap.org<br />

TEAP 1999. The Quarantine and Pre-Shipment Exemption of <strong>Methyl</strong> <strong>Bromide</strong>. In Report of the Technology<br />

and Economic Assessment Panel, April 1999. Vol. 2. United Nations Environment Programme, Nairobi,<br />

Kenya.<br />

SORG 1996. Stra<strong>to</strong>spheric Ozone 1996. UK Stra<strong>to</strong>spheric Ozone Review Group. Department of the<br />

Environment, London, UK.<br />

WMO 1994. Scientific Assessment of Ozone Depletion: 1994. Global Ozone Research and Moni<strong>to</strong>ring<br />

Project, Report No. 37. World Meteorological Organisation, Geneva, Switzerland.<br />

WMO 1998. Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research and Moni<strong>to</strong>ring<br />

Project, Report No. 44. World Meteorological Organisation, Geneva, Switzerland.<br />

Section 2 Guidance for selecting non-ODS techniques<br />

No references cited in this Section.<br />

Section 3 Control of soil-borne pests<br />

Gyldenkaerne S, Yohalem D & Hvalsøe E 1997. Production of Flowers and Vegetables in Danish<br />

Greenhouses: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. Danish Environmental Protection Agency, Copenhagen,<br />

Denmark.<br />

Katan J 1999. The methyl bromide issue: problems and potential solutions. Journal of Plant Pathology 81,<br />

3, p.153-159.<br />

Klein L 1996. <strong>Methyl</strong> bromide as a soil fumigant. In Bell CH, Price N and Chakrabarti B (eds) 1996. The<br />

<strong>Methyl</strong> <strong>Bromide</strong> Issue. John Wiley and Sons, Chichester, UK.<br />

Lung G et al 1999. Demonstration of available alternative technologies <strong>to</strong> methyl bromide in different<br />

crop systems: GTZ demonstration project in Egypt. GTZ, Eschborn, Germany.<br />

MBTOC 1994. Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee. United Nations Environment<br />

Programme, Nairobi, Kenya. 303pp. Available on website: www.teap.org<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. 354pp. Available on website:<br />

http://www.teap.org<br />

Rodríguez-Kábana R 1999. Personal communication.<br />

Annex 7: References, Websites and Further Information<br />

257


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Section 4 Alternative techniques for controlling soil-borne pests<br />

Section 4.1 IPM and cultural practices<br />

Anon 1978 <strong>to</strong> present. Grower’s Weed Identification Handbook. Publication 4030. Division of Agriculture<br />

and Natural Resources, University of California, Oakland, California, USA.<br />

Anon undated. List of information, products and publications from Alternative Farming Systems<br />

Information Center. National Agriculture Library, Beltsville, Maryland, USA.<br />

Anon 1993. Cultural Weed Control in Vegetable Crops. Video. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA.<br />

Altieri MA 1990. Agroecology. Westview Press, Colorado, USA.<br />

ATTRA undated. Sustainable Turf Care. Appropriate Technology Transfer for Rural Areas, Fayetteville,<br />

Arkansas, USA. Available on website: http://www.attra.org<br />

ATTRA undated. Sustainable Small-Scale Nursery Production. Appropriate Technology Transfer for Rural<br />

Areas, Fayetteville, Arkansas, USA.<br />

ATTRA undated. Manures for Vegetable Crop Production. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA.<br />

ATTRA undated. Alternative Nema<strong>to</strong>de Control. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA.<br />

ATTRA undated. Companion Planting. Appropriate Technology Transfer for Rural Areas, Fayetteville,<br />

Arkansas, USA.<br />

ATTRA undated. Strawberries: Organic and IPM Options. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA.<br />

ATTRA undated. Organic Toma<strong>to</strong> Production. Appropriate Technology Transfer for Rural Areas, Fayetteville,<br />

Arkansas, USA.<br />

ATTRA undated. Alternative Soil Testing Labora<strong>to</strong>ries. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA.<br />

ATTRA undated. Farm-Scale Composting Resource List. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA.<br />

ATTRA undated. Overview of Cover Crops and Green Manures. Appropriate Technology Transfer for Rural<br />

Areas, Fayetteville, Arkansas, USA.<br />

Bello A 1998. Biofumigation and integrated crop management. In Bello A et al (eds). <strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission DGXI, Brussels, Belgium and<br />

CSIC Madrid, Spain. p.99-126.<br />

Benbrook C et al 1996. Pest Management at the Crossroads. Consumers Union, Yonkers, New York, USA.<br />

Available at website: http://www.pmac.net<br />

Besri M 1997a. Integrated management of soil-borne diseases in the Mediterranean protected vegetable<br />

cultivation. In Albajes R and Camero A (eds). Integrated Control in Protected Crops in the Mediterranean<br />

Climate. International Organisation for Biological Control, IOBC Bulletin 20, 4, p.45-57.<br />

Besri M 1997b. <strong>Alternatives</strong> <strong>to</strong> methyl bromide for preplant protected cultivation of vegetables in the<br />

Mediterranean developing countries. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. 3-5 November, San Diego, California, USA.<br />

Bugg RL et al 1991. The Cover Crops Database. Sustainable Agriculture Research and Education Program,<br />

University of California, Davis, California, USA.<br />

Coleman E 1989. The New Organic Grower: A Master’s Manual of Tools and Techniques. Chelsea Green,<br />

White River Junction, Vermont USA. 269pp.<br />

Cook RJ and Baker KF 1983. The Nature and Practice of Biological Control of Plant Pathogens. American<br />

Phy<strong>to</strong>pathological Society, St. Paul, Minnesota, USA. 539pp.<br />

Diver S and Sullivan P 1991. Cover Crops and Green Manures. Appropriate Technology Transfer for Rural<br />

Areas, Fayettesville, Arkansas, USA.<br />

258


DLV 1995. De Teelt Van Aardbeien [How <strong>to</strong> Grow Strawberries]. DLV Horticultural Advisory Service, Horst,<br />

Netherlands.<br />

DLV 2000. Aardbeienteelt In De Vollegrond [Growing Strawberries in the Open Field]. DLV Horticultural<br />

Advisory Service, Horst, Netherlands (in press).<br />

DLV 2000. Teelttechniek Glasaardbeien [Growing Techniques for Greenhouse Strawberries]. DLV<br />

Horticultural Advisory Service, Horst, Netherlands (in press).<br />

Dreistadt SH 1994. Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide.<br />

Publication 3359. Division of Agriculture and Natural Resources, University of California, Oakland,<br />

California, USA.<br />

Evans K, Trudgill DL and Webster JM (eds) 1993. Plant Parasitic Nema<strong>to</strong>des in Temperate Agriculture. CAB<br />

International, Wallingford, UK. 656pp.<br />

Ferraze LL et al 1996. Materia orgânica cobertura morta e outros fa<strong>to</strong>res fisicos que influenciam na forma<br />

ao de appotécios de Sclerotinia sclerotiorum em solos de cerrado. In Pereira RC and Nasser LCB (eds).<br />

Annais do VIII Simpósio Sobre o Cerrado. Brasilia, Brazil. p.297-301.<br />

Flint ML 1990. Pests of the Garden and Small Farm: A Grower’s Guide <strong>to</strong> Using Less Pesticide. Publication<br />

No. 3332. Division of Agriculture and Natural Resources, University of California, Oakland, California,<br />

USA.<br />

Frankel SJ et al 1996. <strong>Alternatives</strong> <strong>to</strong> fumigation in forest nurseries in the western United States. Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. <strong>Methyl</strong><br />

<strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA.<br />

Grubinger V 1990. Living Mulch for Vegetable Production. Extension Service, University of Vermont,<br />

Wyndham County, Vermont, USA. 13 pp.<br />

GTZ 1999. Demonstration of Available Alternative Technologies <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> in Different Crop<br />

Systems. GTZ IPM project, Cairo, Egypt.<br />

GTZ 1994. Integrated Pest Management Guidelines. GTZ, Eschborn, Germany.<br />

Heald CM 1987. Classical nema<strong>to</strong>de management practices. In Veech JA and Dickson DW (eds). Vistas on<br />

Nema<strong>to</strong>logy. Society of Nema<strong>to</strong>logists, Hyattsville, Maryland, USA.<br />

Herman T 1995. IPM for Processing Toma<strong>to</strong>es. IPM Manual No. 5. Crop and Food Research, Auckland,<br />

New Zealand.<br />

Hornby D 1990. Biological Control of Soil-Borne Plant Pathogens. CAB International, Wallingford, UK.<br />

496pp.<br />

Ingels C et al 1998. Cover Cropping in Vineyards: A Grower’s Handbook. Publication 3338. Division of<br />

Agriculture and Natural Resources, University of California, Oakland, California, USA.<br />

James RL et al 1994. Alternative technologies for management of soilborne diseases in bareroot forest<br />

nurseries in the United States. In Landis TD (ed). Proceedings: Northeastern and Intermountain Forest and<br />

Conservation Nursery Associations. Gen. Tech. Rep. RM-243. Rocky Mountain Forest and Range<br />

Experiment Station, USDA Forest Service, Fort Collins, Colorado, USA. p.91-96.<br />

Julien MH and Griffiths MW 1998. Biological Control of Weeds: A World Catalogue of Agents and Their<br />

Target Weeds. 4th edition. CAB International, Wallingford, UK. 240pp.<br />

Kaack H 1999. Personal communication. GTZ IPM project, Rabat, Morocco.<br />

Karlen OL et al 1994. Crop rotations for the 21st century. In Sparks DL. Advances in Agronomy. Vol 53.<br />

Academic Press, San Diego, California, USA and London, UK. p.1-45.<br />

Katan J 1999. The methyl bromide issue: problems and solutions. Journal of Plant Pathology 81, p.153-<br />

159.<br />

Ketzis J 1992. Case studies of the virtual elimination of methyl bromide soil fumigation in Germany and<br />

Switzerland and the alternatives employed. Proceedings of the International Workshop on <strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong> for Soil Fumigation. 19-23 Oc<strong>to</strong>ber 1992, Rotterdam, Netherlands and Rome/Latina, Italy.<br />

Lanini WT and LeStrange M 1991. Low input management of weeds in vegetable fields. California<br />

Agriculture. 45,1, p.11-13.<br />

Annex 7: References, Websites and Further Information<br />

259


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

260<br />

Liebman M and Dyck E 1993. Crop rotation and intercropping strategies for weed management.<br />

Ecological Applications 3, p.92-122.<br />

Luc M, Sikora RA and Bridge J 1990. Plant Parasitic Nema<strong>to</strong>des in Subtropical and Tropical Agriculture.<br />

CAB International, Wallingford, UK. 648pp.<br />

Luna J and Rutherford S 1989. A minimum tillage no-herbicide production system for transplanted vegetable<br />

crops using winter-annual legume cover crops. Virginia Polytechnic Institute and State University,<br />

Blacksburg, Virginia, USA.<br />

Lung G 1997. Biological control of nema<strong>to</strong>des with the enemy plant Tagetes spp. Integrated Production<br />

and Protection. International Symposium, 6-7 May 1997.<br />

Lung G 1999. Grafting system in vegetable crops. University of Hohenheim, Stuttgart, Germany.<br />

Lung G et al 1999. Demonstration of available alternative technologies <strong>to</strong> methyl bromide in different<br />

crop systems: GTZ demonstration project in Egypt. PN 98.2018.4-113.01. GTZ, Eschborn, Germany.<br />

Martin N 1996. IPM for Outdoor Roses. IPM Manual No.9. Crop and Food Research, Auckland, New<br />

Zealand.<br />

Martin N 1995. IPM for Greenhouse Toma<strong>to</strong>es. IPM Manual No.1. Crop and Food Research, Auckland,<br />

New Zealand.<br />

Martin N (ed) 1994. IPM for Greenhouse Capsicums. IPM Manual No. 7. Crop and Food Research,<br />

Auckland, New Zealand.<br />

Martin N (ed) 1993. IPM for Greenhouse Cucumbers. IPM Manual No.3. Crop and Food Research,<br />

Auckland, New Zealand.<br />

Martin N and Workman P 1994. IPM for Greenhouse Roses. IPM Manual No.8. Crop and Food Research,<br />

Auckland, New Zealand.<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. 354pp. Available on website:<br />

http://www.teap.org<br />

McGuire WS and Hannaway DB 1984. Cover and green manure crops for Northwest nurseries. In Duryea<br />

ML and Landis TD (eds). Forest Nursery Manual: Production of Bareroot Seedlings. Martinus Nijhoff, The<br />

Hague, Netherlands and D W Junk, Bos<strong>to</strong>n, Massachusetts, USA. p.87-91.<br />

Peet M 1995. Sustainable Practices for Vegetable Production in the South. Extension report. North<br />

Carolina State University, Focus Publishing, Newburyport, Massachusetts, USA.<br />

Pesticides Trust 1999. Progressive Pest Management: Controlling Pesticides and Implementing IPM. The<br />

Pesticides Trust, Brix<strong>to</strong>n, London, UK. Available on website: http://www.gn.apc.org/pesticidestrust<br />

Power JF 1994. Overview of green manures/cover crops. In Landis TD (ed). Proceedings: Northeastern and<br />

Intermountain Forest and Conservation Nursery Associations. Gen. Tech. Rep. RM-243. Rocky Mountain<br />

Forest and Range Experiment Station, USDA Forest Service, Fort Collins, Colorado, USA. p.47-50.<br />

Quarles W 1997. <strong>Alternatives</strong> <strong>to</strong> methyl bromide in forest nurseries. The IPM Practitioner 19, 3, p.1-14.<br />

Quarles W and Daar S 1996. IPM <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. Bio-Integral Resource Center, Berkeley,<br />

California, USA.<br />

Reis LGL 1998. <strong>Alternatives</strong> <strong>to</strong> methyl bromide in vegetable crops in Portugal. In Bello A et al (eds).<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission DGXI,<br />

Brussels, Belgium and CSIC, Madrid, Spain. p.43-52.<br />

Reuveni R (ed) 1995. Novel Approaches <strong>to</strong> Integrated Pest Management. Lewis Publishers, Boca Ra<strong>to</strong>n,<br />

Florida, USA. 369pp.<br />

Rodale Institute 1992. Managing Cover Crops Profitably. 1st edition. Sustainable Agriculture Research and<br />

Education Program, US Dept. Agriculture, USA. 114 pp.<br />

SAN 1997. Steel in the Field: A Farmers Guide <strong>to</strong> Weed Management Tools. Sustainable Agriculture<br />

Network, USA. 128pp. Available on website: http://www.sare.org<br />

SAN 1998. Managing Cover Crops Profitably. Sustainable Agriculture Network, USA. Available on website:<br />

http://www.sare.org


Shaw D and Larson K 1996. Relative performance of strawberry cultivars from California and other North<br />

American sources in fumigated and non-fumigated soils. Journal of American Society of Horticultural<br />

Science 121, 5, p.764-767.<br />

South DB 1986. A look back at mechanical weed control. In Schroeder RA (ed). Proceedings of the<br />

Southern Forest Nursery Association. Southern Forest Nursery Association, Pensacola, Florida, USA.<br />

Strand LL 1994. Integrated Pest Management for Strawberries. Publication 3351. Division of Agriculture<br />

and Natural Resources, University of California, Oakland, California, USA. 142pp. (also listed under UC<br />

publications below).<br />

Strand LL et al 1998. Integrated Pest Management for Toma<strong>to</strong>es. Publication 3274. Division of Agriculture<br />

and Natural Resources, University of California, Oakland, California, USA. 118pp. (also listed under UC<br />

publications below).<br />

Stauder AF 1994. The use of green overwinter mulch in the Illinois state nursery program. In Landis TD<br />

(ed). Proceedings: Northeastern and Intermountain Forest and Conservation Nursery Associations. Gen.<br />

Tech. Rep. RM-243. Rocky Mountain Forest and Range Experiment Station, USDA Forest Service, Fort<br />

Collins, Colorado, USA.<br />

Tang W 1999. Personal communication. China Agricultural University, Beijing, China.<br />

Tello J 1998. Crop management as an alternative <strong>to</strong> methyl bromide in Spain. In Bello A et al (eds).<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission DGXI,<br />

Brussels, Belgium and CSIC Madrid, Spain.<br />

Tjamos EC, Papavizas GC and Cook RJ 1992. Biological Control of Plant Diseases: Progress and Challenges<br />

for the Future. Plenum Press, New York, USA. 462pp.<br />

Thurs<strong>to</strong>n HD et al 1994. Slash/Mulch: How Farmers Use It and What Researchers Know About It. Cornell<br />

Institute for Food, Agriculture and Development, Cornell University, Ithaca, New York, USA. 302pp.<br />

Trivedi PC and Barker KR 1986. Management of nema<strong>to</strong>des by cultural practices. Nematropica 16, p.213-<br />

236.<br />

UC 1999. Integrated Pest Management for Apples and Pears. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA.<br />

UC 1999. Integrated Pest Management Guidelines for Floriculture. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA.<br />

UC 1998. Integrated Pest Management for Toma<strong>to</strong>es. Publication 3274. Division of Agriculture and<br />

Natural Resources, University of California, Oakland, California, USA. 120pp.<br />

UC 1998. Cover Cropping in Vineyards: A Grower’s Handbook. Publication 3338. Division of Agriculture<br />

and Natural Resources, University of California, Oakland, California, USA. 168pp.<br />

UC 1998. Grower’s Weed Identification Handbook. Division of Agriculture and Natural Resources,<br />

University of California, Oakland, California, USA. 272pp.<br />

UC 1996. Cultivos de Cobertura para la Agricultura de California. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA.<br />

UC 1995. Compost Production and Utilization: A Growers’ Guide. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA.<br />

UC 1995. Biological Control in the Western United States. Division of Agriculture and Natural Resources,<br />

University of California, Oakland, California, USA. 366pp.<br />

UC 1994. Integrated Pest Management for Strawberries. Publication 3351. Division of Agriculture and<br />

Natural Resources, University of California, Oakland, California, USA. 142pp.<br />

UC 1993. Integrated Pest Management for Walnuts. Publication 3270. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA. 96pp.<br />

UC 1992. Organic Soil Amendments and Fertilizers. Division of Agriculture and Natural Resources,<br />

University of California, Oakland, California, USA. 32pp<br />

UC 1992. Beyond Pesticides: Biological Approaches <strong>to</strong> Pest Management in California. Division of<br />

Agriculture and Natural Resources, University of California, Oakland, California, USA. 48pp.<br />

UC 1991. Establishing IPM Policies and Programs. Division of Agriculture and Natural Resources, University<br />

of California, Oakland, California, USA. 10pp.<br />

Annex 7: References, Websites and Further Information<br />

261


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

262<br />

UC 1991. Diseases of Temperate Zone Tree Fruit and Nut Crops. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA. 464pp.<br />

UC 1989. Covercrops for California Agriculture. Division of Agriculture and Natural Resources University of<br />

California, Oakland, California, USA. 24pp.<br />

UC 1981. Chrysanthemum Cultivars Resistant <strong>to</strong> Verticillium Wilt and Rust. Division of Agriculture and<br />

Natural Resources, University of California, Oakland, California, USA.<br />

UC 1981. General Recommendations for Nema<strong>to</strong>de Sampling. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA. 4pp.<br />

UC 1979. Resistance or Susceptibility of Certain Plants <strong>to</strong> Armillaria Root Rot. Division of Agriculture and<br />

Natural Resources, University of California, Oakland, California, USA. 12pp.<br />

Wagger MG 1989. Winter annual cover crops. In Cook MG and Lewis WM (ed) Conservation Tillage for<br />

Crop Production in North Carolina. Cooperative Extension AG-407, North Carolina, USA.<br />

Waibel H, Fleischer G, Kenmore PE and Feder G (eds) 1998. Evaluation of IPM Programs – Concepts and<br />

Methodologies. Pesticide Policy Project paper No 8. University of Hannover and GTZ, Eschborn, Germany.<br />

Whitehead AG 1997. Plant Nema<strong>to</strong>de Control. CAB International, Wallingford, UK. 448pp.<br />

Zimdahl RL 1999. Fundamentals of Weed Science. Second edition. Academic Press, San Diego, California,<br />

USA.<br />

Websites on IPM and Cultural Practices<br />

Agriculture Network Information Center (AgNIC) for IPM information and direc<strong>to</strong>ries of specialists:<br />

http://www.agnic.org<br />

Agroecology/Sustainable Agriculture Program, University of Illinois USA: http://www.aces.uiuc.edu/~asap<br />

Appropriate Technology Transfer for Rural Areas, USA for booklets on techniques of IPM and sustainable<br />

agriculture: http://www.attra.org<br />

Biocontrol of Plant Diseases Labora<strong>to</strong>ry, US Department of Agriculture USA:<br />

http://www.primenet.com/~scottm/bpdl.html<br />

Biocontrol Network on biological controls and IPM: http://www.biconet.com<br />

Bio-Integral Resource Center, Berkeley, California, USA for articles on MB alternatives:<br />

http://www.epa.gov/oppbppd1/PESP/p&s_pages/birc.htm<br />

Biological Control Virtual Information Center: http://ipmwww.ncsu.edu/biocontrol/biocontrol.html<br />

BPO Research Station for Nursery S<strong>to</strong>ck, Netherlands: http://www.bib.wau.nl/boskoop/<br />

CAB International for information, publications and research on IPM and biological methods:<br />

http://www.cabi.org/<br />

College of Agricultural Sciences, Oregon State University for information on cover crops and vegetable<br />

production: http://agsci.orst.edu/<br />

Consultative Group on International Agricultural Research (CGIAR): http://www.cgiar.org/<br />

Department of Nema<strong>to</strong>logy, University of California, Davis, California, USA, for information about recognition<br />

and management of plant parasitic nema<strong>to</strong>des: http://ucdnema.ucdavis.edu/<br />

Ecological Agriculture Projects, McGill University, Montreal, Quebec, Canada for scientific and extension<br />

information: http://eap.mcgill.ca<br />

EDIS, University of Florida, Gainesville, Florida, USA for extension materials, pest management guidelines<br />

and publications database: http://edis.ifas.ufl.edu<br />

EMBRAPA extension and research stations, Brazil: http://www.embrapa.br or<br />

http://www.embrapa.br/english<br />

Escola Superior de Agricultura Luiz de Queiroz (ESALQ) and information center (CIAGRI), University of São<br />

Paulo, Brazil: http://www.esalq.usp.br and http://www.ciagri.usp.br<br />

Faculty Outreach, North Carolina State University, North Carolina, USA for information on IPM production<br />

techniques for vegetables, including management of diseases and weeds: http://www.cals.ncsu.edu/sustainable/peet


Food and Agriculture Organization of the United Nations (FAO) Rome website on sustainable agriculture:<br />

http://www.fao.org/sd/index_en.htm and http://www.fao.org/ag/<br />

FPO Fruit Research Centre, Netherlands: http://www.agro.nl/fpo<br />

Institute for Crop Science, University of Kassel Germany for information on parasitic weeds:<br />

http://www.uni-hohenheim.de/~www380/parasite<br />

IPM Program, Cornell University, New York, USA: http://www.nysaes.cornell.edu/ipmnet/ny/vegetables<br />

Koppert biological control manufacturer for information on IPM practices: http://www.koppert.nl<br />

<strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee reports, Technology and Economic Assessment Panel:<br />

http://www.teap.org/html/methyl_bromide.html<br />

National Agricultural Library, US Department of Agriculture, USA: http://www.nal.usda.gov or<br />

http://www.nal.usda.gov/afsic for the Alternative Farming Systems Information Center<br />

National Biological Control Institute, US Department of Agriculture, USA:<br />

http://www.aphis.usda.gov/nbci<br />

National IPM Network USA: http://ipmwww.ncsu.edu/ipmproject/ipminfo.html<br />

North Carolina Cooperative Extension Service and State University, North Carolina, USA for plant disease<br />

clinic and extension materials: http://www.ces.ncsu.edu/depts/ent/clinic and<br />

http://www.cals.ncsu.edu/sustainable/peet<br />

Ohio State University, Ohio, USA, Farming the Net, Integrated Pest Management: http://www.ag.ohiostate.edu/~farmnet/links/ipm.html<br />

Oklahoma State Agriculture Resources, Oklahoma, USA, Ag-Related Web Sites:<br />

http://www.okstate.edu/OSU_Ag/agedcm4h/bobslist.htm<br />

Organic Farming Research Foundation: http://www.ofrf.org<br />

PBG Research Station for Floriculture and Glasshouse Vegetables, Netherlands: http://www.agro.nl/pbg<br />

Pest Management at the Crossroads for information on principles of IPM: http://www.pmac.net<br />

Plant Pathology Internet Guide Book, Universities of Bonn and Hannover, Germany: http://www.ifgb.unihannover.de/extern/ppigb/ppigb.htm<br />

Soil Quality Institute, Iowa State University, Iowa, USA for information on soil quality evaluation:<br />

http://www.statlab.iastate.edu/survey/SQI<br />

Statewide IPM Project, University of California, California, USA, for IPM publications, comprehensive<br />

extension materials and scientific information: http://www.ipm.ucdavis.edu<br />

Sustainable Agriculture Network, US Department of Agriculture, USA: http://www.sare.org<br />

Sustainable Agriculture Research and Education Program, University of California, California, USA for<br />

database on cover crops and other cultural practices: http://www.sarep.ucdavis.edu and<br />

http://www.sarep.ucdavis.edu/ccrop<br />

University of Bonn for information on IPM and sustainable agriculture research:<br />

http://www.uni-bonn.de/iol<br />

US Department of Agriculture, Agricultural Research Service, USA for research on alternatives <strong>to</strong> methyl<br />

bromide: http://www.ars.usda.gov/is/mb/mebrweb.htm<br />

Vegetable Research and Information Center, University of California, California, USA:<br />

http://vric.ucdavis.edu<br />

Virginia Cooperative Extension, Virginia, USA: http://www.ext.vt.edu/resources<br />

Section 4.2 Biological controls<br />

Arndt W and Buchenauer H 1997. Enhancement of biological control by combination of antagonistic fluorescent<br />

Pseudomonas strains and resistance inducers against damping off and powdery mildew in cucumber.<br />

Zeitschrift f. Pfl. Krankh 3, p.272-280.<br />

Arndt W, Kolle C and Buchenauer H 1998. Effectiveness of fluorescent pseudomonads on cucumber and<br />

<strong>to</strong>ma<strong>to</strong> plants under practical conditions and preliminary studies on the mode of action of antagonists.<br />

Zeitschrift f. Pfl. Krankh 2, p.198-215.<br />

Annex 7: References, Websites and Further Information<br />

263


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

264<br />

Batchelor TA (ed) 1999. Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low<br />

Environmental Impact. United Nations Environment Programme, Division of Technology, Industry and<br />

Economics (<strong>DTIE</strong>), Paris, France.<br />

Belarmino LC et al (eds) 1994. Control Biológico en el Cono Sur. EMBRAPA/CPACT, Pelotas, RS, Brazil.<br />

149pp.<br />

Borrás V 1998. The use of mycorrhizae in forest nurseries. In Bello A et al (eds). <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong><br />

<strong>Bromide</strong> for the Southern European Countries. European Commission DGXI and CSIC, Madrid, Spain.<br />

Buschena CA, Ocamb CM and O’Brien J 1995. Biological control of Fusarium diseases. In Landis TD and<br />

Cregg B (eds). National Proceedings: Forest and Conservation Nursery Associations. Gen. Tech. Rep. PNW-<br />

GTR-365. Pacific Northwest Research Station, USDA Forest Service, Portland, Oregon, USA. p.131-135.<br />

Chen G, Dunphy GB and Webster JM 1994. Antifungal activity of two Xenorhabdus species and<br />

Pho<strong>to</strong>rhabdus luminescens, bacteria associated with the nema<strong>to</strong>des Steinernema species and<br />

Heterorhabditis megidis. Biological Control 4, p.157-162.<br />

Cherim 1998. The Green Methods Manual: The Original Bio-control Primer. Green Spot Ltd, Nottingham,<br />

New Hampshire, USA. 238pp.<br />

Chet I 1987. Innovative Approaches <strong>to</strong> Plant Disease Control. John Wiley and Sons, New York, USA.<br />

372pp.<br />

Chet I 1993. Biotechnology in Plant Disease Control. Wiley-Liss, New York, USA.<br />

Cohen R, Chefetz B and Hadar Y 1998. Suppression of soil-borne pathogens by composted municipal<br />

solid waste. In Brown S et al (eds). Beneficial Co-Utilization of Agricultural, Municipal and Industrial By-<br />

Products. Kluwer Academic Publishers, Dordrecht, Netherlands. p.113-130.<br />

Cook RJ and Baker KF 1983. The Nature and Practice of Biological Control of Plant Pathogens. American<br />

Phy<strong>to</strong>pathological Society, St. Paul, Minnesota, USA. 539pp.<br />

De Ceuster TJJ and Hoitink HAJ 1999. Prospects for composts and biocontrol agents as substitutes for<br />

methyl bromide in biological control of plant diseases. Compost Science and Utilization 7, 3, p.6-15.<br />

Duchesne LC 1994. Role of ec<strong>to</strong>mycorrhizal fungi in biocontrol. In Pfleger FL and Linderman RG (eds).<br />

Mycorrhizae and Plant Health. APS Press, St. Paul Minnesota, USA. 344pp.<br />

Fravel D 1999. Commercial biocontrol products for use against soiborne crop diseases. US Department of<br />

Agriculture, USA. Available on website: http://www.barc.usda.gov/psi/bpdl/bpdlprod/bioprod.html<br />

Gomis MD et al 1996. Control biologico de Acremonium cucurbitacearum en cultivos de melon: seleccion<br />

de antagonistas. Actas del VIII Congreso de la SEF. Cordoba, Spain. p.211.<br />

Gullino ML 1995. Use of biocontrol agents against fungal diseases. Proceedings of Conference on<br />

Microbial Control Agents in Sustainable Agriculture. Saint Vincent. p.50-59.<br />

Gutierrez Z 1997. The Colombian experience in cut-flower production. In Report of Sensitization<br />

Workshop on Existing and Potential <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Use in Cut-Flower Production in<br />

Kenya.13-16 Oc<strong>to</strong>ber, Nairobi. Health and Environment Watch, Nairobi, Kenya and PANNA, San Francisco,<br />

California, USA.<br />

Hall R 1996. Principles and Practice of Managing Soilborne Plant Pathogens. APS Press, St. Paul, Minnsota,<br />

USA. 330pp.<br />

Hallman JA et al 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43,<br />

p.859-914.<br />

Hoitink HAJ and Fahy PC 1986. Basis for the control of soilborne plant pathogens with composts. Annual<br />

Review of Phy<strong>to</strong>pathology 24, p.93-114.<br />

Hoitink HAJ and Grebus ME 1994. Status of biological control of plant diseases with composts. Compost<br />

Science and Utilization 2, 2, p.6-12.<br />

Hoitink HAJ, S<strong>to</strong>ne AG and Han DY 1997. Suppression of plant diseases by composts. HortScience 32,<br />

p.184-187.<br />

Hong LW (ed) 2000. Biological Control in the Tropics. CAB International, Wallingford, UK. 155pp (in<br />

press).<br />

Hornby D 1990. Biological Control of Soil-Borne Plant Pathogens. CAB International, Wallingford, UK.<br />

496pp.


