06.11.2014 Views

Ditch-Plugging - Restore America's Estuaries

Ditch-Plugging - Restore America's Estuaries

Ditch-Plugging - Restore America's Estuaries

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Legacies of ditching and ditch-plugging in New<br />

England salt marshes: long-term effects on<br />

hydrology, elevation, and soil characteristics<br />

Robert Vincent 1 , David Burdick 1 , Michele Dionne 2<br />

1<br />

University of New Hampshire Jackson Estuarine Lab<br />

2<br />

Wells National Estuarine Research Reserve


I. Introduction<br />

Contents<br />

• Self-maintenance<br />

• <strong>Ditch</strong>ing and <strong>Ditch</strong>-plugging<br />

• Study Sites<br />

II.<br />

Effects of hydrology on created and natural<br />

habitats<br />

• Study Design<br />

• Results: hydrology, elevation, soils, vegetation<br />

III. Synthesis<br />

• Implications for self-maintenance


Salt Marshes<br />

Introduction<br />

• Highly productive<br />

transition zones between<br />

marine and terrestrial<br />

habitats<br />

• Develop over thousands<br />

of years<br />

• Dynamic processes<br />

o Hydrology<br />

o Sedimentation<br />

o Vegetation<br />

o Surface elevation<br />

• Influences habitat selfmaintenance


Salt Marsh Self-Maintenance<br />

• Requires tidal ebb and flow<br />

• Above ground vegetation<br />

traps sediments<br />

transported on tidal flows<br />

• Below ground vegetation<br />

contributes organic matter<br />

to sediments<br />

• Marsh accretion must keep<br />

pace with sea level or selfmaintenance<br />

breaks down<br />

leading to habitat loss<br />

(Morris et al. 2002)


<strong>Ditch</strong>ing (Ancestors legacy)<br />

<strong>Ditch</strong>ing and <strong>Ditch</strong>-plugging<br />

• Civilian Conservation Corps 1930s<br />

• >90% of New England marshes ditched<br />

(Kennish 2001)<br />

• Management Objective<br />

o Mosquito control<br />

• Reduce surface water and breeding<br />

habitat<br />

<strong>Ditch</strong>-<strong>Plugging</strong> (Our legacy)<br />

• More recent activity (1990s)<br />

o<br />

Plug seaward end of ditches creating pool<br />

• Management Objective<br />

o Increase surface water<br />

o Mosquito control<br />

• Larvivorous fish habitat<br />

o Wading bird and waterfowl habitat


<strong>Ditch</strong>ing and <strong>Ditch</strong>-<strong>Plugging</strong><br />

• <strong>Ditch</strong>ing and ditch-plugging are forms of target<br />

management<br />

– Mosquitoes, fish, birds<br />

• What are the ecological effects of ditching and<br />

ditch-plugging?


Salt Marsh Water Features<br />

• Natural Controls<br />

o Natural Creek<br />

o Natural Pool<br />

• Created Habitats<br />

o Altered Hydrology<br />

o Created <strong>Ditch</strong><br />

o <strong>Ditch</strong>-plug Pool


Study Sites<br />

• Three Gulf of Maine<br />

back barrier marshes<br />

o Sprague River Marsh<br />

Phippsburg, Maine<br />

o Chauncey Creek<br />

Marsh Kittery, Maine<br />

o Parker River Marsh<br />

Newburyport, Massachusetts<br />

Sprague River Marsh<br />

Chauncey Creek Marsh<br />

Parker River Marsh


Study Design<br />

• Localized response of habitats to<br />

altered hydrologic regimes<br />

• Four habitats per marsh<br />

o<br />

o<br />

o<br />

o<br />

Natural Creek<br />

Natural Pool<br />

Created <strong>Ditch</strong><br />

<strong>Ditch</strong>-plug Pool<br />

• Four replicates per habitat at each<br />

marsh<br />

o<br />

o<br />

Three sections per marsh for representation<br />

throughout marsh<br />

Randomly selected using aerial photo and<br />

numbered grid overlay<br />

• Eight 20-meter transects per<br />

habitat at each marsh<br />

o<br />

o<br />

o<br />

Two transects per replicate<br />

Sampled 0, 2, 7, 15, 20 meters each transect<br />

10 plots averaged per replicate


Results: Physical Characteristics<br />

Habitat<br />

Water<br />

Level<br />

(cm)<br />

Marsh Surface<br />

Elevation<br />

NAVD88 (cm)<br />

Pore-water<br />

Salinity<br />

(ppt)<br />

Soil Redox<br />

Potential Eh<br />

(mv)<br />

Soil<br />

Strength<br />

(Kg/cm 2 )<br />

Bulk<br />

Density<br />

(mg/cm 3 )<br />

Carbon<br />

Storage<br />

(mg/cm 3 )<br />

Organic<br />

Content (%)<br />

Created <strong>Ditch</strong> -2.52 c 110 b 26.1 b 7 a 4.51 b 605.01 b 34.2 a 18 a<br />

