Model of glaciogenic transformation of the Lublin-Volhynia chalk karst

geomorf.wnoz.us.edu.pl

Model of glaciogenic transformation of the Lublin-Volhynia chalk karst

Model of glaciogenic transformation of the Lublin-Volhynia

chalk karst (Poland SE, Ukraine NW)

Radosław Dobrowolski

Institute of Earth Sciences, Maria Curie-Skłodowska University,

20-718 Lublin, Kraśnicka 2 C,D str., Poland

e-mail: rdobro@biotop.umcs.lublin.pl

ABSTRACT

The influence of the Pleistocene ice masses on the karstified carbonate substratum of the Lublin-Volhynia

chalk karst region was very complex and included: (I) direct glaciodynamic transformation of preglacial karst

system, in it also of paleokarst; (II) indirect sub- and terminoglacial: (a) transformation of preglacial karst,

and (b) creation of erosional (protokarst) forms developing during the postglacial period as karst forms; (III)

reorganization of karst underground drainage system.

An important role in glacial transformation of karst system was also played by subglacial drainage, both in

direct, morphogenetic dimension and indirectly by subglacial recharge of karst aquifer. Morphogenetic role

of subglacial drainage is related to the release of substantial volume of meltwater. Depending on the

conditions and flow dynamics, the following phenomena took place: (a) development of pipes/kettle holes,

and injection of saturated subglacial material into fissures of rock massif, (b) intensive washing of chalk and

removing of primary infilling of dolines, to the truncation of karst residual clay.

KEY WORDS: chalk karst, glaciogenic transformation, glaciotectonics, glacioisostasy, subglacial drainage,

Lublin-Volhynia Uplands, Poland SE, Ukraine NW.

Introduction

Many karst areas in the world were covered

by ice sheets in the Pleistocene, and some of

them occur in glacial zone also in our times

(vide Jakucs 1977; Pulina 1999, 2005).

Therefore, the range and character of the

influence of ice sheets on the karst geosystems

were significant, both from a spatial and

temporal aspect, and in many cases have

probably determined their modern features.

Nevertheless, the interactions between

Pleistocene ice masses and karstified substratum

have been not sufficiently examined to erect

models of its glaciogenic transformation. This

statement concerns also the Lublin-Volhynia

chalk region (Fig. 1). This area was glaciated at

least three times (Sanian 1, Sanian 2, Odranian)

but the influence of ice sheets on the carbonate

substratum has been rather slightly discussed in

previous works which contain only laconic

statements suggesting either a destruction of

preglacial karst forms or their complete filling

(Rühle 1976; Wilgat 1950; Rzechowski 1962;

Marinich 1963; Gvozdeckij 1965; Maruszczak

1966; Maksimovich 1969; Harasimiuk 1975;

Lomaev 1979). So far, despite a significant

broadening of knowledge of geology,

geomorphology, and glacial sedimentology of

the Lublin-Volhynia region (among others

Buraczyński, Wojtanowicz 1981, 1982, 1988,

1990; Harasimiuk, Henkiel 1984; Rzechowski


166 Radosław Dobrowolski

Fig.1. Location of the studied area in relation to the extents of older stadial advances of the Odra/Dnieper Glaciation ice

sheet (after L. Lindner et al. 1985).

1997; Bogucki et al. 1998, 2003; Harasimiuk et

al. 1993, 2004; Harasimiuk, Wojtanowicz 1998;

Lindner et al. 2002, 2005, 2006; Dobrowolski et

al. 2004a,b,2005a,b; Dobrowolski, Terpiłowski

2006), the following research problems,

fundamental from an aspect of the Quaternary

evolution of karst relief, remain unsolved:

• What were the geological, morphological, and

glaciological factors determining the nature of

transformation of preglacial karst relief under

extremely cold climatic conditions of

Pleistocene?

• What were the mechanisms of transformation

of karst relief and karst aquifer under glacial

conditions?

• What were the scale and nature of these

transformations?

In this paper an attempt is made to fill in

these gaps in knowledge. The presented model

of glacial transformation of karst relief in the

Lublin-Volhynia region is based on the detailed

geological-morphological examination of

selected, representative research sites with the

well-preserved forms of preglacial karst and/or

forms of Neopleistocene karst. 4

4 On account of editing limitations of this volume, only a

synthetic model of glaciogenic transformation of karst

relief in the Lublin-Volhynia area is presented in the

paper. Detailed field data, together with the discussion on

the range of the influence of ice masses on carbonate

substratum in the individual research sites, were

published by Dobrowolski (2006).


Geological setting

Karst phenomena are developed in the

carbonate rocks of Upper Cretaceous, which fill

the large, asymmetric Lublin Trough, and

encroach on a slightly inclined slope of the

East-European craton (Pasternak et al. 1987;

Hakenberg, Świdrowska 2001). These

carbonate deposits represent all stratigraphic

units of the Upper Cretaceous. Their thickness

is very variable – from a dozen or so metres in

the eastern part of the study area to over 1000 m

in its western part. The Upper Cretacoeus

massif is composed of the following rocks: (1)

in the western part – series of opokas alternating

with limestones, marls, and chalk (Wyrwicka

1980) (2) in the eastern part – mostly chalk, in

places with marl interlayers (Pasternak et al.

1987). Lithostratigraphic boundaries are usually

weakly visible and difficult to recognize

(Wyrwicka 1984). The structural pattern of the

basement of the Mesozoic complex was formed

in the Breton phase of the Variscian cycle

(Chiżniakow, Żelichowski 1974; Kruglov,

Cypko 1988). It is characterized by (1)

orthogonal system of main faults of NW-SE and

NE-SW directions (mostly in the western part of

the study area), and (2) system of subparallel

faults (in the central and eastern parts of the

study area). They divide the Proterozoic-

Paleozoic complex into separate blocks of

different size and uplift degree. These faults

were reactivated in successive tectonic cycles,

and rejuvenated in higher and higher structural

horizons (Brochwicz-Lewiński, Pożaryski 1986;

Kruglov, Cypko 1988). This fact significantly

influenced the course of pre-Quaternary

morphogenesis of the area under study

(Dobrowolski, Harasimiuk 2002) determining

the direction and dynamics of the Neogene

relief-forming processes (denudation, fluvial,

and karst ones).

The Upper Cretaceous massif is strongly

fissured. The fissures, forming a dense net, are

of different origin: (1) weathering fissures

occurring in the top part to a depth of 2-5 m,

and (2) tectonic fissures, i.e. (a) faults with (b)

set of near-fault cleavage and (c) joints that

usually occur as two orthogonal joint systems

(Dobrowolski 1995). Opening of fissures is

vertically and horizontally varied depending on

the pattern of recent tectonic stress field in the

rock massif. In the Lublin-Volhynia area the

tendencies to extensional widening characterize

mostly the fissures oriented submeridionally

(Jarosiński 2005); they are hydraulically active

to a depth of 100-150 m depending on local

structural conditions – tectonic regime,

mechanical properties (compression strength),

and chemical properties (CaCO 3 content) of

individual lithologic types of the Upper

Cretaceous rocks (Krajewski 1970; Różkowski,

Rudzińska 1978; Michalczyk 1986; Zalesskij

1989; Borczak et al. 1990; Krajewski, Motyka

1999).