Hunt JS and Gale DS 1998. Use of beneficial microorganisms for improvement in sustainable monoculture<br />

of plants. Combined Proceedings of the International Plant Propaga<strong>to</strong>rs Society 48, p.31-35.<br />

Julien MH and Griffiths MW 1998. Biological Control of Weeds: A World Catalogue of Agents and Their<br />

Target Weeds. 4th edition. CAB International, Wallingford, UK. 240pp.<br />

Kloepper JW 1998. Biological control: an alternative <strong>to</strong> methyl bromide. In Bello A et al (eds) <strong>Alternatives</strong><br />

<strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission DGXI, Brussels, Belgium<br />

and CSIC, Madrid, Spain. p.245-250.<br />

Kwok OCH et al 1992. A nematicidal <strong>to</strong>xin from Pleurotus ostreatus NRRL 3526. Journal of Chemical<br />

Ecology 18, 2, p.127-135.<br />

Linderman RG 1998. Managing soilborne disease by managing root microbial communities. Paper 18.<br />

1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/ozone/mbr/mbrpro98.html<br />

Liu L, Kloepper JW and Tuzun S 1995. Introduction of systemic resistance in cucumber against Fusarium<br />

wilt by plant growth-promoting rhizobacteria. Phy<strong>to</strong>pathology 85, p.695-698.<br />

López-Robles J, Ot<strong>to</strong> AA and Hague NGM 1997. Evaluation of en<strong>to</strong>mopathogenic nema<strong>to</strong>des on the beet<br />

cyst nema<strong>to</strong>de Heterodera schachtii. Annals of Applied Biology 128, p.100-101.<br />

Lung G 1999. Personal communication. University of Hohenheim, Germany.<br />

Lung G and Eddauodi M 1999. Biological control of nema<strong>to</strong>des with the enemy plant Tagetes spp. GTZ<br />

demonstration project: alternatives <strong>to</strong> methyl bromide in Egypt and Morocco. International Workshop on<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. European Commission, Brussels, Belgium and Ministry of Agriculture,<br />

Athens, Greece.<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. p.44-48 Available on website:<br />

http://www.teap.org<br />

McInroy JA and Kloepper JW 1995. Survey of indigenous bacterial endophytes from cot<strong>to</strong>n and sweet<br />

corn. Plant and Soil 173, p.337-342.<br />

McPherson D and Hunt JS 1995. The commercial application of Trichoderma (beneficial fungus) in New<br />

Zealand horticulture. Combined Proceedings of the International Plant Propaga<strong>to</strong>rs Society 45, p.348-353.<br />

Minu<strong>to</strong> A, Migheli Q and Garibaldi A 1995. Evaluation of antagonistic strains of Fusarium spp. in the biological<br />

and integrated control of Fusarium wilt of cyclamen. Crop Protection 14, p.221-226.<br />

Murata A, Inoue M and Nagai Y 1989. Studies on practical use of C-1421, an attenuated isolate of pepper<br />

strain of <strong>to</strong>bacco mosaic virus on sweet pepper. Bulletin of Chiba Agricultural Experimental Station 30,<br />

p.81-89.<br />

Ocamb CM, Buschena CA and O’Brien J 1996. Microbial mixtures for biological control of Fusarium diseases<br />

of tree seedlings. In Landis TD and South DB (eds). National Proceedings: Forest and Nursery<br />

Conservation Associations. Gen. Tech. Rep. PNW-GTR-389. Pacific Northwest Research Station, USDA<br />

Forest Service, Portland, Oregon, USA.<br />

Ogawa K 1988. Studies on Fusarium wilt of sweet pota<strong>to</strong>. Bulletin of National Agricultural Research<br />

Center 10, p.1-127 (in Japanese with English summary).<br />

Ogawa K and Komada H 1984. Biological control of Fusarium wilt of sweet pota<strong>to</strong> by non-pathogenic<br />

Fusarium oxysporum. Annals of Phy<strong>to</strong>pathology Society of Japan 50, p.1-9.<br />

Ogawa K and Watanabe K 1992. Formulation of biocontrol agent, Fusarium oxysporum, for commercial<br />

use. Shokubutsu-boeki [Plant Protection] 46, p.378-381 (in Japanese).<br />

Postma J and Rattink H 1992. Biological control of Fusarium wilt of carnation with a nonpathogenic isolate<br />

of Fusarium oxysporum. Canadian Journal of Botany 70, p.1199-1205.<br />

Quarles W 1993. <strong>Alternatives</strong> <strong>to</strong> methyl bromide: Trichoderma seed treatments. The IPM Practitioner 15,<br />

9, p.1-7.<br />

Quimby PC and Birdsall JL 1995. Fungal agents for biological control of weeds: classical and augmentative<br />

approaches. In Reuveni R (ed). Novel Approaches <strong>to</strong> Integrated Pest Management. Lewis Publishers, Boca<br />

Ra<strong>to</strong>n, Florida, USA. p.293-308.<br />

Annex 7: References, Websites and Further Information<br />

265


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

266<br />

Reuveni R (ed) 1995. Novel Approaches <strong>to</strong> Integrated Pest Management. Lewis Publishers, Boca Ra<strong>to</strong>n,<br />

Florida, USA.<br />

Rodríguez-Kábana R, Morgan-Jones G and Chet Y 1987. Biological control of nema<strong>to</strong>des: soil amendments<br />

and microbial antagonists. Plant and Soil 100, p.237-247.<br />

Stirling GR, Sullahide SR and Nikulin A 1995. Management of lesion nema<strong>to</strong>de (Pratylenchus jordannensis)<br />

on replant apple trees. Australian Journal of Exp. Agriculture 35, p.247-258.<br />

Tan SH et al 1997. Molecular analysis of the genome of an attenuated strain of cucumber green mottle<br />

mosaic virus. Annals of Phy<strong>to</strong>pathology Society of Japan 63, p.470-474.<br />

Tjamos EC and Fravel DR 1997. Distribution and establishment of the biocontrol fungus Talaromyces<br />

flavus in soil and on roots of solanaceous crops. Crop Protection 16, p.135-139.<br />

Tjamos EC and Niklis N 1990. Synergism between soil solarization and Trichoderma preparations in controlling<br />

Fusarium wilt of beans in Greece. Proceedings of 8th Congress of Mediterranean Phy<strong>to</strong>pathology<br />

Union. Agadir, Morocco.<br />

Tjamos EC, Papavizas GC and Cook RJ 1992. Biological Control of Plant Diseases: Progress and Challenges<br />

for the Future. Plenum Press, New York, USA. 462 pp.<br />

Tjamos EC and Paplomatas EJ 1988. Long-term effect of soil solarization in controlling Verticillium wilt of<br />

globe artichokes in Greece. Plant Pathology 37, p.507-515.<br />

Tzortsakakis EA and Gowen SR 1994. Evaluation of Pasteuria penetrans alone and in combination with<br />

oxamyl, plant resistance and solarization for control of Meloidogyne spp. on vegetables grown in greenhouses<br />

in Crete. Crop Protection 13, p.455-462.<br />

Unestam T and Damm E 1994. Biological control of seedling diseases by ec<strong>to</strong>mycorrhizae. Diseases and<br />

Insects in Forest Nurseries. Institut National de la Recherche Agronomique (INRA). p.173-178.<br />

Warrior P 1996. DiTera® – a biological alternative for suppression of plant nema<strong>to</strong>des. Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. <strong>Methyl</strong><br />

<strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA.<br />

Websites on Biological Controls<br />

Alternative Farming Systems Information Center, National Agricultural Library, US Department of<br />

Agriculture, USA: http://www.nal.usda.gov/afsic<br />

Biocontrol Network for information on biological controls and IPM: http://www.biconet.com<br />

Biocontrol of Plant Diseases Labora<strong>to</strong>ry, US Department of Agriculture, Agricultural Research Service, USA<br />

for information and list of commercially available biological control products:<br />

http://www.barc.usda.gov/psi/bpdl/bpdl.html<br />

Biological Control Virtual Information Center: http://ipmwww.ncsu.edu/biocontrol/<br />

BioWorks biological control manufacturer website: http://www.bioworksbiocontrol.com<br />

California Department of Pesticide Regulation, USA for list of suppliers of beneficial organisms in North<br />

America: http://www.cdpr.ca.gov/docs/ipminov/bensuppl.htm<br />

Cornell University, Integrated Pest Management in the Northeast, USA:<br />

http://www.nysaes.cornell.edu/ipmnet<br />

European Biological Control Labora<strong>to</strong>ry for Bibliography on Formulations of Fungal En<strong>to</strong>mopathogens:<br />

http://www.cirad.fr<br />

Hannover University: http://www.gartenbau.uni-hannover.de/ipp<br />

Insect Biocontrol Labora<strong>to</strong>ry, US Department of Agriculture, Agricultural Research Service, USA:<br />

http://www.barc.usda.gov/psi/ibl/ibl.htm<br />

International Institute of Biological Control: http://www.cabi.org<br />

National Agricultural Library, US Department of Agriculture: http://www.nal.usda.gov or<br />

http://www.nal.usda.gov/afsic for the Alternative Farming Systems Information Center<br />

National Biological Control Institute, Animal and Plant Health Service, US Department of Agriculture, USA<br />

for information on biological controls and regulations: http://www.aphis.usda.gov/nbci


List of Retail Suppliers of Beneficial Organisms, Nebraska Cooperative Extension, University of Nebraska<br />

Lincoln, USA: http://www.ianr.unl.edu/pubs/insects/nf182.htm<br />

PBG Research Station for Floriculture and Glasshouse Vegetables, Netherlands: http://www.agro.nl/pbg<br />

Plant Pathology Internet Guide Book for a wide range of information resources, Universities of Bonn and<br />

Hannover, Germany: http://www.ifgb.uni-hannover.de/etern/ppigb<br />

Statewide IPM Project, University of California, USA: http://www.ipm.ucdavis.edu<br />

University of Bonn, Germany for information on sustainable agriculture: http://www.uni-bonn.de/iol<br />

University of Nebraska, USA for site on nema<strong>to</strong>des as biological control agents:<br />

http://nema<strong>to</strong>de.unl.edu/wormhome.htm<br />

IPPC organisation at ORST university for list of Internet Resources on Microbial Control of Pests:<br />

http://www.ippc.orst.edu/cicp/tactics/microbcontrol.htm<br />

Section 4.3 Fumigants and other Chemical Products<br />

Aguirre JI 1997. Chemical alternatives <strong>to</strong> MB in perennial crops. In Bello A, González JA, Arias M and<br />

Rodríguez-Kábana R (eds) <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European<br />

Commission, Brussels, Belgium and CSIC, Madrid, Spain. p.279-284.<br />

Ben-Yephet Y, Melero-Vera JM and DeVay JE 1988. Interaction of soil solarization and metam-sodium in<br />

the destruction of Verticillium dahliae and Fusarium oxysporum f.sp. vasinfectum. Crop Protection 7,<br />

p.327-331.<br />

Besri M 1997. Integrated management of soilborne diseases in the Mediterranean protected vegetable<br />

cultivation. In Albajes R and Carnero A (eds). International Organisation for Biological Control, IOBC<br />

Bulletin 20, 4, p.45-57.<br />

Besri M 1997. <strong>Alternatives</strong> <strong>to</strong> methyl bromide for preplant protected cultivation of vegetables in the<br />

Mediterranean developing countries. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Cartia G, Greco N and Di Primo P 1997. Experience acquired in Southern Italy in controlling soilborne<br />

pathogens by soil solarization and chemicals. Proceedings of Second International Conference on Soil<br />

Solarization and Integrated Management of Soilborne Pests. 16-21 March. Aleppo, Syria.<br />

Cebolla V et al 1999. Two years effect of some alternatives <strong>to</strong> methyl bromide on strawberry crops. 1999<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/ozone/mbr/mbrpro99.html<br />

Chellemi D 1998. <strong>Alternatives</strong> <strong>to</strong> methyl bromide in Florida <strong>to</strong>ma<strong>to</strong>es and peppers. The IPM Practitioner.<br />

4, p.1-6.<br />

Csinos AS et al 1997. Alternative fumigants for methyl bromide in <strong>to</strong>bacco and pepper transplant production.<br />

Crop Protection. 16, 6, p.585-594.<br />

Daguenet G and Schroeder M 1994. Perméabilité des plastiques au composants de Basamid G, utilisations<br />

practiques de Basamid G. ANPP Quatr. Conference International Maladies Plantes. Bordeaux, France.<br />

p.819-834.<br />

Desmarchelier JM 1998. Determination of effective fumigant concentrations of different soil types for<br />

methyl bromide and other soil fumigants. Rural Industries Research and Development Corporation,<br />

Australia.<br />

Dickson DW 1997. Fumigants and non-fumigants for replacing methyl bromide in <strong>to</strong>ma<strong>to</strong> production.<br />

1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Dickson DW et al 1995. Evaluation of methyl bromide, alternative fumgiants and nonfumigants on <strong>to</strong>ma<strong>to</strong>.<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

<strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA.<br />

Dickson DW et al 1998. Evaluation of methyl bromide alternative fumigants on <strong>to</strong>ma<strong>to</strong> under polyethylene<br />

mulch in 1998. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and<br />

Emissions Reductions. Available on website: http://www.epa.gov/ozone/mbr/mbrpro98.html<br />

Annex 7: References, Websites and Further Information<br />

267


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

268<br />

Duniway JM, Gubler WD, Xiao CL 1997. Response of strawberry <strong>to</strong> some chemical and cultural alternatives<br />

<strong>to</strong> methyl bromide fumigation of soil under California production conditions. 1997 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Eitel J 1995. The effectiveness of dazomet as influenced by the use of plastic sheeting. Acta Horticulturae<br />

382, p.104-109.<br />

Food and Agriculture Organization of the United Nations (FAO), Pesticide Management Unit, Pesticide<br />

Management Guidelines. Available on website:<br />

http://www.fao.org/waicent/FaoInfo/Agricult/AGP/AGPP/Pesticid<br />

Fenólio LG 1997. Basamid alternative product for soil fumigation. In Müller JJV (ed). Brasilian Meeting on<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> in Agriculture. EPAGRI, Florianópolis, Brasil. p.291-293.<br />

Fritsch HJ and Huber R 1995. Basamid granular, a halogen-free soil disinfectant. Acta Horticulturae 382,<br />

p.76-85.<br />

Gabarra R and Besri M 1997. Implementation of IPM: Case studies: Toma<strong>to</strong>. In Albajes R, Gullino ML, van<br />

Lenteren JC and Elad Y (eds) Integrated Pest and Disease Management in Greenhouse Crops. Kluwer<br />

Academic, Netherlands.<br />

Gilreath JP, Noling JW and Gilreath PR 1997. Field validation of 1,3-dichloropropene and chloropicrin and<br />

pebulate as an alternative <strong>to</strong> methyl bromide in <strong>to</strong>ma<strong>to</strong>. 1997 Annual International Research Conference<br />

on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Gilreath JP, Noling JW, Gilreath PR and Jones JP 1997. Field validation of 1,3-dichloropropene and<br />

chloropicrin and pebulate as an alternative <strong>to</strong> methyl bromide in <strong>to</strong>ma<strong>to</strong>. Proceedings of Florida State<br />

Horticultural Society. 110, p.273-276.<br />

Hafez S 1999. Personal communication, Univeristy of Idaho, Idaho, USA.<br />

Hafez S 1999b. <strong>Alternatives</strong> <strong>to</strong> methyl bromide for the fruit tree replant problem. Proceedings of<br />

International Workshop on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. 7-10<br />

December, Heraklion. European Commission DGXI and Agriculture Ministry, Athens, Greece.<br />

Hamm PB 1997. The comparison of methyl bromide, metam sodium (Vapam) and Telone-17 soil fumigants<br />

with watermelon and <strong>to</strong>ma<strong>to</strong> in the Columbia Basin of Oregon. 1997 Annual International Research<br />

Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Harris DC 1990. Control of Verticillium wilt and other soil-borne diseases of strawberry in Britain by chemical<br />

soil disinfestation. Journal of Horticultural Science. 65, p.401-408.<br />

Johnson AW and Feldmesser J 1987. Nematicides – a his<strong>to</strong>rical review. In Veech JA and Dickson DW (eds).<br />

Vistas on Nema<strong>to</strong>logy. Society of Nema<strong>to</strong>logists, Hyattsville, Maryland, USA. p.448-454.<br />

Laita J 1997. El metam sodio como alternativa al bromuro de metilo en cultivos horticolas. In Bello A et al<br />

(eds) Alternativas al Bromuro de Metilo en Agricultura. Congresos y Jornadas. 44/97. Consejería de<br />

Agricultura y Pesca, Junta de Andalucía. p.99-101.<br />

Leistra M 1972. Diffusion and adsorption of the nematicide 1,3-dichloropropene in soil. PhD thesis.<br />

Centre for Agricultural Publishing and Documentation, Wageningen, Netherlands. 105pp.<br />

Locascio SJ, Gilreath JP, Dickson DW, Kucharek TA, Jones JP and Noling JW 1997. Fumigant alternatives <strong>to</strong><br />

methyl bromide for polyethylene and mulched <strong>to</strong>ma<strong>to</strong>. HortScience. 32, p.1208-1211.<br />

Locascio SJ et al 1999. Strawberry production with alternatives <strong>to</strong> methyl bromide fumigation. 1999<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/ozone/mbr/mbrpro99.html<br />

López-Aranda JM 1999. The Spanish national project on alternatives <strong>to</strong> MB: the case of strawberry. 1999<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/ozone/mbr/mbrpro99.html<br />

Mappes D 1995. Spectrum of activity of dazomet. Acta Horticulturae [Soil Disinfestation] 382, p.96-103.<br />

MBTOC 1994. Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee. United Nations Environment<br />

Programme, Nairobi, Kenya. 303pp. Available on website: http://www.teap.org


MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. p.50-55. Available on website:<br />

http://www.teap.org<br />

McGovern R 1994. Integrated management of Fusarium crown and root rot of <strong>to</strong>ma<strong>to</strong> in Florida. 1994<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/ozone/mbr/mbrpro94.html<br />

<strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Outreach 1994 – 2000. Proceedings of Annual International Research<br />

Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. San Diego, California and Orlando,<br />

Florida, USA. Available on website: http://www.epa.gov/ozone/mbr<br />

Pesticides Trust 1999. Progressive Pest Management: Controlling Pesticides and Implementing IPM.<br />

Brix<strong>to</strong>n, London, UK. Available on website: http://www.gn.apc.org/pesticidestrust<br />

Pocino S 1998. Metham sodium an alternative <strong>to</strong> methyl bromide in Almería. In Bello A et al (eds)<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission, Brussels,<br />

Belgium and CSIC, Madrid, Spain. p.95-98.<br />

Rabasse JM 1998. Improved application techniques for metham sodium. In Bello A et al (eds). <strong>Alternatives</strong><br />

<strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission, Brussels, Belgium and<br />

CSIC, Madrid, Spain. p.201-204.<br />

Rodríguez-Kábana R and Walters G 1992. Method of treatment of nema<strong>to</strong>des in soil using furfural. US<br />

Patent Office No. 5084477 (granted 28 January 1992).<br />

Rodríguez-Kábana R, Backman PA and Curl EA 1977. Control of seed and soilborne plant diseases. In<br />

Siegel MR and Sisler HD (eds). Antifungal Compounds. Vol 1. Marcel Dekker, New York, USA.<br />

Rodríguez-Kábana R, Shelby RA, King PS and Pope MH 1982. Combinations of anhydrous ammonia and<br />

1,3-dichloropropene for control of root-knot nema<strong>to</strong>des in soybean. Nematropica 12, p.61-69.<br />

Sanz R et al 1998. <strong>Alternatives</strong> <strong>to</strong> methyl bromide for root-knot nema<strong>to</strong>de control in cucurbits. In Bello A<br />

et al (eds). <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission,<br />

Brussels, Belgium and CSIC, Madrid, Spain. p.73-84.<br />

UCD Department of Nema<strong>to</strong>logy 1999. Guidelines on Nema<strong>to</strong>de Management. University of California,<br />

Davis, California, USA.<br />

US EPA 1995. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies – Soil, Commodity and Structural Use.<br />

EPA430-R-95-009. Environmental Protection Agency, Washing<strong>to</strong>n, DC, USA. Available on website:<br />

http://www.epa.gov/ozone/mbr/<br />

US EPA 1996. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies – Soil, Commodity and Structural Use –<br />

Volume Two. EPA430-R-96-021. Environmental Protection Agency, Washing<strong>to</strong>n, DC, USA. Available on<br />

website: http://www.epa.gov/ozone/mbr/<br />

US EPA 1997. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies – Soil, Commodity and Structural Use –<br />

Volume Three. EPA430-R-97-030. . Environmental Protection Agency, Washing<strong>to</strong>n, DC, USA. Available on<br />

website: http://www.epa.gov/ozone/mbr/<br />

USDA 1997. DiTera®: controlling nema<strong>to</strong>des biologically. In <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. 3, 1, p.8. US<br />

Department of Agriculture, Beltsville, Maryland, USA. Available on website:<br />

http://www.ars.usda.gov/is/np/mba/jan97/ditera.htm<br />

Webb R 1998. Unique use of basamid in combination with other fumigants in California strawberries.<br />

1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/ozone/mbr/mbrpro98.html<br />

Willhelm SN and Westerlund FV 1994. Chloropicrin – A Soil Fumigant. California Strawberry Commission,<br />

Watsonville, California, USA.<br />

Yucel S 1995. A study on soil solarization combined with fumigant application <strong>to</strong> control Phy<strong>to</strong>phthora<br />

crown blight (Phy<strong>to</strong>phthora capsici Leonian) on peppers in the East Mediterranean region of Turkey. Crop<br />

Protection 14, p.653-655.<br />

Websites on Fumigants and Pesticides<br />

Bio-Integral Resource Center for publications on least-<strong>to</strong>xic pesticides: http://www.igc.apc.org/birc<br />

Annex 7: References, Websites and Further Information<br />

269


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

270<br />

BPO Research Station for Nursery S<strong>to</strong>ck, Netherlands: http://www.bib.wau.nl/boskoop<br />

College of Agricultural Sciences, Oregon State University, USA for information on vegetable production:<br />

http://agsci.orst.edu/<br />

Department of Nema<strong>to</strong>logy, University of California, Davis, USA. Website on management of plant parasitic<br />

nema<strong>to</strong>des: http://ucdnema.ucdavis.edu/<br />

EDIS, University of Florida, USA for extension materials, pest management guidelines and publications<br />

database: http://edis.ifas.ufl.edu<br />

Faculty Outreach, North Carolina State University, USA, for information on IPM production techniques for<br />

vegetables, including management of diseases and weeds: http://www.cals.ncsu.edu/sustainable<br />

FPO Fruit Research Centre, Netherlands: http://www.agro.nl/fpo/<br />

GTZ Pesticide Projects, Germany: http://www.gtz.de/proklima<br />

Institute for Crop Science, University of Kassel Germany: http://www.uni-hohenheim.de<br />

IPM Program, Cornell University, USA: http://www.nysaes.cornell.edu/ipmnet/ny/vegetables/<br />

<strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee reports, United Nations Environment Programme<br />

Technology and Economic Assessment Panel: http://www.teap.org/html/methyl_bromide.html<br />

National Agricultural Library, US Department of Agriculture, USA: http://www.nal.usda.gov or<br />

http://www.nal.usda.gov.afsic for Alternative Farming Systems Information Center<br />

National IPM Network, USA: http://ipmwww.ncsu.edu/ipmproject/ipminfo.html<br />

North Carolina Cooperative Extension Service and State University, USA for plant disease and insect clinic<br />

and extension materials: http://www.ces.ncsu.edu/depts/ent/clinic and http://www.cals.ncsu.edu/sustainable/peet/<br />

Oklahoma State Agriculture Resources, USA: http://www.okstate.edu/OSU_Ag/agedcm4h/bobslist.htm<br />

PBG Research Station for Floriculture and Glasshouse Vegetables, Netherlands: http://www.agro.nl/pbg<br />

Pesticides Trust for information on IPM and pesticide issues: http://www.gn.apc.org/pesticidestrust<br />

Statewide Integrated Pest Management Project, University of California, USA. Website on pest identification<br />

and pest management guidelines for horticultural crops: http://www.ipm.ucdavis.edu/PMG<br />

University of Nebraska-Lincoln, USA: http://www.ianr.unl.edu/ianr/csas<br />

US Department of Agriculture research on alternatives <strong>to</strong> methyl bromide:<br />

http://www.ars.usda.gov/is/mb/mebrweb.htm<br />

Virginia Cooperative Extension, USA: http://www.ext.vt.edu/resources/<br />

Section 4.4 Soil Amendments and Compost<br />

Allison FE 1973. Soil Organic Matter and Its Role in Crop Production. Developments in Soil Science No 3.<br />

Elsevier Scientific Publishing, New York, USA. 637pp.<br />

Anon 1986. Compendium of Research Reports on Use of Non-Traditional Methods for Crop Production.<br />

NCR-103 and Supplement 1. CES, Iowa State University, Ames, Iowa, USA.<br />

Anon 1997. Soil amendments instead of methyl bromide? In <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> 3, 1, p.4-5. US<br />

Department of Agriculture, Beltsville, Maryland, USA. Available on website:<br />

http://www.ars.usda.gov/is/np/mba/jan97/amend.htm<br />

ATTRA undated. Farm-scale Composting. Appropriate Technology Transfer for Rural Areas, Fayetteville,<br />

Arkansas, USA. Available on website: http://www.attra.org<br />

ATTRA undated. Sources for Organic Fertilizers and Amendments. Appropriate Technology Transfer for<br />

Rural Areas, Fayetteville, Arkansas, USA. Available on website: http://www.attra.org<br />

ATTRA undated. Manures for Vegetable Crop Production. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA. Available on website: http://www.attra.org<br />

ATTRA undated. Compost Teas for Plant Disease Control. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA. Available on website: http://www.attra.org<br />

ATTRA undated. Alternative Soil Testing Labora<strong>to</strong>ries. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA. Available on website: http://www.attra.org


Bello A 1998. Biofumigation and integrated pest management. In Bello A et al (eds). <strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European Commission DGXI, Brussels, Belgium and<br />

CSIC, Madrid, Spain.<br />

Bello A et al 1997. Biofumigación, nema<strong>to</strong>dos y bromuro de metilo en el cultivo de pimien<strong>to</strong>. In López A<br />

and Mora JA (eds). Posibilidad de Alternativas Viables al Bromuro de Metilo en Pimien<strong>to</strong> de Invernadero.<br />

Consejería de Medioambiente, Agricultura y Agua, Murcia, Spain.<br />

Bello A et al (eds) 1997. Alternativas al Bromuro de Metilo en Agricultura. Congresos y Jornadas 44/97.<br />

Junta de Andalucía, Spain. 192pp.<br />

Bello A et al 1998. Biofumigation and organic amendments. Proceedings of Regional Workshop on<br />

<strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> for North Africa and Southern European Countries. 27-29 May, Rome.<br />

European Commission, Brussels, Belgium and CSIC, Madrid, Spain.<br />

Bello A, González JA and Tello JC 1997. La biofumigación como alternativa a la desinfección del suelo.<br />

Horticultura Internacional 17, p.41-43.<br />

Bello A et al 1999. Biofumigation and local resources as methyl bromide alternatives. International<br />

Workshop on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. 7-10 December,<br />

Heraklion. European Commission DGXI and Agriculture Ministry, Athens, Greece.<br />

Besri M 1997. Integrated management of soil-borne diseases in the Mediterranean protected vegetable<br />

cultivation. In Albajes R and Carnero A (eds). Integrated Control in Protected Crops in the Mediterranean<br />

Climate. International Organisation for Biological Control, IOBC Bulletin 20, 4, p.45-57.<br />

Bewick MWM (ed) 1980. Handbook of Organic Waste Conversion. Van Nostrand Reinhold, New York,<br />

USA.<br />

Branson RL, Martin JP and Dost WA 1979. Decomposition rate of various organic materials in soil.<br />

International Plant Propaga<strong>to</strong>rs Proceedings 27, p.94-96.<br />

Bugg RL et al 1991. The Cover Crops Database. Sustainable Agriculture Research and Education Program,<br />

University of California, Davis, California, USA.<br />

Canullo GH, Rodríguez-Kábana R and Kloepper JW 1992. Changes in populations of microorganisms<br />

associated with the application of soil amendments <strong>to</strong> control Sclerotium rolfsii Sacc. Plant and Soil 144,<br />

p.59-66.<br />

Chaney DE, Drinkwater LE and Pettygrove SG 1992. Organic Soil Amendments and Fertilizers. Publication<br />

21505. Division of Agriculture and Natural Resources, University of California, Davis, California, USA.<br />

Chang AC, Page AL and Warneke JE 1991. Land application of municipal sludge – benefits and constraints.<br />

In Urbanization and Agriculture: Competition for Resources. Proceedings 1991 California Plant<br />

and Soil Conference. California Chapter, American Society of Agronomy, USA. p.92-94.<br />

Chen Y and Inbar Y 1993. Chemical and spectroscopic analysis of organic matter transformations during<br />

composting in relation <strong>to</strong> compost maturity. In Hoitink HAJ and Keener HM (eds). Science and Engineering<br />

of Composting: Design, Environmental, Microbiological and Utilization Aspects. Renaissance Publications,<br />

Worthing<strong>to</strong>n, Ohio, USA. p.551-600.<br />

Chung YR, Hoitink HAJ and Lipps PE 1988. Interactions between organic matter decomposition level and<br />

soilborne disease severity. Agriculture Ecosystems and Environment 24, p.183-193.<br />

Cohen R, Chefetz B and Hadar Y 1998. Suppression of soil-borne pathogens by composted municipal<br />

solid waste. In Brown S et al (eds). Beneficial Co-Utilization of Agricultural, Municipal and Industrial By-<br />

Products. Kluwer Academic, Dordrecht, Netherlands. 430pp.<br />

Coleman E 1989. The New Organic Grower: A Master’s Manual of Tools and Techniques. Chelsea Green,<br />

White River Junction, Vermont USA. 269 pp.<br />

Cook RJ and Barker KF 1983. The Nature and Practice of Biological Control of Plant Pathogens. American<br />

Phy<strong>to</strong>paghological Society, St Paul, Minnesota, USA. 539pp.<br />

Craft CM and Nelson EB 1996. Microbial properties of composts that suppress damping-off and root rot<br />

of creeping bentgrass caused by Pythium graminicola. Appl. Environ. Microbiol. 62, p.1550-1557.<br />

Culbreath AK, Rodríguez-Kábana R and Morgan-Jones G 1985. The use of hemicellolosic waste matter for<br />

reduction of the phy<strong>to</strong><strong>to</strong>xic effects of chitin and control of root-knot nema<strong>to</strong>des. Nematropica 15, p.49-75.<br />

Annex 7: References, Websites and Further Information<br />

271


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

272<br />

D’Addabbo T 1995. The nematicidal effect of organic amendments: a review of the literature, 1982-1994.<br />

Nema<strong>to</strong>l. Medit. 23, p.299-305.<br />

Daft GC, Poole HA and Hoitink HAJ 1978. Composted hardwood bark: a substitute for steam sterilization<br />

and fungicide drenches for control of Poinsettia crown and root rot. HortScience 14, p.185-187.<br />

De Ceuster TJJ and Hoitink HAJ 1999. Prospects for composts and biocontrol agents as substitutes for<br />

methyl bromide in biological control of plant diseases. Compost Science and Utilization 7, 3, p.6-15.<br />

Dost WA 1965. Wood Residue Used in the California Pine Region. Bulletin 817. Division of Agricultural<br />

Sciences, Univerisity of California, Berkeley, California, USA.<br />

Elberson LR, McCaffrey JP and Tripepi RR 1997. Use of rapeseed meal <strong>to</strong> control black vine weevil larvae<br />

infesting potted rhododendron. Journal of Environmental Horticulture 15, p.173-176.<br />

Escuer M, García S and Bello A 1998. La biofumigación como alternativa para el control de nema<strong>to</strong>dos en<br />

frutales. 30th Reunión de ONTA, 11-16 Oc<strong>to</strong>ber. Mendoza, Argentina.<br />

Gamleil A and Staple<strong>to</strong>n JJ 1993. Characteriza<strong>to</strong>n of antifungal volatile compounds evolved from solarized<br />

soil amended with cabbage residues. Phy<strong>to</strong>pathology 83, p.99-105.<br />

Hall R 1996. Principles and Practice of Managing Soilborne Plant Pathogens. APS Press, St Paul,<br />

Minnesota, USA. 330pp.<br />

Hallman JA, Rodríguez-Kábana R and Kloepper JW 1998. Chitin-mediated changes in bacterial communities<br />

of the soil, rhizosphere and internal roots of cot<strong>to</strong>n in relation <strong>to</strong> nema<strong>to</strong>de control. Soil Biology and<br />

Biochemistry 31, p.551-560.<br />

Hardy GE and Sivasithamparam 1991. Suppression of Phy<strong>to</strong>phthora root rot by a composted Eucalyptus<br />

bark mix. Australian Journal of Botany 39, p.153-159.<br />

Hoitink HAJ 1997. Disease suppressive composts as substitutes for methyl bromide. 1997 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Hoitink HAJ and Fahy PC 1986. Basis for the control of soilborne plant pathogens with composts. Annual<br />

Review of Phy<strong>to</strong>pathology 24, p.93-114.<br />

Hoitink HAJ, Inbar Y and Boehm MJ 1991. Status of compost-amended potting mixes naturally suppressive<br />

<strong>to</strong> soilborne disease of floricultural crops. Plant Disease 75, p.869-873.<br />

Hoitink HAJ and Keener HM (eds) 1993. Science and Engineering of Composting: Design, Environmental,<br />

Microbiological and Utilization Aspects. Renaissance Publications, Worthing<strong>to</strong>n, Ohio, USA. 728pp.<br />

Hoitink HAJ, S<strong>to</strong>ne AG and Han DY 1997. Suppression of plant diseases by composts. HortScience 32,<br />

p.184-187.<br />

Huang JW and Kuhlman EG 1991. Formulation of a soil amendment <strong>to</strong> control damping-off of slash pine<br />

seedlings. Phy<strong>to</strong>pathology 81, p.163-170.<br />

Kim KD, Nemec S and Musson G 1996. Control of Phy<strong>to</strong>phthora stem rot of pepper with compost and<br />

soil amendments in the greenhouse. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA.<br />

Kim KD, Nemec S and Musson G 1996. Effect of compost and soil amendment on soil microflora and<br />

Phy<strong>to</strong>phthora stem rot of pepper. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA.<br />

Kirkegaard JA et al 1993. Biofumigation using Brassica species <strong>to</strong> control pests and diseases in horticulture<br />

and agriculture. In Wrather N and Mailer R (eds). Proceedings of 9th Australian Research Assembly on<br />

Brassicas. Wagga Wagga, Australia. p.77-82.<br />

Krause MS, Musselman CA and Hoitink HAJ 1997. Impact of sphagnum peat decomposition level on biological<br />

control of Rhizoc<strong>to</strong>nia damping-off of radish induced by Flavobacterium balustinum 299 and<br />

Trichoderma hamatum 382. Phy<strong>to</strong>pathology 87, p.S55.<br />

Kuter GA, Hoitink HAJ and Chen W 1988. Effects of municipal sludge compost curing time on suppression<br />

of Pythium and Rhizoc<strong>to</strong>nia diseases of ornamental plants. Plant Disease 72, p.751-756.<br />

Lazarovits G, Conn K and Kritzman G 1997. High nitrogen containing organic amendments for the control<br />

of soilborne plant pathogens. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong>


<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

López-Fando C and Bello A 1997. Efec<strong>to</strong> de los sistemas de laboreo en la biología del suelo. In L García<br />

Torres et al (eds). Agricultura de Conservación: Fundamen<strong>to</strong>s Agronómicos, Medioambientales y<br />

Económicos. Asociación Española de Laboreo de Conservación, Córdoba, Spain. p.202-223.<br />

Marull J, Pinochet J and Rodríguez-Kábana R 1997. Agricultural and municipal compost residues for control<br />

of root-knot nema<strong>to</strong>des in <strong>to</strong>ma<strong>to</strong> and pepper. Compost Science and Utilization 5, p.6-15.<br />

Mathiessen JN and Kirkegaard JA 1993. Biofumigation, a new concept for a clean and green pest and disease<br />

control. Pota<strong>to</strong> Grower Oc<strong>to</strong>ber, p.14-15.<br />

MBTOC 1994. Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee. United Nations Environment<br />

Programme, Nairobi, Kenya, p.70-71. Available on website: http://www.teap.org<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya, p.39-41, 44-48. Available<br />

on website: http://www.teap.org<br />

McAllister J 1987. A Practical Guide <strong>to</strong> Novel Soil Amendments. Rodale Press, Emmaus, Pennsylvania,<br />

USA.<br />

Mendoza NM and Bustamente AV. Alcolchada y riego por goteo. Tácticas agronómicas para mejorar la<br />

producción de sandía en la Mixteca Poblana. Dpt de Parasi<strong>to</strong>logía, Universidad Autónoma de Chapingo,<br />

Chapingo, Mexico.<br />

Meyer JL and Pritchard TL 1981. Land Application Systems for the Utilization of Fruit and Vegetable<br />

Processing Effluent. Leaflet 21252. Division of Agricultural Sciences, Berkeley, University of California,<br />

Oakland, California, USA.<br />

Mian IH and Rodríguez-Kábana R 1982. Organic amendments with high tannin and phenolic contents for<br />

control of Meloidogyne arenaria in infested soil. Nematropica 12, p.221-234.<br />

Mian IH and Rodríguez-Kábana R 1982. Survey of the nematicidal properties of some organic materials<br />

available in Alabama as amendments <strong>to</strong> soil for control of Meloidogyne arenaria. Nematropica 12, p.235-<br />

246.<br />

Mian IH and Rodríguez-Kábana R 1982. Soil amendment with oil cakes and chicken litter for control of<br />

Meloidogyne arenaria. Nematropica 12.<br />

Michaud M 1993. Les bois raméaux fragmentés: un amendement organique pour les sols en production<br />

horticole. 4th International Conference on Ramial Wood. 1-3 Sept, Université LAVAL, Québec, Canada.<br />

Miller PR et al 1989. Covercrops for California Agriculture. Leaflet 21471. Division of Agriculture and<br />

Natural Resources, University of California, Oakland, California, USA.<br />

Ownley BH and Benson DM 1991. Relationship of matrix water potential and air-filled porosity of container<br />

media <strong>to</strong> development of Phy<strong>to</strong>phthora root rot of rhododendron. Phy<strong>to</strong>pathology 81, p.936-941.<br />

Ownley BH, Benson DM and Bilderback TE 1990. Physical properties of container media and relation <strong>to</strong><br />

severity of Phy<strong>to</strong>phthora root rot of rhododendron. Journal of American Horticultural Science 115, p.564-<br />

570.<br />

Parnes R 1990. Fertile Soil: A Grower’s Guide <strong>to</strong> Organic and Inorganic Fertilizers. AgAccess, Davis,<br />

