The Physics of Metamaterials - å家çè«ç§å¸ç 究ä¸å¿(åå)
The Physics of Metamaterials - å家çè«ç§å¸ç 究ä¸å¿(åå)
The Physics of Metamaterials - å家çè«ç§å¸ç 究ä¸å¿(åå)
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
<strong>The</strong> <strong>Physics</strong> <strong>of</strong> <strong>Metamaterials</strong><br />
Pi-Gang Luan <br />
Wave <strong>Physics</strong>/Engineering Lab<br />
<br />
Department <strong>of</strong> Optics and Photonics<br />
National Central University
Contents<br />
t<br />
• Definition and Examples <strong>of</strong> <strong>Metamaterials</strong><br />
• Constitutive i Relations and Effective<br />
parameters<br />
• Isotropic Media<br />
• Anisotropic Media<br />
• Inhomogeneous Media<br />
• Acoustic <strong>Metamaterials</strong><br />
• Cloaking and Transformation Optics
What are <strong>Metamaterials</strong> ?<br />
• <strong>Metamaterials</strong> are artificial materials<br />
engineered to have properties that may<br />
not be found din nature.<br />
• <strong>The</strong>y usually gain their properties from<br />
structure rather than composition, using<br />
small inhomogeneities to create effective<br />
macroscopic behavior.
Examples<br />
• Thin wire array (negative ε medium)<br />
• Split-ring resonator (SRR) array<br />
(negative μ medium)<br />
• Wire-SRR array (negative n medium)<br />
• Metal-dielectric multilayer structure<br />
(indefinite medium)<br />
• Conducting Helix/Gamada ()<br />
array (chiral medium)<br />
• Fishnet structure (negative refraction<br />
medium)<br />
• Helmholtz resonator/side hole array<br />
(negative modulus medium)
Constitutive relations<br />
and effective parameters<br />
<strong>of</strong> metamaterials
Effective Permittivity and Permeability<br />
Constitutive relations: D <br />
<br />
E,<br />
B <br />
<br />
H<br />
0<br />
,<br />
0 0<br />
D<br />
E P P electric dipole density<br />
Np<br />
B H M M nsity Nm<br />
<br />
0<br />
, magnetic dipole de<br />
N <br />
number density<br />
1. In a metal, the "free electrons" are driven by the applied<br />
E field, moving long distances.<br />
When PD , we have DE<<br />
0 , which means
Left-Handed Media<br />
D. R. Smith et. al., <strong>Physics</strong> Today, 17, May (2000).<br />
Phys. Rev. Lett. 84, 4184 (2000) ; Science, 292, 77 (2001)
<strong>The</strong> Building Blocks <strong>of</strong> LHM<br />
Electric Dipoles<br />
(high inductance + dilute carrier density<br />
low plasma frequency)<br />
+<br />
Magnetic Dipoles<br />
(LC resonance <strong>of</strong> ring current<br />
resonance <strong>of</strong> magnetization)<br />
( ) 1<br />
F<br />
2<br />
2<br />
p<br />
( ) 1<br />
2 2<br />
2<br />
<br />
0<br />
(Plasmon-like dispersion)<br />
(Polariton-like dispersion)
Effective ‘Material Parameters’<br />
Ampere & Faraday’slaws<br />
Averaged B field<br />
a<br />
Averaged H field<br />
a<br />
a<br />
Effective permeability<br />
IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)
Dynamical Equation <strong>of</strong> Polarization P (I)<br />
2<br />
dI<br />
d LI<br />
2<br />
<strong>The</strong> current equation<br />
L RI V El<br />
<br />
<br />
RI <br />
IV<br />
dt<br />