Transformation of karst relief in glacial environment

Glaciotectonic influence of ice sheet

The direct influence of the Pleistocene ice

sheets on carbonate substratum of the foreland

of the Lublin-Volhynia Uplands manifested as

the differentiation of deposition-deformation

processes in ice marginal zone, and was

controlled by: (1) dynamics of ice front (in it

ice-sheet rheology), (2) geological structure

(especially lithology and tectonics of the Upper

Cretaceous complex), (3) preglacial

morphology both in macro scale (conditioning

direction and nature of ice-sheet advance) and

meso scale (controlling the style of deformation

of glacial and preglacial deposits).

In the area under study the glaciotectonic

structures, which involved both unconsolidated

deposits filling karst forms and carbonate rocks

of substratum, are almost exclusively thinskinned

glaciotectonic structures with

significant domination of brittle deformations.

These facts indicate that glaciotectonic

structures were directly associated with the ice

marginal zone (Wright 1973; Ruszczyńska-

Szenajch 1976; Thomas, Summers 1984; Aber


168 Radosław Dobrowolski

1985; van der Wateren 1985, 1995; Ber 1987,

2000; Banham 1988; Aber et al. 1989; Bennett

2001; Gardziel, Harasimiuk 2005). We can also

indirectly conclude that the marginal ice masses

were warm-based (Brodzikowski 1987; Croot

1988; Bennett et al. 1996, 2000; Boulton et al.

1996, 1999). On the strongly

undulated/karstified substratum the

glaciotectonic deformations could have

developed both in compressional and

extensional regimes. In the former, they resulted

from the dynamic pressure of the ice sheet

advancing on the proximally-inclined convex

elements of karst relief, e.g. proximal slopes of

denudation remnants; in the latter, – from static,

vertical pressure of ice masses on distally

oriented slopes of karst forms.

When ice thickness and dynamics were

greater, brittle deformation of chalk was

replaced by large-scale ductile or/and cataclastic

deformations (Liszkowski 1993). The examples

of such structures, identified in deep geological

borings, are given by Ruszczyńska-Szenajch

(1976), Alexandrowicz and Radwan (1983,

1992), Łozińska-Stępień (1988) and Albrycht

(2004) from the South Podlasie Lowland where

chalk diapiric structures and disharmonic folds

occur near Kornica and Mielnik (100-200 km to

the north of the margin of the Meta-Carpathian

Uplands).

Compressional regime

Imbrication (duplex) structures composed of

proglacial deposits are the most typical

deformation structures related to a

compressional regime (Croot 1987, 1988;

Banham 1988; Boulton 1986; Bennett 2001). In

the area under study they were identified over

paleokarst depressions. Such a situation resulted

probably from the occurrence of a filtration

contrast between massive substratum and

unconsolidated deposits filling paleokarst forms

(vide Boulton et al. 1995, 1996; Piotrowski

1997; Piotrowski et al. 1999; Krzyszkowski,

Zieliński 2002). Forced stabilization of the ice

front, which preceded deformation phase, was

marked by the proglacial fan deposition. In the

deformation stage the advancing ice masses

pushed the deposits and caused the development

of imbrication structures.

The following phenomena should be also

related to compressional regime: (1) differential

translocations of chalk layers in denudation

remnants that, in turn, led to (2) propagation of

normal bedding-parallel faults at greater depths.

The pattern of deformation structures (with

marked down tendency to intralayer rotation)

indicates that simple compression associated

with the pressure of the advancing ice front

turned, as movement was continued, into a

couple of forces in vertical plane. Translocation

of carbonate substratum packages (= shearing

along interstratal surfaces) was favoured by

fissuring of rock massif and its strong

karstification. Lubrication layer consisted of (1)

clay karst cortice (vide Dobrowolski 2006;

Dobrowolski, Terpiłowski 2006) or/and (2)

fine-grained glaciogenic deposit subglacially

“injected” in interstratal fissures (vide Ford

1987; Ford, Williams 1989; Boulton et al. 1996;

Piotrowski et al. 1999). Taking into account

these structure-forming factors and small

compression strength of chalk reaching only 4-6

MPa (Rybicki, Rybicki 1973; Łozińska-Stępień

1975; Liszkowski 1993), one can suppose that

such deformations probably developed even

when the pressure of the ice front was relatively

low.

Differential translocations of rock layers

resulted directly in subhorizontal

fragmentation of paleokarst forms, and

indirectly in the significant transformation of

groundwater drainage conditions (= the

development of hydrodynamic barriers on

glaciotectonically-brecciated interstratal

surfaces) (vide Harasimiuk et al. 1980;

Herbich 1984).

Extensional regime

The propagation of listric faults formed in

subglacial environment under static short-lived

pressure exerted by the ice front on the

substratum is related to extensional conditions

(Rotnicki 1976; Croot 1987, 1988;

Jaroszewski 1991). From among the factors

necessary for propagation of such structures

the most important are the following: (1) distal

inclination of the substratum surface in relation

to the direction of ice-sheet advance, (2)

occurrence of permeable, unconsolidated


Model of glaciogenic transformation of the Lublin-Volhynia chalk karst 169

deposits in ice-sheet base, (3) warm-based ice

sheet, which enables (4) intensive subglacial

drainage of ablation water. Subglacial

extension is compensated in proglacial zone by

a set of overlapping thrust structures.

Cylindrical detachments (with en block

translocations of unconsolidated deposits),

forming on karstified substratum in

extensional regime, developed on distally

oriented slopes of paleokarst forms, along their

concave surfaces. Deformation processes were

favoured by: (1) concave shape of

paleodolines, (2) the occurrence of karst

cortice at the contact between carbonate rock

and the infilling deposit, and (3) lithologic

contrast between the massive substratum and

unconsolidated deposits filling paleokarst

forms, which enabled (4) the discharge of

subglacial water into loose deposits (Boulton

et al. 1995; Krzyszkowski, Zieliński 2002),

and thus facilitated subsequent (5) lubrication

of deformed deposits (Croot 1987, 1988;

Bennett 2001). Therefore, the complex of

deformation structures seems to

unambiguously indicate that ice-sheet regime

was warm during deformation process.

Glacioisostatic influence of ice sheet

Besides manifestations of glacial

mesotectonics (=glaciotectonics), the quasiperiodic

load of the earth’s crust with ice

masses during the successive glaciations

caused the reactivation of old tectonic faults in

substratum, and their rejuvenation in the

Meso-Cainozoic complex as a result of vertical

blocks movements (=glacioisostasy). It is

rather unanimously accepted that

glacioisostatic movements were one of main

factors triggering the Pleistocene activity of

the earth’s crust (Liszkowski 1975, 1993;

Palienko 1992; Monkievich et al. 2001). The

evidence of the Young Cainozoic activity of

regional faults in the northern foreland of the

Lublin-Volhynia Uplands was published,

among others, by Liszkowski (1975, 1979),

Harasimiuk et al. (1980, 1993), Herbich

(1980), Henkiel (1984), Wyrwicka and

Wyrwicki (1986), Buraczyński and

Wojtanowicz (1988, 1990), Kruglov and

Cypko (1988), Palienko (1992), Krynicki

(1995). Glacioisiostatic movements

contributed to rejuvenation of tectonic horsts

and grabens from the Alpine cycle, and

conditioned (1) glaciogenic marginal

deposition (Henkiel 1983, 1984; Liszkowski

1993; Dobrowolski et al. 2004b, 2005a,b), and

(2) development of deformation structures on

the proximal slopes of activated horsts

(Wyrwicka, Wyrwicki 1986; Palienko 1992;

Liszkowski 1993; Dobrowolski et al. 2004a).