Natural Creek -4.01 c 105 bc 26.2 b 52 a 4.21 bc 761.76 a 34.1 a 14 b<br />

<strong>Ditch</strong> Plug 5.51 a 102 c 30.9 a -165 b 3.57 c 550.79 b 28.7 b 17 ab<br />

Natural Pool -0.49 b 121 a 26.9 b 31 a 5.87 a 575.11 b 37.4 a 21 a<br />

Levels not connected by the same letter are significantly different based on Tukey-Kramer post hoc tests for each variable (p< 0.05)<br />

• <strong>Ditch</strong>-plug significantly different from natural pool except for bulk density<br />

and percent organic content<br />

• Created ditch similar to natural creek except for bulk density and percent<br />

organic content


Results: Hydrology<br />

• Percent of time water was in rooting zone (0 to -10 cm):<br />

o Higher in pools than channels<br />

o Higher in created ditch than natural creek<br />

o Differences can influence plant growth, decomposition, and self-maintenance<br />

70<br />

60<br />

50<br />

40<br />

Created <strong>Ditch</strong><br />

Natural Creek<br />

<strong>Ditch</strong> Plug<br />

Natural Pool<br />

Water level (cm)<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96<br />

Percent of time


Results: Marsh Elevations<br />

• Elevations higher for natural pool than all other habitats<br />

• Elevations lower for ditch-plug than all other habitats<br />

o Promotes surface water retention<br />

• Appears to be subsidence over time in created habitats<br />

o Implications for self-maintenance<br />

Marsh surface elevation NAVD88 (cm)<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

Created <strong>Ditch</strong><br />

<strong>Ditch</strong>-plug<br />

Natural Creek<br />

Natural Pool<br />

0 2 7 15 20<br />

Distance from edge of water feature (m)


Results: Habitat Indicators – Flooding and Eh Stress<br />

• Canonical 1<br />

14<br />

o<br />

Hydrology and edaphic stress<br />

• <strong>Ditch</strong>-plug<br />

13<br />

Water Level<br />

KgF/cm2<br />

LOI<br />

Carbon Storage<br />

o<br />

o<br />

Distinctly different from all others<br />

Higher Water levels<br />

12<br />

NP<br />

o<br />

o<br />

o<br />

o<br />

Higher Salinity<br />

Lower redox potential<br />

Lower organic content<br />

Lower sediment strength<br />

Canonical2<br />

11<br />

10<br />

DP<br />

Salinity<br />

CD<br />

% organic<br />

NC<br />

Redox<br />

• Canonical 2<br />

o Sediment bulk properties<br />

• Natural Pool<br />

o Higher sediment strength<br />

o Higher carbon storage<br />

• Natural Creek<br />

o Higher bulk density<br />

o Higher redox potential<br />

• Created ditch habitat<br />

o Intermediate<br />

9<br />

Bulk Density<br />

8<br />

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2<br />

Canonical1<br />

<strong>Ditch</strong>-plug Core Natural Pool Core


Results: Vegetation<br />

100<br />

90<br />

80<br />

B<br />

A<br />

AB<br />

70<br />

• Patterns of percent cover<br />

and biomass across habitats<br />

were similar, showing ditchplug<br />

significantly lower than<br />

all other habitats<br />

• Only a few plants can<br />

survive in ditch-plug habitat,<br />

as indicated by all measures<br />

of diversity<br />

o<br />

Richness, Shannon Hʹ, exp(Hʹ), and<br />

Pielou’s J<br />

Cover (%)<br />

Biomass (g/0.0625m 2 )<br />

Parameter Value<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

5.00<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

C<br />

Created <strong>Ditch</strong> Natural Creek <strong>Ditch</strong> Plug Natural Pool<br />

A<br />

B<br />

B<br />

C<br />

Created <strong>Ditch</strong> Natural Creek <strong>Ditch</strong> Plug Natural Pool<br />

