16.11.2014 Views

Manitoba and the Emerging Bioeconomy

Manitoba and the Emerging Bioeconomy

Manitoba and the Emerging Bioeconomy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PAGE 1<br />

<strong>Manitoba</strong> <strong>and</strong><br />

<strong>the</strong> <strong>Emerging</strong><br />

<strong>Bioeconomy</strong>


Big global drivers for 21 st century change<br />

Population growth<br />

l<strong>and</strong> & water availability<br />

energy dem<strong>and</strong><br />

Climate change<br />

reduce emissions<br />

reduced water availability<br />

l<strong>and</strong> use displacement<br />

Non-renewable resource (oil, gas, coal, minerals) availability<br />

global supply & dem<strong>and</strong><br />

geo-political volatility<br />

implications for energy <strong>and</strong> materials supply<br />

These drivers are all interwoven, adding complexity to<br />

national resolution around<br />

Security of crude oil supply for transport fuel <strong>and</strong> industrial<br />

feedstocks<br />

Kyoto obligations<br />

Sustainable economic prosperity<br />

Balance of trade<br />

PAGE 2<br />

Source: C. Begley


Biomass as a subset of available resources<br />

Coal Oil Gas Minerals<br />

Human<br />

Resources<br />

Non-renewable<br />

Resources<br />

ECONOMY<br />

Renewable<br />

Resources<br />

Infrastructure<br />

Resources<br />

<strong>Bioeconomy</strong><br />

is an emerging<br />

term for <strong>the</strong><br />

sustainable<br />

production <strong>and</strong><br />

conversion of<br />

biomass to a<br />

range of food,<br />

health, fibre,<br />

industrial<br />

products <strong>and</strong><br />

energy<br />

Solar<br />

Wind<br />

Water<br />

Biomass<br />

Geo<strong>the</strong>rmal<br />

PAGE 3


<strong>Bioeconomy</strong> as a platform to a sustainable future….<br />

Low GHG, sustainable processes through<br />

agribusiness & rural re-invigoration to<br />

create secure food, industrial products <strong>and</strong> low emission energy<br />

production <strong>and</strong><br />

value added manufacturing driven by<br />

eco-innovation<br />

PAGE 4


Biobased products<br />

The Bio-economy (Industrial) Framework<br />

Pharmaceuticals<br />

Cosmaceuticals<br />

Neutraceuticals<br />

Bio actives<br />

Bio materials<br />

Bio chemicals<br />

High value<br />

manufacturin<br />

g<br />

BIO-ECONOMY<br />

I<br />

n<br />

c<br />

r<br />

e<br />

a<br />

s<br />

i<br />

n<br />

g<br />

Bio-fuels<br />

Transport<br />

fuels<br />

Low emission<br />

Secure fuel<br />

supply<br />

H 2<br />

Butanol<br />

Ethanol<br />

Biodiesel<br />

Functional<br />

Organic<br />

GM<br />

Food<br />

Feed<br />

v<br />

a<br />

l<br />

u<br />

e<br />

Biorefineries<br />

Fuel feed stocks<br />

Stationary<br />

fuels<br />

Syngas<br />

CH 4<br />

Bio-crude<br />

Coke<br />

lignin<br />

Biogenous raw materials<br />

bagasse<br />

Sustainability<br />

Sustainable<br />

rural<br />

Industry <strong>and</strong><br />

agriculture<br />

Modified from: Biorefineries – Industrial Processes <strong>and</strong> Products Status Quo <strong>and</strong> Future Directions, 2 Volumes, Brigit Kamm<br />

PAGE (Editor), 5 Patrick R. Gruber (Editor), Michael Kamm (Editor), ISBN: 3-527-31027-4, p3 & 13


Sustainable<br />

Employment<br />

The Bio-economy (Policy) Framework<br />

BIO-ECONOMY<br />

Secure supply of<br />

low carbon energy<br />

Emissions Trading<br />

Infrastructure<br />

Regulatory & Policy Frameworks<br />

Innovation<br />

PAGE 6


Biorefinery - definitions<br />

Full utilisation of biomass<br />

up to 90 %, which is a significant competitive advantage in future<br />

markets, where dem<strong>and</strong> for renewable energy <strong>and</strong> biomass raw<br />

material is much intensified.<br />

Maximising <strong>the</strong> economic value of trees / crops<br />

Heat / Energy<br />

Biochemicals<br />

(bulk <strong>and</strong> fine, functional equivalence vs identical)<br />

Biomaterials<br />

“converting <strong>the</strong> current agri- products industry to being a significant<br />

source of green power, renewable transportation fuels, <strong>and</strong>/or bio-derived<br />

industrial chemicals whilst continuing to innovate in <strong>the</strong> current products”<br />