California, USA. 190pp.<br />

Quarles W and Grossman J 1995. <strong>Alternatives</strong> <strong>to</strong> methyl bromide in nurseries – disease-suppressive media.<br />

The IPM Practitioner 12, 8, p.1-12.<br />

Reed AD et al 1973. Soil recycling of cannery wastes. California Agriculture 27, p.6-9.<br />

Rodale Institute (ed) 1992. Managing Cover Crops Profitably. Sustainable Agriculture Research and<br />

Education Program, US Department of Agriculture, Washing<strong>to</strong>n, DC, USA.<br />

Renkow M, Safley C and Chafin J 1994. A cost analysis of municipal trimmings composted. Compost<br />

Science and Utilization Spring, p.22-34.<br />

Rodríguez-Kábana R 1986. Organic and inorganic nitrogen amendments <strong>to</strong> soil as nema<strong>to</strong>de suppressants.<br />

Journal of Nema<strong>to</strong>logy 18, p.129-135.<br />

Rodríguez-Kábana R, Morgan-Jones G and Chet Y 1987. Biological control of nema<strong>to</strong>des: soil amendments<br />

and microbial antagonists. Plant and Soil 100, p.237-247.<br />

Annex 7: References, Websites and Further Information<br />

273


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

274<br />

Rose R 1994. An overview of the role of organic amendments in forest nurseries. In Landis TD (ed).<br />

National Proceedings: Northeastern and Intermountain Forest and Conservation Nursery Associations.<br />

Gen. Tech. Rep. RM-243. Rocky Mountain Forest and Range Experiment Station, USDA Forest Service, Fort<br />

Collins, Colorado, USA.<br />

Rÿckeboer JK, Deprins K and Coosemans 1998.Compost onderdrukt de kiemplantenschimmels Pythium<br />

ultimum en Rhizoc<strong>to</strong>nia solani: Veredele compost doet beter! Vlacovaria 3, p.20-26.<br />

Seck MA 1993. Essais de fertilisation organique avec les bois raméaux fragments de filao. 4th<br />

International Conference on Ramial Wood. 1-3 Sept, Université LAVAL, Québec, Canada.<br />

Segall L 1995. Marketing compost as a pest control product. BioCycle. May, p.63-67.<br />

Sekiguchi A 1977. Control of Fusarium wilt on Chinese yam. Ann. Rep. Dep. Plant Pathol. En<strong>to</strong>mol.<br />

Vegetable and Floriculture Experimental Station, Nagana, Japan. 1, p.10-11.<br />

Skow D and Walters C 1991. Mainline Farming for Century 21. Acres USA, Kansas City, Missouri, USA.<br />

204pp.<br />

Soltani N and Lazarovits G 1998. Effects of ammonium lignofulfonate on soil microbial populations,<br />

Verticilllium wilt and pota<strong>to</strong> scab. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/ozone/mbr/mbrpro98.html<br />

Spiegel Y, Cohn E and Chet I 1986. Use of chitin for controlling plant-parasitic nema<strong>to</strong>des. I. Direct effects<br />

on nema<strong>to</strong>de reproduction and plant performance. Plant and Soil 95, p.87-95.<br />

Spiegel Y, Chet I and Cohn E 1987. Use of chitin for controlling plant-parasitic nema<strong>to</strong>des. II. Mode of<br />

action. Plant and Soil 98, p.337-345.<br />

Spiegel Y et al 1988. Use of chitin for controlling plant-parasitic nema<strong>to</strong>des. III. Influence of temperature<br />

on nematicidal effect, mineralization, and microbial population buildup. Plant and Soil 109, p.251-256.<br />

Sterling GR 1991. Biological Control of Plant Parasitic Nema<strong>to</strong>des: Progress, Problems and Prospects. CAB<br />

International, Wallingford, UK. 282pp.<br />

Swanson GR, Dudley EG and Williamson KJ 1980. The use of fish and shellfish waste as fertilizers and<br />

feedstuffs. In Bewick MWM (ed). Handbook of Organic Waste Conversion. Van Nostrand Reinhold, New<br />

York, USA. p.253-267.<br />

Tate RL 1987. Soil Organic Matter: Biological and Ecological Effects. John Wiley and Sons, New York, USA.<br />

291pp.<br />

Tenuta M and Lazarovits G 1998. Mechanisms of action for control of soilborne pathogens by high nitrogen-containing<br />

soil amendments. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/ozone/mbr/mbrpro98.html<br />

Tenuta M and Lazarovits G 1999. Nitrogen transformation products eliminate plant pathogens in soil.<br />

1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/ozone/mbr/mbrpro99.html<br />

Tjamos EC, Papavizas GC and Cook RJ 1992. Biological Control of Plant Diseases: Progress and Challenges<br />

for the Future. Plenum Press, New York, USA. 462pp.<br />

Tuitert G, Szczech M and Bollen GJ 1998. Suppression of Rhizoc<strong>to</strong>nia solani in potting mixes amended<br />

with compost made from organic household waste. Phy<strong>to</strong>pathology 88, p.764-773.<br />

UC 1992. Organic Soil Amendments and Fertilizers. Agriculture and Natural Resources Communication<br />

Services, University of California, Oakland, California, USA. 32pp.<br />

UC 1995. Compost Production and Utilization: A Growers’ Guide. Agriculture and Natural Resources<br />

Communication Services, University of California, Oakland, California, USA.<br />

USDA 1979. Improving Soils with Organic Wastes. US Department of Agriculture, USA. US Government<br />

Printing Office 0-623-484/770.<br />

USDA 1999. Progress <strong>to</strong>wards alternatives <strong>to</strong> methyl bromide fumigation in bareroot forest nurseries in<br />

the United States. <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> 5, 3, p.11. US Department of Agriculture, Beltsville,<br />

Maryland, USA. Available on website: http://www.ars.usda.gov/is/np/mba/july99/bareroot.htm


Vegetable Research and Information Center (undated). Making and Using Compost and Composting.<br />

Factsheets. Vegetable Research and Information Center, University of California, California, USA. Available<br />

on website: http://vric.ucdavis.edu<br />

Vi<strong>to</strong>sh ML (undated). Biological Inoculants and Activa<strong>to</strong>rs: Their Value <strong>to</strong> Agriculture. Extension Publication<br />

168. North Central Region, USA.<br />

Wildman WE and Brandon DM 1968. Rice Hull Soil Incorporation Studies. Progress report. Agronomy and<br />

Range Science, University of California Cooperative Extension, UC Davis, California, USA.<br />

Wilson LL and Lemieux PG 1980. Fac<strong>to</strong>ry canning and food processing wastes as feedstuffs and fertilizers.<br />

In Bewick MWM (ed). Handbook of Organic Waste Conversion. Van Nostrand Reinhold, New York, USA.<br />

p.253-267.<br />

Windust A 1997. Worm Farming Made Simple. Allscape, Manduring, Vic<strong>to</strong>ria, Australia. ISBN-0-646-<br />

32664-3.<br />

You MP and Sivasithamparam K 1994. Hydrolysis of fluorescein diacetate in an avocado plantation mulch<br />

suppressive <strong>to</strong> Phy<strong>to</strong>phthora cinnamomi and its relationship with certain biotic and abiotic fac<strong>to</strong>rs. Soil.<br />

Biol. Biochem. 26, p.1355-1361.<br />

Websites on Soil Amendments and Compost<br />

Agroecology/Sustainable Agriculture Program, University of Illinois, USA:<br />

http://www.aces.uiuc.edu/~asap<br />

Alternative Farming Systems Information Center, National Agricultural Library, US Department of<br />

Agriculture, USA: http://www.nal.usda.gov/afsic<br />

Appropriate Technology Transfer for Rural Areas, Fayetteville, Arkansas, USA: http://www.attra.org<br />

Biocontrol Network on biological controls and IPM: http://www.biconet.com<br />

Biological Control Virtual Information Center: http://ipmwww.ncsu.edu/biocontrol<br />

Ecological Agriculture Projects, McGill University, Canada for scientific and extension information:<br />

http://eap.mcgill.ca<br />

Henry A Wallace Institute for Alternative Agriculture, Maryland, USA: http://www.hawiaa.org<br />

Hannover University, Germany: http://www.gartenbau.uni-hannover.de/ipp<br />

Integrated Pest Management in the Northeast, Cornell University, New York, USA:<br />

http://www.nysaes.cornell.edu/ipmnet<br />

Leopold Center for sustainable agriculture, and Soil Quality Institute, Iowa State University, Iowa, USA:<br />

http://www.ag.iastate.edu/centers/leopold and http://www.statlab.iastate.edu/survey/SQI<br />

<strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee reports, United Nations Environment Programme,<br />

Technology and Economic Assessment Panel: http://www.teap.org/html/methyl_bromide.html<br />

National Agricultural Library, US Department of Agriculture, USA: http://www.nal.usda.gov and<br />

http://www.nal.usda.gov/afsic<br />

National IPM Network, USA: http://ipmwww.ncsu.edu/ipmproject/ipminfo.html<br />

North Carolina Cooperative Extension Service and State University, USA for plant disease clinic and extension<br />

materials: http://www.ces.ncsu.edu/depts/ent/clinic and<br />

http://www.cals.ncsu.edu/sustainable/peet/ and http://ipmwww.ncsu.edu/biocontrol<br />

Organic Farming Research Foundation: http://www.ofrf.org<br />

Plant Pathology Internet Guide Book for a wide range of information resources, Universities of Hannover<br />

and Bonn, Germany: http://www.ifgb.uni-hannover.de/extern/ppigb<br />

Soil Quality Institute, Iowa State University, USA for information on soil quality evaluation:<br />

http://www.statlab.iastate.edu/survey/SQI<br />

Statewide IPM Project, University of California, USA for IPM publications, comprehensive extension materials<br />

and scientific information: http://www.ipm.ucdavis.edu/IPMPROJECT<br />

Center for Sustainable Agricultural Systems, University of Nebraska-Lincoln, USA:<br />

http://www.ianr.unl.edu/ianr/csas<br />

University of Bonn, Germany for information on sustainable agriculture: http://www.uni-bonn.de/iol<br />

Annex 7: References, Websites and Further Information<br />

275


Vegetable Research and Information Center, University of California, USA for factsheets on composting:<br />

http://vric.ucdavis.edu<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

276<br />

Section 4.5 Solarisation<br />

An<strong>to</strong>niou PP, Tjamos EC and Panagopoulos CG 1995. Use of soil solarization for controlling bacterial<br />

canker of <strong>to</strong>ma<strong>to</strong> in plastic houses in Greece. Plant Pathology 44, p.438-447.<br />

An<strong>to</strong>niou PP et al 1993. Effectiveness, mode of action and commercial application of soil solarization for<br />

control of Clavibacter michiganensis subsp. michiganensis of <strong>to</strong>ma<strong>to</strong>es. Acta Horticulturae 382, p.119-<br />

128.<br />

Batchelor TA (ed) 1999. Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low<br />

Environmental Impact. United Nations Environment Programme, Division of Technology, Industry and<br />

Economics, OzonAction Programme, Paris, France.<br />

Bello A et al 1999. Biofumigation and local resources as methyl bromide alternatives. International<br />

Workshop on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries, 7-10 December,<br />

Heraklion. European Commission DGXI and Agriculture Ministry, Athens, Greece.<br />

Bourbos VA and Skoudridakis MT 1996. Soil solarization for the control of Verticillium wilt of greenhouse<br />

<strong>to</strong>ma<strong>to</strong>. Phy<strong>to</strong>parasitica 24, p.277-280.<br />

Cartia G 1997. Solarization in integrated management systems for greenhouses – experiences in commercial<br />

crops in Sicily. Proceedings of Second International Conference on Soil Solarization and Integrated<br />

Management of Soilborne Pests. 16-21 March, Aleppo, Syria.<br />

Chellemi DO et al 1997. Adaptation of soil solarization <strong>to</strong> the integrated managment of soilborne pests of<br />

<strong>to</strong>ma<strong>to</strong> under humid conditions. Phy<strong>to</strong>pathology 87, p.250-258.<br />

Chellemi DO et al 1997. Application of soil solarization <strong>to</strong> fall production of cucurbits and peppers.<br />

Proceedings of Florida State Hort. Society 110, p.333-336.<br />

Chellemi DO et al 1997. Field validation of soil solarization for fall production of <strong>to</strong>ma<strong>to</strong>. Proceedings of<br />

Florida State Hort. Society 110, p.330-332.<br />

Coelho L, Chellemi DO and Mitchell DJ 1997. Efficacy of soil solarization and cabbage amendment for the<br />

control of Phy<strong>to</strong>phthora spp. in north Florida. Phy<strong>to</strong>pathology 87, p.S20.<br />

DeVay J, Staple<strong>to</strong>n J and Elmore C (eds) 1991. Soil Solarization. Plant Production & Protection Paper 109,<br />

Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.<br />

Elmore C, Staple<strong>to</strong>n J, Bell C and DeVay J 1997. Soil Solarization: A Nonpesticidal Method for Controlling<br />

Diseases, Nema<strong>to</strong>des, and Weeds. Publication 21377, Division of Agriculture and Natural Resources,<br />

University of California, USA.<br />

Gamliel A and Staple<strong>to</strong>n J 1993. Effect of chicken compost or ammonium phosphate and solarization on<br />

pathogen control, rhizosphere organisms and lettuce growth. Plant Disease 77, p.886-891.<br />

Gamliel A and Staple<strong>to</strong>n J 1997. Improvement of soil solarization with volatile compounds generated from<br />

organic amendments. Phy<strong>to</strong>parasitica 25.<br />

Ghini R 1997. Solarização do solo. In Go<strong>to</strong> R and Wilson Tivelli S (eds). Produção de Hortaliças em<br />

Ambiente Protegido: Condições Subtropicais. UNESP Fundacão, São Paulo, Brazil.<br />

Ghini R 1993. A solar collec<strong>to</strong>r for soil disinfestation. Netherlands Journal of Plant Pathology 99, p.45-50.<br />

Ghini R et al 1992. Desinfestacao de substra<strong>to</strong>s com a utilizaco de colec<strong>to</strong>r solar. Bragantia Campinas 51,<br />

p.85-93.<br />

Grinstein A 1992. Introduction of a new agricultural technology – soil solarization – in Israel.<br />

Phy<strong>to</strong>parasitica 20 supplement, p.127S-131S.<br />

Grinstein A and Hetzroni A 1991. The technology of soil solarization. In Katan J and DeVay JE (eds). Soil<br />

Solarization. CRC Publications, Boca Ra<strong>to</strong>n, Florida, USA. p.159-170.<br />

Grossman J and Liebman J 1995. <strong>Alternatives</strong> <strong>to</strong> methyl bromide – steam and solarization in nursery<br />

crops. The IPM Practitioner 17, 7, p.1-12.<br />

Hartz TK, DeVay JE and Elmore CL 1993. Solarization is an effective soil disinfestation technique for strawberry<br />

production. HortScience 28, 2, p.104-106.


Horowitz J, Regev Y and Herzlinger G 1983. Solarization for weed control. Weed Science 31, p.170-179.<br />

Katan J 1999. Personal communication.<br />

Katan J 1996. Soil Solarization: Integrated Control Aspects. In Hall R (ed). Principles and Practice of<br />

Managing Soilborne Pathogens. APS Press, St. Paul, Minnesota, USA.<br />

Katan J and DeVay J 1991. Soil Solarization. CRC Press, Boca Ra<strong>to</strong>n, Florida, USA.<br />

Katan J, Grinstein A and Gamliel A 1998. Highlights on recent studies and progress in soil solarization.<br />

Available on website: http://agri3.huji.ac.il/~katan/highlight.html<br />

Le Bihan B et al 1997. Evaluation of soil solar heating for control of damping-off fungi in two forest nurseries<br />

in France. Biol. Fertil. Soils 25, p.189-195.<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. p.48-49. Available on website:<br />

http://www.teap.org<br />

Minu<strong>to</strong> A, Migheli Q and Garibaldi A 1995. Integrated control of soilborne plant pathogens by solar heating<br />

and antagonistic microorganisms. Acta Horticulturae [Soil Disinfestation] 382, p.138-143.<br />

Staple<strong>to</strong>n JJ 1996. Fumigation and solarization practice in plasticulture systems. HortTechnology 6, p.189-<br />

192.<br />

Staple<strong>to</strong>n JJ and Ferguson L 1996. Solarization <strong>to</strong> disinfest soil for containerized plants in the inland valleys<br />

of California. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and<br />

Emissions Reductions. 4-6 Nov, Orlando, Florida, USA.<br />

Staple<strong>to</strong>n JJ, Paplomatus E, Wakeman R and DeVay J 1993. Establishment of apricot and almond trees<br />

using soil mulching with transparent (solarization) and black polyethylene film: effects on Verticillium wilt<br />

and tree health. Plant Pathology 42, p.333-338.<br />

Strand LL et al 1998. Integrated Pest Management for Toma<strong>to</strong>es. Publication 3274. Division of Agriculture<br />

and Natural Resources, University of California, Oakland, California, USA. 118pp.<br />

Thicoipán JP 1994. Production Technique: La Solarisation. Infos-CTIFL No. 104. Centre Technique<br />

Interprofessionnel des Fruits et Légumes, Paris, France.<br />

Tjamos EC and Paplomatas EJ 1988. Long-term effect of soil solarization in controlling Verticillium wilt of<br />

globe artichokes in Greece. Plant Pathology 37, p.507-515.<br />

Tjamos EC 1998. Solarization an alternative <strong>to</strong> methyl bromide for the Southern European Countries. In<br />

Bello A et al (eds) <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for the Southern European Countries. European<br />

Commission DGXI, Brussels, Belgium and CSIC, Madrid. p.127-150.<br />

Vickers RT 1995. Toma<strong>to</strong> production in Italy without methyl bromide. In Banks HJ (ed). Agricultural<br />

Production Without <strong>Methyl</strong> <strong>Bromide</strong> – Four Case Studies. CSIRO Division of En<strong>to</strong>mology, Canberra,<br />

Australia.<br />

Websites and Audio-visual Materials on Solarization<br />

GTZ Proklima website for information and pho<strong>to</strong>graphs of the GTZ technology transfer project on solarisation<br />

in Jordan: http://www.gtz.de/proklima<br />

International Workgroup on Soil Solarization and Integrated Management of Soilborne Pests, Kearney<br />

Agricultural Center, University of California, USA: http://www.uckac.edu/iwgss<br />

Soil Solarization Home, Hebrew University of Jerusalem, Israel: http://agri3.huji.ac.il/~katan<br />

Principles of Soil Solarization and Application of Soil Solarization. Video cassette made in 1990. Available<br />

in English, Arabic, Spanish, Portugese, French, Hebrew, Italian. Extension Service, Ministry of Agriculture &<br />

Rural Development, D N Bet Shear 10900, Israel. (Contact Mr. A Tzafrir, fax +972 3 6971 649.)<br />

Section 4.6 Steam Treatments<br />

Agrelek 1995. Soil Heat Treatment. Technical Information. Agrelek electricity advisory service for agriculture,<br />

South Africa.<br />

Anon 1995. Mobile steam sterilizer. Greenhouse Management and Production. 14, 2, p.75.<br />

Annex 7: References, Websites and Further Information<br />

277


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

278<br />

Baker KF 1957. The UC System for Producing Healthy Container-Grown Plants. Manual 23. Agricultural<br />

Experimental Station, University of California, Berkeley, California, USA.<br />

Barel M 1999. Personal communication, Netherlands.<br />

Barel M 1992. Negative pressure steaming. Proceedings of the International Workshop on <strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong> for Soil Fumigation. Oc<strong>to</strong>ber. Rotterdam, Netherlands and Rome, Italy.<br />

Bar<strong>to</strong>k JW 1993. Steaming is still the most effective way of treating contaminated media. Greenhouse<br />

Manager 110, 10, p.88-89.<br />

Bar<strong>to</strong>k JW 1994. Steam sterilization of growing media. In Landis TD and Dumroese RK (eds). National<br />

Proceedings: Forest and Conservation Nursery Association. Gen. Tech. Rep. RM-GTR-257, Rocky Mountain<br />

Forest and Range Experiment Station, Forest Service, US Department of Agriculture Fort Collins, Colorado,<br />

USA. p.163-165.<br />

Belker N 1989. Soil Disinfection by Steaming. Fachinformation No. 4/3/89, Horticultural Section, Chamber<br />

of Agriculture, Westfalen-Lippe, Germany.<br />

Brodie BB 1999. Using steam <strong>to</strong> replace methyl bromide in the golden nema<strong>to</strong>de control program. 1999<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

<strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA. Available on website:<br />

http://www.epa.gov/ozone/mbr/mbrpro99.html<br />

Castellá G 1999. Lessons learned during UNIDO’s project implementation in the methyl bromide sec<strong>to</strong>r.<br />

1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA. Available on website:<br />

http://www.epa.gov/ozone/mbr/mbrpro99.html<br />

Davis T 1994. If you know where <strong>to</strong> look, potential heat sources are virtually everywhere. Greenhouse<br />

Manager. 13, 6, p.60-63.<br />

De Barro P 1995. Cucurbit production in the Netherlands without methyl bromide. In Banks HJ (ed).<br />

Agricultural Production without <strong>Methyl</strong> <strong>Bromide</strong> – Four Case Studies. CSIRO Division of En<strong>to</strong>mology,<br />

Canberra, Australia.<br />

Ellis RG 1991. A Review of Sterilisation of Glasshouse Soils. Horticultural Development Council Research<br />

Report PC/34, Petersfield, UK.<br />

EPA 1997. Steam as an alternative <strong>to</strong> methyl bromide in nursery crops. In Environmental Protection<br />

Agency. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies – Soil, Commodity and Structural Use – Volume<br />

Three. EPA430-R-97-030. Environmental Protection Agency, Washing<strong>to</strong>n, DC, USA. Available on website:<br />

http://www.epa.gov/ozone/mbr/<br />

Grossman J and Liebman J 1996. <strong>Alternatives</strong> <strong>to</strong> methyl bromide – steam and solarization in nursery<br />

crops. In Quarles W and Daar S (eds) 1996. IPM <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. Bio-Integral Resource<br />

Center, Berkeley, California, USA.<br />

Gullino ML 1992. <strong>Methyl</strong> bromide and alternatives in Italy. Proceedings of International Workshops on<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> for Soil Fumigation. 19-23 Oc<strong>to</strong>ber, Rotterdam, Netherlands and<br />

Rome/Latina, Italy.<br />

Karsky R 1996. Steam Treating Soils: An Alternative <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Fumigation. Technical report No.<br />

9624-2818-MTDC, Missoula Technology & Development Center, US Dept Agriculture Forest Service,<br />

Missoula, Montana, USA.<br />

Ketzis J 1992. Case studies of the virtual elimination of methyl bromide soil fumigation in Germany and<br />

Switzerland and the alternatives employed. Proceedings of International Workshops on <strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong> for Soil Fumigation. 19-23 Oc<strong>to</strong>ber, Rotterdam, Netherlands and Rome/Latina, Italy.<br />

Lawson RH and Horst RK 1982. Upset with diseases? Let off some steam. Greenhouse Manager 1982,<br />

p.51-54.<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. 354pp. Available on website:<br />

http://www.teap.org<br />

Norberg G et al 1997. Vegetation control by steam treatment in boreal forests: a comparison with burning<br />

and soil scarification. Canadian Journal of Forest Research 27, p.2026-2033.


Quarles W 1997. Steam – the hottest alternative <strong>to</strong> methyl bromide. American Nurseryman 15 August,<br />

p.37-43.<br />

Quarles W 1997. <strong>Alternatives</strong> <strong>to</strong> methyl bromide in forest nurseries. The IPM Practitioner 19, 3, p.1-14.<br />

Runia WT 1983. A recent development in steam sterilization. Acta Horticulturae [Soil Disinfestation] 152,<br />

p.195-200.<br />

USDA 1997. Portable unit sterilizes soil. <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. US Department of Agriculture<br />

newsletter 3, 3, p.4-5. Available on website: http://www.ars.usda.gov/is/np/mba/july1997/<br />

Websites on Steam/Heat Treatments<br />

Waipuna International weed control equipment manufacturer: http://www.waipuna.com<br />

Section 4.7 Substrates<br />

ATTRA undated. Organic Potting Mixes. Appropriate Technology Transfer for Rural Areas, Fayetteville,<br />

Arkansas, USA. Available on website: http://www.attra.org/<br />

ATTRA undated. Disease Suppressive Potting Mixes. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA. Available on website: http://www.attra.org/<br />

ATTRA undated. Sustainable Small-scale Nursery Production. Appropriate Technology Transfer for Rural<br />

Areas, Fayetteville, Arkansas, USA. Available on website: http://www.attra.org/<br />

ATTRA undated. Farm-Scale Composting Resource List. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA. Available on website: http://www.attra.org/<br />

ATTRA undated. Compost Teas for Plant Disease Control. Appropriate Technology Transfer for Rural Areas,<br />

Fayetteville, Arkansas, USA. Available on website: http://www.attra.org/<br />

Batchelor TA 1999. Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low Environmental<br />

Impact. United Nations Environment Programme, Division of Technology, Industry and Economics,<br />

OzonAction Programme, Paris, France.<br />

Bauerie 1984. Bag culture productivity of greenhouse <strong>to</strong>ma<strong>to</strong>es. Special Circular 108. Ohio State<br />

University, Ohio, USA.<br />

Benoit 1992. Practical Guide for Simple Soilless Culture Techniques. European Vegetable R&D Centre, Sint-<br />

Katelijne-Waver, Belgium.<br />

Benoit 1999. Personal communication. European Vegetable R&D Centre, Belgium.<br />

Beniot F and Ceustermans N 1991. Umweltfreundliche erdelose Anbauweisen. Deutscher Gartenbau 45,<br />

25, p.1572-1577.<br />

Benoit F and Ceustermans N 1995. Horticultural aspects of ecological soilless growing methods. Acta<br />

Horticulturae 396, p.11-24.<br />

Benoit F and Ceustermans N 1995. A decade of research on ecologically sound substrates. Acta<br />

Horticulturae 408, p.17-29.<br />

Benoit F and Ceustermans N 1996. Polyurethane ether foam (PUR) an ecological substrate for soilless<br />

growing. Polymer Recycling 2, 2, p.109-116.<br />

Boehm MJ and Hoitink HAJ 1992. Sustenance of microbial activity in potting mixes and its impact on<br />

severity of Pythium root rot of poinsettia. Phy<strong>to</strong>pathology 82, p.259-264.<br />

Böhme M 1995. Evaluation of organic, synthetic and mineral substances for hydroponically grown cucumber.<br />

Acta Horticulturae 401, p.209-217.<br />

Bunt AC date. Media and Mixes for Container-Grown Plants. Unwin Hyman, London, UK.<br />

CTIFL 1984. Cultures Légumières sur Substrats. Centre Technique Interprofessionnel des Fruits et Légumes,<br />

Paris, France.<br />

Cooper A 1988. The ABC of NFT. Grower Books, London, UK.<br />

De Barro P 1995. Strawberry production in the Netherlands without methyl bromide; and Cucurbit production<br />

in the Netherlands without methyl bromide. In Banks HJ (ed). Agricultural Production Without<br />

<strong>Methyl</strong> <strong>Bromide</strong> – Four Case Studies. CSIRO Division of En<strong>to</strong>mology, Canberra, Australia.<br />

Annex 7: References, Websites and Further Information<br />

279


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

De Ceuster TJJ and Hoitink HAJ 1999. Prospects for composts and biocontrol agents as substitutes for<br />

methyl bromide in biological control of plant diseases. Compost Science and Utilization 7, 3, p.6-15.<br />

De Kreij C 1995. Latest insight in<strong>to</strong> water and nutrient control in soilless cultivation. Acta Horticulturae<br />

[Soil Disinfestation] 408, p.47-61.<br />

DLV 2000. Aardbeienteelt Op Substraat [Growing Strawberries on Substrates]. DLV Horticultural Advisory<br />

Service, Horst, Netherlands (in press).<br />

Elmore C, Staple<strong>to</strong>n J, Bell C and DeVay J 1997. Soil Solarization: A Nonpesticidal Method for Controlling<br />

Diseases, Nema<strong>to</strong>des, and Weeds. Publication 21377, Division of Agriculture and Natural Resources,<br />

University of California, Davis, California, USA.<br />

Environment Australia 1998. National <strong>Methyl</strong> <strong>Bromide</strong> Response Strategy. Part I Horticultural Uses.<br />

Environment Australia, Canberra, Australia.<br />

FAO 1990. Soilless Culture for Horticultural Crop Production. Plant Production and Protection Paper 101.<br />

Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.<br />

FAO 1990. Popular Hydroponic Gardens. Technical manual and audiovisual course. United Nations<br />

Development Programme and Food and Agriculture Organization of the United Nations (FAO) Regional<br />

Office for Latin America and the Caribbean, Santiago, Chile.<br />

Gartner JB, Still SM and Klett JE 1973. The use of hardwood bark as a growing medium. Proceedings of<br />

International Plant Propagation Society 23, p.222-230.<br />

Gunnlaugsson B and Adalsteinsson S 1995. Pumice as environment-friendly substrate – a comparison with<br />

rockwool. Acta Horticulturae 401, p.131-136.<br />

Gyldenkaerne S, Yohalem D & Hvalsøe E 1997. Production of Flowers and Vegetables in Danish<br />

Greenhouses: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. Danish Environmental Protection Agency, Copenhagen,<br />

Denmark.<br />

Hardgrave M 1995. An evaluation of polyurethane foam as a reuseable substrate for hydroponic cucumber<br />

production. Acta Horticulturae 401, p.201-208.<br />

Hardgrave M and Harriman M 1995. Development of organic substrates for hydroponic cucumber production.<br />

Acta Horticulturae 401, p.219-224.<br />

Hochmuth R 1999. Personal communication.<br />

Hoitink HA, Inbar Y and Boehm MJ 1991. Status of compost-amended potting mixes naturally suppressive<br />

<strong>to</strong> soilborne disease of floricultural crops. Plant Disease 75, p.869-873.<br />

Johnson H (undated). Soilless Culture of Greenhouse Vegetables. Vegetable Research and Information<br />

Center, University of Calfornia, Davis, California, USA. 12pp.<br />

Johnson H 1980. Hydroponics: A Guide <strong>to</strong> Soilless Culture. Leaflet 2947. Division of Agriculture and<br />

Natural Resources, University of California, Berkeley, California, USA.<br />

Johnson H and Hickman GW 1984. Greenhouse cucumber production. Leaflet 2775. Division of<br />

Agriculture and Natural Resources, University of California, Berkeley, California, USA.<br />

Jones JB 1983. A Guide for the Hydroponic and Soilless Culture Grower. Timber Press, Portland, Oregon,<br />

USA.<br />

Kampf AN and Jung M 1991. The use of carbonized rice hulls as a horticultural substrate. Acta<br />

Horticulturae 294, p.271-283.<br />

Kipp JA, Wever G and de Kreij C (eds) 1999. Substraat: Analyse, Eigenschappen, Advies. Elsevier Press,<br />

Doetinchem, Netherlands (in Dutch).<br />

Kipp JA, Wever G and de Kreij C (eds) 2000. Guidelines for the Application of Growing Media in<br />

Horticulture Based on CEN Methods. Elsevier Press, Doetinchem, Netherlands (in press).<br />

Lunt HA 1955. The use of wood chips and other wood fragments as soil amendments. Bulletin 593.<br />

Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA.<br />

Maher MJ and Prasad M 1995. Comparison of substrates, including fractioned peat, for the production of<br />

greenhouse cucumbers. Acta Horticulturae 401, p.225-233.<br />

280


MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. 354pp. Available on website:<br />

http://www.teap.org<br />

MHSPE 1997. Good Grounds for Healthy Growth. VROM 97580/h/9-97. Ministry of Housing, Spatial<br />

Planning and the Environment, The Hague, Netherlands.<br />

Miller JH and Jones N 1995. Organic and Compost-Based Growing Media for Tree Seedling Nurseries.<br />

Technical Paper 264, Forestry Series. World Bank, Washing<strong>to</strong>n, DC, USA. 75pp.<br />

Ministry of Agriculture, Fisheries and Food 1994. Greenhouse Vegetable Production Guide for Commercial<br />

Growers. Ministry of Agriculture Fisheries and Food, British Columbia, Canada.<br />

Nordic Council 1993. <strong>Methyl</strong> <strong>Bromide</strong> in the Nordic Countries – Current Uses and <strong>Alternatives</strong>. Nordic<br />

Council of Ministers, Copenhagen, Denmark. Nord 1993:34. Nuyten H 1999. Personal communication,<br />

Breda, Netherlands.<br />

Papadopoulos AP and Khosla S 1994. Growing greenhouse seedless cucumbers in soil and in soilless<br />

media. Publication 1902E. Agriculture and Agri-Food Canada, Ontario, Canada.<br />

Quarles W and Grossman J 1995. <strong>Alternatives</strong> <strong>to</strong> methyl bromide in nurseries – disease suppressive media.<br />

The IPM Practitioner 17, p.1-13.<br />

Schwartz D, Schroder FG and Kuchenbuch R 1996. Balance sheets for water, potassium and nitrogen for<br />

<strong>to</strong>ma<strong>to</strong>es grown in two closed circulated hydroponic systems. Gartenbauwissenschaft 61, 5, p.249-255.<br />

Vickers RT 1995. Toma<strong>to</strong> production in Italy without methyl bromide. In Banks HJ (ed). Agricultural<br />

Production Without <strong>Methyl</strong> <strong>Bromide</strong> – Four Case Studies. CSIRO Division of En<strong>to</strong>mology, Canberra,<br />

Australia.<br />

Wallach R, da Silva FF and Chen Y 1992. Unsaturated characteristics of composted wastes, tuff and their<br />

mixtures. Soil Science 153, p.434-441.<br />

Zengerle and Hartmann HD 1988. Grundlagen für eine optimale kulturführung von <strong>to</strong>maten unter glas.<br />

Technisches Bericht Forschungsanstalt Geisenheim – Gemüsebau, Geisenheim, Germany.<br />

Websites on Substrates<br />

Appropriate Technology Transfer for Rural Areas, Arkansas, USA for booklets on potting mixes and substrates<br />

for nurseries: http://www.attra.org<br />

BioCycle magazine for information on commercial composts: http://www.jgpress.com<br />

Compost Science and Utilization Journal website: http://www.jgpress.com/compost.htm<br />

Floragard substrate supplier’s website: http://www.floragard.de<br />

Greenhouse & Processing Crops Research Centre, Agriculture and Agri-Food Canada:<br />

http://res.agr.ca/harrow<br />

Melcourt Industries Ltd substrate supplier’s website: http://www.melcourt.co.uk<br />

Panth Produkter AB suppliers of seedling trays for forestry and nurseries: http://www.panth.se<br />

Peter van Luijk BV substrate supplier’s website: http://www.peval.nl<br />

Ultimate Site on Hydroponics for commercial products and suppliers:<br />

http://www.agrodynamics.com/hydroponics<br />

Vegetable Research and Information Center, University of California, Davis, California, USA:<br />

http://vric.ucdavis.edu<br />

Section 5 Control of Pests in Commodities and Structures<br />

Batchelor TA 1999a. Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low<br />

