30.10.2014 Views

Power Management Design Guide for Altera® FPGAs and CPLDs ...

Power Management Design Guide for Altera® FPGAs and CPLDs ...

Power Management Design Guide for Altera® FPGAs and CPLDs ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Power</strong> <strong>Management</strong> <strong>Design</strong> <strong>Guide</strong> <strong>for</strong><br />

Altera ® <strong>FPGAs</strong> <strong>and</strong> <strong>CPLDs</strong><br />

Fall 2005<br />

Altera devices covered:<br />

Stratix ® II FPGA family<br />

Stratix ® FPGA family<br />

Cyclone FPGA family<br />

MAX ® II CPLD family<br />

Also features National’s FPGA solutions <strong>for</strong>:<br />

• Communications interface, including LVDS<br />

• High-speed data conversion<br />

• High-speed, low-power analog signal conditioning<br />

www.national.com/see/alterafpga<br />

N a t i o n a l<br />

Semiconductor<br />

The Sight & Sound of In<strong>for</strong>mation


Featured power products<br />

LM5070 <strong>Power</strong>-over-Ethernet single-chip solution<br />

• Fully compliant with IEEE 802.3af PoE st<strong>and</strong>ards<br />

• Delivers up to 14W of power from regular<br />

CAT-5 Ethernet cable<br />

• <strong>Power</strong>s all Altera Cyclone <strong>and</strong> most Stratix <strong>and</strong><br />

Stratix II FPGA designs without the need <strong>for</strong> wall<br />

adapters, batteries or any external power supply<br />

• Industrial temperature range<br />

• Evaluation boards <strong>and</strong> reference designs available<br />

• Available in TSSOP-16 <strong>and</strong> tiny, thermally<br />

enhanced LLP-16 packaging<br />

LM5070 <strong>Power</strong>-over-Ethernet powered device system<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

LM3670/71 600 mA SOT-23 synchronous buck regulators<br />

• Requires only 3 external components<br />

• High switching frequency, ceramic capacitors<br />

<strong>and</strong> SOT23-5 package enables an extremely<br />

small total solution<br />

• 600 mA, 2 MHz (LM3671) <strong>and</strong><br />

350 mA, 1 MHz (LM3670) versions available<br />

• Can achieve 95% efficiency with just a 2.2 µH<br />

small inductor<br />

• Automatic PWM-PFM mode switching enables<br />

longer battery life <strong>and</strong> extended st<strong>and</strong>-by times<br />

• Fixed output voltage <strong>and</strong> adjustable versions<br />

available<br />

• Industrial temperature range<br />

• Ideal <strong>for</strong> CPLD <strong>and</strong> low-power FPGA supplies<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

LM3671 Simple block diagram<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

LM3671 Efficiency vs. load current<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ii


Contents<br />

Featured power products <strong>for</strong> <strong>FPGAs</strong> & <strong>CPLDs</strong><br />

LM5070 <strong>Power</strong>-over-Ethernet single-chip solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii<br />

LM3670/71 600 mA SOT-23 synchronous buck regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii<br />

LM2743 Low-voltage synchronous buck controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

LM2647 Dual synchronous buck controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

LM2798, LM3352, LM2770 Inductorless switching regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

LP385x/7x High-per<strong>for</strong>mance CMOS LDOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

How to use this guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

Selecting the best power architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

National power solutions <strong>for</strong> Stratix II <strong>FPGAs</strong><br />

Stratix II <strong>FPGAs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Stratix II power requirements summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

National power solutions <strong>for</strong> Stratix II <strong>FPGAs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

National power solutions <strong>for</strong> Stratix <strong>FPGAs</strong><br />

Stratix <strong>FPGAs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Stratix power requirements summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

National power solutions <strong>for</strong> Stratix <strong>FPGAs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

National power solutions <strong>for</strong> Cyclone <strong>FPGAs</strong><br />

Cyclone <strong>FPGAs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

Cyclone power requirements summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

National power solutions <strong>for</strong> Cyclone <strong>FPGAs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

National power solutions <strong>for</strong> MAX II <strong>CPLDs</strong><br />

MAX II <strong>CPLDs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

National power solutions <strong>for</strong> MAX II <strong>CPLDs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10-11<br />

MAX II power requirements summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

<strong>Design</strong> considerations <strong>for</strong> powering <strong>FPGAs</strong> & <strong>CPLDs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-13<br />

Reference designs <strong>for</strong> Altera <strong>FPGAs</strong> & <strong>CPLDs</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-19<br />

Other technologies <strong>for</strong> FPGA/CPLD-based designs<br />

DDR memory solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Discrete LVDS buffers <strong>and</strong> transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

High-speed data conversion ICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

High-speed, low-power amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

Product summary<br />

Recommended V CCINT <strong>and</strong> V CCIO regulators summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

Select voltage supervisors/power-on-reset ICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

<strong>Design</strong> tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Back<br />

For comments or feedback on this guide please email:<br />

FPGA.<strong>Power</strong>.Tools@nsc.com<br />

1


How to use this guide<br />

Introduction<br />

National Semiconductor — working in close collaboration<br />

with Altera — has developed this comprehensive design<br />

guide <strong>for</strong> design engineers who are utilizing Altera’s latest<br />

<strong>FPGAs</strong> <strong>and</strong> <strong>CPLDs</strong>, to help them easily select <strong>and</strong> implement<br />

the best power management solutions <strong>for</strong> their designs.<br />

This design guide presents National’s power supply solutions<br />

down to specific part numbers with multiple reference<br />

designs illustrating how these power management ICs<br />

are used in actual applications. This guide recommends<br />

the optimal National products <strong>for</strong> select Altera devices<br />

based on the device’s specified power consumption in<br />

specific applications. The reference designs were created by<br />

National <strong>and</strong> verified by Altera, combining the experience<br />

<strong>and</strong> knowledge of both companies to ensure that the<br />

highest-per<strong>for</strong>ming, most-reliable power solutions are<br />

being offered <strong>for</strong> the latest, most-powerful Altera devices.<br />

Additional in<strong>for</strong>mation is available on National’s website,<br />

including bills of material <strong>and</strong> test data <strong>for</strong> the reference<br />

designs, along with detailed in<strong>for</strong>mation on other National<br />

solutions <strong>for</strong> Altera <strong>FPGAs</strong>, from LVDS transceivers<br />

to high-speed ADC <strong>and</strong> integrated Bluetooth ® wireless<br />

modules. For more in<strong>for</strong>mation, visit:<br />

www.national.com/see/alterafpga<br />

How to use this guide<br />

This design guide is organized into two major sections:<br />

selection guide tables <strong>and</strong> reference design schematics. The<br />

use of this guide is a simple two-step process.<br />

1. In the selection guide, find the Altera FPGA or<br />

CPLD to be used in the design. Review the power<br />

consumption data <strong>for</strong> the device <strong>and</strong> select a National<br />

regulator <strong>for</strong> powering V CCINT <strong>and</strong> V CCIO .<br />

2. Go to the Reference <strong>Design</strong> section to find complete<br />

Altera FPGA-based power supplies using the<br />

recommended National product ID.<br />

This design guide also provides in<strong>for</strong>mation on additional<br />

National ICs <strong>for</strong> <strong>FPGAs</strong>, from core power management<br />

(including DDR <strong>and</strong> DDR-II memory regulators <strong>and</strong> active<br />

termination), <strong>and</strong> voltage supervisors to st<strong>and</strong>-alone LVDS<br />

interface <strong>and</strong> buffers, <strong>and</strong> other related analog <strong>and</strong> mixedsignal<br />

technologies, including high-speed analog-to-digital<br />

converters (ADCs) <strong>and</strong> high-speed operational amplifiers.<br />

Step 1:<br />

Review the power requirements<br />

<strong>for</strong> your specific device<br />

Step 2:<br />

Choose the best National solution based<br />

on your specific operating conditions<br />

EP2S15<br />

V CCINT (V core) 1.20V<br />

I CCINT max (I core) 2A<br />

V CCIO options (V I/O) 3.3, 2.5, 1.8, 1.5V<br />

I CCIO max (I I/O) 10A (all 8 banks)<br />

V CCINT<br />

V CCINT = 1.2V<br />

V IN = 12V<br />

I CCINT < 1000 mA (LDO) Not applicable 1<br />

I CCINT < 1000 mA (SW)<br />

LM2734<br />

I CCINT < 3A<br />

LM2673-Adj<br />

I CCINT < 5A LM2679-Adj 2 or LM2743 3<br />

I CCINT < 7A LM2743 or 1 / 2 LM2647 4<br />

I CCINT < 9A LM2743 or 1 / 2 LM2647 4<br />

I CCINT < 12A LM2743 or 1 / 2 LM2647 4<br />

I CCINT < 16A LM2743 or 1 / 2 LM2647 4<br />

2


Selecting the best power architecture<br />

What is the best power architecture to use?<br />

Linear regulators<br />

Linear regulators are some of the simplest, easiest-to-use<br />

regulators available. To operate, these devices typically need<br />

only two external components — an input <strong>and</strong> an output<br />

capacitor. They also feature very clean low-noise outputs. The<br />

main disadvantage of the linear regulator architecture is power<br />

dissipation. When using a linear regulator, the power that is<br />

no longer needed at the output is simply dissipated as heat.<br />

When this dissipated power is less than 1W or 2W (max.),<br />

the solution can be surface-mounted <strong>and</strong> implemented<br />

without a heatsink if using an adequate package <strong>for</strong> the<br />

regulator. However, <strong>for</strong> dissipated power P D > 2W, a linear<br />

regulator architecture is usually not recommended because<br />

temperature rise, system efficiency, <strong>and</strong> overall solution space<br />

are better addressed using a different topology.<br />

For linear regulators, dissipated power can be estimated<br />

as (V IN – V OUT ) * I OUT . For a 5.0V to 3.3V conversion<br />

at 500 mA, P D is roughly (5.0 – 3.3) * 0.5 = 0.85W.<br />

Typically, linear regulators do not offer an option to adjust<br />

the turn-on rate (softstart) <strong>and</strong> thus may require additional<br />

external circuitry to implement this functionality.<br />

Switching regulators<br />

Switching regulators offer a consistent efficiency (typically<br />

85% to 95%) under most operating conditions (V IN , V OUT ,<br />

I OUT ). Unlike their linear counterparts, these devices offer<br />

high efficiency, low heat dissipation, <strong>and</strong> the ability to stepup<br />

or step-down a voltage. Generally, a switching regulator<br />

uses an inductor in addition to input/output capacitors.<br />

Other external components might also be needed based on<br />

the specific topology used <strong>and</strong> functionality required.<br />

Buck regulators<br />

Buck regulators are the simplest step-down switching<br />

regulators to use. They offer good efficiency <strong>and</strong> low<br />

external component count (diode, inductor, <strong>and</strong> input/<br />

output capacitors, at a minimum). Most National<br />

buck regulators (particularly those from the SIMPLE<br />

SWITCHER ® family) offer free online design tools, as<br />

well as electrical <strong>and</strong> thermal simulation.<br />

Synchronous buck converters<br />

Synchronous-rectification buck converters are a variation<br />

of st<strong>and</strong>ard buck regulators. The main difference is that<br />

the diode placed between the switch node <strong>and</strong> ground<br />

(catch diode) is replaced with a second active switch<br />

(MOSFET or bipolar transistor), reducing the power loss<br />

at this element. This is an important enhancement when<br />

the output current is high <strong>and</strong> when the diode dissipates a<br />