Such an origin is attributed, among others, to

deformation structures involving the Upper

Cretaceous rocks in the northern forelands of

the following horsts: Łuków (Ruszczyńska-

Szenajch 1976; Alexandrowicz, Radwan

1983,1992; Albrycht 2004), Ratno (Rühle

1948), and Uhrusk (Wyrwicka, Wyrwicki

1986; Dobrowolski et al. 2004a).

Morphogenetic role of subglacial drainage

Subglacial drainage is possible only under

glaciers and ice sheets with warm or

polithermal regime (Jania 1993; Bennett,

Glasser 1996; Benn, Evans 1998; Brown 2002;

Knight 2002, 2003). It takes usually place

under two different organization conditions of

meltwater flow: (1) in cover (=dispersed)

drainage system including slow flow: (a) of

“water film” type at the contact between the

ice and the substratum (Weertman 1972;

Paterson 1994; Alley 1989; Piotrowski 1997),

(b) of pore and advection type through the

permeable subglacial sediments (Boulton,

Hindmarsh 1987; Boulton et al. 1993, 1995;

Murray, Clarke 1995), (c) in communicating

subglacial voids (Röthlisberger, Iken 1981;

Hooke 1989), and (d) in wide, shallow

channels (Walder, Fowler 1994), and (2) in

strongly canalised drainage system with great

dynamics of flow dissecting of basal ice and

massive substratum (Röthlisberger 1972; Nye

1973; Hooke 1989; Walder, Fowler 1994;

Hubbard, Nienow 1997). Both types of

subglacial drainage can occur at the same time,

especially on the substratum with diversified

relief (Alley 1992; Alley et al. 1997; Brennand

2000).

Because of a substantial volume of released

meltwater and dynamics of its flow, one


170 Radosław Dobrowolski

should accept an important role of subglacial

drainage in transformation of preglacial karst

relief, direct – morphogenetic, and indirect –

associated with subglacial recharge of the karst

aquifer.

Direct influence of subglacial water on the

carbonate substratum

The warm-based glaciers/ice sheets are

characterized by a drainage type (similar to the

karst one), which is often termed cryokarst

drainage. Under these conditions the meltwater

flow occurs supra-, en-, and subglacially

(Shreve 1972; Röthlisberger 1972; Sudgen,

John 1976; Pulina 2005; Jania 1993). Strong

hydraulic connection between individual flow

forms can result in turbulent flow of water into

warm ice masses, which is canalised in ice

crevasses or/and moulins. The most favourable

conditions for this phenomenon occur when

(1) ice masses are characterized by extensional

regime, and simultaneously (2) they are rather

thin. Then englacial water with great dynamics

of flow can reach bedrock in which

pipes/kettle holes develop (Röthlisberger 1972;

Sudgen, John 1976; Röthlisberger, Lang 1987;

Ford 1987; Alley et al. 1997). Such conditions

are favourable for the injection of saturated

subglacial material into fissures of rock massif

(Röthlisberger 1972; Ford 1987; Boulton et al.

1996; Piotrowski et al. 1999). In case of

carbonate massif, despite the suggested

substantial dissolution (vide Pulina 1974,

1977; Eyles et al. 1982; Eyles 1983; Drewry

1986), corrosion is the main factor forming

such forms as evidenced by their smoothed

walls, often with spiral scratches and grooves.

The excess of subglacial water, which

cannot be held by subglacial aquifers, is

discharged outward by cover drainage, and

also by channel drainage when pressure of

pore water increases (Weertman 1972;

Boulton, Hindmarsh 1987; Boulton, Dobbie

1993; Boulton et al. 1995). The resulting

diversity of water flow dynamics on the

substratum with diversified relief leads to

temporal and spatial differentiation of the rate

and scale of erosion and deposition processes

(e.g. Weertman 1972; Iken, Bindchadler 1986;

Evenson, Clinch 1987; Kamb 1987; Alley

1992; Kirkbride 1995; Alley et al. 1997; Benn,

Evans 1998).

These described conditions of subglacial

drainage and its morphogenetic effects

occurred in the foreland of the Lublin-

Volhynia Uplands. In all examined cases the

transformation of karstified carbonate

substratum is visible only on the distal slopes

of chalk hills. The resulting implications,

which are important in the discussion on

glacial transformation of chalk karst, concern

(1) thermal conditions of ice sheet (suggesting

that the ice sheet was warm-based), (2) the

conditions of its advance (relatively rapid flow

in extensional regime), and (3) the course of

subglacial drainage (great temporal and spatial

variability of water flow dynamics).

The subglacial injection of meltwater and

saturated glaciogenic or/and preglacial

deposits into carbonate substratum occurred

wherever warm-based ice masses flowed over

higher chalk hills (the effect of formation of

crevasses and englacial drainage in moulins).

Strong tectonic and weathering fissuring of the

rock massif favoured these phenomena. A part

of subglacial water recharged the Upper

Cretaceous aquifer, and its excess (according

to the model by Boulton and Caban 1995) was

discharged to the proglacial zone by dispersed

drainage or small subglacial channels.

Intensive erosion of chalk surface occurred in

zones of canalised meltwater flow. In the

places of subglacial voids (over preglacial

dolines) the primary infilling of these forms

was completely removed, and the karst-related

residual clay was often truncated. The decrease

of water flow energy resulted in substantial

reduction of channel erosion, and flow

recession – gradual (= gravity mass flows) or

rapid (=deposition of coarse chalk debris). In

dispersed drainage zones, the primary evorsion

hollows became the sites of

paraglaciolacustrine accumulation (sensu

Brodzikowski 1993) or were filled by gravity

mass flows of flow-till type (sensu Zieliński,

van Loon 1996).

Subglacial recharge of the karst aquifer

The glaciers/ice sheets with basal melting

can recharge subglacial aquifers. The


Model of glaciogenic transformation of the Lublin-Volhynia chalk karst 171

occurrence of unconsolidated deposits or/and

strongly fissured rock massif beneath the

glacier sole enables the discharge of meltwater

streams by subsurface flow (Boulton et al.

1995; Piotrowski 1997; van Weert et al. 1997;

Piotrowski et al. 1999). Due to complete

reorganization of subsurface drainage systems

(both shallow and deep ones) this phenomenon

occurs especially in the areas composed of

karstified rocks (vide Ford 1987, 1989; Ford,

Williams 1989; Dobracki, Krzyszkowski

1997). Piotrowski (1997) suggests that the

increased subglacial recharge of karst aquifers

occurs on proximally inclined substratum (=

compressional regime of ice masses). Under

such conditions the discharge of meltwater at

the contact between the ice and the substratum

in the direction of ice front is impossible.

Therefore, the increase of pore water pressure

under ice load results in water discharge

through basal deposits and by subsurface flow.

In the opinion of Boulton et al.

(1993,1995), Boulton and Caban (1995), and

van Weert et al. (1997), the dynamics of

subsurface water flow during glacial periods

(the effect of intensive recharge by meltwater

and increased pressure exerted by ice masses

on aquifers) was many times greater (after van

Weert et al. 1997 – even ten times) than in

interglacial periods. The occurrence of proand

extraglacial permafrost in the foreland of

ice sheets caused an additional increase of

groundwater overpressure. Therefore, its

relieve by forced ascension (= icing recharge)

took place far from the ice margin (10-50 km),

usually beneath large water bodies – rivers and

lakes (Boulton et al. 1995, 1996; van Weert et

al. 1997; Piotrowski 1997) or/and in

considerably weaker tectonic zones (major

faults and dilatations). Solonienko (1975)

stresses that the zones of icing recharge occur

mostly in the structures which have a tendency

to subhorizontal extension, i.e. perpendicularly

to the horizontal axis of minimum stresses.