Environmental Impact. United Nations Environment Programme, Division of Technology, Industry and<br />

Economics, OzonAction Programme, Paris, France.<br />

Batchelor TA 1999b. Co-chair of MBTOC. Personal communication.<br />

GTZ 1998. <strong>Methyl</strong> <strong>Bromide</strong> Substitution in Agriculture. GTZ, Eschborn, Germany. 159pp.<br />

Annex 7: References, Websites and Further Information<br />

281


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

282<br />

MBTOC 1994. Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee. United Nations Environment<br />

Programme, Nairobi, Kenya. 303pp. Available on website: http://www.teap.org<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. 354pp. Available on website:<br />

http://www.teap.org<br />

Mueller DK 1998. S<strong>to</strong>red Product Protection...A Period of Transition. Insects Limited, Indianapolis, Indiana,<br />

USA. 347pp.<br />

Paull RE and Armstrong JW 1994. Insect Pests and Fresh Horticultural Products: Treatments and<br />

Responses. CAB International, Wallingford, UK. 360pp.<br />

Prospect 1997. <strong>Methyl</strong> <strong>Bromide</strong> Background Report. B7-8110/95/000178/MAR/D4 report for the European<br />

Commission. Prospect C&S, Brussels, Belgium. 207pp.<br />

TEAP 1999. The quarantine and pre-shipment exemption of methyl bromide. In Report of the Technology<br />

and Economic Assessment Panel, April 1999. Volume 2, part I, p.1-104. United Nations Environment<br />

Programme, Nairobi, Kenya<br />

USDA-APHIS 1993. Treatment Manual: Plant Protection and Quarantine. US Department of Agriculture,<br />

Animal and Plant Health Inspection Service, Hyattsville, Maryland, USA.<br />

USDA-APHIS 1998. Treatment Manual: Plant Protection and Quarantine. Interim edition. Animal and Plant<br />

Health Inspection Service, US Department of Agriculture, Hyattsville, Maryland, USA.<br />

Websites on Integrated Commodity Management<br />

Cereal Research Centre, Agriculture and Agri-Food Canada website:<br />

http://res2.agr.ca/winnipeg/home.html<br />

CSIRO Department of En<strong>to</strong>mology, Australia website: http://www.en<strong>to</strong>.csiro.au/research/s<strong>to</strong>rprod/s<strong>to</strong>rprod.html<br />

Dept. S<strong>to</strong>red Products, Agricultural Research Organisation, Israel website:<br />

http://www.agri.gov.il/Depts/S<strong>to</strong>redProd<br />

Natural Resources Institute, UK, website: http://www.nri.org<br />

Section 6 Alternative Techniques for Controlling Pests in Commodities and<br />

Structures<br />

Section 6.1 IPM and Preventive Measures<br />

Durable products and structures<br />

AIB 1979. Basic Food Plant Sanitation Manual. American Institute of Baking, Manhattan, Kansas, USA.<br />

AIB 1990. Consolidated Standards for Food Safety (inspection and sanitation rating system for food facilities).<br />

American Institute of Baking, Manhattan, Kansas, USA.<br />

Bahr I 1991. Reduction of s<strong>to</strong>red product insects during pneumatic unloading of ships cargoes. In Fleurat-<br />

Lessard F and Ducom P (eds.) Proceedings of the 5th International Working Conference on S<strong>to</strong>red-product<br />

Protection 9-14 September, Bordeaux, France. Vol III, p.1135-1144.<br />

Banks J and Fields P 1995. Physical methods for insect control in s<strong>to</strong>red-grain ecosystems. In Jayas DS et al<br />

(eds.) S<strong>to</strong>red-grain Ecosystems. Marcel Dekker Inc, New York, USA. p.353-409.<br />

Batchelor TA (ed) 1999. Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low<br />

Environmental Impact. United Nations Environment Programme, Division of Technology, Industry and<br />

Economics (<strong>DTIE</strong>), Paris, France.<br />

Bennett GW, Owens JM and Corrigan RM (eds) 1997. Truman’s Scientific Guide <strong>to</strong> Pest Control<br />

Operations. Fifth edition. Purdue University. Advanstar Communications, Cleveland, Ohio, USA.<br />

Bergen R 1997. Evolution of quality and insect control in a flour mill. Paper 77. 1997 Annual International<br />

Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro97.html


Burkholder WE 1985. Pheromones for moni<strong>to</strong>ring and control of s<strong>to</strong>red-product insects. Annual Review of<br />

En<strong>to</strong>mology 30, p.257-272.<br />

Canadian <strong>Methyl</strong> <strong>Bromide</strong> Industry Government Working Group 1998. Integrated Pest Management in<br />

Food Processing: Working without <strong>Methyl</strong> <strong>Bromide</strong>. Agriculture and Agri-Food Canada. Ottawa, Canada.<br />

Caubel G. 1983. Epidemiology and control of seed-borne nema<strong>to</strong>des. Seed Science and Technology 11,<br />

p.989-996.<br />

Cline LD and Press JW 1990. Reduction in almond moth (Lepidoptera: Pyralidae) infestations using commercial<br />

packaging of foods in combination with the parasitic wasp, Bracon hebe<strong>to</strong>r (Hymenoptera:<br />

Braconidae). Annals of the En<strong>to</strong>mological Society of America. 83, p.1110–1113.<br />

Dobie P et al 1991. Insects and Arachnids of Tropical S<strong>to</strong>red Products: Their Biology and Identification.<br />

TDRI, Slough, UK. 273pp.<br />

Donahaye E et al (ed) 1997. Proceedings of the International Conference on Controlled Atmosphere and<br />

Fumigation in S<strong>to</strong>red Products. April. Printco Ltd, Nicosia, Cyprus.<br />

Ebeling W 1975. Urban En<strong>to</strong>mology. University of California Press, Berkeley, California, USA. 695pp.<br />

EPA 1995. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies – Soil, Commodity and Structural Use.<br />

EPA430-R-95-009. Environmental Protection Agency, Washing<strong>to</strong>n, DC, USA. Available on website:<br />

http://www.epa.gov/ozone/mbr/<br />

FDA 1991. Ecology and Management of Food Industry Pests. Technical bulletin No. 4, Food and Drug<br />

Administration, Washing<strong>to</strong>n, DC, USA.<br />

Fields P et al 2000. Canadian Grain S<strong>to</strong>rage. CD-ROM. Agriculture and Agri-Food Canada, University of<br />

Mani<strong>to</strong>ba, Canadian Grain Commission. Available on website: http://www.cgc.ca/main-e.htm<br />

Fields P and Muir W 1995. Physical control. In Subramanyam B and Hagstrum D (eds.) Integrated<br />

Management of Insects in S<strong>to</strong>red Products. Marcel Dekker, New York, USA.<br />

Fleurat-Lessard F 1987. Control of s<strong>to</strong>red insects by physical means and modified environmental conditions.<br />

Feasibility and applications. In Lawson TJ (ed). S<strong>to</strong>red Products Pest Control. BCPC Monograph 37,<br />

p.209-218.<br />

GTZ 1984. Tables de Détermination des Principaux Ravageurs des Denrées Entreposées dans les Pays<br />

Chauds. GTZ, Eschborn, Germany. 148pp.<br />

GTZ 1996. Manual on the Prevention of Post-harvest Grain Losses. GTZ, Eschborn, Germany. 330pp.<br />

GTZ 1998. <strong>Methyl</strong> <strong>Bromide</strong> Substitution in Agriculture. GTZ, Eschborn, Germany. 159pp.<br />

Hall DS 1990. Pests of S<strong>to</strong>red Products and Their Control. Belhaven Press, London, UK.<br />

Highley E, Wright EJ, Banks HJ and Champ BR (eds) 1994. S<strong>to</strong>red Product Protection. CAB International,<br />

Wallingford, UK. 1274 pp.<br />

Imholte TJ 1984. Engineering for Food Safety and Sanitation. Technical Institute of Food Safety, North<br />

America, Medfield, Massachusetts, USA.<br />

Jayas DS, White NDG and Muir WE 1994. S<strong>to</strong>red-Grain Ecosystems. Marcel Dekker Inc, New York, USA.<br />

784 pp.<br />

Jin Zuxun et al (eds) 1999. S<strong>to</strong>red Product Protection. Proceedings of 7th International Working<br />

Conference on S<strong>to</strong>red-product Protection, Beijing. Vols 1,2. Sichuan Publishing House of Science and<br />

Technology, Chengdu, China. 2003pp.<br />

Kenkel P et al 1994. S<strong>to</strong>red product integrated pest management. Food Reviews International 10, 2,<br />

p.177-193.<br />

Kristensen M 1997. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> - Control of Rodents on Ship and Aircraft. TemaNord<br />

1997:513, Nordic Council of Ministers, Copenhagen, Denmark.<br />

Leaper S 1997. HACCP: A Practical Guide. Campden & Chorleywood, UK. 51pp.<br />

Lewis VR and Haverty MI 1996a. Evaluation of six techniques for control of the western drywood termite<br />

(Isoptera: Kalotermitidae). Journal of Economic En<strong>to</strong>mology 89, p.922-934.<br />

Lewis VR and Haverty MI 1996b. Long awaited non-chemical alternative <strong>to</strong> drywood termite control study<br />

completed. The Voice of PCOC. Summer, p.20-29.<br />

Annex 7: References, Websites and Further Information<br />

283


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

284<br />

Mallis A 1997. Handbook of Pest Control: The Behaviour, Life His<strong>to</strong>ry, and Control of Household Pests.<br />

Eighth edition. Franzak & Foster, Cleveland, Ohio, USA.<br />

Manzelli AM 1987. Control of the cigarette beetle in s<strong>to</strong>red and processed <strong>to</strong>bacco. Tobacco Journal<br />

International 6, p.373-378.<br />

Mayer MS and McLaughlin JR 1990. Handbook of Insect Sex Pheromones. CRC Press. Boca Ra<strong>to</strong>n, Florida,<br />

USA. 1083pp.<br />

MBIGWG 1998. Integrated Pest Management in Food Processing: Working Without <strong>Methyl</strong> <strong>Bromide</strong>.<br />

<strong>Methyl</strong> <strong>Bromide</strong> Industry Government Working Group. Pest Management Regula<strong>to</strong>ry Agency, Health<br />

Canada, Ottawa, Canada.<br />

McCarthy B 1998. The future without methyl bromide: a focus on IPM. PCO Services Inc. Presentation <strong>to</strong><br />

Association of Operative Millers. Oc<strong>to</strong>ber. Kitchener, Ontario, Canada.<br />

Mills R and Pederson J 1990. A Flour Mill Sanitation Manual. Eagan Press, St. Paul, Minnesota, USA.<br />

164pp.<br />

Moul<strong>to</strong>n JL (ed) 1988. Preservation and S<strong>to</strong>rage of Grains, Seeds and Their By-products. Lavoisier<br />

Publishing Inc, New York, USA. 1095pp.<br />

Mueller DK 1998. S<strong>to</strong>red Product Protection...A Period of Transition. Insects Limited, Indianapolis, Indiana,<br />

USA.<br />

Muller DK, Pierce LH et al 1991. Practical application of pheromone traps in food and <strong>to</strong>bacco industry.<br />

Journal of the Kansas En<strong>to</strong>mology Society 63, 4, p.548-553.<br />

Nickson P, Wright JE and Rees DP 1998. Mating disruption in a food processing plant: the first Australian<br />

demonstration of a biological pest control technique with general application in food processing and distribution.<br />

In Banks HJ et al (eds) S<strong>to</strong>red Grain in Australia. SGRL, CSIRO, Canberra, Australia.<br />

Nielsen PS 2000. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: IPM in Flour Mills. TemaNord 2000:510. Nordic Council<br />

of Ministers, Copenhagen, Denmark. 35pp.<br />

Olkowski W, Daar S and Olkowski H 1991. Common-Sense Pest Control. Taun<strong>to</strong>n Press, New<strong>to</strong>wn,<br />

Connecticut, USA.<br />

Pierce LH 1994. Using pheromones for location and suppression of phyctid moths and cigarette beetles in<br />

Hawaii – a five-year summary. In Highley E et al (eds). Proceedings of 6th International Working<br />

Conference on S<strong>to</strong>red Product Protection. Vol I, p.439-443. CAB International, Wallingford, UK.<br />

Pierce LH 1999. Food warehouses in Hawaii: integrated pest management. In Batchelor TA (ed) 1999.<br />

Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low Environmental Impact. United<br />

Nations Environment Programme, Division of Technology, Industry and Economics (<strong>DTIE</strong>), Paris, France.<br />

Pinniger DB 1991. New developments in the detection and control of insects which damage museum collections.<br />

Biodeterioration Abstracts 5, p.125-130.<br />

Rees D and Banks HJ 1999. The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) a<br />

quarantine pest of s<strong>to</strong>red products. Review of biology, distribution, moni<strong>to</strong>ring and control. Technical<br />

Report, CSIRO, Canberra, Australia.<br />

Rees D and Wright EJ 1998. Using pheromone traps <strong>to</strong> moni<strong>to</strong>r pest populations. In Banks HJ et al (eds).<br />

S<strong>to</strong>red Grain in Australia. SGRL, CSIRO, Canberra, Australia.<br />

Ryan L 1995. Post-harvest Tobacco Infestation Control. Chapman and Hall, London, UK and New York,<br />

New York, USA. 155pp.<br />

Sauer DB (ed) 1992. S<strong>to</strong>rage of Cereal Grains and Their Products. 4th ed. American Association of Cereal<br />

Chemists, St. Paul, Minnesota, USA. 615pp.<br />

Scheffrahn RH and Su Y 1994. Control of drywood termites (Isoptera: Kalotermitidae). In WH Robinson<br />

(ed). Proceedings of the National Conference on Urban En<strong>to</strong>mology. Atlanta, Georgia, USA. 139pp.<br />

Schöller M et al 1997. Towards biological control as a major component of integrated pest management<br />

in s<strong>to</strong>red product protection. Journal of S<strong>to</strong>red Product Research 33, 1, p.81-97.<br />

Sinha RN and Watters FL 1985. Insect Pests of Flour Mills, Grain Eleva<strong>to</strong>rs and Feed Mills and Their<br />

Control. Publication 1776E, Research Branch, Agriculture Canada, Government Publication Centre,<br />

Canada.


Skadedyrcentralen Danmark 1999. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: IPM in Danish Flour Mills: General<br />

Guideline. Danish Environmental Protection Agency, Copenhagen, Denmark. 55pp.<br />

Smith EH and Whitman RC 1992. NPCA Field Guide <strong>to</strong> Structural Pests. National Pest Control Association,<br />

Dunn Loring, Virginia, USA.<br />

Stanbridge D 1998. Pest control becomes a team effort in food plants. Pest Control May, p.50-52.<br />

Strang T 1996. Museum Pest Management. Seminar notes. Canadian Conservation Institute, Department<br />

of Canadian Heritage, Government of Canada, Quebec, Canada.<br />

Subramanyam B and Hagstrum DW (eds) 1996. Integrated Management of Insects in S<strong>to</strong>red Products.<br />

Marcel Dekker Inc, New York, USA. 426pp.<br />

Subramanyam B and Hagstrum DW (eds) 2000. <strong>Alternatives</strong> <strong>to</strong> Pesticides in S<strong>to</strong>red-Product IPM. Kluwer<br />

Academic, Hingham. Massachusets, USA. 456pp.<br />

Trematerra P 1994a. Control of Ephestia kuehniella Zell. by sex pheromones in flour mills. Anzeiger<br />

Schädlingskunde Pflanzenschutz, Umweltschutz 67, p.74-77.<br />

Trematerra P 1994b. The use of sex pheromones <strong>to</strong> control Ephestia kuehniella Zeller (Mediterranean flour<br />

moth) in flour mills by mass trapping and attracticide (lure and kill) methods. In Highley E et al (eds)<br />

S<strong>to</strong>red-Product Protection: Proceedings of the 6th International Working Conference on S<strong>to</strong>red-product<br />

Protection 17-23 April, Canberra, Australia, pp.375-382.<br />

University of California 1991. Residential, Industrial, and Institutional Pest Control. Publication 3334,<br />

Division of Agriculture and Natural Resources, University of California, Oakland, California, USA. 214pp.<br />

University of California 1992. Wood Preservation. Publication 3335. Division of Agriculture and Natural<br />

Resources, University of California, Oakland, California, USA. 86pp.<br />

Vail PV et al 1993a. Quarantine treatments: A biological approach <strong>to</strong> decision-making for selected hosts<br />

of codling moth (Lepidoptera: Tortricidae). Journal of Economic En<strong>to</strong>mology 86, p.70–75.<br />

White DG, Jayas DS and Demianyk CJ 1997. Movement of grain <strong>to</strong> control s<strong>to</strong>red product insects and<br />

mites. Phy<strong>to</strong>protection 78, p.75-84.<br />

Perishable Commodities (Systems approach)<br />

Anon 1988. MAFF Notification. No. 183. Ministry of Agriculture and Fisheries, Japan.<br />

Armstrong JW 1994. Commodity resistance <strong>to</strong> infestation by quarantine pests. In Sharp JL and Hallman GJ<br />

(eds). Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and<br />

Oxford, UK & IBH Publishing, New Delhi, India. p.199-212.<br />

Armstrong JW et al 1983. Resistance of ‘Sharwil’ avocados at harvest maturity <strong>to</strong> infestation by three fruit<br />

fly species in Hawaii. Journal of Economic En<strong>to</strong>mology 76, p.119-121.<br />

Chew V 1994. Statistical methods for quarantine treatment data analysis. In Sharp JL and Hallman GJ<br />

(eds). Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and<br />

Oxford, UK & IBH Publishing, New Delhi, India. p.33-46.<br />

Firko MJ 1995. Importation of avocado fruit (Persea americana) from Mexico. Supplemental pest risk<br />

assessment. Animal and Plant Health Inspection Service, US Department of Agriculture, Hyattsville, USA.<br />

Gonzalez J 1997. Wax treatments meeting Probit 9 requirements for controlling Brevipalpus chilensis in<br />

cherimoyas and citrus. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong><br />

and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Greany PD 1994. Plant host status and natural resistance. In Paull RE and Armstrong JW (eds). Insect Pests<br />

and Fresh Horticultural Products: Treatments and Responses. CAB International, Wallingford, UK. p.37-46.<br />

Jang EB 1990. Fruit fly disinfestation of tropical fruits using semi-permeable shrinkwrap films. Acta<br />

Horticulturae 269, p.453-458.<br />

Jang EB and Moffitt HR 1994. Systems approaches <strong>to</strong> achieving quarantine security. In Sharp JL and<br />

Hallman GJ (eds). Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA<br />

and Oxford, UK & IBH Publishing, New Delhi, India. p.225-238.<br />

Hansen JD, Archer JR and Moffitt HR 1997. The systems approach <strong>to</strong> quarantine security for Northwest<br />

tree fruits: a practical alternative. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

Annex 7: References, Websites and Further Information<br />

285


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

286<br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Hennessay MK et al 1992. Absence of natural infestation of Caribbean fruit fly (Diptera: Tephritidae) in<br />

commercial Florida ‘Tahiti’ lime fruits. Journal of Economic En<strong>to</strong>mology 85, p.1843-1845.<br />

Honiball F et al 1979. Mechanical control of red scale Aoinidiella auranti (Mask.) on harvvested oranges.<br />

Citrus and Subtropical Fruit Journal 519, p.17-18.<br />

Miller CE et al 1995. A systems approach for Mexican avocado. Risk management analysis. Animal and<br />

Plant Health Inspection Service, US Department of Agriculture, Hyattsville, Maryland, USA.<br />

Moffitt HR 1990. A systems approach for meeting quarantine requirements for insect pests of deciduous<br />

pests. Proceedings Washing<strong>to</strong>n State Horticultural Association. 85, p.223-225.<br />

Neven LG 1994. CATTS: a unique research chamber for the development of non-chemical quarantine<br />

treatments. Proceedings of 19th Annual Meeting of Washing<strong>to</strong>n State Horticultural Association. 90,<br />

p.124-126.<br />

Riherd C, Nguyen R and Brazzel JR 1994. Pest free areas. In Sharp JL and Hallman GJ (eds). Quarantine<br />

Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK & IBH<br />

Publishing, New Delhi, India. p.213-224.<br />

Robertson JL et al 1994a. Statistical concept and minimum threshold concept. In Paull RE and Armstrong<br />

JW (eds). Insect Pests and Fresh Horticultural Products: Treatments and Responses. CAB International,<br />

Wallingford, UK. p.47-68.<br />

Robertson JL et al 1994b. Statistical analyses <strong>to</strong> estimate efficacy of disinfestation treatments. In Sharp JL<br />

and Hallman GJ (eds). Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado,<br />

USA and Oxford, UK & IBH Publishing, New Delhi, India. p.47-66.<br />

Shetty K et al 1989. Individual shrink-wrapping: a technique for fruit fly disinfestation of tropical fruits.<br />

HortScience 24, 2, p.317-319.<br />

Vail PV et al 1993. Quarantine treatments: a biological approach <strong>to</strong> decision making for selected hosts of<br />

codling moth (Lepidoptera: Tortricidae). Journal of Economic En<strong>to</strong>mology 86, 1, p.70-75.<br />

Worner SP 1994. Predicitng the establishment of exotic pests in relation <strong>to</strong> climate. In Sharp JL and<br />

Hallman GJ (eds). Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA<br />

and Oxford, UK & IBH Publishing, New Delhi, India. p.11-32.<br />

Section 6.2 Cold treatments and Aeration<br />

Durable products and structures<br />

Armitage DM 1987. Controlling insects by cooling grain. In Lawson TJ (ed). S<strong>to</strong>red products pest control.<br />

BPCA Monograph No.37, p.219-228.<br />

Armitage DM, Wilkin PR and Cogan PM 1991. The cost and effectiveness of aeration in the British climate.<br />

In Fleurat-Lessard F and Ducom P (eds). Proceedings of the 5th International Working Conference<br />

on S<strong>to</strong>red-product Protection. 9-14 September, Bordeaux, France. III, p.1925-1933.<br />

Banks J and Fields P 1995. Physical methods for insect control in s<strong>to</strong>red-grain ecosystems. In Jayas DS,<br />

White NDG and Muir WE (eds). S<strong>to</strong>red-grain Ecosystems. Marcel Dekker Inc, New York, USA. p.353-409.<br />

Berhaut P and Lasseran JC 1986. Conservation du blé par la ventilation. Perspectives Agricoles 97, p.32-39.<br />

Bond EJ 1975. Control of insects with fumigants at low temperatures: response <strong>to</strong> methyl bromide over<br />

the range 25ºC <strong>to</strong> 6.7ºC. Journal of Economic En<strong>to</strong>mology 68, p.539-542.<br />

Brokerhof AW, Mor<strong>to</strong>n R and Banks HJ 1993. Time-mortality relationships for different species and developmental<br />

stages of clothes moths (Lepidoptera: Tineidae) exposed <strong>to</strong> cold. Journal of S<strong>to</strong>red Products<br />

Research 29, p.277-282.<br />

Brunner H 1987. Cold preservation of grain. In Donahaye E and Navarro S (eds.) Proceedings of the 4th<br />

International Working Conference on S<strong>to</strong>red-product Protection, 21-26 September, 1986, Tel Aviv, Israel.<br />

p.219-226.<br />

Burges HD and Burrell NJ 1964. Cooling bulk grain in the British climate <strong>to</strong> control s<strong>to</strong>rage insects and <strong>to</strong><br />

improve keeping quality. Journal of the Science of Food and Agriculture 15, p.32-50.


Chauvin G and Vannier G 1991. La résistance au froid et à la chaleur: deux données fondamentales dans<br />

le contrôle des insectes de produits entreposés. In Fleurat-Lessard F and Ducom P (eds). Proceedings of the<br />

5th International Working Conference on S<strong>to</strong>red-product Protection. 9-14 September, Bordeaux, France.<br />

Vol II, p.1157-1165.<br />

Champ BR and Highley E (eds) 1995. Preserving grain quality by aeration and in-s<strong>to</strong>re drying. ACIAR<br />

Proceedings No 15.<br />

Dohino TS et al 1999. Low temperature as an alternative <strong>to</strong> fumigation for disinfesting s<strong>to</strong>red products.<br />

Research Bulletin Plant Protection Japan 35, p.5-14.<br />

Donahaye E, Navarro S and Rindner M 1991. The influence of low temperatures on two species of<br />

Carpophilus (Col. Nitidulidae). Journal of Applied En<strong>to</strong>mology 111, p.297-302.<br />

Fields P and Muir W 1995. Physical control. In Subramanyam B and Hagstrum D (eds). Integrated<br />

Management of Insects in S<strong>to</strong>red Products. Marcel Dekker, New York, USA.<br />

Jin Zuxun et al (eds) 1999. S<strong>to</strong>red Product Protection. Proceedings of 7th International Working<br />

Conference on S<strong>to</strong>red-product Protection, Beijing. Vols 1,2. Sichuan Publishing House of Science and<br />

Technology, Chengdu, China. 2003pp.<br />

Johnson JA and Valero KA 1999. Response of navel orangeworm and Indianmeal moth eggs <strong>to</strong> low temperature<br />

s<strong>to</strong>rage. Paper 65. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>,<br />

USA.<br />

Johnson JA, Bolin HR, Guller G and Thompson JF 1992. Efficacy of temperature treatments for insect disinfestation<br />

of dried fruits and nuts. Walnut Research Reports 1992. USA. p.156-171.<br />

Lasseran JC and Fleurat-Lessard F 1991. Aeration of grain with ambient or artificially cooled air: a technique<br />

<strong>to</strong> control weevils in temperate climates. In Fleurat-Lessard F and Ducom P (eds). Proceedings of the<br />

5th International Working Conference on S<strong>to</strong>red-product Protection. 9-14 September, Bordeaux, France.<br />

II, p.1221-1231.<br />

Navarro S and Calderon M. 1982. Aeration of grain in subtropical climates. FAO Agricultural Services<br />

Bulletin No 52. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 120pp.<br />

Subramanyam B and Hagstrum DW (eds) 2000. <strong>Alternatives</strong> <strong>to</strong> Pesticides in S<strong>to</strong>red-Product IPM. Kluwer<br />

Academic, Hingham, Massachusetts, USA. 456pp.<br />

Worden GC 1987. Freeze-outs for insect control. AOM Bulletin January, p.4903-4904.<br />

Perishable Commodities (Cold treatments)<br />

Armstrong JW 1994. Heat and cold treatments. In Paull RE and Armstrong JW (eds). Insect Pests and Fresh<br />

Horticultural Products: Treatments and Responses. CAB International, Wallingford, UK. p.103-120.<br />

Armstrong JW et al 1995. Quarantine cold treatments for Hawaiian carambola fruit infested with<br />

Mediterranean fruit fly, melon fly and oriental fruit fly (Diptera: Tephritidae) eggs and larvae. Journal of<br />

Economic En<strong>to</strong>mology 88, p.683-687.<br />

Batchelor TA, O’Donnell RL and Roby JJ 1985. The efficacy of controlled atmosphere cools<strong>to</strong>rage in controlling<br />

leafroller species. Proceedings of 38th New Zealand Weed and Pest Control Conference. 13-15<br />

August, Ro<strong>to</strong>rua, New Zealand. p.53-56.<br />

Benshoter CA 1987. Effects of modified atmospheres and refrigeration temperatures on the survival of<br />

eggs and larvae of the Caribbean fruit fly (Diptera: Tephritidae) in labora<strong>to</strong>ry diet. Journal of Economic<br />

En<strong>to</strong>mology 80, 6, p.1223-1225.<br />

Chervin C et al 1997. A high temperature/ low oxygen pulse improves cold s<strong>to</strong>rage disinfestation.<br />

Postharvest Biology and Technology 10, 3, p.239-245.<br />

Gould WP 1994. Cold s<strong>to</strong>rage. In Sharp JL and Hallman GJ (eds). Quarantine Treatments for Pests of Food<br />

Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK & IBH Publishing, New Delhi, India.<br />

p.119-132.<br />

Gould WP 1996. Cold treatment, the Caribbean fruit fly, and carambolas. In McPherson BA and Steck GJ<br />

(eds). Fruit Fly Pests: A World Assessment of Their Biology and Management. Delray Press, Florida, USA.<br />

586pp.<br />

Annex 7: References, Websites and Further Information<br />

287


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

288<br />

Houck LG et al 1990. Holding lemon fruit at 5 or 15°C before cold treatment reduces chilling injury.<br />

HortScience 25, 9, p.1174.<br />

Houck LG and Jenner JF 1997. Postharvest response of lemon fruit <strong>to</strong> hot water immersion, quarantine<br />

cold or methyl bromide fumigation treatments depends on preharvest growing temperature. Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. MBAO, USA<br />

Lester PJ et al 1997. Postharvest disinfestation of diapausing and non-diapausing two-spotted spider mite<br />

(Tetranychus urticae) on persimmons: hot water immersion and cools<strong>to</strong>rage. En<strong>to</strong>mologia Experimentalis<br />

et Applicata. 83, 2, p.189-193.<br />

McDonald RE and Miller WR 1994. Quality and condition maintenance. In: JL Sharp and GJ Hallman (eds).<br />

Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, USA and Oxford & IBH<br />

Publishing, New Delhi, India. p.249-278.<br />

Neven LG and Drake SR 1997. Develoopment of combination heat and cold treatments for postharvest<br />

control of codling moth in apples and pears. Annual International Research Conference on <strong>Methyl</strong><br />

<strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. MBAO, USA<br />

Shellie KC and Mangan RL 1998. Decay control during refrigerated, ultra-low oxygen s<strong>to</strong>rage for disinfestation<br />

of Mexican fruit fly. Paper 60. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Thompson JF 1996. Forced air cooling. Perishables Handling Newsletter 88, p.2-11.<br />

Section 6.3 Contact Insecticides<br />

Durable products and structures<br />

Beavis C, Simpson P, Syme J and Ryan C 1991. Chemicals for the protection of fruit and nut crops.<br />

Department of Primary Industries, Queensland, Brisbane, Australia.<br />

Benezet HJ 1989. Chemical control of pests in s<strong>to</strong>red <strong>to</strong>bacco. Proceedings of 43rd Tobacco Chemist’s<br />

Research Conference 15, p.1-25.<br />

Champ BR and Highley E 1985. Pesticides and Humid Tropical Grain S<strong>to</strong>rage Systems. ACIAR Proceedings<br />

14. Australian Centre for International Agricultural Research, Canberra, Australia. 364pp.<br />

Codex Alimentarius Commission 1992. Codex maximum limits for pesticides residues in food. World<br />

Health Organization/ Food and Agriculture Organization of the United Nations, Rome, Italy.<br />

Dickson DJ 1996. Remedial treatment: in situ treatments of his<strong>to</strong>ric structures. In First Annual Conference<br />

on Wood Protection with Diffusible Preservatives and Pesticides. Forest Products Society, Madison,<br />

Wisconsin, USA. p.87-90.<br />

Drysdale 1994. Boron Treatments for the Preservation of Wood – A Review of Efficacy Data for Fungi and<br />

Termites. IRG/WP 94-30037. International Research Group on Wood Preservation.<br />

FAO 1985. Manual of Pest Control for Food Security Reserve Grain S<strong>to</strong>ck. FAO Bulletin 63, Food and<br />

Agriculture Organization of the United Nations (FAO), Rome, Italy.<br />

GASCA 1996. Risks and Consequences of the Misuse of Pesticides in the Treatment of S<strong>to</strong>red Products.<br />

Group for Assistance on Systems relating <strong>to</strong> Grain After Harvest. CTA, Wageningen, Netherlands. 19pp.<br />

Golob P and Webley DJ 1980. The use of plants and minerals as traditional protectants of s<strong>to</strong>red products.<br />

Tropical Products Institute, London, UK. G138, 32 pp.<br />

Grace JK 1997. Review of recent research on the use of borates for termite prevention. In Second Annual<br />

Conference on Wood Protection with Diffusible Preservatives and Pesticides. Forest Products Society,<br />

Madison, Wisconsin, USA. p.85-92.<br />

GTZ 1994. Recommendations for the choice of insecticides <strong>to</strong> protect s<strong>to</strong>red products in the <strong>to</strong>pics. Post<br />

harvest project, GTZ, Eschborn, Germany.<br />

GTZ 1996. Manual on the Prevention of Post-harvest Grain Losses. J Gwimmer, R Harnisch and O Mück.<br />

GTZ, Eschborn, Germany. 330pp.<br />

Gwimmer J, Harnisch R and Mück O 1990. Manuel sur La Manutention et la Conservation des Grains<br />

après Récolte. GTZ, Eschborn, Germany.


