1 - CAO PDM PLM - Formations initiale et continue
1 - CAO PDM PLM - Formations initiale et continue
1 - CAO PDM PLM - Formations initiale et continue
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
Modèles mathématiques<br />
Catia V5<br />
http://www.diderot.org/<br />
61, rue David d’Angers<br />
75019 PARIS<br />
Pierre Vinter 1
SOMMAIRE<br />
Contexte du travail présenté<br />
Etude des modèles sur Catia V5<br />
-Courbes<br />
- Surfaces<br />
- Analyses<br />
Prochains Objectifs<br />
Conclusions<br />
Remarques préliminaires :<br />
- Travail non terminé !!<br />
- Document Franco-Anglais<br />
- Valider sur certains points par D. S.<br />
Pierre Vinter 2
<strong>Formations</strong>, diplômes préparés<br />
Lycée Diderot<br />
‣ Microtechniques<br />
‣ E.D.P.I : Etude <strong>et</strong> définition de produits industriels<br />
‣ Artisanat <strong>et</strong> métiers d’art option : Horlogerie<br />
http://www.gita.gr<strong>et</strong>a.fr/<br />
Pierre Vinter 3
Licence Professionnelle « Métiers de la production »<br />
option CONCEPTION COLLABORATIVE – MAQUETTE VIRTUELLE<br />
Partenariat avec l’IUT de Saint Denis<br />
En contrat d’apprentissage<br />
Conception de<br />
Produit<br />
Conception<br />
Forme de style<br />
Gestion de la<br />
connaissance<br />
Travail Collaboratif<br />
Maqu<strong>et</strong>te Numérique<br />
Conception <strong>et</strong><br />
Calculs<br />
SMARTEAM<br />
CATIA V5<br />
Gestion de données<br />
techniques<br />
Conception <strong>et</strong><br />
Fabrication<br />
Utiliser le potentiel de Catia V5 peu utilisé en BTS:<br />
- Generative Shape Design <strong>et</strong> Freestyle<br />
- Knowledge Advisor, Expert ….<br />
- Generative Structural Analysis<br />
Pierre Vinter 4
Licence Professionnelle<br />
CONCEPTEUR NUMERIQUE EN DESIGN ET TECHNIQUE AUTOMOBILE<br />
Demandeurs PSA <strong>et</strong> Renault<br />
Début<br />
septembre 2006<br />
Définition de surfaces Class A<br />
à partir de courbes de Bézier<br />
Pierre Vinter 5
OBJECTIFS :<br />
Formation de niveau BAC + 3<br />
Comprendre les informations données<br />
par le logiciel<br />
Appliquer les notions mathématiques en<br />
manipulant sur Catia V5<br />
Type of geom<strong>et</strong>ry posted<br />
Definition<br />
NupbsCurve<br />
Curve NUPBS no rational<br />
NupbsSurface<br />
Surface NUPBS no rational<br />
NurbsCurve<br />
Curve NURBS rational<br />
NurbsSurface<br />
Surface NURBS rational<br />
PNupbs<br />
Param<strong>et</strong>ric Curve rational<br />
PNurbs<br />
Param<strong>et</strong>ric Curve on surface<br />
PSpline<br />
Param<strong>et</strong>ric Curve<br />
Pierre Vinter 6
Evolution jusqu’aux NURBS<br />
Modeleur paramétrique variationnel<br />
PARAMETRAGE<br />
NURBS<br />
POLYNOMIALS CURVES<br />
CUBIC - QUINTIC SPLINE<br />
BEZIER CURVE<br />
NO UNIFORM B-SPLINE<br />
B-SPLINE<br />
RATIONAL<br />
BEZIER CURVE<br />
Pierre Vinter 7
Representations<br />
Il n’y a pas que la<br />
représentation paramétrique<br />
Explicit representation<br />
Explicit form of a curve 2D : y = f(x)<br />
