14.11.2014 Views

The Physics of Metamaterials - 國家理論科學研究中心(南區)

The Physics of Metamaterials - 國家理論科學研究中心(南區)

The Physics of Metamaterials - 國家理論科學研究中心(南區)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Physics</strong> <strong>of</strong> <strong>Metamaterials</strong><br />

Pi-Gang Luan <br />

Wave <strong>Physics</strong>/Engineering Lab<br />

<br />

Department <strong>of</strong> Optics and Photonics<br />

National Central University


Contents<br />

t<br />

• Definition and Examples <strong>of</strong> <strong>Metamaterials</strong><br />

• Constitutive i Relations and Effective<br />

parameters<br />

• Isotropic Media<br />

• Anisotropic Media<br />

• Inhomogeneous Media<br />

• Acoustic <strong>Metamaterials</strong><br />

• Cloaking and Transformation Optics


What are <strong>Metamaterials</strong> ?<br />

• <strong>Metamaterials</strong> are artificial materials<br />

engineered to have properties that may<br />

not be found din nature.<br />

• <strong>The</strong>y usually gain their properties from<br />

structure rather than composition, using<br />

small inhomogeneities to create effective<br />

macroscopic behavior.


Examples<br />

• Thin wire array (negative ε medium)<br />

• Split-ring resonator (SRR) array<br />

(negative μ medium)<br />

• Wire-SRR array (negative n medium)<br />

• Metal-dielectric multilayer structure<br />

(indefinite medium)<br />

• Conducting Helix/Gamada ()<br />

array (chiral medium)<br />

• Fishnet structure (negative refraction<br />

medium)<br />

• Helmholtz resonator/side hole array<br />

(negative modulus medium)


Constitutive relations<br />

and effective parameters<br />

<strong>of</strong> metamaterials


Effective Permittivity and Permeability<br />

Constitutive relations: D <br />

<br />

E,<br />

B <br />

<br />

H<br />

0<br />

,<br />

0 0<br />

D<br />

E P P electric dipole density<br />

Np<br />

B H M M nsity Nm<br />

<br />

0<br />

, magnetic dipole de<br />

N <br />

number density<br />

1. In a metal, the "free electrons" are driven by the applied<br />

E field, moving long distances.<br />

When PD , we have DE<<br />

0 , which means


Left-Handed Media<br />

D. R. Smith et. al., <strong>Physics</strong> Today, 17, May (2000).<br />

Phys. Rev. Lett. 84, 4184 (2000) ; Science, 292, 77 (2001)


<strong>The</strong> Building Blocks <strong>of</strong> LHM<br />

Electric Dipoles<br />

(high inductance + dilute carrier density<br />

low plasma frequency)<br />

+<br />

Magnetic Dipoles<br />

(LC resonance <strong>of</strong> ring current<br />

resonance <strong>of</strong> magnetization)<br />

( ) 1<br />

F<br />

2<br />

2<br />

p<br />

( ) 1<br />

2 2<br />

2<br />

<br />

0<br />

(Plasmon-like dispersion)<br />

(Polariton-like dispersion)


Effective ‘Material Parameters’<br />

Ampere & Faraday’slaws<br />

Averaged B field<br />

a<br />

Averaged H field<br />

a<br />

a<br />

Effective permeability<br />

IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)


