PerfBIB27Nov06CrochiereENG.pdf - Performance BIB / Goals
PerfBIB27Nov06CrochiereENG.pdf - Performance BIB / Goals
PerfBIB27Nov06CrochiereENG.pdf - Performance BIB / Goals
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
Bag-In-Box Package Testing for<br />
Beverage Compatibility<br />
Based on Proven Plastic Bottle &<br />
Closure Test Methods<br />
Crochiere & Associates, LLC
Standard & Analytical Tests<br />
• Sensory evaluation is subjective but it is the<br />
final word or approval.<br />
• Analytical tests and specifications have to<br />
be calibrated to each beverage type.<br />
• Reliable analytical tests speed development<br />
and reduce costs to all in the industry.<br />
Crochiere & Associates, LLC
Sensory Testing<br />
• Material effects<br />
• Migration and scalping<br />
• Contamination or “off”<br />
flavors<br />
• Missing flavors<br />
• Increase plastic surface<br />
area to accelerate test<br />
• Short term tests (weeks)<br />
• Aging effects<br />
• Oxidation (reduction) of<br />
beverage<br />
• Color change<br />
• “Antioxidant” loss<br />
• Staling flavor<br />
• Use oxygen chamber to<br />
accelerate test<br />
• Long term test<br />
• Possible degradation of<br />
packaging<br />
Crochiere & Associates, LLC
Package Compatibility Issues<br />
Added to Beverage<br />
Ingress<br />
•Oxygen – Added during filling<br />
and ingress<br />
•Environmental contaminants –<br />
TCA<br />
•Light – “Light Box Test”, %T<br />
•Heat<br />
Migration<br />
•Plastics additives<br />
•Scavengers and by-products<br />
•Polymer degradation products<br />
Removed from Beverage<br />
Egress<br />
•Carbonation<br />
•Moisture – Weight loss<br />
Scalping<br />
•Flavor & odor components<br />
absorbed by packaging<br />
Crochiere & Associates, LLC
Oxygen Ingress Issues<br />
• Oxygen ingress through all plastic components<br />
• Barrier and scavenger performance is very dependant on<br />
temperature and absorption by the plastic of water, alcohol,<br />
flavors, etc.<br />
• If the beverage reacts with oxygen, it is impossible to<br />
determine ingress with wine, beer or juice in package<br />
• Total Package Oxygen measurements on packages filled<br />
with deoxygenated water or alcohol solution provides<br />
ingress rate<br />
• Ingress rate with oxygen scavengers is not always zero<br />
• It is possible to “use up” scavengers before filling or end<br />
of product shelf-life<br />
Crochiere & Associates, LLC
Effect of Relative Humidity on O2<br />
Permeability of the Polymer<br />
Huige<br />
10<br />
O2 Permeability<br />
(cc.mil/100in2.day.atm)<br />
1<br />
0.1<br />
0.01<br />
0 20 40 60 80 100<br />
% Relative Humidity<br />
PET EVAL E EVAL F<br />
Nylon MXD6 Crochiere & PEN Associates, LLC<br />
Epoxy Amine
Effect of Storage Temperature on O2<br />
Permeability for various Polymers<br />
Huige<br />
10<br />
O2 Permeability<br />
(cc.mil/100in2.day.atm)<br />
1<br />
0.1<br />
0.01<br />
0.001<br />
40 50 60 70 80 90 100<br />
Temperature deg.F<br />
PET EVAL E EVAL F Nylon MXD6<br />
Crochiere & Associates, LLC
Example of the effects of temperature and<br />
outside RH on shelflife obtained by model<br />
For 0.5L, 3-layer bottle with 9% EVAL-F, t=20 mil<br />
Huige<br />
Days to reach 1 ppm total O2 ingress<br />
200<br />
150<br />
100<br />
50<br />
0<br />
50 60 70 80 90<br />
Storage temperature in o F<br />
Crochiere & Associates, LLC<br />
RH 50%<br />
RH 60%<br />
RH 70%<br />