Hardy JP 1997. Practical application of diffusible preservatives by pest control opera<strong>to</strong>rs <strong>to</strong> various types of<br />

structures. In Second Annual Conference on Wood Protection with Diffusible Preservatives and Pesticides.<br />

Forest Products Society, Madison, Wisconsin, USA. p.20-22.<br />

Jin Zuxun et al (eds) 1999. S<strong>to</strong>red Product Protection. Proceedings of 7th International Working<br />

Conference on S<strong>to</strong>red-product Protection, Beijing. Vols 1,2. Sichuan Publishing House of Science and<br />

Technology, Chengdu, China. 2003pp.<br />

Lloyd JD 1993. The mechanisms of action of boron-containing wood preservatives. PhD thesis. Imperial<br />

College, University of London, UK. Lloyd JD, Schoeman MW and Stanley R 1998. Remedial timber treatment<br />

with borates. reference. p.415–423<br />

Manser GE and Lanz B 1998. Water-based wood preservatives for curative treatment of insect-infested<br />

spruce constructions. 29th Annual Meeting of the International Research Group on Wood Preservation.<br />

14-19 June, Maastricht, Netherlands.<br />

Mills R and Pederson J 1990. A Flour Mill Sanitation Manual. Eagan Press, St. Paul, Minnesota, USA.<br />

Monconduit H and Mauchamp B 1998. Effects of ultralow doses of fenoxycarb on juvenile hormone-regulated<br />

physiological parameters in the silkworm, Bombyx mori L. Archives of Insect Biochemistry and<br />

Physiology 37, p.178-189.<br />

Mueller DK 1998. S<strong>to</strong>red Product Protection...A Period of Transition. Insects Limited, Indianapolis, Indiana, USA.<br />

Murphy RJ 1998. Outdoor exposure of Tim-bor treated scotts pine. Timber Technology Research Group,<br />

Department of Biology, Imperial College, London, UK.<br />

Nunes LMR 1997. The effect of boron-based preservatives on subterranean termites. PhD thesis. Imperial<br />

College, University of London, UK.<br />

Oberlander H, Silhacek DL, Shaaya E and Ishaaya I 1997. Current status and future perspectives of the use<br />

of insect growth regula<strong>to</strong>rs for the control of s<strong>to</strong>red product insects. Journal of S<strong>to</strong>red Products Research<br />

33, p.1-6.<br />

Samson PR, Parker RJ and Hall EA 1990. Efficacy of the insect growth regula<strong>to</strong>rs methoprene, fenoxycarb<br />

and diflubenzuron against Rhyzopertha dominica (F.) (Coleoptera : Bostrichidae) on maize and paddy rice.<br />

Journal of S<strong>to</strong>red Products Research 26, p.215-221.<br />

Scheffrahn RH, Su Y and Busey P 1997. Labora<strong>to</strong>ry and field evaluations of selected chemical treatments<br />

for control of drywood termites (Isoptera: Kalotermitidae). Journal of Economic En<strong>to</strong>mology 90, p.492-592.<br />

Shaaya E et al 1997. Phy<strong>to</strong>-oils as alternatives <strong>to</strong> methyl bromide for the control of insects attacking<br />

s<strong>to</strong>red products and cut flowers. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Silhacek DL, Dyby S and Murphy C 1994. Use of IGRs for protection of s<strong>to</strong>red commodities from Indian<br />

meal moth. 1994 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and<br />

Emissions Reductions. Available on website: http://www.epa.gov/ozone/mbr/mbrpro94.html<br />

Snelson JT 1987. Grain Protectants. ACIAR Monograph 3. Australian Centre for International Agricultural<br />

Research, Canberra, Australia. 448pp.<br />

Thiessen J-G and Pierrot R 1994. Food Crop Protection in West and Central Africa. Mission de<br />

Coopération Phy<strong>to</strong>sanitaire, Montpellier, France. 525pp.<br />

White BR et al 1997. Field-testing phy<strong>to</strong>sanitation treatments on Chilean radiata pine. Paper 91. 1997<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Williams LH 1997. Labora<strong>to</strong>ry and field testing of borates used as pesticides. Second Annual Conference<br />

on Wood Protection with Diffusible Preservatives and Pesticides. Forest Products Society, Madison,<br />

Wisconsin, USA. p.14-19.<br />

Perishable Commodities (Insecticides)<br />

Forney CF and Houck LG 1994. Chemical treatments: Product physiological and biochemical response <strong>to</strong><br />

possible disinfestation procedures. In Paull RE and Armstrong JW (eds). Insect Pests and Fresh Horticultural<br />

Products: Treatments and Responses. CAB International, Wallingford, UK. p.139-162.<br />

Annex 7: References, Websites and Further Information<br />

289


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

290<br />

Hansen JD, Hara AH and Tenbrink VT 1992. Insecticidal dips for disinfesting tropical cut flowers and<br />

foliage. Tropical Pest Management 38, p.245-249.<br />

Hata TY et al 1992. Pest management before harvest and insecticidal dip after harvest as a systems<br />

approach <strong>to</strong> quarantine security for red ginger. Journal of Economic En<strong>to</strong>mology 85, p.2310-2316.<br />

Hata TY et al 1993. Field sprays and insecticidal dips after harvest for pest management of Frankliniella<br />

occidentalis and Thrips palmi in orchids. Journal of Economic En<strong>to</strong>mology 86, 5, p.1483-1489.<br />

Heather NW 1994. Pesticide quarantine treatments. In Sharp JL and Hallman GJ (eds). Quarantine<br />

Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK & IBH<br />

Publishing, New Delhi, India. p.89-100.<br />

McDonald RE and Miller WR 1994. Quality and condition maintenance. In Sharp JL and Hallman GJ (eds).<br />

Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK<br />

& IBH Publishing, New Delhi, India. p.249-278.<br />

Shaaya E et al 1997. Phy<strong>to</strong>-oils as alternatives <strong>to</strong> methyl bromide for the control of insects attacking<br />

s<strong>to</strong>red products and cut flowers. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Section 6.4 Controlled and Modified Atmospheres<br />

Durable products and structures<br />

Annis PC 1987. Toward rational controlled atmosphere dosage schedules: a review of current knowledge.<br />

In Donahaye E and Navarro S (eds.) Proceedings of the 4th International Working Conference on S<strong>to</strong>red-<br />

Product Protection 21-26 September, Tel Aviv, Israel. p. 128-148.<br />

Annis PC and Banks JH 1993. In Corey SA et al (eds). Pest Control and Sustainable Agriculture. CSIRO,<br />

Melbourne, Australia. p.479-482.<br />

ASEAN 1991. Suggested Recommendations for the Fumigation of Grain in the ASEAN Region. Part 2.<br />

Carbon Dioxide Fumigation of Bag-stacks Sealed in Plastic Enclosures: An Operations Manual. ASEAN<br />

Food Handling Bureau, Kuala Lumpur, Malaysia, CSIRO and ACIAR, Canberra, Australia.<br />

ASEAN 1995. Suggested Recommendations for the Fumigation of Grain in the ASEAN Region. Part 4. In-<br />

Transit Disinfestation with Carbon Dioxide in Freight Containers: An Operations Manual. ASEAN Food<br />

Handling Bureau, Kuala Lumpur, Malaysia, CSIRO and ACIAR, Canberra, Australia.<br />

Banks HJ 1988. Disinfestation of durable foodstuffs in ISO containers using carbon dioxide. Australian<br />

Centre for International Agricultural Research, Canberra, Australia. ACIAR Proc. No.23, p.45-54.<br />

Banks HJ and Annis PC 1990. Comparative advantages of high CO2 and low O2 types of controlled<br />

atmospheres for grain s<strong>to</strong>rage. In Calderon M and Barkai-Golon R (eds). Food Preservation by Modified<br />

Atmospheres. CRC Press, Roca Ba<strong>to</strong>n, Florida, USA. p.93-122.<br />

Banks HJ and Annis PC 1977. Suggested procedures for controlled atmosphere s<strong>to</strong>rage of dry grain.<br />

CSIRO Australian Divivision of En<strong>to</strong>mology. Technical Paper No. 13, p.1-23.<br />

Banks HJ and Annis PC 1997. Purging grain bulks with nitrogen: plug flow and mixing processes observed<br />

under field conditions. In Donahaye J, Navarro S and Varnava A (eds.) Proceedings of Internatioal<br />

Conference on Controlled Atmosphere and Fumigation in S<strong>to</strong>red Products. April 1996, Nicosia, Cyprus.<br />

Printco Ltd. p. 273-285.<br />

Banks HJ, Annis PC and Rigby GR 1991. Controlled atmosphere s<strong>to</strong>rage of grain: the known and the<br />

future. In Fleurat-Lessard F and Ducom P (eds.) Proceedings of the 5th International Working Conference<br />

on S<strong>to</strong>red-Product Protection 9-14 September, Bordeaux, France. p. 695-706.<br />

Banks HJ and McCabe JB1988. Uptake of carbon dioxide by concrete and implications of this process for<br />

grain s<strong>to</strong>rage. Journal of S<strong>to</strong>red Products Research 24, p.183-192.<br />

Banks HJ, Hil<strong>to</strong>n SJ, Tarr CR and Thorn B 1993. Demonstration of carbon dioxide disinfestation of containerised<br />

dried vine fruit in export car<strong>to</strong>ns. CSIRO Division of En<strong>to</strong>mology. Report No. 54, 9pp.<br />

Bell CH, Chakrabarti B, Conyers ST, Wontner-Smith TJ and Llewellin BE 1993. Flow rates of controlled<br />

atmospheres required for maintenance of gas levels in bolted metal farm bins. In Navarro S and Donahaye


E (eds.) Proceedings International Conference on Controlled Atmosphere and Fumigation in Grain S<strong>to</strong>rage,<br />

Winnipeg. June 1992. Caspit Press, Jerusalem, Israel. p.315-325.<br />

Bell CH, Conyers ST and Llewellin BE 1997a. The use of on-site generated atmospheres <strong>to</strong> treat grain in<br />

bins or floor s<strong>to</strong>res. In Donahaye EJ, Navarro S and Varnava A (eds.) Proceedings International Conference<br />

on Controlled Atmosphere and Fumigation in S<strong>to</strong>red Products, Nicosia, Cyprus. April 1996. Printco Ltd,<br />

Cyprus. p.263-271.<br />

Calderon M et al 1989. Wheat s<strong>to</strong>rage in a semi-desert region. Tropical Science 29, p.91-110.<br />

Cassells J, Banks HJ and Allanson R 1994. Application of pressure-swing absorption (PSA) and liquid nitrogen<br />

as methods for providing controlled atmospheres in grain terminals. In Highley et al (eds.) S<strong>to</strong>red<br />

Product Protection: Proceedings of the 6th International Working Conference on S<strong>to</strong>red-product<br />

Protection. 17-23 April, 1994, Canberra, Australia. p.56-63.<br />

Conway JA, Mitchell MK, Gunawan M and Faishal Y 1989. Cost-benefit analysis of s<strong>to</strong>ck preservation systems.<br />

A comparison of controlled atmosphere and the use of conventional pesticides under operational<br />

conditions in Indonesia. In Champ BR et al (eds) Fumigation and Controlled Atmosphere S<strong>to</strong>rage of Grain.<br />

Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia. p.228-236.<br />

Donahaye E et al 1992. Artificial feeding site <strong>to</strong> investigate emigration of Nitidulid beetles from dried<br />

fruits. S<strong>to</strong>red-Product En<strong>to</strong>mology 85, 5, p.1990-1993.<br />

Donahaye E et al 1991. S<strong>to</strong>rage of paddy in hermetically sealed plastic liners in Sri Lanka. Tropical Science<br />

31, p.109-121.<br />

Donahaye E, Navarro S, Rindner M and Azrieli A 1998. Quality preservation of s<strong>to</strong>red dry fruit by carbon<br />

dioxide enriched atmospheres. Paper 89. 1998 Annual International Research Conference on <strong>Methyl</strong><br />

<strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Fleurat-Lessard F and Le Torc’h JM 1987. Disinfestation of wheat in a harbour silo bin with an exothermic<br />

inert gas genera<strong>to</strong>r. In Donahaye E and Navarro S (eds). Proceedings of the 4th International Working<br />

Conference on S<strong>to</strong>red-product Protection. 21-26 September, 1986, Tel Aviv, Israel. p.208-217.<br />

Gerard D, Kraus J and Quirin KW 1988. Control of s<strong>to</strong>red product insects and mites with carbon dioxide<br />

under pressure. Pharmacologie und Industrie 50, p.1298.<br />

Gilberg M 1991. The effects of low oxygen atmospheres on museum pests. Studies in Conservation 36,<br />

p.93-98.<br />

Got<strong>to</strong> M, Kishino H, Imamura M, Hirose Y and Soma Y 1996. Responses of the Pupae of Si<strong>to</strong>philus granarius<br />

L., Si<strong>to</strong>philus zeamais and Si<strong>to</strong>philus oryzae L. <strong>to</strong> phosphine and mixtures of phosphine and carbon<br />

dioxide. Research Bulletin Plant Protection Japan 32, p.63-67.<br />

Hill JF 1997. Silo S<strong>to</strong>rage Development for Almonds. HRDC Project NT300. Rural Solutions, Primary<br />

Industries, Lox<strong>to</strong>n, South Australia. 26pp.<br />

Jin Zuxun et al (eds) 1999. S<strong>to</strong>red Product Protection. Proceedings of 7th International Working<br />

Conference on S<strong>to</strong>red-product Protection, Beijing. Vols 1, 2. Sichuan Publishing House of Science and<br />

Technology, Chengdu, China. 2003pp.<br />

Kawakami F 1995. Plant quarantine treatment for s<strong>to</strong>red grains by carbon dioxide. Plant Protection 49,<br />

10, p.18-20.<br />

Kawakami F 1999. Current research of alternatives <strong>to</strong> methyl bromide and its reduction in Japanese plant<br />

quarantine. Research Bulletin Plant Protection Japan 35, p.109-120.<br />

Kawakami F et al 1996. Disinfestation tests for s<strong>to</strong>red grains in commercial silos by carbon dioxide.<br />

Research Bulletin Plant Protection Japan 32, p.51-55.<br />

Kishino H, Go<strong>to</strong> M, Imamura M and Oma Y 1996. Responses of s<strong>to</strong>red grain insects <strong>to</strong> carbon dioxide <strong>to</strong><br />

Si<strong>to</strong>philus granarius, Rasioderma serricorne, Plodia interpunctella, Ephestia cautella and Ephestia kuehniella.<br />

Research Bulletin Plant Protection Japan 32, p.57-61.<br />

Mann DD, Jayas DS, White NDG and Muir WE 1997. Sealing of welded-steel hopper bins for fumigation<br />

with carbon dioxide. Canadian Agricultural Engineering 39, p.91-97.<br />

Mbata GN and Phillips TW 2000. Temperature mediated mortality of s<strong>to</strong>red-product insects exposed <strong>to</strong><br />

low pressure. Journal of Economic En<strong>to</strong>mology. In press.<br />

Annex 7: References, Websites and Further Information<br />

291


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

292<br />

McCabe JB and Champ BR 1981. Earth-Covered Bunker S<strong>to</strong>rage: Manual of Operations. Division of<br />

En<strong>to</strong>mology, CSIRO, Canberra, Australia.<br />

Nakakita H and Kawashima K 1994. A new method <strong>to</strong> control s<strong>to</strong>red-product insects using carbon dioxide<br />

with high pressure followed by sudden pressure loss. In Highley E et al (eds). S<strong>to</strong>red-Product Protection:<br />

Proceedings of the 6th International Working Conference on S<strong>to</strong>red-product Protection. 17-23 April,<br />

Canberra, Australia. p.126-129.<br />

Nataredja YC and Hodges RJ 1989. Commercial experience of sealed s<strong>to</strong>rage of bag stacks in Indonesia.<br />

In Champ BR et al (eds). Fumigation and Controlled Atmosphere S<strong>to</strong>rage of Grain. Australian Centre for<br />

International Agricultural Research (ACIAR), Canberra, Australia. p.197-202.<br />

Navarro S et al 2000. Insect control using vacuum or CO2 in transportable flexible liners. 2000 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro00.html<br />

Navarro S et al 1998. Disinfestation of nitidulid beetles from dried fruits by modified atmospheres. Paper<br />

68. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Navarro S et al 1997. Outdoor s<strong>to</strong>rage of corn and paddy using sealed-stacks in the Philippines.<br />

Proceedings of 18th ASEAN Seminar on Grains Postharvest Technology, 11-13 March, Manila, Philippines.<br />

p.225-236.<br />

Navarro S et al 1984. Airtight s<strong>to</strong>rage of wheat in PVC-covered bunker. In Ripp BE et al (eds). Controlled<br />

Atmosphere and Fumigation in Grain S<strong>to</strong>rages. Elsevier, Amsterdam, Netherlands. p.601-614.<br />

Navarro S, Donahaye E, Dias R and Jay E 1989. Integration of modified atmospheres for disinfestation of<br />

dried fruits. Final Report 62-68. Project 1-1095-86. The United States - Israel Binational Agricultural<br />

Research and Development Fund (BARD), Bet Degan, Israel.<br />

Navarro S, Varnava A and Donahaye E 1993. Preservation of grain in hermetically sealed plastic liners with<br />

particular reference <strong>to</strong> s<strong>to</strong>rage of barley in Cyprus. In Navarro S and Donahaye E (eds). Proceedings of<br />

International Conference on Controlled Atmosphere and Fumigation in Grain S<strong>to</strong>rages. Caspit Press Ltd,<br />

Jerusalem, Israel. p.223-243.<br />

New<strong>to</strong>n J, Abey-Koch M and Pinniger DB 1996. Controlled atmosphere treatment of textile pests in<br />

antique curtains using nitrogen hypoxia - a case study. In Wildey KB (ed). Proceedings of the 2nd<br />

International Conference on Insect Pests in the Urban Environment. BPC Whea<strong>to</strong>ns Ltd, Exeter, UK.<br />

p.329-339.<br />

Prozell S and Reichmuth C 1991. Response of the Granary weevil Si<strong>to</strong>philus granarius (L.) <strong>to</strong> controlled<br />

atmospheres under high pressure. In Fleurat-Lessard F and Ducom P (eds). Proceedings of the 5th<br />

International Working Conference on S<strong>to</strong>red-product Protection. 9-14 September, Bordeaux, France. II,<br />

p.911-918.<br />

Prozell S, Reichmuth C, Ziegleder G, Schartmann B, Matissek R, Kraus J, Gerard D and Rogg S 1997.<br />

Control of pests and quality aspects in cocoa beans and hazel nuts and diffusion experiments in compressed<br />

<strong>to</strong>bacco with carbon dioxide under high pressure. In Donahaye EJ, Navarro S and Varnava A (eds)<br />

1996. Proceedings International Conference on Controlled Atmosphere and Fumigation in S<strong>to</strong>red<br />

Products. Printco Ltd, Nicosia, Cyprus. p.325-333.<br />

Reichmuth C et al 1993. Nitrogen-flow fumigation for the preservation of wood, textiles, and other<br />

organic material from insect damage. In: S Navarro and E Donahaye (eds). Proceedings of the<br />

International Conference on Controlled Atmosphere and Fumigation in Grain S<strong>to</strong>rage. June, Winnipeg.<br />

Caspit Press, Jerusalem, Israel.<br />

Ripp BE, Banks HJ, Bond EJ, Calverley DJ, Jay EG and Navarro S (eds) 1984. Controlled Atmosphere and<br />

Fumigation in Grain S<strong>to</strong>rages. Elsevier, Amsterdam, Netherlands. 798 pp.<br />

Rust MK 1996. The Feasibility of Using Modified Atmospheres <strong>to</strong> Control Insect Pests in Museums.<br />

Restaura<strong>to</strong>r 17, p.43-60.<br />

Sabio GC et al 2000. Control of s<strong>to</strong>rage pests in the tropics using sealed s<strong>to</strong>rage. 2000 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro00.html


Shellie KC and Rodde K 1999. Semi-commercial scale ultra-low oxygen s<strong>to</strong>rage for disinfestation. Paper<br />

107. 1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Soderstrom EL et al 1984. Economic cost evaluation of a generated low-oxygen atmosphere as an alternative<br />

fumigant in the bulk s<strong>to</strong>rage of raisins. Journal of Economic En<strong>to</strong>mology 77, p.457-461.<br />

Soderstrom EL and Brandl DG 1984. Modified atmospheres for postharvest insect control in tree nuts and<br />

dried fruits.<br />

Soma Y et al 1995. Responses of s<strong>to</strong>red grain insects <strong>to</strong> carbon dioxide. 1. Effects of temperature, exposure<br />

period and oxygen on the <strong>to</strong>xicity of carbon dioxide <strong>to</strong> Si<strong>to</strong>philus zeamais, Si<strong>to</strong>philus granarius L. and<br />

Tribolium confusum. Research Bulletin Plant Protection Japan 31, p.25-30.<br />

Subramanyam B and Hagstrum DW (eds) 2000. <strong>Alternatives</strong> <strong>to</strong> Pesticides in S<strong>to</strong>red-Product IPM. Kluwer<br />

Academic, Hingham, Massachusetts, USA. 456pp.<br />

Sukprakarn C, Attaviriyasook K, Khowchaimaha L, Bhudhasamai K and Promsatit B 1990. Carbon dioxide<br />

treatment for sealed s<strong>to</strong>rage of bag stacks of rice in Thailand. In Champ BR, Highley E and Banks HJ (eds.)<br />

Fumigation and Controlled Atmosphere S<strong>to</strong>rage of Grain, ACIAR Proceedings. Australian Centre for<br />

International Agricultural Research (ACIAR), Canberra, Australia, No 25, p.188-196.<br />

Tarr C, Hil<strong>to</strong>n SJ, van S Graver J and Clingeleffer PR 1994. Carbon dioxide fumigation of processed dried<br />

vine fruit (sultanas) in sealed stacks. In Highley E et al (eds). S<strong>to</strong>red Product Protection: Proceedings of the<br />

6th International Working Conference on S<strong>to</strong>red-product Protection. 17-23 April, 1994, Canberra,<br />

Australia. p.204-209.<br />

Ulrichs C 1994. Effects of different speed of build up and decrease of pressure with carbon dioxide on the<br />

adults of the <strong>to</strong>bacco beetle Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). In Highley E et al<br />

(eds). S<strong>to</strong>red Product Protection: Proceedings of the 6th International Working Conference on S<strong>to</strong>redproduct<br />

Protection. 17-23 April, 1994, Canberra, Australia. p.214-216.<br />

USEPA 1995. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies – Soil, Commodity and Structural Use.<br />

EPA430-R-95-009. Environmental Protection Agency, Washing<strong>to</strong>n, DC, USA. Available on website:<br />

http://www.epa.gov/ozone/mbr/<br />

Van Graver JE 1995. An introduction <strong>to</strong> sealed bag-stack technology for grain s<strong>to</strong>rage. Regional<br />

Workshop on <strong>Methyl</strong> <strong>Bromide</strong> for English-Speaking Africa. Harare. United Nations Environment Program,<br />

Division of Technology, Industry and Economics, Paris, France.<br />

Varnava A 1999. S<strong>to</strong>red grains in Cyprus: hermetic s<strong>to</strong>rage. In Batchelor TA (ed) 1999. Case Studies on<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low Environmental Impact. United Nations<br />

Environment Programme, Division of Technology, Industry and Economics (<strong>DTIE</strong>), Paris, France. p.58-61.<br />

Varnava A, Navarro S and Donahaye E 1994. Long-term hermetic s<strong>to</strong>rage of barley in PVC-covered concrete<br />

platforms under Mediterranean conditions. Journal of Postharvest Biol. Technology 6, p.177-186.<br />

Varnava A and Mouskos C 1996. 7-year results of hermetic s<strong>to</strong>rage of barley under PVC liners: losses and<br />

justification for further implementation of this method for grain s<strong>to</strong>rage. In Donahaye E et al (eds).<br />

Proceedings of International Conference on Controlled Atmosphere and Fumigation in S<strong>to</strong>red Products.<br />

Printco Ltd, Nicosia, Cyprus.<br />

Perishable Commodities (Controlled atmospheres)<br />

Batchelor TA, O’Donnell RL and Roby JJ 1985. The efficacy of controlled atmosphere cools<strong>to</strong>rage in controlling<br />

leafroller species. Proceedings of 38th New Zealand Weed and Pest Control Conference. 13-15<br />

August, Ro<strong>to</strong>rua, New Zealand. p.53-56.<br />

Benshoter CA 1987. Effects of modified atmospheres and refrigeration temperatures on the survival of<br />

eggs and larvae of the Caribbean fruit fly (Diptera: Tephritidae) in labora<strong>to</strong>ry diet. Journal of Economic<br />

En<strong>to</strong>mology 80, 6, p.1223-1225.<br />

Carpenter A and Potter M 1994. Controlled atmospheres. In Sharp JL and Hallman GJ (eds). Quarantine<br />

Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK & IBH<br />

Publishing, New Delhi, India. p.171-198.<br />

Carpenter A et al 1995. Pre-commercial evaluation of a hypercarbic warm controlled atmosphere for the<br />

disinfestation of perishable crops. Science and Technology for the Fresh Food Revolution: Proceedings of<br />

Australian Postharvest Horticultural Conference. 18-22 September. Melbourne, Australia. p.345-349.<br />

Annex 7: References, Websites and Further Information<br />

293


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

Chervin C et al 1997. A high temperature/ low oxygen pulse improves cold s<strong>to</strong>rage disinfestation.<br />

Postharvest Biology and Technology 10, 3, p.239-245.<br />

Gay R et al 1994. Pacific Surface Initiative and Produce Shipment Losses <strong>to</strong> Guam. DSRPAC Report,<br />

Defense Logistics Agency, Defence Subsistence Region Pacific, Alameda, California, USA. 219pp.<br />

Hallman GJ 1994. Controlled atmospheres. In Paull RE and Armstrong JW (eds). Insect Pests and Fresh<br />

Horticultural Products: Treatments and Responses. CAB International, Wallingford, UK. p.121-138.<br />

Jang EB 1990. Fruit fly disinfestation of tropical fruits using semi-permeable shrinkwrap films. Acta<br />

Horticulturae 269, p.453-458.<br />

Kader AA 1985. A summary of CA requirements and recommendations for fruits other than pome fruits.<br />

In Blakenship SM (ed). Controlled Atmospheres for S<strong>to</strong>rage and Transport of Perishable Agricultural<br />

Commodities: Proceedings of 4th National Controlled Atmosphere Research Conference. 23-26 July,<br />

Raleigh, North Carolina, USA. p.445-492.<br />

Kader AA and Dangyang K 1994. Controlled atmospheres. In Paull RE and Armstrong JW (eds). Insect<br />

Pests and Fresh Horticultural Products: Treatments and Responses. CAB International, Wallingford, UK.<br />

p.223-236.<br />

Kader AA and Thompson JF 1991. Postharvest handling systems: Tree nuts. In Postharvest Technology of<br />

Horticultural Crops. Special Publication 3311. University of California, Davis, California, USA. p.253-259.<br />

Kawakami F 1999. Current research on alternatives <strong>to</strong> methyl bromide and its reduction in Japanese plant<br />

quarantine. Research Bulletin Plant Protection Japan 35, p.109-120.<br />

McDonald RE and Miller WR 1994. Quality and condition maintenance. In Sharp JL and Hallman GJ (eds).<br />

Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK<br />

& IBH Publishing, New Delhi, India. p.249-278.<br />

Mitcham EJ et al 1995. Development of a carbon dioxide quarantine treatment for omniviorous leafroller,<br />

western flower thrip, Pacific spider mite and grape mealybug on table grapes. Annual International<br />

Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> Outreach, Fresno, California, USA.<br />

Mitcham EJ et al 1996. Controlled atmospheres as a quarantine treatment for various arthropod pests.<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

<strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> Outreach, Fresno, California, USA.<br />

Neven LG and Drake SR 1998. A quarantine treatment that improves quality?! Development of combination<br />

heat and CA treatments for apples and pears. Paper 65. 1998 Annual International Research<br />

Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Sharp JL 1990. Mortality of Caribbean fruit fly immatures in shrink-wrapped grapefruit. Florida<br />

En<strong>to</strong>mology 72, p.662-664.<br />

Shellie KC and Mangan RL 1998. Decay control during refrigerated, ultra-low oxygen s<strong>to</strong>rage for disinfestation<br />

of Mexican fruit fly. Paper 60. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Shellie KC and Rodde K 1999. Semi-commercial scale ultra-low oxygen s<strong>to</strong>rage for disinfestation. Paper<br />

107. 1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Simmons GF and Hansen JD 1999. Modified atmosphere packing <strong>to</strong> meet quarantine security requirements<br />

for sweet cherries. Paper 68. 1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Zhou S and Mitcham EJ 1997. Controlled atmosphere treatments for postharvest control of two-spotted<br />

spider mites (Tetranychus urticae). 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

294


Section 6.5 Heat Treatments<br />

Durable products and structures<br />

Banks HJ 1998. Prospects for heat disinfestation. Proceedings of the Australian Postharvest Technical<br />

Conference. Canberra, Australia, May, 1998. (in press).<br />

Brodie BB 1997. Decontamination of golden nema<strong>to</strong>de infested equipment with steam heat. Paper 71.<br />

1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Chauvin G and Vannier G 1991. La résistance au froid et à la chaleur: deux données fondamentales dans<br />

le contrôle des insectes de produits entreposés. In Fleurat-Lessard F and Ducom P (eds.) Proceedings of the<br />

5th International Working Conference on S<strong>to</strong>red-product Protection. 9-14 September, Bordeaux, France.<br />

Vol II, p.1157-1165.<br />

Chidester S 1991. Temperatures necessary <strong>to</strong> kill fungi in wood. Proceedings of the 23rd Annual Meeting<br />

of the American Wood-Preservers’ Association. p.316-324.<br />

Clarke LW 1996. Heat treatment for insect control. Proceedings of the Workshop on <strong>Alternatives</strong> <strong>to</strong><br />

<strong>Methyl</strong> <strong>Bromide</strong>, 30-31 May, Toron<strong>to</strong>, Canada. p.59-65.<br />

Dowdy AK 1997. Distribution and stratification of temperature in processing plants during heat sterilization.<br />

Paper 72. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and<br />

Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Dowdy AK 1998. Poster 113. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Dowdy AK and Fields PW 1998. Heat plus dia<strong>to</strong>maceous earth treatment for s<strong>to</strong>red-product insect management<br />

in flour mills. Paper 71. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Ebeling W 1994. The thermal pest eradication system for structural pest control. IPM Practitioner XVI, 2,<br />

p.1-7.<br />

Evans DE, Thorpe GR and Sutherland JW 1983. Large scale evaluation of fluid-bed heating as a means of<br />

disinfesting grain. Proceedings of the Third International Working Conference on S<strong>to</strong>red-product<br />

En<strong>to</strong>mology. 23-28 Oc<strong>to</strong>ber, Manhattan, Kansas, USA. p.523-530.<br />

Fields PG 1992. The control of s<strong>to</strong>red-product insects and mites with extreme temperatures. Journal of<br />

S<strong>to</strong>red Products Research 28, p.89-118.<br />

Fields P and Muir W 1995. Physical control. In Subramanyam B and Hagstrum D (eds). Integrated<br />

Management of Insects in S<strong>to</strong>red Products. Marcel Dekker, New York, USA.<br />

Fleurat-Lessard F 1984. Désinsectisation du blé tendre par un choc thermique en lit fluidisé. Aspects en<strong>to</strong>mologiques,<br />

microbiologiques et technologiques. Les ATP de l’INRA No 1 La conservation des Céréales en<br />

France. Institut National de la Recherche Agronomique (INRA). INRA éditions, Versailles, France. p.150-<br />

166.<br />

Fleurat-Lessard F 1985. Les traitements thermiques de désinfestation des céréales et des produits<br />

céréaliers: possibilité d’utilisation pratique et domaine d’application. OEPP/EPPO Bulletin. 15, p.109-119.<br />

European Plant Protection Organisation, Paris, France.<br />

Fleurat-Lessard F 1987. Control of s<strong>to</strong>red insects by physical means and modified environmental conditions.<br />

Feasibility and applications. In Lawson TJ (ed). S<strong>to</strong>red Products Pest Control. BCPC Monograph 37,<br />

p.209-218.<br />

Forbes CF and Ebling W 1987. Use of heat for elimination of structural pests. The IPM Practitioner 9, 8,<br />

p.1-5. Bio-Integral Resource Center, Berkeley, California, USA.<br />

Heap JW and Black T 1994. Using Portable Rented Electric Heaters <strong>to</strong> Generate Heat and Control S<strong>to</strong>red<br />

Product Insects. Association of Operative Millers, Bulletin July. p.6408-6411.<br />

Hoch AL, Topp D, Zeichner BC and Mehr Z 1998. Evaluation of a recirculating ‘Safe-Heat’ thermal pest<br />

eradication chamber <strong>to</strong> control commodity pests. Poster 122. 1998 Annual International Research<br />

Annex 7: References, Websites and Further Information<br />

295


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

296<br />

Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Jin Zuxun et al (eds) 1999. S<strong>to</strong>red Product Protection. Proceedings of 7th International Working<br />

Conference on S<strong>to</strong>red-product Protection, Beijing. Vols 1,2. Sichuan Publishing House of Science and<br />

Technology, Chengdu, China. 2003pp.<br />

Johnson JA, Bolin HR, Guller G and Thompson JF 1992. Efficacy of temperature treatments for insect disinfestation<br />

of dried fruits and nuts. Walnut Research Reports, USA. p.156-171.<br />

Mills R and Pederson J 1990. A Flour Mill Sanitation Manual. Eagan Press, St. Paul, Minnesota, USA.<br />

Miric M and Willeitner H 1990. Lethal temperature for some wood-destroying fungi with respect <strong>to</strong> eradication<br />

by heat treatment. Institute of Wood Biology and Wood Preservation, Hamburg, Germany. 24 pp.<br />

Mueller DK 1998. S<strong>to</strong>red Product Protection...A Period of Transition. Insects Limited, Indianapolis, USA.<br />

Newbill MA and Morrell JJ 1991. Effects of elevated temperatures on survival of Basidiomycetes that colonize<br />

untreated Douglas-fir poles. Forest Products Journal 41, p.31-33.<br />

Seidner MA 1995. Method for heat-treating wood and wood products. United States Patent 5,447,686. 5<br />

September.<br />

Seidner MA 1996. Shipboard apparatus for heat-treating wood and wood products. United States Patent<br />

5,578, 274. 26 November.<br />

Seidner MA 1997. Method for heat-treating wood and wood products: the clean kill. Paper 82. 1997<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Stein Norstein 1996. Heat Treatment in the Scandinavian Milling Industry – Heat Treatment as an<br />

Alternative <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>. Norwegian Pollution Control Authority, Oslo, Norway. 38pp.<br />

Strang TJK 1992. A review of published temperatures for the control of pest insects in museums.<br />

Collection Forum 8, p.41-67.<br />

Subramanyam B and Hagstrum DW (eds) 2000. <strong>Alternatives</strong> <strong>to</strong> Pesticides in S<strong>to</strong>red-Product IPM. Kluwer<br />

Academic, Hingham, Massachusetts, USA. 456pp.<br />

Sutherland JW, Evans DE, Fane AG and Thorpe GR 1987. Disinfestation of grain with heated air.<br />

Proceedings of the 4th International Working Conference on S<strong>to</strong>red-Product Protection, Tel Aviv, Israel.<br />

p.261-274.<br />

Thorpe GR, Evans DE and Sutherland JW 1984. The development of a continuous-flow fluidized-bed hightemperature<br />

grain disinfestation process. In Ripp BE et al (eds). Controlled Atmosphere and Fumigation in<br />

Grain S<strong>to</strong>rages. Elsevier, Amsterdam, Netherlands. p.617-622.<br />

USDA-APHIS 1993. Plant Protection and Quarantine Treatment Manual. Animal and Plant Health<br />

Inspection Service, US Department of Agriculture, Hyattsville, Maryland, USA.<br />

USEPA 1995. Temperature Control for S<strong>to</strong>red Product Insect at Pillsbury. In Environmental Protection<br />

Agency. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies – Soil, Commodity and Structural Use. EPA430-<br />

R-95-009. Environmental Protection Agency, Washing<strong>to</strong>n, DC, USA. Available on website:<br />

http://www.epa.gov/ozone/mbr/<br />

USEPA 1996. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies: Soil, Commodity, and Structural Use –<br />

Volume Two. EAP430-R-96-021. Environmental Protection Agency, Washing<strong>to</strong>n DC, USA. Available on<br />

website: http://www.epa.gov/ozone/mbr/<br />

Perishable Commodities (Heat treatments)<br />

Anon 1990. Hot water dip treatments for mangoes. Federal Register 55, p.5433-5436 and p.39132-<br />

39134. Washing<strong>to</strong>n, DC, USA.<br />

Anon 1996. Textbook for Vapor Heat Disinfestation. Japan Fumigation Technology Association and<br />

Okinawa International Center, Japan International Cooperation Society, Japan.<br />

Anon 1997. High temperature forced air treatment for fruit fly con<strong>to</strong>l on mango, papaya and eggplant<br />

exported from Fiji <strong>to</strong> New Zealand. Import Health Standard Commodity Sub-class: Fresh fruit/vegetables<br />

eggplant, Solanum melongena from Fiji. Ministry of Agriculture and Food, Welling<strong>to</strong>n, New Zealand.