Therefore, the carbonate rocks in the foreland

of the Meta-Carpathian Uplands could have

been intensively eroded and dissolved under

phreatic conditions in glacial periods. The

groundwater pressure was probably high till

the complete degradation of permafrost.

Model of glaciogenic transformation of chalk karst

The proposed broad model of glacial

transformation of the Lublin-Volhynia chalk

karst is presented in Fig. 2. The following

stages are distinguished (after Dobrowolski

2006):

Stage I – The proceeding climate changes in

the anaglacial phase of glaciation result in a

gradual advance of the ice sheet. The increased

pressure of the advancing ice masses on the

earth’s crust in the ice-sheet foreland can

activate the Alpine tectonic structures in the

chalk massif, and release glacioisostatic block

movements of substratum.

Stage II – Advance of ice masses – generally

from the north – on the area composed of the

Upper Cretaceous carbonate rocks.

Structurally controlled, strongly diversified

preglacial relief (= occurrence of isolated

denudation karst remnants and separating them

poljes) conditions lobe character of the icesheet

advance. Large poljes determined the

advance direction, and karst remnants are

orographic barriers for the advancing ice sheet.

In poljes (extensional regime), beneath the

glacier sole, there are usually developing

deeply cut into substratum subglacial channels

(= main channels), which discharge the excess

of water. Proximal slopes of karst remnants

(compressional regime) force temporary

stabilization of ice front, which is marked by

deposition of marginal fans. Accretion of ice

masses and the resulting ice-sheet advance

cause the increase of ice-mass pressure on the

subhorizontally stratified rock massif with

karstified surface which, in turn, lead to: (1)

differential translocations of layers resulting in

(2) deformation of chalk packages and karst

forms. The occurrence of dolines on the

proximal slopes of hills can force the

propagation of listric faults within infilling

deposits, and cause their complete

transformation (= development of thrust and


172 Radosław Dobrowolski

Fig. 2. Model of glacial transformation of karst relief (after Dobrowolski 2006); detailed description in the text.


Model of glaciogenic transformation of the Lublin-Volhynia chalk karst 173

brecciated structures).

Stage III – The proceeding advance of ice

front results in flowing of ice masses over

remnant hills, and causes: (1) the change of

stress regime in ice from compressional into

extensional, and then (2) development of

crevasses (over distal slopes of hills). These

phenomena favour the directed drainage of

supra- and englacial water; moulins

developing in crevasses dynamically conduct

meltwater to the carbonate bedrock. In

strongly fissured chalk the following effects

appear: (1) subglacial evorsion and

development of pipes or/and (2) intensive

channel erosion (sub- and terminoglacial

erosion), which especially affects

unconsolidated infillings of dolines. The

processes of mechanical destruction of

carbonate substratum can be partially

supported by chemical piping. The conditions

of deposition depend mostly on flow dynamics

of subglacial water. Therefore, the following

phenomena can occur simultaneously: (1)

deposition of coarse debris (the result of rapid

“freezing” of flow), (2) paraglaciolacustrine

accumulation, and (3) gravity mass flows (in

zones of dispersed drainage).

Stage IV – Amelioration of climate conditions

in the kataglacial phase of glaciation results in

ice-sheet recession. The release of the foreland

of the Meta-Carpathian Uplands from the

pressure of ice masses results in glacioisostatic

relaxation movements (= the change of vector

of vertical block movements).

Covered karst (s.s.) and reproduced karst

(dissolution of chalk by infiltration water at the

contact between the infilling deposits and

massive bedrock) develop within the erosion

pipes in chalk massif, which are filled with

glaciogenic deposits.

Final remarks

The evidences from the northern foreland

of the Lublin-Volhynia uplands provide

qualitatively new information on the

mechanisms of karst relief transformation

under glacial conditions (mostly with respect

to the Saalian – the last glacial in the study

area). They significantly change the former

views on the following problems: (a) scale and

range of ice-mass influence on the karstified

Upper Cretaceous massif, and (b) origin and

age of karst relief. Therefore, they have an

effect on the paleogeographic and

morphogenetic interpretations concerning the

Pleistocene evolution of the Western Polesie

relief.

1. The influence of ice masses on the karstified

carbonate substratum of the area under study

was much more complex than it has been

assumed till now. The influence included: (a)

direct glaciodynamic transformation of

preglacial karst system, in it also of paleokarst;

(b) indirect sub- and terminoglacial: (i)

transformation of preglacial karst, and (ii)

creation of erosional (protokarst) forms

developing during the postglacial period as

karst forms; (c) reorganization of karst

underground drainage system.

2. The direct glaciodynamic influence of ice

sheet on karst system contributed to complete

destruction of preglacial forms or only to

partial “rebuilding” of the deposits filling these

forms. Glaciotectonic deformations of

paleokarst deposits and forms were developing

both under compressional and extensional

regimes. In the case of compressional regime,

they resulted from dynamic pressure of the ice

front advancing on the proximally inclined

convex elements of karst relief (= proximal

slopes of denudation remnants); in the case of

extensional regime – from static, vertical

pressure of ice masses on distally oriented

slopes of karst forms. The compressional

influence of ice masses on the carbonate

massif resulted indirectly in differential

translocations of rock layers, which in turn

caused the transformation of groundwater

drainage conditions associated with the

development of hydrodynamic barriers on

glaciotectonically brecciated interstratal

surfaces.


174 Radosław Dobrowolski

3. The indirect reorganization of karst system

under influence of ice masses was connected

with glacioisostatic movements. They

contributed to rejuvenation of the Alpine

horsts and grabens, and conditioned (a)

glaciogenic marginal deposition, and (b)

development of deformation structures, which

involved the Upper Cretaceous rocks, on the

proximal slopes of activated horsts.

4. Subglacial drainage played an important

role in glacial transformation of karst system,

both in direct, morphogenetic dimension and

indirectly by subglacial recharge of karst

aquifer.

(a) Morphogenetic role of subglacial drainage

This role is related to the release of substantial

volume of meltwater (in distal position of

chalk hills). Depending on the conditions and

flow dynamics, the following phenomena took

place: (i) development of pipes/kettle holes,

and injection of saturated subglacial material

into fissures of rock massif (when

concentrated, turbulent inglacial flow reached

bedrock), (ii) intensive washing of chalk and

removing of primary infilling of dolines, to the

truncation of karst residual clay (in zones of

canalised meltwater flows). The decrease of

meltwater flow energy caused gradual or rapid

disappearance of flow, and resulted in gravity

mass flows of flow till type or deposition of

chalk coarse debris, respectively. In dispersed

drainage zones, the primary evorsion hollows

became reservoirs of paraglaciolacustrine

accumulation or were also filled by gravity

flows.

(b) Subglacial recharge of karst aquifer

The occurrence of strongly fissured chalk

massif beneath a glacier sole enabled the

discharge of meltwater streams through

injection into substratum and underground

flow. At the same time, the ice-mass load, and

the occurrence of pro- and extraglacial

permafrost in the ice-sheet foreland caused a

considerable increase of groundwater pressure.

5. The existence of active subglacial drainage

implies that the ice sheet was warm-based.

Contrary to the former views (vide

Brodzikowski 1987), the warm regime of the

Odranian ice masses seems to be also

evidenced by the results of regional

paleoenvironmental studies (Dobrowolski et

al. 2004b, 2005b).