RH 80%<br />
RH 90%<br />
(Over estimated by 40%<br />
due to liquid contents)
Example of Oxygen Ingress Test<br />
on Plastic Bottles<br />
• Plot Total package oxygen (ppm) vs. Time (days)<br />
• Typical shelf life for beer is when it accumulates 1<br />
ppm of oxygen<br />
• Estimated shelf life for some juices is when it<br />
accumulates 6-7 ppm of oxygen<br />
• Intersection of bottle oxygen plot with shelf life<br />
limits determines the shelf life of that beverage in<br />
that bottle. (example, Bottle A – 50 days for beer<br />
and 150 days for juice)<br />
Crochiere & Associates, LLC
Bottle Oxygen Ingress<br />
12.000<br />
10.000<br />
Total Package Oxygen (ppm)<br />
8.000<br />
6.000<br />
4.000<br />
Juice Shelf life limit?<br />
2.000<br />
Beer Shelf life limit (1 ppm)<br />
0.000<br />
0 50 100 150 200 250 300<br />
Days<br />
Bottle A Bottle B Bottle C Bottle D<br />
Crochiere & Associates, LLC
Bag-In-Box Oxygen Ingress Test<br />
Example<br />
• Small number of bags filled to provide an example for this<br />
presentation.<br />
• Examples of EV-OH and MetPET 3 liter bags evaluated.<br />
• The manufacture of the bags, grades and thicknesses of the<br />
films and the type of taps are not being disclosed.<br />
• Any variation in the bag manufacturing or materials will<br />
change the results<br />
• Bags pre-flushed with nitrogen before filling<br />
• Most were vented through valve to minimize air<br />
Crochiere & Associates, LLC
Bag-In-Box Oxygen Ingress Test<br />
Analysis<br />
• Studied headspace effect on initial oxygen<br />
• Some bags exposed to 100 F for 7 days<br />
• Studied change in headspace or bubble volume<br />
• Studied oxygen ingress over time for both types of<br />
bags at both temperatures<br />
• Compared dissolved oxygen to total package<br />
oxygen measurements<br />
• Compared ingress rate to other wine packages<br />
Crochiere & Associates, LLC
Initial Total package Oxygen as a Function of Headspace Volume - 3 liter bag<br />
2.5<br />
y = 0.0382x + 0.5477<br />
2.0<br />
Total package Oxygen (ppm)<br />
1.5<br />
1.0<br />
0.5<br />
0.0<br />
0 5 10 15 20 25 30 35 40 45 50<br />
Headspace Volume (ml)<br />
Crochiere & Associates, LLC
Headspace Volume as Function of Time in Purged 3 liter Bags<br />
30.00<br />
25.00<br />
Headspace Volume (ml)<br />
20.00<br />
15.00<br />
10.00<br />
100 F<br />
5.00<br />
0.00<br />
0 5 10 15 20 25<br />
Days<br />
EV-OH 72 F<br />
EV-OH 100 F for 7 days<br />
Crochiere & Associates, LLC
Oxygen Ingress for 3 Liter Bags Only Measureing Dissolved Oxygen<br />
3.5<br />
3.0<br />
y = 0.0989x + 0.5791<br />
Dissolved Oxygen (ppm)<br />
2.5<br />
2.0<br />
1.5<br />
1.0<br />
y = 0.0633x + 0.6878<br />
0.5<br />
0.0<br />
0 5 10 15 20 25<br />
Days<br />
EV-OH 72 F EV-OH 100 F for 7 days MetPET 72 F MetPET 100 F for 7 days<br />
Crochiere & Associates, LLC
Total Package Oxygen Ingress for 3 liter Bags<br />
4.5<br />
4.0<br />
Total Package Oxygen (ppm)<br />
3.5<br />
3.0<br />
2.5<br />
2.0<br />
1.5<br />
y = 0.1086x + 0.6371<br />
y = 0.0698x + 0.7542<br />
1.0<br />
0.5<br />
0.0<br />
0 5 10 15 20 25<br />
Days<br />
EV-OH 72 F EV-OH 100 F for 7 days MetPET 72 F MetPET 100 F for 7 days<br />
Crochiere & Associates, LLC
Package or<br />
Closure Type<br />
<strong>BIB</strong><br />
Results of Wine Packaging Tests to Date<br />
Barrier Material<br />
Type<br />
Package<br />
Size<br />
ml<br />
Average<br />
Oxygen<br />