significant amount of power as heat. For output currents >5A,<br />

a synchronous buck converter is always recommended.<br />

As with st<strong>and</strong>ard buck regulators, synchronous buck<br />

converters are offered with monolithic (integrated) pass<br />

transistors or can use external ones. The advantage of using<br />

an external pass device (MOSFET or Bipolar) is more<br />

evident <strong>for</strong> output currents >3A, when there is a need to<br />

get very low RDS ON pass devices, distribute heat dissipation<br />

in more than one element around the board, <strong>and</strong> attain a<br />

cost-effective solution.<br />

Figure 1 shows a summary <strong>and</strong> a comparison of the three<br />

main power architecture solutions discussed above that are<br />

suitable <strong>for</strong> FPGA power.<br />

Buck Synchronous buck Linear regulator<br />

Function: Step-down (V OUT < V IN )<br />

When to use: Typically when V IN is 3x to 5x V OUT<br />

<strong>and</strong> I OUT is > 0.5A <strong>and</strong> < 5A<br />

Characteristics: Easy to design <strong>and</strong> good efficiency<br />

<strong>for</strong> the above-mentioned typical V IN /V OUT /I OUT<br />

conditions<br />

Devices to use: All buck integrated regulators<br />

<strong>and</strong> controllers<br />

Function: Step-down (V OUT < V IN )<br />

When to use: When high efficiency is required with<br />

high-output current (> 5A) or low duty cycles (V IN ><br />

5 x V OUT <strong>and</strong>/or I OUT < 0.5A)<br />

Characteristics: A second switch replaces the diode<br />

in the basic buck topology, reducing losses in the<br />

conditions mentioned above<br />

Devices to use: Any “synchronous rectification”<br />

buck integrated regulator or controller<br />

Figure 1. Step-down configurations<br />

Function: Step-down (V OUT < V IN )<br />

When to use: Typically when I OUT < 1A, ultra<br />

low-dropout, <strong>and</strong> low-noise applications)<br />

Characteristics: Excellent option where fixed<br />

output, low current, <strong>and</strong> low voltage drops are<br />

required. Easy to implement<br />

Devices to use: Any low-dropout, linear regulator<br />

Comments: Great <strong>for</strong> micropower applications<br />

3


National power solutions <strong>for</strong> Stratix II <strong>FPGAs</strong><br />

Stratix II <strong>FPGAs</strong><br />

Stratix II <strong>FPGAs</strong> are Altera’s highest-density, highestper<strong>for</strong>mance<br />

devices. Built on a 90-nm process technology,<br />

they incorporate a new logic structure that on average<br />

delivers 50% faster core per<strong>for</strong>mance with more than twice<br />

the logic capacity <strong>and</strong> costs 40% less than first-generation<br />

Stratix devices. Support is implemented <strong>for</strong> internal clock<br />

frequency rates of up to 500 MHz <strong>and</strong> typical design<br />

per<strong>for</strong>mance at over 250 MHz.<br />

Based on a 1.2V SRAM process, Stratix II devices are available<br />

in densities ranging from 15,600 to 179,400 equivalent<br />

logic elements (LEs) <strong>and</strong> up to 9 Mbits of on-chip RAM.<br />

Stratix II devices offer up to 384 (18-bit x 18-bit) embedded<br />

multipliers in highly optimized digital signal processing<br />

(DSP) blocks <strong>and</strong> source-synchronous differential signaling<br />

with dedicated dynamic phase alignment (DPA) circuitry<br />

operating at up to 1 Gbps.<br />

The core of these <strong>FPGAs</strong> needs to be powered from a 1.20V<br />

source. This voltage (V CCINT ) should always be within<br />

1.15V <strong>and</strong> 1.25V during regular operation. Core current<br />

consumption (I CCINT ) depends upon utilization of the part<br />

(such as clock speed <strong>and</strong> internal elements used).<br />

The I/O banks of this FPGA family are compatible with<br />

multiple st<strong>and</strong>ards, thus the supply voltage (V CCIO ) can<br />

either be 1.5V, 1.8V, 2.5V or 3.3V <strong>for</strong> one or more banks.<br />

Current consumption <strong>for</strong> the I/Os also depends upon the<br />

utilization of these elements, however <strong>for</strong> all I/O banks<br />

operating together, the max I CCIO <strong>for</strong> the Stratix II FGPA<br />

is 10A (independent of the V CCIO voltage used).<br />

Another power management consideration that needs<br />

to be addressed is the monotonic rise of V CCINT . This<br />

consideration is critical <strong>for</strong> the correct operation of the<br />

FPGA. While many power supplies take this requirement<br />

into consideration, it is recommended to further support<br />

this requirement by the use of adequate bulk capacitance<br />

in the power supply.<br />

LM2743 Low-voltage synchronous buck controller<br />

• Highly efficient 2A to 25A solution in SMD<br />

• Input voltage from 1V to 16V<br />

• Adjustable output voltage as low as 0.6V<br />

• <strong>Power</strong>-good flag <strong>and</strong> output enable<br />

• Output under-voltage <strong>and</strong> over-voltage flag<br />

• 1.5% reference accuracy over temperature<br />

• Current limit without sense resistor<br />

• Programmable softstart<br />

• Switching frequency from 50 kHz to 2 MHz<br />

• Available in small TSSOP-14 packaging<br />

<br />

<br />

<br />

<br />

<br />

LM2743 Typical application diagram<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Ideal <strong>for</strong> operation from 3.3V or 5V supplies in FPGA, DSP, <strong>and</strong><br />

other high-current core regulator applications<br />

4


Stratix II <strong>FPGAs</strong><br />

Stratix II power requirements summary<br />

EP2S15 EP2S30 EP2S60 EP2S90 EP2S130 EP2S180<br />

V CCINT (V core) 1.20V 1.20V 1.20V 1.20V 1.20V 1.20V<br />

I CCINT max (I core)<br />

Dynamic power consumption is design dependent. For accurate estimates, use Altera’s suite of <strong>Power</strong>Play power estimation tools.<br />

For more in<strong>for</strong>mation: www.altera.com/support/devices/estimator/pow-powerplay.html<br />

V CCIO options (V I/O) 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V<br />

National power solutions<br />

<strong>for</strong> Stratix II <strong>FPGAs</strong><br />

V IN = 3.3V V IN = 5V V IN = 12V 5<br />

V CCINT<br />

V CCINT = 1.2V<br />

I CCINT < 1000 mA (LDO) LP3875-Adj Not applicable 1 Not applicable 1<br />

I CCINT < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCINT < 3A LM3475 LM3475 LM2673-Adj<br />

I CCINT < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCINT > 6A LM2743 LM2743 or 1 / 2 LM2657 4 LM2743 or 1 / 2 LM2657 4<br />

V CCIO<br />

V CCIO = 1.5V<br />

V CCIO = 1.8V<br />

V CCIO = 2.5V<br />

V CCIO = 3.3V<br />

I CCIO < 500 mA (LDO) LP3874-Adj LP3874-Adj Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-1.5 LM3671-1.5 LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-Adj Not applicable 1 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj<br />

I CCIO > 6A LM2743 LM2743 or 1 / 2 LM2657 4 LM2743 or 1 / 2 LM2657 4<br />

I CCIO < 500 mA (LDO) LP3874-1.8 LP3874-1.8 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-1.8 LM3671-1.8 LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-1.8 Not applicable 1 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj<br />

I CCIO > 6A LM2743 LM2743 or 1 / 2 LM2657 4 LM2743 or 1 / 2 LM2657 4<br />

I CCIO < 500 mA (LDO) LP3874-2.5 LP3874-2.5 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-Adj LM3671-Adj LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-2.5 LP3875-2.5 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj<br />

I CCIO > 6A LM2743 LM2743 or 1 / 2 LM2657 4 LM2743 or 1 / 2 LM2657 4<br />

I CCIO < 500 mA (LDO) — LP3874-3.3 Not applicable 1<br />

I CCIO < 500 mA (SW) — LM3671-Adj LM2736<br />

I CCIO < 1000 mA (LDO) — LP3875-3.3 Not applicable 1<br />

I CCIO < 1000 mA (SW) — LM2734 LM2734<br />

I CCIO < 3A — LM2599-3.3 2 or LM2650-Adj 3 LM2673-3.3 2 or LM2650-Adj 3<br />

I CCIO < 5A — LM2743 LM2679-3.3<br />

I CCIO > 6A — LM2743 or 1 / 2 LM2657 4 LM2743 or 1 / 2 LM2657 4<br />

V CCPD<br />

V CCPD = 3.3V<br />

I CCPD < 300 mA (LDO) — LP3981-3.3 Not applicable 1<br />

I CCPD < 300 mA (SW) — LM3670-3.3 LM2736<br />

1<br />

LDO option not applicable due to thermal constraints (heat dissipation) <strong>for</strong> the given operating conditions.<br />

2<br />

Buck regulator. Good efficiency, simple implementation, with WEBENCH design tools available.<br />

3<br />

Synchronous buck converter. Maximum efficiency, no external diode required.<br />

4<br />

One half of a dual converter, such as the LM2657, can be used to power V CCINT while the other half can be used to power V CCIO .<br />

5<br />

These solutions can be used with input voltages from 8V to 14V.<br />

5


National power solutions <strong>for</strong> Stratix <strong>FPGAs</strong><br />

Stratix <strong>FPGAs</strong><br />

The Stratix FPGA family is optimized to address the<br />

challenges of high-b<strong>and</strong>width systems. Stratix devices offer<br />

very high core per<strong>for</strong>mance, memory capacity, architectural<br />

efficiencies, <strong>and</strong> time-to-market advantages. Stratix devices<br />

offer dedicated functionality <strong>for</strong> clock management <strong>and</strong><br />

digital signal processing (DSP) applications, as well as<br />

support <strong>for</strong> differential <strong>and</strong> single-ended I/O st<strong>and</strong>ards.<br />

In addition, Stratix devices offer on-chip termination <strong>and</strong><br />

remote system upgrade capabilities.<br />

Based on a 1.5V, 0.13-µm, all-layer copper SRAM process,<br />

Stratix devices are available in densities ranging from<br />

10,570 to 79,040 logic elements (LEs) <strong>and</strong> up to 7 Mbits<br />

of RAM. Stratix devices offer up to 22 DSP blocks with<br />

up to 176 (9-bit x 9-bit) embedded multipliers, optimized<br />

complex applications that require high data throughput.<br />

The core of these <strong>FPGAs</strong> needs to be powered from a 1.5V<br />

source. Core current consumption (I CCINT ) depends upon<br />

utilization of the part (such as clock speed <strong>and</strong> internal<br />

elements used), but maximum values range from 1.5A to<br />

10A (approx.) depending on the specific Stratix device<br />

used. To calculate the most accurate power consumption<br />

values needed by a specific design, use Altera’s <strong>Power</strong><br />

Calculator tool (see www.national.com/see/alterafpga). As<br />

a general rule, choose a V CCINT power supply whose I OUT<br />

(I CCINT ) capability is within the I CCINT inrush <strong>and</strong> I CCINT<br />

maximum values given in this guide <strong>for</strong> the specific Altera<br />

device used.<br />

Another power management consideration that needs<br />

to be addressed is the monotonic rise of V CCINT . This<br />

consideration is critical <strong>for</strong> the correct operation of the<br />

FPGA. While many power supplies take this requirement<br />

into consideration, it is recommended to further support<br />

this requirement by the use of adequate bulk capacitance<br />

in the power supply.<br />

LM2647 Dual synchronous buck controller<br />

• Input voltage range from 5.5V to 28V<br />

• Synchronous dual-channel interleaved<br />

switching<br />

• PWM or pulse-skip modes<br />

• Low-side MOSFET current sensing<br />

• Adjustable output voltage down to 0.6V<br />

• <strong>Power</strong>-good flag <strong>and</strong> chip enable<br />

• Under-voltage lockout hysteresis<br />

• Over-voltage/under-voltage protection<br />

• Softstart <strong>and</strong> soft-shutdown<br />

• Switching frequency adjustable from<br />

200 kHz to 500 kHz<br />

• Available in TSSOP-28 <strong>and</strong> tiny,<br />

thermally enhanced LLP-28 packaging<br />

LM2647 Efficiency curve<br />

Ideal <strong>for</strong> powering high-current V CCINT <strong>and</strong> V CCIO <strong>FPGAs</strong> from the<br />

same switching controller<br />

6


Stratix <strong>FPGAs</strong><br />

Stratix power requirements summary<br />

EP1S10 EP1S20 EP1S25 EP1S30 EP1S40 EP1S60 EP1S80<br />

V CCINT (V core) 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V<br />

I CCINT max 5 (I core) 1.5A 3.5A 4A 5.5A 6A 7.5A 10A<br />

I CCINT inrush<br />

(startup inrush max)<br />

700 mA 1.2A 1.5A 1.9A 2.3A 2.6A 3A<br />

V CCIO options (V I/O) 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V<br />