Necessitates new business models<br />

Corporate transition & partnerships<br />

PAGE 7


PAGE 8<br />

Industry transition


MB Biomass: Opportunities & Issues<br />

Challenge: Move <strong>the</strong> industry from commodity to value-add<br />

Processing<br />

Increase profitability with existing capital<br />

Staged approach – c.f. Chambost & Stuart*<br />

Multiple product lines possible<br />

Main, co- <strong>and</strong> by-products<br />

Pre- <strong>and</strong> post-digester opportunities<br />

Hemicelluloses, black liquor gasification / lignin precipitation<br />

Biggest opportunities in biofuels <strong>and</strong> bulk & fine chemicals<br />

Feedstock optimisation<br />

Traditional breeding<br />

Biotech solutions<br />

Issues<br />

ETS<br />

Revenue streams <strong>and</strong> markets<br />

Organisational changes - partnerships<br />

Resource competition – e.g. pulp vs energy sectors<br />

Price sensitivities, public policy<br />

PAGE 9


Implementing <strong>the</strong> Biorefinery (Chambost & Stuart)<br />

Phase 1 – Lower operating costs<br />

Replacement of fossil fuels at mill<br />

Minimum risk technology<br />

Technology partnership – building blocks<br />

Phase 2 – Increase revenues<br />

Manufacture of derivatives, new products<br />

Higher complexity <strong>and</strong> technology risks<br />

Commercial partnership<br />

Phase 3 – Improve margins<br />

Knowledge-based manufacturing<br />

Process flexibility<br />

Company culture transformed<br />

Value chain partnership<br />

PAGE 10


Heat / Energy: Biomass Energy<br />

Pathways<br />

Simple heat <strong>and</strong> power generation can be made using<br />

biomass from assorted waste streams, however, more<br />

valuable industrial chemicals <strong>and</strong> liquid fuels can also be<br />

generated from biomass.<br />

Pyrolysis <strong>and</strong> Gasification of biomass produces syn<strong>the</strong>sis<br />

gas („syngas‟) a mixture of CO <strong>and</strong> hydrogen which allows a<br />

suite of catalytic <strong>and</strong> reformation reactions<br />

Fischer - Tropsch reaction which can make diesel, jet fuel<br />

<strong>and</strong> petrol.<br />

Syngas can also be used for producing industrial chemicals<br />

methanol, ethanol <strong>and</strong> dimethyl e<strong>the</strong>r.<br />

PAGE 11


Biomass to Liquid Fuel (BLF)<br />

PAGE 12<br />

http://www.biomassmagazine.com/


Lignocellulose<br />

(e.g. Forest Residues, Waste<br />

Paper, Crop Residues, Green<br />

Waste)<br />

The Furafuel Concept<br />

Furafuel Process<br />

Simple, small scale,<br />

Stable, neutral,<br />

“Bio-Crude” oil<br />

rich in furans<br />

operated close to raw materials<br />

ETHYL LEVULINATE (biodiesel)<br />

Polymers<br />

Solvents & o<strong>the</strong>r chemicals<br />

Biorefinery<br />

large, high pressure,<br />

centrally located,<br />

using known processes<br />

OCH 2 CH 3<br />

Esterification<br />

with ethanol<br />

Levulinic Acid<br />

PAGE 13<br />

Source – CSIRO/ensis


Market volume (kg/yr)<br />

Market size <strong>and</strong> price for biomass derived products<br />

Biomass derived commodities Biomass derived specialty chemicals Biomass derived Pharmaceuticals<br />