dt 2 <br />
2<br />
dv<br />
d<br />
m eff<br />
v<br />
2<br />
can be identified as meff<br />
bv qE<br />
bv qEv<br />
dt<br />
<br />
<br />
dt 2 <br />
2 2<br />
l<br />
2<br />
meff<br />
v<br />
LI<br />
if meff<br />
v LI or N<br />
r l , N is the charge concentration.<br />
q<br />
2 2<br />
2<br />
N <br />
r L<br />
2<br />
2<br />
Using the relation<br />
I r Nqv m q<br />
, we find<br />
eff<br />
<br />
0<br />
a<br />
0<br />
0l a<br />
I <br />
0<br />
l a<br />
ln<br />
r r<br />
L Hda HldR dR <br />
I I I I 2R 2<br />
r <br />
<br />
m<br />
eff<br />
<br />
2 2 2<br />
Nr 0 q a 0<br />
e 2<br />
a<br />
2<br />
<br />
ln <br />
Nr ln <br />
r 2 r <br />
J. B. Pendry, Phys. Rev. Lett.76, 4773 (1996)<br />
l
Dynamical Equation <strong>of</strong> Polarization P (II)<br />
Effective concerntration <strong>of</strong> charge : Neff<br />
Polarization:<br />
P<br />
N qr, where r vdt<br />
eff<br />
<br />
t<br />
0<br />
r<br />
<br />
2<br />
a<br />
2 2<br />
dv<br />
Nr 0q a<br />
From meff<br />
bv<br />
qE, where meff<br />
ln <br />
dt<br />
2 r <br />
2<br />
d d 2<br />
Equation <strong>of</strong> motion P<br />
P<br />
2<br />
p0E<br />
dt dt<br />
Plasma frequency: p<br />
<br />
N<br />
m<br />
eff<br />
eff<br />
q<br />
<br />
2<br />
0<br />
,<br />
2<br />
N<br />
Dissipation coefficient:<br />
<br />
Permittivity: <br />
1<br />
<br />
2<br />
D P<br />
p<br />
1<br />
<br />
0 E 0<br />
E <br />
<br />
<br />
i<br />
J. B. Pendry, Phys. Rev. Lett.76, 4773 (1996)<br />
<br />
<br />
b<br />
m<br />
eff
Effective Plasma vs. Real Plasma
Dynamical Equation <strong>of</strong> Magnetization M (I)<br />
Faraday's law+effect <strong>of</strong> depolarization field<br />
d<br />
(1 ) dI q <br />
F L RI ,<br />
dt C dt<br />
F : filling fraction <strong>of</strong> the ring g( (SRR) in one unit cell.<br />
Magenetic fields inside/outsid e the ring: H / H, Applied field:<br />
H<br />
I<br />
Hin<br />
H (from Ampere's law),<br />
l<br />
FH (1 ) (flux<br />
averag in<br />
F H H0 ing)<br />
2 2 2<br />
2 2 r 0I / l r a<br />
rB 0Fa H 0 , L 0<br />
<br />
<br />
0F<br />
I l l<br />
2<br />
rI I LI<br />
2<br />
M F H 0<br />
H M,<br />
LI 0a M<br />
2<br />
2<br />
a l l a<br />
0<br />
IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)<br />
IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)<br />
J. Appl. Phys. 100, 024915 (2006)<br />
in<br />
0<br />
<br />
B<br />
<br />
0<br />
a
Dynamical Equation <strong>of</strong> Magnetization M (II)<br />
Effective inductance <strong>of</strong> a SRR is (1 F)<br />
L<br />
<strong>The</strong> term FL is caused by the dipolarization fied<br />
l<br />
dI q 2 dH0<br />
(1 F)<br />
L RI F <br />
0a<br />
dt C dt<br />
2<br />
2 dM R 2 0a<br />
(1 F)<br />
<br />
0a <br />
0a M Mdt<br />
dt L LC<br />
<br />
2 dH0<br />
F0a<br />
dt<br />
Dynamical equation <strong>of</strong> M :<br />
d<br />
M 2<br />
d<br />
H<br />
M 0<br />
M dt<br />
dt<br />
F dt<br />
R<br />
2 1<br />
where , 0<br />
<br />
L LC<br />
IEEE Trans Microwave <strong>The</strong>ory Tech 47 2075 (1999)<br />
IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)<br />