A A<br />

Created <strong>Ditch</strong><br />

A<br />

Natural Creek<br />

<strong>Ditch</strong> Plug<br />

Natural Pool<br />

A A A<br />

B<br />

B<br />

A A A<br />

A A A<br />

B<br />

B<br />

0.00<br />

Richness Shannon H' exp(H') Pielou's J


Results: Habitat Indicators - Vegetation<br />

• Canonical 1<br />

• High edaphic stress<br />

o<br />

<strong>Ditch</strong>-plug<br />

• Distinctly different<br />

• Canonical 2<br />

• Algal mat, sulfur bacteria,<br />

unvegetated, Salicornea spp.<br />

• Pore-water drainage disturbance<br />

o Natural Creek<br />

• Better drained sediments<br />

• Tall-from S. alterniflora<br />

o Natural Pool<br />

• Poorly drained sediments<br />

• Short-form S. alterniflora<br />

o Created <strong>Ditch</strong><br />

• Drainage intermediate between<br />

natural creek and natural pool<br />

• Forb species<br />

Canonical2<br />

7<br />

6<br />

5<br />

4<br />

3<br />

SP<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

SSA<br />

NP<br />

CD<br />

SU PU<br />

NC<br />

AP<br />

JG<br />

TSA<br />

GM<br />

TM<br />

Algae Mat<br />

DS<br />

LN<br />

Sulfur Bacteria<br />

SE<br />

PM<br />

-3<br />

-6 -4 -2 0 2 4 6 8<br />

Canonical1<br />

DP<br />

Unvegetated<br />

<strong>Ditch</strong>-plug pool


Self-Maintenance: Natural Creek<br />

• Marsh elevations and tidal flow<br />

promote flushing and sediment<br />

delivery<br />

• Sloping banks with tall S.<br />

alterniflora promote sediment<br />

trapping and accretion<br />

• Higher mineral content facilitates<br />

drainage alleviating edaphic<br />

stress<br />

• High vegetation productivity and<br />

sedimentation have allowed<br />

marsh accretion to keep pace<br />

with sea level<br />

• These conditions support the<br />

self-maintenance process


Self-Maintenance – Created <strong>Ditch</strong><br />

• Habitat initially drained by ditches has<br />

subsided over time reducing the depth<br />

to water table and creating wetter<br />

conditions than in natural creek habitat<br />

• Elevations and hydrologic regime<br />

supports vegetation growth but water<br />

retention in the rooting zone alters<br />

community composition (forbs),<br />

sediment trapping, and soil organic<br />

content<br />

• Self-maintenance has been functioning<br />

for the past 70 years, but questions<br />

remain:<br />

o Will accretion keep pace with sea<br />

level rise?<br />

o Will further subsidence occur and<br />

limit self-maintenance?<br />

• Impacts from ditching may be greater in<br />

more extensively ditched marshes with<br />

overlapping hydrologic regimes


Self-Maintenance: Natural Pool<br />

• Moderate drainage supports<br />

vegetation growth and reduces<br />

decomposition<br />

• High carbon content promotes<br />

sediment strength and habitat<br />

stability, providing a carbon sink<br />

in the high marsh<br />

• These carbon inputs combined<br />

with moderate sedimentation<br />

promote marsh accretion that<br />

maintains consistently high<br />

surface elevations<br />

• The self-maintenance process<br />

seems to be functioning well in<br />

natural pool habitat


Self-Maintenance: <strong>Ditch</strong>-plug Pools<br />

• Poor drainage results in surface<br />

and pore-water retention that<br />

promotes edaphic stress and<br />

vegetation die back<br />

• Low organic and mineral inputs,<br />

low sediment strength, and<br />

collapse of the root zone has led<br />

to habitat instability and marsh<br />

subsidence with lower elevations<br />

• This hydrologic restriction leads<br />

to a decoupling of the selfmaintenance<br />

process with a<br />

transition from vegetated to<br />

open water habitat, and the<br />

potential for additional loss of<br />

salt marsh habitat with continued<br />

sea level rise


Acknowledgements<br />

• University of New Hampshire Jackson Estuarine Lab<br />

• University of New Hampshire Marine Program<br />

• Wells National Estuarine Research Reserve<br />

• New Hampshire Coastal Program<br />

• NOAA Restoration Center<br />

• NOAA National Estuarine Research Reserve, Graduate Research<br />

Fellowship Program<br />

• US Fish & Wildlife Service Special Use Permits for Work at<br />

Chauncey Creek and Parker River marshes<br />

• The Nature Conservancy and Bates College for permission to work<br />

at Sprague River Marsh


Questions?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!