12.11.2014 Views

1 Stokes equations with FD on a staggered grid using the stream ...

1 Stokes equations with FD on a staggered grid using the stream ...

1 Stokes equations with FD on a staggered grid using the stream ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 STOKES EQUATIONSWITH<str<strong>on</strong>g>FD</str<strong>on</strong>g> ON ASTAGGEREDGRIDUSINGTHE<br />

STREAM-FUNCTIONAPPROACH.<br />

Figure1: Discretizati<strong>on</strong>for<strong>the</strong><strong>stream</strong>functi<strong>on</strong>approach. Theboundaryc<strong>on</strong>diti<strong>on</strong>saresetthrough<br />

fictiousboundarypoints.<br />

1 <str<strong>on</strong>g>Stokes</str<strong>on</strong>g> <str<strong>on</strong>g>equati<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>with</str<strong>on</strong>g> <str<strong>on</strong>g>FD</str<strong>on</strong>g> <strong>on</strong> a <strong>staggered</strong> <strong>grid</strong> <strong>using</strong> <strong>the</strong><br />

<strong>stream</strong>-functi<strong>on</strong>approach.<br />

1.1 Introducti<strong>on</strong><br />

As was discussed in sec. ??, <strong>the</strong> basis of basically all mantle c<strong>on</strong>vecti<strong>on</strong> and lithospheric<br />

dynamicscodes are <strong>the</strong> <str<strong>on</strong>g>Stokes</str<strong>on</strong>g> <str<strong>on</strong>g>equati<strong>on</strong>s</str<strong>on</strong>g> for slowly movingviscous fluids.<br />

There are several ways to solve those <str<strong>on</strong>g>equati<strong>on</strong>s</str<strong>on</strong>g>, and <strong>the</strong> goal of this exercise is to<br />

use a <strong>stream</strong>functi<strong>on</strong>, finite difference approach. Stream functi<strong>on</strong> means that <strong>the</strong>re is a<br />

potential field which we solve for, and <strong>the</strong>n obtain velocities from <strong>the</strong> derivatives of this<br />

field. The advantage of this approach is that <strong>the</strong> c<strong>on</strong>tinuity equati<strong>on</strong> for incompressible<br />

flow can be satisfied implicitly, ra<strong>the</strong>r than having to use a panelty parameter as for <strong>the</strong><br />

primitive variable approach of sec. ??. (It is, however, possible to formulate <strong>the</strong> <strong>stream</strong><br />

functi<strong>on</strong> method for compressible c<strong>on</strong>vecti<strong>on</strong> approximati<strong>on</strong>s, e.g. ?). For a comparis<strong>on</strong><br />

ofdifferent finite difference approaches, see ?, for example.<br />

Themainchallengesofthisprojectare,1),havingfairlyhigh-orderandmixedderivatives<br />

(up to4 th order) and,2), setting of boundaryc<strong>on</strong>diti<strong>on</strong>s.<br />

1.2 Governing<str<strong>on</strong>g>equati<strong>on</strong>s</str<strong>on</strong>g><br />

It is assumed that <strong>the</strong> rheology is incompressible and that <strong>the</strong> rheology is Newt<strong>on</strong>ian<br />

viscous. In thiscase, <strong>the</strong> governing <str<strong>on</strong>g>equati<strong>on</strong>s</str<strong>on</strong>g>are (see sec. ??):<br />

