27.10.2014 Views

1 - CAO PDM PLM - Formations initiale et continue

1 - CAO PDM PLM - Formations initiale et continue

1 - CAO PDM PLM - Formations initiale et continue

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

Modèles mathématiques<br />

Catia V5<br />

http://www.diderot.org/<br />

61, rue David d’Angers<br />

75019 PARIS<br />

Pierre Vinter 1


SOMMAIRE<br />

Contexte du travail présenté<br />

Etude des modèles sur Catia V5<br />

-Courbes<br />

- Surfaces<br />

- Analyses<br />

Prochains Objectifs<br />

Conclusions<br />

Remarques préliminaires :<br />

- Travail non terminé !!<br />

- Document Franco-Anglais<br />

- Valider sur certains points par D. S.<br />

Pierre Vinter 2


<strong>Formations</strong>, diplômes préparés<br />

Lycée Diderot<br />

‣ Microtechniques<br />

‣ E.D.P.I : Etude <strong>et</strong> définition de produits industriels<br />

‣ Artisanat <strong>et</strong> métiers d’art option : Horlogerie<br />

http://www.gita.gr<strong>et</strong>a.fr/<br />

Pierre Vinter 3


Licence Professionnelle « Métiers de la production »<br />

option CONCEPTION COLLABORATIVE – MAQUETTE VIRTUELLE<br />

Partenariat avec l’IUT de Saint Denis<br />

En contrat d’apprentissage<br />

Conception de<br />

Produit<br />

Conception<br />

Forme de style<br />

Gestion de la<br />

connaissance<br />

Travail Collaboratif<br />

Maqu<strong>et</strong>te Numérique<br />

Conception <strong>et</strong><br />

Calculs<br />

SMARTEAM<br />

CATIA V5<br />

Gestion de données<br />

techniques<br />

Conception <strong>et</strong><br />

Fabrication<br />

Utiliser le potentiel de Catia V5 peu utilisé en BTS:<br />

- Generative Shape Design <strong>et</strong> Freestyle<br />

- Knowledge Advisor, Expert ….<br />

- Generative Structural Analysis<br />

Pierre Vinter 4


Licence Professionnelle<br />

CONCEPTEUR NUMERIQUE EN DESIGN ET TECHNIQUE AUTOMOBILE<br />

Demandeurs PSA <strong>et</strong> Renault<br />

Début<br />

septembre 2006<br />

Définition de surfaces Class A<br />

à partir de courbes de Bézier<br />

Pierre Vinter 5


OBJECTIFS :<br />

Formation de niveau BAC + 3<br />

Comprendre les informations données<br />

par le logiciel<br />

Appliquer les notions mathématiques en<br />

manipulant sur Catia V5<br />

Type of geom<strong>et</strong>ry posted<br />

Definition<br />

NupbsCurve<br />

Curve NUPBS no rational<br />

NupbsSurface<br />

Surface NUPBS no rational<br />

NurbsCurve<br />

Curve NURBS rational<br />

NurbsSurface<br />

Surface NURBS rational<br />

PNupbs<br />

Param<strong>et</strong>ric Curve rational<br />

PNurbs<br />

Param<strong>et</strong>ric Curve on surface<br />

PSpline<br />

Param<strong>et</strong>ric Curve<br />

Pierre Vinter 6


Evolution jusqu’aux NURBS<br />

Modeleur paramétrique variationnel<br />

PARAMETRAGE<br />

NURBS<br />

POLYNOMIALS CURVES<br />

CUBIC - QUINTIC SPLINE<br />

BEZIER CURVE<br />

NO UNIFORM B-SPLINE<br />

B-SPLINE<br />

RATIONAL<br />

BEZIER CURVE<br />

Pierre Vinter 7


Representations<br />

Il n’y a pas que la<br />

représentation paramétrique<br />

Explicit representation<br />

Explicit form of a curve 2D : y = f(x)<br />

Explicit form of a surface : z = f(x, y)<br />