Biochemicals / Biomaterials<br />

1.00E+11<br />

cellulose-based fibres<br />

1.00E+10<br />

fatty acids<br />

1.00E+09<br />

1.00E+08<br />

speciality celluloses<br />

1.00E+07<br />

Gallic acid<br />

1.00E+06<br />

Aldehydes<br />

sterols<br />

1.00E+05<br />

1.00E+04<br />

1.00E+03<br />

1.00E+02<br />

1.00E+01<br />

essential oils<br />

chitsans <strong>and</strong> derivatives<br />

vitamins<br />

Maltol<br />

Proanthocyanidins<br />

bioactive polyphenols<br />

chiral drugs<br />

cis-3-Hexanol<br />

trans-2-Hexenal<br />

Taxans<br />

PAGE 14<br />

1.00E+00<br />

Source – Industry Canada<br />

1 10 100 1000 10000 100000<br />

Market price (US$/kg)


Project Scope: Biofibres in<br />

Transportation Applications<br />

Urethane<br />

Soy<br />

Systems<br />

MCI<br />

SWM Intl<br />

Test<br />

Facilities<br />

Mat<br />

Producers<br />

FFI<br />

Industry Partners: SWM Intl,<br />

MCI, Motive Industries<br />

Motive<br />

SWM Intl<br />

PAGE 15<br />

PROJECT HIGHLIGHTS


Biomaterials: Green Building Uses<br />

• Renewable building<br />

materials to build a<br />

demonstrator garage<br />

Material<br />

Distributors<br />

SWM Intl.<br />

Test<br />

Facilities<br />

Mat<br />

Producers<br />

Industry Partners - TBD<br />

Building<br />

Fabricators<br />

Emerson<br />

Hemp DC<br />

PAGE 16<br />

PROJECT HIGHLIGHTS


Feedstocks - Biomonomers ==> Biopolymers<br />

Biomass Biorefinery Biopolymer<br />

Proteins<br />

Lignin<br />

Starch<br />

Hemicellulose<br />

Cellulose<br />

Oils<br />

Amino acids, peptides<br />

Aromatic diacids, dihydroxy’s, hydroxyacids<br />

Di- <strong>and</strong> polyhydroxy’s<br />

Di- <strong>and</strong> polyhydroxy’s, diacids, hydroxyacids<br />

Polyamides<br />

Polyesters<br />

Polyols<br />

Polyurethanes<br />

Polyesters<br />

Polyols<br />

Polyamides<br />

Polyurethanes<br />

Polyesters<br />

Polyols<br />

Polyurethanes<br />

Polyamides<br />

PAGE 17


Lignin - issues<br />

Most abundant aromatic polymer<br />

98-99% of kraft / sulfite lignins used as fuel for process chemical<br />

recovery<br />

1-2% used for specialty chemicals:<br />

Dispersants, emulsifiers, binders<br />

Conversion to high-value products hindered by<br />

Complexity<br />

heterogeneity<br />

Polydispersity<br />

High levels of impurities<br />

PAGE 18


Products from Lignin<br />

Combustion<br />

Energy<br />

Complete degradation (pyrolysis)<br />

Methane, CO, Syngas<br />

Partial degradation<br />

Phenolics – syn<strong>the</strong>sis of polymers <strong>and</strong> resins<br />

Hybrid adhesive systems (phenolics + oils + tannin adhesives) for fibre composite<br />

systems<br />

Papermaking additive replacement (e.g. binder systems for coated papers)<br />

Sulfur-free lignins:<br />

Produced during bioethanol production, solvent or soda pulping<br />

Superior properties<br />

Substitute for phenolic powder resins<br />

Brake pads, OSB binders<br />

Polyurethane foams<br />

Epoxy resins<br />

PAGE 19


Cellulose nanocrystals<br />

Cellulose nanofibres<br />

diameters of 5–50 nm <strong>and</strong> lengths of several millimetres conformed by<br />

nanocrystalline domains <strong>and</strong> amorphous regions.<br />

nanocellulose crystals make up to 20% by mass of wood<br />

applications as reinforcements in composite materials<br />

Liquid crystal properties (nematic <strong>and</strong> chiral nematic).<br />

The mechanical properties of nanocellulose crystals<br />

tensile strength twice that of steel wire but with a comparable modulus<br />

tensile strength 25% <strong>and</strong> a modulus 25-50% of carbon nanotubes but a<br />

small fraction of <strong>the</strong> cost<br />

reinforcing agents in polymeric materials with <strong>the</strong> potential to create a<br />

green bio-steel material<br />

accessible anisotropic surface chemistry of <strong>the</strong> crystals allows for ready<br />