I CCIO max (I I/O) 12A (all 8 banks) 12A (all 8 banks) 12A (all 8 banks) 12A (all 8 banks) 12A (all 8 banks) 12A (all 8 banks) 12A (all 8 banks)<br />

National power solutions<br />

<strong>for</strong> Stratix <strong>FPGAs</strong><br />

V IN = 3.3V V IN = 5V V IN = 12V 6<br />

V CCINT<br />

V CCINT = 1.5V<br />

I CCINT < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCINT < 1000 mA (LDO) LP3875-Adj Not applicable 1 Not applicable 1<br />

I CCINT < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCINT < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCINT < 7.5A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

I CCINT < 10A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

V CCIO<br />

V CCIO = 1.5V<br />

V CCIO = 1.8V<br />

V CCIO = 2.5V<br />

V CCIO = 3.3V<br />

I CCIO < 500 mA (LDO) LP3874-Adj LP3874-Adj Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-1.5 LM3671-1.5 LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-Adj Not applicable 1 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO > 6A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

I CCIO < 500 mA (LDO) LP3874-1.8 LP3874-1.8 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-1.8 LM3671-1.8 LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-1.8 Not applicable 1 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO > 6A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

I CCIO < 500 mA (LDO) LP3874-2.5 LP3874-2.5 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-Adj LM3671-Adj LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-2.5 LP3875-2.5 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO > 6A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

I CCIO < 500 mA (LDO) — LP3874-3.3 Not applicable 1<br />

I CCIO < 500 mA (SW) — LM3671-Adj LM2736<br />

I CCIO < 1000 mA (LDO) — LP3875-3.3 Not applicable 1<br />

I CCIO < 1000 mA (SW) — LM2734 LM2734<br />

I CCIO < 3A — LM2599-3.3 2 or LM2650-Adj 3 LM2673-3.3 2 or LM2650-Adj 3<br />

I CCIO < 5A — LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO > 6A — LM2743 LM2743 or 1 / 2 LM5642 4<br />

1<br />

LDO option not applicable due to thermal constraints (heat dissipation) <strong>for</strong> the given operating conditions.<br />

2<br />

Buck regulator. Good efficiency, simple implementation, with WEBENCH design tools available.<br />

3<br />

Synchronous buck converter. Maximum efficiency, no external diode required.<br />

4<br />

One half of a dual converter, such as the LM5642, can be used to power V CCINT while the other half can be used to power V CCIO .<br />

5<br />

Estimated values. Actual power consumption figures are dependant upon a broad number of operating conditions. Use Altera’s <strong>Power</strong><br />

Calculator tool <strong>for</strong> the most accurate calculation of the power requirements <strong>for</strong> your specific design.<br />

6<br />

These solutions can be used with input voltages from 8V to 14V.<br />

7


National power solutions <strong>for</strong> Cyclone <strong>FPGAs</strong><br />

Cyclone <strong>FPGAs</strong><br />

Altera’s Cyclone series of <strong>FPGAs</strong> provides the benefits of<br />

programmable logic at price points competitive with ASICs<br />

<strong>and</strong> ASSPs. Built from the ground up based on extensive<br />

input from hundreds of customers, these low-cost devices<br />

provide high-volume, application-focused features such as<br />

embedded memory, external memory interfaces, <strong>and</strong> clock<br />

management circuitry. Based on the cost-optimized all-layer<br />

copper 1.5V SRAM process, Cyclone <strong>FPGAs</strong> are available<br />

in densities ranging from 2,910 to 20,060 logic elements<br />

(LEs) with up to 294,912 bits of embedded RAM.<br />

Cyclone <strong>FPGAs</strong> support a variety of single-ended I/O<br />

st<strong>and</strong>ards such as LVTTL, LVCMOS, PCI, <strong>and</strong> SSTL-2/3<br />

<strong>and</strong> offer differential I/O support via the LVDS <strong>and</strong> RSDS<br />

I/O st<strong>and</strong>ards on up to 129 channels. Each channel is<br />

capable of operating LVDS signals at up to 640 Mbps.<br />

Cyclone devices feature dedicated circuitry to implement<br />

double data rate (DDR) SDRAM <strong>and</strong> FCRAM interfaces.<br />

LM2734/36 1A SOT-23 buck regulators<br />

• Complete, easy-to-use switcher solution has<br />

smallest footprint <strong>and</strong> highest power density in<br />

the industry<br />

• State-of-the-art 13 ns minimum ON-time allows<br />

<strong>for</strong> high conversion ratios without the need to<br />

reduce switching frequency or increase solution size<br />

• Choice of switching frequencies allows designers<br />

to trade off efficiency against solution size <strong>and</strong> EMI<br />

• Current mode control improves phase margin, line<br />

regulation <strong>and</strong> rejection of transients<br />

• PWM provides a predictable, easily filtered<br />

switching frequency <strong>for</strong> reduced output noise<br />

• Internal softstart circuitry, cycle-by-cycle, thermal<br />

shutdown, <strong>and</strong> over-voltage protection<br />

• Available in TSOT-23 packaging (1.0 mm height)<br />

The core of these <strong>FPGAs</strong> needs to be powered from a 1.5V<br />

source. Core current consumption (I CCINT ) depends upon<br />

utilization of the part (such as clock speed <strong>and</strong> internal<br />

elements used), but maximum values range from 0.75A<br />

to 5A (approx.) depending on the specific Cyclone device<br />

used. To calculate the most accurate power consumption<br />

values needed by a specific design, use Altera’s <strong>Power</strong><br />

Calculator tool (see www.national.com/see/alterafpga). As<br />

a general rule, choose a V CCINT power supply whose I OUT<br />

(I CCINT ) capability is within the I CCINT inrush <strong>and</strong> I CCINT<br />

maximum values given in this guide <strong>for</strong> the specific Altera<br />

device used.<br />

Another power management consideration is the monotonic<br />

rise of V CCINT . This consideration is critical <strong>for</strong> the correct<br />

operation of the FPGA. While many power supplies take<br />

this requirement into consideration, it is recommended to<br />

further support this requirement by the use of adequate<br />

bulk capacitance in the power supply.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

LM2734 Simple block diagram<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Feature LM2734 LM2736<br />

Input range 3.0V to 20V 3.0V to 18V<br />

Output load 1A 750 mA<br />

Output range 0.8V to 18V 1.25V to 16V<br />

Internal references 0.8V, 2% 1.25V, 2%<br />

Operating frequency<br />

550 kHz / 1.6 MHz / 3 MHz<br />

<br />

<br />

<br />

<br />

8


Cyclone <strong>FPGAs</strong><br />

Cyclone power requirements summary<br />

EP1C3 EP1C4 EP1C6 EP1C12 EP1C20<br />

V CCINT (V core) 1.5V 1.5V 1.5V 1.5V 1.5V<br />

I CCINT max 5 (I core) 750 mA 1A 1.5A 3A 5A<br />

I CCINT inrush (startup inrush max) 300 mA 400 mA 500 mA 900 mA 1.2A<br />

V CCIO options (V I/O) 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V<br />

I CCIO max (I I/O) 6A (all 4 banks) 6A (all 4 banks) 6A (all 4 banks) 6A (all 4 banks) 6A (all 4 banks)<br />

National power solutions<br />

<strong>for</strong> Cyclone <strong>FPGAs</strong><br />

V IN = 3.3V V IN = 5V V IN = 12V 6<br />

V CCINT<br />

V CCINT = 1.5V<br />

I CCINT < 500 mA (LDO) LP3874-Adj LP3874-Adj Not applicable 1<br />

I CCINT < 500 mA (SW) LM3671-1.5 LM3671-1.5 LM2736<br />

I CCINT < 1000 mA (LDO) LP3875-Adj Not applicable 1 Not applicable 1<br />

I CCINT < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCINT < 3A LM3475 LM2599- Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCINT < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

V CCIO<br />

V CCIO = 1.5V<br />

V CCIO = 1.8V<br />

V CCIO = 2.5V<br />

V CCIO = 3.3V<br />

I CCIO < 500 mA (LDO) LP3874-Adj LP3874-Adj Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-1.5 LM3671-1.5 LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-Adj Not applicable 1 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO < 6A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

I CCIO < 500 mA (LDO) LP3874-1.8 LP3874-1.8 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-1.8 LM3671-1.8 LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-1.8 Not applicable 1 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Adj 2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO < 6A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

I CCIO < 500 mA (LDO) LP3874-2.5 LP3874-2.5 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-Adj LM3671-Adj LM2736<br />

I CCIO < 1000 mA (LDO) LP3875-2.5 LP3875-2.5 Not applicable 1<br />

I CCIO < 1000 mA (SW) LM2734 LM2734 LM2734<br />

I CCIO < 3A LM3475 LM2599-Adj 2 or LM2650-Adj 3 LM2673-Ad j2 or LM2650-Adj 3<br />

I CCIO < 5A LM2743 LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO < 6A LM2743 LM2743 LM2743 or 1 / 2 LM5642 4<br />

I CCIO < 500 mA (LDO) — LP3874-3.3 Not applicable 1<br />

I CCIO < 500 mA (SW) — LM3671-Adj LM2736<br />

I CCIO < 1000 mA (LDO) — LP3875-3.3 Not applicable 1<br />

I CCIO < 1000 mA (SW) — LM2734 LM2734<br />

I CCIO < 3A — LM2599-3.3 2 or LM2650-Adj 3 LM2673-3.3 2 or LM2650-Adj 3<br />

I CCIO < 5A — LM2743 LM2679-Adj 2 or LM2743 3<br />

I CCIO < 6A — LM2743 LM2743 or 1 / 2 LM5642 4<br />

1<br />

LDO option not applicable due to thermal constraints (heat dissipation) <strong>for</strong> the given operating conditions.<br />

2<br />

Buck regulator. Good efficiency, simple implementation, with WEBENCH design tools available.<br />

3<br />

Synchronous buck converter. Maximum efficiency, no external diode required.<br />

4<br />

One half of a dual converter, such as the LM5642, can be used to power V CCINT while the other half can be used to power V CCIO .<br />

5<br />

Estimated values. Actual power consumption figures are dependant upon a broad number of operating conditions.<br />

Use Altera’s <strong>Power</strong> Calculator tool <strong>for</strong> the most accurate calculation of the power requirements <strong>for</strong> your specific design.<br />

6<br />

These solutions can be used with input voltages from 8V to 14V.<br />

9


National power solutions <strong>for</strong> MAX II <strong>CPLDs</strong><br />

MAX II <strong>CPLDs</strong><br />

The MAX II CPLD family is a non-volatile, instant-on<br />

programmable logic family with a new CPLD architecture,<br />

which allows significant power <strong>and</strong> density enhancements<br />

from previous MAX devices. Based on a 0.18-µm Flash<br />

process, the MAX II devices offer densities ranging from 240<br />

to 2,210 logic elements (LEs) <strong>and</strong> up to 272 user I/O pins.<br />

The core of these <strong>CPLDs</strong> (V CCINT ) needs to be powered from<br />

a 1.8V source. The non-G versions of MAX II devices have<br />

an internal voltage regulator <strong>and</strong> the V CCINT pin can accept<br />

either 3.3V or 2.5V. This internal regulator steps down<br />

the voltage to the needed 1.8V. On the G-version MAX II<br />

<strong>CPLDs</strong>, the internal regulator is bypassed <strong>and</strong> V CCINT needs<br />

to be only 1.8V. Core current consumption (I CCINT ) depends<br />

upon utilization of the part (such as clock speed <strong>and</strong> internal<br />

elements used), but typical values range from 30 mA to 75<br />

mA with maximum values in the 75 mA to 400 mA range.<br />

Typically, operating core current (I CCINT ) <strong>for</strong> MAX II devices<br />