Dynamical Equation <strong>of</strong> Polarization P (I)<br />

2<br />

dI<br />

d LI<br />

2<br />

<strong>The</strong> current equation<br />

L RI V El<br />

<br />

<br />

RI <br />

IV<br />

dt<br />

dt 2 <br />

2<br />

dv<br />

d<br />

m eff<br />

v<br />

2<br />

can be identified as meff<br />

bv qE<br />

bv qEv<br />

dt<br />

<br />

<br />

dt 2 <br />

2 2<br />

l<br />

2<br />

meff<br />

v<br />

LI<br />

if meff<br />

v LI or N<br />

r l , N is the charge concentration.<br />

q<br />

2 2<br />

2<br />

N <br />

r L<br />

2<br />

2<br />

Using the relation<br />

I r Nqv m q<br />

, we find<br />

eff<br />

<br />

0<br />

a<br />

0<br />

0l a<br />

I <br />

0<br />

l a<br />

ln<br />

r r<br />

L Hda HldR dR <br />

I I I I 2R 2<br />

r <br />

<br />

m<br />

eff<br />

<br />

2 2 2<br />

Nr 0 q a 0<br />

e 2<br />

a<br />

2<br />

<br />

ln <br />

Nr ln <br />

r 2 r <br />

J. B. Pendry, Phys. Rev. Lett.76, 4773 (1996)<br />

l


Dynamical Equation <strong>of</strong> Polarization P (II)<br />

Effective concerntration <strong>of</strong> charge : Neff<br />

Polarization:<br />

P<br />

N qr, where r vdt<br />

eff<br />

<br />

t<br />

0<br />

r<br />

<br />

2<br />

a<br />

2 2<br />

dv<br />

Nr 0q a<br />

From meff<br />

bv<br />

qE, where meff<br />

ln <br />

dt<br />

2 r <br />

2<br />

d d 2<br />

Equation <strong>of</strong> motion P<br />

P<br />

2<br />

p0E<br />

dt dt<br />

Plasma frequency: p<br />

<br />

N<br />

m<br />

eff<br />

eff<br />

q<br />

<br />

2<br />

0<br />

,<br />

2<br />

N<br />

Dissipation coefficient:<br />

<br />

Permittivity: <br />

1<br />

<br />

2<br />

D P<br />

p<br />

1<br />

<br />

0 E 0<br />

E <br />

<br />

<br />

i<br />

J. B. Pendry, Phys. Rev. Lett.76, 4773 (1996)<br />

<br />

<br />

b<br />

m<br />

eff


Effective Plasma vs. Real Plasma


Dynamical Equation <strong>of</strong> Magnetization M (I)<br />

Faraday's law+effect <strong>of</strong> depolarization field<br />

d<br />

(1 ) dI q <br />

F L RI ,<br />

dt C dt<br />

F : filling fraction <strong>of</strong> the ring g( (SRR) in one unit cell.<br />