The worked out models of glacial and

periglacial transformation of karst relief can be

also used in morphogenetic and

paleogeographical discussions concerning

other karst areas subjected to continental

glaciation in the Pleistocene.

References

Aber J. S. 1985. The character of

glaciotectonism. Geologie en Mijnbouw 64,

389-395.

Aber J. S., Croot D.G., Fenton M.M. 1989.

Glaciotectonic landforms and structures,

Kluwer Academic Publishers, Dordrecht,

200 pp.

Albrycht A. 2004. Strefa marginalna

zlodowacenia warty w okolicy Kornicy

(Wysoczyzna Siedlecka). [w:] (reds.) M.

Harasimiuk, S. Terpiłowski. Zlodowacenie

warty w Polsce. Wyd. UMCS, Lublin, 135-

152.

Alexandrowicz S. W., Radwan D. 1983.

Glacitektoniczna struktura złoża kredy

piszącej w Kornicy na Podlasiu. Materiały

IV Sympozjum Glacitektonicznego,

Zielona Góra, 9-20.

Alexandrowicz S.W., Radwan D. 1992.

Stratygrafia i deformacje glacitektoniczne

kredy piszącej w Kornicy na Podlasiu.

Przegląd Geol., 5, 296-301.

Alley R.B. 1989. Water pressure coupling of

sliding and bed deformation: II. Velocitydepth

profiles. J. Glaciol., 35, 119-129.

Alley R.B. 1992. How can low-pressure

channels and deforming tills coexist

subglacially? J. Glaciol., 38, 200-207.

Alley R.B., Cuffey K.M., Evenson E.B.,

Strasser J.C., Lawson D.E., Larson G.J.

1997. How glaciers entrain and transport


Model of glaciogenic transformation of the Lublin-Volhynia chalk karst 175

basal sediment: physical constraints.

Quaternary Sc. Rev., 16, 1017-1038.

Banham P.H. 1988. Thin-skinned

glaciotectonic structure. [in:] (ed.) D.G.

Croot: Glaciotectonics: Forms and

processes, A. A. Balkema, Rotterdam, 21-

25.

Benn D.I., Evans D.J.A. 1998. Glaciers and

Glaciation. Arnold, London. 734 pp

Bennett M.R. 2001. The morphology,

structural evolution and significance of

push moraines. Earth-Science Reviews, 53,

197-236.

Bennett M.R., Glasser N.F. 1996. Glacial

geology: ice sheets and landforms. Wiley,

Chichester, 364 pp

Bennett M. R., Hambrey M. J., Huddart D.,

Ghienne, J.F. 1996. Moraine development

at the high-arctic valley glacier

Pedersenbreen, Svalbard. Geografiska

Annaler 78A, 209-222.

Bennett M.R., Huddart D., McCormick T.

2000. An integrated approasch to the study

of glaciolacustrine landforms and

sediments: a case study from Hagavatn,

Iceland. Quaternary Sciences Reviews 19,

633-665.

Ber A. 1987. Glaciotectonic deformation of

glacial landforms and deposits in the

Suwałki Lakeland (NE Poland). [in:] (ed.)

J.J.M. van der Meer. Tills and

Glaciotectonics, Balkema, Rotterdam, 135-

143.

Ber A. 2000. Plejstocen Polski północnowschodniej

w nawiązaniu do głębszego

podłoża i obszarów sąsiednich. Prace PIG,

170, 1-89.

Bogucki A., Wołoszyn P., Gaigalas A.,

Meleszyte M., Zalesski I. 1998.

Glacigeniczny kompleks Polesia

Wołyńskiego, stanowiska – Rostań i

Kalinówka. [w:] (red.) R. Dobrowolski,

Główne kierunki badań

geomorfologicznych w Polsce, Stan

aktualny i perspektywy, III, Wyd. UMCS,

Lublin, 65-81.

Bogucki A., Zaleski I., Karpenko N.,

Kowalczuk I., Krawczuk J. 2003.

Geologiczno-geomorfologiczna ewolucja

północno-zachodniej części Polesia

Wołyńskiego. Acta Agrophysica, 1 (2),

217-232.

Borczak S., Motyka J., Pulido-Bosch A. 1990.

The hydrogeological properties of the

matrix of the chalk in the Lublin coal basin

(southeast Poland). Hydrological Sciences

Journal, 35, 5, 10, 523-534.

Boulton G.S. 1986. Push-moraines and

glacier-contact fans in marine and

terrestrial environments. Sedimentology 33,

677-698.

Boulton G.S., Caban P.E. 1995. Groundwater

flow beneath ice sheets: part II – its impact

on glacier tectonic structures and moraine

formation. Quaternary Science Reviews,

14, 563-587.

Boulton G.S., Caban P.E., van Gijssel K. 1995.

Groundwater flow beneath ice sheets: part I

– large scale patterns. Quaternary Science

Reviews, 14, 545-562.

Boulton G.S., Caban P.E., van Gijssel K.,

Leijnse, Punkari M., van Weert F.H.A.

1996. The imact of glaciation on the

groundwater regime of Northwest Europe.

Global and Planetary Change, 12, 397-413.

Boulton G.S., Dobbie K.E. 1993.

Consolidation of sediments by glaciers:

relations between sediment geotechnics,

glacier dynamics and subglacial

groundwater flow. Journal of Glaciology,

39 (131), 26-44.

Boulton G. S., Hindmarsh R. C. A. 1987,

Deformation of subglacial sediments:

rheology and geological consequences.

Journal of Geoph. Res., 92, 9059-9082.

Boulton G. S., Slot T., Blessing K.,

Glasbergen P., Leijnse T., van Gijssel K.

1993. Deep circulation of groundwater in

overpressured subglacial aquifers and its

geological consequences. Quaternary Sc.

Rev., 12, 739-745.

Boulton G.S., van der Meer J.J.M., Beets D.J.,

Hart J.K., Ruegg G.H.J. 1999. The

sedimentary and structural evolution of a

recent push moraine complex:


176 Radosław Dobrowolski

Holmstrømbreen, Spitsbergen. Quaternary

Sciences Reviews 18, 339-371.

Brennand T. A. 2000. Deglacial meltwater

drainage and glaciodynamics: inferences

from Laurentide eskers, Canada.

Geomorphology, 32, 263-293.

Brochwicz-Lewiński W., Pożarski W. 1986.

Ewolucja rowu środkowopolskiego w

permomezozoiku

i kenozoiku. Mat. symp.:

Historia ruchów tektonicznych na ziemiach

polskich. Cykl alpejski. Kraków, 8-9.

Brodzikowski K. 1987. Środowiskowe

podstawy analizy i interpretacji

glacitektonizmu Europy Środkowej. Acta

Uniw. Wratislaviensis, 934, Studia

Geograficzne 43, Wyd. Uniw.

Wrocławskiego, 331 pp

Brodzikowski K. 1993. Środowiskowe

podstawy analizy i interpretacji

glacitektonizmu Europy Środkowej. Acta

Universitatis Wratislaviensis, 934, Studia

Geograficzne 43, 1-331.

Brown G.H. 2002. Glacier meltwater

hydrochemistry. Applied Geochemistry, 17,

855-883.

Buraczyński J., Wojtanowicz J. 1981.

Objaśnienia do Szczegółowej mapy

geologicznej Polski, 1:50000, ark.

Orzechów Nowy, Wyd. Geol., Warszawa,

87 ss.

Buraczyński J., Wojtanowicz J. 1982.

Objaśnienia do Szczegółowej mapy

geologicznej Polski, 1:50 000, ark.