Armstrong JW 1994. Heat and cold treatments. In Paull RE and Armstrong JW (eds). Insect Pests and Fresh<br />

Horticultural Products: Treatments and Responses. CAB International, Wallingford, UK. p.103-120.<br />

Armstrong JW 1998. Case his<strong>to</strong>ry: Heat disinfestation treatments for papaya in Hawaii. In Assessment of<br />

<strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical Options Committee. United<br />

Nations Environment Programme, Nairobi, Kenya. 354pp. Available on website: http://www.teap.org<br />

Armstrong JW et al 1989. High-temperature, forced air quarantine treatment for papaya infested with<br />

tephritid fruit flies. Journal of Economic En<strong>to</strong>mology 82, 6, p.1667-1674.<br />

Batchelor TA (ed) 1999. Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low<br />

Environmental Impact. United Nations Environment Programme, Division of Technology, Industry and<br />

Economics (<strong>DTIE</strong>), Paris, France. p.68-70.<br />

Carpenter A et al 1995. Pre-commercial evaluation of a hypercarbic warm controlled atmosphere for the<br />

disinfestation of perishable crops. Science and Technology for the Fresh Food Revolution: Proceedings of<br />

Australian Postharvest Horticultural Conference. 18-22 Sept. Melbourne, Australia. p.345-349.<br />

Couey HM and Hayes 1986. A quarantine system for papayas using fruit selection and a two-stage hotwater<br />

treatment. Journal of Economic En<strong>to</strong>mology 79, p.1307-1314.<br />

Couey M et al 1989. Heat treatment for control of postharvest diseases and insect pests of fruits.<br />

HortScience 24, 2, p.198-202.<br />

Denlinger DL and Yocum GD 1998. Physiology of heat sensitivity. In Hallman GJ and Denlinger DL (eds).<br />

Thermal Sensitivity in Insects and Application in Integrated Pest Management. Westview Press, Boulder,<br />

Colorado, USA.<br />

Dentener PR et al 1996. Hot air treatment for disinfestation of lightbrown apple moth and longtailed<br />

mealy bug on persimmons. Postharvest Biology & Technology 8, p.148-152.<br />

Hallman GJ and Armstrong JW 1994. Heated air treatments. In Sharp JL and Hallman GJ (eds). Quarantine<br />

Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK and IBH<br />

Publishing, New Delhi, India. p.149-163.<br />

Hallman GJ and Sharp JL 1990. Hot-water immersion quarantine treatment for carambolas infested with<br />

Caribbean fruit fly. Journal of Economic En<strong>to</strong>mology 83, p.1471-1474.<br />

Houck LG and Jenner JF 1997. Postharvest response of lemon fruit <strong>to</strong> hot water immersion, quarantine<br />

cold or methyl bromide fumigation treatments depends on preharvest growing temperature. 1997 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Gould WP 1995. Mortality of Toxotrypana curvicauda (Diptera: Tephritidae) in papayas exposed <strong>to</strong> forced<br />

hot air. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. MBAO, USA.<br />

Gould WP and McGuire R 1998. Hot water treatment for mealybugs on limes. Poster 120. 1998 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Gould WP and Sharp JL 1992. Hot-water immersion quarantine treatment for guavas infested with<br />

Caribbean fruit fly. Journal of Economic En<strong>to</strong>mology 85, p.1235-1239.<br />

Lester PJ et al 1997. Postharvest disinfestation of diapausing and non-diapausing two-spotted spider mite<br />

(Tetranychus urticae) on persimmons: hot water immersion and cools<strong>to</strong>rage. En<strong>to</strong>mologia Experimentalis<br />

et Applicata 83, 2, p.189-193.<br />

Lester PJ and Greenwood DR 1997. Pretreatment induced thermo<strong>to</strong>lerance in lightbrown apple moth<br />

(Lepidoptera: Tortricidae) and associated heat shock protein synthesis. Journal of Economic En<strong>to</strong>mology<br />

90, 1, p.199-204.<br />

Mangan RL and Ingle SJ 1994. Forced hot-air quarantine treatment for grapefruit infested with Mexican<br />

fruit fly (Diptera: Tephritidae). Journal of Economic En<strong>to</strong>mology 87, 6, p.1574-1579.<br />

Mangan RL and Shellie KC 1997. Commodity independent heat treatment parameters for disinfestation<br />

from Anastrepha fruit flies. Paper 80. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Annex 7: References, Websites and Further Information<br />

297


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

McDonald RE and Miller WR 1994. Quality and condition maintenance. In Sharp JL and Hallman GJ (eds).<br />

Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK<br />

& IBH Publishing, New Delhi, India. p.249-278.<br />

Neven LG and Drake SR 1998. A quarantine treatment that improves quality?!? development of combination<br />

heat and CA treatments for apples and pears. Paper 65. 1998 Annual International Research<br />

Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Neven LG and Drake SR 1997. Development of combination heat and cold treatments for postharvest<br />

control of codling moth in apples and pears. Paper 81. 1997 Annual International Research Conference<br />

on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Paull RE and McDonald RE 1994. Heat and cold treatments. In Paull RE and Armstrong JW (eds). Insect<br />

Pests and Fresh Horticultural Products: Treatments and Responses. CAB International, Wallingford, UK.<br />

p.191-222.<br />

Petry R 1998. Technology transfer: training in developing nations for commercial HTFA quarantine export<br />

operations – the Cook Islands success s<strong>to</strong>ry. Poster 126. 1998 Annual International Research Conference<br />

on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Sharp JL 1990. Immersion in heated water as a quarantine treatment for California s<strong>to</strong>ne fruits infested<br />

with the Caribbean fruit fly. Journal of Economic En<strong>to</strong>mology 83, p.1468-1470.<br />

Sharp JL 1992. Hot air quarantine treatment for mango infested with Caribbean fruit fly. Journal of<br />

Economic En<strong>to</strong>mology 85, p.2302-2304.<br />

Sharp JL 1994. Hot water immersion. In Sharp JL and Hallman GJ (eds). Quarantine Treatments for Pests<br />

of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK and IBH Publishing, New Delhi,<br />

India. p.133-148.<br />

Sharp JL and Hallman GJ 1992. Hot-air quarantine treatment for carambolas infested with Caribbean fruit<br />

fly. Journal of Economic En<strong>to</strong>mology 85, p.168-171.<br />

Sharp JL and Picho-Martinez H 1990. Hot-water quarantine treatment <strong>to</strong> control fruit flies in mangoes<br />

imported in<strong>to</strong> the United States from Peru. Journal of Economic En<strong>to</strong>mology 83, p.1940-1943.<br />

Sharp JL et al 1989. Hot-water quarantine treatment for mangoes from Mexico infested with Mexican<br />

fruit fly and West Indian fruit fly. Journal of Economic En<strong>to</strong>mology 82, p.1657-1662.<br />

Simmons GF and Hansen JD 1998. Methods which may prove beneficial <strong>to</strong> maintaining sweet cherry quality<br />

after quarantine treatments. Paper 66. 1998 Annual International Research Conference on <strong>Methyl</strong><br />

<strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Thomas DB and Mangan RL 1997. Modeling thermal death in the Mexican fruit fly (Diptera: Tephritidae).<br />

Journal of Economic En<strong>to</strong>mology 90, 2, p.527-534.<br />

Williamson MR and Winkelman P 1994. Heat treatment facilities. In Paull RE and Armstrong JW (eds).<br />

Insect Pests and Fresh Horticultural Products: Treatments and Responses. CAB International, Wallingford,<br />

UK. p.249-274.<br />

Section 6.6 Inert Dusts<br />

Durable commmodities and structures<br />

Aldryhim YN 1990. Efficacy of amorphous silica dust, Dryacide, against Tribolium confusum Duv. and<br />

Si<strong>to</strong>philus granarius (L.) (Coleoptera; Tenebrionidae and Curculionidae). Journal of S<strong>to</strong>red Products<br />

Research 26, p.207-210.<br />

Allen S and Desmarchelier J 1998. Preliminary comparison of the efficiency of the inert dusts: Australian<br />

Dryacide, Insec<strong>to</strong>, PermaGuard, Mt Sylvia Dia<strong>to</strong>mite and Protect-It as structural treatments. 1998 Meeting<br />

of the Working Party on Grain Protection. Item 32.1. Canberra, Australia.<br />

298


Arthur FH 1999. Evaluation of a new dia<strong>to</strong>maceous earth (DE) formulation <strong>to</strong> control s<strong>to</strong>red product beetles.<br />

Poster 101. 1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and<br />

Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Barbosa A, Golob P and Jenkins N 1994. Silica aerogels as alternative protectants of maize against<br />

Prostephanus truncatus (Horn) (Coleoptera:Bostrichidae) infestations. In Highley E et al (eds). Proceedings<br />

of the 6th International Working Conference on S<strong>to</strong>red Product Protection. April. Canberra, Australia.<br />

Vol 2, p.623-627.<br />

Batchelor TA (ed) 1999. Case Studies on <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Technologies with Low<br />

Environmental Impact. United Nations Environment Programme, Division of Technology, Industry and<br />

Economics (<strong>DTIE</strong>), Paris, France. p.62-64.<br />

Bell CH, Price N and Chakrabarti B (eds) 1996. The <strong>Methyl</strong> <strong>Bromide</strong> Issue. John Wiley and Sons,<br />

Chichester, UK.<br />

Bridgeman BW 1991. Structural Treatment Dryacide Manual. Grain Protection Services, Grainco Australia<br />

Ltd, Queensland, Australia.<br />

Bridgeman BW 1992. Efficacy of amorphous silica in bulk grain s<strong>to</strong>rages. Internal Report. Grainco<br />

Australia Ltd, Queensland, Australia.<br />

Bridgeman BW 1994. Structural treatment with amorphous silica slurry: an integral component of GAL’s<br />

IPM strategy. In Highley E et al (eds). Proceedings of the 6th International Working Conference on S<strong>to</strong>redproduct<br />

Protection. 17-23 April, Canberra. CAB International, Wallingford, UK. Vol 2, p.628-630.<br />

Bridegmen BW 1998. Application technology and usage patterns of dia<strong>to</strong>maceous earth in s<strong>to</strong>red product<br />

protection. Proceedings of the 7th International Working Conference on S<strong>to</strong>red-product Protection. 11-20<br />

Oc<strong>to</strong>ber, Beijing, China.<br />

Contessi A and Mucciolini G 1997. Prove comparative insetticida di polveri silicee a base di zeoliti e di farina<br />

fossile dia<strong>to</strong>mee. Report Regione Emilia Romagna. Servizio Fi<strong>to</strong>sanitario, Ravenna, Italy. 11pp.<br />

Cook DA, Armitage DM and Collins DA 1999. Dia<strong>to</strong>maceous earths as alternatives <strong>to</strong> organophosphorus<br />

(OP) pesticide treatments on s<strong>to</strong>red grain in the UK. Postharvest News and Information 10, p.39N-43N.<br />

CSIRO. 2000. S<strong>to</strong>red Grain Australia. Newsletter of the S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry. August 2000.<br />

CSIRO, Canberra, Australia.<br />

Desmarchelier JM and Dines J 1987. Dryacide treatment on s<strong>to</strong>red wheat: its efficacy against inseccts and<br />

after processing. Australian Journal of Experimental Agriculture 27, p.309-312.<br />

Dowdy AK and Fields PW 1998. Heat plus dia<strong>to</strong>maceous earth treatment for s<strong>to</strong>red-product insect management<br />

in flour mills. Paper 71. 1998 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Ebeling W 1971. Sorptive dusts for pest control. Annals Review En<strong>to</strong>mology. 16, p.123-158.<br />

Feldhege M 1996. Mit silikatstaub gegen vorratsschädlinge. Ernährungsdienst. Deutsche Getreidezeitung.<br />

Fachbeitrag 11, 4pp.<br />

Fields PG, White N, MacKay A and Korunic Z 1996. Efficacy assessment of Protect-It. Cereal Research<br />

Centre, Agriculture and Agri-Food Canada, Winnipeg, Canada. 35pp.<br />

Fields PG et al 1997. Dia<strong>to</strong>maceous earth combined with heat <strong>to</strong> control insects in structures. Paper 73.<br />

1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Fields PG et al 1997. Structural Pest Control: the Use of an Enhanced Dia<strong>to</strong>maceous Earth Product<br />

Combined with Heat Treatment for the Control of Insect Pests in Food Processing Facilities. Agriculture<br />

and Agri-Food Canada, Ottawa, Canada. Website: http://res.agr.ca/winn/home.html<br />

Giga DP and Chinwada P 1994. Efficacy of an amorphous silica dust against bean bruchids. In Highley E<br />

et al (eds). Proceedings of the 6th International Working Conference on S<strong>to</strong>red Product Protection. April.<br />

Canberra, Australia. Vol 2, p.631-632.<br />

Golob P 1997. Current status and future perspectives for inert dusts for control of s<strong>to</strong>red product insects.<br />

Journal of S<strong>to</strong>red Products Research 33, 1, p.69-80.<br />

Annex 7: References, Websites and Further Information<br />

299


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

300<br />

Hamel D 1997. The efficacy of Protect-It (dia<strong>to</strong>maceous earth) on s<strong>to</strong>red-product pests – applying it by<br />

dusting. Proceedings of Seminar ZUPP ’97. Korunic, Zagreb, Croatia. p.89-94 (in Croatian, summary in<br />

English).<br />

Jackson K and Webley D 1994. Effects of Dryacide on the physical properties of grains, pulses and<br />

oilseeds. In Highley E et al (eds). Proceedings of the 6th International Working Conference on S<strong>to</strong>red<br />

Product Protection. April. Canberra, Australia. Vol 2, p.635-637.<br />

Jin Zuxun et al (eds) 1999. S<strong>to</strong>red Product Protection. Proceedings of 7th International Working<br />

Conference on S<strong>to</strong>red-product Protection, Beijing. Vols 1,2. Sichuan Publishing House of Science and<br />

Technology, Chengdu, China. 2003pp.<br />

Korunic Z 1998. Dia<strong>to</strong>maceous earth, a group of natural insecticides. Journal of S<strong>to</strong>red Product Research<br />

34, 2/3, p.87-97.<br />

Korunic Z 1999. Enhanced dia<strong>to</strong>maceous earth, a component of integrated pest management, as an<br />

alternative <strong>to</strong> methyl bromide. Hedley Technologies Inc, Mississauga, Canada.<br />

Korunic Z and Fields PG 1995. Dia<strong>to</strong>maceous Earth Insecticidal Composition. Canadian Patent Pending<br />

1995; USA Patent No 5,773,017.<br />

Korunic Z, Fields PG, Kovacs MIP, Noll JS, Lukow OM, Demianyk CJ and Shibley KJ 1996. The effect of<br />

dia<strong>to</strong>maceous earth on grain quality. Postharvest Biology and Technology 9, p.373-387.<br />

Mason L 1997. Activity of Protect-It in empty granaries against two s<strong>to</strong>red-product pests. Report submitted<br />

<strong>to</strong> Hedley Technologies Inc, Department of En<strong>to</strong>mology, Food and Pest Management, Purdue<br />

University, Indiana, USA. 4pp.<br />

MBIGWG 1998. Integrated Pest Management in Food Processing: Working without <strong>Methyl</strong> <strong>Bromide</strong>.<br />

<strong>Methyl</strong> <strong>Bromide</strong> Industry Government Working Group. Pest Management Regula<strong>to</strong>ry Authority,<br />

Sustainable Pest Management Series S98-01. Health Canada, Ottawa, Canada. Available on website:<br />

http://www.hc-sc.gc.ca/pmra-arla/<br />

MBTOC 1998. Assessment of <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>: Report of the <strong>Methyl</strong> <strong>Bromide</strong> Technical<br />

Options Committee. United Nations Environment Programme, Nairobi, Kenya. p.111-112. Available on<br />

website: http://www.teap.org<br />

McLaugnlin A 1994. Labora<strong>to</strong>ry trials on dessicant dust insecticides. In Highley E et al (eds). Proceedings<br />

of the 6th International Working Conference on S<strong>to</strong>red Product Protection. Canberra, Australia. Vol 2,<br />

p.638.<br />

Nickson P, Desmarchelier JM and Gibbs P 1994. Combination of cooling with surface application of<br />

Dryacide <strong>to</strong> control insects. In Highley E et al (eds). Proceedings of the 6th International Working<br />

Conference on S<strong>to</strong>red Product Protection. Canberra, Australia. Vol 2, p.646.<br />

Quarles W and Winn PS 1996. Dia<strong>to</strong>maceous earth and s<strong>to</strong>red product pests. The IPM Practitioner 18,<br />

5/6, p.1-10.<br />

Rupp MMM, Lazzari FA and Lazzari SMN 1999. Insect control on s<strong>to</strong>red malting barley with dia<strong>to</strong>maceous<br />

earth in Southern Brazil. Proceedings of 7th International Working Conference on S<strong>to</strong>red-product<br />

Protection. 14-19 Oc<strong>to</strong>ber 1988, Beijing, China.<br />

Subramanyam B and Hagstrum DW (eds) 2000. <strong>Alternatives</strong> <strong>to</strong> Pesticides in S<strong>to</strong>red-Product IPM. Kluwer<br />

Academic, Hingham, Massachusetts, USA. 456pp.<br />

Zeng L, Qin Z and Korunic Z 1999. Field and labora<strong>to</strong>ry experiments with Protect-It, enhanced dia<strong>to</strong>maceous<br />

earth, in PR China. Proceedings of 7th International Working Conference on S<strong>to</strong>red-product<br />

Protection. 14-19 Oc<strong>to</strong>ber 1988, Beijing, China.<br />

Section 6.7 Phosphine and other Fumigants<br />

Durable products and structures<br />

ACIAR 1990. Fumigation and Controlled Atmosphere S<strong>to</strong>rage of Grain. ACIAR Proceedings 25. Australian<br />

Centre for International Agricultural Research (ACIAR), Canberra, Australia.<br />

Agriculture and Agri-Food Canada 1996. Heat, Phosphine and CO2 Collaborative Experimental Structural<br />

Fumigation. Canadian Leadership in the Development of <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. Agriculture and<br />

Agri-Food Canada, Ottawa, Canada.


ASEAN 1989. Suggested Recommendations for the Fumigation of Grain in the ASEAN Region. Part I.<br />

Principles and General Practice. ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia and ACIAR,<br />

Canberra, Australia.<br />

ASEAN 1991. Suggested Recommendations for the Fumigation of Grain in the ASEAN Region. Part 2.<br />

Carbon Dioxide Fumigation of Bag-stacks Sealed in Plastic Enclosures: An Operations Manual. ASEAN<br />

Food Handling Bureau, Kuala Lumpur, Malaysia and ACIAR, Canberra, Australia.<br />

ASEAN 1994. Suggested Recommendations for the Fumigation of Grain in the ASEAN Region. Part 3.<br />

Phosphine Fumigation: An Operations Manual. ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia<br />

and ACIAR, Canberra, Australia.<br />

ASEAN 1995. Suggested Recommendations for the Fumigation of Grain in the ASEAN Region. Part 4. In-<br />

Transit Disinfestation with Carbon Dioxide in Freight Containers: An Operations Manual. ASEAN Food<br />

Handling Bureau, Kuala Lumpur, Malaysia and ACIAR, Canberra, Australia.<br />

Banks HJ 1986. The application of fumigants for the disinfestation of grain and related products.<br />

Australian Centre for International Agricultural Research (ACIAR). ACIAR Proceedings. 14, 291-298.<br />

Banks HJ, Desmarchelier JM and Ren YL 1993. Carbonyl sulphide fumigant and method of fumigation.<br />

International Patent No WO93/13659. World Intellectual Property Organization. 43pp.<br />

Bell CH, Hole BD and Wilson SM 1985. Fumigant doses for the control of Trogoderma granarium. EPPO<br />

Bulletin 15, p.9-14. European Plant Protection Organisation, Paris, France.<br />

Bell CH, Savvidou N 1998. The <strong>to</strong>xicity of Vikanel (sulfuryl fluoride) <strong>to</strong> age groups of eggs of the<br />

Mediterranean flour moth Ephestia kuehniella. Journal of S<strong>to</strong>red Products Research 35, p.233-247<br />

Bell CH, Wilson SM, Banks HJ and Smith RH 1984. An investigation of the <strong>to</strong>lerance of stages of Khapra<br />

beetle (Trogoderma granarium Everts) <strong>to</strong> phosphine. Proceedings of the 3rd International Working<br />

Conference on S<strong>to</strong>red-Product Protection, Manhattan, Kansas, USA. 23-28 Oc<strong>to</strong>ber. p.375-390.<br />

Bond EJ 1984. Manual of Fumigation for Insect Control. Plant Production and Protection Paper 54. Food<br />

and Agriculture Organisation, Rome, Italy.<br />

Bond EJ, Dumas T and Hobbs S 1984. Corrosion of metals by the fumigant phosphine. Journal of S<strong>to</strong>red<br />

Products Research 20, p.57- 63.<br />

Bowley CR and Bell CH 1981. The <strong>to</strong>xicity of twelve fumigants <strong>to</strong> three species of mites infesting grain.<br />

Journal of S<strong>to</strong>red Products Research 17, p.83-87.<br />

Böye J 1998. Personal communication. S&A GmbH, Sittensen, Germany.<br />

Brigham RJ 1998. Corrosive Effects of Phosphine, Carbon Dioxide, Heat and Humidity on Electronic<br />

Equipment. Canadian Leadership in the Development of <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. Agriculture and<br />

Agri-Food Canada, Ottawa, Canada. Available on website: http://www.agr.ca/policy/environment<br />

Brigham RJ 1999. Corrosive Effects of Phosphine, Carbon Dioxide, Heat and Humidity on Electronic<br />

Equipment: Phase II. Canadian Leadership in the Development of <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong>. Agriculture<br />

and Agri-Food Canada, Ottawa, Canada. Available on website: http://www.agr.ca/policy/environment<br />

Carmi Y, Kostyukovsky M, Golani Y, Frandji H 1998. Improving phosphine penetration in<strong>to</strong> deep grain bin<br />

by aid of carbon dioxide. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and<br />

Emissions Reductions. MBAO, USA. paper 61.<br />

Chakrabarti B 1994. Methods of distributing phosphine in bulk grain. Home Grown Cereals Authority<br />

Research Review 27, London, UK. 44 pp.<br />

Chaudhry MQ 1997. A review of the mechanisms involved in the action of phosphine as an insecticide<br />

and phosphine resistance in s<strong>to</strong>red-product insects. Pesticide Science. 49, p.213-228.<br />

Chaudhry MQ, MacNicholl AD, Mills KA and Price NR 1997. The potential of methyl phosphine as a fumigant<br />

for the control of phosphine-resistant strains of four species of s<strong>to</strong>red-product insects. Proceedings<br />

International Conference on Controlled Atmosphere and Fumigation in S<strong>to</strong>red Products. April 1996.<br />

Printco Ltd, Nicosia, Cyprus. p.45-57.<br />

Codex Alimentarius Commission 1992. Codex maximum limits for pesticides residues. World Health<br />

Organization (WHO)/ Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.<br />

CSIRO. 2000. S<strong>to</strong>red Grain Australia. Newsletter of the S<strong>to</strong>red Grain Research Labora<strong>to</strong>ry. August 2000.<br />

CSIRO, Canberra, Australia.<br />

Annex 7: References, Websites and Further Information<br />

301


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

302<br />

Davis R 1986. Fumigation of Ships. In GASCA Seminar on Fumigation Technology in Developing Countries.<br />

TDRI S<strong>to</strong>rage Department, Slough, UK. p.24-34.<br />

Degesch America 1997. Applica<strong>to</strong>rs Manual for Degesch Phos<strong>to</strong>xin pellets or Tablets-R. Form 17828.<br />

Degesch America Inc, Weyers Cave, Virginia, USA. Available on website:<br />

http://www.degeschamerica.com/downloads/TabletPelletManualUSA0299.pdf<br />

Desmarchelier JM 1994. Carbonyl sulphide as a fumigant for control of insects and mites. In Highley E et<br />

al (eds). S<strong>to</strong>red-Product Protection. Proceedings of the 6th International Working Conference on S<strong>to</strong>redproduct<br />

Protection. 17-23 April, Canberra, Australia. p.78-82.<br />

DowElanco 1995. Vikane Gas Fumigant Structural Fumigation Manual. DowElanco, Indianapolis, Indiana,<br />

USA.<br />

EPPO 1984. Phosphine fumigation of s<strong>to</strong>red products. EPPO Bulletin 14, p.598-599. European Plant<br />

Protection Organisation, Paris, France.<br />

EPPO 1993. EPPO Bulletin 23, p.207-208. European Plant Protection Organisation, Paris, France.<br />

Fields P and Jones S 1999. Efficacy of three fumigant methods for empty ship holds against s<strong>to</strong>red product<br />

insect adults and eggs. Paper 58. 1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Fields P et al 2000. Canadian Grain S<strong>to</strong>rage. CD-ROM. Agriculture and Agri-Food Canada, University of<br />

University of Mani<strong>to</strong>ba, Canadian Grain Commission. Available on website:<br />

http://www.cgc.ca/main-e.htm<br />

Geneve R, Ducom P, Branteghem V and Delon R 1986. Désinsectisation d’un entrepôt de tabac de<br />

220,000 m3 par le phosphure d’hydrogène. Annales du Tabac 20, p.93-104.<br />

Go<strong>to</strong> M, Kishino H, Imamura M, Hirose Y and Soma Y 1996. Responses of the Pupae of Si<strong>to</strong>philus granarius<br />

L., Si<strong>to</strong>philus zeamais and Si<strong>to</strong>philus oryzae L. <strong>to</strong> phosphine and mixtures of phosphine and carbon<br />

dioxide. Research Bulletin Plant Protection Japan 32, p.63-67.<br />

Graver JS van and Annis PC 1994. Suggested Recommendations for the Fumigation of Grain in the<br />

ASEAN Region. Part 3. Phosphine Fumigation: An Operations Manual. ASEAN Food Handling Bureau,<br />

Kuala Lumpur, Malaysia and ACIAR, Canberra, Australia.<br />

Griffith T 1999. Propylene oxide, a registered fumigant, a proven insecticide. Paper 71. 1999 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Hil<strong>to</strong>n SJ and Banks HJ 1997. Ethyl formate as a fumigant of sultanas: sorption and efficacy against six<br />

insect pests. In EJ Donahaye, S Navarro and A Varnava (eds). Proceedings of the International Conference<br />

on Controlled Atmosphere and Fumigation in S<strong>to</strong>red Products. April 1996. Printco Ltd, Nicosia, Cyprus.<br />

p.409-422.<br />

Horn F 1997. The horn phosphine genera<strong>to</strong>r and fumigation methods with this new <strong>to</strong>ol for space, s<strong>to</strong>red<br />

products and fruits. Paper 88. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Horn FK and Luzaich GB 1998. The Horn genera<strong>to</strong>r Mag<strong>to</strong>xin granules system. Annual Paper 91. 1998<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

HSE 1996a. Control of Substances Hazardous <strong>to</strong> Health in Fumigation Operations. COSHH L86, Health<br />

and Safety Executive, London, UK.<br />

HSE 1996b. HSE Guidance Notes on Fumigation. Guidance Note CS22. Health and Safety Executive,<br />

London, UK.<br />

IMO 1996. Recommendations on the Safe Use of Pesticides in Ships. International Maritime Organisation.<br />

29pp.<br />

Jin Zuxun et al (eds) 1999. S<strong>to</strong>red Product Protection. Proceedings of 7th International Working<br />

Conference on S<strong>to</strong>red-product Protection, Beijing. Vols 1,2. Sichuan Publishing House of Science and<br />

Technology, Chengdu, China. 2003pp.


Kostjukovsky M, Carmi Y, Atsmi S and Shaaya E 1997. Evaluation of methyl iodide and carbon disulfide as<br />

alternatives <strong>to</strong> methyl bromide for the control of s<strong>to</strong>red product insects. Paper 57. 1997 Annual<br />

International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on<br />

website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Leesch JG, Redlinger LM, Gillenwater HB, Davis R and Zehner JM 1978. An in-transit ship-board fumigation<br />

of corn. Journal of Economic En<strong>to</strong>mology 71, p.928-935.<br />

Leesch JG, Davis R, Zettler JL, Sukkestad DR, Zehner JM and Redlinger LM 1986. Use of perforated tubing<br />

<strong>to</strong> distribute phosphine during the in-transit fumigation of wheat. Journal of Economic En<strong>to</strong>mology 79,<br />

p.1583-1589.<br />

Matthews M and Shaheen D 1999. Fumigation of an empty shiphold using the Horn genera<strong>to</strong>r Mag<strong>to</strong>xin<br />

granules system. Annual paper 59. 1999 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Mizobuti M, Matsuoka I, Soma Y, Kishino H, Yabuta S, Imamura M, Mizuno T, Hirose Y and Kawakami F<br />

1996. Susceptibility of forest insect pests <strong>to</strong> sulfuryl fluoride. Research Bulletin of Plant Protection Japan<br />

32, p.77-82.<br />

Mizobuchi M et al 1996. Susceptibility of forest insect pests <strong>to</strong> sulphuryl fluoride. 2. Ambrosia beetles.<br />

Research Bulletin Plant Protection Japan 32, p.77-82.<br />

Monro HAU 1956. The his<strong>to</strong>ry of the use of recirculation method for applying fumigants in grain s<strong>to</strong>rage.<br />

Down <strong>to</strong> Earth 11, p.19-21.<br />

Monro HAU 1969. Manual of Fumigation for Insect Control. FAO Agri. Stud. 79. Food and Agriculture<br />

Organization of the United Nations (FAO), Rome, Italy.<br />

Mueller DK 1998. S<strong>to</strong>red Product Protection...A Period of Transition. Insects Limited, Indianapolis, Indiana,<br />

USA.<br />

Mueller JM 1994. Grain Bin Fumigation. Phos<strong>to</strong>xin application. Fumigation Service and Supply Inc,<br />

Indianapolis, Indiana, USA. 8pp.<br />

Nelson HD 1970. Fumigation of natural raisins with phosphine. US Department of Agriculture. Marketing<br />

Research Report 886. 8pp.<br />

NIEHS 1991. Ethylene oxide CAS No. 75-21-8. In Eigth Annual Report on Carcinogens. NIEHS, National<br />

Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.<br />

Noyes RT, Phillips TW and Cuperus GW 1997. Application of ECO2FUME fumigant gas <strong>to</strong> s<strong>to</strong>red wheat in<br />

sealed steel bins. Paper 75. 1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong><br />

<strong>Alternatives</strong> and Emissions Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

NTP 1990. Phosphine: Executive summary of safety and <strong>to</strong>xicity information. National Toxicology Program,<br />

National Institute of Health, USA.<br />

Oogita T et al 1998. Mortality tests for forest insect pests by phosphine fumigation. Research Bulletin<br />

Plant Protection Japan 33, p.17-20.<br />

Phillips TW 1998. Cylinder-based phosphine for control of postharvest insect pests. Paper 86. 1998<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro98.html<br />

Phillips TW et al 1997. Mortality of s<strong>to</strong>red-product insects exposed <strong>to</strong> ECO2FUME fumigant gas. Paper 76.<br />

1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Plarre R and Reichmuth C 1996. Effects of carbonyl sulfide (COS) on Si<strong>to</strong>philus granarius, Fusarium avenacaeum<br />

and Fusarium culmorum and possible corrosion of copper. Nachrich. Deutsch. Pflanzen 48,<br />

p.105-112.<br />

Rajendran S and Narasimhan KS 1994. Phosphine resistance in the cigarette beetle Lasioderma serricorne<br />

(Coleoptera: Anobiidae) and overcoming control failures during fumigation of s<strong>to</strong>red <strong>to</strong>bacco.<br />

International Journal of Pest Management 40, p.207-210.<br />

Annex 7: References, Websites and Further Information<br />

303


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

304<br />

Reichmuth C 1994. A new phosphine releasing product. In Highley E et al (eds). S<strong>to</strong>red Product<br />

Protection: Proceedings of the 6th International Working Conference on S<strong>to</strong>red Product Protection. 17-23<br />

April, Canberra, Australia. p.153-156.<br />

Reichmuth C, Schöller M., Dugast J-F and Drinkall MJ 1996. Sulfuryl fluoride <strong>to</strong> control s<strong>to</strong>red product<br />

pest insects. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. MBAO, USA. Paper 77.<br />

Schmidt EL 1997. Penetration of fumigants in<strong>to</strong> logs for pest eradication and stain prevention. Paper 90.<br />

1997 Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions<br />

Reductions. Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Schmidt EL et al 1997. Sulfuryl fluoride fumigation of red oak logs eradicates the oak wilt fungus. Holz als<br />

Roh-und Werks<strong>to</strong>ff 55.<br />

Schneider BM and Williams RE 1999. Sulfuryl fluoride research and development update. Paper 64. 1999<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Semple RL and Kirenga GI (eds) undated. Facilitating Regional Trade of Agricultural Commodities in Easter,<br />

Central and Southern Africa: Phy<strong>to</strong>sanitary standards <strong>to</strong> restrict the further rapid spread of the Larger<br />

Grain Borer (LGB) in the region. Technical Data Sheet # 14. Dar es Salaam University Press, Dar es Salaam,<br />

Tanzania.<br />

Shaheen JM 1961. Prevention of fire or explosion in s<strong>to</strong>rage and use of fumigants. Pest Control 29, 7,<br />

p.34-38.<br />

Shurdut BA, Beard KK and Murphy PG 1996. Assessment of potential exposures and risk following structural<br />

fumigation with sulfuryl fluoride gas fumigant. 211th American Chemical Society National Meeting,<br />

March, New Orleans, Louisiana, USA. Abstract AGRO 155.<br />

Snelson JT and Winks RG 1981. In transit fumigation of large grain bulks in ships. In The appropriate use<br />

of pesticides for the control of s<strong>to</strong>red product pests in developing countries. GASGA Seminar. Tropical<br />

Development and Research Institute, Slough, UK. p.119-130.<br />

Soma Y et al 1996. Susceptibility of forest insect pests <strong>to</strong> sulfuryl fluoride. Research Bulletin Plant<br />

Protection Japan 32, p.69-76.<br />

Soma Y et al 1997. Susceptibility of forest insect pests <strong>to</strong> sulfuryl fluoride. 3. Susceptibility <strong>to</strong> sulfuryl fluoride<br />

at 25°C. Research Bulletin Plant Protection Japan 33, p.25-30.<br />

Soma Y, Oogita T, Misumi T and Kawakami F 1998. Effect of gas mixtures of sulfuryl fluoride and phosphine<br />

on forest insect pests. Research Bulletin Plant Protection Japan 34, p.11-14.<br />

Taylor R et al 1998. New controls on methyl bromide: UK impact study. Project C1092. DETR and MAFF,<br />

London, UK.<br />

Taylor RWD and Harris AH 1994. The fumigation of bag-stacks with phosphine under gas-proof sheets<br />

using techniques <strong>to</strong> avoid the development of insect resistance. In Highley E et al (eds). S<strong>to</strong>red Product<br />

Protection. Proceedings of the 6th International Working Conference on S<strong>to</strong>red Product Protection, 17-23<br />

April 1994, Canberra, Australia. p.210-213.<br />

Thompson RH 1970. Specifications recommended by the UK Ministry of Agriculture, Fisheries and Food<br />

for the fumigation of cereals and other foodstuffs against pests of s<strong>to</strong>red products. EPPO Bulletin, Ser. D.<br />

No.15, p.9-25. European Plant Protection Organisation, Paris, France.<br />

Thoms EM and Scheffrahn RH 1994. Control of pests by fumigation with Vikane gas fumigant (sulfuryl<br />

fluoride). Down <strong>to</strong> Earth 49, 2, p.23-30.<br />

USEPA 1995. Case Study. Structural Fumigation Using a Combined Treatment of Phosphine, Heat and<br />

Carbon Dioxide. In Environmental Protection Agency. In <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies –<br />

Soil, Commodity and Structural Use. EPA430-R-95-009. Environmental Protection Agency, Washing<strong>to</strong>n,<br />

DC, USA. Available on website: http://www.epa.gov/ozone/mbr/<br />

USEPA 1996. <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong> Ten Case Studies: Soil, Commodity, and Structural Use –<br />

Volume Three. EAP430-R-97-030. Environmental Protection Agency, Washing<strong>to</strong>n DC, USA.<br />

Van Graver JE 1995. An introduction <strong>to</strong> sealed bag-stack technology for grain s<strong>to</strong>rage. Regional<br />

Workshop on <strong>Methyl</strong> <strong>Bromide</strong> for English-Speaking Africa. Harare. UNEP IE, Paris, France.