Magenetic fields inside/outsid e the ring: H / H, Applied field:<br />

H<br />

I<br />

Hin<br />

H (from Ampere's law),<br />

l<br />

FH (1 ) (flux<br />

averag in<br />

F H H0 ing)<br />

2 2 2<br />

2 2 r 0I / l r a<br />

rB 0Fa H 0 , L 0<br />

<br />

<br />

0F<br />

I l l<br />

2<br />

rI I LI<br />

2<br />

M F H 0<br />

H M,<br />

LI 0a M<br />

2<br />

2<br />

a l l a<br />

0<br />

IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)<br />

IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)<br />

J. Appl. Phys. 100, 024915 (2006)<br />

in<br />

0<br />

<br />

B<br />

<br />

0<br />

a


Dynamical Equation <strong>of</strong> Magnetization M (II)<br />

Effective inductance <strong>of</strong> a SRR is (1 F)<br />

L<br />

<strong>The</strong> term FL is caused by the dipolarization fied<br />

l<br />

dI q 2 dH0<br />

(1 F)<br />

L RI F <br />

0a<br />

dt C dt<br />

2<br />

2 dM R 2 0a<br />

(1 F)<br />

<br />

0a <br />

0a M Mdt<br />

dt L LC<br />

<br />

2 dH0<br />

F0a<br />

dt<br />

Dynamical equation <strong>of</strong> M :<br />

d<br />

M 2<br />

d<br />

H<br />

M 0<br />

M dt<br />

dt<br />

F dt<br />

R<br />

2 1<br />

where , 0<br />

<br />

L LC<br />

IEEE Trans Microwave <strong>The</strong>ory Tech 47 2075 (1999)<br />

IEEE Trans. Microwave <strong>The</strong>ory Tech. 47, 2075 (1999)<br />

J. Appl. Phys. 100, 024915 (2006)<br />

a


Size determines the Response<br />

• SRR () 列 例 <br />

裂 r<br />

( LC 路 ) <br />

烈 ( 路 )<br />

兩 <br />

4πr 流 <br />

( 度 ) 數 <br />

兩 裂 0<br />

數 <br />

若 <br />

2r 數 a (<br />

) <br />

2πa 數 a 6 <br />

<br />

a


Indefinite Medium (I)<br />

1D dispersion relation<br />

Long wavelength limit<br />

Define<br />

If


Indefinite Medium (II)<br />

A. Tangential field<br />

a a<br />

P P P , E E E<br />

a<br />

a<br />

<br />

ad<br />

am<br />

D// <br />

0<br />

E// P//<br />

Dd<br />

D<br />

a a<br />

ad<br />

am<br />

<br />

d<br />

mE// // E//<br />

a a<br />

ad<br />

am<br />

//<br />

<br />

d<br />

m<br />

a<br />

<br />

a<br />

<br />

d<br />

m<br />

// d m // d m<br />

<br />

From Faraday’s law<br />

B. Normal field<br />

m<br />

From “div D = 0”<br />

V Vd Vm Ed ad Em am<br />

E<br />

, D<br />

Dd<br />

D<br />

a a a a a<br />

E<br />

ad Ed am Em 1 ad 1 am<br />

1<br />

<br />

D a D a D a a <br />

<br />

d m <br />

d m<br />

m


Isotropic Media


Negative Refraction in Left-Handed Medium<br />


Snell’sLaw<br />

v g<br />

v g<br />

v g<br />

v g<br />

<br />

k 1x<br />

<br />

k 2x<br />

or n 1 sin <br />

1<br />

<br />

n<br />

2 sin<br />

<br />

2<br />

c c


Veselago’sLeftHandedSlabLens<br />

s Lens<br />

0<br />

0<br />

n <br />

0<br />

<strong>The</strong> phase<br />

increasing<br />

outside can be<br />

cancelled by the<br />

phase decreasing<br />

inside the slab<br />

V. G. Veselago, Sov. Phys. Usp. 10, , 509 (1968)


Pendry’s idea <strong>of</strong> Perfect Lens<br />

<br />

<br />

n 1<br />

1<br />

k vector (phase velocity)<br />

Poynting vector (energy flow)<br />

s<br />

f1<br />

f2<br />

Veselago lens <strong>of</strong> 1<br />

+ propagating p gwaves<br />

+ evancesent waves<br />

Phase and Amplitude Compensation<br />

J. B. Pendry, “Negative Refraction Makes a<br />

Perfect Lens”, ” Phys. Rev. Lett. 80, 3966 (2000)


Mechanism <strong>of</strong> Subwavelength Focusing


“Perfect” is unphysical<br />

“Super” is achievable<br />

Source<br />

Virtual images<br />

d<br />

| z |<br />

0<br />

No solution can exist<br />

in this blank region<br />

d<br />

| z |<br />

0


“Imperfect” Superlens for<br />

Subwavelength Imaging<br />

(superlensing effect)<br />

Case 1: x <br />

z<br />

0<br />

<br />

1, d <br />

2,<br />

2 / k 0.3,<br />

10 1.0 0.001i 0001i<br />

Case 2: x<br />

<br />

z0 <br />

1, d <br />

2,<br />

2 / k 2,<br />

1.00 0.000001i


Uncertainty Principle vs.<br />

Subwavelength Focusing<br />

This decaying behavior can be easily explained by the<br />

uncertainty principle. According to this principle, we<br />

must have the relation x k 1, here x<br />

represents<br />

x<br />

the width <strong>of</strong> the image, and kk<br />

x<br />

represents<br />

s<br />

the fluctuation<br />

<strong>of</strong> k x<br />

. A subwavelength image is mainly formed by summing<br />

over the Fourier components <strong>of</strong> those | k | / c terms.<br />

x<br />

Si k 2 2 2 / 2<br />

x<br />

kz<br />

c th t<br />

k z<br />

's. This lea<br />

Since = / , these components must thave imaginary<br />

i<br />

ds to the decaying pr<strong>of</strong>ile <strong>of</strong> the field strength.


References for understanding the<br />

‘Subtleties’ <strong>of</strong> the ‘Perfect Lens’<br />

• Negative Refraction Makes a Perfect Lens<br />

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)<br />

• Left-Handed Materials Do Not Make a Perfect Lens<br />

N. Garcia et al., Phys. Rev. Lett. 88, 207403 (2002)<br />

• Perfect lenses made with left-handed materials: Alice’s mirror?<br />

Daniel Maystre and Stefan Enoch, J. Opt. Soc. Am. A, 21, 122 (2004)<br />

• Universal Features <strong>of</strong> the Time Evolution <strong>of</strong> Evanescent Modes in a<br />

Left-Handed Perfect Lens<br />

G. Gomez-Santos Santos, Phys. Rev. Lett. 90, 077401 (2003)<br />

• Analysis on the imaging properties <strong>of</strong> a left-handed material slab<br />