Kołacze, Wyd. Geol., Warszawa, 81 pp

Buraczyński J., Wojtanowicz J. 1988.

Objaśnienia do Szczegółowej Mapy

Geologicznej Polski, 1:50 000, ark. Sawin,

Wyd. Geol., Warszawa.

Buraczyński J., Wojtanowicz J. 1989.

Objaśnienia do Szczegółowej mapy

geologicznej Polski, 1:50000, ark. Sawin,

Wyd. Geol., Warszawa, 81 pp.

Buraczyński J., Wojtanowicz J. 1990.

Objaśnienia do Szczegółowej Mapy

Geologicznej Polski, 1:50 000, ark.

Świerże/Okopy, Wyd. Geol., Warszawa.

Chiżniakow A.W., Żelichowski A.M., 1974.

Zarys tektoniki obszaru lubelskolwowskiego.

Kwart. Geol., 18, 4, 707-

719.

Croot D.G. 1987. Glacio-tectonic structures: a

mesoscale model of thin-skinned thrust

sheets? Journal of Structural Geology, 9,

797-808.

Croot D.G. 1988. Glaciotectonics and surging

glaciers: A correlation based on

Vestspitsbergen, Svalbard, Norway. [in:]

(ed.) D.G. Croot: Glaciotectonics: Forms

and processes. A. A. Balkema, Rotterdam,

49-61.

Dobracki R., Krzyszkowski D. 1997.

Sedimentation and erosion At the

Weichselian ice-marginal zone near

Golczewo, northwestern Poland.

Quaternary Science Reviews, 16, 721-740.

Dobrowolski R. 1995. Drobne struktury

tektoniczne w skałach górnokredowych

wschodniej części Wyżyny Lubelskiej a

dyslokacje podłoża platformy

wschodnioeuropejskiej w kenozoiku.

Annales Soc. Geol. Polon., 65, 1-4, 79-91.

Dobrowolski R. 2006. Glacjalna i

peryglacjalna transformacja rzeźby

krasowej północnego przedpola wyżyn

lubelsko-wołyńskich (Polska SE, Ukraina

NW). Wyd. UMCS, Lublin, 188 pp

Dobrowolski R., Bałaga K., Terpiłowski S.

2004a. Geosystem jeziora Perespilno –

rekonstrukcja paleośrodowiskowa. [w:]

(red.) R. Dobrowolski, S. Terpiłowski, Stan

i zmiany środowiska geograficznego

wybranych regionów wschodniej Polski.

Wyd. UMCS, Lublin, 255-261.

Dobrowolski R., Bogucki A., Zaleski I.

2005a. Morphogenesis of chalk karst in the

Volhynia Elevation (NW Ukraine). Kras i

Speleologia, 11 (XX), 87-105.

Dobrowolski R., Harasimiuk M. 2002.

Geologiczne uwarunkowania rozwoju

rzeźby Polesia. Acta Agroph., 66, 7-19.

Dobrowolski R., Terpiłowski S., Zaleski I.

2004b. Paleomorfologia podczwartorzędowa

zachodniego Polesia i jej wpływ

na przebieg odrzańskich (=dnieprzańskich)


Model of glaciogenic transformation of the Lublin-Volhynia chalk karst 177

procesów glacigenicznych. [w:] Z.

Michalczyk (red.), Badania geograficzne w

poznawaniu środowiska. Wyd. UMCS,

Lublin, 118-122.

Dobrowolski R., Terpiłowski S. 2006;

Influence of palaeokarst morphology on the

formation of ice-pushed ridges: a case

study from Rejowiec, eastern Poland.

Boreas, 35, 2: 213-221.

Dobrowolski R., Terpiłowski S., Zaleski I.

2005b. Rzeźba podplejstoceńska Polesia

Wołyńskiego. [w:] (red.) A. Boguckij,

Glacjał i peryglacjał Polesia Wołyńskiego,

Centrum Wyd. Narod. Uniwersytetu im. I.

Franko, Lviv, 38-45.

Drewry D.J. 1986. Glacial geologic processes.

Edward Arnold, London, 276 pp

Evenson E.B., Clinch J.M. 1987. Debris

transport mechanisms at active alpine

glacier margins: Alaskan case studies. [in:]

(eds.) R. Kujansuu, M. Saarnisto. INQUA

Till Symposium, Finland, 1985. Geological

Survey of Finland, Special Paper, 3, 111-

136.

Eyles N. 1983. Modern Icelandic glaciers as

depositional models for ‘hummocky

moraine’ in the Scottish Highlands. [in:]

(eds.) B.E. Evenson, C. Schlüchter, J.

Rabassa. Tills and diamictite sequences.

A.A. Balkena, Rotterdam, 47-60.

Eyles N., Sasseville D.R., Slaft R.M.,

Rogerson R.J. 1982. Geochemical

denudation rates and solute transport

mechanisms in a maritime temperature

glacier basin. Can. Jour. Earth Sci., 19,

1570-1581.

Ford D.C. 1987. Effects of glaciations and

permafrost upon the development of karst

in Canada. Earth Surface Processes and

Landforms, 12, 507-521.

Ford D.C. 1989. Paleokarst of Canada. [in:]

(eds) P. Bosák, D. C. Ford, J. Głazek, I.

Horaček, Paleokarst. A systematic and

regional review. Elsevier and Academia,

Amsterdam and Praha, 313-335.

Ford D.C., Williams P. 1989. Karst

geomorphology and hydrology. Unwin

Hyman, London, 601 pp

Gardziel Z., Harasimiuk M. 2005. Polska

południowo-wschodnia. Polesie Lubelskie,

Wyżyna Lubelska, [w:] (red.) A. Ber, D.

Krzyszkowski, Glacitektonika wybranych

obszarów Polski. Biuletyn PIG, 408, 105-

106.

Gvozdeckij N.A. 1965. Voprosy tipologii i

klassifikacii karsta SSSR. [w:] (red.) A. G.

Chikishev. Tipy karsta v SSSR. Trudy

Moskovskogo obshchestva ispytatelej

prirody, 15, Izdat. Nauka, Moskva, 5-11.

Hakenberg M., Świdrowska J. 2001.

Cretaceous basin evolution in the Lublin

area along the Teisseyre-Tornquist Zone

(SE Poland). Annales Soc. Geol. Pol., 71,

1-20.

Harasimiuk M. 1975. Rozwój rzeźby Pagórów

Chełmskich w trzeciorzędzie i

czwartorzędzie. Prace Geogr. IG PAN, 115,

1-94.

Harasimiuk M., Henkiel A. 1984. Kenozoik

Lubelskiego Zagłębia Węglowego.

Przewodnik 56 Zjazdu PTGeol., 6-

8.09.1984, Lublin, Wyd. Geol., Warszawa,

56-69.

Harasimiuk M., Henkiel A., Przemyski S.

1980. Neotektonika i jej wpływ na warunki

wodne Centralnego Rejonu Węglowego.

Mat. Konf.: Metody i wyniki badań

hydrogeologicznych złóż węgli

kamiennych w rejonie CRW LZW. Wyd.

Geol., Warszawa, 37-40.

Harasimiuk M., Rzechowski J., Szwajgier W.

1993. Wpływ ruchów neotektonicznych na

warunki rozwoju równi zalewowej i koryta

Bugu w Obniżeniu Dubienki (Polesie

Zachodnie). Ann. UMCS, B, 48, 123-132.

Harasimiuk M., Szwajgier W., Terpiłowski S.

2004. Wpływ lądolodu zlodowacenia warty

na rzeźbę przedpola Wyżyny Lubelskiej.