J. Appl. Phys. 100, 024915 (2006)<br />
a
Size determines the Response<br />
• SRR () 列 例 <br />
裂 r<br />
( LC 路 ) <br />
烈 ( 路 )<br />
兩 <br />
4πr 流 <br />
( 度 ) 數 <br />
兩 裂 0<br />
數 <br />
若 <br />
2r 數 a (<br />
) <br />
2πa 數 a 6 <br />
<br />
a
Indefinite Medium (I)<br />
1D dispersion relation<br />
Long wavelength limit<br />
Define<br />
If
Indefinite Medium (II)<br />
A. Tangential field<br />
a a<br />
P P P , E E E<br />
a<br />
a<br />
<br />
ad<br />
am<br />
D// <br />
0<br />
E// P//<br />
Dd<br />
D<br />
a a<br />
ad<br />
am<br />
<br />
d<br />
mE// // E//<br />
a a<br />
ad<br />
am<br />
//<br />
<br />
d<br />
m<br />
a<br />
<br />
a<br />
<br />
d<br />
m<br />
// d m // d m<br />
<br />
From Faraday’s law<br />
B. Normal field<br />
m<br />
From “div D = 0”<br />
V Vd Vm Ed ad Em am<br />
E<br />
, D<br />
Dd<br />
D<br />
a a a a a<br />
E<br />
ad Ed am Em 1 ad 1 am<br />
1<br />
<br />
D a D a D a a <br />
<br />
d m <br />
d m<br />
m
Isotropic Media
Negative Refraction in Left-Handed Medium<br />
(ε
Snell’sLaw<br />
v g<br />
v g<br />
v g<br />
v g<br />
<br />
k 1x<br />
<br />
k 2x<br />
or n 1 sin <br />
1<br />
<br />
n<br />
2 sin<br />
<br />
2<br />
c c
Veselago’sLeftHandedSlabLens<br />
s Lens<br />
0<br />
0<br />
n <br />
0<br />
<strong>The</strong> phase<br />
increasing<br />
outside can be<br />
cancelled by the<br />
phase decreasing<br />
inside the slab<br />
V. G. Veselago, Sov. Phys. Usp. 10, , 509 (1968)
Pendry’s idea <strong>of</strong> Perfect Lens<br />
<br />
<br />
n 1<br />
1<br />
k vector (phase velocity)<br />
Poynting vector (energy flow)<br />
s<br />
f1<br />
f2<br />
Veselago lens <strong>of</strong> 1<br />
+ propagating p gwaves<br />
+ evancesent waves<br />
Phase and Amplitude Compensation<br />
J. B. Pendry, “Negative Refraction Makes a<br />
Perfect Lens”, ” Phys. Rev. Lett. 80, 3966 (2000)
Mechanism <strong>of</strong> Subwavelength Focusing
“Perfect” is unphysical<br />
“Super” is achievable<br />
Source<br />
Virtual images<br />
d<br />
| z |<br />
0<br />
No solution can exist<br />
in this blank region<br />
d<br />
| z |<br />
0
“Imperfect” Superlens for<br />
Subwavelength Imaging<br />
(superlensing effect)<br />
Case 1: x <br />
z<br />
0<br />
<br />
1, d <br />
2,<br />
2 / k 0.3,<br />
10 1.0 0.001i 0001i<br />
Case 2: x<br />
<br />
z0 <br />
1, d <br />
2,<br />
2 / k 2,<br />
1.00 0.000001i
Uncertainty Principle vs.<br />
Subwavelength Focusing<br />
This decaying behavior can be easily explained by the<br />
uncertainty principle. According to this principle, we<br />
must have the relation x k 1, here x<br />
represents<br />
x<br />
the width <strong>of</strong> the image, and kk<br />
x<br />
represents<br />
s<br />
the fluctuation<br />
<strong>of</strong> k x<br />
. A subwavelength image is mainly formed by summing<br />
over the Fourier components <strong>of</strong> those | k | / c terms.<br />
x<br />
Si k 2 2 2 / 2<br />
x<br />
kz<br />
c th t<br />
k z<br />
's. This lea<br />
Since = / , these components must thave imaginary<br />
i<br />
ds to the decaying pr<strong>of</strong>ile <strong>of</strong> the field strength.