White BR et al 1997. Field-testing phy<strong>to</strong>sanitation treatments on Chilean radiata pine. Paper 91. 1997<br />

Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions.<br />

Available on website: http://www.epa.gov/docs/ozone/mbr/mbrpro97.html<br />

Williams RE and Schneider BM 1999. Enhanced fumigation efficacy as a methyl bromide alternative: case<br />

studies with sulfuryl fluoride. Paper 63. 1999 Annual International Research Conference on <strong>Methyl</strong><br />

<strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions. Available on website:<br />

http://www.epa.gov/docs/ozone/mbr/mbrpro99.html<br />

Winks RG 1990. Recent developments in fumigation technology, with emphasis on phosphine. In Champ<br />

BR et al (eds). Fumigation and controlled atmosphere s<strong>to</strong>rage of grain. ACIAR Proceedings No.25, p.144-<br />

157. Australian Centre for International Agricultural Research, Canberra, Australia.<br />

Winks RG 1993. The development of Siroflo® in Australia. In Navarro S and Donahaye E (eds). CAF<br />

Proceedings of an International Conference on Controlled Atmosphere and Fumigation in Grain S<strong>to</strong>rages.<br />

Caspit Press, Jerusalem, Israel. p.399-410.<br />

Winks RG and Russell GF 1994. Effectiveness of Siroflo in vertical silos. In Highley E et al (eds).<br />

Proceedings of the 6th International Working Conference on S<strong>to</strong>red Product Protection. Canberra,<br />

Australia. Vol 2, p.646.<br />

Zettler JL et al 1982. In-transit shipboard fumigation of corn on tanker vessel. Journal of Economic<br />

En<strong>to</strong>mology 75, p.804-808.<br />

Zettler JL, Leesch JG, Gill RF and Mackey BE 1998. Toxicity of carbonyl sulfide <strong>to</strong> s<strong>to</strong>red product insects.<br />

Journal of Economic En<strong>to</strong>mology 90,3.<br />

Zettler JL, Leesch JG, Gill RF and Tebbets 1998. Chemical alternatives for methyl bromide and phosphine<br />

treatments for dried fruits and nuts. Proceedings of 7th International Working Conference on S<strong>to</strong>red<br />

Product Protection. 15-18 Oc<strong>to</strong>ber, Beijing, China.<br />

Perishable Commodities (Fumigants)<br />

Anon 1998. The Manual for the Operation of the Plant Quarantine Treatment. Theory and Application of<br />

Fumigation. Japan Technical Fumigation Association. Plant Protection Division, Ministry of Agriculture and<br />

Fisheries, Japan. 190pp.<br />

Bond EJ 1984. Manual of Fumigation for Insect Control. Plant Production and Protection Paper 54. Food<br />

and Agriculture Organization of the United Nations (FAO), Rome, Italy.<br />

Carpenter A and S<strong>to</strong>cker A 1992. Envirosols as postharvest fumigants for asparagus and cutflowers.<br />

Proceedings of New Zealand Plant Protection Conference. p.21-26.<br />

Forney CF and Houck LG 1994. Chemical treatments: Product physiological and biochemical response <strong>to</strong><br />

possible disinfestation procedures. In Paull RE and Armstrong JW (eds). Insect Pests and Fresh Horticultural<br />

Products: Treatments and Responses. CAB International, Wallingford, UK. p.139-162.<br />

McDonald OC and Mills KA 1995. Investigations in<strong>to</strong> the use of phosphine for the quarantine treatment<br />

of plant cuttings. Annual International Research Conference on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and<br />

Emissions Reductions. MBAO, USA. Paper 95.<br />

McDonald RE and Miller WR 1994. Quality and condition maintenance. In Sharp JL and Hallman GJ (eds).<br />

Quarantine Treatments for Pests of Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK<br />

& IBH Publishing, New Delhi, India. p.249-278.<br />

Soma Y, Ikeda T and Kawakami F 1997. Phy<strong>to</strong><strong>to</strong>xic responses of several apple varieties <strong>to</strong> methyl bromide,<br />

phosphine and methyl isothiocyanate fumigation. Research Bulletin Plant Protection Japan 33, p.61-64.<br />

Stark JD 1994. Chemical fumigants. In Paull RE and Armstrong JW (eds). Insect Pests and Fresh<br />

Horticultural Products: Treatments and Responses. CAB International, Wallingford, UK. p.69-84.<br />

Vincent Le and Lindgren DL 1972. Hydrogen phosphide and ethyl formate: fumigation of insects infesting<br />

dates and other dried fruits. Journal of Economic En<strong>to</strong>mology 65, 6.<br />

Yokoyama VY 1994. Fumigation. In Sharp JL and Hallman GJ (eds). Quarantine Treatments for Pests of<br />

Food Plants. Westview Press, Boulder, Colorado, USA and Oxford, UK & IBH Publishing, New Delhi, India.<br />

p.67-88.<br />

Annex 7: References, Websites and Further Information<br />

305


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

306<br />

Websites on Post-harvest Pest Control<br />

Agriculture and Agri-Food Canada, case studies of alternatives: http://www.agr.ca/policy/environment<br />

Annual International Research Conferences on <strong>Methyl</strong> <strong>Bromide</strong> <strong>Alternatives</strong> and Emissions Reductions,<br />

USA, proceedings for 1994, 1997, 1998, 1999 and 2000 available online:<br />

http://www.epa.gov/ozone/mbr/mbrqa.html<br />

Canadian Food Inspection Agency: www.cfia-acia.agr.ca/english/<strong>to</strong>ce.shtml<br />

Canadian Grain Commission: http://www.cgc.ca/main-e.htm<br />

Canadian Wheat Board technical information: http://www.cwb.ca<br />

Central Science Labora<strong>to</strong>ry, Ministry of Food and Agriculture, UK: http://www.csl.gov.uk/navf.htm<br />

Cereal Research Centre, Agriculture and Agri-Food Canada website:<br />

http://res2.agr.ca/winnipeg/home.html<br />

Crop & Food Research, New Zealand, research on perishable commodity treatments:<br />

http://www.crop.cri.nz<br />

CSIRO Division of En<strong>to</strong>mology, Australia website: http://www.en<strong>to</strong>.csiro.au/<br />

Environment Canada, case studies on alternatives: http://www.ec.gc.ca/ozone/mbrfact.htm<br />

Environmental Protection Agency, USA, case studies on methyl bromide alternatives:<br />

http://www.epa.gov/docs/ozone/mbr/mbrqa.html<br />

Fumigants and Pheromones newsletter for pest control practitioners: http://www.insectslimited.com<br />

Grain Marketing and Production Research, US Department of Agriculture, USA, information on s<strong>to</strong>rage of<br />

cereals: http://bru.usgmrl.ksu.edu<br />

Health Canada, Pest Management Regula<strong>to</strong>ry Agency: http://www.hc-sc.gc.ca/pmra-arla<br />

HortResearch, New Zealand, research on perishable commodity treatments:<br />

http://www.hortresearch.co.nz/<br />

Information Network on Post-Harvest Operations (InPhO): http://www.fao.org/inpho/index-e.htm<br />

National Agricultural Library, US Department of Agriculture: http://www.nal.usda.gov and<br />

http://www.nal.usda.gov/afsic<br />

Dept. S<strong>to</strong>red Products, Agricultural Research Organisation, Israel website:<br />

http://www.agri.gov.il/Depts/S<strong>to</strong>redProd<br />

Natural Resources Institute, UK website for information on s<strong>to</strong>red product pests and control methods:<br />

http://www.nri.org<br />

Purdue University, Post Harvest Grain Quality & S<strong>to</strong>red Product Protection Program, information on grain<br />

and extensive links <strong>to</strong> other websites: http://pasture.ecn.purdue.edu/~grainlab/<br />

Stanford University, Department of En<strong>to</strong>mology for information on pest control in artifacts, museums and<br />

institutions: http://palimpsest.stanford.edu/byorg/chicora/chicpest.html<br />

The Internet has many other websites that provide research data and practical information on post-harvest pest<br />

control methods and products; search using key words for species of pests, specific techniques, equipment,<br />

products or applications of interest (eg. Khapra beetle + phosphine). It is generally best <strong>to</strong> search for key words<br />

that are unique or specific <strong>to</strong> the <strong>to</strong>pic of interest; for example, search for “grain aeration controllers” rather<br />

than a general term like “grain technology.”<br />

Technical information can also be found on websites of companies and suppliers; refer <strong>to</strong> tables in each Section and<br />

the corresponding contact information in the Annex, or search the Internet for the names of specific companies.<br />

For websites on health and safety, <strong>to</strong>xicity and exposure limits, refer <strong>to</strong> the introduction in Chemical Safety Data<br />

Sheets in the Annex.<br />

In following any web addresses provided here, keep in mind that many sites undergo frequent reorganization. If<br />

the address listed is not working, it may be useful <strong>to</strong> try again using only part of the address. For example, if<br />

the page listed as http://www.epa.gov/ozone/mbr/mbrqa.html does not work, try<br />

http://www.epa.gov/ozone/mbr or http://www.epa.gov/ozone. You may also try abbreviating the web<br />

address <strong>to</strong> take you <strong>to</strong> an organization’s main home page, such as http://www.epa.gov. From there, you can<br />

often run a search for the <strong>to</strong>pic of interest or locate the appropriate link.


Annex 8<br />

Index<br />

A<br />

Acanthoscelides – also refer <strong>to</strong> s<strong>to</strong>red product<br />

pests, 98, 157<br />

Acarus – also refer <strong>to</strong> s<strong>to</strong>red product pests, 98<br />

Aeration, 101, 112-118<br />

Africa, 16, 17, 23, 36, 46, 47, 48, 49, 60, 84, 85,<br />

90, 99, 103, 104, 116, 117, 155<br />

Agrobacterium biological controls, 40, 43, 46<br />

Agrobacterium pathogens, 17, 40, 43, 72<br />

Albania, 117<br />

Algeria, 117<br />

Alternaria - also refer <strong>to</strong> fungal pathogens, 16,<br />

40, 43<br />

Amendments for soil, 20, 22, 23, 24, 61-69, 280-<br />

286<br />

Ampelomyces biological controls, 40, 43, 46<br />

Animal feed, 144, 145<br />

Ants, 147<br />

Aphelenchoides - also refer <strong>to</strong> nema<strong>to</strong>des, 16,<br />

139<br />

Aphids, 99, 130<br />

Apples, 24, 99. 103. 104, 110, 131, 140, 271,<br />

298, 308, 307<br />

Apricots, 104, 117, 287<br />

Argentina, 36, 55, 83, 90, 94, 95, 96, 103, 117,<br />

151<br />

Armillaria - also refer <strong>to</strong> fungal pathogens, 16, 43,<br />

272<br />

Army worm, 44<br />

Artifacts, 5, 97, 101, 102, 115, 116, 120, 121,<br />

123, 124, 137, 139, 140, 153, 157, 315, 316<br />

Asparagus, 103, 137, 140, 315<br />

Aubergine, eggplant, 5, 71, 74, 103, 109, 137,<br />

139, 306<br />

Australia, 22, 30, 37, 45, 46, 47, 54, 55, 60, 68,<br />

90, 96, 102, 103, 104, 109, 111, 113, 116, 117,<br />

119, 123, 126, 128, 131, 133, 134, 137, 142,<br />

144, 145, 148, 149, 151, 152, 154, 155, 161,<br />

162<br />

Austria, 85, 102, 137, 142<br />

Avocado, 71, 103, 110, 137, 117, 140, 295, 296<br />

B<br />

Bacteria, 15, 17, 38, 39, 40, 43, 72, 74<br />

Bacillus biological controls, 39, 40, 43, 44, 46<br />

Bactrocera - also refer <strong>to</strong> fruit flies, 99, 109<br />

Bagasse substrates, 87, 88, 139<br />

Banana, 5, 19, 21, 24, 36, 64, 90,103, 139<br />

Bark amendments and substrates, 62, 65, 87, 88,<br />

92, 94, 95, 107, 290, 282<br />

Barley - also refer <strong>to</strong> grains, 131, 138, 144, 146,<br />

290, 310, 303<br />

Beans - also refer <strong>to</strong> legumes, 12, 98, 102, 115,<br />

116, 144, 309<br />

Beauveria biological controls, 38, 39, 44, 46<br />

Beetles, 44, 98, 100, 115, 121, 128, 130, 131,<br />

135, 138, 139, 140, 146, 147, 156, 157, 294,<br />

301, 302, 303, 309, 313<br />

Belgium, 22, 23, 48, 68, 80, 81, 85, 90, 91, 93,<br />

94, 95, 96<br />

Belize, 103, 117<br />

Benin, 36<br />

Bermuda, 73, 74, 117<br />

Berryfruit, 3, 22, 47, 65, 91, 99, 104, 109, 268,<br />

269, 271, 277, 278, 279, 287, 290<br />

Beverage crops, 5, 97, 112, 130, 131, 155<br />

Biofumigation, 20, 21, 23, 24, 64, 65, 67, 68, 74,<br />

268, 281, 282, 283, 286<br />

Biological controls, 18, 20, 21, 23, 24, 38-50, 88,<br />

89, 210, 268, 269, 271, 273-277, 284, 285, 294<br />

Bolivia, 117<br />

Borates, borax, 102, 121, 123, 124, 126, 175,<br />

298, 299<br />

Bosnia, 117<br />

Brazil, 19, 21, 22, 23, 24, 37, 49, 54, 76, 78, 90,<br />

95, 96, 103, 104, 110, 117, 131, 145, 148, 149,<br />

160, 162<br />

Bruchids, 115, 309<br />

Buildings - also refer <strong>to</strong> structures, 3, 5, 97, 100,<br />

101, 104, 121, 120, 137, 144, 150, 155<br />

Bulbs, 5, 30, 54, 72, 83, 103, 139<br />

Burkholderia biological controls, 40, 43, 46<br />

By-products used as substrates and soil amendments,<br />

61, 62, 63, 65, 66, 67, 88, 89, 93, 94,<br />

274, 281, 282, 283, 284, 285, 291<br />

Annex 8: Index<br />

307


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

308<br />

C<br />

California, 31, 32, 34, 36, 37, 49, 53, 56, 57, 60,<br />

63, 64, 67, 68, 71, 76, 78, 90, 96, 103, 111, 116,<br />

131, 134<br />

Callosobruchus, cowpea beetle - also refer <strong>to</strong><br />

s<strong>to</strong>red product pests, 98, 114<br />

Canada, 19, 22, 23, 24, 30, 34, 47, 55, 69, 85,<br />

90, 94, 95, 96, 102, 103, 104, 111, 113, 114,<br />

119, 126, 131, 134, 137, 142, 145, 148, 149,<br />

152, 155, 160, 161, 162<br />

Canary Islands, 22, 24, 90<br />

Carambola, 115, 116, 117, 297, 307, 308<br />

Carbon bisulphide, 152, 177<br />

Carbon dioxide treatments, 102, 104, 110, 127-<br />

134, 140, 151, 153, 154, 176, 208, 300-304, 311<br />

Caribbean, 71, 99, 116, 137, 139<br />

Caribbean fruit fly, 99, 116, 139, 296, 297, 303,<br />

304, 307, 308<br />

Carpet beetle, 124, 147, 156<br />

Caryedon – also refer <strong>to</strong> s<strong>to</strong>red product pests, 98,<br />

157<br />

Cherries, 99, 117, 103, 104, 304, 308<br />

Chile, 19, 24, 34, 37, 90, 103, 104, 109, 110,<br />

114, 116, 117, 151, 160<br />

China, 33, 34, 39, 46, 47, 48, 49, 50, 69, 83, 85,<br />

90, 95, 96, 103, 109, 110, 117, 131, 148, 152,<br />

153, 155, 161<br />

Chitin, 62, 65, 67, 282, 284<br />

Chloropicrin, 18, 20, 51-60, 179, 278, 279<br />

Cigarette beetle, 100, 131, 138, 147, 157, 294,<br />

313<br />

Citrus, 5, 21, 24, 33, 71, 72, 99, 101, 103, 110,<br />

111, 114, 115, 116, 117, 137, 295, 296<br />

Climate, 44, 57, 66, 75, 76, 83, 113, 114, 116,<br />

131, 132, 137, 140, 147, 157, 296, 297<br />

Clothes moth, 100, 115, 156, 296<br />

Cocoa - also refer <strong>to</strong> beverage crops, 5, 102, 144,<br />

302<br />

Coconut substrate, 87, 88, 89, 90, 91, 94, 95<br />

Cocoons for product s<strong>to</strong>rage, 128, 129<br />

Cockroach, 100, 121, 124, 135, 147, 156<br />

Codling moth, 99, 104, 295, 296, 298, 308<br />

Coffee - also refer <strong>to</strong> beverage crops, 5, 102<br />

Cold s<strong>to</strong>rage, 112, 114, 116, 297<br />

Cold treatments, 101, 102, 103, 110, 112-119,<br />

296-298, 307, 308<br />

Colle<strong>to</strong>trichum – also refer <strong>to</strong> fungal pathogens<br />

Colombia, 19, 23, 30, 33, 34, 36, 37, 38, 39, 46,<br />

47, 48, 49, 59, 60, 63, 64, 65, 67, 68, 69, 78, 80,<br />

85, 90, 94, 95, 96, 103, 104, 109, 117<br />

Combination treatments, 10, 19, 26, 29, 103,<br />

107, 123, 128, 136, 145, 155, 276, 279, 293,<br />

298, 304, 308, 310<br />

Commodity management, 107, 133<br />

Commodity treatments, 97-162, 291-316<br />

Companies who supply alternatives, 34, 46-49,<br />

59, 67-68, 77-78, 85-86, 94-96, 119, 126, 134,<br />

142, 149, 160-161, 215-266<br />

Compost, 20, 22, 23, 24, 32, 61-69, 84, 88, 92,<br />

94, 95, 268, 271, 274, 281-286, 289-291<br />

Concentration-time product, 167<br />

Confused flour beetle - also refer <strong>to</strong> Tribolium,<br />

s<strong>to</strong>red product pests, 98, 156<br />

Consumer acceptability, 13, 27, 45, 58, 67, 76,<br />

84, 93, 112, 118, 125, 132, 140, 148, 159<br />

Contact insecticides, 101, 120-126, 298-300<br />

Controlled atmospheres, 103, 127-134, 136, 293,<br />

297, 300-304<br />

Controlled humidity, 102, 137<br />

Cook Islands, 137, 308<br />

Cool s<strong>to</strong>rage, 97, 112-119, 296-299<br />

Corn, maize - also refer <strong>to</strong> grains, 98, 115, 116,<br />

127, 139, 144, 146, 275, 302, 313, 315, 316<br />

Corsica, 117<br />

Cost considerations, 10-11, 29, 45, 59, 67, 77,<br />

84, 91, 93, 118, 125, 132, 140, 148, 159<br />

Costa Rica, 21, 22, 23, 24, 36, 45, 54, 59, 91, 93,<br />

117, 118, 125, 132, 140, 141, 148, 159<br />

Côte d’Ivoire .00<br />

Cot<strong>to</strong>n products, 137, 155, 158, 275, 272<br />

Cover crops, 18, 30, 31, 33, 36, 75, 101, 120,<br />

268, 269, 270, 271, 272, 273, 283<br />

Cowpea beetle - also refer <strong>to</strong> s<strong>to</strong>red product<br />

pests, 98, 114<br />

Croatia, 117, 148<br />

Crop rotation, 18, 20, 21, 22, 23, 24, 30, 31, 32,<br />

33, 269, 270<br />

Cryp<strong>to</strong>lestes, 98, 115, 146, 157<br />

Cucumber - also refer <strong>to</strong> cucurbits, 5, 15, 17, 21,<br />

33, 39, 54, 72, 74, 91, 109, 137, 270, 273, 274,<br />

275, 276, 289, 290, 291<br />

Cucurbits, 5, 15, 17, 19, 21, 25, 33, 34, 39, 54,<br />

56, 63, 64, 71, 72, 74, 82, 90, 91, 99, 103, 109,<br />

137, 139, 270, 273, 274, 275, 276, 278, 279,<br />

286, 288, 289, 290, 291, 297<br />

Cultural practices, 18, 20, 25, 29-37, 268-273<br />

Cut flowers, 21, 23, 30, 34, 37, 39, 54, 60, 63,<br />

64, 65, 74, 80, 83, 90, 97, 99, 103, 109, 110,<br />

122, 123, 137, 142, 208, 210, 274, 299, 300,<br />

304, 315<br />

Cut worms, 15, 17, 41, 44<br />

Cuttings, 40, 103, 315<br />

Cydia, 99


Cyprus, 33, 102, 111, 117, 130, 131, 132, 134,<br />

302, 303<br />

Czech Republic, 46<br />

D<br />

Damping-off diseases, 32, 35, 40, 41, 43, 273,<br />

282, 287<br />

Data sheets on chemical safety, 171 - 200<br />

Dates - also refer <strong>to</strong> dried fruit, 113, 153, 315<br />

Dazomet, 18, 20, 51-60, 181, 278, 279<br />

Denmark, 22, 23, 24, 36, 48, 59, 85, 90, 93, 95,<br />

96, 102, 208, 212<br />

Dia<strong>to</strong>maceous earth, DE, 143-149, 308-310<br />

1,3-dichloropropene, 1,3-D, 18, 20, 51-60, 182,<br />

277-280<br />

Didymella - also refer <strong>to</strong> fungal pathogens, 40,<br />

43, 72<br />

Disease suppressive substrates and composts, 63,<br />

65, 92, 94, 282, 283, 289<br />

Ditylenchus - also refer <strong>to</strong> nema<strong>to</strong>des, 16, 72, 75,<br />

139<br />

Dominican Republic, 103, 117<br />

Dried bean beetle - also refer <strong>to</strong> s<strong>to</strong>red product<br />

pests, 98, 157<br />

Dried fruit, 3, 5, 97, 99, 102, 130, 131, 140, 153,<br />

155, 297, 301, 302, 303, 306, 315, 316<br />

Duration of treatments, 52, 61, 70, 73, 79, 80,<br />

81, 82, 105, 113, 115, 120, 122, 128, 130, 131,<br />

138, 139, 150, 151, 157, 158, 167<br />

Durian, 103, 110, 117<br />

E<br />

Ecuador, 34, 36, 48, 77, 78, 95, 103, 117<br />

Egg stages of pests, 42, 115, 152, 156, 297, 303,<br />

311, 312<br />

Eggplant, aubergine, 5, 71, 74, 103, 109, 137,<br />

139, 306<br />

Egypt, 19, 21, 22, 24, 33, 34, 36, 54, 63, 69, 78,<br />

90, 117, 137<br />

El Salvador, 36, 85, 96, 117<br />

Energy consumption, 13, 45, 58, 66, 76, 79, 80,<br />

81, 82, 83, 93, 118, 124, 132, 140, 147, 159<br />

Environmental impacts, 3, 13-14, 45, 51, 58, 66,<br />

76, 83, 93, 118, 125, 132, 140, 148, 159, 207<br />

Ephestia - also refer <strong>to</strong> Mediterranean flour moth,<br />

<strong>to</strong>bacco moth, tropical warehouse moth, s<strong>to</strong>red<br />

product pests, 98, 114, 124, 157, 295, 301, 311<br />

Equipment, 7, 10, 11, 30, 32, 42, 45, 55, 65, 75,<br />

82, 91, 114, 123, 129, 138, 145, 156<br />

Erwinia, 17, 40, 43<br />

Ethiopia, 131<br />

Ethylene oxide, 153, 188, 313<br />

Ethyl formate, 153, 155, 186, 312, 315<br />

Europe, 13, 21, 22, 23, 54, 55, 84, 90, 93, 102,<br />

126, 145<br />

Export commodities, 4, 6, 7, 99, 101, 103, 109,<br />

110, 113, 114, 115, 116, 117, 123, 131, 136,<br />

137, 139, 155, 156, 158, 291-316<br />

F<br />

Fallow, 21, 22, 23, 24, 66<br />

Field crops, 21, 22, 23, 26, 54, 71, 72, 74, 82, 90,<br />

92, 269<br />

Fiji, 36<br />

Fink steam treatment, 79, 80, 82, 84<br />

Finland, 46, 47, 48<br />

Floating seed-trays, float system, 87-96, 289-291<br />

Florida, 24, 30, 56, 60, 71, 78, 90, 94, 96, 103,<br />

110, 116, 117, 208, 210, 272, 277, 278, 279,<br />

280, 286, 296, 304<br />

Flour mills - also refer <strong>to</strong> structures, 3, 5, 97, 100,<br />

101, 104, 137, 145, 153, 212, 292, 293, 294,<br />

295, 305, 309<br />

Flowers, 21, 23, 30, 34, 37, 39, 54, 60, 63, 64,<br />

65, 74, 80, 83, 90, 97, 99, 103, 109, 110, 122,<br />

123, 137, 142, 208, 210, 274, 299, 300, 304,<br />

315<br />

Fluid bed systems, 135, 305<br />

Food processing facilities - also refer <strong>to</strong> structures,<br />

5, 100, 101, 104, 110, 137, 141, 142, 147, 148,<br />

208, 285, 293, 294, 309, 310<br />

Food warehouses - also refer <strong>to</strong> structures, 5, 97,<br />

98, 100, 104, 112, 113, 114, 115, 116, 119, 130,<br />

157, 294<br />

Forced hot air treatments - also refer <strong>to</strong> heat treatments,<br />

136, 307, 308<br />

France, 33, 34, 36, 38, 46, 47, 49, 55, 59, 78, 90,<br />

95, 102, 103, 113, 117, 126, 153, 162<br />

Freezing, freezer treatments, 102, 112-119, 297<br />

Fruit flies, 99, 109, 110, 112, 113, 115, 116, 117,<br />

137, 139, 295-298, 303-308<br />

Fumigants, 4, 11, 20, 21, 22, 23, 24, 51-60, 150-<br />

162, 310-316, 277-280,<br />

Fungal pathogens of soil, 15, 16, 18, 20, 32, 40,<br />

41, 43, 53, 56, 57, 62, 65, 70, 71, 72, 74, 75, 81,<br />

82, 92, 267-291<br />

Fungal pests of commodities, 99, 104, 127, 136,<br />

138, 298, 305, 306, 315, 316<br />

Fungi, beneficial - also refer <strong>to</strong> biological controls,<br />

18, 20, 21, 23, 24, 38-50, 88, 89, 210, 268, 269,<br />

271, 273-277, 284, 285, 294<br />

Fungicides, 18, 19, 21, 41, 53, 55, 57, 58, 89<br />

Fusarium biological controls, 38-46, 274-277<br />

Annex 8: Index<br />

309


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

310<br />

Fusarium pathogens - also refer <strong>to</strong> fungal<br />

pathogens, 16, 33, 40, 41, 43, 64, 65, 72, 74,<br />

274, 275, 276, 277, 279, 284, 313<br />

G<br />

Garlic, 72, 103, 104<br />

Germany, 19, 24, 30, 34, 36, 37, 39, 46, 47, 49,<br />

50, 59, 68, 80, 85, 90, 95, 96, 102, 111, 123,<br />

126, 131, 134, 137, 142, 148, 151, 160, 161,<br />

269, 273, 277, 280, 285, 286<br />

Gliocladium biological controls, 39, 40, 41, 43, 46<br />

Global warming, 45, 58, 66, 76, 83, 93, 118,<br />

124, 132, 140, 147, 159, 176<br />

Globodera - also refer <strong>to</strong> nema<strong>to</strong>des, 16, 72<br />

Glomus biological controls, 41, 47<br />

Glomus pathogens - also refer <strong>to</strong> fungal<br />

pathogens, 16<br />

Glossary, 167-168<br />

Grafting, 18, 20, 21, 22, 23, 24, 33, 34, 41, 270<br />

Grain silos, 97, 112, 114, 124, 128, 129, 130,<br />

144, 150, 157, 301, 315, 316<br />

Grain s<strong>to</strong>res, 97, 107, 114, 120, 128, 144, 146,<br />

148, 293, 298, 300, 309<br />

Grains, 4, 5, 97-160, 291-316<br />

Granary/grain weevils - also refer <strong>to</strong> s<strong>to</strong>red product<br />

pests, 98, 131, 147, 130, 156, 157, 302<br />

Grapefruit, 101, 103, 114, 117, 136, 139, 304,<br />

307<br />

Grapes, 5, 33, 64, 99, 103, 104, 109, 114, 115,<br />

116, 117, 155, 300, 303, 304<br />

Grasses - also refer <strong>to</strong> weeds, 15, 17, 33, 73, 74<br />

Gravel substrates, 88, 89, 90<br />

Greece, 33, 34, 71, 75, 76, 78, 117, 276, 286,<br />

287<br />

Greenhouses, 5, 25, 26, 30, 31, 39, 44, 57, 65,<br />

66, 70-77, 79-84, 87-94, 267, 269, 270, 276,<br />

278, 282, 286, 288, 289, 290, 291<br />

Groundnut, peanut - also refer <strong>to</strong> nuts, 98, 131,<br />

144, 154, 155, 157<br />

Guatemala, 83, 117<br />

Guyana, 117<br />

H<br />

Haiti, 117<br />

Handicrafts - also refer <strong>to</strong> artifacts, 155<br />

Hawaii, 103, 104, 111, 116, 117, 122, 123, 137,<br />

142, 161, 294, 295, 307<br />

Health, 12, 29, 44, 51, 57, 66, 70, 76, 83, 92,<br />

118, 124, 132, 140, 147, 150, 157, 158, 171-<br />

200, 205<br />

Heat treatments for commodities and structures,<br />

101, 102, 103, 104, 110, 135-142, 145, 155,<br />

305-308<br />

Heat treatments for soil, 70-78, 79-86, 288-289<br />

Herbicides, 18, 20, 53, 55, 56, 57, 270<br />

Herbs, 5, 97, 131, 155, 156<br />

Hermetic s<strong>to</strong>rage, 102, 127-134, 300-304<br />

Heterodera - also refer <strong>to</strong> nema<strong>to</strong>des, 16, 72, 275<br />

Heterorhabditus biological controls, 39, 41, 44,<br />

47, 274<br />

Honduras, 21, 36, 54, 78, 117<br />

Hood steam treatments, 80, 81, 82, 84<br />

Horn genera<strong>to</strong>r, 151, 152, 146, 160, 312, 313<br />

Hot water treatments, 79-86, 135-142, 288-289,<br />

305-308<br />

Humidity, 102, 114, 116, 120, 130, 135, 136,<br />

137, 138, 140, 144, 146, 150, 151, 156, 286,<br />

298, 311<br />

Hungary, 38, 46, 117<br />

Hydrogen cyanide, 153, 154, 190<br />

Hydroponic systems, 87-96, 289-291<br />

Hygienic practices, sanitation, 18, 21, 29, 30-31,<br />

51, 88, 89, 90, 110<br />

I<br />

Identifying appropriate alternatives, 9-14, 26-28,<br />

104-106, 201-206<br />

India, 36, 49, 78, 103, 117, 131, 160, 161<br />

Indian meal moth - also refer <strong>to</strong> Plodia, s<strong>to</strong>red<br />

product pests, 98, 131, 147, 156, 299<br />

Indonesia, 22, 46, 48, 90, 102, 130, 131, 134,<br />

159, 160, 161<br />

Inert dust, 143-149, 308-310<br />

Insect growth regula<strong>to</strong>rs (IGRs), 121, 123, 124,<br />

126, 299<br />

Insect pests of commodities and structures, 97-<br />

106, 107-162, 112, 113, 114, 291-316<br />

Insect pests of soil, 15, 17, 18, 20, 33, 35, 39, 41,<br />

44, 53, 57, 61, 75, 81, 92, 276, 277, 280<br />

Insecticides, 53, 101, 107, 110, 120-126, 148,<br />

171-200, 298-300, 310, 311, 312<br />

Inspection, 103, 108, 109, 110, 292, 316<br />

Integrated commodity management, ICM, 107-<br />

111<br />

Integrated pest management, IPM, 10, 13, 25,<br />

29-37, 38, 51, 56, 61, 75, 101, 104, 107-111,<br />

112, 123, 127, 131, 135, 137, 144, 145, 208,<br />

209, 210, 212, 268-273, 291-296<br />

In-transit treatments, 101, 102, 127, 128, 129,<br />

131, 136, 154, 155, 159, 161, 313, 315, 316<br />

Israel, 22, 23, 24, 33, 34, 36, 37, 46, 48, 50, 55,<br />

60, 68, 69, 70, 71, 74, 75, 78, 90, 94, 96, 102,


104, 116, 117, 119, 131, 134, 161, 286, 287,<br />

301, 302<br />

Italy, 33, 34, 36, 37, 38, 46, 54, 55, 60, 71, 75,<br />

76, 78, 80, 85, 91, 95, 103, 117<br />

J<br />

Japan, 16, 17, 19, 22, 23, 37, 39, 54, 55, 60, 71,<br />

103, 104, 109, 110, 114, 116, 117, 123, 130,<br />

131, 134, 136, 162, 119, 275, 276, 295, 284,<br />

296, 301, 303, 304, 306, 312, 313, 314, 315<br />

Jordan, 19, 21, 22, 24, 33, 36, 37, 46, 48, 54, 71,<br />

74, 75, 78, 90, 103, 117, 287<br />

K<br />

Kenya, 36, 49, 213, 274<br />

Khapra beetle, Trogoderma, 98, 124, 130, 135,<br />

138, 139, 143, 146, 154, 156, 157, 294, 311<br />

Kiln drying - also refer <strong>to</strong> heat treatments, 102,<br />

135, 137, 141<br />

Kiwifruit, 109, 115, 116, 117<br />

Korea, 94<br />

L<br />

Larvae, 15, 39, 41, 44, 115, 128, 147, 156, 282,<br />

297, 301, 303<br />

Lasioderma, 115, 124, 138, 157, 303, 313<br />

Latin America - also refer <strong>to</strong> individual countries,<br />

137, 290<br />

Lebanon, 21, 22, 23, 24, 33, 78, 90, 117<br />

Legumes, 15, 128, 151, 155, 270<br />

Lepidoptera, 115, 293, 295, 296, 307<br />

Lesser grain borer - also refer <strong>to</strong> Rhyzopertha,<br />

s<strong>to</strong>red product pests, 98, 131, 146, 147, 156<br />

Lethal temperatures, 70, 71, 76, 79, 81, 82, 135,<br />

138, 139, 306<br />

Lettuce, 72, 80, 286<br />

Litchee, litchi, 103, 110, 137<br />

Logs - also refer <strong>to</strong> timber, 5, 97, 101, 104, 123,<br />

135, 139, 155, 314<br />

Longhorn beetle, 98, 156<br />

Lumber, timber, wood, 3, 4, 5, 62, 65, 97, 99,<br />

100, 101, 102, 104, 120, 121, 122, 123, 124,<br />

126, 135, 136, 137, 138, 139, 140, 141, 142,<br />

152, 155, 156, 157, 158, 162, 290, 295, 298,<br />

299, 302, 305, 306, 314<br />

M<br />

Macedonia, 117<br />

Macrophomina - also refer <strong>to</strong> fungal pathogens,<br />

16, 74<br />

Madagascar, 36<br />

Maize, corn - also refer <strong>to</strong> grains, 98, 103, 115,<br />

116, 127, 139, 144, 146<br />

Malawi, 19, 23, 36<br />

Malaysia, 22, 36, 48, 49, 60, 90, 134, 155, 160,<br />

161<br />

Manure, 31, 32, 35, 61-69, 74, 268, 270, 280-<br />

286<br />

Market acceptability, 13, 27, 45, 58, 67, 76, 84,<br />

93, 112, 118, 125, 132, 140, 148, 159<br />

Material inputs, 7, 10, 11, 30, 32, 42, 45, 55, 65,<br />

75, 82, 91, 114, 123, 129, 138, 145, 156<br />

Mauritius, 24<br />

Mealy bug, 99, 304, 307<br />

Mediterranean, 16, 17, 73, 94, 95, 96, 98, 99,<br />

102, 109, 112, 113, 114, 116, 131, 139, 147,<br />

156, 208, 268, 276, 277, 279, 281, 295, 297,<br />

303, 311<br />

Mediterranean flour moth - also refer <strong>to</strong> Ephestia,<br />

s<strong>to</strong>red product pests, 98, 131, 147, 156, 295, 311<br />

Mediterranean fruit fly - also refer <strong>to</strong> fruit flies,<br />

109, 116, 297<br />

Meloidogyne - also refer <strong>to</strong> nema<strong>to</strong>des, 16, 35,<br />