Implicit representation<br />

Implicit form of a curve 2D: f(x, y) = 0<br />

Implicit form of a surface 3D: f(x, y, z) = 0<br />

Param<strong>et</strong>ric représentation<br />

• Curve x(u), y(u), z(u)<br />

• Surface x(u, v), y(u, v), z(u, v)<br />

Pierre Vinter 8


CONIQUES<br />

Implicite equation<br />

y 2 -2.p x - (1 -e 2 ) x 2 = 0<br />

Explicit equation<br />

Param<strong>et</strong>ric equation ???<br />

0 < Param<strong>et</strong>er < 0,5 → Ellipse<br />

Param<strong>et</strong>er = 0,5 → Parabola<br />

0,5 < Param<strong>et</strong>er < 1 → Hyperbola<br />

PARAMETRE ≠ EXCENTRICITE<br />

Pierre Vinter 9


Paramétrage : Droite - Cercle<br />

D (u) = ( 1 – u ) OA + u OB<br />

u param<strong>et</strong>er varying from 0 to 1<br />

B<br />

A (u) = R ( cos U e 1 + sin U e 2 ) + OC<br />

A<br />

Paramétrage en<br />

abscisse curviligne<br />

OM = OA + s<br />

AB<br />

AB<br />

With 0 < s < AB<br />

A (s) = R ( cos (s/R) e 1 + sin (s/R) e 2 ) + OC<br />

Pierre Vinter 10


AVANTAGES<br />

Trièdre de Fren<strong>et</strong><br />

R c<br />

: curvature radius<br />

R t<br />

: torsion radius<br />

κ : curvature<br />

τ : torsion<br />

B = T ∧ N<br />

N =1<br />

dOM<br />

2<br />

ds<br />

2<br />

= 1/Rc<br />

Avec un paramétrage en abscisse<br />

curviligne, il est plus facile de<br />

déterminer les rayons de courbure<br />

d’une courbe 3D<br />

Pierre Vinter 11


Curvature – torsion helix<br />

T<br />

x= - R/c sin(s/c)<br />

y = R/c cos(s/c)<br />

z = p / c<br />

- cos(s/c)<br />

N - sin (s/c)<br />

0<br />

-R/c 2 cos(s/c)<br />

dT/ ds -R/c 2 sin (s/c)<br />

0<br />

p/c sin(s/c)<br />

B - p/c cos (s/c)<br />

R/c<br />

dB/ds<br />

p/c 2 cos(s/c)<br />

p/c 2 sin (s/c)<br />

0<br />

T . N = 0<br />

B = T ∧ N<br />

c = √ R 2 + p 2<br />

Curvature radius<br />

Rc = (R 2 +p 2 ) /R<br />

Torsion radius<br />

Rt = - (R 2 +p 2 ) /p<br />

Rt = 252,9 mm<br />

R = 20 mm<br />

p = 10 / 2π<br />

Pierre Vinter 12


C(u)<br />

T = d OM/du × du / ds =<br />

N =<br />

Example 2 : -4 < u < 5<br />

x = u 2 + u + 1<br />

y = u 2 – 2u + 2<br />

-2(u - 1) du/ds<br />

(2u + 1) du/ds<br />

ds/du = √ 8u 2 – 4u + 5<br />

(2u +1) du/ds<br />

2(u-1) du/ds<br />

N =<br />

dT/<br />

ds<br />

dT/<br />

ds<br />

1/R c =<br />

6<br />

(8u 2 –4u + 5) 3/2<br />

-4 < u < 5<br />

Pierre Vinter 13


SPLINE<br />

SPLINE CUBIQUE OU QUINTIQUE ??<br />

Courbe polynomiale<br />

par morceaux<br />

Sub S<strong>et</strong>SplineType( long iSplineType)<br />

S<strong>et</strong>s the spline type.<br />

Param<strong>et</strong>ers: iSplineType<br />

The spline type<br />

Legal values: Cubic spline or WilsonFowler ????<br />

Pierre Vinter 14


SPLINE CUBIQUE<br />

OM = (2u 3 –3u 2 +1) OP 0<br />

+ (-2u 3 + 3u 2 ) OP 1<br />

+ (u 3 –2u 2 + u) dOP 0<br />

/du + (u 3 –u 2 ) dOP 1<br />

/du<br />

SPLINE QUINTIQUE<br />

OM = H 1<br />

(u) OP 0<br />

+ H 2<br />

(u) OP 1<br />

+ H 3<br />

(u) dOP 0<br />

/du + H 4<br />

(u) dOP 1<br />

/du + H 5<br />

(u) d 2 OP 0<br />

/du 2 +H 6<br />

(u) d 2 OP 0<br />

/du 2<br />

M(u) = [u][M][P]<br />

Spline<br />

with Catia<br />

[M] =<br />

−6<br />

+ 15<br />

−10<br />

0<br />

0<br />

1<br />