[w:] (red.) M. Harasimiuk, S. Terpiłowski.

Zlodowacenie warty w Polsce, Wyd.

UMCS, Lublin, 163-171.

Harasimiuk M., Wojtanowicz J. 1998. Budowa

geologiczna i rzeźba terenu Pojezierza

Łęczyńsko-Włodawskiego. [w:] (red.) M.

Harasimiuk, Z. Michalczyk, M. Turczyński.


178 Radosław Dobrowolski

Jeziora Łęczyńsko-Włodawskie.

Monografia przyrodnicza. Lublin, 41-54.

Henkiel A. 1983. Regionalne zróżnicowanie

facjalne czwartorzędu. Mat. konf.,

Kenozoik LZW, UMCS, Lublin, 92-107.

Henkiel A. 1984. Tektonika pokrywy mezokenozoicznej

na północnym skłonie wału

metakarpackiego.

Annales UMCS, B, 39, 15-38.

Herbich P. 1980. Tektoniczne uwarunkowania

horyzontalnej anizotropii warunków

wodoprzepuszczalności utworów górnej

kredy okolic Chełma. Tech. Poszuk. Geol.,

3, 27-32.

Herbich P. 1984. Rola przewarstwień

półprzepuszczalnych w zasilaniu i krążeniu

wód podziemnych kredy lubelskiej - Kol.

Hruszów, Krynica (Ariańska Góra). Przew.

56 Zjazdu PTGeol. w Lublinie, Wyd. Geol.,

175-183.

Hooke R. Le B. 1989. Englacial and subglacial

hydrology: a qualitative review. Arc. and

Alp. Res., 21, 3, 221-233.

Hubbard B., Nienow P. 1997. Alpine

subglacial hydrology. Quaternary Sc. Rev.,

16, 939-955.

Iken A., Bindchadler R.A. 1986. Combined

measurements of subglacial water pressure

and surface velocity of Findelengletscher,

Switzerland. Conclusions about drainage

system and sliding mechanism. Journal of

Glaciology, 32 (110), 101-119.

Jakucs L. 1977. Morphogenetics of karst

regions: variants of karst evolution.

Akademiai Kiado, Budapest, 310 pp.

Jania J. 1993. Glacjologia. Wyd. Naukowe

PWN, Warszawa, 359 pp.

Jarosiński M. 2005. Współczesny reżim

tektoniczny w Polsce na podstawie analizy

testów szczelinowania hydraulicznego ścian

otworów wiertniczych. Przegląd

Geologiczny, 53, 10/1, 863-872.

Jaroszewski W. 1991. Rozważania

geologiczno-strukturalne nad genezą

deformacji glacitektonicznych. Annales

Societatis Geologorum Poloniae 6, 153-

206.

Kamb B. 1987. Glacier surge mechanism

based on linked cavity configuration of the

basal water conduit system. Journ. Geoph.

Res., 92 (B9), 9083-9100.

Kirkbride M.P. 1995. Ice flow vectors on the

debris-mantled Tasman Glacier, 1957-

1986. Geogr. Ann., 77A, 147-157.

Knight J. 2002. Bedform patterns, subglacial

meltwater evens, and Late Devensian ice

sheet dynamics in north-central Ireland.

Global and Planetary Change, 35, 237-253.

Knight J. 2003. Temporal changes in

subglacial meltwater activity: field

evidence from the late Devensian In the

north of Ireland. Sedimentary Geology,

160, 291-307.

Krajewski S. 1970. Charakterystyka dróg

krążenia wód podziemnych w utworach

szczelinowych górnej kredy na Wyżynie

Lubelskiej. Przegląd Geol., 8-9, 208-209.

Krajewski S., Motyka J. 1999. Model sieci

hydraulicznej w skałach węglanowych w

Polsce. Biuletyn PIG, 388, 115-138.

Kruglov S.S., Cypko A.K. 1988. Tektonika

Ukrainy. Nedra. Moskva, 254 pp.

Krynicki T. 1995. Faults in the Cretaceous and

its base as displayed on seismic sections

through the Lublin area (east Poland). Geol.

Quart., 39, 3, 373-388.

Krzyszkowski D., Zieliński T. 2002. The

Pleistocene end moralne fans: controls on

their sedimentation and location.

Sedimentary Geology, 149, 73-92.

Lindner L., Bogucki A. Gożyk P., Marciniak

B., Marks L., Łanczont M., Wojtanowicz J.

2002. Główne cykle klimatyczne w

stratygrafii plejstocenu Polski i Ukrainy.

Przegląd Geol., 50, 9, 787-792.

Lindner L., Boguckij A., Chlebowski R.,

Jełowiczewa J., Wojdanowicz J., Zalesskij

I. 2005. Zarys stratygrafii

plejstocenuPolesia Wołyńskiego (NW

Ukraina). [w:] (red.) A. Boguckij, Glacjał i

peryglacjał Polesia Wołyńskiego. Centrum

Wyd. Narod. Uniwersytetu im. I. Franko,

Lwiw, 54-77.


Model of glaciogenic transformation of the Lublin-Volhynia chalk karst 179

Lindner L., Bogutsky A., Gozhik P., Marks L.,

Łanczont M., Wojtanowicz J. 2006.

Correlation of Pleistocene deposits in the

area between the Balic and Black Sea,

Central Europe. Geol. Quaterly, 50, 1, 195-

210.

Lindner L., Maruszczak H., Wojtanowicz J.

1985. Zasięgi i chronologia starszych

zasunięć stadialnych lądolodu

środkowopolskiego (Saalian) między górną

Wartą i Bugiem. Przegląd Geol., 2, 57-63.

Liszkowski J. 1975. Wpływ pionowych

ruchów skorupy ziemskiej na kształtowanie

się warunków hydrogeologicznych

wodonośców szczelinowych. Mat. Konf.

Współczesne i neotektoniczne ruchy

skorupy ziemskiej w Polsce, t. I, Wyd.

Geol., Warszawa, 279-290.

Liszkowski J. 1979. Objaśnienia do

Szczegółowej Mapy Geologicznej Polski,

1:50000, arkusz Ostrów Lubelski, Inst.

Geol., Warszawa, 100 pp.

Liszkowski J. 1993. The effects of Pleistocene

ice-sheet loading-deloading cycles on the

bedrock structure of Poland. Folia

Quaternaria, 64, 7-23.

Lomaev A.A. 1979. Geologija karsta Volyno-

Podolii. Naukova Dumka, Kiev, 132 pp.

Łozińska-Stępień H. 1975. Zmienność

własności fizyczno-mechanicznych kredy

piszącej LZW. Biul. Geol. Uniw. Warsz.,

18.

Łozińska-Stępień H. 1988. Podatność kredy

piszącej na odkształcenia w świetle

procesów

glacjalnych. Przegląd Geol., 11.

Maksimovich G.A. 1969. Karst mela. [w:]

Osnovy karstovedenija. II, Perm, 383-421.

Marinich A.M.1963. Geomorfologija juzhnogo

Polesija. Izdat. Kiev. Univ., Kiev, 250 pp.

Maruszczak H. 1966. Zjawiska krasowe w

skałach górnokredowych międzyrzecza

Wisły i Bugu (Typ krasu kredy piszącej).

Przegląd Geogr., 38, 3, 339-370.

Michalczyk Z. 1986. Warunki występowania i

krążenia wód na obszarze Wyżyny

Lubelskiej

i Roztocza. Rozprawa habilitacyjna,

UMCS, Lublin, 195 pp.