Explicit form of a surface : z = f(x, y)<br />
Implicit representation<br />
Implicit form of a curve 2D: f(x, y) = 0<br />
Implicit form of a surface 3D: f(x, y, z) = 0<br />
Param<strong>et</strong>ric représentation<br />
• Curve x(u), y(u), z(u)<br />
• Surface x(u, v), y(u, v), z(u, v)<br />
Pierre Vinter 8
CONIQUES<br />
Implicite equation<br />
y 2 -2.p x - (1 -e 2 ) x 2 = 0<br />
Explicit equation<br />
Param<strong>et</strong>ric equation ???<br />
0 < Param<strong>et</strong>er < 0,5 → Ellipse<br />
Param<strong>et</strong>er = 0,5 → Parabola<br />
0,5 < Param<strong>et</strong>er < 1 → Hyperbola<br />
PARAMETRE ≠ EXCENTRICITE<br />
Pierre Vinter 9
Paramétrage : Droite - Cercle<br />
D (u) = ( 1 – u ) OA + u OB<br />
u param<strong>et</strong>er varying from 0 to 1<br />
B<br />
A (u) = R ( cos U e 1 + sin U e 2 ) + OC<br />
A<br />
Paramétrage en<br />
abscisse curviligne<br />
OM = OA + s<br />
AB<br />
AB<br />
With 0 < s < AB<br />
A (s) = R ( cos (s/R) e 1 + sin (s/R) e 2 ) + OC<br />
Pierre Vinter 10
AVANTAGES<br />
Trièdre de Fren<strong>et</strong><br />
R c<br />
: curvature radius<br />
R t<br />
: torsion radius<br />
κ : curvature<br />
τ : torsion<br />
B = T ∧ N<br />
N =1<br />
dOM<br />
2<br />
ds<br />
2<br />
= 1/Rc<br />
Avec un paramétrage en abscisse<br />
curviligne, il est plus facile de<br />
déterminer les rayons de courbure<br />
d’une courbe 3D<br />
Pierre Vinter 11
Curvature – torsion helix<br />
T<br />
x= - R/c sin(s/c)<br />
y = R/c cos(s/c)<br />
z = p / c<br />
- cos(s/c)<br />
N - sin (s/c)<br />
0<br />
-R/c 2 cos(s/c)<br />
dT/ ds -R/c 2 sin (s/c)<br />
0<br />
p/c sin(s/c)<br />
B - p/c cos (s/c)<br />
R/c<br />
dB/ds<br />
p/c 2 cos(s/c)<br />
p/c 2 sin (s/c)<br />
0<br />
T . N = 0<br />
B = T ∧ N<br />
c = √ R 2 + p 2<br />
Curvature radius<br />
Rc = (R 2 +p 2 ) /R<br />
Torsion radius<br />
Rt = - (R 2 +p 2 ) /p<br />
Rt = 252,9 mm<br />
R = 20 mm<br />
p = 10 / 2π<br />
Pierre Vinter 12
C(u)<br />
T = d OM/du × du / ds =<br />
N =<br />
Example 2 : -4 < u < 5<br />
x = u 2 + u + 1<br />
y = u 2 – 2u + 2<br />
-2(u - 1) du/ds<br />
(2u + 1) du/ds<br />
ds/du = √ 8u 2 – 4u + 5<br />
(2u +1) du/ds<br />
2(u-1) du/ds<br />
N =<br />
dT/<br />
ds<br />
dT/<br />
ds<br />
1/R c =<br />
6<br />
(8u 2 –4u + 5) 3/2<br />
-4 < u < 5<br />
Pierre Vinter 13
SPLINE<br />
SPLINE CUBIQUE OU QUINTIQUE ??<br />
Courbe polynomiale<br />
par morceaux<br />
Sub S<strong>et</strong>SplineType( long iSplineType)<br />
S<strong>et</strong>s the spline type.<br />
Param<strong>et</strong>ers: iSplineType<br />
The spline type<br />
Legal values: Cubic spline or WilsonFowler ????<br />
Pierre Vinter 14
SPLINE CUBIQUE<br />
OM = (2u 3 –3u 2 +1) OP 0<br />
+ (-2u 3 + 3u 2 ) OP 1<br />
+ (u 3 –2u 2 + u) dOP 0<br />
/du + (u 3 –u 2 ) dOP 1<br />
/du<br />
SPLINE QUINTIQUE<br />
OM = H 1<br />
(u) OP 0<br />
+ H 2<br />
(u) OP 1<br />
+ H 3<br />
(u) dOP 0<br />
/du + H 4<br />
(u) dOP 1<br />
/du + H 5<br />
(u) d 2 OP 0<br />
/du 2 +H 6<br />
(u) d 2 OP 0<br />
/du 2<br />
M(u) = [u][M][P]<br />
Spline<br />
with Catia<br />