+ 6<br />

−15<br />

+ 10<br />

0<br />

0<br />

0<br />

−3<br />

+ 8<br />

−6<br />

0<br />

1<br />

0<br />

−3<br />

+ 7<br />

−4<br />

0<br />

0<br />

0<br />

−1/2−<br />

1/2<br />

+ 1,5 −1<br />

−1,5<br />

+ 1/2<br />

0,5 0<br />

0 0<br />

0 0<br />

Spline quintic<br />

calculed<br />

Pierre Vinter 15


TENSION<br />

Point 1 (0,0,0); Point (3,2,0); Point 3 (0,3,0)<br />

Line at the point 2 : angle 45°<br />

C 2 (u)<br />

C 1 (u)<br />

x = 3 - u - 6 u 2 + 4 u 3<br />

y = 2 + u + u 2 -u 3<br />

x= u + 8 u 2 -6 u 3<br />

y = 5 u 2 -3 u 3<br />

M(u) = [u][M][P]<br />

2 -2 1 1<br />

0 0 0<br />

-6 –3 0<br />

C 1 (u) [M][P] =<br />

-3 3 -2 -1<br />

0 0 1 0<br />

3 2 0<br />

1 0 0<br />

=<br />

8 5 0<br />

1 0 0<br />

1 0 0 0<br />

-1 1 0<br />

0 0 0<br />

Pierre Vinter 16


2 -2 1 1<br />

-3 3 -2 -1<br />

0 0 1 0<br />

0 0 0<br />

3 2 0<br />

3 0 0<br />

=<br />

-6 -1 0<br />

6 3 0<br />

3 0 0<br />

C 1 (u) become<br />

X = 3 u + 6 u 2 -6 u 3<br />

y = 3 u 2 - u 3<br />

1 0 0 0<br />

-3 3 0<br />

0 0 0<br />

Tension s<br />

0 0 0<br />

3 2 0<br />

Tension<br />

calculée = 1<br />

s 0 0<br />

-s s 0<br />

Tension<br />

calculée = 3<br />

Pb : Tension Catia = 1<br />

Pierre Vinter 17


Boundary Conditions<br />

Une spline passant par trois points <strong>et</strong> dont les<br />

tangentes V1 <strong>et</strong> V3 sont connues<br />

Inconnue<br />

- To impose the tangency at the ends of the curve<br />

- To impose a curvature given at the two ends<br />

(Null curvature → natural Cubic Spline)<br />

Deux courbes de degré 3 dans le plan XY<br />

→ 2 × 8 =16 unknown factors<br />

Three points (2×4) + Condition of tangency and<br />

curvature b<strong>et</strong>ween the 2 curves → 12<br />

Equations<br />

It is necessary to add 4 conditions<br />

Pierre Vinter 18


Least Energy<br />

Minimizes the internal strain energy<br />

so the minimum curvature<br />

δ<br />

2<br />

= ∫κ<br />

ds<br />

minimized<br />

κ = curvature<br />

s = curvilinear abscissa<br />

circle<br />

4 constraints<br />

Spline degree 5<br />

⇒ Least energy<br />

Pierre Vinter 19


y<br />

Curve with<br />

=<br />

R N 0<br />

c<br />

+1<br />

0<br />

x<br />

What solution to draw the curve<br />

without all the conditions ?<br />

The curvature direction is projected<br />

on a plane perpendicular to the<br />

tangency direction y<br />

=<br />

R N 0<br />

c<br />

-1/2<br />

0<br />

x<br />

Pierre Vinter 20


BEZIER CURVE<br />

Limits of splines<br />

The numerical definition of a Bézier curve<br />

Take a cube and draw a curve, intersection of two<br />

cylinders<br />

BÉZIER Pierre 1910-1999<br />

OM =<br />

n<br />

∑<br />

k = 0<br />

B<br />

k ,<br />

n<br />

( u)<br />

OA<br />

k<br />

Pierre Vinter 21


angency and Curvature<br />

T =<br />

T(u=0)<br />

OM(<br />

u)<br />

du<br />

d<br />

OM(<br />

u)<br />

du<br />

d<br />

=<br />

OP1−OP<br />

OP1−OP<br />

0<br />

0<br />

Displacement of the second pole horizontally<br />

(according to the direction of tangency at the point)<br />

κ =<br />

2<br />

( d<br />

d<br />

OM)<br />

∧(<br />

2<br />

dt dt<br />

d<br />

dt<br />