National power solutions<br />

<strong>for</strong> MAX II <strong>CPLDs</strong><br />

will be 10 mA less in the 1.8V G versions. The I/O current<br />

(I CCIO ) also depends upon the device utilization, with typical<br />

values in the 100 mA to 200 mA range. Maximum values can<br />

reach 225 mA per bank or 900 mA total <strong>for</strong> up to four banks.<br />

To calculate the most accurate power consumption values<br />

needed by your specific design, we recommend using<br />

Altera’s <strong>Power</strong> Calculator tool, available online. A good rule<br />

of thumb is to choose a V CCINT power supply whose I OUT<br />

(I CCINT ) capability is within the I CCINT inrush <strong>and</strong> I CCINT<br />

maximum values. As opposed to <strong>FPGAs</strong>, these <strong>CPLDs</strong> do<br />

not have specific requirements <strong>for</strong> monotonic voltage rise or<br />

V CCINT rise times. Since MAX II <strong>CPLDs</strong> consume low power,<br />

the use of LDOs <strong>and</strong> inductorless switching regulators is<br />

recommended. For LDOs, it is advised to check the thermal<br />

dissipation capability of the part based on the package <strong>and</strong><br />

the operating conditions. It is not enough to check V IN , V OUT<br />

<strong>and</strong> I OUT alone <strong>for</strong> selecting LDOs. The LDOs recommended<br />

in the following tables address thermal dissipation capabilities.<br />

V IN = 3.3V V IN = 5V V IN = 12V<br />

V CCINT<br />

V CCINT = 1.8V<br />

V CCINT = 2.5V<br />

V CCINT = 3.3V<br />

I CCIO < 100 mA (LDO) LP3990-1.8 LP3990-1.8 LP2992-1.8 5<br />

I CCIO < 100 mA (SW) LM2798-1.8 4 LM2798-1.8 4 LM2736<br />

I CCIO < 150 mA (LDO) LP3990-1.8 LP3982-1.8 LP2992-1.8 5<br />

I CCIO < 150 mA (SW) LM3670-1.8 3 LM3670-1.8 3 LM2736<br />

I CCIO < 200 mA (LDO) LP3982-1.8 LP3982-1.8 Not applicable 1<br />

I CCIO < 200 mA (SW) LM3670-1.8 3 LM3670-1.8 3 LM2736<br />

I CCIO < 300 mA (LDO) LP3982-1.8 LP8345-1.8 Not applicable 1<br />

I CCIO < 300 mA (SW) LM3670-1.8 3 LM3670-1.8 3 LM2736<br />

I CCIO < 500 mA (LDO) LP8345-1.8 LP3874-1.8 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-1.8 3 LM3671-1.8 3 LM2736<br />

I CCIO < 100 mA (LDO) LP3990-2.5 LP3990-2.5 LM2937-2.5 or LP2992-2.5 5<br />

I CCIO < 100 mA (SW) LM3352-2.5 4 LM3352-2.5 4 LM2736<br />

I CCIO < 150 mA (LDO) LP3990-2.5 LP3982-2.5 LM2937-2.5 or LP2992-2.5 5<br />

I CCIO < 150 mA (SW) LM3352-2.5 4 LM3352-2.5 4 LM2736<br />

I CCIO < 200 mA (LDO) LP3982-2.5 LP3982-2.5 LM2937-2.5 or LP2992-2.5 5<br />

I CCIO < 200 mA (SW) LM3352-2.5 4 LM3352-2.5 4 LM2736<br />

I CCIO < 300 mA (LDO) LP3982-2.5 LP8345-2.5 Not applicable 1<br />

I CCIO < 300 mA (SW) LM3670-2.5 3 LM3670-2.5 3 LM2736<br />

I CCIO < 500 mA (LDO) LP2989-2.5 LP3874-2.5 Not applicable 1<br />

I CCIO < 500 mA (SW) LM3671-Adj 3 LM3671-Adj 3 LM2736<br />

I CCIO < 100 mA (LDO) — LP3990-3.3 LM2937-3.3 or LP2986-3.3 5<br />

I CCIO < 100 mA (SW) — LM3352-3.3 4 LM2736<br />

I CCIO < 150 mA (LDO) — LP3990-3.3 LM2937-3.3 or LP2986-3.3 5<br />

I CCIO < 150 mA (SW) — LM3352-3.3 4 LM2736<br />

I CCIO < 200 mA (LDO) — LP3982-3.3 LM2937-3.3 or LP2986-3.3 5<br />

I CCIO < 200 mA (SW) — LM3352-3.3 4 LM2736<br />

I CCIO < 300 mA (LDO) — LP3982-3.3 Not applicable 1<br />

I CCIO < 300 mA (SW) — LM3670-3.3 3 LM2736<br />

I CCIO < 500 mA (LDO) — LP8345-3.3 Not applicable 1<br />

I CCIO < 500 mA (SW) — LM3671-Adj 3 LM2736<br />

10


MAX II <strong>CPLDs</strong><br />

MAX II power requirements summary<br />

EPM240 EPM240G EPM570 EPM570G EPM1270 EPM1270G EPM2210 EPM2210G<br />

V CCINT (V core) 3.3 or 2.5V 1.8V 3.3 or 2.5V 1.8V 3.3 or 2.5V 1.8V 3.3 or 2.5V 1.8V<br />

I CCINT max 5 (I core) 75 mA 75 mA 125 mA 125 mA 250 mA 250 mA 400 mA 400 mA<br />

I CCINT inrush<br />

(startup inrush max)<br />

65 mA 55 mA 65 mA 55 mA 65 mA 55 mA 65 mA 55 mA<br />

V CCIO options (V I/O) 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V 3.3, 2.5, 1.8, 1.5V<br />

I CCIO max (I I/O)<br />

450 mA<br />

(both banks)<br />

450 mA<br />

(both banks)<br />

450 mA<br />

(both banks)<br />

450 mA<br />

(both banks)<br />

900 mA<br />

(all 4 banks)<br />

900 mA<br />

(all 4 banks)<br />

900 mA<br />

(all 4 banks)<br />

900 mA<br />

(all 4 banks)<br />

National power solutions<br />

<strong>for</strong> MAX II <strong>CPLDs</strong> (cont.)<br />

V IN = 3.3V V IN = 5V V IN = 12V 6<br />

V CCIO<br />

V CCIO = 1.5V<br />

V CCIO = 1.8V<br />

V CCIO = 2.5V<br />

V CCIO = 3.3V<br />

I CCIO < 100 mA (LDO) LP3990-1.5 LP3990-1.5 LP2986-Adj 5<br />

I CCIO < 100 mA (SW) LM2798-1.5 4 LM2798-1.5 4 LM2736<br />

I CCIO < 200 mA (LDO) LP3982-Adj LP3982-Adj Not applicable 1<br />

I CCIO < 200 mA (SW) LM2770-1.5 4 LM2770-1.5 4 LM2736<br />

I CCIO < 300 mA (LDO) LP3982-Adj LP8345-Adj Not applicable 1<br />

I CCIO < 300 mA (SW) LM3670-1.5 3 LM3670-1.5 3 LM2736<br />

I CCIO < 500 mA LM3671-1.5 3 LM3671-1.5 3 LM2736<br />

I CCIO < 750 mA LM2736 LM2736 LM2736<br />

I CCIO < 1A LM2734 LM2734 LM2734<br />

I CCIO < 100 mA (LDO) LP3990-1.8 LP3990-1.8 LP2992-1.8 5<br />

I CCIO < 100 mA (SW) LM2798-1.8 4 LM2798-1.8 4 LM2736<br />

I CCIO < 200 mA (LDO) LP3982-1.8 LP3982-1.8 Not applicable 1<br />

I CCIO < 200 mA (SW) LM3670-1.8 3 LM3670-1.8 3 LM2736<br />

I CCIO < 300 mA (LDO) LP3982-1.8 LP8345-1.8 Not applicable 1<br />

I CCIO < 300 mA (SW) LM3670-1.8 3 LM3670-1.8 3 LM2736<br />

I CCIO < 500 mA LM3671-1.8 3 LM3671-1.8 3 LM2736<br />

I CCIO < 750 mA LM2736 LM2736 LM2736<br />

I CCIO < 1A LM2734 LM2734 LM2734<br />

I CCIO < 100 mA (LDO) LP3990-2.5 LP3990-2.5 LM2937-2.5 or LP2992-2.5 5<br />

I CCIO < 100 mA (SW) LM3352-2.5 4 LM3352-2.5 4 LM2736<br />

I CCIO < 200 mA (LDO) LP3982-2.5 LP3982-2.5 LM2937-2.5 or LP2992-2.5 5<br />

I CCIO < 200 mA (SW) LM3352-2.5 4 LM3352-2.5 4 LM2736<br />

I CCIO < 300 mA (LDO) LP3982-2.5 LP8345-2.5 Not applicable 1<br />

I CCIO < 300 mA (SW) LM3670-2.5 3 LM3670-2.5 3 LM2736<br />

I CCIO < 500 mA LP2989-2.5 LM3671-Adj 3 LM2736<br />

I CCIO < 750 mA LM2736 LM2736 LM2736<br />

I CCIO < 1A LM2734 LM2734 LM2734<br />

I CCIO < 100 mA (LDO) — LP3990-3.3 LM2937-3.3 or LP2986-3.3 5<br />

I CCIO < 100 mA (SW) — LM3352-3.3 4 LM2736<br />

I CCIO < 200 mA (LDO) — LP3982-3.3 LM2937-3.3 or LP2986-3.3 5<br />

I CCIO < 200 mA (SW) — LM3352-3.3 4 LM2736<br />

I CCIO < 300 mA (LDO) — LP3982-3.3 Not applicable 1<br />

I CCIO < 300 mA (SW) — LM3670-3.3 3 LM2736<br />

I CCIO < 500 mA — LP8345-3.3 LM2736<br />

I CCIO < 750 mA — LM2736 LM2736<br />

I CCIO < 1A — LM2734 LM2734<br />

1<br />

LDO option not applicable due to thermal constraints (heat dissipation) <strong>for</strong> the given operating conditions.<br />

2<br />

Buck regulator. Good efficiency, simple implementation, with WEBENCH design tools available.<br />

3<br />

Synchronous buck converter. Maximum efficiency, no external diode required.<br />

4<br />

Inductorless switching regulator.<br />

5<br />

Use LLP package <strong>for</strong> adequate thermal dissipation.<br />

6<br />

These solutions can be used with input voltages from 8V to 14V.<br />

11


<strong>Design</strong> considerations <strong>for</strong> powering <strong>FPGAs</strong> & <strong>CPLDs</strong><br />

Bulk capacitance<br />

In any power supply, the output capacitors are a vital<br />

element <strong>for</strong> adequate per<strong>for</strong>mance. They are used to<br />

control the output voltage ripple (ΔV OUT ) <strong>and</strong> to supply<br />

load current during fast load transients. Various types<br />

of capacitors may be used. However, the ceramic type<br />

often do not have the large capacitance needed to supply<br />

current <strong>for</strong> load transients, <strong>and</strong> tantalums tend to be more<br />

expensive than aluminum electrolytic.<br />

Adding bulk capacitance to the output of high-current<br />

switching supplies is always recommended <strong>and</strong> is also very<br />

important <strong>for</strong> adequate FPGA per<strong>for</strong>mance. Bulk capacitance<br />

helps provide current during start-up transients, thus<br />

supporting an adequate monotonic voltage rise in highcurrent<br />

power supplies. More in-depth recommendations<br />

on the use <strong>and</strong> benefits of bulk capacitance in FPGA<br />

power supplies are available in Altera’s application note<br />

AN-355 (see page 23 <strong>for</strong> download in<strong>for</strong>mation).<br />