USCGEOL557: ModelingEarth Systems 1


1 STOKES EQUATIONSWITH<str<strong>on</strong>g>FD</str<strong>on</strong>g> ON ASTAGGEREDGRIDUSINGTHE<br />

STREAM-FUNCTIONAPPROACH.<br />

∂v x<br />

∂x + ∂v z<br />

= 0<br />

∂z<br />

(1)<br />

∂σ xx<br />

∂x + ∂σ xz<br />

= 0<br />

∂z<br />

(2)<br />

∂σ xz<br />

∂x + ∂σ zz<br />

− ρg = 0<br />

∂z<br />

(3)<br />

σ xx = −p +2µ ∂v x<br />

∂x<br />

σ zz = −p +2µ ∂v z<br />

( ∂z<br />

∂vx<br />

σ xz = µ<br />

∂z + ∂v )<br />

z<br />

∂x<br />

Bysubstituting eqs.(4)-(6) into eqs.(1)-(3), weobtain (compare sec. ??)<br />

− ∂p<br />

∂x +2 ∂ (<br />

∂x<br />

− ∂p<br />

∂z +2 ∂ ∂z<br />

µ ∂v x<br />

∂x<br />

(<br />

µ ∂v z<br />

∂z<br />

∂v x<br />

∂x + ∂v z<br />

)<br />

∂z<br />

+ ∂ ( ( ∂vx<br />

µ<br />

∂z ∂z + ∂v ))<br />

z<br />

∂x<br />

)<br />

+ ∂ ( ( ∂vx<br />

µ<br />

∂x ∂z + ∂v ))<br />

z<br />

∂x<br />

(4)<br />

(5)<br />

(6)<br />

= 0 (7)<br />

= 0 (8)<br />

= ρg (9)<br />

We can eliminate pressure from eqs. (8) and (9) by taking <strong>the</strong> derivative of eq. (8) versus<br />

z andsubtracting eq. (9)derivedversus x. Thisresults in:<br />

(<br />

2 ∂2<br />

µ ∂v (<br />

x<br />

)−2 ∂2<br />

µ ∂v )<br />

z<br />

+<br />

∂x∂z ∂x ∂x∂z ∂z<br />

∂ 2 ( ( ∂vx<br />

∂z 2 µ<br />

∂z + ∂v ( (<br />

z<br />

))− ∂2 ∂vx<br />

∂x ∂x 2 µ<br />

∂z + ∂v ))<br />

z<br />

= − ∂ ρg. (10)<br />

∂x<br />

∂x<br />

Wecan alsouse <strong>the</strong> incompressibility c<strong>on</strong>straint (7)to simplify things alittle bitmore:<br />

(<br />

−4 ∂2<br />

µ ∂v )<br />

z<br />

+<br />

∂x∂z ∂z<br />

∂ 2 ( ( ∂vx<br />

∂z 2 µ<br />

∂z + ∂v ( (<br />

z<br />

))− ∂2 ∂vx<br />

∂x ∂x 2 µ<br />

∂z + ∂v ))<br />

z<br />

= − ∂ ρg (11)<br />

∂x<br />

∂x<br />

Now we introduce a variable Ψ (<strong>the</strong> <strong>stream</strong> functi<strong>on</strong>) which is defined by its relati<strong>on</strong>ship<br />

to <strong>the</strong> velocities as<br />

v x = ∂Ψ<br />

∂z<br />

v z = − ∂Ψ<br />

∂x<br />

USCGEOL557: ModelingEarth Systems 2<br />

(12)<br />

(13)


1 STOKES EQUATIONSWITH<str<strong>on</strong>g>FD</str<strong>on</strong>g> ON ASTAGGEREDGRIDUSINGTHE<br />

STREAM-FUNCTIONAPPROACH.<br />

Note that Ψ satisfies incompressibility byplugging eqs. (12)and(13)into eq.(1).<br />

By<strong>using</strong> Ψ, we can write eq. (11)as:<br />

∂ 2 ( ( ∂ 2 )) (<br />

Ψ<br />

∂z 2 µ<br />

∂z 2 − ∂2 Ψ<br />

∂x 2 − ∂2<br />

∂x 2 µ<br />

4 ∂2<br />

( )<br />

µ ∂2 Ψ<br />

∂x∂z<br />

∂x∂z<br />

( ∂ 2 ))<br />

Ψ<br />

∂z 2 − ∂2 Ψ<br />

∂x 2<br />

+<br />

= − ∂ ρg. (14)<br />

∂x<br />

Note that this equati<strong>on</strong> now has 4 th order derivatives for Ψ (easier to see for c<strong>on</strong>stant µ,<br />