We can write<br />

OM<br />

OM)<br />

3<br />

d<br />

du<br />

2<br />

2<br />

[ OM(0)]<br />

= n⋅n−1[(<br />

⋅ OP0−OP1)<br />

−(<br />

OP1+<br />

OP2)]<br />

Pierre Vinter 22


Tangency<br />

T(u=0)<br />

=<br />

OP1−OP<br />

OP1−OP<br />

0<br />

0<br />

Displacement of the second pole horizontally (according to<br />

the direction of tangency at the point).<br />

You can change the position of the third point, as you want<br />

Curvature( u=0)=<br />

n −1<br />

( OP<br />

0 −OP<br />

1)<br />

∧ ( OP 2−OP<br />

1)<br />

n OP<br />

1<br />

−OP<br />

3<br />

0<br />

Curvature<br />

You can change the position of the third point but :<br />

not in all direction<br />

with a ratio b<strong>et</strong>ween the 3 first points<br />

The n-th derivative of a bezier curve for one as of the his ends<br />

depends only on the n+1 points of control nearest to this end<br />

Pierre Vinter 23


Continuity of position G 0 :<br />

With Catia<br />

Continuity of class G 1 :<br />

3 points aligned ⇒<br />

curvature = 0<br />

3 points no aligned ⇒ curvature ≠ 0<br />

n−1(<br />

OP<br />

0 −OP1)<br />

∧(<br />

OP2−OP1)<br />

Curvature( u=0)= 3<br />

n OP1−OP<br />

Pierre Vinter 24<br />

0


Rational form of the Bezier ‘s arc<br />

Influence of λ i<br />

:<br />

The param<strong>et</strong>er λ i<br />

acts like a weight on<br />

the associated top by attracting the<br />

curve towards this top.<br />

Three tops P 0<br />

, P 1<br />

, P 2<br />

OM =<br />

λ0B<br />

0,2<br />

define the characteristic polygon of the curve of degree 2.<br />

OP0+<br />

λ1B1,2OP2+<br />

λ2B<br />

λ0B0,2+<br />

λ1B1,2+<br />

λ2B2,2<br />

2<br />

2<br />

λ0(<br />

1−u<br />

) OP0+<br />

2λ1u(1−u ) OP1+<br />

λ2u OP<br />

= 2<br />

2<br />

λ0(<br />

1−u<br />

)<br />

+ 2λ1u(1−<br />

u)<br />

+<br />

λ2u<br />

2,2<br />

OP<br />

2<br />

2<br />

λ i →∞<br />

Pierre Vinter 25


2<br />

2<br />

λ0(<br />

1−u<br />

) OP0+<br />

2λ1u(1−u ) OP1+<br />

λ2u OP<br />

OM= 2<br />

2<br />

λ0(<br />

1−u<br />

) + 2λ1u(1−u<br />

) + λ2u<br />

If λ 0<br />

= 1-λ ; λ 1<br />

=λ ; λ 2<br />

=1-λ,<br />

the denominateur become = 2(1-2λ)u 2 -2(1-2λ)u+1-λ<br />

the discrimant ∆ for finding the roots of the denominateur is = 2λ -1<br />

2<br />

When λ > ½, the denominator has different<br />

real roots, the curve have asymptotes<br />

When λ < ½, the denominator does not have<br />

any real roots, the curve does not have an<br />

asymptote<br />

0 < Param<strong>et</strong>er ω < 0,5 → Ellipse<br />

Param<strong>et</strong>er ω = 0,5 → Parabola<br />

0,5 < Param<strong>et</strong>er ω < 1 → Hyperbola<br />

When λ = ½, the denominator become constant<br />

If λ=0 one line and λ=1; two lines<br />

Pierre Vinter 26


OI = (1-ω)OH + ωOP 1<br />

93,333 × 0,8 = 74,664 !!!<br />

ω = Linear<br />

interpolation<br />

b<strong>et</strong>ween H<br />

and P 1<br />

Pierre Vinter 27


Basic-splines<br />

Polynomial param<strong>et</strong>ric shape per pieces → change of the position of a control<br />

point will have a limited impact on the function obtained.<br />

Definition : A B-spline curve of degree d (ou d'ordre k = d + 1) is thus defined by:<br />