Layout<br />

FPGA power design can involve very high currents (5A,<br />

10A, <strong>and</strong> 15A are common) flowing in the traces of the<br />

PCB. When these larger currents are present <strong>and</strong> change<br />

over time in a switching pattern with sharp edges, it is easy<br />

to realize that noise, induced voltages, <strong>and</strong> EMI may be<br />

present <strong>and</strong> may cause undesirable behavior in the power<br />

supply if proper care is not taken. This is why proper layout<br />

is critical in every switching regulator design. Rapidly<br />

switching currents associated with wiring inductance can<br />

also generate voltage transients which may cause additional<br />

problems. For minimal inductance <strong>and</strong> ground loops,<br />

the PCB traces conducting high current <strong>and</strong>/or switching<br />

wave<strong>for</strong>ms should be kept as short as possible.<br />

For best results, external components should be located as<br />

close to the switcher IC as possible, using ground-plane<br />

construction or single-point grounding. If open core<br />

inductors are used, special care must be taken as to the<br />

location <strong>and</strong> positioning of this type of inductor. Allowing<br />

the inductor flux to intersect sensitive feedback IC ground<br />

path <strong>and</strong> C OUT wiring can cause problems.<br />

When using a switching regulator or controller with an<br />

adjustable output, special care must be taken as to the<br />

location of the feedback resistors <strong>and</strong> the associated wiring.<br />

Physically locate both resistors near the IC <strong>and</strong> route the<br />

wiring away from the inductor, especially an open core<br />

type of inductor. Ferrite bobbin or stick inductors have<br />

magnetic lines of flux flowing through the air from one<br />

end of the bobbin to the other end. These magnetic lines<br />

of flux will induce a voltage into any wire or PC board<br />

copper trace that comes within the inductor’s magnetic field.<br />

The strength of the magnetic field, the orientation <strong>and</strong><br />

location of the PC copper trace to the magnetic field, <strong>and</strong><br />

the distance between the copper trace <strong>and</strong> the inductor<br />

determine the amount of voltage generated in the copper<br />

trace. For a deeper underst<strong>and</strong>ing of buck converters<br />

<strong>and</strong> PCB layout guidelines around them, see National’s<br />

application notes AN-1149 <strong>and</strong> AN-1229 (see page 23 <strong>for</strong><br />

download in<strong>for</strong>mation).<br />

Softstart<br />

As with most digital systems, <strong>FPGAs</strong> need their supply voltage<br />

to rise from zero to full voltage within a specified period of<br />

time. Altera <strong>FPGAs</strong> are very flexible <strong>and</strong> the requirements<br />

are not difficult to meet, but start-up timing still needs to<br />

be observed. For example, Stratix II <strong>FPGAs</strong> need V CCINT to<br />

rise in a window anywhere from 30 µs to 100 ms. To achieve<br />

that controlled rise time, softstart in the power supply must<br />

be used. Most switching regulators <strong>and</strong> controllers already<br />

have softstart incorporated, either internally fixed or externally<br />

programmable. When user programmable, a softstart pin (SS)<br />

is available <strong>and</strong> softstart timing is typically adjusted by placing<br />

a small capacitor between that pin <strong>and</strong> ground. Depending on<br />

the capacitor value, the softstart time will change.<br />

In<strong>for</strong>mation on which capacitor values to use <strong>and</strong> how to<br />

calculate the needed value to achieve a particular ramp-up<br />

time is described on each switching regulator’s datasheet.<br />

For linear regulators where softstart is not typically an<br />

internally implemented function, an external pass device<br />

is used along with a resistor <strong>and</strong> a capacitor to achieve this<br />

same effect.<br />

12


Monotonic voltage rise<br />

Although not typically required in <strong>CPLDs</strong>, most <strong>FPGAs</strong><br />

need the supply voltage to turn on steadily <strong>and</strong> gradually.<br />

This is called monotonic voltage rise <strong>and</strong> is needed <strong>for</strong><br />

internal elements in the FPGA to turn on sequentially as<br />

the input voltage rises. As these elements are turning on<br />

during the ramp-up period, the “load” to the power supply<br />

will not be constant, so it is important that the power<br />

supply chosen regulates its output voltage not only during<br />

steady state but also during ramp up. As mentioned be<strong>for</strong>e,<br />

bulk capacitance is also a very important element <strong>for</strong><br />

ensuring that the power supply has an adequate monotonic<br />

rise <strong>for</strong> powering <strong>FPGAs</strong>.<br />

The figure below shows the monotonic rise achieved in<br />

V OUT when using National’s LM2743 switching controller<br />

to power a Stratix II FPGA. The LM2743 power supply<br />

design used <strong>for</strong> this graph is included in the reference<br />

design section of this guide.<br />

<br />

<br />

<br />

<br />

LM2743 V OUT monotonic rise<br />

<br />

<br />

Selecting the best power solution <strong>for</strong> Altera devices<br />

Depending on the operating conditions <strong>and</strong> the specific<br />

Altera device used, all three of the power topologies<br />

previously mentioned (linear, buck, <strong>and</strong> synchronous buck)<br />

come into play. As seen throughout the selection tables, a<br />

choice of either an LDO or a switching regulator solution<br />

is provided <strong>for</strong> relatively small output currents in <strong>FPGAs</strong><br />

(500 mA <strong>and</strong> 1A). The exception is when the input-tooutput<br />

voltage ratio is high <strong>and</strong> an LDO solution is no<br />

longer suitable because of high thermal dissipation (e.g.,<br />

12V to 3.3V @ 500 mA or 5V to 1.2V @ 1A). For output<br />

currents >5A, synchronous buck controllers are always<br />

recommended as they provide the best option in terms of<br />

efficiency, heat dissipation, per<strong>for</strong>mance, <strong>and</strong> cost.<br />

<strong>CPLDs</strong> are low-power devices. As seen in the MAX II<br />

solutions table, most of the power supplies recommended<br />

are LDOs <strong>and</strong> monolithic (integrated) switching regulators<br />

because typical current requirements are always below<br />

1A. One alternative <strong>for</strong> high efficiency <strong>and</strong> simple, hasslefree<br />

design is to use inductorless switching regulators.<br />

These devices provide efficiencies in the 80% range, thus<br />

dissipating very small amounts of power as heat. As implied<br />

by their name, these devices do not require an inductor<br />

(only small external capacitors) <strong>and</strong> are as easy to use as<br />

linear regulators. Inductorless switching regulators are a good<br />

option <strong>for</strong> powering loads in the 10 mA to 250 mA range.<br />

For all digital supplies needed by the FPGA (such as<br />

V CCINT <strong>and</strong> V CCIO ), either a switching or a linear solution<br />

is sufficient. When the supply is powering an analog FPGA<br />

block (V CCPLL , <strong>for</strong> example) a linear solution is usually<br />

recommended as it has a cleaner low-noise output.<br />

<br />

13


Reference designs<br />

Stratix II & Stratix <strong>FPGAs</strong><br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Stratix II/Stratix* Complete <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(5V in, 1.20V @ 9A, 2.5V @ 6A <strong>and</strong> 3.3V @ 0.3A out)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This reference design features the high-current, low inputvoltage<br />

LM2743 synchronous buck switching controller<br />

<strong>and</strong> the low-power LP3981 LDO to offer a complete<br />

power supply solution <strong>for</strong> a typical Stratix II application.<br />

The LM2743 can be used <strong>for</strong> output currents from 1A<br />

up to 25A. Output voltage on this part can be adjusted<br />

anywhere down to 0.6V. For this Stratix II design, the<br />

output voltage has been programmed in the LM2743 to<br />

supply 1.20V <strong>for</strong> V CCINT <strong>and</strong> 2.5V <strong>for</strong> V CCIO . This same<br />

reference design can be used <strong>for</strong> Stratix <strong>FPGAs</strong> by simply<br />

changing V CCINT to 1.5V. This can be done by changing<br />

R8 from 2 kΩ to 1.33 kΩ.<br />

In the following pages you will find various V CCINT <strong>and</strong><br />

V CCIO reference designs that can be used in different<br />

combinations to provide the most adequate power supply<br />

solution <strong>for</strong> different I CCINT <strong>and</strong> I CCIO requirements when<br />

powering Altera’s Stratix II, Stratix, <strong>and</strong> Cylcone <strong>FPGAs</strong>.<br />

For additional in<strong>for</strong>mation on these reference designs,<br />

such as complete bills of material, test wave<strong>for</strong>ms, <strong>and</strong><br />

per<strong>for</strong>mance reports, visit:<br />

www.national.com/see/alterafpga<br />

14


Stratix II & Stratix <strong>FPGAs</strong><br />

<br />

Stratix II/Stratix/Cyclone V CCINT <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(3.3V in, 1.20V* out @ 4A)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This V CCINT LM2743-based reference designs shows how an<br />

up-to-4A V CORE solution <strong>for</strong> Stratix II can be implemented<br />

from a 3.3V source. Because the LM2743 has a V CC from<br />

3.0V to 6.0V, no special considerations need to be taken to<br />

have this circuit work from 3.3V directly. While ideal <strong>for</strong><br />

powering the EP2S15 Stratix II FPGA, this design can also<br />

be utilized to power various Stratix <strong>and</strong> Cyclone devices,<br />

such as the EP1S10, EP1S20, EP1S25 <strong>and</strong> EP1C12 by<br />

changing the LM2743 output voltage (V CCINT ) from 1.20V<br />

to 1.5V. This is done simply by changing R6 from 2 kΩ to<br />

1.33 kΩ.<br />

<br />

Stratix II/Stratix V CCINT <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(12V in, 1.2V*out @ 9A)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This other LM2743-based V CCINT reference design shows<br />

how a Stratix II or Stratix FPGA can be powered at<br />

high current (up to 9A) from a 12V supply. Because the<br />

LM2743 has a V IN range from 1V to 16V, the 12V input<br />

voltage in this application is taken directly to the power<br />

train of this switching converter <strong>for</strong>med by the power<br />

MOSFETs <strong>and</strong> the inductor. The LM2743 is biased from<br />

a 5V rail at merely 1 mA typical or 3 mA maximum.<br />

The I CCINT (I OUT ) from this design is ideally suited to power<br />

the EP2S90 <strong>and</strong> the EP2S60 Stratix II <strong>FPGAs</strong>. This design<br />

can also power the EP1S60 <strong>and</strong> EP1S80 Stratix devices if<br />

V CCINT is programmed to 1.5V. This is done by changing<br />

R6 in this design to 1.33 kΩ.<br />

For additional in<strong>for</strong>mation on these reference designs,<br />

such as complete bills of material, test wave<strong>for</strong>ms, <strong>and</strong><br />

per<strong>for</strong>mance reports, visit:<br />

www.national.com/see/alterafpga<br />

15


Reference designs<br />

Stratix II & Stratix <strong>FPGAs</strong><br />

<br />

Stratix II V CCINT <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(5V in, 1.20V out @ 16A)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This third LM2743-based V CCINT reference design features<br />

a high-current I CCINT output with an up to 16A capability<br />

to ideally power the EP2S180 <strong>and</strong> the EP2S130 Stratix II<br />

<strong>FPGAs</strong>. It can also be used to power the EP1S80 Stratix<br />

device, making the V CCINT 1.5V. As previously described in<br />

the “<strong>Power</strong>ing FPGA <strong>Design</strong> Considerations” section, it is<br />

highly recommended to place proper bulk capacitance in<br />

the output of the power supply when large I CCINT current<br />

is involved. This is needed <strong>for</strong> the adequate per<strong>for</strong>mance<br />

of the FPGA during load transient conditions <strong>and</strong> also to<br />

help in proper start-up of the device during power up.<br />

<br />

<br />

Stratix II/Stratix V CCIO 3A to 10A <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(5V in, 1.8V out @ 10A)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