[M] =<br />
−6<br />
+ 15<br />
−10<br />
0<br />
0<br />
1<br />
+ 6<br />
−15<br />
+ 10<br />
0<br />
0<br />
0<br />
−3<br />
+ 8<br />
−6<br />
0<br />
1<br />
0<br />
−3<br />
+ 7<br />
−4<br />
0<br />
0<br />
0<br />
−1/2−<br />
1/2<br />
+ 1,5 −1<br />
−1,5<br />
+ 1/2<br />
0,5 0<br />
0 0<br />
0 0<br />
Spline quintic<br />
calculed<br />
Pierre Vinter 15
TENSION<br />
Point 1 (0,0,0); Point (3,2,0); Point 3 (0,3,0)<br />
Line at the point 2 : angle 45°<br />
C 2 (u)<br />
C 1 (u)<br />
x = 3 - u - 6 u 2 + 4 u 3<br />
y = 2 + u + u 2 -u 3<br />
x= u + 8 u 2 -6 u 3<br />
y = 5 u 2 -3 u 3<br />
M(u) = [u][M][P]<br />
2 -2 1 1<br />
0 0 0<br />
-6 –3 0<br />
C 1 (u) [M][P] =<br />
-3 3 -2 -1<br />
0 0 1 0<br />
3 2 0<br />
1 0 0<br />
=<br />
8 5 0<br />
1 0 0<br />
1 0 0 0<br />
-1 1 0<br />
0 0 0<br />
Pierre Vinter 16
2 -2 1 1<br />
-3 3 -2 -1<br />
0 0 1 0<br />
0 0 0<br />
3 2 0<br />
3 0 0<br />
=<br />
-6 -1 0<br />
6 3 0<br />
3 0 0<br />
C 1 (u) become<br />
X = 3 u + 6 u 2 -6 u 3<br />
y = 3 u 2 - u 3<br />
1 0 0 0<br />
-3 3 0<br />
0 0 0<br />
Tension s<br />
0 0 0<br />
3 2 0<br />
Tension<br />
calculée = 1<br />
s 0 0<br />
-s s 0<br />
Tension<br />
calculée = 3<br />
Pb : Tension Catia = 1<br />
Pierre Vinter 17
Boundary Conditions<br />
Une spline passant par trois points <strong>et</strong> dont les<br />
tangentes V1 <strong>et</strong> V3 sont connues<br />
Inconnue<br />
- To impose the tangency at the ends of the curve<br />
- To impose a curvature given at the two ends<br />
(Null curvature → natural Cubic Spline)<br />
Deux courbes de degré 3 dans le plan XY<br />
→ 2 × 8 =16 unknown factors<br />
Three points (2×4) + Condition of tangency and<br />
curvature b<strong>et</strong>ween the 2 curves → 12<br />
Equations<br />
It is necessary to add 4 conditions<br />
Pierre Vinter 18
Least Energy<br />
Minimizes the internal strain energy<br />
so the minimum curvature<br />
δ<br />
2<br />
= ∫κ<br />
ds<br />
minimized<br />
κ = curvature<br />
s = curvilinear abscissa<br />
circle<br />
4 constraints<br />
Spline degree 5<br />
⇒ Least energy<br />
Pierre Vinter 19
y<br />
Curve with<br />
=<br />
R N 0<br />
c<br />
+1<br />
0<br />
x<br />
What solution to draw the curve<br />
without all the conditions ?<br />
The curvature direction is projected<br />
on a plane perpendicular to the<br />
tangency direction y<br />
=<br />
R N 0<br />
c<br />
-1/2<br />
0<br />
x<br />
Pierre Vinter 20
BEZIER CURVE<br />
Limits of splines<br />
The numerical definition of a Bézier curve<br />
Take a cube and draw a curve, intersection of two<br />
cylinders<br />
BÉZIER Pierre 1910-1999<br />
OM =<br />
n<br />
∑<br />
k = 0<br />
B<br />
k ,<br />
n<br />
( u)<br />
OA<br />
k<br />
Pierre Vinter 21
angency and Curvature<br />
T =<br />
T(u=0)<br />
OM(<br />
u)<br />
du<br />
d<br />
OM(<br />
u)<br />
du<br />
d<br />
=<br />
OP1−OP<br />
OP1−OP<br />
0<br />
0<br />
Displacement of the second pole horizontally<br />
(according to the direction of tangency at the point)<br />
κ =<br />
2<br />
( d<br />
d<br />
OM)<br />