Monkievich K.N., Konishchev V.S.,

Karabanov A.K. 2001. Istorija

tektonicheskogo razvitija. Kimerijskoalpijskij

etap. [w:] (eds) A.S. Machnach,

R.G. Gareckij, A.V. Matveev, Geologija

Belarusi. Nacionalnaja Akademija Nauk

Belarusi, Minsk, 629-634.

Murray T., Clarke G.K.C. 1995. Black box

modelling of the subglacial water system.

Journal of Geophysical Research, 100,

10231-10245.

Nye J. 1973. Water at the bed of the glacier.

International Association of Hydrological

Science Publication, 95, 189-194.

Palienko V.P. 1992. Novejshaja geodinamika i

ee otrazenije v rel’efe Ukrainy. Naukova

Dumka, Kiev, 116 pp.

Pasternak S.I., Sen’kovskij J.M., Gavrilišin

V.I. 1987. Volino-Podillia v krejdovomu

periodi. Naukowa Dumka, Kiiev, 258 pp.

Paterson W.S.B. 1994. The Physics of

Glaciers. Pergamon, Oxford, 480 pp.

Piotrowski J.A. 1997. Subglacial hydrology in

north-western Germany during the last

glaciation: groundwater flow, tunnel

valleys and hydrological cycles. Quaternary

Science Reviews, 16, 169-185.

Piotrowski J.A., Geletneky J., Pater R. 1999.

Soft-bedded subglacial meltwater Chanel

from the Węzłów-Süd, open-cast lignite

mine, Lower Lusatia, eastern Germany.

Boreas, 28, 363-374.

Pulina M. 1974. Denudacja chemiczna na

obszarach krasu węglanowego. Prace

Geograficzne IG PAN, 105, 159 pp.

Pulina M. 1977. Uwagi o zjawiskach

krasowych w południowej części

Spitsbergenu. Kras i speleologia, 1, 104-

129.

Pulina M. 1999. Kras. Formy i procesy. Wyd.

Uniw. Śląskiego, Katowice, 375 pp.

Pulina M. 2005. Le karst et les phénomènes

karstiques similaires des régions froides.

[in:] (eds) J.N. Salomon, M. Pulina. Les


180 Radosław Dobrowolski

karsts des regions cimatiques extremes.

Karstologia Mémoires, 14, 11-56.

Rotnicki K. 1976. The theoretical basis for and

a model of the origin of glaciotectonic

deformations. Quaestiones Geographicae 3,

103-139.

Röthlisberger H. 1972. Water pressure in intraand

subglacial channels. J. Glaciol., 11, 62,

177-203.

Röthlisberger H., Iken A. 1981. Plucking as an

effect of water-pressure variations at the

glacier bed. Ann. Glaciol., 2, 56-62.

Röthlisberger H., Lang H. 1987. Glacial

Hydrology. [in:] (eds.) A.M. Gurner, M.J.

Clark, Glaciofluvial sediment transfer. J.

Whiley & Sons Ltd., London, 207-284.

Różkowski A., Rudzińska T. 1978. Model

hydrogeologiczny Centralnego i

Pólnocnego Okręgu Węglowego w

Lubelskim Zagłębiu Węglowym. Kwart.

Geol., 22, 2, 395-414.

Rühle E. 1948. Kreda i trzeciorzęd

zachodniego Polesia. Biul. PIG, 34, 1-120.

Rühle E. 1976. Uwagi o zjawiskach krasowych

między środkową Wisłą a Bugiem oraz

Bugiem i Styrem. Studia Soc. Sc.

Torunensis, 8, 4-6.

Ruszczyńska-Szenajch H. 1976.

Glacitektoniczne depresje i kry lodowcowe

na tle budowy geologicznej południowowschodniego

Mazowsza i południowego

Podlasia. Stud. Geol. Pol., 50, 160 pp.

Rybicki S., Rybicki J. 1973. Własności

inżyniersko-geologiczne utworów

kredowych okolic Chełma Lubelskiego.

Kwart. Geol., 17, 2, 301-309.

Rzechowski J. 1962. Kopalne formy krasowe z

kamieniołomu w Rejowcu. Kwart. Geol., 6,

1, 109-123.

Rzechowski J. 1997. Trzeciorzęd i czwartorzęd

wschodniej części Wyżyny Lubelskiej i

Roztocza na Mapie geologicznej Polski

1:200000. Przegląd Geol., 45, 11, 1202-

1208.

Shreve R.L. 1972. Movement of water in

glaciers. J. Glaciol., 11, 205-214.

Solonienko V.P. 1975. Sejsmogeologija i

sejsmicheskoe rajonirovanie. [w:]

Problemy nauk o Zemle i ich razvitie.

Irkutsk, 21-31.

Sudgen D. E., John B. S. 1976. Glaciers and

Landscape. A Geomorphological

Approach. Edward Arnold, London, 376

pp.

Thomas G. S. P., Summers A. J. 1984. Glaciodynamic

structures from the Blackwater

Formation, Co. Wexford, Ireland. Boreas

13, 5-12.

Van der Wateren D. F. M. 1985. A model of

glacial tectonics, applied to ice-pushed

ridges in central Netherlands. Bulletin of

the Geological Society of Denmark 34, 55-

74.

Van der Wateren D. F. M. 1995. Processes of

glaciotectonism. In Menzies, J. (ed.):

Modern Glacial Environments: Processes,

Dynamics and Sediments. Glacial

Environment 1, Butterworth-Heineman,

London, 309-335.

Van Weert F.H.A., Van Gijssel K., Leijnse A.,

Boulton G.S. 1997. The effects of

Pleistocene glaciations on the

geohydrological system of Northwest

Europe, 195, 137-159.

Walder J.S., Fowler A. 1994. Channelized

subglacial drainage over a deformable bed.

J. Glaciol., 40 (134), 3-15.

Weertman J. 1972. General theory of water

flow at the base of a glacier or ice sheet.

Rev. Geoph. Space Phys., 10, 287-333.

Wilgat T. 1950. Kras okolic Cycowa. Annales

UMCS, B, 4, 229-256.

Wright M.D. 1973. Tunnel valleys, glacial

surges, and subglacial hydrology of the

Superior lobe, Minnesota. [in:] (eds.) R.F.

Black, Goldthwait, H.B. Williams. The

Wisconsinan Stage. Geological Society of

America Memoir, 135: 251-276.

Wyrwicka K. 1980. Stratygrafia, facje i

tektonika mastrychtu zachodniej części

Wyżyny Lubelskiej. Kwart. Geol., 24, 4,

805-819.


Model of glaciogenic transformation of the Lublin-Volhynia chalk karst 181

Wyrwicka, K. 1984. Litostratygraficzne

podstawy podziału surowcowego kredy

górnej z obszaru radomsko-lubelskiego.

Przegląd Geol., 6, 333-340.

Wyrwicka K., Wyrwicki R. 1986. Przekrój

geologiczny łuku Uhruska. Kwart. Geol.,

30, 3-4, 629-642.

Zalesskij I. 1989. Karta estestvennoj

zashchishchennosti podziemnych vod

Ukrainskoj SSR, Masshtab 1:200 000,

Volynskaja Oblast’. Objasnitelnaja zapiska.

Ministerstvo Geologii SSSR, Kiev, 1-55.

Zieliński T., van Loon A.J. 1996.

Charakteristics and genesis of morainederived

flowtill varieties. Sedimentary

Geology, 101, 119-143.

More magazines by this user
Similar magazines