The I/O banks in <strong>FPGAs</strong> can be powered at different<br />

V CCIO voltages depending on the I/O st<strong>and</strong>ard at which<br />

they will be used. Different I/O banks in the same FPGA<br />

may be powered with different V CCIO voltages to work on<br />

different I/O st<strong>and</strong>ards simultaneously.<br />

The present LM2743-based design shows a high-current<br />

power supply to power V CCIO at a typical 1.8V <strong>and</strong> has an<br />

I OUT capability of up to 10A. Such high current is needed<br />

by Stratix II or Stratix <strong>FPGAs</strong> when all banks (up to 8) are<br />

fully utilized <strong>and</strong> powered from the same V CCIO . However,<br />

this same power supply is adequate <strong>for</strong> powering I/O banks<br />

that require current (I CCIO ) anywhere from 3A to 10A.<br />

For additional in<strong>for</strong>mation on these reference designs,<br />

such as complete bills of material, test wave<strong>for</strong>ms, <strong>and</strong><br />

per<strong>for</strong>mance reports, visit:<br />

www.national.com/see/alterafpga<br />

16


Stratix II & Stratix <strong>FPGAs</strong><br />

<br />

Stratix II/Stratix/Cyclone V CCIO 3A to 10A <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(5V in, 3.3V out @ 10A)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This synchronous buck design featuring the LM2743<br />

shows a high-current power supply to power V CCIO at the<br />

very common 3.3V rail from a 5V supply. It has an I OUT<br />

capability of up to 10A, however the design can be used in<br />

any application needing from 1A to 10A of current. For<br />

3A <strong>and</strong> up, the use of a synchronous buck controller (such<br />

as this one) is highly recommended.<br />

<br />

Stratix II/Stratix/Cyclone V CCIO 3A to 10A <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(12V in, 3.3V out @ 10A)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This flexible LM2743-based design shows a high-current<br />

power supply to power V CCIO at the very common 3.3V rail<br />

from a 12V supply. It has an I OUT capability of up to 10A,<br />

however it can be used in any application needing from 1A<br />

to 10A of current. For 3A <strong>and</strong> up, the use of a synchronous<br />

buck controller (such as the LM2743) is ideal.<br />

For additional in<strong>for</strong>mation on these reference designs,<br />

such as complete bills of material, test wave<strong>for</strong>ms, <strong>and</strong><br />

per<strong>for</strong>mance reports, visit:<br />

www.national.com/see/alterafpga<br />

17


Reference designs<br />

Cyclone <strong>FPGAs</strong><br />

This complete reference design<br />

is based on National’s smallest<br />

new switching regulators. The<br />

LM2734 features up to 1A<br />

I OUT from a tiny Thin SOT-23<br />

package, while the LM3671<br />

(also in SOT-23) provides onboard<br />

synchronous rectification<br />

<strong>for</strong> maximum efficiency <strong>and</strong><br />

the least number of external<br />

components. Both devices are<br />

available in high switching<br />

frequencies <strong>for</strong> small designs<br />

using tiny, passive elements.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Cyclone Complete <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(3.3V in, 1.5V @ 1A <strong>and</strong> 1.8V @ 600 mA out)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Cyclone Complete <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(5V in, 1.5V @ 1.5A <strong>and</strong> 2.5V @ 600 mA out)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This complete reference design<br />

<strong>for</strong> Cyclone <strong>FPGAs</strong> utilizes the<br />

LM3671 <strong>and</strong> LM2651. Both<br />

synchronous buck switching<br />

regulators provide ultrahigh<br />

efficiency <strong>and</strong> require<br />

minimal external components.<br />

By changing R5, V CCIO can<br />

be adjusted to fit different<br />

requirements than 2.5V I/O<br />

st<strong>and</strong>ards.<br />

<br />

<br />

<br />

This complete reference design<br />

can be used <strong>for</strong> virtually any<br />

Cyclone FPGA. The wide V IN<br />

range (8V to 40V) allows the<br />

use of many industrial rails (12V,<br />

24V, 36V) as well as unregulated<br />

“wall warts.” Based on National’s<br />

SIMPLE SWITCHER ® regulator<br />

family, the LM267x provides 5A<br />

<strong>and</strong> 3A, while other members of<br />

the family have output currents<br />

of 2A, 1A, <strong>and</strong> 0.5A. The<br />

LM267x family is available in<br />

LLP packaging <strong>and</strong> WEBENCH<br />

design tools are available.<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Cyclone Complete <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(12V in, 1.5V @ 5A <strong>and</strong> 3.3V @ 3A out)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

18


MAX II <strong>CPLDs</strong><br />

<br />

<br />

MAX II Complete <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(High-efficiency inductorless switching regulator based)<br />

(5V in, 2.5V out @ 200 mA)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

This complete MAX II design features the<br />

LM3352, one of National’s inductorless<br />

high-efficiency switching regulators. With<br />

only tiny ceramic capacitors as external<br />

components, this device provides the required<br />

voltage to power both V CCINT <strong>and</strong> V CCIO with<br />

significantly better efficiency than that of<br />

LDOs. This IC also features useful automatic<br />

step-up <strong>and</strong> step-down capability.<br />

This complete MAX-II G reference design<br />

features two of the newest National regulators<br />

<strong>for</strong> portable power applications, the LP3990<br />

LDO <strong>and</strong> the LM2798 inductorless, highefficiency<br />

switching regulator to provide<br />

robust per<strong>for</strong>mance <strong>and</strong> a very small size<br />

solution. While an LDO is adequate <strong>for</strong> a<br />

5V to 3.3V conversion at low current, when<br />

output voltage is as low as 1.8V the use of a<br />

different architecture is needed to maintain high<br />

efficiency <strong>and</strong> to properly dissipate power in a<br />

tiny package without the usual temperature rise.<br />

MAX II-G Complete <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(High-efficiency inductorless switching regulator based <strong>for</strong> V CCINT )<br />

(5V in, 1.8V out @ 120 mA <strong>and</strong> 3.3V @ 150 mA out)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

MAX II Complete <strong>Power</strong> Supply Reference <strong>Design</strong><br />

(Linear regualtor based)<br />

(5V in, 2.5V out @ 0.4A)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

For additional in<strong>for</strong>mation on these reference designs, such as complete<br />

bills of material, test wave<strong>for</strong>ms, <strong>and</strong> per<strong>for</strong>mance reports, visit:<br />

www.national.com/see/alterafpga<br />

This reference design <strong>for</strong> the MAX II CPLD<br />

utilizes an LP3871 LDO to step down the<br />

voltage from a 5V supply to 2.5V. This power<br />

supply has been put together <strong>for</strong> a MAX II<br />

device in an application driving a 2.5V I/O<br />

st<strong>and</strong>ard (V CCIO ). Since the MAX II (non-G<br />

version) can accept a V CCINT of either 3.3V or<br />

2.5V, a single power supply is being built with<br />

the LP3871 <strong>and</strong> leveraged <strong>for</strong> powering both<br />

V CCINT <strong>and</strong> V CCIO , providing a very compact<br />

<strong>and</strong> easy-to-implement solution.<br />

This design is fulfilling a 400 mA combined<br />

I CCINT <strong>and</strong> I CCIO current need (enough current<br />

<strong>for</strong> most MAX II designs). It can also be used<br />

<strong>for</strong> lower I CCINT currents <strong>and</strong> with proper<br />

thermal dissipation, this same design can<br />

output up to 800 mA utilizing only SMD<br />

components without any heatsink.<br />

19


Other technologies <strong>for</strong> FPGA/CPLD-based designs<br />

DDR memory solutions<br />

Product ID<br />

V IN range<br />

(P VIN )<br />

Sink/source<br />

I OUT (A)<br />

St<strong>and</strong>ards<br />

Temp<br />

range (°C)<br />

Other features/comments<br />

Packaging<br />

Memory supply (V DD /V DDQ ) regulators<br />

LM2727 2.2 to 16 0.5 to 20 cont. DDR & DDR-II -40 to 125 Suspend to disk shutdown; UVP & OVP latch-off TSSOP-14<br />

LM2737 2.2 to 16 0.5 to 20 cont. DDR & DDR-II -40 to 125 Suspend to disk shutdown TSSOP-14<br />

Memory termination (V TT ) <strong>and</strong> reference (V REF ) regulators — linear<br />

LP2996 1.5 to 5.5 3 peak, 1.5 cont. DDR & DDR-II 0 to 125 Suspend to RAM shutdown SO-8, LLP-16, PSOP-8<br />

LP2997 1.5 to 5.5 1.5 peak, 0.5 cont. DDR-II 0 to 125 Suspend to RAM shutdown SO-8, PSOP-8<br />

Memory termination (V TT ) <strong>and</strong> reference (V REF ) regulators — switching<br />

LM2744 1 to 16 0.5 to 25 cont. DDR & DDR-II -40 to 125 Suspend to RAM shutdown TSSOP-14<br />

Discrete LVDS buffers <strong>and</strong> transceivers<br />

Save FPGA I/O resources<br />

FPGA LVDS I/O resources are too valuable to waste on<br />

duplicate signals. The DS90LV110 makes up to 10 copies of<br />

your FPGA LVDS clock or data signals <strong>and</strong> distributes the<br />

high quality signals to multiple destinations. In addition, the<br />

family of LVDS-to-LVDS switches provide active <strong>and</strong> backup<br />

channels to enable highly available systems.<br />

<br />

<br />

Redundant cable drive application<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Improve LVDS per<strong>for</strong>mance <strong>and</strong> ESD protection<br />

Boost FPGA reach <strong>and</strong> rate with enhanced signal integrity<br />

<strong>and</strong> lower jitter. The SCAN90CP02 offers programmable<br />

pre-emphasis to drive CAT-5 cables. These products also<br />

deliver superior ESD protection. <strong>Design</strong>ers can improve ESD<br />

protection by 2.5 kV to 6.5 kV by providing isolation <strong>for</strong><br />

sensitive programmable devices.<br />

DS90LV110 1:10 LVDS clock distributor<br />

<br />

<br />

Simplified FPGA programming<br />

The SCANSTA111/112 SCAN chain mux simplifies FPGA<br />

programming by managing multiple JTAG chains.<br />

LVDS interface devices to complement <strong>FPGAs</strong><br />

Product ID Description Max speed Packaging<br />

DS90CP22 2 x 2 LVDS-to-LVDS Crosspoint switch with >5 kV ESD 800 Mbps/channel SO-16, TSSOP-16<br />

SCAN90CP02 2 x 2 LVDS-to-LVDS Crosspoint switch with pre-emphasis, IEEE 1149.6 <strong>and</strong> >6.5 kV ESD 1.5 Gbps/channel LLP-28, LQFP-32<br />

SCAN50C400 Quad multi-rate, 1.25, 2.5, <strong>and</strong> 5.0 Gbps SerDes with 3.5 kV ESD 40 Gbps EBGA-440<br />

DS90CP04 4 x 4 LVDS-to-LVDS Crosspoint switch 2.5 Gbps/channel LLP-32<br />

DS90LV001 Stub hider LVDS/PECL to LVDS buffer with >2.5 kV ESD 800 Mbps LLP-8, SO-8<br />

DS92001 Signal booster LVDS/LVPECL to Bus LVDS buffer with >2.5 kV ESD 400 Mbps LLP-8, SO-8<br />

EQ50F100 2.5 Gbps to 6.125 Gbps equalizer <strong>for</strong> CML technology with 8 kV ESD 6.125 Gbps LLP-6<br />