∧(<br />
2<br />
dt dt<br />
d<br />
dt<br />
We can write<br />
OM<br />
OM)<br />
3<br />
d<br />
du<br />
2<br />
2<br />
[ OM(0)]<br />
= n⋅n−1[(<br />
⋅ OP0−OP1)<br />
−(<br />
OP1+<br />
OP2)]<br />
Pierre Vinter 22
Tangency<br />
T(u=0)<br />
=<br />
OP1−OP<br />
OP1−OP<br />
0<br />
0<br />
Displacement of the second pole horizontally (according to<br />
the direction of tangency at the point).<br />
You can change the position of the third point, as you want<br />
Curvature( u=0)=<br />
n −1<br />
( OP<br />
0 −OP<br />
1)<br />
∧ ( OP 2−OP<br />
1)<br />
n OP<br />
1<br />
−OP<br />
3<br />
0<br />
Curvature<br />
You can change the position of the third point but :<br />
not in all direction<br />
with a ratio b<strong>et</strong>ween the 3 first points<br />
The n-th derivative of a bezier curve for one as of the his ends<br />
depends only on the n+1 points of control nearest to this end<br />
Pierre Vinter 23
Continuity of position G 0 :<br />
With Catia<br />
Continuity of class G 1 :<br />
3 points aligned ⇒<br />
curvature = 0<br />
3 points no aligned ⇒ curvature ≠ 0<br />
n−1(<br />
OP<br />
0 −OP1)<br />
∧(<br />
OP2−OP1)<br />
Curvature( u=0)= 3<br />
n OP1−OP<br />
Pierre Vinter 24<br />
0
Rational form of the Bezier ‘s arc<br />
Influence of λ i<br />
:<br />
The param<strong>et</strong>er λ i<br />
acts like a weight on<br />
the associated top by attracting the<br />
curve towards this top.<br />
Three tops P 0<br />
, P 1<br />
, P 2<br />
OM =<br />
λ0B<br />
0,2<br />
define the characteristic polygon of the curve of degree 2.<br />
OP0+<br />
λ1B1,2OP2+<br />
λ2B<br />
λ0B0,2+<br />
λ1B1,2+<br />
λ2B2,2<br />
2<br />
2<br />
λ0(<br />
1−u<br />
) OP0+<br />
2λ1u(1−u ) OP1+<br />
λ2u OP<br />
= 2<br />
2<br />
λ0(<br />
1−u<br />
)<br />
+ 2λ1u(1−<br />
u)<br />
+<br />
λ2u<br />
2,2<br />
OP<br />
2<br />
2<br />
λ i →∞<br />
Pierre Vinter 25
2<br />
2<br />
λ0(<br />
1−u<br />
) OP0+<br />
2λ1u(1−u ) OP1+<br />
λ2u OP<br />
OM= 2<br />
2<br />
λ0(<br />
1−u<br />
) + 2λ1u(1−u<br />
) + λ2u<br />
If λ 0<br />
= 1-λ ; λ 1<br />
=λ ; λ 2<br />
=1-λ,<br />
the denominateur become = 2(1-2λ)u 2 -2(1-2λ)u+1-λ<br />
the discrimant ∆ for finding the roots of the denominateur is = 2λ -1<br />
2<br />
When λ > ½, the denominator has different<br />
real roots, the curve have asymptotes<br />
When λ < ½, the denominator does not have<br />
any real roots, the curve does not have an<br />
asymptote<br />
0 < Param<strong>et</strong>er ω < 0,5 → Ellipse<br />
Param<strong>et</strong>er ω = 0,5 → Parabola<br />
0,5 < Param<strong>et</strong>er ω < 1 → Hyperbola<br />
When λ = ½, the denominator become constant<br />
If λ=0 one line and λ=1; two lines<br />
Pierre Vinter 26
OI = (1-ω)OH + ωOP 1<br />
93,333 × 0,8 = 74,664 !!!<br />
ω = Linear<br />
interpolation<br />
b<strong>et</strong>ween H<br />
and P 1<br />
Pierre Vinter 27
Basic-splines<br />
Polynomial param<strong>et</strong>ric shape per pieces → change of the position of a control<br />
point will have a limited impact on the function obtained.<br />