-a knots vector T = (t 0<br />

, t 1<br />

,..., t m<br />

), m+1 réels t i<br />

- n+1 control points P i<br />

- n+1 weight functions N i, k<br />

defined recursively on intervals [t i<br />

, t i+1<br />

] :<br />

OM(u)=<br />

n<br />

∑ N<br />

i=0<br />

i, d(<br />

u)<br />

OP<br />

i<br />

To build a B-spline curve of degree d from n+ 1 points P i , it is thus necessary to be given<br />

m + 1 knots or m = n + d + 1, allowing to define the basic functions N i,d (u).<br />

Pierre Vinter 28


Example 1<br />

Displacement of control point<br />

Uniform Basic<br />

Spline<br />

No Uniform<br />

Basic Spline<br />

Pierre Vinter 29


NUPBS CATIA<br />

Assistant de conversion<br />

By defect, the degree of the curves<br />

created by Catia is 5<br />

ordre k = d + 1<br />

Pierre Vinter 30


NUPBS CATIA<br />

Degree 2<br />

6 points<br />

7 points<br />

Pierre Vinter 31


Where are NURBS in Catia V5<br />

workshop DOCUMENTATION<br />

PowerFit creates a NURBS surface<br />

Creation of 3D NURBS curves<br />

NURBS Formats in APT Output<br />

Réponses DS :<br />

« Elles sont supportées dans CATIA mais on n'offre pas de moyen d'en créer en<br />

interactif. Quand elles existent, elles proviennent d'un import »<br />

« L'interactif ne perm<strong>et</strong> pas de travailler avec un degré inférieur à 5 ni de choisir<br />

l'espacement paramétrique entre 2 noeuds (en V4 on pouvait faire tout ça) »<br />