Ingress<br />
ppm/day<br />
TPO<br />
Crochiere & Associates, LLC<br />
Average<br />
Oxygen<br />
Ingress<br />
ppm/year<br />
TPO<br />
Average<br />
Oxygen<br />
Ingress<br />
years to 5<br />
ppm TPO<br />
Bag-In-Box EV-OH 3000 0.070 25.6 0.2<br />
Bag-In-Box MetPET 3000 0.110 40.2 0.1<br />
Corks<br />
Natural cork Super Select 49mm 750 0.022 8.0 0.6<br />
Technical cork 1+1 750 0.010 3.7 1.4<br />
Synthetic Cork A 750 0.021 7.7 0.7<br />
Synthetic Cork B 750 0.018 6.6 0.8<br />
Synthetic Cork C 750 0.026 9.5 0.5<br />
Synthetic Cork D 750 0.020 7.3 0.7<br />
Synthetic Cork E 750 0.012 4.4 1.1<br />
Aluminum<br />
Optimum Tin 750 0.00001 0.002 2500<br />
Optimum Saranex 750 0.00002 0.006 833<br />
Optimum Polyester 750 0.00411 1.5 3.3<br />
Optimum Polyethylene 750 0.01644 6.0 0.8<br />
Roll-on Tin 1 750 0.00005 0.017 294<br />
Roll-on Tin 3 750 0.00007 0.025 199<br />
Twist-on Tin 5 750 0.00008 0.029 174<br />
Roll-on Tin 7 750 0.00013 0.046 109<br />
Roll-on Tin 8 750 0.00043 0.158 32<br />
Twist-on Saranex 1 750 0.00008 0.029 171<br />
Twist-on Saranex 3 750 0.00029 0.104 48<br />
Roll-on Saranex 5 750 0.00069 0.253 20<br />
Roll-on Saranex 7 750 0.00108 0.395 13<br />
Twist-on Saranex 9 750 0.00238 0.868 5.8<br />
Roll-on Saranex 11 750 0.00486 1.77 2.8<br />
Roll-on Saranex 13 750 0.00593 2.16 2.3<br />
Roll-on Saranex 15 750 0.01816 6.63 0.8<br />
Roll-on Polyester 750 0.01330 4.86 1.0<br />
Roll-on Polyethylene 750 0.02980 10.9 0.5
Flavor Scalping<br />
• Polymers absorb flavors and odors from the<br />
beverage.<br />
• Polymers absorb materials with similar polarity or<br />
solubility parameters<br />
• Lightly flavored beverages are most vulnerable<br />
• Studied by Remco W.G. van Willige, G.D. Sadler,<br />
Australian Wine Research Institute from the food<br />
and beverage science point of view<br />
Crochiere & Associates, LLC
Factors Effecting Flavor Scalping<br />
• Polymer type and crystallinity<br />
– LDPE>HDPE>PP>PET>PEN>Saran<br />
• Chemical properties of flavor/odor compound<br />
– Non polar more likely to scalp<br />
• Relative amounts of plastic and flavor (wt/wt)<br />
affects amount scalped<br />
• Polymer surface area to flavor amount affects rate<br />
of scalping<br />
• Amount of flavor in beverage vs. amount scalped<br />
vs. flavor threshold determines significance<br />
Crochiere & Associates, LLC
Flavor Scalping Analysis<br />
• Sensory analysis<br />
• Analytical testing of beverage for specific<br />
chemical compounds<br />
• Analytical testing of packaging material for<br />
specific chemical compounds<br />
• Program underway with International Society of<br />
Beverage Technologists to develop standard test<br />
for evaluating packages<br />
• This work will lead to a similar test for wines<br />
Crochiere & Associates, LLC
Package Scalping Comparison<br />
Glass Bottle &<br />
Synthetic Cork<br />
Glass Bottle &<br />
Screw cap<br />
<strong>BIB</strong><br />
Wine volume 0.75 liters 0.75 liters 3 liters<br />
Plastic area 2.8 cm2 3.1 cm2 1550 cm2<br />
Surface<br />
area/volume<br />
3.7 cm2/liter 4.1 cm2/liter 517 cm2/liter<br />
Plastic material LDPE Saranex LDPE or PET<br />
Crochiere & Associates, LLC
Environmental Contamination<br />
• Chemical contamination from materials in<br />
atmosphere where the package is located<br />
• Relative barrier performance determined by<br />
storing filled packages in a concentrated<br />
environment<br />