Definition : A B-spline curve of degree d (ou d'ordre k = d + 1) is thus defined by:<br />
-a knots vector T = (t 0<br />
, t 1<br />
,..., t m<br />
), m+1 réels t i<br />
- n+1 control points P i<br />
- n+1 weight functions N i, k<br />
defined recursively on intervals [t i<br />
, t i+1<br />
] :<br />
OM(u)=<br />
n<br />
∑ N<br />
i=0<br />
i, d(<br />
u)<br />
OP<br />
i<br />
To build a B-spline curve of degree d from n+ 1 points P i , it is thus necessary to be given<br />
m + 1 knots or m = n + d + 1, allowing to define the basic functions N i,d (u).<br />
Pierre Vinter 28
Example 1<br />
Displacement of control point<br />
Uniform Basic<br />
Spline<br />
No Uniform<br />
Basic Spline<br />
Pierre Vinter 29
NUPBS CATIA<br />
Assistant de conversion<br />
By defect, the degree of the curves<br />
created by Catia is 5<br />
ordre k = d + 1<br />
Pierre Vinter 30
NUPBS CATIA<br />
Degree 2<br />
6 points<br />
7 points<br />
Pierre Vinter 31
Where are NURBS in Catia V5<br />
workshop DOCUMENTATION<br />
PowerFit creates a NURBS surface<br />
Creation of 3D NURBS curves<br />
NURBS Formats in APT Output<br />
Réponses DS :<br />
« Elles sont supportées dans CATIA mais on n'offre pas de moyen d'en créer en<br />
interactif. Quand elles existent, elles proviennent d'un import »<br />
« L'interactif ne perm<strong>et</strong> pas de travailler avec un degré inférieur à 5 ni de choisir<br />
l'espacement paramétrique entre 2 noeuds (en V4 on pouvait faire tout ça) »<br />
Pierre Vinter 32
SIMPLE SURFACES<br />
The C(v) curves are lines,<br />
circles,polynomials or others which are<br />
used for the generation of surfaces<br />
Revolution of a profile around an axis<br />
S rev (u,v) = C(v) ( cos U e 1 + sin U e 2 ) + v e 3 + OA<br />
Extrusion of a profile in a given direction.<br />
S éti (u,v) = C 1 (u) + v e3 + OPo<br />
Pierre Vinter 33
NUPBS CATIA<br />
Extruded surfaces<br />
OM(u,v)=<br />
In the v-direction, controls points<br />
OP i,0 = OP i and OP i,1 = OP i+ ∆ n<br />
A curve extrude in the direction of the<br />
unit vector n, through a distance ∆<br />
n<br />
1<br />
∑∑<br />
i= 0 j=<br />
0<br />
N i, d(<br />
u)<br />
Nj,1(<br />
v)<br />
OPi,<br />
j<br />
Knots vector<br />
( v 0 , v 1 , v 2 , v 3 ) = ( 0, 0, 1, 1 )<br />
Pierre Vinter 34
Swept surface<br />
Profil C(u) degree d<br />
Guide B(v) degree e<br />
NUPBS<br />
OM(u,v)=<br />
n<br />
p<br />
∑∑<br />
i= 0 j=<br />
0<br />
N i, d(<br />
u)<br />
Nj,<br />
e(<br />
v)<br />
OPi,<br />
j<br />
Controls points<br />
OP i,j = OC i + OB j<br />
P 23<br />
NURBS<br />
C 2 B 3<br />
Pierre Vinter 35
Ruled<br />
Surfaces<br />
Points Ai sur la courbe C 1<br />
C 1<br />
C 2<br />
Points Bi sur la courbe C 2<br />
OM(u,v)=<br />
n<br />
1<br />
∑∑<br />
i= 0 j=<br />
0<br />
N i, d(<br />
u)<br />
Nj,1(<br />
v)<br />
OPi,<br />
j<br />
Controls points<br />
OP i,0 = OA i<br />
OP i,1 = OB i<br />
The specified curves C i have the same degree and the same knot vector<br />
Pierre Vinter 36
Surfaces of revolution<br />
Circle<br />
Axe<br />
Pierre Vinter 37
Analyze the surfacique curvature<br />