chemical modification<br />

crystals are biologically compatible <strong>and</strong> could be used in areas nontraditional<br />

to <strong>the</strong> forest industry such as scaffolding for medical<br />

applications <strong>and</strong> reinforcement for shape memory polymers<br />

PAGE 20


Wood Extractives<br />

Non-cell wall components<br />

Can be removed using solvents,<br />

e.g. pet. e<strong>the</strong>r, acetone, ethanol,<br />

water<br />

- Relatively small molecules (<<br />

C40)<br />

Usually comprise 1-5% of <strong>the</strong><br />

wood<br />

Under genetic control & vary by<br />

species<br />

Wood Extractives<br />

Fern<strong>and</strong>ez et al. Journal of Chromatography A<br />

922(1,2), 225-233 (2001)<br />

PAGE 21


Some extractives & <strong>the</strong>ir utilities<br />

Fatty acids<br />

Linoleic acid (dietary), Suberin (polyester)<br />

b-sitosterol<br />

Terpenoids<br />

Monoterpenes<br />

Pinene, limonene (fragrances & flavours)<br />

Diterpenes<br />

Abeitic acid, pimaric acid (resins, sizing agents)<br />

Triterpenes<br />

Betulin (medicinal)<br />

Phenolics<br />

Stilbenes (pinosylvin), flavonoids, lignans<br />

Bioactive polyphenolics can be applied to health protection (e.g.<br />

anti-oxidant properties) <strong>and</strong> disease treatment (viral <strong>and</strong> cancer<br />

treatments with podophyllotoxin/nor-dihydroguaiaretic acid<br />

derivatives).<br />

PAGE 22


Example: Betulin<br />

Has been shown to help wounds heal faster <strong>and</strong> cut inflammation.<br />

Many cosmetic companies, touting it as a skin toner <strong>and</strong> restorer, add<br />

birch bark extract to various products.<br />

Betulin can be easily converted to betulinic acid, which possesses a wide<br />

spectrum of biological <strong>and</strong> pharmacological activities.<br />

antimalarial <strong>and</strong> anti-inflammatory activities<br />

anti-HIV activity <strong>and</strong> cytotoxicity against a variety of tumor cell lines<br />

comparable to some clinically used drugs.<br />

Betulinic acid is specifically cytotoxic to several tumor cell lines<br />

(melanoma) by inducing apoptosis in cells.<br />

Fields of application:<br />

1. Raw material for pharmaceutical production;<br />

2. As a main active ingredient in parfumery-cosmetic products;<br />

PAGE 23


Poyry analysis 1<br />

•It is expected that second-generation biofuels can compete when crude<br />

oil prices are EUR 46-77 per barrel (VIEWLS 2005).<br />

production costs will be influenced by future fuel specifications,<br />

end-use issues <strong>and</strong> o<strong>the</strong>r aspects such as by-product markets.<br />

If <strong>the</strong> development <strong>and</strong> scale-up of second-generation biofuels<br />

is successful <strong>and</strong> biomass becomes <strong>and</strong> remains cheaply<br />

available, second-generation biofuels can compete at about<br />

EUR 31 per barrel.<br />

All second-generation biofuels are still in <strong>the</strong> R&D/pilot phase <strong>and</strong> are<br />

not yet available on <strong>the</strong> market because of technical limitations.<br />

Compared to first-generation biofuels, cellulosic bioethanol, FT biodiesel<br />

<strong>and</strong> HTU diesel are expected to yield far higher reductions in<br />

greenhouse gas emissions.<br />

The main environmental drawback of second-generation biofuels<br />

concerns <strong>the</strong> sources of <strong>the</strong> biomass required<br />

waste streams vs. cultivated<br />

PAGE 24<br />

Source PIRA, 2007


PAGE 25<br />

Poyry analysis 2<br />

Process flexibility<br />

a mill should be able to achieve targeted returns for <strong>the</strong><br />

integrated processes under a range of volatile market <strong>and</strong><br />

economic circumstances.<br />

optimisation <strong>and</strong> adjustment of carbon consumption to produce<br />

fibres, bioenergy, green chemicals or structural material<br />

products.<br />

what are <strong>the</strong> most attractive process variations that a mill<br />

should consider?<br />

•Energy generation<br />

how can energy systems best be integrated <strong>and</strong> optimised<br />

between <strong>the</strong> BTL plant <strong>and</strong> <strong>the</strong> existing mill?<br />