References for understanding the<br />
‘Subtleties’ <strong>of</strong> the ‘Perfect Lens’<br />
• Negative Refraction Makes a Perfect Lens<br />
J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)<br />
• Left-Handed Materials Do Not Make a Perfect Lens<br />
N. Garcia et al., Phys. Rev. Lett. 88, 207403 (2002)<br />
• Perfect lenses made with left-handed materials: Alice’s mirror?<br />
Daniel Maystre and Stefan Enoch, J. Opt. Soc. Am. A, 21, 122 (2004)<br />
• Universal Features <strong>of</strong> the Time Evolution <strong>of</strong> Evanescent Modes in a<br />
Left-Handed Perfect Lens<br />
G. Gomez-Santos Santos, Phys. Rev. Lett. 90, 077401 (2003)<br />
• Analysis on the imaging properties <strong>of</strong> a left-handed material slab<br />
Pi-Gang Luan, Hung-Da Chien, Chii-Chang Chen, Chi-Shung Tang,<br />
arXiv:physics/0311122;<br />
Proper boundary conditions for the imaging problem <strong>of</strong> a negativerefraction<br />
slab lens, WSEAS transactions on electronics, Vol. 1, 236<br />
(2004)
Is the working wavelength much longer<br />
than the lattice constant?<br />
Typical value: λ/a = 5~7
Simulation:<br />
SGI Altix<br />
parallel<br />
l<br />
computer<br />
using 32-48<br />
processors<br />
and require<br />
about<br />
20 h <strong>of</strong><br />
processor<br />
time<br />
FDTD simulations <strong>of</strong> SRR-Wire<br />
based metamaterial slab lens<br />
λ<br />
Appl. Phys. Lett. 91, 154102 (2007)
Anisotropic Media
Negative Refraction in Calcite (Yau et.al. )<br />
http://arxiv.org/abs/cond-mat/0312125
Indefinite media and Hyperbolic Dispersion<br />
Hyperbolic dispersion i relation<br />
If
Hyperlens<br />
Far-field imaging beyond the diffraction limit<br />
k r<br />
k<br />
<br />
<br />
<br />
2 2 2<br />
<br />
<br />
2<br />
<br />
| r<br />
|<br />
c<br />
<br />
0, 0<br />
r<br />
OPTICS EXPRESS 14, 8247 (2006)
Effective medium: layered structures<br />
<br />
m<br />
<br />
d<br />
1<br />
<br />
, <br />
2 2<br />
1 1 1<br />
r m d<br />
<br />
SCIENCE 315, 1686 (2007)
Inhomogeneous Media
M. Notomi, Phys. Rev. B 62, 10 696 (2000).
Negative Refraction by PC
Snell’sLaw—<strong>The</strong> Generalized Form<br />
Square Lattice Triangular Lattice
Constant Frequency Curve<br />
Square Lattice v.s. Triangular Lattice
Superlens and Subwavelength Imaging
Negative Refraction<br />
or Evanescent Wave<br />
Coupling ?<br />
Pi-Gang Luan and Kao-Der Chang,<br />
“Superlensing effect without obvious<br />
negative refraction ”,<br />
J. Nanophotonics, 1, 013518 (2007)<br />
Evanescent wave can be transmitted<br />
from source to image via evanescent<br />
wave coupling effect (using a stack <strong>of</strong><br />
dielectric gratings)
Is PhC Superlens Flat Lens ? (I)<br />
J. Phys.: Condens. Matter 23 (2011) 035301
Is PhC Superlens Flat Lens ? (II)<br />
J. Phys.: Condens. Matter 23 (2011) 035301
Is PhC Superlens Flat Lens ? (III)<br />
J. Phys.: Condens. Matter 23 (2011) 035301
Wave Propagation in Periodic<br />
Structures — Electric Filters and<br />
Crystal Lattices<br />
“Waves always behave in a similar<br />
way, whether they are longitudinal<br />
or transverse, elastic or electric.<br />
Scientists <strong>of</strong> the last (19th) century<br />
always kept this idea in mind.<br />
”<br />
--- L. Brillouin
Acoustic <strong>Metamaterials</strong>
Locally Resonant Sonic Material<br />
Negative Dynamic Mass leads to<br />
Polariton-like band gap<br />
i t<br />
i t<br />
Fe <br />
0<br />
0<br />
F F <br />
a<br />
<br />
a e<br />
<br />
m <br />
M , m m, Displacement: x,<br />
y<br />
box<br />
ball<br />
elastic constant: K,<br />
K<br />
Mx F 2 K( x y), my 2 K ( y <br />
x<br />
)<br />
2<br />
F f <br />
0<br />
m 2K<br />
meff<br />
M 1 , f , <br />