Pi-Gang Luan, Hung-Da Chien, Chii-Chang Chen, Chi-Shung Tang,<br />

arXiv:physics/0311122;<br />

Proper boundary conditions for the imaging problem <strong>of</strong> a negativerefraction<br />

slab lens, WSEAS transactions on electronics, Vol. 1, 236<br />

(2004)


Is the working wavelength much longer<br />

than the lattice constant?<br />

Typical value: λ/a = 5~7


Simulation:<br />

SGI Altix<br />

parallel<br />

l<br />

computer<br />

using 32-48<br />

processors<br />

and require<br />

about<br />

20 h <strong>of</strong><br />

processor<br />

time<br />

FDTD simulations <strong>of</strong> SRR-Wire<br />

based metamaterial slab lens<br />

λ<br />

Appl. Phys. Lett. 91, 154102 (2007)


Anisotropic Media


Negative Refraction in Calcite (Yau et.al. )<br />

http://arxiv.org/abs/cond-mat/0312125


Indefinite media and Hyperbolic Dispersion<br />

Hyperbolic dispersion i relation<br />

If


Hyperlens<br />

Far-field imaging beyond the diffraction limit<br />

k r<br />

k<br />

<br />

<br />

<br />

2 2 2<br />

<br />

<br />

2<br />

<br />

| r<br />

|<br />

c<br />

<br />

0, 0<br />

r<br />

OPTICS EXPRESS 14, 8247 (2006)


Effective medium: layered structures<br />

<br />

m<br />

<br />

d<br />

1<br />

<br />

, <br />

2 2<br />

1 1 1<br />

r m d<br />

<br />

SCIENCE 315, 1686 (2007)


Inhomogeneous Media


M. Notomi, Phys. Rev. B 62, 10 696 (2000).


Negative Refraction by PC


Snell’sLaw—<strong>The</strong> Generalized Form<br />

Square Lattice Triangular Lattice


Constant Frequency Curve<br />

Square Lattice v.s. Triangular Lattice


Superlens and Subwavelength Imaging


Negative Refraction<br />

or Evanescent Wave<br />

Coupling ?<br />

Pi-Gang Luan and Kao-Der Chang,<br />

“Superlensing effect without obvious<br />

negative refraction ”,<br />

J. Nanophotonics, 1, 013518 (2007)<br />

Evanescent wave can be transmitted<br />

from source to image via evanescent<br />

wave coupling effect (using a stack <strong>of</strong><br />

dielectric gratings)


Is PhC Superlens Flat Lens ? (I)<br />

J. Phys.: Condens. Matter 23 (2011) 035301


Is PhC Superlens Flat Lens ? (II)<br />

J. Phys.: Condens. Matter 23 (2011) 035301


Is PhC Superlens Flat Lens ? (III)<br />

J. Phys.: Condens. Matter 23 (2011) 035301


Wave Propagation in Periodic<br />

Structures — Electric Filters and<br />

Crystal Lattices<br />

“Waves always behave in a similar<br />

way, whether they are longitudinal<br />

or transverse, elastic or electric.<br />

Scientists <strong>of</strong> the last (19th) century<br />

always kept this idea in mind.<br />

”<br />

--- L. Brillouin


Acoustic <strong>Metamaterials</strong>


Locally Resonant Sonic Material<br />

Negative Dynamic Mass leads to<br />

Polariton-like band gap<br />

i t<br />

i t<br />

Fe <br />

0<br />

0<br />

F F <br />

a<br />

<br />

a e<br />

<br />

m <br />

M , m m, Displacement: x,<br />

y<br />

box<br />

ball<br />

elastic constant: K,<br />

K<br />

Mx F 2 K( x y), my 2 K ( y <br />

x<br />

)<br />

2<br />

F f <br />

0<br />

m 2K<br />

meff<br />

M 1 , f , <br />

2 2 <br />

0<br />

<br />

a 0<br />

M m<br />

Ping Sheng et. al., Science 289, 1734 (2000)<br />

g g , , ( )<br />

Physica B: Condensed Matter 394, 256 (2007)


Pl Polariton-like lik gap


Ultrasonic metamaterials<br />

with negative modulus<br />

Xiang Zhang et al<br />

Xiang Zhang et. al.,<br />

Nature Materials, 5, 452 (2006)