where we can pull <strong>the</strong> viscosity out of <strong>the</strong> derivatives.) The challenge is to solve eq. (14)<br />

for Ψ given <strong>the</strong>n density gradients.<br />

1.3 Exercise<br />

1. Discretize eq.(14)<strong>on</strong> a <strong>grid</strong> asshown <strong>on</strong> Figure 1.<br />

2. A MATLAB subroutine is shown <strong>on</strong> Figure 2. The subroutine sets up <strong>the</strong> <strong>grid</strong> and<br />

<strong>the</strong> node numbering. Finish <strong>the</strong> code by programming <strong>the</strong> discretized eq. (14). To<br />

start simple, assume thatviscosity isc<strong>on</strong>stant.<br />

3. Addfree-slip boundary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> all sides(which means v z = 0, σ xz = 0<strong>on</strong> <strong>the</strong><br />

lowerandupperboundariesand σ xz = 0,v x = 0<strong>on</strong><strong>the</strong>sideboundaries;you’llhave<br />

to write <strong>the</strong>se <str<strong>on</strong>g>equati<strong>on</strong>s</str<strong>on</strong>g> in termsof Ψ andemploy fictious boundary points).<br />

4. Assume a model domain x = [0;1], z = [0;1], and assume that <strong>the</strong> density below<br />

z = 0.1cos(2πx) +0.5 is1, whereas <strong>the</strong> density above it is 2. Compute <strong>the</strong> velocity,<br />

andplot <strong>the</strong> velocity vectors.<br />

5. Write<strong>the</strong>codefor<strong>the</strong>caseofvariableviscosity(whichisrelevantfor<strong>the</strong>Earthsince<br />

rock properties are a str<strong>on</strong>g functi<strong>on</strong> of temperature).<br />

USCGEOL557: ModelingEarth Systems 3


1 STOKES EQUATIONSWITH<str<strong>on</strong>g>FD</str<strong>on</strong>g> ON ASTAGGEREDGRIDUSINGTHE<br />

STREAM-FUNCTIONAPPROACH.<br />

% Solve <strong>the</strong> 2D <str<strong>on</strong>g>Stokes</str<strong>on</strong>g> <str<strong>on</strong>g>equati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a <strong>staggered</strong> <strong>grid</strong>, <strong>using</strong> <strong>the</strong> Vx,Vz,P<br />

% formulati<strong>on</strong>.<br />

clear<br />

% Material properties phase #1 phase #2<br />

mu_vec = [1 1 ];<br />

rho_vec = [1 2 ];<br />

% Input parameters<br />

Nx = 6;<br />

Nz = 6;<br />

W = 1;H = 1;g = 1;<br />

% Setup <strong>the</strong> interface<br />

x_int = 0:.01:W;<br />

z_int = cos(x_int*2*pi/W)*1e-2 - 0.5;<br />

% Setup <strong>the</strong> <strong>grid</strong>s----------------------------------------------------------<br />

dz = H/(Nz-1);dx = W/(Nx-1);<br />

[X2d,Z2d] = mesh<strong>grid</strong>(0:dx:W,-H:dz:0);<br />

%--------------------------------------------------------------------------<br />

% Compute material properties from interface-------------------------------<br />

% Properties are computed in <strong>the</strong> center of a c<strong>on</strong>trol volume<br />

Rho = <strong>on</strong>es(Nz,Nx)*rho_vec(2);<br />

Mu = <strong>on</strong>es(Nz,Nx)*mu_vec(2);<br />

z_int_intp = interp1(x_int,z_int,X2d(1,:));<br />

for ix = 1:length(z_int_intp)<br />

ind = find(Z2d(:,1)


BIBLIOGRAPHY<br />

Bibliography<br />

USCGEOL557: ModelingEarth Systems 5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!