2 2 <br />
0<br />
<br />
a 0<br />
M m<br />
Ping Sheng et. al., Science 289, 1734 (2000)<br />
g g , , ( )<br />
Physica B: Condensed Matter 394, 256 (2007)
Pl Polariton-like lik gap
Ultrasonic metamaterials<br />
with negative modulus<br />
Xiang Zhang et al<br />
Xiang Zhang et. al.,<br />
Nature Materials, 5, 452 (2006)
1D HR array metamaterial<br />
v<br />
1 pp<br />
<br />
sh<br />
p , v<br />
u<br />
t B t A<br />
'<br />
M du p p' S u,<br />
dp BS u<br />
dt dt V<br />
du<br />
BS<br />
M u x<br />
pS (Driven Oscillation)<br />
dt V<br />
For monochromatic wave<br />
p<br />
<br />
u<br />
<br />
<br />
i<br />
p <br />
<br />
sh<br />
Sp i<br />
p<br />
v <br />
B A BS<br />
<br />
iM<br />
<br />
Beff<br />
<br />
iV<br />
<br />
2<br />
<br />
1 <br />
1<br />
F<br />
<br />
0<br />
Beff<br />
( <br />
) B<br />
1<br />
2 2<br />
0<br />
i<br />
<br />
v<br />
p '
Transformation Optics<br />
and Invisibility Cloak
Principle <strong>of</strong> Invisibility cloak (I)<br />
料 <br />
裡 不 不 連 <br />
不 不 <br />
<br />
不 <br />
不 <br />
裡 不 <br />
John B. Pendry 2006 年 Science 了 <br />
Maxwell 理 論 理 論 連<br />
滑 Maxwell <br />
不 數 率 —<br />
(anisotropic) <br />
(inhomogeneous) 更 精 說 量 度<br />
(tensor densities)
Principle <strong>of</strong> Invisibility cloak (II)<br />
兩 <br />
<br />
了 ()<br />
(representation) 了 <br />
了 <br />
<br />
<br />
來 <br />
(transformed medium) 不 <br />
<br />
( 不 不 ) (embedded) <br />
<br />
了 了
Principle <strong>of</strong> Invisibility cloak (III)<br />
Duke University 了 <br />
() <br />
了 易 參 數 <br />
理 論 參 數 了 <br />
參 數 參 數 (reduced<br />
parameters)<br />
裂 (split-ring resonator, SRR) <br />
狀 列 參 數 () 理<br />
參 數 不 <br />
不 <br />
理 論 了 力 <br />
了 料 更
Principle <strong>of</strong> Invisibility cloak (IV)
Invisibility Cloak utilizes Anisotropic<br />
and Inhomogeneous <strong>Metamaterials</strong><br />
Science 312, 1777 (2006) Science 312, 1780 (2006)<br />
PRE 74, 036621 (2006) New J. Phys. 8, 247 (2006)<br />
Phys. World, Sep. 30 (2006)<br />
Science 313, 1399 (2006)
Experimental Realization<br />
Ideal theoretical Parameters<br />
Parameters for real experiment<br />
2 2<br />
r<br />
a r<br />
r<br />
r<br />
, <br />
<br />
r a <br />
, 1,<br />
b <br />
<br />
r r <br />
r<br />
<br />
z<br />
a <br />
r b<br />
a<br />
2<br />
b r<br />
a<br />
z<br />
z<br />
<br />
b<br />
a<br />
r Science 314, 977 (2006)
Shuang Zhang, Dentcho A. Genov, Cheng Sun, and Xiang Zhang<br />
Phys. Rev. Lett. 100, 123002 (2008)<br />
Cloaking <strong>of</strong> Matter Waves<br />
A cloaking <strong>of</strong> matter wave can be realized at given energy by<br />
designing i the potential and effective mass <strong>of</strong> the matter waves<br />
in the cloaking region
Aharonov-Bohm effect
Cloaking Matters under<br />
Aharonov-Bohm effect<br />
D. H. Lin & P. G. Luan, PRA 79, 051605(R) (2009)
Conclusion<br />
• Most proposed metamaterials consist <strong>of</strong> periodically arranged<br />
resonators or resonator pairs.<br />
• A single resonator couples almost only to its nearest neighbors.<br />
• If the spatial dispersion <strong>of</strong> the effective medium can be neglected,<br />
then its local properties are not influenced under arbitrary bending.<br />
Examples: hyperlens, invisibility cloak,…<br />
• Photonic crystals (PhC) and metamaterials (MtM) are both periodic<br />
structures, however, spatial dispersion effect cannot be neglected in<br />
PhC. This might be the main difference between PhC and MtM.<br />
• In order to solve the more and more challenging problems<br />
encountered din metamaterial t research, in the future we need dto<br />
develop a different education/discipline system to train up more<br />
“Sciengineers”.
Thank you for your attention!