DS90LV110A 1:10 LVDS clock distributor with >4 kV ESD 400 Mbps TSSOP-28<br />

20


High-speed data conversion ICs<br />

Product ID<br />

Resolution<br />

Speed<br />

(MSPS)<br />

Input<br />

channels<br />

Accuracy<br />

(INL) SINAD SNR SFDR THD Packaging<br />

ADC081000 8 1000 1 ±0.35 47 48 58.5 -57 TQFP-128<br />

ADC08200 8 200 1 ±1.0 46 46 60 -60 TSSOP-24<br />

ADC08L060 8 60 1 ±0.5 47.4 48 59.1 -56.9 TSSOP-24<br />

ADC1173 8 15 1 ±0.5 47.7 48.7 55 -54 SO-24, TSSOP-24<br />

ADC081S101 8 1 1 ±0.05 49.7 49.7 69 -77 SOT23-6, LLP-6<br />

ADC10080 10 80 1 ±0.5 59 59.2 78.8 -74.5 TSSOP-28<br />

ADC10065 10 65 1 ±0.3 59 59.3 80 -72 TSSOP-28<br />

ADC10D040 10 40 2 ±0.65 59 60 72 -69 TSSOP-28<br />

ADC101S101 10 1 1 ±0.2 61.7 62 78 -77 SOT23-6, LLP-6<br />

ADC12L080 12 80 1 ±1.2 66 66 80 -77 TQFP-32<br />

ADC12DL066 12 66 2 ±1.8 66 66 81 -78 TQFP-64<br />

ADC12D040 12 40 2 ±0.7 68 68 80 -78 TQFP-64<br />

ADC121S101 12 1 1 ±0.4 72 72.5 82 -82 SOT23-6, LLP-6<br />

ADC78H90 12 0.5 8 ±1.0 73 73 88 -86 TSSOP-16<br />

High-speed, low-power amplifiers<br />

Product<br />

ID<br />

SSBW<br />

(MHz)<br />

A V<br />

V/V<br />

Slew<br />

rate<br />

V/µs<br />

Spec.<br />

range (V)<br />

2nd/3rd HD<br />

into R L = 100Ω<br />

I OUT<br />

typ<br />

(mA)<br />

Voltage<br />

noise<br />

(nV/Hz)<br />

Key features<br />

Packaging<br />

LMH6609<br />

900 MHz high-output current voltage<br />

feedback<br />

900 1 1400 ±3.3 to ±6 -63/-57 at 20 MHz 90 3.1 SO-8, SOT23-5<br />

LMH6559 Ultra-high slew rate, closed-loop buffer 1750 1 4580 3 to ±5 -58/-53 at 20 MHz 74 2.8 SO-8, SOT23-5<br />

LMH6624 Ultra-low noise, wideb<strong>and</strong> 1500/95 1/20 350 ±2.5 to ±6 -63/-80 at 10 MHz 100 0.92 SO-8, SOT23-5, CERDIP-8<br />

LMH6642 130 MHz, 75 mA rail-to-rail output 130 1 135 3 to 12.8 -62 at 5 MHz 75 17 SO-8, SOT23-5<br />

LMH6645 Rail-to-rail input/output, low power 55 1 22 2.5 to 12 — 20 17 SO-8, SOT23-5<br />

LMH6654 Low noise, 250 MHz, low power 250 1 200 ±2.5 to ±6 -80/-85 at 5 MHz 80 4.5 SO-8, SOT23-5<br />

LMH6657 270 MHz single supply, CMIR < 0V 270 1 700 3 to 12 -70/-57 at 5 MHz 110 11 SC70-5, SOT23-5<br />

LMH6702 Ultra-low distortion, wide b<strong>and</strong>width 720 2 3100 ±5 to ±6 -63/-70 at 60 MHz 80 1.83 SO-8, SOT23-5, CERDIP-8<br />

LMH6714 Wideb<strong>and</strong> video 400 2 1800 ±5 to ±6 -58/-70 at 20 MHz 70 3.4 SO-8, SOT23-5, CERDIP-8<br />

LMH6723 370 MHz, 1 mA high-output current 260 2 600 4.5 to 12 -65/-63 at 5 MHz 110 4.3 SO-8, SOT23-5<br />

LMH6732 Adjustable supply current 540 2 2700 ±4.5 to ±6 -60/-64 at 20 MHz 115 2.5 SO-8, SOT23-6<br />

LM7171 30V, very high slew rate, A V = +2 (min) 220 2 4100 ±5.5 to ±15 -75/-55 at 5 MHz 100 14 SO-8, SOT23-5, CERDIP-8<br />

For more design in<strong>for</strong>mation, please refer to these guides at www.national.com/guides<br />

LVDS Owner’s Manual<br />

Broadcast Video Owner’s Manual<br />

Ultra-fast ADCs <strong>and</strong> Amplifiers <strong>Guide</strong><br />

For more LVDS in<strong>for</strong>mation:<br />

LVDS.national.com<br />

For more interface in<strong>for</strong>mation:<br />

national.com/appinfo/interface<br />

For more ADC or amplifiers in<strong>for</strong>mation:<br />

national.com/adc<br />

amplifiers.national.com<br />

21


Product summary<br />

Recommended regulators<br />

Recommended V CCINT <strong>and</strong> V CCIO regulators summary<br />

Product<br />

ID<br />

V IN<br />

V OUT options <strong>for</strong> <strong>FPGAs</strong>/<br />

<strong>CPLDs</strong><br />

Min Max<br />

Inductorless switching regulators<br />

I OUT max<br />

Shutdown<br />

Sync.<br />

buck F SW (kHz) Comments Packaging<br />

LM2788 2.6 5.5 1.5, 1.8, 2.0 120 mA ✔ — 500 — MSOP-8<br />

LM2798 2.6 5.5 1.5, 1.8, 2.0 120 mA ✔ — 500 <strong>Power</strong> good flag MSOP-10<br />

LM3352 2.5 5.5 2.5, 3.0, 3.3 200 mA ✔ — 900 — TSSOP-16<br />

LM2770 2.7 5.5 1.2, 1.5 250 mA ✔ — 700 Sleep mode LLP-10<br />

Switching buck regulators<br />

LM3670 2.5 5.5<br />

1.2, 1.5, 1.8, 2.5, 3.3 & Adj (0.7V<br />

& up)<br />

350 mA ✔ ✔ 1000 — SOT23-5<br />

LM2619 2.8 5.5 Adj (1.5V & up) 500 mA ✔ ✔ 500 to 1000 — TSSOP-14<br />

LM2671 8 40 3.3 & Adj (1.21 & up) 500 mA ✔ — 260 to 400 WEBENCH Tool SO-8, LLP-16, DIP-8<br />

LM3671 2.5 5.5 1.2, 1.5, 1.8 & Adj (0.5V & up) 600 mA ✔ ✔ 2000 — SOT23-5<br />

LM2736 3 18 Adj (1.25V & up) 750 mA ✔ — 550, 1600, 3000 WEBENCH Tool SOT23-5<br />

LM2734 3 20 Adj (0.8V & up) 1000 mA ✔ — 550, 1600, 3000 WEBENCH Tool SOT23-5<br />

LM2651 4 14 1.8, 2.5, 3.3 & Adj (1.24 & up) 1500 mA ✔ ✔ 300 WEBENCH Tool TSSOP-16<br />

LM2653 4 14 Adj (1.2V & up) 1500 mA ✔ ✔ 300 <strong>Power</strong> good flag TSSOP-16<br />

LM2655 4 14 3.3 & Adj (1.23 & up) 2500 mA ✔ ✔ 300 — TSSOP-16<br />

LM2599 4.5 40 3.3 & Adj (1.23 & up) 3000 mA ✔ — 150 WEBENCH Tool TO263-7, TO220-7<br />

LM2650 4.5 18 Adj (1.25 & up) 3000 mA ✔ ✔ 90 to 300 Sync clock SO-24<br />

LM2673 8 40 3.3 & Adj (1.21 & up) 3000 mA — — 260 WEBENCH Tool TO263-7, LLP-14, TO220-7<br />

LM2679 8 40 3.3 & Adj (1.21 & up) 5000 mA — — 260 WEBENCH Tool TO263-7, LLP-14, TO220-7<br />

Synchronous buck controllers<br />

LM3475 2.7 10 Adj (0.8V & up) 1A to 3A ✔ — DC to 2000 — SOT23-5<br />

LM2743 1 16 Adj (0.6V & up) 1A to 20A ✔ ✔ 50 to 2000 Single controller TSSOP-14<br />

LM2647 5.5 28 Adj (0.6V & up) 1A to 20A ✔ ✔ 200 to 500 Dual controller TSSOP-28, LLP-28<br />

LM5642 4.5 36 Adj (1.25V & up) 1A to 20A ✔ ✔ 150 to 250 Dual controller TSSOP-28<br />

LM2633 4.5 30 Adj (0.9V & up) 1A to 20A ✔ ✔ 250 Dual + LDO TSSOP-48<br />

LM2645 4.5 30 Adj (1.25V & up) 1A to 20A ✔ ✔ 200, 300 Dual + LDO + 3.3V TSSOP-48<br />

Linear regulators<br />

LP3990 2 6 1.2, 1.5, 1.8, 2.5, 3.3 150 mA ✔ — — 0.47 µF C OUT SOT23-5, LLP-6, micro SMD-4<br />

LP2986 2.1 16 3.3 & Adj (1.24 & up) 200 mA ✔ — — <strong>Power</strong> good flag LLP-8, MSOP-8, SO-8<br />

LP2992 2.5 16 1.5, 1.8, 2.5, 3.0, 3.3 250 mA ✔ — — <strong>Power</strong> good flag SOT23-5, LLP-6<br />

LP3981 2.7 6 2.5, 3.3 300 mA ✔ — — Low noise LDO SO-8, LLP-6<br />

LP3982 2.5 6 1.8, 2.5, 3.0, 3.3 & Adj (1.25 & up) 300 mA ✔ — — <strong>Power</strong> good flag SO-8, LLP-8<br />

LM2937 4.75 26 2.5, 3.3 500 mA — — — Transient protection SOT223-4, TO263-3, TO220-3<br />

LP2989 2.1 16 1.8, 2.5, 3.3 500 mA ✔ — — <strong>Power</strong> good flag MSOP-8, SO-8, LLP-8<br />

LP8345 2.7 10 1.8, 2.5, 3.3 & Adj (1.25 & up) 500 mA — — — — TO252-3, LLP-6<br />

LP3874 2.5 7 1.2, 1.8, 2.5, 3.3 & Adj (1.2 & up) 800 mA ✔ — — Sense pin SOT223-5, TO263-5, TO220-5<br />

LP3875 2.5 7 1.2, 1.8, 2.5, 3.3 & Adj (1.2 & up) 1500 mA ✔ — — Sense pin SOT223-5, TO263-5, TO220-5<br />

22


Select voltage supervisors/power-on-reset ICs<br />

& application notes<br />

Select voltage supervisors/power-on-reset ICs<br />

Product<br />

ID<br />

Voltage rails<br />

supervised<br />

Reset flag<br />

active<br />

Reset timeout<br />

period<br />

Low-line<br />

output<br />

Manual<br />

reset<br />

<strong>Power</strong><br />

fail comp<br />

Watchdog<br />

POR Packaging<br />

LM3704 2.35, 2.5, 2.8, 3.3, 5.0 1 Low 1.4, 28, 200, 1600 ms 2 ✔ ✔ ✔ — ✔ micro SMD-9, MSOP-10<br />

LM3705 2.5, 3.3, 5.0 1 High 1.4, 28, 200, 1600 ms 2 ✔ ✔ ✔ — ✔ micro SMD-9, MSOP-10<br />

LM3710 2.5, 3.3, 4.8, 5.0 1 Low 1.4, 28, 200, 1600 ms 2 ✔ ✔ ✔ ✔ ✔ micro SMD-9, MSOP-10<br />

LM3711 2.5, 3.3, 5.0 1 High 1.4, 28, 200, 1600 ms 2 ✔ ✔ ✔ ✔ ✔ micro SMD-9, MSOP-10<br />

LM3722/24 2.5, 3.3, 5.0 Low 190 ms — ✔ — — ✔ SOT23-5<br />

LM3723 2.5, 3.3, 5.0 High 190 ms — ✔ — — ✔ SOT23-5<br />

LP3470 2.8, 3.1, 3.3, 3.9, 4.3, 4.7, 5.0 1 Low Adj w/ external cap. — — — — ✔ SOT23-5<br />