kn<br />
Plan P o<br />
=<br />
Ldu<br />
Edu<br />
2<br />
2<br />
N<br />
T<br />
+ 2Mdudv<br />
+ Ndv<br />
+ 2Fdudv<br />
+ Gdv<br />
C(u,v)<br />
Surface<br />
2<br />
2<br />
with<br />
L<br />
E<br />
=<br />
k n normal curvature on 1 point<br />
d<br />
∂C<br />
∂C<br />
•<br />
∂u<br />
∂u<br />
2<br />
∂ C<br />
= • N<br />
2<br />
∂u<br />
2<br />
M<br />
C(<br />
u,<br />
v)<br />
ds<br />
• N =<br />
k n<br />
Pierre Vinter 38<br />
2<br />
N : normal<br />
vector of the<br />
surface<br />
∂C<br />
∂C<br />
F=<br />
•<br />
∂u<br />
∂v<br />
=<br />
2<br />
∂ C<br />
• N<br />
∂u∂v<br />
Evolution of the curvature k n for the curves C(u,v) on the surface according to<br />
(du/dv) when the plan P o containing the normal N carry out a rotation around N.<br />
N<br />
=<br />
G<br />
N<br />
∂C<br />
∂u<br />
∂C<br />
∂u<br />
=<br />
∂C<br />
Λ<br />
∂v<br />
∂C<br />
Λ<br />
∂v<br />
∂C<br />
∂v<br />
2<br />
∂C<br />
•<br />
∂v<br />
∂ C<br />
= • N<br />
2<br />
∂v
Solutions The extremum values of k N are solution of :<br />
( EG − F<br />
2<br />
) k<br />
2<br />
− ( EN + GL − 2FM<br />
) k + LN − M<br />
2<br />
n<br />
n<br />
=<br />
0<br />
2H<br />
K =<br />
= k<br />
k<br />
n<br />
EN + GL − 2FM<br />
min + kn<br />
max =<br />
=<br />
2<br />
EG − F<br />
2<br />
LN − M<br />
n max . kn<br />
min = =<br />
2<br />
EG<br />
−<br />
F<br />
mean _ curvature<br />
Gaussian_<br />
curvature<br />
Pierre Vinter 39
Analysis with reflect lines<br />
A reflection line on the surface X(u,v) is the mirror image of<br />
the light line L on X(u,v) while looking from fixed eye ep.<br />
X(u,v) surface param<strong>et</strong>rized<br />
N(u,v) normal vector of the surface<br />
It shows the geom<strong>et</strong>ry for a point on the surface where an observer sees a<br />
reflection. For such a point, the display program would then assign a bright white<br />
color to the surface. For points where a reflection is not seen, the standard color<br />
of the surface is chosen. This color is darker than the white reflection color. The<br />
simulation now d<strong>et</strong>ermines the correct color value for a large number of points on<br />
the surface<br />
Pierre Vinter 40
Analysis with isophotes<br />
Definition of isophotes using an eye direction e p : all points with a<br />
constant angle α b<strong>et</strong>ween e p and the normal N(u,v) lie on an isophote.<br />
Light direction vector = r<br />
r . N(u,v) = Constant<br />
Isophote depends<br />
only on normal, not<br />
position<br />
Line or surface joining the<br />
points of equal brightness or<br />
luminous intensity of a<br />
given source<br />
Pierre Vinter 41
CONCLUSIONS<br />
Niveau mathématique insuffisant des<br />
étudiants Bac +3 pour suivre jusqu’au bout,<br />
Encore certains points à développer :<br />
NUPBS,<br />
Cohérence entre les calculs <strong>et</strong> la modélisation<br />
Analyses<br />
Fiabilité de la documentation DS !<br />
Plus facile en V4<br />
Freestyle à orienter « Plan de forme »<br />
Pierre Vinter 42
Pierre Vinter 43