Pierre Vinter 32


SIMPLE SURFACES<br />

The C(v) curves are lines,<br />

circles,polynomials or others which are<br />

used for the generation of surfaces<br />

Revolution of a profile around an axis<br />

S rev (u,v) = C(v) ( cos U e 1 + sin U e 2 ) + v e 3 + OA<br />

Extrusion of a profile in a given direction.<br />

S éti (u,v) = C 1 (u) + v e3 + OPo<br />

Pierre Vinter 33


NUPBS CATIA<br />

Extruded surfaces<br />

OM(u,v)=<br />

In the v-direction, controls points<br />

OP i,0 = OP i and OP i,1 = OP i+ ∆ n<br />

A curve extrude in the direction of the<br />

unit vector n, through a distance ∆<br />

n<br />

1<br />

∑∑<br />

i= 0 j=<br />

0<br />

N i, d(<br />

u)<br />

Nj,1(<br />

v)<br />

OPi,<br />

j<br />

Knots vector<br />

( v 0 , v 1 , v 2 , v 3 ) = ( 0, 0, 1, 1 )<br />

Pierre Vinter 34


Swept surface<br />

Profil C(u) degree d<br />

Guide B(v) degree e<br />

NUPBS<br />

OM(u,v)=<br />

n<br />

p<br />

∑∑<br />

i= 0 j=<br />

0<br />

N i, d(<br />

u)<br />

Nj,<br />

e(<br />

v)<br />

OPi,<br />

j<br />

Controls points<br />

OP i,j = OC i + OB j<br />

P 23<br />

NURBS<br />

C 2 B 3<br />

Pierre Vinter 35


Ruled<br />

Surfaces<br />

Points Ai sur la courbe C 1<br />

C 1<br />

C 2<br />

Points Bi sur la courbe C 2<br />

OM(u,v)=<br />

n<br />

1<br />

∑∑<br />

i= 0 j=<br />

0<br />

N i, d(<br />

u)<br />

Nj,1(<br />

v)<br />

OPi,<br />

j<br />

Controls points<br />

OP i,0 = OA i<br />

OP i,1 = OB i<br />

The specified curves C i have the same degree and the same knot vector<br />

Pierre Vinter 36


Surfaces of revolution<br />

Circle<br />

Axe<br />

Pierre Vinter 37


Analyze the surfacique curvature<br />

kn<br />

Plan P o<br />

=<br />

Ldu<br />

Edu<br />

2<br />

2<br />

N<br />

T<br />

+ 2Mdudv<br />

+ Ndv<br />

+ 2Fdudv<br />

+ Gdv<br />

C(u,v)<br />

Surface<br />

2<br />

2<br />

with<br />

L<br />

E<br />

=<br />

k n normal curvature on 1 point<br />

d<br />

∂C<br />

∂C<br />

•<br />

∂u<br />

∂u<br />

2<br />

∂ C<br />

= • N<br />

2<br />

∂u<br />

2<br />

M<br />

C(<br />

u,<br />

v)<br />

ds<br />

• N =<br />

k n<br />

Pierre Vinter 38<br />

2<br />

N : normal<br />

vector of the<br />

surface<br />

∂C<br />

∂C<br />

F=<br />

•<br />

∂u<br />

∂v<br />

=<br />

2<br />

∂ C<br />

• N<br />

∂u∂v<br />

Evolution of the curvature k n for the curves C(u,v) on the surface according to<br />

(du/dv) when the plan P o containing the normal N carry out a rotation around N.<br />

N<br />

=<br />

G<br />

N<br />

∂C<br />

∂u<br />

∂C<br />

∂u<br />

=<br />

∂C<br />

Λ<br />

∂v<br />

∂C<br />

Λ<br />

∂v<br />

∂C<br />

∂v<br />

2<br />

∂C<br />

•<br />

∂v<br />

∂ C<br />

= • N<br />

2<br />

∂v


Solutions The extremum values of k N are solution of :<br />

( EG − F<br />

2<br />

) k<br />

2<br />

− ( EN + GL − 2FM<br />

) k + LN − M<br />

2<br />

n<br />

n<br />

=<br />

0<br />

2H<br />

K =<br />

= k<br />

k<br />

n<br />

EN + GL − 2FM<br />

min + kn<br />

max =<br />

=<br />

2<br />

EG − F<br />

2<br />

LN − M<br />

n max . kn<br />

min = =<br />

2<br />

EG<br />

−<br />

F<br />

mean _ curvature<br />

Gaussian_<br />

curvature<br />

Pierre Vinter 39


Analysis with reflect lines<br />

A reflection line on the surface X(u,v) is the mirror image of<br />

the light line L on X(u,v) while looking from fixed eye ep.<br />

X(u,v) surface param<strong>et</strong>rized<br />

N(u,v) normal vector of the surface<br />

It shows the geom<strong>et</strong>ry for a point on the surface where an observer sees a<br />

reflection. For such a point, the display program would then assign a bright white<br />

color to the surface. For points where a reflection is not seen, the standard color<br />

of the surface is chosen. This color is darker than the white reflection color. The<br />

simulation now d<strong>et</strong>ermines the correct color value for a large number of points on<br />

the surface<br />

Pierre Vinter 40


Analysis with isophotes<br />

Definition of isophotes using an eye direction e p : all points with a<br />

constant angle α b<strong>et</strong>ween e p and the normal N(u,v) lie on an isophote.<br />

Light direction vector = r<br />

r . N(u,v) = Constant<br />

Isophote depends<br />

only on normal, not<br />

position<br />

Line or surface joining the<br />

points of equal brightness or<br />

luminous intensity of a<br />

given source<br />

Pierre Vinter 41


CONCLUSIONS<br />

Niveau mathématique insuffisant des<br />

étudiants Bac +3 pour suivre jusqu’au bout,<br />

Encore certains points à développer :<br />

NUPBS,<br />

Cohérence entre les calculs <strong>et</strong> la modélisation<br />

Analyses<br />

Fiabilité de la documentation DS !<br />

Plus facile en V4<br />

Freestyle à orienter « Plan de forme »<br />

Pierre Vinter 42


Pierre Vinter 43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!