42, 72, 74, 139, 276, 283<br />

Melon fly - also refer <strong>to</strong> fruit flies, 99, 109, 297<br />

Melons - also refer <strong>to</strong> cucurbits, 5, 21, 33, 54, 63,<br />

64, 71, 74, 90, 91, 99, 103, 109, 137, 139, 274,<br />

278, 297<br />

Merchant grain beetle – also refer <strong>to</strong> s<strong>to</strong>red product<br />

pests, 147<br />

Metam sodium, metham sodium, 18, 20, 33, 51-<br />

60, 74, 194, 277-280<br />

Methoprene, 102, 121, 123, 124, 299<br />

<strong>Methyl</strong> isothiocyanate, MITC, 18, 52, 53, 55, 57,<br />

41<br />

Mexican fruit fly - also refer <strong>to</strong> fruit flies, 99, 116,<br />

298, 304, 307, 308<br />

Mexico, 19, 21, 22, 24, 34, 37, 46, 48, 49, 54,<br />

63, 64, 68, 69, 71, 77, 78, 95, 96, 103, 110, 116,<br />

117, 137, 283, 295, 308<br />

Mills, food processing - also refer <strong>to</strong> structures, 3,<br />

5, 97, 100, 101, 104, 137, 145, 153, 212, 292,<br />

293, 294, 295, 305, 309<br />

Mites, 3, 75, 99, 100, 104, 115, 139, 146, 156,<br />

295, 298, 301, 304, 305, 307, 311, 312<br />

Modified atmospheres, 127-134, 297, 300-304<br />

Moni<strong>to</strong>ring, 10, 25, 29, 31, 62, 91, 104, 107,<br />

108, 110, 114, 135, 136, 150, 156, 292, 294<br />

Mononchus, 39, 41, 42<br />

Montreal Pro<strong>to</strong>col, 1, 3, 4, 10, 11, 164, 210, 211,<br />

212, 213<br />

Morocco, 19, 21, 22, 23, 24, 33, 34, 35, 36, 49,<br />

54, 55, 60, 63, 64, 65, 71, 78, 90, 117, 275, 276<br />

Moths, 98, 99, 100, 104, 110, 115, 124, 131,<br />

147 156, 157, 293, 294, 295, 296, 297, 298,<br />

299, 307, 308, 311<br />

Annex 8: Index<br />

311


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

312<br />

Mulch, 18, 30, 31, 32, 33, 72, 75, 269, 271, 278,<br />

285, 287<br />

Multilateral Fund of the Montreal Pro<strong>to</strong>col, 1, 10,<br />

11, 164, 212<br />

Municipal waste, 63, 66, 274, 281, 283<br />

Museum artifacts, 97, 100, 102, 114, 115, 123,<br />

127, 129, 130, 131, 137, 140, 294, 295, 301,<br />

302, 306, 316<br />

Mycorrhizae, 41, 47, 274, 276<br />

N<br />

Natural substrates, 93<br />

Nectarine, 103, 104, 117, 137, 140<br />

Negative pressure steam treatment, 79-86, 288<br />

Nematicides, 18, 19, 20, 42, 51, 53, 55, 56, 57,<br />

59, 278<br />

Nema<strong>to</strong>des - biological controls, 38-50, 64, 274-<br />

277<br />

Nema<strong>to</strong>des - pathogens,15, 16, 18, 20, 31, 34,<br />

35, 36, 40, 41, 42, 51, 52, 53, 54, 57, 60, 61, 72,<br />

74, 75, 76, 79, 81, 92, 99, 104, 13, 156, 203,<br />

268, 269, 270, 271, 272, 275, 279, 280, 282,<br />

283, 284, 286, 288, 293, 305<br />

Netherlands, 19, 22, 23, 24, 30, 34, 36, 39, 47,<br />

49, 54, 60, 68, 80, 81, 82, 84, 85, 88, 90, 91, 94,<br />

95, 96, 103, 109, 126, 134, 137, 142, 153, 272,<br />

273, 280, 288, 290<br />

New Zealand, 37, 39, 46, 48, 49, 50, 68, 85, 86,<br />

91, 96, 103, 104, 111, 119, 122, 123, 134, 137,<br />

142, 161, 269, 270, 275, 297, 306, 315, 316<br />

Nicaragua, 117<br />

Nitrogen treatments - post-harvest, 102, 110,<br />

127-134, 151, 161, 197, 300-303<br />

Non-food products, 100, 121, 152, 153, 159<br />

Norway, 80, 81, 85, 142<br />

Nurseries, nursery plants, 5, 8, 21, 24, 25, 30, 39,<br />

44, 57, 63, 64, 66, 71, 75, 76, 81, 82, 83, 90, 92,<br />

99, 267-291<br />

Nutrient management, 18, 31, 32, 33, 88<br />

Nuts, nut trees, 5, 21, 24, 71, 87, 92, 97, 99,<br />

102, 104, 112, 115, 131, 140, 144, 151, 154,<br />

155, 156, 271, 272, 297, 298, 302, 303, 304,<br />

306, 315<br />

O<br />

Oilseed, 62, 145, 154, 157, 310<br />

Onion, 71, 72, 104<br />

Open-field crops, 21, 22, 23, 26, 54, 71, 72, 74,<br />

82, 90, 92, 269<br />

Orchards, tree fruit, 3, 5, 19, 21, 24, 25, 33, 37,<br />

44, 70, 71, 74, 75, 103, 110, 155, 269, 272, 275,<br />

276, 278, 287, 291, 295, 304, 305<br />

Oriental fruit fly, 99, 116, 139, 297<br />

Ornamental plants, 25, 37, 60, 80, 83, 97, 103,<br />

110, 283<br />

Orobanche, broomrape, 15, 17, 73<br />

Oryzaephilius - also refer <strong>to</strong> s<strong>to</strong>red product pests,<br />

98, 124, 146, 157<br />

Oxygen, 113, 127, 128, 129, 130, 132, 138, 297,<br />

298, 301, 303, 304<br />

OzonAction Programme, 6, 163, 207<br />

Ozone depletion, 3, 9, 13, 45, 58, 66, 76, 83, 93,<br />

118, 124, 132, 140, 147, 159, 163, 174, 267<br />

P<br />

Paecilomyces biological controls, 39, 42, 47<br />

Pakistan, 49, 160<br />

Panama, 36, 117<br />

Papaya, 103, 117, 136, 139, 306, 307<br />

Pathogenic fungi, 15, 16, 18, 20, 32, 40, 41, 43,<br />

53, 56, 57, 62, 65, 70, 71, 72, 74, 75, 81, 82, 92,<br />

267-291<br />

Pathogenic nema<strong>to</strong>des, 15, 16, 18, 20, 31, 34,<br />

35, 36, 40, 41, 42, 51, 52, 53, 54, 57, 60, 61, 72,<br />

74, 75, 76, 79, 81, 92, 99, 104, 13, 156, 203,<br />

268, 269, 270, 271, 272, 275, 279, 280, 282,<br />

283, 284, 286, 288, 293, 305<br />

Peach, 99, 104, 117<br />

Peanut, groundnut - also refer <strong>to</strong> nuts, 98, 131,<br />

144, 154, 155, 157<br />

Pear, 24, 99, 112, 114, 117, 140, 271, 298, 304,<br />

308<br />

Peat substrate, 81, 82, 83, 87-95, 289-291<br />

Pepper, 33, 53, 74, 102, 103, 137, 275, 277, 282,<br />

283<br />

Perennials, 5, 15, 17, 19, 21, 24, 33, 57, 64, 75,<br />

83, 277<br />

Perishable commodities, 3, 5, 8, 97, 99, 100, 101,<br />

102, 103, 104, 108, 109, 110, 112-119, 120,<br />

122, 130, 132, 135-142, 147, 155, 295-300,<br />

303-304, 306, 308, 315-316<br />

Persimmon, 117, 140, 298, 307<br />

Peru, 117<br />

Pest free zones, 103, 109<br />

Pest moni<strong>to</strong>ring, 10, 25, 29, 31, 62, 91, 104, 107,<br />

108, 110, 114, 135, 136, 150, 156, 292, 294<br />

Pest trapping, 30, 31, 33, 34, 108, 110, 294, 295<br />

Pesticide, 3, 11, 12, 13, 20, 38, 45, 51-60, 120-<br />

128, 150-160, 277-280, 298-300, 310-316<br />

Pests of commodities and structures, 97-160, 291-<br />

316<br />

Pests of soil, 15-94, 267-291<br />

Pheromones, 108, 210, 292, 294, 295, 316<br />

Phoma – also refer <strong>to</strong> fungal pathogens, 16, 72<br />

Phomopsis, 15, 40, 43


Phosphine, 11, 101, 102, 104, 110, 136, 144,<br />

145, 150-162, 198, 207, 208, 211, 301, 310-316<br />

Philippines, 37, 60, 102, 103, 134, 155, 159, 160,<br />

161, 162, 302<br />

Phy<strong>to</strong>phthora - also refer <strong>to</strong> fungal pathogens, 16,<br />

35, 40, 43, 65, 72, 279, 282, 283, 285, 286<br />

Phy<strong>to</strong><strong>to</strong>xicity, 45, 58, 61, 66, 76, 82, 83, 92, 156-<br />

157, 168, 282, 315<br />

Pineapple, 103, 139<br />

Plant material, 19, 25, 34, 80, 90, 92, 103, 110,<br />

139, 142<br />

Plodia - also refer <strong>to</strong> Indian meal moth, s<strong>to</strong>red<br />

product pests, 98, 124, 301<br />

Plum, 104, 117<br />

Portugal, 33, 34, 37, 68, 77, 94, 117, 270<br />

Post-harvest treatments, 107-162, 291-316<br />

Potting media, 5, 39, 87-96, 282, 284, 289-291<br />

Pratylenchus - also refer <strong>to</strong> nema<strong>to</strong>des, 16, 35,<br />

42, 72, 276<br />

Pre-conditioning treatments, 115, 137<br />

Pre-shipment, 4, 97, 101, 103, 104, 168, 211<br />

Pressure, 79, 80, 81, 102, 103, 110, 113, 123,<br />

127, 128, 129, 130, 131, 136, 139, 145, 148,<br />

152, 154, 155, 288, 301, 302, 303<br />

Preventive methods of pest control, 21, 22, 25,<br />

30, 31, 32, 35, 36, 41, 105, 107-111, 268-273,<br />

292-296, 298<br />

Propagation material, 19, 25, 34, 80, 90, 92, 103,<br />

110, 139, 142<br />

Protected crops, 5, 25, 26, 30, 31, 39, 44, 57, 65,<br />

66, 70-77, 79-84, 87-94, 267, 269, 270, 276,<br />

278, 282, 286, 288, 289, 290, 291<br />

Prunes, 112, 113, 114, 115<br />

Pseudomonas biological controls, 39, 40, 41, 43,<br />

47, 273<br />

Pseudomonas pathogens, 17, 43, 74<br />

Pumice substrate, 88, 89, 93, 95, 290<br />

Pupae, 15, 39, 41, 44, 115, 128, 147, 156, 282,<br />

297, 301, 303<br />

Pythium - also refer <strong>to</strong> fungal pathogens, 16, 40,<br />

41, 43, 65, 72, 282, 283, 284, 289<br />

Q<br />

Quarantine pests, 5, 97, 99, 104, 109, 112, 115,<br />

129, 137, 138, 139, 158, 211, 294, 295<br />

Quarantine schedules, 112, 116, 139, 152, 158<br />

Quarantine treatments, 3, 4, 97, 100, 101, 103,<br />

104, 109-111, 112, 113, 114, 115, 116, 117,<br />

122, 123, 127, 128, 129, 131, 132, 136, 137,<br />

138, 139, 140, 152, 158, 211, 212, 213, 294,<br />

295-316<br />

Queensland fruit fly - also refer <strong>to</strong> fruit flies, 109,<br />

116<br />

R<br />

Raisin, 114, 303, 313<br />

References and publications about commodities<br />

and structures, 291-316<br />

References and publications about soil treatments,<br />

267-292<br />

Residues, 3, 11, 13, 18, 45, 58, 66, 76, 83, 92,<br />

118, 124, 132, 140, 147, 158<br />

Resistant varieties, 18, 19, 20, 21, 22, 23, 24, 31,<br />

32, 33, 34, 272<br />

Retail packaging, 102, 128, 129, 131<br />

Rhizoc<strong>to</strong>nia - also refer <strong>to</strong> fungal pathogens, 16,<br />

40, 41, 43, 65, 72, 81, 282, 283, 284<br />

Rhyzopertha - also refer <strong>to</strong> lesser grain borer,<br />

s<strong>to</strong>red product pests, 98, 124, 146, 299<br />

Rice - also refer <strong>to</strong> grains, 98, 113, 114, 116, 130,<br />

131, 138, 139, 146, 147, 156, 299, 303<br />

Rice hull substrates, 83, 87, 88, 139, 285, 290<br />

Rice weevil - also refer <strong>to</strong> Si<strong>to</strong>philus, s<strong>to</strong>red product<br />

pests, 98, 131, 146, 147, 156<br />

Rockwool, s<strong>to</strong>newool substrates, 87-96, 289-292<br />

Rodents, 97, 100, 108, 127, 150, 153, 154, 156,<br />

212, 293<br />

Root crops, 103, 104, 168<br />

Root-knot nema<strong>to</strong>des - also refer <strong>to</strong> nema<strong>to</strong>des,<br />

15, 33, 39, 41, 72, 74, 75, 279, 282, 283<br />

Roses, 5, 23, 25, 34, 90, 270<br />

Rotylenchulus – also refer <strong>to</strong> nema<strong>to</strong>des, 16<br />

Rust red flour beetle – also refer <strong>to</strong> s<strong>to</strong>red product<br />

pests, 98<br />

S<br />

Safety precautions, 11, 12, 45, 57, 66, 76, 83, 92,<br />

105, 113, 118, 122, 124, 126, 132, 140, 147,<br />

150, 154, 156, 158, 159, 161, 171-200<br />

Sanitation, hygienic practices, 18, 21, 29, 30-31,<br />

51, 88, 89, 90, 110<br />

Sawdust, 62, 66, 83, 87, 88, 91<br />

Scandinavia, 95, 104, 306<br />

Sclerotinia - also refer <strong>to</strong> fungal pathogens, 16,<br />

33, 40, 43, 72, 81, 269<br />

Sclerotium - also refer <strong>to</strong> fungal pathogens, 16,<br />

40, 43, 72, 81, 281<br />

Scotland, 91<br />

Seeds - also refer <strong>to</strong> grains, 5, 110, 113, 114,<br />

137, 139, 140, 143, 144, 145, 151, 154, 155,<br />

156, 157, 158, 293, 294, 310<br />

Seedbeds, seedlings - also refer <strong>to</strong> nurseries, 5,<br />

16, 21, 23, 25, 30, 32, 40, 44, 54, 56, 57, 66, 72,<br />

75, 76, 83, 90, 91, 92, 96, 270, 275, 276, 282,<br />

291<br />

Annex 8: Index<br />

313


Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong><br />

314<br />

Selection of appropriate alternatives, 9-14, 26-28,<br />

104-106, 201-206<br />

Senegal, 68<br />

Shipping containers, ships, 3, 4, 5, 97, 98, 101,<br />

113, 114, 115, 116, 117, 119, 128, 131, 138,<br />

150, 151, 154, 159, 292, 293, 300, 304, 306,<br />

311, 312, 313, 314, 315, 316<br />

Silica, 89, 143-149, 167, 308-310<br />

Silos, 97, 114, 124, 128, 129, 130, 144, 150,<br />

157, 301, 315, 316<br />

Silverfish, 100, 124, 147<br />

Singapore, 134<br />

Si<strong>to</strong>philus - also refer <strong>to</strong> rice weevil, s<strong>to</strong>red product<br />

pests, 98, 114, 115, 124, 128, 146, 157, 301,<br />

302, 303, 308, 312, 313<br />

Slugs, 41, 147<br />

Snails, 41, 98, 99, 136, 138<br />

Soil amendments, 6, 18, 20, 21, 22, 23, 24, 38,<br />

61-69, 74, 96, 168, 271, 276, 280-286, 290<br />

Soil substitutes, substrates, 6, 12, 18, 19, 20, 21,<br />

22, 23, 24, 25, 39, 71, 75, 76, 80, 81, 82, 83, 85,<br />

87-96, 289-291<br />

Soil treatments, 15-96, 267-291<br />

Solarisation, 6, 12, 18, 20, 21, 22, 23, 24, 38, 41,<br />

53, 64, 70-78, 90, 168, 286-287<br />

South Africa, 23, 36, 46, 47, 48, 49, 60, 84, 85,<br />

90, 103, 104, 116, 117, 155, 288<br />

South America - also refer <strong>to</strong> individual countries,<br />

16, 17, 71<br />

Spain, 19, 21, 22, 23, 24, 30, 33, 34, 35, 36, 37,<br />

48, 49, 54, 55, 56, 59, 60, 63, 67, 68, 69, 77, 78,<br />

85, 90, 94, 95, 96, 103, 116, 117, 268, 271, 274,<br />

277, 279, 281, 283<br />

Specialists in commodities and structures, 111,<br />

125-126, 133-134, 141-142, 148-149, 160-161,<br />

316<br />

Specialists in soil pest control, 35-37, 46-50, 59-<br />

60, 67-69, 77-78, 84-86, 94-96<br />

Spices, 5, 97, 131, 153, 155, 156<br />

Spot treatments, 29, 30, 123, 145<br />

Squash, 33, 103, 109, 139<br />

Steam plough, 81, 82<br />

Steam treatments for commodities and structures,<br />

135-142, 305-308<br />

Steam treatments for soil, 6, 12, 18, 20, 21, 22,<br />

23, 24, 25, 42, 79-86, 90, 93, 287, 288, 289<br />

S<strong>to</strong>nefruit, 5, 21, 24, 54, 71, 104, 117, 308<br />

S<strong>to</strong>rage facilities, 97, 107, 114, 120, 128, 144,<br />

146, 148, 293, 298, 300, 309<br />

S<strong>to</strong>red products, 4, 5, 6, 7, 8, 97-162, 291-316<br />

S<strong>to</strong>red product pests, 4, 5, 11, 97-100, 101-162,<br />

291-316<br />

Strawberry, 3, 5, 21, 22, 30, 35, 53, 54, 56, 72,<br />

74, 88, 90, 91, 96, 104, 109, 268, 269, 271, 277,<br />

278, 279, 287, 290<br />

Structures, structural treatments, 4, 5, 6, 8, 97,<br />

100, 101, 104, 105, 107, 110, 111, 114, 116,<br />

119, 121, 122, 123, 124, 128, 129, 132, 135,<br />

136, 137, 138, 140, 141, 142, 143, 144, 145,<br />

146, 148, 149, 150, 152, 155, 156, 157, 159,<br />

207, 279, 291-316<br />

Substrates, soil substitutes, 6, 12, 18, 19, 20, 21,<br />

22, 23, 24, 25, 39, 71, 75, 76, 80, 81, 82, 83, 85,<br />

87-96, 289-291<br />

Sulphuryl fluoride, sulfuryl fluoride, 101, 102,<br />

104, 150-162, 310-316<br />

Suppliers of alternatives, 34, 46-49, 59, 67-68,<br />

77-78, 85-86, 94-96, 119, 126, 134, 142, 149,<br />

160-161, 215-266<br />

Swaziland, 103, 116, 117<br />

Sweden, 48, 95, 96, 152<br />

Switzerland, 24, 38, 39, 48, 90, 269<br />

Syria, 78, 83, 117<br />

T<br />

Taiwan, 103, 110, 116, 117<br />

Tanzania, 36, 162<br />

Tea - also refer <strong>to</strong> beverage crops, 5, 37, 60<br />

Termites, 17, 100, 124, 138, 152, 155, 156, 158,<br />

159, 293, 294, 298, 299<br />

Thailand, 47, 102, 103, 123, 131, 134, 160, 161,<br />

303<br />

Thrips, 99, 130, 300, 304<br />

Ticks, 99, 147, 158<br />

Timber, lumber, wood, 3, 4, 5, 62, 65, 97, 99,<br />

100, 101, 102, 104, 120, 121, 122, 123, 124,<br />

126, 135, 136, 137, 138, 139, 140, 141, 142,<br />

152, 155, 156, 157, 158, 162, 290, 295, 298,<br />

299, 302, 305, 306, 314<br />

Timing of planting, 33<br />

Tobacco post-harvest treatments, 5, 98, 101, 102,<br />

109, 121, 123, 138, 139, 155, 158, 294, 298,<br />

302, 303, 313<br />

Tobacco seedlings, seedbeds, 3, 5, 17, 19, 21, 23,<br />

25, 54, 90, 91, 96, 97, 277<br />

Toma<strong>to</strong> - post-harvest treatments, 99, 101, 103,<br />

109, 123, 137, 139<br />

Toma<strong>to</strong> - soil treatments, 5, 17, 19, 21, 22, 30,<br />

33, 34, 35, 39, 53, 54, 56, 63, 64, 65, 71, 72, 73,<br />

74, 80, 81, 90, 91, 93, 210, 268, 269, 270, 271,<br />

274, 277, 278, 279, 283, 286, 287, 289, 291<br />

Toxicity, 3, 12, 15, 38, 44, 51, 53, 55, 57, 58, 61,<br />

66, 70, 76, 79, 83, 87, 92, 97, 118, 120, 121,<br />

124, 132, 136, 140, 143, 147, 150, 153, 157-<br />

158, 171-200, 280, 313<br />

Trap crops, 30, 31, 33-35


Traps for pests, 30, 31, 33, 34, 108, 110, 294,<br />

295<br />

Treatment duration, 52, 61, 70, 73, 79, 80, 81,<br />

82, 105, 113, 115, 120, 122, 128, 130, 131, 138,<br />

139, 150, 151, 157, 158, 167<br />

Trees, treefruit, 3, 5, 19, 21, 24, 33, 37, 44, 103,<br />

110, 155, 269, 272, 275, 276, 278, 287, 291,<br />

295, 304, 305<br />

Tribolium - also refer <strong>to</strong> s<strong>to</strong>red product pests, 98,<br />

146, 303, 308<br />

Trichoderma biological controls, 23, 38-50, 64,<br />

65, 74, 88, 91, 273-277<br />

Trinidad and Tobago, 49, 117<br />

Trogoderma, khapra beetle, 98, 124, 130, 135,<br />

138, 139, 143, 146, 154, 156, 157, 294, 311<br />

Tropical warehouse moth - also refer <strong>to</strong> Ephestia,<br />

s<strong>to</strong>red product pests, 98, 114, 124, 157<br />

Tubers, 103, 139<br />

Tunisia, 21, 22, 23, 24, 33, 117<br />

Turf, 5, 25, 39, 44, 268<br />

Turkey, 78, 117, 279<br />

U<br />

UK, 22, 24, 39, 46, 48, 49, 59, 80, 85, 90, 95,<br />

102, 111, 126, 131, 134, 137, 142, 145, 149,<br />

161, 162, 267<br />

UNEP <strong>DTIE</strong>, 6, 163, 207<br />

Uruguay, 37, 117<br />

USA, 16, 17, 19, 22, 23, 24, 34, 35, 36, 37, 39,<br />

46, 47, 48, 49, 53, 54, 55, 59, 60, 63, 66, 67, 69,<br />

71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86,<br />

90, 94, 95, 96, 102, 103, 104, 110, 111, 113,<br />

114, 116, 117, 119, 121, 123, 126, 131, 134,<br />

136, 137, 139, 141, 142, 144, 145, 146, 147,<br />

148, 149, 151, 152, 153, 155, 157, 159, 160,<br />

162<br />

V<br />

Vacuum, 129, 138, 139, 302<br />

Vapour heat - also refer <strong>to</strong> heat treatments, 110,<br />

135, 136, 137, 139, 141<br />

Vegetables - also refer <strong>to</strong> cucurbits, <strong>to</strong>ma<strong>to</strong>, 5, 24,<br />

30, 32, 64, 71, 83, 88, 90, 92, 94, 97, 99, 103,<br />

137, 140, 208, 268, 273, 276, 277, 280, 290,<br />

306<br />

Venezuela, 117<br />

Vermiculite, 87, 88, 89, 95<br />

Verticillium - also refer <strong>to</strong> fungal pathogens, 16,<br />

33, 40, 43, 61, 62, 64, 65, 70, 72, 75, 272, 276,<br />

277, 278, 286, 287<br />

Vietnam, 102, 155<br />

Vines, vineyards, 5, 21, 24, 25, 33, 37, 60, 63,<br />

70, 71, 74, 75, 269, 271<br />

Vine fruit, 5, 33, 64, 99, 103, 104, 109, 114, 115,<br />

116, 117, 155, 300, 303, 304, 313<br />

W<br />

Warehouses - also refer <strong>to</strong> s<strong>to</strong>rage facilities, 5, 97,<br />

98, 100, 104, 112, 113, 114, 115, 116, 119, 130,<br />

144, 157, 294<br />

Waste products as substrates and soil amendments,<br />

61, 62, 63, 65, 66, 67, 88, 89, 93, 94,<br />

274, 281, 282, 283, 284, 285, 291<br />

Water management, 18, 30, 31, 35, 89<br />

Watermelon - also refer <strong>to</strong> cucurbits, 21, 33, 63,<br />

64, 278<br />

Websites on post-harvest treatments, 171, 207-<br />

213, 292, 316<br />

Websites on soil pest control, 6, 57, 171, 207-<br />

213, 272-273, 276-277, 280, 285-286, 287, 289,<br />

291<br />

Weeds, 4, 15, 17, 18, 19, 20, 30, 31, 32, 33, 35,<br />

37, 51, 52, 53, 56, 57, 60, 61, 63, 65, 70, 71, 72,<br />

73, 74, 75, 79, 81, 82, 86, 92, 262, 268, 269,<br />

270, 271, 272, 273, 275, 276, 280, 286, 287,<br />

289<br />

Weevils, 17, 24, 98, 99, 110, 130, 131, 146, 147,<br />

156, 157, 158, 282, 297, 302<br />

Wheat - also refer <strong>to</strong> grains, 115, 116, 138, 144,<br />

145, 146, 301, 302, 309, 313, 316<br />

Wire worms, 15, 17<br />

Wood, wood products, timber, 3, 4, 5, 62, 65, 97,<br />

99, 100, 101, 102, 104, 120, 121, 122, 123, 124,<br />

126, 135, 136, 137, 138, 139, 140, 141, 142,<br />

152, 155, 156, 157, 158, 162, 290, 295, 298,<br />

299, 302, 305, 306, 314<br />

Wood-damaging pests, 97, 100, 121, 123, 124,<br />

137, 140, 152, 155, 156, 306<br />

Wood products - also refer <strong>to</strong> wood, artifacts,<br />

101, 120, 136, 137, 142, 152, 155, 157, 158,<br />

306<br />

X<br />

Xiphinema – also refer <strong>to</strong> nema<strong>to</strong>des, 16, 72<br />

Z<br />

Zambia, 23<br />

Zimbabwe, 19, 21, 22, 23, 24, 37, 39, 54, 60, 83,<br />

90, 102, 103, 104, 117, 159<br />

Zucchini, courgette - also refer <strong>to</strong> cucurbits, 5, 19,<br />

21, 25, 103, 139<br />

Annex 8: Index<br />

315


Annex 9<br />

Contacts for Implementing Agencies<br />

The Multilateral Fund of the Montreal Pro<strong>to</strong>col has been established <strong>to</strong> provide technical and<br />

financial assistance for developing countries <strong>to</strong> phase out ozone-depleting substances such as<br />

methyl bromide. For further information please contact the Implementing Agencies and<br />

Secretariats listed below.<br />

Annex 9: Contacts for Implementing Agencies<br />

Implementing Agencies<br />

Mr Frank Pin<strong>to</strong>, Principal Technical Adviser and<br />

Chief<br />

Montreal Pro<strong>to</strong>col Unit<br />

United Nations Development Programme (UNDP)<br />

1 United Nations Plaza<br />

United Nations<br />

New York, N.Y. 10017<br />

United States<br />

Tel: (1) 212 906 5042<br />

Fax: (1) 212 906 6947<br />

Email: frank.pin<strong>to</strong>@undp.org<br />

www.undp.org/seed/eap/montreal<br />

Mr Rajendra M Shende, Chief<br />

Energy and OzonAction Unit<br />

United Nations Environment Programme<br />

Division of Technology, Industry and Economics<br />

(UNEP <strong>DTIE</strong>)<br />

39-43, quai Andre Citroën<br />

75739 Paris Cedex 15<br />

France<br />

Tel: (33 1) 44 37 14 50<br />

Fax: (33 1) 44 37 14 74<br />

Email: ozonaction@unep.fr<br />

www.uneptie.org/ozonaction.html<br />

Mrs. H. Seniz Yalcindag, Chief<br />

Industrial Sec<strong>to</strong>rs and Environment Division<br />

United Nations Industrial Development<br />

Organization (UNIDO)<br />

Vienna International Centre<br />

P.O. Box 300<br />

A-1400 Vienna<br />

Austria<br />

Tel: (43) 1 26026 3782<br />

Fax: (43) 1 26026 6804<br />

Email: adambrosio@unido.org<br />

www.unido.org<br />

Mr. Steve Gorman, Unit Chief<br />

Montreal Pro<strong>to</strong>col Operations Unit<br />

World Bank<br />

1818 H Street N.W.<br />

Washing<strong>to</strong>n, D.C. 20433<br />

United States<br />

Tel: (1) 202 473 5865<br />

Fax: (1) 202 522 3258<br />

Email: sgorman@worldbank.org<br />

www-esd.worldbank.org/mp/home.cfm<br />

Multilateral Fund Secretariat<br />

Dr. Omar El Arini, Chief Officer<br />

Secretariat of the Multilateral Fund for the<br />

Montreal Pro<strong>to</strong>col<br />

27th Floor, Montreal Trust Building<br />

1800 McGill College Avenue<br />

Montreal, Quebec H3A 6J6<br />

Canada<br />

Tel: (1) 514 282 1122<br />

Fax: (1) 514 282 0068<br />

Email: secretariat@unmfs.org<br />

www.unmfs.org<br />

UNEP Ozone Secretariat<br />

Mr. Michael Graber<br />

UNEP Ozone Secretariat<br />

PO Box 30552<br />

Nairobi<br />

Kenya<br />

Tel: (254 2) 623 855<br />

Fax: (254 2) 623 913<br />

Email: ozoneinfo@unep.org<br />

www.unep.org/ozone/home.htm<br />

316


A Word from the Chief of UNEP <strong>DTIE</strong>’s<br />

Energy and OzonAction Unit<br />

Much of the Montreal Pro<strong>to</strong>col’s success can be attributed <strong>to</strong> its ability <strong>to</strong> evolve over time <strong>to</strong><br />

reflect the latest environmental information and technological and scientific developments.<br />

Through this dynamic process, significant progress has been achieved globally in protecting the<br />

ozone layer.<br />

As a key agency involved in the implementation of the Montreal Pro<strong>to</strong>col, UNEP <strong>DTIE</strong>’s<br />

OzonAction Programme promotes knowledge management in ozone layer protection through<br />

collective learning. There is much that we can learn from one another in adopting effective<br />

alternatives <strong>to</strong> methyl bromide.<br />

Sourcebook of Technologies for Protecting the Ozone Layer: <strong>Alternatives</strong> <strong>to</strong> <strong>Methyl</strong> <strong>Bromide</strong>,<br />

which provides technical information on a range of alternative technologies <strong>to</strong> replace methyl<br />

bromide, is neither comprehensive nor exhaustive. Technologies will emerge or be further<br />

refined as countries move ahead with methyl bromide phase out.<br />

I encourage you <strong>to</strong> share information on methyl bromide alternatives with the OzonAction<br />

Programme so that we can inform others involved in this issue about available technologies and<br />

how they can be adopted. Send us an e-mail, fax or letter about new technologies in this sec<strong>to</strong>r<br />

and your experiences in replacing methyl bromide. We will consider it as an important part of<br />

collective learning.<br />

Based on the feedback and information received, UNEP will update this sourcebook on a periodic<br />

basis <strong>to</strong> reflect the latest technological developments. We will also disseminate this information<br />

through a variety of channels, including the OzonAction Newsletter and the OzonAction<br />

Programme’s website (www.uneptie.org/ozonaction.html). If we use the information you provide,<br />

we will send you a free copy of one of our videos, publications, posters or CD-ROMs as<br />

thanks for your cooperation.<br />

So take a pen and write <strong>to</strong> us. Let us learn collectively <strong>to</strong> protect the ozone layer.<br />

Rajendra M Shende, Chief<br />

UNEP <strong>DTIE</strong> Energy and OzonAction Unit

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!