• Analysis for chemical in beverage by<br />
appropriate method (GC, HPLC, etc)<br />
Crochiere & Associates, LLC
TCA Barrier Properties of Crown<br />
Liners<br />
4500<br />
4000<br />
3500<br />
TCA (nanograms/liter)<br />
3000<br />
2500<br />
2000<br />
1500<br />
1000<br />
500<br />
0<br />
0 1<br />
Months<br />
Sealant A Sealant B Sealant C Sealant D Sealant E<br />
Crochiere & Associates, LLC
Additional Tests Open for<br />
Discussion<br />
Crochiere & Associates, LLC
• Oxygen Pick-up<br />
Oxygen Pick-up and<br />
Oxygen Control<br />
– The amount of oxygen added to the package and<br />
beverage from the filling process, the closing or sealing<br />
process and ingress through the package.<br />
• Oxygen Control<br />
– The process of controlling the amount of oxygen added<br />
through the expected life of the package and product<br />
Crochiere & Associates, LLC
Oxygen Pickup vs. Process in Wine During Filling and Shelf Life (750 ml)<br />
35<br />
30<br />
25<br />
Oxygen Pickup (ppm)<br />
20<br />
15<br />
10<br />
5<br />
0<br />
Tank Filler Filled bottle Headspace 1st year ingress 2nd year ingress<br />
Minimum (ppm) Typical cork (ppm) Typical screwcap(ppm) Maximum (ppm)<br />
Crochiere & Associates, LLC
Oxygen Control Corrective<br />
Actions<br />
• Inert gas in tank & filler bowl headspace<br />
• Filter from bottom to top<br />
• Minimize turbulent flow in process<br />
• Control filling process, dip tubes, valves, rates<br />
• Pre-evacuate bottles with inert gas<br />
• Headspace flush with inert gas or liquid nitrogen<br />
• Vacuum corking<br />
• Closure and liner selection<br />
• Proper procedures<br />
Crochiere & Associates, LLC
Accelerated Aging<br />
Heat versus Oxygen Chamber<br />
Crochiere & Associates, LLC
Accelerate Aging – Heat<br />
Exposure<br />
• Must be used with caution<br />
• Degrades beverage<br />
• Degrades polymers<br />
• Increases migration, scalping, ingress &<br />
egress<br />
• No measurable way to predict acceleration<br />
Crochiere & Associates, LLC
Accelerated Aging – Oxygen<br />
Chambers<br />
• Accelerates oxygen ingress and aging<br />
without heat side effects on plastic or<br />
beverage<br />
• 95-100% oxygen atmosphere give<br />
approximately 4.7 times acceleration<br />
• Effective on beverage and scavenger shelf<br />
life<br />
Crochiere & Associates, LLC
Oxygen Chamber Bottle Test at Room Temperature<br />
3.50<br />
3.00<br />
Total Package Oxygen (ppm)<br />
2.50<br />
2.00<br />
1.50<br />
1.00<br />
0.50<br />
0.00<br />
0 50 100 150 200 250<br />
Days<br />
Crochiere & Associates, LLC
Moisture Loss Through Plastic<br />
Packaging<br />
• Moisture evaporates through plastic bottle<br />
• Changes fill level and concentrations in<br />
beverage<br />
• Determined by measuring weight loss on<br />
non-carbonated product<br />
• Affected by temperature<br />
Crochiere & Associates, LLC
Migration Analysis<br />
• Global migration weight analysis<br />
• Specific chemical analysis (lubricant)<br />
• Sensory analysis<br />
• Affected/accelerated by heat<br />
• Accelerated by increased exposure<br />
Crochiere & Associates, LLC
Literature references<br />
1. Huige, N.J., MBAA TQ 2002, vol.39, no.4, pp218-230.<br />
Evaluating barrier enhancing and scavenger technologies for<br />
plastic beer bottles.<br />
2. Remco W.G. van Willage, May 31, 2002, Effects of flavour<br />
absorption on foods and their packaging materials<br />
Crochiere & Associates, LLC