Preliminary calculations indicate that <strong>the</strong> wood-paying capability of paper<br />

production is still significantly higher than that of biofuel production<br />

taxation <strong>and</strong> subsidies will determine <strong>the</strong> competitiveness of<br />

liquid biofuels<br />

However, some assessments of economic performance indicate<br />

that <strong>the</strong> profit from co-production of FT (Fischer-Tropsch)<br />

liquids could be of similar to that from paper production. (VTT,<br />

Lahti, Nov. 2006)


Role of <strong>the</strong> market<br />

Public Policy & Market Forces<br />

Efficient allocation of resources<br />

for maximum returns<br />

Role of public policy<br />

Focus on essential societal<br />

values NOT priced – market<br />

failures<br />

Environmental impacts<br />

Zero-waste initiatives<br />

Biofuels part of a combined<br />

solution (solar, C capture)<br />

Technology development<br />

Technology clusters – e.g.<br />

gasification<br />

Public good, pre-competitive<br />

Policy integration<br />

Biomass, energy, chemicals,<br />

R&D<br />

PAGE 26


<strong>Manitoba</strong>: Biomass<br />

Agricultural biomass<br />

19 m acres of farml<strong>and</strong><br />

0.4 m acres of flax<br />

0.4 m tonnes flax straw p.a.<br />

Forest biomass<br />

65 m acres<br />

Mixture of softwood <strong>and</strong> hardwood species<br />

1.5 m m3 softwood <strong>and</strong> 0.7 m m3 hardwood p.a.<br />

1.0 m tonnes of harvest residues p.a.<br />

Waste streams – industrial <strong>and</strong> municipal<br />

Hogs, potatoes, oat hulls<br />

250,000 tonnes municipal waste biomass<br />

PAGE 27<br />

Source – <strong>Manitoba</strong> Government (Growing Green)


<strong>Manitoba</strong>: Industry<br />

MB bioproducts companies number > 30<br />

Biofuels sector<br />

Speedway International<br />

Biofibres <strong>and</strong> biomaterials<br />

Forestry – Tolko<br />

Ag-fibre – SWM International<br />

Waste streams – Solanyl Biopolymers Inc.<br />

Connecting to larger industry / OEM<br />

Composites Innovation Centre Inc.<br />

Richardson Centre for Functional Foods <strong>and</strong> Nutraceuticals<br />

PAGE 28


<strong>Manitoba</strong>: Priorities<br />

Growing Green<br />

Key principals for a successful bioeconomy sector<br />

Integration<br />

Remove “silos” between resources – multiple feedstock management<br />

(& multi-purpose crops), systems approach<br />

Whole-of-value-chain focus<br />

Alliances, collaborative <strong>and</strong> cost-sharing partnerships<br />

Innovation<br />

Bioproducts <strong>Manitoba</strong> – Innovation champion<br />

Growing <strong>and</strong> supporting bioproducts companies<br />

Clustering<br />

New technologies transferred<br />

Commitment<br />

A sustainable environment <strong>and</strong> communities<br />

Kyoto<br />

PAGE 29


Fundamental challenges<br />

Interpreting major trends in o<strong>the</strong>r jurisdictions<br />

Global big-picture view<br />

Inspirational “thought-leadership”<br />

Government policy <strong>and</strong> industry, “early-adopter” contacts, SME<br />

relationships<br />

Connectedness & information deficit<br />

Collaborations, international<br />

Critical mass – supply chain<br />

Capability cross-talk<br />

Talent retention & attraction<br />

Skills development – training<br />

Global talent shortage – international competition<br />

Yes! Winnipeg<br />

Cutting edge technology development & adaptation<br />

Appropriate resourcing & prioritisation<br />

PAGE 30


CONTACT INFORMATION<br />

Simon Potter<br />

Sector Manager – Product Innovation<br />

Adjunct Professor – University of <strong>Manitoba</strong><br />

CIC Contact Information:<br />

Website: www.compositesinnovation.ca<br />

Email: spotter@compositesinnovation.ca<br />

Tel No.: 204-262-3400 Ext 209<br />

PAGE 31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!