1D HR array metamaterial<br />

v<br />

1 pp<br />

<br />

sh<br />

p , v<br />

u<br />

t B t A<br />

'<br />

M du p p' S u,<br />

dp BS u<br />

dt dt V<br />

du<br />

BS<br />

M u x<br />

pS (Driven Oscillation)<br />

dt V<br />

For monochromatic wave<br />

p<br />

<br />

u<br />

<br />

<br />

i<br />

p <br />

<br />

sh<br />

Sp i<br />

p<br />

v <br />

B A BS<br />

<br />

iM<br />

<br />

Beff<br />

<br />

iV<br />

<br />

2<br />

<br />

1 <br />

1<br />

F<br />

<br />

0<br />

Beff<br />

( <br />

) B<br />

1<br />

2 2<br />

0<br />

i<br />

<br />

v<br />

p '


Transformation Optics<br />

and Invisibility Cloak


Principle <strong>of</strong> Invisibility cloak (I)<br />

料 <br />

裡 不 不 連 <br />

不 不 <br />

<br />

不 <br />

不 <br />

裡 不 <br />

John B. Pendry 2006 年 Science 了 <br />

Maxwell 理 論 理 論 連<br />

滑 Maxwell <br />

不 數 率 —<br />

(anisotropic) <br />

(inhomogeneous) 更 精 說 量 度<br />

(tensor densities)


Principle <strong>of</strong> Invisibility cloak (II)<br />

兩 <br />

<br />

了 ()<br />

(representation) 了 <br />

了 <br />

<br />

<br />

來 <br />

(transformed medium) 不 <br />

<br />

( 不 不 ) (embedded) <br />

<br />

了 了


Principle <strong>of</strong> Invisibility cloak (III)<br />

Duke University 了 <br />

() <br />

了 易 參 數 <br />

理 論 參 數 了 <br />

參 數 參 數 (reduced<br />

parameters)<br />

裂 (split-ring resonator, SRR) <br />

狀 列 參 數 () 理<br />

參 數 不 <br />

不 <br />

理 論 了 力 <br />

了 料 更


Principle <strong>of</strong> Invisibility cloak (IV)


Invisibility Cloak utilizes Anisotropic<br />

and Inhomogeneous <strong>Metamaterials</strong><br />

Science 312, 1777 (2006) Science 312, 1780 (2006)<br />

PRE 74, 036621 (2006) New J. Phys. 8, 247 (2006)<br />

Phys. World, Sep. 30 (2006)<br />

Science 313, 1399 (2006)


Experimental Realization<br />

Ideal theoretical Parameters<br />

Parameters for real experiment<br />

2 2<br />

r<br />

a r<br />

r<br />

r<br />

, <br />

<br />

r a <br />

, 1,<br />

b <br />

<br />

r r <br />

r<br />

<br />

z<br />

a <br />

r b<br />

a<br />

2<br />

b r<br />

a<br />

z<br />

z<br />

<br />

b<br />

a<br />

r Science 314, 977 (2006)


Shuang Zhang, Dentcho A. Genov, Cheng Sun, and Xiang Zhang<br />

Phys. Rev. Lett. 100, 123002 (2008)<br />

Cloaking <strong>of</strong> Matter Waves<br />

A cloaking <strong>of</strong> matter wave can be realized at given energy by<br />

designing i the potential and effective mass <strong>of</strong> the matter waves<br />

in the cloaking region


Aharonov-Bohm effect


Cloaking Matters under<br />

Aharonov-Bohm effect<br />

D. H. Lin & P. G. Luan, PRA 79, 051605(R) (2009)


Conclusion<br />

• Most proposed metamaterials consist <strong>of</strong> periodically arranged<br />

resonators or resonator pairs.<br />

• A single resonator couples almost only to its nearest neighbors.<br />

• If the spatial dispersion <strong>of</strong> the effective medium can be neglected,<br />

then its local properties are not influenced under arbitrary bending.<br />

Examples: hyperlens, invisibility cloak,…<br />

• Photonic crystals (PhC) and metamaterials (MtM) are both periodic<br />

structures, however, spatial dispersion effect cannot be neglected in<br />

PhC. This might be the main difference between PhC and MtM.<br />

• In order to solve the more and more challenging problems<br />

encountered din metamaterial t research, in the future we need dto<br />

develop a different education/discipline system to train up more<br />

“Sciengineers”.


Thank you for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!