LMC6953 3.3 <strong>and</strong> 5.0 (Dual) Low Adj w/ external cap. — ✔ — — ✔ SO-8<br />

LM8365 2.5, 3.0, 3.3, 5.0 Low Adj w/ external cap. — — — — ✔ SOT23-5<br />

1<br />

For custom reset threshold voltages between 2.2V <strong>and</strong> 5V in 10 mV increments, contact National Semiconductor.<br />

2<br />

Factory programmed options. Some of these options are available upon request. Please contact your National sales representative <strong>for</strong> more in<strong>for</strong>mation.<br />

Select Altera application notes<br />

AN-74 Evaluating power <strong>for</strong> Altera devices<br />

AN-107 Using Altera devices in multiple voltage systems<br />

AN-355 Stratix II device system power considerations<br />

AN-358 Thermal management <strong>for</strong> 90 nm <strong>FPGAs</strong><br />

To view or download these application notes, visit:<br />

www.national.com/see/alterafpga<br />

Select National application notes<br />

Linear regulators<br />

AN-1148 Linear regulators: Theory of operation <strong>and</strong> compensation<br />

AN-1254 DDR-SDRAM termination simplified using a linear regulator<br />

Packaging technology<br />

AN-1028 Maximum power enhancement techniques <strong>for</strong> power packages<br />

AN-1187 Leadless leadframe package (LLP)<br />

AN-1201 LLP-8 thermal per<strong>for</strong>mance <strong>and</strong> design guidelines<br />

Plastic-misc Plastic package dimensional/thermal data<br />

Switching regulators <strong>and</strong> controllers<br />

AN-556 Introduction to power supplies<br />

AN-558 Introduction to power MOSFETs <strong>and</strong> their applications<br />

AN-643 EMI/RFI board design<br />

AN-1149 Layout guidelines <strong>for</strong> switching power supplies<br />

AN-1197 Selecting inductors <strong>for</strong> buck converters<br />

AN-1229 SIMPLE SWITCHER PCB layout guidelines<br />

AN-1246 Stresses in wide-input DC-DC converters<br />

Other<br />

AN-1200 Mixed signal testing using the IEEE 1149.4 STA400<br />

AN-1312 SCAN bridge (STA111/STA112) timing<br />

AN-1327 Simplified programming of Altera <strong>FPGAs</strong> using a SCANSTA111/112 SCAN chain mux<br />

23


<strong>Design</strong> tools<br />

<strong>Power</strong> Expert automated power solutions finder <strong>for</strong> Altera <strong>FPGAs</strong> <strong>and</strong> <strong>CPLDs</strong><br />

Step 1. Choose Altera FPGA<br />

• Select the Altera FPGA you are using<br />

• The specific device’s power requirements are presented<br />

<strong>for</strong> your review.<br />

Step 2. Choose your operating conditions<br />

• Choose your operating conditions (i.e., input voltage,<br />

I/O voltage)<br />

• Using a slide bar, set the FPGA operating current within<br />

the allowable range — dissipated power is calculated <strong>for</strong> you.<br />

Step 3. Choose a National power solution<br />

• Choose the National solution desired — most efficient or more simple.<br />

• Review the National products that fit your design requirements<br />

<strong>and</strong> click on the links to view datasheets, design with WEBENCH<br />

tools (if available <strong>for</strong> the device), <strong>and</strong> download a sample<br />

reference design.<br />

To download this tool <strong>and</strong> view more in<strong>for</strong>mation, visit:<br />

www.national.com/see/alterafpga<br />

WEBENCH ® online design <strong>and</strong> prototyping environment<br />

Step 1. Select It<br />

• Input your design requirements<br />

• Choose a recommended part from a<br />

customized list<br />

Step 2. <strong>Design</strong> It<br />

• Adjust components <strong>and</strong> exercise<br />

operating values such as power<br />

dissipation, current flow, offset voltage,<br />

drift, <strong>and</strong> frequency response<br />

• Exchange parts to compare<br />

per<strong>for</strong>mance, size, <strong>and</strong> cost<br />

• Use recommended components or<br />

create a custom BOM<br />

Step 3. Analyze It<br />

• Stimulate your circuit <strong>and</strong> evaluate per<strong>for</strong>mance<br />

using electrical <strong>and</strong> thermal simulations<br />

• Overlay alternate circuits <strong>and</strong> compare results<br />

to get optimal per<strong>for</strong>mance<br />

Step 4. Build It<br />

• Request samples <strong>and</strong> purchase<br />

parts or demo boards<br />

• Receive your custom prototyping<br />

kit the next business day<br />

• Download your automatically<br />

generated CAD files, assembly<br />

details, test instructions,<br />

<strong>and</strong> complete per<strong>for</strong>mance<br />

characteristics — instantly!<br />

Step 5. Test It<br />

• Download your custom test<br />

vectors to verify your real board<br />

versus virtual results<br />

• Per<strong>for</strong>m board-level tests<br />

using National Instruments’<br />

SignalExpress software<br />

To use this tool <strong>and</strong> view more<br />

in<strong>for</strong>mation, visit:<br />

webench.national.com<br />

24


Featured power management solutions<br />

Switching regulators<br />

LM2798, LM3352, LM2770 Inductorless switching regulators<br />

• 1.2, 1.5, 1.8, 2.5, 3.0 <strong>and</strong> 3.3V out<br />

• Step-down <strong>and</strong>/or step-up<br />

• Up to 250 mA I OUT<br />

• High efficiency (80%)<br />

• No inductor required, uses small ceramic caps<br />

• Always stable: no compensation required<br />

• High switching frequency<br />

• Ideal <strong>for</strong> high-efficiency CPLD power <strong>and</strong> batteryoperated<br />

devices<br />

LM2798 Simple block diagram<br />

V OUT = 1.5V, 1.8V, or 2.0V<br />

V IN = 2.6V to 5.5V<br />

I OUT up to 120 mA<br />

10 µF<br />

V IN<br />

C1+<br />

V OUT<br />

C2+<br />

10 µF<br />

1 µF 1 µF<br />

C1- LM2798 C2-<br />

EN<br />

BATOK<br />

POK<br />

GND<br />

LP385x/7x High-per<strong>for</strong>mance CMOS LDOs<br />

• Ultra-low dropout voltage (280 mV @ 1.5A,<br />

450 mV @ 3A max at 25°C)<br />

• Stable with 10 µF ceramic caps (LP385x)<br />

• Option <strong>for</strong> sense pin (LP3855/56) <strong>and</strong> error flag<br />

(LP3852/53)<br />

<br />

LP3853 Typical application diagram<br />

<br />

<br />

• Low ground-pin current (4 mA @ 3A)<br />

• On/off control<br />

• Over-temperature/over-current protection<br />

• Available in TO263-5, TO220-5, <strong>and</strong> SOT223-5<br />

packaging<br />

Output current Product ID V OUT options V OUT accuracy V IN range<br />

Single input rail (<strong>for</strong> V IN ≥ 2.5V)<br />

Dropout voltage<br />

full load (mV)<br />

Packaging<br />

800 mA LP3871/74 1.8, 2.5, 3.3, 5.0, Adj* 1.5% 2.5 to 7.0 300 TO263-5, TO220-5, SOT223-5<br />

1.5A LP3852/55 1.8, 2.5, 3.3, 5.0, Adj* 1.5% 2.5 to 7.0 280 TO263-5, TO220-5, SOT223-5<br />

1.5A LP3872/75 1.8, 2.5, 3.3, 5.0, Adj* 1.5% 2.5 to 7.0 450 TO263-5, TO220-5, SOT223-5<br />

3A LP3853/56 1.8, 2.5, 3.3, 5.0, Adj* 1.5% 2.5 to 7.0 450 TO263-5, TO220-5<br />

3A LP3873/76 1.8, 2.5, 3.3, 5.0, Adj* 1.5% 2.5 to 7.0 1000 TO263-5, TO220-5<br />

Dual input rail (<strong>for</strong> V IN ≥ 1.5V)<br />

800 mA LP3881 1.2, 1.5, 1.8, Adj 1.5% V OUT + V DO > 5.5 120 TO263-5, TO220-5<br />

800 mA LP3891 1.2, 1.5, 1.8, Adj 1.5% V OUT + V DO > 5.5 300 TO263-5, TO220-5<br />

1.5A LP3882 1.2, 1.5, 1.8, Adj 1.5% V OUT + V DO > 5.5 170 TO263-5, TO220-5<br />

1.5A LP3892 1.2, 1.5, 1.8, Adj 1.5% V OUT + V DO > 5.5 320 TO263-5, TO220-5<br />

3A LP3883 1.2, 1.5, 1.8 1.5% V OUT + V DO > 5.5 270 TO263-5, TO220-5<br />

3A LP3893 1.2, 1.5, 1.8 1.5% V OUT + V DO > 5.5 650 TO263-5, TO220-5<br />

*Adj available in LP3855/56/74/75/76<br />

25


National Semiconductor continually exp<strong>and</strong>s its product portfolio to offer the broadest range of<br />

power management <strong>and</strong> other analog solutions in the industry. For more in<strong>for</strong>mation on National’s<br />

solutions <strong>for</strong> Altera <strong>FPGAs</strong> <strong>and</strong> <strong>CPLDs</strong>, visit us today at www.national.com/see/alterafpga<br />

Americas<br />

Email: new.feedback@nsc.com<br />

Phone: 1-800-272-9959<br />

Europe<br />

Fax: +49 (0) 180-530 85 86<br />

Email: europe.support@nsc.com<br />

Phone:<br />

Deutsch +49 (0) 69 9508 6208<br />

English +44 (0) 870 24 0 2171<br />

Français +33 (0) 1 41 91 87 90<br />

Asia Pacific<br />

Email: ap.support@nsc.com<br />

Japan<br />

Fax: 81-3-5639-7507<br />

Email: jpn.feedback@nsc.com<br />

Phone: 81-3-5639-7560<br />

Packaging<br />

LLP ®<br />

(Leadless leadframe)<br />

JA 40 to 60°C/W<br />

National’s LLP ® provides excellent power dissipation<br />

capability in a very small package footprint. Unlike<br />

conventional leaded plastic packages, the LLP contains<br />

pads on the bottom of the package <strong>for</strong> PCB mounting.<br />

micro SMD<br />

(small <strong>and</strong> large bump)<br />

JA 220 to 290°C/W<br />

MDIP<br />

(Molded dual-in-line package)<br />

JA 30 to 90°C/W<br />

MSOP<br />

(Mini 8-lead)<br />

JA 220°C/W<br />

PSOP-8<br />

JA 43°C/W<br />

SO<br />

(Small outline<br />

molded/ceramic)<br />

JA 100 to 190°C/W<br />

SOT-223<br />

(<strong>Power</strong> surface mount)<br />

JA 60 to 110°C/W<br />

SOT-23<br />

JA 120 to 290°C/W<br />

TO-220<br />

JA 45 to 65°C/W<br />

TO-252<br />

(DPAK)<br />

JA 60 to 90°C/W<br />

TO-263<br />

(<strong>Power</strong> surface mount)<br />

JA 35 to 60°C/W<br />

TSSOP<br />

JA 40 to 150 °C/W<br />

N a t i o n a l<br />

Semiconductor<br />

The Sight & Sound of In<strong>for</strong>mation<br />

© National Semiconductor Corporation, March 2005. National Semiconductor, , LLP, WEBENCH, LMH, <strong>and</strong> SIMPLE SWTICHER are registered trademarks of National Semiconductor. Altera, Stratix,<br />

Stratix II, Cyclone <strong>and</strong> MAX II are trademarks of Altera Corporation. Bluetooth is a registered trademark of Bluetooth SIG, Inc. <strong>and</strong> is used under license by National Semiconductor.<br />

Signal Express is a trademark of National Instruments. All rights reserved.<br />

570011-002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!